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1 Introduction

In this work we look at the implementation of a numerical solution of a linear Partial
Differential Equation(PDE), resulting from the mathematical modeling of physical systems
and in particular bubbly flows. The PDEs have been discretized through the use of finite
elements. The linear systems we are interested in are of the form

Ax = b, A ∈ Rn×n, n ∈ N (1)

that arise from such discretizations, where n is the number of degrees of freedom and is
also called the dimension of A. Also A is symmetric positive definite(SPD), i.e.,

A = AT , yTAy > 0 ∀ y ∈ Rn×ny 6= 0. (2)

The linear system given by (1) is usually sparse and ill-conditioned. This means that
there are few non-zero elements per row of A and also that the condition number κ is
usually large. Put in other words, the ratio of the largest eigenvalue to the smallest is
large and this leads to slow convergence of an iterative method.

κ{A} : =
λn
λ1

(3)

where 0 ≤ λ1 ≤ λ2 ≤ ... ≤ λn are eigenvalues of matrix A.
Solving the system (1) by direct methods is also an option but it is usually not memory-

wise or computationally efficient. Though these methods are robust and generally appli-
cable but they also tend to be prohibhitively expensive. The sparsity of the matrix A
necessitates the use of efficient storage methods and computation with ’iterative meth-
ods’. The term ’iterative method’ refers to a wide range of techniques that use iterates,
or successive approximations to obtain more accurate solutions to a linear system at each
iteration step.

Krylov subspace methods, especially the Conjugate Gradient Method is the prominent
choice for solving such systems. However the convergence of these methods depends heavily
on κ(A). In order to avoid more and more iterations, as κ(A) rises with increasing problem
sizes, the matrix A is preconditioned to bring down the condition number form κ(A) to

κ(M
−1
2 AM

1
2 ) which is equivalent to κ(M−1A). The coefficient matrix A is multiplied by

M−1. The original system (1) then looks like,

M−1Ax = M−1b, (4)

where M is symmetric and positive definite just like A. M−1 is chosen in such a way
that the cost of the operation M−1y with a vector y is computationally cheap. However,
sometimes preconditioing might also not be enough. In that case we use second level of
preconditioning or Deflation in order to reduce κ(A).

In this work some previous results [Tang, 2008] are used for implementation. The focus
is to implement these methods on the Graphical Processing Unit (GPU).

Recently Scientific Computing has largely benefitted from the data parallel architecture
of graphical processors. Many interesting problems which are computationally intensive
are ideally suited to the GPU. Especially matrix calculations. It is only intuitive to use
them for solution of discretized partial equations. With the advent of the Compoenent
Unified Device Architecture (CUDA) paradigm of computing available on NVIDIA GPU
devices, it has become easier to write such applications. More time can be spent in explor-
ing the ’What If?’ scenarios that are of scientific importance rather than understading
device specifics. We briefly define the problem of Bubbly flows followed by a background
on Iterative Methods. Subsequently we introduce the Parallelization of Iterative methods
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that are used on cluster machines and coded in MPI, HPF and such technologies. Af-
ter introducing some of the Architectural details of the GPU and and a glimpse of the
programming techniques we disuss the recent work that has been done on the GPU with
respect to solving iteratively the linear systems emerging from discretizationsof PDEs. We
conclude this document by presenting the research questions that the implementation will
explore and try to answer.

2 Problem Definition

Computations of Bubbly flows is the main application for this implementation. Under-
standing the dynamics and interaction of bubbles and droplets in a large variety of pro-
cesses in nature, engineering, and industry are crucial for economically and ecologically
optimized design. Bubbly flow occur, for example, in chemical reactors, boiling, fuel
injectors, coating and volcanic eruptions.

Two phase flows are complicated to simulate, because the geometry of the problem
typically varies with time, and the fluids involved have very different material properties.
Following from the previous work [Tang, 2008] we consider stationary and time-dependent
bubbly flows, where the computational domain is always a unit square or unit cube filled
with a fluid to a certain height. The bubbles and droplets in the domain are always chosen
such that they are located in a structured way and have equal radius, s, at the starting
time.

Mathematically bubbly flows are modelled using the Navier Stokes equations including
boundary and interface conditions, which can be approximated numerically using operator
splitting techniques. In these schemes, equations for the velocity and pressure are solved
sequentially at each time step. In many popular operator-splitting methods, the pressure
correction is formulated implicitly, requiring the solution of a linear system (1) at each
time step. This system takes the form of a Poisson equation with discontinuous coefficients
(also called the ’pressure(-correction) equation’) and Neumann boundary conditions, i.e.,

−5 .

(
1

ρ(x)
5 p(x)

)
= f(x), x ∈ Ω, (5)

∂

∂n
p(x) = g(x), x ∈ ∂Ω, (6)

where Ω, p, ρ, x and n denote the computational domain, pressure, density, spatial
coordinates, and the unit normal vector to the boundary, ∂Ω, respectively. Right-hand
sides f and g follow explicitly from the operator-splitting method, where g is such that
mass is conserved, leading to a singular but compatible linear system (1).

A typical sequence of steps for Deflated Preconditioned CG algorithm can be outlined
here as described in [Tang, 2008]. This method is numerically more stable although it is
derived from the work discussed in [Saad, Yeung, Erhel, and Guyomarc’h, 2000].

1. Select x0. Compute r0 := b−Ax0 and r̂0 = Pr0, Solve My0 = r̂0 and set p0 := y0.

2. for j:=0,..., until convergence do

3. ŵj := PApj

4. αj :=
(r̂j ,yj)
(pj ,ŵj)

5. x̂j+1 := x̂j + αjpj

6. r̂j+1 := r̂j − αjŵj

2



7. Solve Myj+1 = r̂j+1

8. βj :=
(r̂j+1,yj+1)

(r̂j ,yj)

9. pj+1 := yj+1 + βjpj

10. end for

11. xit := Qb+ P Txj+1

A is the coefficent matrix. M is the preconditioning matrix. rj is the residual at jth

step and pj is the new search direction every step.xj is the solution we seek for the linear
system Ax = b.

Solving the linear system (1), that is a discretization of (5), within an operator splitting
approach is a bottleneck in the fluid-flow simulation, since it typically consumes the bulk of
the computing time. In order to accelerate the convergence of the iterative Precondtioned
Conjugate Gradient Algorithm with deflation we propose to use the GPU. The challenge
lies in optimizing the computation on the GPU in such a way so as to extract the maximum
computation throughput it can deliver. We discuss some of the challeneges involved in the
Research Questions section of this document.

3 Iterative Solution Methods

In this section a brief introuction of the discretization methods for Partial Differential
equations are discussed followed by a glimpse of the basic iterative methods.

3.1 Discretization of Partial Differential Equations

To solve differential equations a suitable approximation must be taken. Expressing them
in the form of equations involving a finite number of unknowns, we can translate them into
a problem of solving a sparse linear system. The discretization involves some boundary
conditions.

Consider the example of the Poisson’s Equation:

∂2u

∂x2
1

+
∂2u

∂x2
2

= f, for

(
x1

x2

)
∈ Ω (7)

where Ω is a bounded, open domain in R2. Here, x1, x2are the two space variables.
The above equation is to be satisfied only for points that are located at the interior of the

Figure 1: Domain Ω for Poisson’s Equation
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domain Ω. Equally important are the conditions that must be satisfied on the boundary Γ
of Ω. These are called boundary conditions. Three common types of boundary conditions
are:

Dirichlet Condition u(x) = φ(x) (8)

Neumann Condition
∂u

∂~n
(x) = 0 (9)

Cauchy Condition
∂u

∂~n
(x) + α(x)u(x) = γ(x) (10)

The vector ~n refers to a unit vector that is normal to Γ and directed outwards. For a
given vector ~v, with components v1 and v2, the directional derivative ∂u

∂~v is defined by

∂u

∂~v
(x) = lim

h→0

u(x+ h~v)− u(x)

h
(11)

=
∂u

∂x1
(x)v1 +

∂u

∂x2
(x)v2 (12)

= 5u.~v (13)

3.1.1 Finite Difference Method

The finite difference method is based on local approximations of the partial derivatives in
a Partial Differential Equation, which are derived by low order Taylor series expansions.
It is particularly simple for uniform meshes. There are a number of ”fast solvers” for
constant coefficient problems, which can deliver solution in a logarithmic time per grid
point.

The simplest way to approximate the first derivative of a function u at the point x is
via the formula (

du(x)

dx

)
≈ u(x+ h)− u(x)

h
. (14)

When u is differentiable at x, then the limit of the above ratio when h tends to zero
is the derivative of u at x. For a function whose fourth derivative d4u

dx4
exists in the

neighborhood of x, we have by Taylor’s Formula

u(x+ h) = u(x) + h
du

dx
+
h2

2

d2u

dx2
+
h3

6

d3u

dx3
+
h4

24

d4u

dx4
(ξ+) (15)

for some ξ+ plus in the interval (x,x+h). Therefore the above approximation (14) satisfies

du

dx
=
u(x+ h)− u(x)

h
+
h

2

d2u

dx2
+ O(h2). (16)

replacing by -h in (15)we get

u(x− h) = u(x)− hdu
dx

+
h2

2

d2u

dx2
− h3

6

d3u

dx3
+
h4

24

d4u(ξ−)

dx4
(17)

adding them up we get the centered difference approximation of the second derivative.
The dependence of this derivative on values of u at the points involved in the approximation
is often represented by a ”stencil”.

The approximation shown first (14) is forward rather than centered. Also a backward
approximation could be devised by replacing h by -h in that equation. The two formulas
can be merged to get the centered difference formula:

du(x)

dx
≈ u(x+ h)− u(x− h)

2h
(18)
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Figure 2: The three point stencil for the centered difference approximation to the second
order derivative

Finite Differences for 1-D problems

Consider the one-dimensional equation

−u′′(x) = f(x) for x ∈ (0, 1) (19)

u(0) = u(1) = 0 (20)

The interval [0, 1] can be discretized uniformally by taking n+ 2 points

xi = i× h, i = 0, ..., n+ 1 (21)

where h = 1
n+1 . Because of the Dirichlet boundary conditions, the values at u(x0) and

u(xn+1) are known. At every other point, approximation of ui is sought for the exact
solution u(xi).

If centered difference approximation (17) is used, then by (19) expressed at the point
xi, the unknowns ui, ui−1, ui+1 satisfy the relation

−ui−1 + 2ui − ui+1 = h2fi (22)

Finite Differences for 2-D problems

Similar to the previous case, consider a simple problem in 2D.(
∂2u

∂x2
1

+
∂2u

∂x2
2

)
= f in Ω (23)

u = 0 on Γ (24)

where Ω is now the rectangle (0, l1)× (0, l2) and Γ its boundary. Both directions can
be discretized uniformly in both dimensions by taking n1 + 2 and n2 + 2 points in each
direction (x1, x2).

Hence the function is defined on

x1,i = i× h1, i = 0, ..., n1 + 1x2,j = j × h1, j = 0, ..., n2 + 1 (25)

where

h1 =
l1

n1 + 1
, h2 =

l2
n2 + 1

(26)

3.1.2 Finite Element Method

The finite element method is best suited for handling complex geometries (and boundaries)
with relative ease. The finite element method is best illustrated with the solution of a
simple Partial Differential Equation in a two dimensional space. Consider again Poisson’s
equation (7) with the Dirichlet boundary condition (8) where Ω is a bounded open domain
in R2 and Γ its boundary. Then the Laplacian Operator can be defined as.

4 =
∂2

∂x2
1

+
∂2

∂x2
2

(27)

5



Now by the virtue of the Greens theorem (proof dicussed in [Saad, 1996] ) we have∫
Ω
5v.5 udx = −

∫
Ω
v4 udx+

∫
Γ
v
∂u

∂~n
ds. (28)

For the system we want to solve in (23) we must take approximations of u and that
over a finite dimensional space. Another consideration is that we must be able to solve
the system numerically with this formulation. A weak formulation, to extract a system of
equations that yield the solution of the problem, is in place.

a(u, v) ≡
∫

Ω
5u.5 vdx =

∫
Ω

(
∂u

∂x1

∂v

∂x1
+

∂u

∂x2

∂v

∂x2

)
dx, (29)

(f, v) ≡
∫

Ω
fvdx. (30)

The weak formulation of the initial problem consists of selecting a subspace of reference
V of L2 and then defining the following problem.

Find u ∈ V such that a(u, v) = (f, v),∀v ∈ V. (31)

In order to understand the usual choices for the space V , the definition of the weak
problem only requires the dot products of the gradients of u and v and the functions f
and v to be L2 integrable. The most general V under these conditions is the space of
all functions whose derivatives up to the first order are in L2. This is known as H1(Ω).
However, this space does not take into account the boundary conditions. This however
is tru only in case of homogenous Dirichlet Boundary Conditions. The functions in V
must be restricted to have zero values on Γ. The resulting space is called H1

0 (Ω). The
finite element method consists of approximating the weak problem by a finite dimensional
problem obtained by replacing V with a subspace of functions that are defined as low-
degree polynomials on small pieces (elements) of the original domain.

