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OUTLINE
‘Discretization of Bubbly Flow Problem
*Basic Iterative Methods
-Conjugate Gradients
*Preconditioning
‘Deflation
-Parallelization Techniques
*The Graphical Processing Unit
Parallelization of Iterative Methods on the GPU

‘Research Questions



PROBLEM STATEMENT

*Two Phase Flow — Navier Stokes Equation
Linear System Ax=Db

Finite Difference Disrcetization — Neumann Boundary
Conditions

*Preconditioning of the Sparse Matrix
Deflation Techniques (second Level of Preconditioning)

*Optimization of DPCG on the GPU



DISCRETIZATION TECHNIQUES

*Finite Differences
Centered, Backward and Forward
*1-D and 2-D discretization

*Finite Element
*\WWeak Formulation

*Finite Volume
*Green’s Theorem



BASIC ITERATIVE METHODS
Tir1 = Guyp + f

«Jacobi |
G=]—-D'A4

Gauss Seidel
G=]—-(D-E)'A4

*Successive Over- Relaxation
G=(D—wC) (1 —w)D +wCy)



CONJUGATE GRADIENT

*Projection method on Krylov Subspace

-Coefficient matrix A has to be Symmetric Positive
Definite

Much better than Jacobi and Gauss Siedel in terms of
speed of convergence



CONJUGATE GRADIENT ALGORITHM

*Arnoldi Orthogonalization

el anczos Method

«Conjugate Gradient Iteration



PRECONDITIONING

Improving the Condition Number K(A)

-Diagonal Preconditioning
sIncomplete Cholesky

*Other Forms (ILU(O), ILU(p), ILUT)



DOMAIN DECOMPOSITION

Divide the Problem into Smaller domains.

*Solve the Linear System for each domain separately.
*Represent mesh points as a graph then build the matrix.
*Vertex, Edge or Element based Partitioning.

*Block matrix structure emerges.



DEFLATION

«Attempt to treat bad eigenvalues of Preconditioned Matrix

A different splitting of A. PAx=Pb (new system to be solved)

*The deflection vectors approximate the eigenspace of A



PARALLELIZATION TECHNIQUES

*Preconditioner setup (internal loop within outer iteration)
Matrix vector multiplications (storage formats)
*Preconditioning operations (multi-coloring, block-ILU)

*Using BLAS libraries



GRAPHICAL PROCESSING UNIT

*SIMD Processor
*Hierarchy of Memories

*Capable of delivering hundreds of GFLOPS™

*Conditions Apply

S— - =



GPU ORIENTATION
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More transistors for Data Processing
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PERFORMANCE SCALING

Kernel Grid
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THE BIG PICTURE
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COMMUNICATION VS COMPUTATION

Parallel Computation Time = T(Execution) + T (Memory
Transfers).

«Computation can be reduced by a factor p, Number of
Processors.

Communication is problem dependent.

sImportant to get more flops per byte (or per float).



COALESCING
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PARALLELIZATION OF ITERATIVE
METHODS ON THE GPU

*NVIDIA's SpMV Library
*Work for Dense Matrices (Demmel, Volkov)
*Precision studies (baboulin, et.al)

*Modest Speed-Ups reported with Preconditioned CG



RESEARCH QUESTIONS

*Conjugate Gradient on the GPU

*Preconditioned Conjugate Gradient (different flavors)
*Precision (Mixed and Double)

Deflation applied on PCG on the GPU

*Multiple GPUs for better performance



PRELIMINARY RESULTS
Conjugate Gradient on GPU vs. CPU
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Matrix Free
CSR DIA Matrix Free
L GPU 7.286702 3.800385 3.660142
mCPU 25.711725 21.787317 23.362423
speedup 3.5x 5.7x 6.4x

Relative Error = 10° . Iterations on GPU = ~1422. Iterations on CPU=~1250.
Grid Size =512 X 512



QUESTIONS AND SUGGESTIONS

© Original Artist 2 Original Artist
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EXTRA SLIDES

