IMPLEMENTATION OF THE DEFLATED PRE-CONDITIONED CONJUGATE GRADIENT METHOD APPLIED TO THE POISSON EQUATION RELATED TO BUBBLY FLOW ON THE GPU

LITERATURE STUDY

Rohit Gupta MSc Computer Engineering (1542702)

OUTLINE

- Discretization of Bubbly Flow Problem
- Basic Iterative Methods
- Conjugate Gradients
 - Preconditioning
 - Deflation
- Parallelization Techniques
- The Graphical Processing Unit
 - Parallelization of Iterative Methods on the GPU
- Research Questions

PROBLEM STATEMENT

- Two Phase Flow Navier Stokes Equation
- Linear System Ax=b
- •Finite Difference Disrcetization Neumann Boundary Conditions
- Preconditioning of the Sparse Matrix
- Deflation Techniques (second Level of Preconditioning)
- •Optimization of DPCG on the GPU

DISCRETIZATION TECHNIQUES

Finite Differences
Centered, Backward and Forward
1-D and 2-D discretization

Finite Element
Weak Formulation

Finite Volume
Green's Theorem

BASIC ITERATIVE METHODS

 $x_{k+1} = Gx_k + f$

•Jacobi G = $I - D^{-1}A$

•Gauss Seidel G = $I - (D - E)^{-1}A$

•Successive Over- Relaxation $G = (D - \omega C_1)^{-1}((1 - \omega)D + \omega C_2)$

CONJUGATE GRADIENT

Projection method on Krylov Subspace

•Coefficient matrix A has to be Symmetric Positive Definite

 Much better than Jacobi and Gauss Siedel in terms of speed of convergence

CONJUGATE GRADIENT ALGORITHM

Arnoldi Orthogonalization

Lanczos Method

Conjugate Gradient Iteration

PRECONDITIONING

Improving the Condition Number K(A)

- Diagonal Preconditioning
- Incomplete Cholesky
- •Other Forms (ILU(0), ILU(p), ILUT)

DOMAIN DECOMPOSITION

- Divide the Problem into Smaller domains.
- •Solve the Linear System for each domain separately.
- •Represent mesh points as a graph then build the matrix.
- •Vertex, Edge or Element based Partitioning.
- •Block matrix structure emerges.

DEFLATION

Attempt to treat bad eigenvalues of Preconditioned Matrix

•A different splitting of A. PAx=Pb (new system to be solved)

The deflection vectors approximate the eigenspace of A

PARALLELIZATION TECHNIQUES

- Preconditioner setup (internal loop within outer iteration)
- Matrix vector multiplications (storage formats)
- Preconditioning operations (multi-coloring, block-ILU)
- Using BLAS libraries

GRAPHICAL PROCESSING UNIT

SIMD Processor

Hierarchy of Memories

Capable of delivering hundreds of GFLOPS^{*}

***Conditions** Apply

GPU ORIENTATION

More transistors for Data Processing

Pictures used without permission from NVIDIA CUDA Programming Guide v 2.2.1. Copyrights NVIDIA Corporation

GPU ORIENTATION CONTINUED

F Х e Μ C U 0 d e \mathbf{O} n

PERFORMANCE SCALING

Pictures used without permission from NVIDIA CUDA Programming Guide v 2.2.1. Copyrights NVIDIA Corporation

THE BIG PICTURE

Pictures used without permission from NVIDIA CUDA Programming Guide v 2.2.1. Copyrights NVIDIA Corporation

COMMUNICATION VS COMPUTATION

•Parallel Computation Time = T(Execution) + T (Memory Transfers).

•Computation can be reduced by a factor p, Number of Processors.

Communication is problem dependent.

Important to get more flops per byte (or per float).

COALESCING

Pictures used without permission from NVIDIA CUDA Programming Guide v 2.2.1 . Copyrights NVIDIA Corporation

PARALLELIZATION OF ITERATIVE METHODS ON THE GPU

- NVIDIA's SpMV Library
- •Work for Dense Matrices (Demmel, Volkov)
- Precision studies (baboulin, et.al)
- Modest Speed-Ups reported with Preconditioned CG

RESEARCH QUESTIONS

- Conjugate Gradient on the GPU
- Preconditioned Conjugate Gradient (different flavors)
- Precision (Mixed and Double)
- Deflation applied on PCG on the GPU
- Multiple GPUs for better performance

PRELIMINARY RESULTS

Conjugate Gradient on GPU vs. CPU

Matrix Free

	CSR	DIA	Matrix Free
- GPU	J 7.286702	3.800385	3.660142
■ CPI	J 25.711725	21.787317	23.362423
speedup	3.5x	5.7x	6.4x

Relative Error = 10^{-5} . Iterations on GPU = ~1422. Iterations on CPU=~1250. Grid Size = 512 X 512

QUESTIONS AND SUGGESTIONS

"This 'Wheel' thing of yours-Does it have to be round or will any shape do?"

search

ID: dcr080*

"IMPLEMENTING THESE CHANGES WON'T BE EASY. WE'RE PRETTY SET IN DOING THINGS THE WRONG WAY."