Consider a region Ω in the plane which is triangulated as shown in Figure 3

Figure 3: Finite Element triangulation of a domain

In this example, the domain is simply an ellipse but the external enclosing curve is not
shown. The original domain is thus approximated by the union Ωh of m triangles Ki,

Ωh =

m⋃
i=1

Ki (32)

For the triangulation to be valid, these triangles must have no vertex that lies on the
edge of any other triangle. The mesh size h is defined by

6



h = max
i=1,...,m

diam(Ki) (33)

where diam(K ), the diameter of a triangle K , is the length of its longest side. Then
the finite dimensional space Vh is defined as the space of all functions which are piecewise
linear and continuous on the polygonal region Ωh, and which vanish on the boundary Γ.
More specifically,

Vh = {φ|Ωh
, continuous, φ|Γh

= 0, φKj linear ∀j}. (34)

Here, φ|X represents the restriction of the function φ to the subset X . If xj , j = 1, ..., n
are the nodes of the triangulation, then a function φj in Vh can be associated with each
node xj , so that the family of functions φjs satisfies the following conditions:

φj(xi) = δij =

{
1ifxi = xj (35)

0ifxi 6= xj

}
(36)

These conditions define φi, i = 1, ..., n uniquely. In addition, the φis form a basis of
the space Vh. Each function of Vh can be expressed as

φ(x) =
n∑
i=1

ξiφi(x). (37)

The finite element approximation consists of writing the Galerkin condition (31) for
functions in Vh. This defines the approximate problem:

Find u ∈ Vh such that a(u, v) = f(u, v),∀v ∈ Vh. (38)

Since u is in Vh, there are n degrees of freedom. By the linearity of a with respect
to v, it is only necessary to impose the condition a(u, φi) = (f, φi) for i = 1, ..., n. This
results in n constraints. Writing the desired solution u in the basis {φi} as

u =
n∑
i=1

ξiφi(x) (39)

and substituting in (38) gives the linear problem

n∑
i=1

αijξi = βi (40)

where

αij = a(φi, φj), βi = (b, φi). (41)

The above equations form a linear system of equations

Ax = b (42)

in which the coefficients of A are the αijs; those of b are the βjs.
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3.1.3 Finite Volume Method

The finite volume method is geared toward the solution of conservation laws of the form:

∂u

∂t
+5. ~F = Q. (43)

In the above equation, ~F (u, t) is a certain vector function of u and time, possibly
nonlinear. This is called the flux vector. The source term Q is a function of space and
time.We now apply the principle used in the weak formulation, described before. Multiply
both sides by a test function w, and take the integral∫

Ω
w
∂u

∂t
dx+

∫
Ω
w5 . ~Fdx =

∫
Ω
wQdx. (44)

Then integrate by part for the second term on the left-hand side to obtain∫
Ω
w
∂u

∂t
dx−

∫
Ω
5w.~Fdx+

∫
Γ
w~F .~nds =

∫
Ω
wQdx. (45)

Consider now a control volume consisting, for example, of an elementary triangle Ki

in the two-dimensional case, such as those used in the finite element method. Take for w
a function wi whose value is one on the triangle and zero elsewhere. The second term in
the above equation vanishes and the following relation results:∫

Ki

∂u

∂t
dx+

∫
Γi

~F .~nds =

∫
Ki

Qdx (46)

The above relation is the basis of the finite volume approximation. To go a little
further, the assumptions will be simplified slightly by taking a vector function ~F that is
linear with respect to u. Specifically, assume

~F =

(
λ1u

λ2u

)
≡ ~λu. (47)

Note that, in this case, the term 5. ~F in (43) becomes ~F (u) = ~λ.5 u . In addition,
the right-hand side and the first term in the left-hand side of (46) can be approximated
as follows: ∫

Ki

∂u

∂t
dx ≈ ∂ui

∂t
|Ki|,

∫
Ki

Qdx ≈ qi|Ki|. (48)

Here, |Ki| represents the volume(in two dimensional volume is considered to mean area)
of Ki, and qi is some average value of Q in the cell Ki. These are crude approximations
but they serve the purpose of illustrating the scheme. The finite volume (45) yields

∂ui
∂t
|Ki|+ ~λ.

∫
Γi

u~nds = qi|Ki|. (49)

The contour integral ∫
Γi

u~nds (50)

is the sum of the integrals over all edges of the control volume. Let the value of u
on each edge j be approximated by some average ūj In addition, sj denotes the length of
each edge and a common notation is

~sj = sj ~nj . (51)
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Then the contour integral is approximated by

~λ.

∫
Γi

u~nds ≈
∑
edges

ūj~λ.~nsj =
∑
edges

ūj~λ.sj . (52)

The situation in the case where the control volume is a simple triangle is depicted in
Figure 4

Figure 4: Finite Volume Cell associated with node i and neighboring cells.

The unknowns are the approximations ui of the function u associated with each
cell.These can be viewed as approximations of u at the centers of gravity of each cell
i. This type of model is called cell-centered finite volume approximations.

The value ūj required in (52) can be taken simply as the average between the approx-
imation ui of u in cell i and the approximation uj in the cell j on the other side of the
edge

ūj =
1

2
(uj + ui). (53)

This gives
∂ui
∂t
|Ki|+

1

2

∑
j

(ui + uj)~λ.~sj = qi|Ki|. (54)

One further simplification takes place by observing that∑
j

~sj = 0 (55)

and therefore ∑
j

ui~λ.~sj = ui~λ.
∑
j

~sj = 0. (56)

This yields

∂ui
∂t
|Ki|+

1

2

∑
j

uj~λ.~sj = qi|Ki|. (57)

In the above equation, the summation is over all neighboring cells j. One problem
with such simple approximations is that they do not account for large gradients of u in
the components. In finite volume approximations, it is typical to exploit upwind schemes
which are more suitable in such cases.
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3.2 Basic Iterative Methods at a Glance

Considering the methods to approximate a solution to the system

Ax = b (58)

where x is an unknown vector, b is a known vector, and A is a known matrix of
coefficients.To begin we consider two methods that are most notable.

These methods might take a large number of iterations to converge to a solution and
might not be useful in many cases. However, convergence for finite difference discretization
of Elliptic Partial Differential Equations has been extensively studied.

3.2.1 JACOBI

The Jacobi iteration is based on the idea of splitting up A into D and E and F.

A = D − E − F (59)

in which D is the diagonal of A, −E its strict lower part, and −F its strict upper part, It
is always assumed that the diagonal entries of A are all nonzero.

The Jacobi iteration determines the i−th component of the next approximation so as
to annihilate the i−th component of the residual vector. In the following, ξi denotes the
i−th component of the iterate xk and βi the i−th component of the right-hand side b.
Thus, writing

(b−Axk+1)i = 0 (60)

in which (y)i represents the i−th component of the vector y, yields

aiiξ
(k+1)
i = −

n∑
j=1,j 6=1

aijξ
(k)
j + βi, (61)

or

ξ
(k+1)
i =

1

aii

(
βi −

n∑
j=1j 6=1

aijξ
(k)
j

)
i = 1, ..., n (62)

This is a component-wise form of the Jacobi iteration. All components of the next
iterate can be grouped into the vector xk+1. The above notation can be used to rewrite
the Jacobi iteration (62) in vector form as

xk+1 = D−1(E + F )xk +D−1b (63)

3.2.2 GAUSS-SEIDEL

The Gauss-Seidel iteration corrects the i−th component of the current approximate solu-
tion, in the order i = 1, 2, ..., n , again to annihilate the i−th component of the residual.
However, this time the approximate solution is updated immediately after the new com-

ponent is determined. The newly computed components ξ
(k)
i , i = 1, 2, ..., n can be changed

within a working vector which is redefined at each relaxation step. Thus, since the order
is i = 1, 2, ..., n, the result at the i−th step is

βi −
i−1∑
j=1

aijξ
(k+1)
j − aiiξ(k+1)

i −
n∑

j=i+1

aijξ
(k)
j = 0, (64)
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which leads to the iteration,

ξ
(k+1)
i =

1

aii

(
−

i−1∑
j=1

aijξ
(k+1)
j −

n∑
j=i+1

aijξ
(k)
j + βi

)
, i = 1, ..., n (65)

the defining equation (64) can be written as

b+ Exk+1 −Dxk+1 + Fxk = 0, (66)

which leads immediately to the vector form of the Gauss-Seidel iteration

xk+1 = (D − E)−1Fxk + (D − E)−1b. (67)

Computing the new approximation in (63) requires multiplying by the inverse of the
diagonal matrix D. In (67) a trinagular system must be solved with D−E, the lower tri-
angular part of A. Thus, the new approximation in a Gauss-Seidel step can be determined
either by solving a triangular system with the matrix D − E or from the relation (64).

A backward Gauss-Seidel iteration can also be defined as

(D − F )xk+1 = Exk + b, (68)

which is equivalent to making the coordinate corrections in the order n, n − 1, ..., 1.
A Symmetric Gauss-Seidel Iteration consists of a forward sweep followed by a backward
sweep. The Jacobi and the Gauss-Seidel iterations are both of the form

Mxk+1 = Nxk + b = (M −A)xk + b, (69)

in which
A = M −N (70)

is a splitting of A , with M = D for Jacobi, M = D−E for forward Gauss-Seidel,and
M = D − F for backward Gauss-Seidel.

3.2.3 Block Relaxation Schemes

Block relaxation schemes are generalizations of the point relaxation schemes described
above. They update a whole set of components at each time, typically a subvector of the
solution vector, instead of only one component. The matrix A and the right-hand side
and solution vectors are partitioned as follows:

A =


A11 A12 A13 · · · A1p

A21 A22 A23 · · · A2p

A31 A32 A33 · · · A3p
...

...
...

. . .
...

Ap1 Ap2 Ap3 · · · App

 , x =


ξ1

ξ2

ξ3
...
ξp

 , b =


β1

β2

β3
...
βp

 , (71)

in which the partitionings of b and x into subvectors βi and ξi are identical and compatible
with the partitioning of A . Thus, for any vector x partitioned as in (71),

(Axi)i =
∑
pj=1

Aijξj , (72)

in which (yi)i denotes the i-th component of the vector i according to the above partition-
ing. The diagonal blocks in A are square and assumed nonsingular. Now define, similarly
to the scalar case, the splitting

11



A = D − E − F (73)

with

D =


A11

A22

. . .

App

 , E = −


O
A21 O

...
...

. . .

Ap1 Ap2 · · · O

 , F = −


O A12 · · · A1p

O · · · A2p

. . .
...
O


(74)

With these definitions, it is easy to generalize the previous two iterative procedures defined
earlier, namely, Jacobi and Gauss-Seidel. For example, the block Jacobi iteration is now

defined as a technique in which the new subvectors ξ
(k)
i are all replaced according to

Aiiξ
k+1
i = ((E + F )xk)i + βi (75)

or,
ξk+1
i = A−1

ii ((E + F )xk)i +A−1
ii βi, i = 1, ..., p, (76)

which leads to the same equation as before,

xk+1 = D−1(E + F )xk +D−1b, (77)

except that the meanings of D, E, and F have changed to their block analogues.
A general block Jacobi iteration can be defined as follows. Let Vi be the n×ni matrix

Vi = [emi(1), emi(2), ..., emi(ni)] (78)

and
Wi = [ηmi(1)emi(1), ηmi(2)emi(2), ..., ηmi(ni)emi(ni)], (79)

where each ej is the j-th column of the n × n identity matrix, and ηmi(j) represents a
weight factor chosen so that

W T
i Vi = I (80)

It must be noted in above that ni denotes the size of Vi. When there is no overlap,
i.e., when the Sis form a partition of the whole set {1, 2, ..., n}, then define ηmi(j) = 1. Let
Aij be the ni × nj matrix

Aij = W T
i AVj (81)

and define similarly the partitioned vectors

ξi = W T
i x, βi = W T

i b. (82)

Note that ViW
T
i is a projector from Rn to the subspace Ki spanned by the columns

mi(1), ...,mi(ni). In addition, we have the relation

x =
∑
si=1

Viξi. (83)

The ni dimensional vector W T
i x represents the projection ViW

T
i x of x with respect to

the basis spanned by the columns of Vi. The action of Vi performs the reverse operation.
That means Viy is an extension operation from a vector y in Ki(represented in the basis
consisting of the columns of Vi) into a vector Viy in Rn. The operator W T

i is termed a
restriction operator and Vi is an prolongation operator. Each component of the Jacobi

12



iteration can be obtained by imposing the condition that the projection of the residual in
the span of Si be zero, i.e.,

W T
i

[
b−A

(
ViW

T
i xk+1 +

∑
j 6=1

VjW
T
j xk

)]
= 0 (84)

Remember that ξj = W T
j x, which can be rewritten as

ξk+1
i = ξ

(k)
i +A−1

ii W
T
i (b−Axk). (85)

This leads to the following algorithm:

1. For K = 0, 1, ..., until convergence Do:

2. For i = 1, 2, ..., p Do:

3. Solve Aiiδi = W T
i (b−Axk).

4. Set xk+1 := xk + Viδi

5. EndDo

6. EndDo

As was the case with the scalar algorithms, there is only a slight difference between the
Jacobi and Gauss-Seidel iterations. Gauss-Seidel immediately updates the component to
be corrected at step i, and uses the updated approximate solution to compute the residual
vector needed to correct the next component. However, the Jacobi iteration uses the same
previous approximation xk for this purpose. Therefore, the block Gauss-Seidel iteration
can be defined algorithmically as follows:

General Gauss Seidel Iteration

1. Until convergence Do:

2. For i = 1, 2, ..., p Do:

3. Solve Aiiδi = W T
i (b−Ax)

4. Set x := x+ Viδi

5. EndDo

6. EndDo

From the point of view of storage, Gauss-Seidel is more economical because the new
approximation can be overwritten over the same vector. Also, it typically converges faster.
On the other hand, the Jacobi iteration has some appeal on parallel computers since
the second Do loop, corresponding to the different blocks, can be executed in parallel.
Although the point Jacobi algorithm by itself is rarely a successful technique for real-life
problems, its block Jacobi variant, when using large enough (overlapping) blocks, can be
quite attractive especially in a parallel computing environment.
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3.2.4 Preconditioning

The Jacobi and Gauss-Seidel iterations are of the form

xk+1 = Gxk + f, (86)

in which

GJA(A) = I −D−1A (87)

GGS(A) = I − (D − E)−1A, (88)

for the Jacobi and Gauss-Seidel iterations, respectively. Moreover, given the matrix
splitting

A = M −N, (89)

where A is associated with the linear system

Ax = b (90)

a linear fixed point iteration can be defined by the recurrence

xk+1 = M−1Nxk +M−1b (91)

which has the form (86) with

G = M−1N = M−1(M −A) (92)

= I −M−1A (93)

f = M−1b. (94)

For example, for the Jacobi iteration, M = D,N = A − D, while for Gauss-Seidel
iteration, M = D − E,N = M −A = F.

