IMPLEMENTATION OF THE

DEFLATED PRE-CONDITIONED
CONJUGATE GRADIENT METHOD
APPLIED TO THE POISSON EQUATION
RELATED TO BUBBLY FLOW ON THE

GPU

LITERATURE STUDY

Rohit Gupta

MSc Computer Engineering
(1542702)



OUTLINE
‘Discretization of Bubbly Flow Problem
*Basic Iterative Methods
-Conjugate Gradients
*Preconditioning
‘Deflation
-Parallelization Techniques
*The Graphical Processing Unit
Parallelization of Iterative Methods on the GPU

‘Research Questions



PROBLEM STATEMENT

*Two Phase Flow — Navier Stokes Equation
Linear System Ax=Db

Finite Difference Disrcetization — Neumann Boundary
Conditions

*Preconditioning of the Sparse Matrix
Deflation Techniques (second Level of Preconditioning)

*Optimization of DPCG on the GPU



DISCRETIZATION TECHNIQUES

*Finite Differences
Centered, Backward and Forward
*1-D and 2-D discretization

*Finite Element
*\WWeak Formulation

*Finite Volume
*Green’s Theorem



BASIC ITERATIVE METHODS
Tir1 = Guyp + f

«Jacobi |
G=]—-D'A4

Gauss Seidel
G=]—-(D-E)'A4

*Successive Over- Relaxation
G=(D—wC) (1 —w)D +wCy)



CONJUGATE GRADIENT

*Projection method on Krylov Subspace

-Coefficient matrix A has to be Symmetric Positive
Definite

Much better than Jacobi and Gauss Siedel in terms of
speed of convergence



CONJUGATE GRADIENT ALGORITHM

*Arnoldi Orthogonalization

el anczos Method

«Conjugate Gradient Iteration



PRECONDITIONING

Improving the Condition Number K(A)

-Diagonal Preconditioning
sIncomplete Cholesky

*Other Forms (ILU(O), ILU(p), ILUT)



DOMAIN DECOMPOSITION

Divide the Problem into Smaller domains.

*Solve the Linear System for each domain separately.
*Represent mesh points as a graph then build the matrix.
*Vertex, Edge or Element based Partitioning.

*Block matrix structure emerges.



DEFLATION

«Attempt to treat bad eigenvalues of Preconditioned Matrix

A different splitting of A. PAx=Pb (new system to be solved)

*The deflection vectors approximate the eigenspace of A



PARALLELIZATION TECHNIQUES

*Preconditioner setup (internal loop within outer iteration)
Matrix vector multiplications (storage formats)
*Preconditioning operations (multi-coloring, block-ILU)

*Using BLAS libraries



GRAPHICAL PROCESSING UNIT

*SIMD Processor
*Hierarchy of Memories

*Capable of delivering hundreds of GFLOPS™

*Conditions Apply

S— - =



GPU ORIENTATION

Control ALU | ALU :I
ALU | ALU :I

CPU GPU

More transistors for Data Processing

Pictures used without permission from NVIDIA CUDA Programming Guide v 2.2.1 . Copyrights NVIDIA Corporation



Grid
Block (0,0) Block (1,0)  Block (2, 0)
Block (0, 1) Block (1, 1) Block (2, 1)

Block (1, 1)

E
X
e
C
u
t

I
0]

— DO Q o0 <

Thread

GPU ORIENTATION CONTINUED

»

i -

Thread Block

|

>

yYywyw

YYyVYv¥

Grid 0
Block (0, 0) Block (1, 0) Block(2,0)
Block (0, 1) Block(1,1) Block(2,1)
Grid 1
Block (0, 0) Block (1, 0)
Block (0, 1) Block (1, 1)
Block (0, 2) Block (1, 2)

F 3

Pictures used without permission from NVIDIA CUDA Programming Guide v 2.2.1 . Copyrights NVIDIA Corporation

A 4

Per-thread local
memory

Per-block shared
memory

Global memory



PERFORMANCE SCALING

Kernel Grid

w b 4
Device with 2 SMs Device with 4 SMs

SMO0 SM 1 SM 0 5M 1 SM 2 SM 3

Pictures used without permission from NVIDIA CUDA Programming Guide v 2.2.1 . Copyrights NVIDIA Corporation




Device

THE BIG PICTURE

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Processor 1

Processor 2

T

Processor M

Instruction
Unit

Pictures used without permission from NVIDIA CUDA Programming Guide v 2.2.1 . Copyrights NVIDIA Corporation




COMMUNICATION VS COMPUTATION

Parallel Computation Time = T(Execution) + T (Memory
Transfers).