Pictures used without permission from www.cartoonstock.com .

EXTRA SLIDES

Operator Splitting Dy/dt (K) = L(K)

And L(k) can be split up into L(k1) + L(k2)

The vector \vec{n} refers to a unit vector that is normal to Γ and directed outwards. For a given vector \vec{v} , with components v1 and v2, the directional derivative $\frac{\partial u}{\partial \vec{v}}$ is defined by

$$\begin{split} \frac{\partial u}{\partial \vec{v}}(x) &= \lim_{h \to 0} \frac{u(x + h\vec{v}) - u(x)}{h} \\ &= \frac{\partial u}{\partial x_1}(x)v_1 + \frac{\partial u}{\partial x_2}(x)v_2 \\ &= \nabla u.\vec{v} \end{split}$$

EXTRA SLIDES II

ALGORITHM 1.1: Gram-Schmidt

- 1. Compute $r_{11} := ||x_1||_2$. If $r_{11} = 0$ Stop, else compute $q_1 := x_1/r_{11}$.
- 2. For j = 2, ..., r Do: 3. Compute $r_{ij} := (x_j, q_i)$, for i = 1, 2, ..., j - 14. $\hat{q} := x_j - \sum_{i=1}^{j-1} r_{ij}q_i$ 5. $r_{jj} := ||\hat{q}||_2$, 6. If $r_{jj} = 0$ then Stop, else $q_j := \hat{q}/r_{jj}$ 7. EndDo

ARNOLDI

Arnoldi's procedure is an algorithm for building an orthogonal basis of the Krylov subspace \mathcal{K}_m . In exact arithmetic, one variant of the algorithm is as follows:

ALGORITHM 6.1: Arnoldi

- 1. Choose a vector v_1 of norm 1
- 2. For j = 1, 2, ..., m Do:
- 3. Compute $h_{ij} = (Av_j, v_i)$ for i = 1, 2, ..., j
- 4. Compute $w_j := Av_j \sum_{i=1}^j h_{ij}v_i$
- 5. $h_{j+1,j} = ||w_j||_2$
- 6. If $h_{j+1,j} = 0$ then Stop
- 7. $v_{j+1} = w_j / h_{j+1,j}$
- 8. EndDo

At each step, the algorithm multiplies the previous Arnoldi vector v_j by A and then orthonormalizes the resulting vector w_j against all previous v_i 's by a standard Gram-Schmidt procedure. It will stop if the vector w_j computed in line 4 vanishes.

CG DERIVATION

Gradient algorithm which we now derive. The vector x_{j+1} can be expressed as

 $x_{j+1} = x_j + \alpha_j p_j.$

Therefore, the residual vectors must satisfy the recurrence

$$r_{j+1} = r_j - \alpha_j A p_j.$$

If the r_j 's are to be orthogonal, then it is necessary that $(r_j - \alpha_j A p_j, r_j) = 0$ and as a result

$$\alpha_j = \frac{(r_j, r_j)}{(Ap_j, r_j)}$$

Also, it is known that the next search direction p_{j+1} is a linear combination of r_{j+1} and p_j , and after rescaling the p vectors appropriately, it follows that

$$p_{j+1} = r_{j+1} + \beta_j p_j.$$

Thus, a first consequence of the above relation is that

$$(Ap_j, r_j) = (Ap_j, p_j - \beta_{j-1}p_{j-1}) = (Ap_j, p_j)$$

CG DERIVATION

because Ap_j is orthogonal to p_{j-1} . Then, addition, writing that p_{j+1} as defined by

becomes $\alpha_j = (r_j, r_j)/(Ap_j, p_j)$. In is orthogonal to Ap_j yields

$$\beta_j = -\frac{(r_{j+1}, Ap_j)}{(p_j, Ap_j)}.$$

Note that from

$$Ap_j = -\frac{1}{\alpha_j}(r_{j+1} - r_j)$$

and therefore,

$$\beta_j = \frac{1}{\alpha_j} \frac{(r_{j+1}, (r_{j+1} - r_j))}{(Ap_j, p_j)} = \frac{(r_{j+1}, r_{j+1})}{(r_j, r_j)}$$

Putting these relations together gives the following algorithm.

DOMAIN DECOMPOSITION