The iteration xk+1 = Gxk + f can be viewed as a technique for solving the system

(I −G)x = f (95)

Since G has the form G = I −M−1A, this system can be rewritten as

M−1Ax = M−1b (96)

The above system which has the same solution as the original system is called a precondi-
tioned system and M is the preconditioning matrix or a preconditioner. In other words, a
relaxation scheme is equivalent to a fixed point iteration on a preconditioned system.

3.2.5 Convergence

The basic iterative methods discussed above define a sequence of iterates of the form

xk+1 = Gxk + f, (97)

in which G is a certain iteration matrix. If the above iteration converges, its limit x
satisfies

x = Gx+ f. (98)
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In the case where the above iteration arises from the splitting A = M −N , it is easy
to see that the solution to the above system is identical to that of the original system
Ax = b. Indeed, in this case the sequence (97) has the form

xk+1 = M−1Nxk +M−1b (99)

and its limit satisfies

Mx = Nx+ b (100)

or Ax=b. So convergence exists.
The conditions under which convergence happens can be summed up by saying that

for any initial vector x0 the iteration (97) converges only if spectral radius of G is less
than 1.

Also the convergence factor or rate of convergence is equal to the spectral radius of
the iteration matrix G.

3.3 Conjugate Gradient

The Conjugate Gradient method is an important method for solving sparse linear systems.
It is based on the idea of using a projection method on Krylov Subspaces Km to find an
approximate solution xm to

Ax = b (101)

This is in turn done by imposing a Petrov Galerkin condition

b−Axm⊥Lm, (102)

where Lm is another subspace of dimension m. Here, x0 represents an arbitrary initial
guess to the solution. The subspace Km is written as

Km(A, r0) = span{r0, Ar0, A
2r0, ..., A

m−1r0}, (103)

where r0 = b−Ax0.
When there is no ambiguity,Km(A, r0)will be denoted by Km. The different versions

of Krylov subspace methods arise from different choices of the subspace Lm and from the
ways in which the system is preconditioned.

Two broad choices for Lm give rise to the best known techniques. The first is simply
Lm = Kmand the minimum-residual variation Lm = AKm.

An important assumption, for The Conjugate Gradient Method, is that the coefficient
matrix A is Symmetric Positive Definite(SPD).

3.3.1 Arnoldi Orthogonalization

The Arnoldi method is an orthogonal projection method ontoKm for general non-Hermitian
matrices. The procedure was introduced in 1951 as a means of reducing a dense matrix
into Hessenberg form. Arnoldi presented his method in this manner but hinted that the
eigenvalues of the Hessenberg matrix obtained from a number of steps smaller than n could
provide accurate approximations to some eigenvalues of the original matrix. It was later
discovered that this strategy leads to an efficient technique for approximating eigenvalues
of large sparse matrices.

1. Choose a vector v1 of norm 1

2. For j = 1, 2, ...m Do:
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3. Compute hij = (Avj , vi) for i = 1, 2, ..., j

4. Compute wj := Avj −
∑j

i=1 hijvi

5. hj+1,j = ‖wj‖2

6. If hj+1,j = 0 then Stop

7. vj+1 = wj/hj+1,j

8. EndDo

At each step, the algorithm multiplies the previous Arnoldi vector vj by A and then
orthonormalizes the resulting vector wj against all previous vis by a standard Gram-
Schmidt procedure. It stops if the vector wj vanishes.

3.3.2 Lanczos Method

The symmetric Lanczos algorithm can be viewed as a simplification of the Arnoldi method
for the particular case when the matrix is symmetric. When A is symmetric, then the
Hessenberg matrix Hmbecomes symmetric tridiagonal. This leads to a three-term recur-
rence in the Arnoldi process and short-term recurrences for solution algorithms such as
FOM and GMRES. On the theoretical side, there is also much more to be said on the
resulting approximation in the symmetric case.

The standard notation used to describe the Lanczos algorithm is obtained by setting

αj ≡ hij , βj ≡ hj−1,j , (104)

and if Tm denotes the resulting Hm matrix, it is of the form,

Tm =


α1 β2

β2 α2 β3

· · ·
βm−1 αm−1 βm

βm αm

 . (105)

This leads to the following form of the Lanczos algorithm.

1. Choose an initial vector v1 of norm unity. Set β1 ≡ 0, v0 ≡ 0

2. For j = 1, 2, ...,m Do:

3. wj := Avj − βjvj−1

4. αj := (wj , vj)

5. wj := wj − αjvj

6. βj+1 := ‖wj‖2. If βj+1 = 0 then Stop

7. vj+1 := wj/βj+1

8. EndDo

It is rather surprising that the above simple algorithm guarantees, at least in exact
arithmetic, that the vectors vi, i = 1, 2, ..., are orthogonal. In reality, exact orthogonality
of these vectors is only observed at the beginning of the process. At some point the vis
start losing their global orthogonality rapidly. The major practical differences with the
Arnoldi method are that the matrix Hm is tridiagonal and, more importantly, that only
three vectors must be stored, unless some form of reorthogonalization is employed.
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3.3.3 Conjugate Gradient Algorithm

The Conjugate Gradient method is a realization of an orthogonal projection technique
onto the Krylov Subspace Km(A, r0) where r0 is the initial residual.

First we derive the Arnoldi Method for the case when A is symmetric. Given an initial
guess x0 to the linear system Ax = b and the Lanczos vectors vi, i = 1, ...,m together
with the tridiagonal matrix Tm, the approximate solution obtained from an orthogonal
projection method onto Km, is given by

xm = x0 + Vmym, ym = T−1
m (βe1). (106)

We now have the Lanczos method for linear systems

1. Compute r0 = b−Ax0, β : = ‖r0‖2, and v1 : = r0/β

2. For j = 1, 1, ...,m Do:

3. wj = Avj − βjvj−1( If j = 1 set β1v0 ≡ 0)

4. αj = (wj , vj)

5. wj := wj − αjvj

6. βj+1 = ‖wj‖2. If βj+1 = 0 set m : = j and go to 9

7. vj+1 = wj/βj+1

8. EndDo

9. Set Tm = tridiag (βi, αi, βi+1), and Vm = [v1, ..., vm].

10. Compute ym = T−1
m (βe1) and xm = x0 + Vmym

We can write LU factorization of Tm as Tm = LmUm. The matrix Lm is unit lower
bidiagonal and Um is upper bidiagonal. Thus, the factorization of Tm is of the form

Tm =


1
λ2 1

λ3 1
λ4 1

λ5 1

×

η1 β2

η2 β3

η3 β4

η4 β5

η5

 . (107)

The approximate solution is then given by,

xm = x0 + VmU
−1
m L−1

m (βe1). (108)

Letting

Pm ≡ VmU−1
m (109)

and
zm = L−1

m βe1, (110)

then,
xm = x0 + Pmzm. (111)

Note that, pm, the last column of Pm, can be computed from the previous pi’s and vm
by the simple update

pm = η−1[vm − βmpm−1]. (112)
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Here βm is a scalar computed from the Lanczos Algorithm, while ηm results from the m-th
Gaussian Elimination step on the tridiagonal matrix, i.e.,

λm =
βm
ηm−1

, (113)

ηm = αm − λmβm. (114)

Also from the structure of Lm we have

zm =

[
zm−1

ζm

]
, (115)

in which ζm = −λmζm−1. As a result, xm can be updated at each step as

xm = xm−1 + ζmpm (116)

where pm is defined above.
This brings us to the direct version of Lanczos algorithm for linear systems.

1. Compute r0 = b−Ax0, ζ1 : = β : = ‖r0‖2, and v1 : = r0/β

2. Set λ1 = β1 = 0, p0 = 0

3. For m = 1, 2, ..., until convergence Do :

4. Compute w : = Avm − βvm−1 and αm = (w, vm)

5. If m > 1 then compute λm = βm
ηm−1

and ζm = −λmζm−1

6. ηm = αm − λmβm

7. pm = η−1
m (vm − βmpm−1)

8. xm = xm−1 + ζmpm

9. If xm has converged then Stop

10. w : = w − αmvm

11. βm+1 = ‖w‖2, vm+1 = w/βm+1

12. EndDo

This algorithm computes the solution of the tridiagonal system Tmym = βe1 progres-
sively by using Gaussian elimination without pivoting. However, partial pivoting can also
be implemented at the cost of having to keep an extra vector. In fact, Gaussian elimina-
tion with partial pivoting is sufficient to ensure stability for tridiagonal systems. Observe
that the residual vector for this algorithm is in the direction of vm+1 due to equation
(106).Therefore, the residual vectors are orthogonal to each other. Likewise, the vectors
pi are A orthogonal, or conjugate.

A consequence of the above proposition is that a version of the algorithm can be
derived by imposing the orthogonality and conjugacy conditions. This gives the Conjugate
Gradient algorithm which we now derive. The vector xj+1, the solution at iteration j+ 1,
can be written as,

xj+1 = xj + αjpj . (117)

Therefore the residual vectors must satisfy the recurrence

rj+1 = rj − αjApj . (118)
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If the rj ’s are to be orthogonal, then it is necessary that (rj − αjApj , rj) = 0 and as a
result

αj =
(rj , rj)

(Apj , rj)
(119)

Also, it is known that the next search direction pj+1 is a linear combination of rj+1

and pj , and after rescaling the p vectors appropriately, it follows that

pj+1 = rj+1 + βjpj . (120)

Thus, a first consequence of the above relation is that

(Apj , rj) = (Apj , pj − βj−1pj−1) = (Apj , pj) (121)

because Apj is orthogonal to pj−1. Then, (119) becomes αj = (rj , rj)/(Apj , pj). In
addition, writing that pj+1 as defined by (120) is orthogonal to Apj yields

βj = −(rj+1, Apj)

(pj , Apj)
(122)

βj can also be written as

1

αj

(rj+1, (rj+1 − rj))
(Apj , pj)

=
(rj+1, rj+1)

(rj , rj)
(123)

Putting these together we have the algorithm for Conjugate Gradient.

1. Compute r0 := b−Ax0, p0 := r0.

2. For j = 0, 1, ..., until convergence Do:

3. αj := (rj , rj)/(Apj , pj)

4. xj+1 := xj + αjpj

5. rj+1 := rj − αjApj

6. βj := (rj+1, rj+1)/(rj , rj)

7. pj+1 := rj+1 + βjpj

8. EndDo

3.3.4 Preconditioning applied to Conjugate Gradient

Efficiency and robustness of iterative techniques can be improved by using preconditioning.
Preconditioning is simply a means of transforming the original linear system into one which
has the same solution, but which is likely to be easier to solve with an iterative solver.

Consider a matrix A that is symmetric and positive definite and assume that a pre-
conditioner M is available. The preconditioner M is a matrix which approximates A in
some yet-undefined sense. It is assumed that M is also Symmetric Positive Definite. From
a practical point of view, the only requirement for M is that it is inexpensive to solve
linear systems Mx = b. This is because the preconditioned algorithms will all require a
linear system solution with the matrix M at each step. Then, for example, the following
preconditioned system could be solved:

M−1Ax = M−1b (124)
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or

AM−1u = b (125)

x = M−1u (126)

These two systems are no longer symmetric in general. To preserve symmetry one can
devise M such that its Cholesky factorization can be written, that is:

M = LLT , (127)

Then a simple way to preserve symmetry is to split the preconditioner between left
and right, i.e., to solve

L−1AL−Tu = L−1b, x = L−Tu (128)

which involves a Symmetric Positive Definite matrix. However, it is not necessary
to split the preconditioner in this manner in order to preserve symmetry. Observe that
M−1A is self-adjoint for the M -inner product,

(x, y)M ≡ (Mx, y) = (x,My) (129)

since

(M−1Ax, y)M = (Ax, y) = (x,Ay) = (x,M(M−1A)y) = (x,M−1Ay)M (130)

Therefore, an alternative is to replace the usual Euclidean inner product in the Con-
jugate Gradient algorithm by the M -inner product. If the CG algorithm is rewritten for
this new inner product, denoting by the original residual and by rj = b − Axj the origi-
nal residual and by zj = M−1rj the residual for the preconditioned system the following
sequence can be written .

1. αj := (zj , zj)M/(M
−1Apj , pj)M

2. xj+1 := xj + αjpj

3. rj+1 := rj − αjApj andzj+1 := M−1rj+1

4. βj := (zj+1, zj+1)M/(zj , zj)M

5. pj+1 := zj+1 + βjpj

Since (zj , zj)M = (rj , zj)and (M−1Apj , pj)M = (Apj , pj), the M -inner products do
not have to be computed explicitly.