«Computation can be reduced by a factor p, Number of
Processors.

Communication is problem dependent.

sImportant to get more flops per byte (or per float).



COALESCING

Thread O

Address 128

Thread 1

Address 132

Thread 2

Address 136

Thread 3

Address 140

Thread

Thread 0

Thread 1

Address 128

Thread 2

Address 132

Thread 3

Address 136

Thread 4

Address 144

Thread 5

Address 148

Thread 6

Address 152

Thread 7

Address 156

Thread 8

Address 160

Memory
Address

Thread 4

Address 140

Thread 5

Address 144

Thread 6

Address 148

Thread 7

Address 152

Thread 9

Address 164

Thread 10

Address 168

Thread 11

Address 172

Thread 12

Address 176

Thread 13

Address 180

Thread 14

Address 184

Thread 15

Address 188

Thread 8

Address 156

Thread 9

Address 160

Thread 10

Address 164

Thread 11

Address 168

Thread 12

Address 172

Thread 13

Address 176

Thread 14

Address 180

Thread 15

Address 184

Address 188

Pictures used without permission from NVIDIA CUDA Programming Guide v 2.2.1 . Copyrights NVIDIA Corporation




PARALLELIZATION OF ITERATIVE
METHODS ON THE GPU

*NVIDIA's SpMV Library
*Work for Dense Matrices (Demmel, Volkov)
*Precision studies (baboulin, et.al)

*Modest Speed-Ups reported with Preconditioned CG



RESEARCH QUESTIONS

*Conjugate Gradient on the GPU

*Preconditioned Conjugate Gradient (different flavors)
*Precision (Mixed and Double)

Deflation applied on PCG on the GPU

*Multiple GPUs for better performance



PRELIMINARY RESULTS
Conjugate Gradient on GPU vs. CPU

=

|_

e

O

-

o

3 CPU

X

Lt GPU

Matrix Free
CSR DIA Matrix Free
L GPU 7.286702 3.800385 3.660142
mCPU 25.711725 21.787317 23.362423
speedup 3.5x 5.7x 6.4x

Relative Error = 10° . Iterations on GPU = ~1422. Iterations on CPU=~1250.
Grid Size =512 X 512



QUESTIONS AND SUGGESTIONS

© Original Artist 2 Original Artist
Repraduction rights obtainable from 'eproduction rights obtainable from
www. CartoonStock.com vy, CartoonStock.com

“This 'thee! ' thing of yours—Does & have 4o IMPLEMENTING THESE CHANGES WONT BE EASY.
ad ->h WE'RE PRETTY SET IN DOING THINGS THE WRONG WAY.
be round oc wuill atlﬂ Sf'rapz do:

Pictures used without permission from www.cartoonstock.com .



http://www.cartoonstock.com/

EXTRA SLIDES

Operator Splitting
Dy/dt (K) = L(K)

And L(k) can be split up into L(k1) + L(k2)

Dirichlet Condition w(r) = o(x)
-, . ou
Neumann Condition —(x) =10
on
, L du
Cauchy Condition — () + alx)ulr) = ~(x)
o
The vector 71 refers to a unit vector that is normal to I' and directed outwards. For a
given vector v, with components vl and v2, the directional derivative g—?. is defined by
Ou (e + hv) —ul(x)
—(x) = lim
v h—0 h
du du
= 2 oy + 2 (@)
AR Ao
= Ju.v

Pictures used without permission from Yousef Saad’s Iterative Methods for Sparse Linear Systems. © Yousef saad



EXTRA SLIDES I

ALGORITHM 1.1: Gram-Schmidt

1. Computerqy := ||21]|o. Ifr1; = 0 Stop, else compute ¢, := x1/7q;.
2. Fory=2,....,r Do:

3. Computer;; := (xj,q;) ,fori=1,2,... 51

71
4. q:=1=T;— z Tijq;
1=1

5. rii=ldl,
6. Ifrj; = 0 then Stop, else q; := ¢/}
7. EndDo

Pictures used without permission from Yousef Saad’s Iterative Methods for Sparse Linear Systems. © Yousef saad