Operator Splitting
Dy/dt (K) = L(K)

And L(k) can be split up into L(k1) + L(k2)

Dirichlet Condition w(r) = o(x)
-, . ou
Neumann Condition —(x) =10
on
, L du
Cauchy Condition — () + alx)ulr) = ~(x)
o
The vector 71 refers to a unit vector that is normal to I' and directed outwards. For a
given vector v, with components vl and v2, the directional derivative g—?. is defined by
Ou (e + hv) —ul(x)
—(x) = lim
v h—0 h
du du
= 2 oy + 2 (@)
AR Ao
= Ju.v

Pictures used without permission from Yousef Saad’s Iterative Methods for Sparse Linear Systems. © Yousef saad



EXTRA SLIDES I

ALGORITHM 1.1: Gram-Schmidt

1. Computerqy := ||21]|o. Ifr1; = 0 Stop, else compute ¢, := x1/7q;.
2. Fory=2,....,r Do:

3. Computer;; := (xj,q;) ,fori=1,2,... 51

71
4. q:=1=T;— z Tijq;
1=1

5. rii=ldl,
6. Ifrj; = 0 then Stop, else q; := ¢/}
7. EndDo

Pictures used without permission from Yousef Saad’s Iterative Methods for Sparse Linear Systems. © Yousef saad



ARNOLDI

Arnoldi’s procedure 1s an algorithm for building an orthogonal basis of the Krylov subspace
K- In exact arithmetic, one variant of the algorithm 1s as follows:

ALGORITHM 6.1: Arnoldi

1. Choose a vector vy of norm 1

2. Forj=1,2,...,m Do:

3 Compute h;; = (Avj,v;) fori =1,2,...,7
4 Compute wj := Avj — > 1_, hijv;

3. f’&j{ 1,7 — ||ﬂ;’j“‘2

6 If hjy1 ; = 0 then Stop

7 ‘UJ'|1 zu;j/f'i,ﬂu

8. EndDo

At each step, the algorithm multiplies the previous Arnoldi vector v ; by A and then or-
thonormalizes the resulting vector w; against all previous v;’s by a standard Gram-Schmidt
procedure. It will stop 1f the vector w; computed in line 4 vanishes.

Pictures used without permission from Yousef Saad’s Iterative Methods for Sparse Linear Systems. © Yousef saad



CG DERIVATION

Gradient algorithm which we now derive. The vector ., ; can be expressed as
Tjp1 = T + O;P;-

Theretore, the residual vectors must satisty the recurrence
rip1 =r; —a;Ap;.

If the r;’s are to be orthogonal, then it 1s necessary that (r; — a;Ap;,r;) = O and as a
result

(rj,75)
(Apj,rj)
Also, it 1s known that the next search direction ;41 1s a linear combination of 7, and
pj, and after rescaling the p vectors appropriately, 1t follows that

43 j —

Pj+1 = Tjy1 + B;p;.

Thus, a first consequence of the above relation 1s that

(Apjors) = (Apjpy = Bi1py1) = (Apy.py)

Pictures used without permission from Yousef Saad’s Iterative Methods for Sparse Linear Systems. © Yousef saad



CG DERIVATION

becz‘n%se *‘4?"4 Iis orthogonal to p;_;. Then, . becomes «o; = (r joT i)/ (Apj,p;). In
addition, writing that p; ¢ as defined by | 18 orthogonal to Ap; yields
g — _ (i1, Apj)
T
(pj, Ap;)
Note that from
1
Apj = ——(rj1 —15)
Y,

and therefore,
3. — L (rjpe, (i —r5)) (e, mj4)
Ui = — TP T
(.};J‘ (A}J;aﬂj) (‘(.f’!j)
Putting these relations together gives the following algorithm.

Pictures used without permission from Yousef Saad’s Iterative Methods for Sparse Linear Systems. © Yousef saad



DOMAIN DECOMPOSITION
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