We have the preconditioned iteration for the CG algorithm as follows

1. Compute r0 := b−Ax0, z0 = M−1r0, and p0 := z0

2. For j = 0, 1, ... until convergence Do:

3. αj := (rj , zj)/(Apj , pj)

4. xj+1 := xj + αjpj

5. rj+1 := rj − αjApj

6. zj+1 := M−1rj+1

7. βj := (rj+1, zj+1)/(rj , zj)

8. pj+1 := zj+1 + βjpj

9. EndDo
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3.4 Preconditioning Techniques

One of the simplest ways of defining a preconditioner is to perform an incomplete factoriza-
tion of the original matrix A . This entails a decomposition of the form A = LU−R where
L and U have the same nonzero structure as the lower and upper parts of A respectively,
and R is the residual or error of the factorization. This incomplete factorization known
as ILU(0) is rather easy and inexpensive to compute. On the other hand, it often leads
to a crude approximation which may result in the Krylov subspace accelerator requiring
many iterations to converge. To remedy this, several alternative incomplete factorizations
have been developed by allowing more fill-in in L and U . In general, the more accurate
ILU factorizations require fewer iterations to converge, but the preprocessing cost to com-
pute the factors is higher. However, if only because of the improved robustness, these
trade-offs generally favor the more accurate factorizations. This is especially true when
several systems with the same matrix must be solved because the preprocessing cost can
be amortized.

The preconditioned versions of some Krylov subspace methods have been discussed
in the previous section on CG with a generic preconditioner M . In theory, any general
splitting in which M is nonsingular can be used. Ideally, M should be close to A in some
sense. However, note that a linear system with the matrix M must be solved at each
step of the iterative procedure. Therefore, a practical and admittedly somewhat vague
requirement is that these solutions steps should be inexpensive.

Consider a general sparse matrix A whose elements are aij , i, j = 1, ..., n. A general
Incomplete LU (ILU) factorization process computes a sparse lower triangular matrix L
and a sparse upper triangular matrix U so the residual matrix R = LU−A satisfies certain
constraints, such as having zero entries in some locations. We first describe a general ILU
preconditioner geared toward M -matrices. Then we discuss the ILU(0) factorization, the
simplest form of the ILU preconditioners.

A general algorithm for building Incomplete LU factorizations can be derived by per-
forming Gaussian elimination and dropping some elements in predetermined nondiagonal
positions.

Let A be an M -matrix and let A1 be the matrix obtained from the first step of Gaussian
elimination. It can be shown that A1 is also an M -matrix. If we remove the first row and
first column of A1 then the resulting (n− 1)× (n− 1) matrix is also an M -matrix.

Assume now that some elements are dropped from the result of Gaussian Elimination
outside of the main diagonal. Any element that is dropped is a nonpositive element which
is transformed into a zero. Therefore, the resulting matrix Ã1 is such that

Ã1 = A1 +R, (131)

where the elements of R are such that rii = 0, rij ≥ 0. Thus,

Ai ≤ Ã1 (132)

and the off-diagonal elements of Ã1 are nonpositive. Since A1 is an M -matrix, Ã1 is also
an M -matrix. The process can now be repeated on the matrix Ã(2 : n, 2: n), and then
continued until the incomplete factorization of A is obtained. The above arguments shows
that at each step of this construction, we obtain an M -matrix and that the process does
not break down.

The elements to drop at each step have not yet been specified. This can be done
statically, by choosing some non-zero pattern in advance. The only restriction on the zero
pattern is that it should exclude diagonal elements. Therefore, for any zero pattern set P ,
such that

P ⊂ {(i, j)|i 6= j; 1 ≤ i, j ≤ n}, (133)
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an Incomplete LU factorization, ILUP , can be computed as follows.

1. For k = 1, ..., n− 1 Do:

2. For i = k + 1, n and if (i, k) /∈ P Do:

3. aik := aik/akk

4. For j = k + 1, ..., n and for (i, j) /∈ P Do:

5. aij := aij − aik ∗ akj

6. EndDo

7. EndDo

8. EndDo

The For loop in line 4 should be interpreted as follows: For j = k + 1, ..., n and only for
those indices j that are not in P execute the next line. In practice, it is wasteful to scan
j from k + 1 to n because there is an inexpensive mechanism for identifying those in this
set that are in the complement of P .

Now consider a few practical aspects. An ILU factorization based on the form of
the previous Algorithm is difficult to implement because at each step k, all rows k + 1
to n are being modified. However, ILU factorizations depend on the implementation of
Gaussian elimination which is used. Several variants of Gaussian elimination are known
which depend on the order of the three loops associated with the control variables i, j and
k in the algorithm. Thus, previous Algorithm is derived from what is known as the k, i, j
variant. In the context of Incomplete LU factorization, the variant that is most commonly
used for a row-contiguous data structure is the i, k, j variant. It is used for dense matrices.

Adapting this version for sparse matrices is easy because the rows of L and U are
generated in succession. These rows can be computed one at a time and accumulated
in a row-oriented data structure such as the CSR format. This constitutes an important
advantage. Based on this, the general ILU factorization takes the following form.

1. For i = 2, ..., n Do:

2. For k = 1, ..., i− 1 and if (i, k) /∈ P Do:

3. aik := aik/akk

4. For j = k + 1, ..., n and for (i, j) /∈ P Do:

5. aij := aij − aikakj .

6. EndDo

7. EndDo

8. EndDo

It is not difficult to see that this more practical IKJ variant of ILU is equivalent to the
KIJ version which can be defined from the first algorithm in this section.

Note that this is only true for a static pattern ILU. If the pattern is dynamically
determined as the Gaussian elimination algorithm proceeds, then the patterns obtained
with different versions of GE may be different.

The Incomplete LU factorization technique with no fill-in, denoted by ILU(0), consists
of taking the zero pattern P to be precisely the zero pattern of A. In the following,
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Figure 5: The ILU(0) factorization for a five-point matrix.

we denote by bi,∗ the i-th row of a given matrix B, and by NZ(B), the set of pairs
(i, j), 1 ≤ i, j ≤ n such that bi,j 6= 0.

The incomplete factorization ILU(0) factorization is best illustrated by the case for
which it was used originally, namely, for 5-point and 7-point matrices related to finite
difference discretization of PDEs. Consider such a matrix A as illustrated in the bottom
left corner of Figure 5. The A matrix represented in this figure is a 5-point matrix of size
n = 32 corresponding to an nx × ny = 8 × 4 mesh. Consider now any lower triangular
matrix L which has the same structure as the lower part of A, and any matrix U which
has the same structure as that of the upper part of A. Two such matrices are shown at
the top of Figure 5. If the product LU is performed, the resulting matrix would have the
pattern shown in the bottom right part of the figure. It is impossible in general to match
A with this product for any L and U . This is due to the extra diagonals in the product,
namely, the diagonals with offsets nx−1and −nx+1. The entries in these extra diagonals
are called fill-in elements. However, if these fill-in elements are ignored, then it is possible
to find L and U so that their product is equal to A in the other diagonals. This defines the
ILU(0) factorization in general terms: Any pair of matrices L (unit lower triangular) and
U (upper triangular) so that the elements of A− LU are zero in the locations of NZ(A).
These constraints do not define the ILU(0) factors uniquely since there are, in general,
infinitely many pairs of matrices L and U which satisfy these requirements. However, the
standard ILU(0) is defined constructively using the above Algorithm with the pattern P
equal to the zero pattern of A.

1. For i = 2, ..., n Do:
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2. For k = 1, ..., i− 1 and for (i, k) ∈ NZ(A) Do:

3. Compute aik = aik/akk

4. For j = k + 1, ..., n and for (i, j) ∈ NZ(A), Do:

5. Compute aij := aij − aikakj .

6. EndDo

7. EndDo

8. EndDo

The accuracy of the ILU(0) incomplete factorization may be insufficient to yield an ad-
equate rate of convergence. More accurate Incomplete LU factorizations are often more
efficient as well as more reliable. These more accurate factorizations will differ from ILU(0)
by allowing some fill-in. Thus, ILU(1) keeps the first order fill-ins, a term which will be
explained shortly. To illustrate ILU(p) with the same example as before, the ILU(1) fac-
torization results from taking P to be the zero pattern of the product LU of the factors
L,U obtained from ILU(0). This pattern is shown at the bottom right of Figure 5. Pre-
tend that the original matrix has this augmented pattern NZ1(A). In other words, the
fill-in positions created in this product belong to the augmented pattern NZ1(A), but
their actual values are zero. The new pattern of the matrix A is shown at the bottom
left part of Figure 6. The factors L1 and U1 of the ILU(1) factorization are obtained by
performing an ILU(0) factorization on this augmented pattern matrix. The patterns of L1

and U1 are illustrated at the top of Figure 6. The new LU matrix shown at the bottom
right of the figure has now two additional diagonals in the lower and upper parts.

One problem with the construction defined in this illustration is that it does not extend
to general sparse matrices. It can be generalized by introducing the concept of level of
fill. A level of fill is attributed to each element that is processed by Gaussian elimination,
and dropping will be based on the value of the level of fill. Any form of GE can be used
to illustrate. The rationale is that the level of fill should be indicative of the size: the
higher the level, the smaller the elements. A very simple model is employed to justify the
definition: A size of εk is attributed to any element whose level of fill is k, where ε < 1.
Initially, a nonzero element has a level of fill of one (this will be changed later) and a zero
element has a level of fill of ∞. An element aij is updated in line 5 of IKJ variant of GE
by the formula

aij = aij − aik × akj . (134)

If levij is the current level of the element aij , then our model tells us that the size of the
updated element should be

aij := εlevij − εlevik × εlevkj = εlevij − εlevij+levkj . (135)

Therefore, roughly speaking, the size of aij will be the maximum of the two sizes εlevijand
εlevij+levkj , and it is natural to define the new level of fill as,

levij := min{levij , levik + levkj}. (136)

In the common definition used in the literature, all the levels of fill are actually shifted
by −1 from the definition used above. This is purely for convenience of notation and to
conform with the definition used for ILU(0). Thus, initially levij = 0 if aij = 0, and
levij =∞ otherwise. Thereafter, define recursively

levij := min{levij , levik + levkj + 1}. (137)
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Figure 6: The ILU(1) factorization

Observe that the level of fill of an element will never increase during the elimination. Thus,
if aij 6= 0 in the original matrix A , then the element in location i, j will have a level of fill
equal to zero throughout the elimination process. The above systematic definition gives
rise to a natural strategy for discarding elements. In ILU(p), all fill-in elements whose
level of fill does not exceed p are kept. So using the definition of zero patterns introduced
earlier, the zero pattern for ILU(p) is the set

Pp = {(i, j)|levij > p}, (138)

where levij is the level of fill value after all updates (137) have been performed. The case
p = 0 coincides with the ILU(0) factorization and is consistent with the earlier definition.

In practical implementations of the ILU(p) factorization it is common to separate
the symbolic phase (where the structure of the L and U factors are determined) from
the numerical factorization, when the numerical values are computed. Here, a variant
is described which does not separate these two phases. In the following description, ai∗
denotes the i-th row of the matrix A, and aij the (i, j)-th entry of A.

1. For all nonzero elements aij define lev(aij) = 0

2. For i = 2, ..., n Do:

3. For each k = 1, ..., i− 1 and for lev(aik) ≤ p Do:

4. Compute aik := aik/akk

5. Compute ai∗ := ai∗ − aikak∗.
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6. Update the levels of fill of the nonzero a′i,js using (137)

7. EndDo

8. Replace any element in row i with lev(aij) > p by zero

9. EndDo

3.4.1 ILUT approach and implementation issues

There are a number of drawbacks to the above algorithm. First, the amount of fill-in and
computational work for obtaining the ILU(p) factorization is not predictable for p > 0.
Second, the cost of updating the levels can be quite high. Most importantly, the level of
fill-in for indefinite matrices may not be a good indicator of the size of the elements that are
being dropped. Thus, the algorithm may drop large elements and result in an inaccurate
incomplete factorization, in the sense that R = LU − A is not small. Experience reveals
that on the average this will lead to a larger number of iterations to achieve convergence,
although there are certainly instances where this is not the case. The techniques indicated
below have been developed to remedy these three difficulties, by producing incomplete
factorizations with small error R and a controlled number of fill-ins.

A generic ILU algorithm with threshold can be derived from the IKJ version of Gaus-
sian elimination, by including a set of rules for dropping small elements. In what follows,
applying a dropping rule to an element will only mean replacing the element by zero if it
satisfies a set of criteria. A dropping rule can be applied to a whole row by applying the
same rule to all the elements of the row. In the following algorithm, w is a full-length work-
ing row which is used to accumulate linear combinations of sparse rows in the elimination
and wk is the k -th entry of this row. As usual, ai∗ denotes the i-th row of A.

ILUT

1. For i = 1, ..., n Do :

2. w := ai∗

3. For k = 1, ..., i− 1 and when wk 6= 0 Do :

4. wk := wk
akk

5. Apply a dropping rule to wk

6. If wk 6= 0 then

7. w := w − wk ∗ uk∗

8. EndIf

9. EndDo

10. Apply a dropping rule to row w

11. ii,j := wjforj = 1, ..., i− 1

12. ui,j := wjforj = i, ..., n

13. w := 0

14. EndDo
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The ILU(0) can be viewed as a special case of the above algorithm. The dropping rule
for ILU(0) is to drop elements that are in positions not belonging to the original structure
of the matrix.

In an ILU(p, τ), p is the parameter that helps control memory usage, while τ helps to
reduce computational cost.

In the factorization ILU(p, τ), the following rule is used.