ARNOLDI

Arnoldi’s procedure 1s an algorithm for building an orthogonal basis of the Krylov subspace
K- In exact arithmetic, one variant of the algorithm 1s as follows:

ALGORITHM 6.1: Arnoldi

1. Choose a vector vy of norm 1

2. Forj=1,2,...,m Do:

3 Compute h;; = (Avj,v;) fori =1,2,...,7
4 Compute wj := Avj — > 1_, hijv;

3. f’&j{ 1,7 — ||ﬂ;’j“‘2

6 If hjy1 ; = 0 then Stop

7 ‘UJ'|1 zu;j/f'i,ﬂu

8. EndDo

At each step, the algorithm multiplies the previous Arnoldi vector v ; by A and then or-
thonormalizes the resulting vector w; against all previous v;’s by a standard Gram-Schmidt
procedure. It will stop 1f the vector w; computed in line 4 vanishes.

Pictures used without permission from Yousef Saad’s Iterative Methods for Sparse Linear Systems. © Yousef saad



CG DERIVATION

Gradient algorithm which we now derive. The vector ., ; can be expressed as
Tjp1 = T + O;P;-

Theretore, the residual vectors must satisty the recurrence
rip1 =r; —a;Ap;.

If the r;’s are to be orthogonal, then it 1s necessary that (r; — a;Ap;,r;) = O and as a
result

(rj,75)
(Apj,rj)
Also, it 1s known that the next search direction ;41 1s a linear combination of 7, and
pj, and after rescaling the p vectors appropriately, 1t follows that

43 j —

Pj+1 = Tjy1 + B;p;.

Thus, a first consequence of the above relation 1s that

(Apjors) = (Apjpy = Bi1py1) = (Apy.py)

Pictures used without permission from Yousef Saad’s Iterative Methods for Sparse Linear Systems. © Yousef saad



CG DERIVATION

becz‘n%se *‘4?"4 Iis orthogonal to p;_;. Then, . becomes «o; = (r joT i)/ (Apj,p;). In
addition, writing that p; ¢ as defined by | 18 orthogonal to Ap; yields
g — _ (i1, Apj)
T
(pj, Ap;)
Note that from
1
Apj = ——(rj1 —15)
Y,

and therefore,
3. — L (rjpe, (i —r5)) (e, mj4)
Ui = — TP T
(.};J‘ (A}J;aﬂj) (‘(.f’!j)
Putting these relations together gives the following algorithm.

Pictures used without permission from Yousef Saad’s Iterative Methods for Sparse Linear Systems. © Yousef saad



DOMAIN DECOMPOSITION

. - - EE u . . )
AN N o A 1
A\ O/ \;l/' \32/ \3 3/I EEE N : : |
T § T .. . 1 1 |.
] EE B | )
E EEE B 1 !
E EHE [ 1 ]
) PN 1 ] CT | ! [}
(26) 27) 28) (29) - EEw ' ) m
N T T N I -_sw . L I _EH_H
e T ~ 1N
‘mEE = ' !
T : :
1 L ] EE N [ ]
(22) (23) (24) (25) 'm_mEm m : :
_— — — .
, ® EE = . .
” ] EE E , =
| HE EEE N , N
) E EE BN !
_ ) N ; ~ . 1 | HE 1 |
R TN i .y TN P AN
———— () e— — } 20} 211 1 H EHENR ]
'\40/ N 9/’ \3_8/ 3 A \!‘ 9/l o/ \." l/’ 1 ] HE 1
.......... R R L T ek "
' EEE B ! ]
: ! EEN [ ] : [ ]
L T ] [ |
P - ~ N N — 5 ' ) )
7) (8 9 36 (16 (1 18) ‘ = EE = N
L/ WO "/ N Nl o . . X ] EEE ] "
. , B EEE ®m ,
' " E EE m,
- .
L o 1 1 1 1
(4) 5) 6 35 (13) (14) (15) ' ' . EEN
N v, N NS N/ N oA 1 1 [ ] HEl
] ' ] | mEE
m ] ' | EENE
SN gt PN N / TN TN : u : u : mas
(1) (2) (3) (34) 10 11) (12) - g , umm
N =/ Ny L N —y N2 | " M | ' HEER
! m ! 1

Pictures used without permission from Yousef Saad’s Iterative Methods for Sparse Linear Systems. © Yousef saad