1. In line 5, an element wk is dropped (i.e., replaced by zero) if it is less than the
relative tolerance τi obtained by multiplying τ by the original norm of the i-th row
(e.g., the 2-norm).

2. In line 10, a dropping rule of a different type is applied. First, drop again any
element in the row with a magnitude that is below the relative tolerance τi. Then,
keep only the p largest elements in the L part of the row and the p largest elements
in the U part of the row in addition to the diagonal element, which is always kept.

Few of the Implementation details are worth noting for this method of factorization.
Listed below are the challenges to an efficient implementation.

1. Generation of the linear combination of rows of A.

2. Selection of the p largest elements in L and U .

3. Need to access the elements of L in increasing order of columns.

To solve the first issue one can use a clever storage pattern as summarized in [Saad,
1996]. For the second hurdle heapsort or a variation on quick sort could be utilized. Finally
to speed-up the access to the elements of L can be done by storing them in a binary search
tree.

There could be problems with the implementation of ILUT case.They could be sum-
marized as follows:-

1. The ILUT procedure encounters a zero pivot;

2. The ILUT procedure encounters an overflow or underflow condition, because of an
exponential growth of the entries of the factors;

3. The ILUT preconditioner terminates normally but the incomplete factorization pre-
conditioner which is computed is unstable.

To remedy the problems that might arise with the ILUT approach an ILUTP approach
might be used in generating a factorization.

ILUTP(”P” stands for pivoting) uses a permutation array perm to hold the new order-
ings of the variables, along with the reverse permutation array. At step i of the elimination
process the largest entry in a row is selected and is defined to be the new i-th variable.
The two permutation arrays are then updated accordingly. The matrix elements of L and
U are kept in their original numbering. However, when expanding the L − U row which
corresponds to the i-th outer step of Gaussian elimination, the elements are loaded with
respect to the new labeling, using the array perm for the translation. At the end of the
process, there are two options. The first is to leave all elements labeled with respect to
the original labeling. No additional work is required since the variables are already in this
form in the algorithm, but the variables must then be permuted at each preconditioning
step. The second solution is to apply the permutation to all elements of A as well as
L/U . This does not require applying a permutation at each step, but rather produces a
permuted solution which must be permuted back at the end of the iteration phase. The
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complexity of the ILUTP procedure is virtually identical to that of ILUT. A few additional
options can be provided. A tolerance parameter called permtol may be included to help
determine whether or not to permute variables: A nondiagonal element aij is candidate
for a permutation only when tol × |aij | > |aii| Furthermore, pivoting may be restricted
to take place only within diagonal blocks of a fixed size. If we assume that the size of
the blocks is named as mbloc then a value of ofmbloc ≥ n indicates that there are no re-
strictions on the pivoting. A state-of-the-art Multilevel scheme using ILU preconditioners
is also discussed in [Bollhöfer and Saad, 2006]. To solve special matrices stored in the
sparse skyline format (SSK) an ILUTS method could be used to factorize. Thus savings
in storage could be leveraged. Also the symmetric nature of such matrices could result in
a symmetric preconditioner.

3.5 Domain Decomposition

Domain decomposition methods refer to a collection of techniques which revolve around
the principle of divide-and-conquer. Consider the problem of solving the Laplace Equation
on an L-shaped domain

Figure 7: An L-shaped domain subdivided into three subdomains

partitioned as shown in Figure 7. Domain decomposition or substructuring methods
attempt to solve the problem on the entire domain

Ω =
s⋃
i=1

Ωi, (139)

from problem solutions on the subdomains Ωi. There are several reasons why such tech-
niques can be advantageous. In the case of the above picture, one obvious reason is that
the subproblems are much simpler because of their rectangular geometry. For example,
fast solvers can be used on each subdomain in this case. A second reason is that the phys-
ical problem can sometimes be split naturally into a small number of subregions where the
modeling equations are different (e.g., Eulers equations on one region and Navier-Stokes
in another). Substructuring can also be used to develop out-of-core solution techniques.
As already mentioned, such techniques were often used in the past to analyze very large
mechanical structures. The original structure is partitioned into pieces, each of which is
small enough to fit into memory. Then a form of block-Gaussian elimination is used to
solve the global linear system from a sequence of solutions using subsystems.
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In order to review the issues and techniques in use and to introduce some notation,
assume that the following problem is to be solved:

4u = f in Ω (140)

u = uΓ on Γ = ∂Ω. (141)

Domain decomposition methods are all implicitly or explicitly based on different ways of
handling the unknowns at the interfaces. From the PDE point of view, if the value of the
solution is known at the interfaces between the different regions, these values could be used
in Dirichlet-type boundary conditions and we will obtain s uncoupled Poisson equations.
We can then solve these equations to obtain the value of the solution at the interior points.
If the whole domain is discretized by either finite elements or finite difference techniques,
then this is easily translated into the resulting linear system.

Assume that the problem associated with the domain shown in Figure 7 is discretized
with centered differences.We can label the nodes by subdomain as shown in Figure 8.

Figure 8: Discretization of the problem for L-shaped geometry

Note that the interface nodes are labeled last. As a result, the matrix associated with
this problem will have the structure shown in Figure 9. For a general partitioning into s
subdomains, the linear system associated with the problem has the following structure:

B1 E1

B2 E2

. . .
...
Bs Es

F1 F2 · · · Fs C




x1

x2
...
xs
y

 =


f1

f2
...
fs
g

 (142)
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Figure 9: Matrix associated with the finite difference mesh of the Figure 8

where each xi represents the subvector of unknowns that are interior to subdomain Ωi

and y represents the vector of all interface unknowns. It is useful to express the above
system in the simpler form,

A

(
x
y

)
=

(
f
g

)
withA =

(
B E
F C

)
(143)

Thus, E represents the subdomain to interface coupling seen from the subdomains, while
F represents the interface to subdomain coupling seen from the interface nodes.

3.5.1 Direct Solution and Schur Complement

Consider the linear system written in the form (143), in which B is assumed to be non-
singular. From the first equation the unknown x can be expressed as

x = B−1(f − Ey) (144)

Upon substituting this into the second equation, the following reduced system is ob-
tained:

(C − FB−1E)y = g − FB−1f. (145)

The matrix
S = C − FB−1E (146)

is called the Schur complement matrix associated with the y variable. If this matrix can be
formed and the linear system (145) can be solved, all the interface variables y will become
available. Once these variables are known, the remaining unknowns can be computed, via
(144). Because of the particular structure of B, observe that any linear system solution
with it decouples in s separate systems. The parallelism in this situation arises from this
natural decoupling. A solution method based on this approach involves four steps:
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1. Obtain the right-hand side of the reduced system (144).

2. Form the Schur complement matrix (145).

3. Solve the reduced system (144).

4. Back-substitute using (143) to obtain the other unknowns.

One linear system solution with the matrix B can be saved by reformulating the
algorithm in a more elegant form. Define

E
′

= B−1E andf
′

= B−1f. (147)

The matrix E
′

and the vector f
′

are needed in steps (1) and (2). Then rewrite step (4) as

x = B−1f −B−1Ey = f
′ − E′y, (148)

which gives the following algorithm

BLOCK GAUSSIAN ELIMINATION

1. Solve BE
′

= B, and Bf
′

= f for E
′

and f
′
, respectively

2. Compute g
′

= g − Ff ′

3. Compute S = C − FE′

4. Solve Sy = g
′

5. Compute x = f
′ − E′y

In a practical implementation, all the Bi matrices are factored and then the systems
BiE

′
i = Eiand Bif

′
i = fi are solved. In general, many columns in Ei will be zero. These

zero columns correspond to interfaces that are not adjacent to subdomain i. Therefore,
any efficient code based on the above algorithm should start by identifying the nonzero
columns.

PROPERTIES OF SCHUR COMPLEMENT

If A be a nonsingular matrix partitioned as in (143) and such that the submatrix B
is nonsingular and let Ry be the restriction operator onto the interface variables, i.e, the
linear operator defined by

Ry

(
x
y

)
= y. (149)

Then the following properties are true.

1. The Schur complement matrix S is nonsingular.

2. If A is SPD, then so is S.

3. For any y, S−1y = RyA
−1
(

0
y

)
.

The first property indicates that a method that uses the above block Gaussian elimination
algorithm is feasible since S is nonsingular. A consequence of the second property is that
when A is positive definite, an algorithm such as the Conjugate Gradient algorithm can be
used to solve the reduced system (145). Finally, the third property establishes a relation
which may allow preconditioners for S to be defined based on solution techniques with the
matrix A.
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SCHUR COMPLEMENT FOR VERTEX BASED PARTITIONINGS

The partitioning used in Figure 8 is edge-based, meaning that a given edge in the
graph does not straddle two subdomains. If two vertices are coupled, then they must
belong to the same subdomain. From the graph theory point of view, this is perhaps less
common than vertex-based partitionings in which a vertex is not shared by two partitions
(except when domains overlap). A vertex-based partitioning is illustrated in Figure 10.
We will call interface edges all edges that link vertices that do not belong to the same
subdomain. In the case of overlapping, this needs clarification. An overlapping edge or
vertex belongs to the same subdomain. Interface edges are only those that link a vertex
to another vertex which is not in the same subdomain already, whether in the overlapping
portion or elsewhere. Interface vertices are those vertices in a given subdomain that are
adjacent to an interface edge. For the example of the figure, the interface vertices for
subdomain one (bottom, left subsquare) are the vertices labeled 10 to 16. The matrix
shown at the bottom of Figure 10 differs from the one of Figure 9, because here the
interface nodes are not relabeled the last in the global labeling as was done in Figure 8.
Instead, the interface nodes are labeled as the last nodes in each subdomain. The number
of interface nodes is about twice that of the edge-based partitioning.

Figure 10: Discretization of problem for L-shaped domain subdivied into three

Consider the Schur complement system obtained with this new labeling. It can be
written similar to the edge-based case using a reordering in which all interface variables
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are listed last. The matrix associated with the domain partitioning of the variables will
have a natural s-block structure where s is the number of subdomains. For example, when
s = 3 (as is the case in the above illustration), the matrix has the block structure defined
by,the solid lines in the figure, i.e.,

A =

A1 A12 A13

A21 A2 A23

A31 A32 A3

 . (150)

In each subdomain, the variables are of the form

zi =

(
xi
yi

)
, (151)

where xi denotes interior nodes while yi denotes the interface nodes associated with sub-
domain i. Each matrix Ai will be called the local matrix. The structure of Ai is as
follows:

Ai =

(
Bi Ei
Fi Ci

)
(152)

in which, as before, Bi represents the matrix associated with the internal nodes of subdo-
main i and Ei and Fi represent the couplings to/from external nodes. The matrix Ci is
the local part of the interface matrix C defined before (231), and represents the coupling
between local interface points. A careful look at the matrix in Figure 10 reveals an addi-
tional structure for the blocks Aij , j 6= i. Each of these blocks contains a zero sub-block
in the part that acts on the variable xj . This is expected since xi and xj are not coupled.
Therefore,

Aij =

(
0
Eij

)
. (153)

In addition, most of the Eij matrices are zero since only those indices j of the subdomains
that have couplings with subdomain i will yield a nonzero Eij . Now we write the part of
the linear system that is local to subdomain i, as

Bixi + Eiyi = fi (154)

Fixi + Ciyi +
∑
j∈Ni

Eijyj = gi. (155)

The term Eijyj is the contribution to the equation from the neighboring subdomain num-
ber j, and Ni is the set of subdomains that are adjacent to subdomain i. Assuming that Bi
is nonsingular, the variable xi can be eliminated from this system by extracting from the
first equation xi = B−1

i (fi−Eiyi) which yields, upon substitution in the second equation,

Siyi +
∑
j∈Ni

Eijyj = gi − FiB−1
i fi, i = 1, ..., s (156)

in which Si is the local Schur complement

Si = Ci − FiB−1
i Ei. (157)

When written for all subdomains i, the equations (156) yield a system of equations which
involves only the interface points yj , j = 1, 2, ..., s and which has a natural block structure
associated with these vector variables

S =


S1 E12 E13 · · ·E1s

E21 S2 E23 · · ·E2s
...

. . .
...

...
. . .

...
Es1 Es2 Es3 · · ·Ss

 (158)
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The diagonal blocks in this system, namely, the matrices Si, are dense in general, but the
off-diagonal blocks Eij are sparse and most of them are zero. Specifically, Eij 6= 0 only if
subdomains i and j have at least one equation that couples them. A structure of the global
Schur complement S has been described which has the following important implication:
For vertex-based partitionings, the Schur complement matrix can be assembled from local
Schur complement matrices (the Si’s) and interface-to-interface information (the Eis). A
similar idea will be exploited for finite element partitionings.

SCHUR COMPLEMENT FOR FINITE-ELEMENT PARTITIONINGS

In finite-element partitionings, the original discrete set Ω is subdivided into subsets
Ωi, each consisting of a distinct set of elements. Given a finite element discretization of
the domain Ω, a finite dimensional space Vh of functions over Ω is defined, e.g., functions
that are piecewise linear and continuous on Ω, and that vanish on the boundary Γ of Ω.
Consider now the Dirichlet problem on Ω and recall that its weak formulation on the finite
element discretization can be stated as follows :

Find u ∈ Vh such that a(u, v) = (f, v), ∀v ∈ Vh, (159)

where the bilinear form a(., .) is defined by

a(u, v) =

∫
Ω
5u.5 vdx =

∫
Ω

(
∂u

∂x1

∂v

∂x1
+

∂u

∂x2

∂v

∂x2

)
dx (160)

It is interesting to observe that since the set of the elements of the different Ωis are disjoint,
a(., .) can be decomposed as

a(u, v) =

s∑
i=1

ai(u, v), (161)

where

ai(u, v) =

∫
Ωi

5u.5 vdx. (162)

In fact, this is a generalization of the technique used to assemble the stiffness matrix from
element matrices, which corresponds to the extreme case where each Ωi consists of exactly
one element. If the unknowns are ordered again by subdomains and the interface nodes
are placed last as was done previously, immediately the system shows the same structure,

B1 E1

B2 E2

. . .
...
Bs Es

F1 F2 · · · Fs C




x1

x2
...
xs
y

 =


f1

f2
...
fs
g

 (163)

where each Bi represents the coupling between interior nodes and Ei and Fi represent the
coupling between the interface nodes and the nodes interior to Ωi. Note that each of these
matrices has been assembled from element matrices and can therefore be obtained from
contributions over all subdomain Ωi that contain any node of Ωi. In particular, assume
that the assembly is considered only with respect to Ωi. Then the assembled matrix will
have the structure

Ai =

(
Bi Ei
Fi Ci

)
. (164)

where Ci contains only contributions from local elements, i.e., elements that are in Ωi.
Clearly, C is the sum of the Cis,

C =
s∑
i=1

Ci (165)
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The Schur complement associated with the interface variables is such that

S = C − FB−1E = C −
s∑
i=1

FiB
−1
i Ei =

s∑
i=1

Ci −
s∑
i=1

FiB
−1
i Ei =

s∑
i=1

[Ci − FiB−1
i Ei].

(166)

Therefore, if Si denotes the local Schur complement

Si = Ci − FiB−1
i Ei, (167)

then the above proves that,

S =
s∑
i=1

Si, (168)

showing again that the Schur complement can be obtained easily from smaller Schur
complement matrices.

3.5.2 Schwarz Alternating Procedures

The original alternating procedure described by Schwarz consisted of three parts: alter-
nating between two overlapping domains, solving the Dirichlet problem on one domain at
each iteration, and taking boundary conditions based on the most recent solution obtained
from the other domain. This procedure is called the Multiplicative Schwarz procedure.
In matrix terms, this is very reminiscent of the block Gauss-Seidel iteration with overlap
defined with the help of projectors. The analogue of the block-Jacobi procedure is known
as the Additive Schwarz procedure.

MULTIPLICATIVE SCHWARZ PROCEDURE

In the following, assume that each pair of neighboring subdomains has a non-void
overlapping region. The boundary of subdomain Ωi that is included in subdomain j is
denoted by Γi,j

Figure 11: An L-shaped domain subdivided into three overlapping subdomains

This is illustrated in Figure 11 for the L-shaped domain example. Each subdomain
extends beyond its initial boundary into neighboring subdomains. Call Γi the boundary of
Ωi consisting of its original boundary (which is denoted by Γi,0) and the Γi,j ’s and denote
by uji the restriction of the solution u to the boundary Γji. Then the Schwarz Alternating
Procedure can be described as follows.
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SAP - Schwarz Alternating Procedure

1. Choose an initial guess u to the solution

2. Until convergence Do:

3. For i = 1, ..., s Do:

4. Solve 4u = f in Ωi with u = uij in Γij .

5. Update u values on Γji

6. EndDo

7. EndDo

The algorithm sweeps through the s subdomains and solves the original equation in each
of them by using boundary conditions that are updated from the most recent values of
u. Since each of the subproblems is likely to be solved by some iterative method, we
can take advantage of a good initial guess. It is natural to take as initial guess for a
given subproblem the most recent approximation. Going back to the expression (154) of
the local problems, observe that each of the solutions in line 4 of the algorithm will be
translated into an update of the form

ui : = ui + δi, (169)

where the correction δi solves the system

Aiδi = ri (170)

Here, ri is the local part of the most recent global residual vector b− Ax, and the above
system represents the system associated with the problem in line 4 of the algorithm when
a nonzero initial guess is used in some iterative procedure. The matrix Ai has the block
structure (152). Writing

ui =

(
xi
yi

)
, δi =

(
δx,i
δy,i

)
, ri =

(
rx,i
ry,i

)
, (171)

the correction to the current solution step in the algorithm leads to(
xi
yi

)
: =

(
xi
yi

)
+

(
Bi Ei
Fi Ci

)−1(
rx,i
ry,i

)
(172)

After this step is taken, normally a residual vector r would have to be computed again to
get the components associated with domain i + 1 and to proceed with a similar step for
the next subdomain. However, only those residual components that have been affected by
the change of the solution need to be updated. Specifically, employing the same notation
used in equation (154), we can simply update the residual ry,j for each subdomain j for
which i in Nj as

ry,j : = ry,j − Ejiδy,i. (173)

This amounts implicitly to performing Step 5 of the above algorithm. Note that since
the matrix pattern is assumed to be symmetric, then the set of all indices j such that
i ∈ Nj , i.e., N∗i j|i ∈ Ni, is identical to Ni. Now the loop starting in line 3 of the previous
Algorithm and called domain sweep can be restated as follows.

MULTIPLICATIVE SCHWARZ Sweep - Matrix Form
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1. For i = 1, ..., s Do:

2. Solve Aiδi = ri

3. Compute xi : = xi + δx,i, yi : = yi + δy,i, and set ri : = 0

4. For each j ∈ Ni Compute ry,j : = ry,j − Ejiδy,i

5. EndDo

Considering only the y iterates, the above iteration would resemble a form of Gauss-
Seidel procedure on the Schur complement matrix (158). In fact, it is mathematically
equivalent, provided a consistent initial guess is taken.

It is interesting to interpret the Schwarz alternating procedure, or rather its discrete
version, in terms of projectors. For this we follow the model of the overlapping block-Jacobi
technique. Let Si be an index set

Si = {j1, j2, ..., jni}, (174)

where the indices jk are those associated with the ni mesh points of the interior of the
discrete subdomain Ωi. Note that as before, the Sis form a collection of index sets such
that ⋃

i=1,...,s

Si = {1, ..., n} (175)

and the Sis are not necessarily disjoint. Let Ri be a restriction operator from Ω to ωi.
By definition, Rix belongs to Ωi and keeps only those components of an arbitrary vector
x that are in Ωi. It is represented by an ni × n matrix of zeros and ones. The matrices
Ri associated with the partitioning of Figure 9 are represented in the three diagrams of
Figure 12, where each square represents a nonzero element (equal to one) and every other
element is a zero. These matrices depend on the ordering chosen for the local problem.
Here, boundary nodes are labeled last, for simplicity. Observe that each row of each Ri
has exactly one nonzero element (equal to one). Boundary points such as the nodes 36 and
37 are represented several times in the matrices R1, R2 and R3 because of the overlapping
of the boundary points. Thus, node 36 is represented in matrices R1 and R2, while 37 is
represented in all three matrices.

From the linear algebra point of view, the restriction operator Ri is an ni × n matrix
formed by the transposes of columns ej of the n × n identity matrix, where j belongs to
the index set Si. The transpose RTi of this matrix is a prolongation operator which takes
a variable from Ωi and extends it to the equivalent variable in Ω. The matrix

Ai = RiAR
T
i (176)

of dimension Ni × ni defines a restriction of A to Ωi. Now a problem associated with Ai
can be solved which would update the unknowns in the domain Ωi. With this notation,
the multiplicative Schwarz procedure can be described as follows:

1. For i = 1, ..., s Do

2. x : = x+RTi A
−1
i Ri(b−Ax)

3. EndDo

We change notation and rewrite step 2 as

xnew = x+RTi A
−1
i Ri(b−Ax). (177)
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Figure 12: Patterns of the three matrices Ri associated with the partitioning as shown in
the finite difference mesh

If the errors d = x∗− x are considered where x∗ is the exact solution, then notice that
b − Ax = A(x∗ − x) and, at each iteration the following equation relates the new error
dnew and the previous error d,

dnew = d−RTi A−1
i RiAd. (178)

Starting from a given x0 whose error vector is d0 = x∗−x, each sub-iteration produces
error vector which satifies the relation

di = di−1 −RTi A−1
i RiAdi−1, (179)

for i = 1, ..., s.As a result,
di = (I − Pi)di−1 (180)

in which
Pi = RTi A

−1
i RiA. (181)

Observe that Pi ≡ RTi A
−1
i RiA is a projector since

(RTi A
−1
i RiA)2 = RTi A

−1
i (RiAR

T
i )A−1

i RiA = RTi A
−1
i RiA. (182)

MULTIPLICATIVE SCHWARZ PRECONDITIONING

Because of the equivalence of the multiplicative Schwarz procedure and a block Gauss-
Seidel iteration, it is possible to recast one Multiplicative Schwarz sweep in the form of a
global fixed-point iteration of the form xnew = Gx + f . Recall that this is a fixed-point
iteration for solving the preconditioned system M−1Ax = M−1b where the preconditioning
matrix M and the matrix G are related by G = I −M−1A. To interpret the operation
associated with M−1, it is helpful to identify the result of the error vector produced by
this iteration with xnew − x∗ = Qs(x− x∗). This comparison yields,

xnew = Qsx+ (I −Qs)x∗, (183)
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and therefore,
G = Qsf = (I −Qs)x∗. (184)

Hence, the preconditioned matrix is M−1A = I −Qs.
So it can be stated that the multiplicative Schwarz procedure is equivalent to a fixed-

point iteration for the preconditioned problem

M−1Ax = M−1b, (185)

in which

M−1A = I −Qs (186)

M−1b = (I −Qs)x∗ = (I −Qs)A−1b. (187)

The transformed right-hand side in the proposition is not known explicitly since it is
expressed in terms of the exact solution. However, a procedure can be found to compute
it. In other words, it is possible to operate with M−1 without invoking A−1. Note that
M−1 = (I −Qs)A−1. M−1 and M−1A can be computed recursively.

Define the matrices

Zi = I −Qi (188)

Mi = ZiA
−1 (189)

Ti = PiA
−1 = RTi A

−1
i Ri (190)

for i = 1, ..., s. Then M−1 = Ms,M
−1A = Zs, and the matrices Zi and Mi satisfy the

recurrence relations

Z1 = P1, Zi = Zi−1 + Pi(I − Zi−1), i = 2, ..., s (191)

and

M1 = T1,Mi = Mi−1 + Ti(I −AMi−1), i = 2, ..., s. (192)

Note that (191) yields immediately the important relation

Zi =
i∑

j=1

PjQj−1 (193)

If the relation (192) is multiplied to the right by a vector v and if the vector MiA
−1v is

denoted by zi, then the following recurrence results.

zi = zi−1 + Ti(V −Azi−1). (194)

Since zs = (I − Qs)A−1v = M−1v, the end result is that M−1v can be computed for an
arbitrary vector v, by the following procedure.

MULTIPLICATIVE SCHWARZ PRECONDITIONER

1. Input: v; Output: z = M−1v

2. z : = T1v

3. For i = 2, ..., s Do:

4. z := z + Ti(v −Az)
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5. EndDo

By a similar argument, a procedure can be found to compute vectors of the form z =
M−1Av. In this case an operator algorithm can be shown:

MULTIPLICATIVE SCHWARZ PRECONDITIONED OPERATOR

1. Input: v, Output: z = M−1Av.

2. z : = P1v

3. For i = 2, ..., s Do

4. z : = z + Pi(v − z)

5. EndDo

In summary, the Multiplicative Schwarz procedure is equivalent to solving the precondi-
tioned system

(I −Qs)x = g (195)

where the operation (I−Qs)v can be computed from the operator Algorithm and g = M−1b
can be computed from preconditioning Algorithm.

ADDITIVE SCHWARZ PRECONDITIONER

The additive Schwarz procedure is similar to a block-Jacobi iteration and consists of
updating all the new (block) components from the same residual. Thus, it differs from
the multiplicative procedure only because the components in each subdomain are not
updated until a whole cycle of updates through all domains are completed. The basic
Additive Schwarz iteration would therefore be as follows:

1. For i = 1, ..., s Do

2. Compute δi = RTi A
−1
i Ri(b−Ax)

3. EndDo

4. xnew = x+
∑s

i=1 δi

The new approximation (obtained after a cycle of the s substeps in the above algorithm
are applied) is

xnew = x+

s∑
i=1

RTi A
−1
i Ri(b−Ax). (196)

Each instance of the loop redefines different components of the new approximation and
there is no data dependency between the subproblems involved in the loop.

The preconditioning matrix is rather simple to obtain for the additive Schwarz pro-
cedure. Using the matrix notation defined in the previous section, notice that the new
iterate satisfies the relation

xnew = x+
s∑
i=1

Ti(b−Ax) =

(
I −

s∑
i=1

Pi

)
x+

s∑
i=1

Tib. (197)

Thus, using the same analogy as in the previous section, this iteration corresponds to a
fixed-point iteration xnew = Gx+ f with

G = I −
s∑
i=1

Pi, f =
s∑
i=1

Tib. (198)
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With the relation G = I −M−1A between G and the preconditioning matrix M , the
result is that

M−1A =

s∑
i=1

Pi (199)

and

M−1 =

s∑
i=1

PiA
−1 =

s∑
i=1

Ti. (200)

Now the procedure for applying the preconditioned operator M−1 becomes:

ADDITIVE SCHWARZ PRECONDITIONER

1. Input: v; Output: z = M−1v.

2. For i = 1, ..., s Do:

3. Compute zi : = Tiv

4. EndDo

5. Compute z := z1 + z2...+ zs.

Note that the do loop can be performed in parallel. Step 5 sums up the vectors zi in each
domain to obtain a global vector z. In the nonoverlapping case, this step is parallel and
consists of just forming these different components since the addition is trivial. In the
presence of overlap, the situation is similar except that the overlapping components are
added up from the different results obtained in each subdomain.

The procedure for computing M−1Av is identical to the one above except that Ti in
line 3 is replaced by Pi.

3.5.3 Schur Complement Approaches

Schur complement methods are based on solving the reduced system (145) by some pre-
conditioned Krylov subspace method. Procedures of this type involve three steps.

1. Get the right-hand side g
′

= g − FB−1f.

2. Solve the reduced system Sy = g
′

via an iterative method.

3. Back-substitute, i.e.,compute x via (144)

The different methods relate to the way in which step 2 is performed. First observe that
the matrix S need not be formed explicitly in order to solve the reduced system by an
iterative method. For example, if a Krylov subspace method without preconditioning is
used, then the only operations that are required with the matrix S are matrix-by-vector
operations w = Sv. Such operations can be performed as follows.

1. Compute v
′

= Ev,

2. Solve Bz = v
′

3. Compute w = Cv − Fz.
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The above procedure involves only matrix-by-vector multiplications and one linear system
solution with B. Recall that a linear system involving B translates into s-independent
linear systems. Also note that the linear systems with B must be solved exactly, either
by a direct solution technique or by an iterative technique with a high level of accuracy.

While matrix-by-vector multiplications with S cause little difficulty, it is much harder
to precondition the matrix S, since this full matrix is often not available explicitly. There
have been a number of methods, derived mostly using arguments from Partial Differential
Equations to precondition the Schur complement. Here, we consider only those precondi-
tioners that are derived from a linear algebra viewpoint.

INDUCED PRECONDITIONERS

One of the easiest ways to derive an approximation to S is to exploit (149), the prop-
erties of the Schur Complement and the intimate relation between the Schur complement
and Gaussian elimination. This proposition tells us that a preconditioning operator M
to S can be defined from the (approximate) solution obtained with A. To precondition a
given vector v, i.e., to compute w = M−1v, where M is the desired preconditioner to S,
first solve the system

A

(
x

y

)
=

(
0

v

)
, (201)

then take w = y. Use any approximate solution technique to solve the above system.
Let MA be any preconditioner for A. Using the notation defined earlier, let Ry repre-
sent the restriction operator on the interface variables, as defined in (149). Then the
preconditioning operation for S which is induced from MA is defined by

M−1
S v = RyM

−1
A

(
0

v

)
= RyM

−1
A RTy v. (202)

Observe that when MA is an exact preconditioner, i.e., when MA = A, then according to
(149),MS is also an exact preconditioner, i.e.,MS = S. This induced preconditioner can
be expressed as

MS = (RyM
−1
A RTy )−1. (203)

It may be argued that this uses a preconditioner related to the original problem to be
solved in the first place. However, even though the preconditioning on S may be defined
from a preconditioning of A, the linear system is being solved for the interface variables.
That is typically much smaller than the original linear system. For example, GMRES can
be used with a much larger dimension of the Krylov subspace since the Arnoldi vectors to
keep in memory are much smaller. Also note that from a Partial Differential Equations
viewpoint, systems of the form (201) correspond to the Laplace equation, the solutions of
which are Harmonic functions. There are fast techniques which provide the solution of
such equations inexpensively.

In the case where MA is an ILU factorization of A, MS can be expressed in an explicit
form in terms of the entries of the factors of MA. This defines a preconditioner to S
that is induced canonically from an incomplete LU factorization of A. Assume that the
preconditioner MA is in a factored form MA = LAUA, where

LA =

(
LB 0

FU−1
B LS

)
and UA =

(
UB L−1

B E
0 US

)
. (204)

Then, the inverse of MA will have the following structure:

M−1
A = U−1

A L−1
A =

(
F F
0 U−1

S

)(
F 0

F L−1
S

)
=
(
F F F U−1

S L−1
S

)
(205)
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where a star denotes a matrix whose actual expression is unimportant. Recall that by
definition,

Ry = (0 I), (206)

where this partitioning conforms to the above ones. This means that

RyM
−1
A RTy = U−1

S L−1
S (207)

and, therefore, according to (203), MS = LSUS . The L and U factors for MS are the (2, 2)
blocks of the L and U factors of the ILU factorization of A. An important consequence of
the above idea is that the parallel Gaussian elimination can be exploited for deriving an
ILU preconditioner for S by using a general purpose ILU factorization. In fact, the L and
U factors of MA have the following structure:

A = LAUA −R (208)

LA =


L1

L2

. . .

Ls
F1U

−1
1 F2U

−1
2 · · · FsU

−1
s L

 (209)

UA =


U1 L−1

1 E1

U2 L−1
2 E2

· · ·
...

Us L−1
s Es
U

 . (210)

Each Li, Ui pair is an incomplete LU factorization of the local Bi matrix. These ILU
factorizations can be computed independently. Similarly, the matrices L−1

i Eiand FiU
−1
i

can also be computed independently once the LU factors are obtained. Then each of the
matrices

S̃i = Ci − FiU−1
i L−1

i Ei, (211)

which are the approximate local Schur complements, is obtained. Note that since an
incomplete LU factorization is being performed, some drop strategy is applied to the
elements in S̃i. Let Ti be the matrix obtained after this is done,

Ti = S̃i −Ri. (212)

Then a final stage would be to compute the ILU factorization of the matrix (158) where
each Si is replaced by Ti.

PRECONDITIONING VERTEX-BASED SCHUR COMPLEMENTS

We now discuss some issues related to the preconditioning of a linear system with the
matrix coefficient of (158) associated with a vertex-based partitioning. As was mentioned
before, this structure is helpful in the direct solution context because it allows the Schur
complement to be formed by local pieces. Since incomplete LU factorizations will utilize
the same structure, this can be exploited as well.

Note that multicolor SOR or SSOR can also be exploited and that graph coloring
can be used to color the interface values yi in such a way that no two adjacent interface
variables will have the same color. In fact, this can be achieved by coloring the domains.
In the course of a multicolor block-SOR iteration, a linear system must be solved with the
diagonal blocks Si. For this purpose, it is helpful to interpret the Schur complement. Call
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P the canonical injection matrix from the local interface points to the local nodes. If ni
points are local and if mi is the number of the local interface points, then P is an ni×mi

matrix whose columns are the last mi columns of the ni × ni identity matrix. Then it is
easy to see that

Si = (P TA−1
loc,iP )−1 (213)

If Aloc,i = LU is the LU factorization of Aloc,i then it can be verified that

S−1
i = P TU−1L−1P = P TU−1PP TL−1P, (214)

which indicates that in order to operate with P TL−1P , the lastmi×mi principal submatrix
of L must be used. The same is true for P TU−1P which requires only a back-solve with
the last mi×mi principal submatrix of U . Therefore, only the LU factorization of Aloc,i is
needed to solve a system with the matrix Si. Interestingly, approximate solution methods
associated with incomplete factorizations of Aloc,i can be exploited.

3.6 Deflation

Deflation is an attempt to treat the bad eigenvalues resulting in the preconditioned matrix.

M−1Ax = M−1b (215)

M−1A, where M−1 is an symmetric positive definite (SPD) preconditioner and A is the
symmetric positive definite (SPD) coefficient matrix. This operation reduces the conver-
gence iterations for the Preconditioned Conjugate Gradient (PCG) method and makes it
more robust.

The original linear system

Ax = b (216)

can be solved by employing the splitting

x = (I − P T )x+ P Tx (217)

Simplifying we get

x = (I − P T )x+ P Tx⇔ x = Qb+ P Tx (218)

⇔ Ax = AQb+AP Tx (219)

⇔ b = AQb+ PAx (220)

⇔ Pb = PAx, (221)

where

P := I −AQ,Q := ZE−1ZT , E := ZTAZ. (222)

where
E ∈ Rk∗k is the invertible Galerkin Matrix,

Q ∈ Rn∗n is the correction Matrix,
and P ∈ Rn∗n is the deflation matrix.

Also it is given that A is an SPSD coefficient matrix as given in (216) and Z ∈ Rn∗k,
with full rank and k < n− d is given.

The x at the end of the expression is not necessarily a solution of the original linear
system (216), since it might consist of components of the null space of PA, N (PA).
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Therefor this ’deflated’ solution is denoted as x̂ rather than x. The deflated system is
now,

PAx̂ = Pb (223)

The Preconditioned deflated version of the Conjugate Gradient Method can now be
presented. The deflated method (223) can be solved using a symmetric positive definite
(SPD) preconditioner, M−1. We therefore now seek a solution to

P̃ Ãˆ̃x = P̃ b̃, (224)

where

Ã := M−
1
2AM−

1
2 , ˆ̃x := M

1
2 x̂, b̃ := M−

1
2 b, (225)

and

P̃ := I − ÃQ̃, Q̃ := Z̃ ˜E−1Z̃T , Ẽ := Z̃T ÃZ̃, (226)

where Z̃ ∈ Rn∗k can be interpreted as a preconditioned deflation-subspace matrix.
The resulting method is called the Deflated Preconditioned Conjugate Gradient (DPCG)
method [Tang, 2008].

1. Select x0. Compute r0 := b−Ax0 and r̂0 = Pr0, Solve My0 = r̂0 and set p0 := y0.

2. for j:=0,..., until convergence do

3. ŵj := PApj

4. αj :=
(r̂j ,yj)
(pj ,ŵj)

5. x̂j+1 := x̂j + αjpj

6. r̂j+1 := r̂j − αjŵj

7. Solve Myj+1 = r̂j+1

8. βj :=
(r̂j+1,yj+1)

(r̂j ,yj)

9. pj+1 := yj+1 + βjpj

10. end for

11. xit := Qb+ P Txj+1

It can be seen that P̃ or M
1
2 are never calculated explicitly. Hence the linear system is

often denoted by

M−1PAx̂ = M−1Pb (227)

Some Observations:
All known properties of Preconditioned Conjugate Gradient (PCG) also hold for DPCG,

where PA can be interpreted as the coefficient matrix A in (124). Moreover if P = I is
taken the algorithm above reduces to the PCG algorithm.

Careful selection of Deflation vectors is required for this method to prove useful. Two
methods, one based on eigenvector (of M−1A)based subspace for Z and the other based
on an arbitrary choice of the deflation subspace, are worth to mention.

However to calculate the eigenvectors itself could be computationally intensive so an
arbitrary choice which closely resembles the part of the eigenspace is the way out. In short
the ideal deflation method should satisfy the following criteria:
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• The deflation-subspace matrix Z must be sparse;

• The deflation vectors approximate the eigenspace corresponding to the unfavorable
eigenvalues;

• The cost of constructing deflation vectors is relatively low;

• The method has favorable parallel properties;

• The approach can be easily implemented in an existing PCG code.

Subdomain Deflation based choice for Deflation vectors seems to emerge as a close
match.

3.6.1 Subdomain Deflation

In Subdomain deflation, the deflation vectors are chosen in an algebraic way. The com-
putational domain is divided into several subdomains, where each subdomain corresponds
to one or more deflation vectors.

Consider application of Subdomain deflation to Poisson Equation with discontinuous
coefficients(also called the ’pressure(-correction) equation’) and Neumann boundary con-
ditions, i.e.,

−5 .

(
1

ρ(x)
5 p(x)

)
= f(x), x ∈ Ω, (228)

∂

∂n
p(x) = g(x), x ∈ ∂Ω, (229)

where Ω, p, ρ, x, and n denote the computational domain, pressure, density, spatial
coordinates, and the unit normal vector to the boundary ∂Ω, respectively. g is such that
mass is conserved.

Now assume that the computational domain, Ω is divided into several subdomains,
Ωj , where each Ωj corresponds to one deflation vector, consisting of ones for grid points
in the interior of the discretized subdomain, Ωhj , and zeroes for other grid points. Then,
subdomain deflation is effective, if each subdomain, Ωj , corresponds to exactly one con-
stant part of the coefficient, ρ. In this case, the subspace spanned by the deflation vectors
is proved to be almost equal to the eigenspace associated with the smallest eigenvalues.

4 Parallel Iterative Methods

There have been two traditional approaches in parallelizing solutions through iterative
methods.

• Extracting Parallelism from Standard algorithms.

• Devise new algorithms that have inherently better parallelism.

We will look at the first approach and discuss some of the approaches of the latter kind
in this section. For our problem we use Conjugate Gradient Method.The main operations
in Preconditioned Conjuate Gradient Algorithm are:

1. Preconditioner setup.

2. Matrix vector multiplications.
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3. Vector updates.

4. Dot products.

5. Preconditioning operations.

Operations 1 and 5 are the potential bottlenecks followed by Matrix Vector Multipli-
cations.

For speeding up the main operations in preconditioned methods, Level Scheduling
could be put to use. We take it up in the following sections.

4.1 Parallel Implementations

In this section we look at the implementation of standard operations and how the matrices
could be stored in an efficient way to speed up common operations.

4.1.1 Matrix-Vector Products

Matrix-by-vector multiplications (sometimes called Matvecs for short) are relatively easy
to implement efficiently on high performance computers. We will cover sparse Matvec
operations for a few different storage formats.

One of the most general schemes for storing sparse matrices is the Compressed Sparse
Row storage format. Recall that the data structure consists of three arrays: a real array
A(1 : nnz) to store the nonzero elements of the matrix row-wise, an integer array JA(1 :
nnz) to store the column positions of the elements in the real array A, and, finally, a pointer
array IA(1 : n+ 1), the i-th entry of which points to the beginning of the i-th row in the
arrays A and JA. To perform the matrix-by-vector product y = Ax in parallel using this
format, note that each component of the resulting vectorcan be computed independently
as the dot product of the i-th row of the matrix with the vector

CSR Format -Dot Product Form

1. Do i = 1, n

2. k1 = ia(i)

3. k2 = ia(I + 1)− 1

4. y(i) = dotproduct(a(k1 : k2), x(ja(k1 : k2)))

5. EndDo

Line 4 of the above algorithm computes the dot product of the vector with compo-
nents a(k1), a(k1 + 1), ..., a(k2) with the vector with components x(ja(k1)), x(ja(k1 +
1)), ..., x(ja(k2)). The fact that the outer loop can be performed in parallel can be ex-
ploited on any parallel platform. On some shared-memory machines, the synchronization
of this outer loop is inexpensive and the performance of the above program can be ex-
cellent. On distributed memory machines, the outer loop can be split into a number of
steps to be executed on each processor. Thus, each processor will handle a few rows that
are assigned to it. It is common to assign a certain number of rows (often contiguous)
to each processor and to also assign the component of each of the vectors similarly. The
part of the matrix that is needed is loaded in each processor initially. When performing
a matrix-by-vector product, interprocessor communication will be necessary to get the
needed components of the vector x that do not reside in a given processor.
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Figure 13: Illustration of the row-oriented matrix-by-vector multiplication

The indirect addressing involved in the second vector in the dot product is called a
gather operation. The vector x(ja(k1 : k2)) is first gathered from memory into a vector
of contiguous elements. The dot product is then carried out as a standard dot-product
operation between two dense vectors.

Now assume that the matrix is stored by columns (CSC format). The matrix-by-vector
product can be performed by the following algorithm.

1. y(1 : n) = 0.0

2. Do i = 1, n

3. k1 = ia(i)

4. k2 = ia(i+ 1)− 1

5. y(ja(k1 : k2))− y(ja(k1 : k2)) + x(j) ∗ a(k1 : k2)

6. EndDo

The above code initializes y to zero and then adds the vectors x(j) × a(1 : n, j)for
j = 1, ..., n to it. It can also be used to compute the product of the transpose of a matrix
by a vector, when the matrix is stored (row-wise) in the CSR format. Normally, the vector
y(ja(k1 : k2)) is gathered and the SAXPY operation is performed in vector mode. Then
the resulting vector is scattered back into the positions ja(∗), by what is called a Scatter
operation.

MATVECS in Diagonal Format

The above storage schemes are general but they do not exploit any special structure
of the matrix. The diagonal storage format was one of the first data structures used in
the context of high performance computing to take advantage of special sparse structures.
Often, sparse matrices consist of a small number of diagonals in which case the matrix-
by-vector product can be performed by diagonals. For sparse matrices, most of the 2n− 1
diagonals are zero. Recall that the matrix is stored in a rectangular arraydiag(1 : n, 1 :
ndiag) and the offsets of these diagonals from the main diagonal may be stored in a small
integer array offset(1 : ndiag).

1. Do i = 1, n

2. tmp = 0.0

3. Do j = 1, ndiag
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4. tmp=tmp+diag(i, j) ∗ x(i+ offset(j))

5. EndDo

6. y(i) = tmp

7. EndDo

One drawback with diagonal storage is that it is not general enough. For general sparse
matrices, we can either generalize the diagonal storage scheme or reorder the matrix in
order to obtain a diagonal structure. The simplest generalization is the Ellpack-Itpack
Format.

The Ellpack-Itpack (or Ellpack) format is of interest only for matrices whose maximum
number of nonzeros per row, jmax, is small. The nonzero entries are stored in a real array
ae(1 : n, 1 : jmax). Along with this is integer array jae(1 : n, 1 : jmax) which stores the
column indices of each corresponding entry in ae.

1. Do i = 1, n

2. yi = 0

3. Do j = 1, ncol

4. yi = yi+ ae(j, i) ∗ x(jae(j, i))

5. EndDo

6. y(i) = yi

7. EndDo

The main difference between these loops and the previous ones for the diagonal format
is the presence of indirect addressing in the innermost computation. A disadvantage of
the Ellpack format is that if the number of nonzero elements per row varies substantially,
many zero elements must be stored unnecessarily. Then the scheme becomes inefficient.
As an extreme example, if all rows are very sparse except for one of them which is full,
then the arrays ae, jae must be full n×n arrays, containing mostly zeros. This is remedied
by a variant of the format which is called the jagged diagonal format.

A more general alternative to the diagonal or Ellpack format is the Jagged Diagonal
(JAD) format. This can be viewed as a generalization of the Ellpack-Itpack format which
removes the assumption on the fixed length rows. To build the jagged diagonal structure,
start from the CSR data structure and sort the rows of the matrix by decreasing number
of nonzero elements. To build the first jagged diagonal (j-diagonal), extract the first
element from each row of the CSR data structure. The second jagged diagonal consists
of the second elements of each row in the CSR data structure. The third, fourth, ...,
jagged diagonals can then be extracted in the same fashion. The lengths of the successive
j-diagonals decreases. The number of j-diagonals that can be extracted is equal to the
number of nonzero elements of the first row of the permuted matrix, i.e., to the largest
number of nonzero elements per row. To store this data structure, three arrays are needed:
a real array DJ to store the values of the jagged diagonals, the associated array JDIAG
which stores the column positions of these values, and a pointer array IDIAG which
points to the beginning of each j-diagonal in the DJ , JDIAG arrays.

A matrix-by-vector product with this storage scheme can be performed by the following
code segment.

1. Do j = 1, ndiag
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2. k1 = idiag(j)

3. k2 = idiag(j + 1)1

4. len = idiag(j + 1)k1

5. y(1 : len) = y(1 : len) + dj(k1 : k2) ∗ x(jdiag(k1 : k2))

6. EndDo

Since the rows of the matrix A have been permuted, the above code will compute JAx,
a permutation of the vector Ax, rather than the desired Ax. It is possible to permute
the result back to the original ordering after the execution of the above program. This
operation can also be performed until the final solution has been computed, so that only
two permutations on the solution vector are needed, one at the beginning and one at the
end. For preconditioning operations, it may be necessary to perform a permutation before
or within each call to the preconditioning subroutines.

4.1.2 Level Scheduiing:The case of 5-Point Matrices

Consider an example which consists of a 5-point matrix associated with a 4 × 3 mesh
as represented in Figure 14. The lower triangular matrix associated with this mesh is
represented in the left side of Figure 14. The stencil represented in the right side of
Figure 14 establishes the data dependence between the unknowns in the lower triangular
system solution when considered from the point of view of a grid of unknowns. It tells
us that in order to compute the unknown in position (i, j), only the two unknowns in
positions (i − 1, j)and (i, j − 1) are needed . The unknown x11 does not depend on any
other variable and can be computed first. Then the value of x11 can be used to get x1,2

and x2,1 simultaneously. Then these two values will in turn enable x3,1, x2,2and x1,3 to be
obtained simultaneously, and so on. Thus, the computation can proceed in wavefronts.
The steps for this wavefront algorithm are shown with dashed lines in Figure 14. Observe
that the maximum degree of parallelism (or vector length, in the case of vector processing)
that can be reached is the minimum of nx, ny the number of mesh points in the x and y
directions,respectively, for 2-D problems. For 3-D problems, the parallelism is of the order
of the maximum size of the sets of domain points xi,j,k, where i+ j + k = lev, a constant
level lev. It is important to note that there is little parallelism or vectorization at the
beginning and at the end of the sweep. The degree of parallelism is equal to one initially,
and then increases by one for each wave reaching its maximum, and then decreasing back
down to one at the end of the sweep. For example, for a 4 × 3 grid, the levels (sets of
equations that can be solved in parallel) are 1, 2,5, 3,6,9, 4,7,10, 8,11, and finally 12. The
first and last few steps may take a heavy toll on achievable speed-ups. An implementation
of this technique to speed up the iterations for GMRES is discussed in [Vuik, van Nooyen,
and Wesseling, 1998].

The idea of proceeding by levels or wavefronts is a natural one for finite difference
matrices on rectangles.

4.2 Preconditioning in Parallel

4.2.1 Multi-Coloring

Multicoloring could be useful for exploting parallelism in iterative solution techniques.
Red-black ordering involves numbering the grid points of a discretized problem alter-

nately with alternating colors. The condition being that two adjacent nodes do not have
similar colors.
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Figure 14: Level Scheduling for a 4 × 3 grid problem.

Figure 15: Red Black Ordering

Since the red nodes are not coupled with other red nodes and, similarly, the black
nodes are not coupled with other black nodes, the system that results from this reordering
will have the structure (

D1 F
E D2

)(
x1

x2

)
=

(
b1
b2

)
(230)

The easiest way to solve such a red-black system is to use SSOR or ILU(0) precon-
ditioning. The linear system that arises from the forward solve in SSOR will have the
form (

D1 O
E D2

)(
x1

x2

)
=

(
b1
b2

)
(231)

This system can be solved by performing the following sequence of operations:

1. Solve D1x1 = b1.

2. Compute b̂2 = b2 − Ex1.

3. Solve D2X2 = b̂2.

This consists of two diagonal scalings (operations 1 and 3) and a sparse matrix-vector
product. Therefore, the degree of parallelism, is at least n/2 if an atomic task is considered
to be any arithmetic operation. The situation is identical with the ILU(0) preconditioning.
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However, since the matrix has been reordered before ILU(0) is applied to it, the resulting
LU factors are not related in any simple way to those associated with the original matrix.
In fact, a simple look at the structure of the ILU factors reveals that many more elements
are dropped with the red-black ordering than with the natural ordering. The result is
that the number of iterations to achieve convergence can be much higher with red-black
ordering than with the natural ordering.

Keeping in mind a greedy technique for coloring a graph. Given a general sparse matrix
A, this inexpensive technique allows us to reorder it into a block form where the diagonal
blocks are diagonal matrices. The number of blocks is the number of colors. For example,
for six colors, a matrix would result with the structure shown in below

Figure 16: A six-color ordering of a general sparse matrix.

where the Ds are diagonal and E, F are general sparse. This structure is obviously a
generalization of the red-black ordering.

Just as for the red-black ordering, ILU(0), SOR, or SSOR preconditioning can be used
on this reordered system. The parallelism of SOR/SSOR is now of order n/p where p
is the number of colors. A loss in efficiency may occur since the number of iterations is
likely to increase. A Gauss-Seidel sweep will essentially consist of p scalings and p − 1
matrix-by-vector products, where p is the number of colors.

4.2.2 Multi-Elimination ILU

The discussion in this section begins with the Gaussian elimination algorithm for a general
sparse linear system. Parallelism in sparse Gaussian elimination can be obtained by finding
unknowns that are independent at a given stage of the elimination, i.e., unknowns that
do not depend on each other according to the binary relation defined by the graph of
the matrix. A set of unknowns of a linear system which are independent is called an
independent set. Thus, independent set orderings can be viewed as permutations to put
the original matrix in the form (

D E
F C

)
(232)

in which D is diagonal, but C can be arbitrary. This amounts to a less restrictive
form of multicoloring, in which a set of vertices in the adjacency graph is found so that
no equation in the set involves unknowns from the same set. The rows associated with an
independent set can be used as pivots simultaneously. When such rows are eliminated, a
smaller linear system results, which is again sparse.Then we can find an independent set
for this reduced system and repeat the process of reduction. The resulting second reduced
system is called the second-level reduced system. The process can be repeated recursively
a few times. As the level of the reduction increases, the reduced systems gradually lose
their sparsity. A direct solution method would continue the reduction until the reduced
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system is small enough or dense enough to switch to a dense Gaussian elimination to solve
it.

5 Scientific Computing on GPUs

GPUs commercially available of the shelf, promise up to 1 teraflop (single precision) of
compute power. The cost at which this performance is available is a couple of hundred
euros. This makes it an attractive option already compared to setting up or sharing a
cluster that might be hard to get access to or costlier to put up in the first place. Scientific
computing problems could be restructured with some effort to work on the GPUs and it is
not uncommon to get upto 20x speed-up with simple first implementation. Talking about
implementation, it has become a lot easier with the advent of CUDA (Compute Unified
Device Architecture) from NVIDIA to write C code that runs on the GPU. Earlier this
was not the case. In order to harness the capabilities of the GPU C programs had to be
adapted to the shader languages like Cg .The programmer had to understand the way how
a GPU interprets textures and objects in a rendering environment and he had to explicitly
mould the application code as if it were a rendering operation.

5.1 Background Information on GPU Architecture and Programming
Model

The GPU is a SIMD processor (Single Instruction Multiple Data). What this means
is that there is an army of processors waiting to crunch the problem computations, all
the processors execute the exact same instructions but they do so in parallel without any
dependence. The result is that if one of them is able to say execute only at a rate of 1 Ghz,
then if a thousand of them do it simultaneously we get a teraflop straightforwardly. A GPU
has some fixed number of processors within, these are called streaming multiprocessors
(SMs). Each multiprocessor further has eight scalar processors (SPs).

Figure 17: GPU Architecture
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5.1.1 Internal Organization

There is a layer of abstraction built upon the physical hardware inside a GPU card. The
threads are internally arranged into blocks and there is a grid of such blocks. When
executing a computation on the GPU the programmer has to specify how many of such
threads exist in each block and how many such blocks exist in the grid. Blocks of threads
are divided amongst the streaming multiprocessors. The threads and blocks have three
dimensions. So each thread or block is identified by an index that has an x, y and az
co-ordinate inside a block. Likewise a block inside a grid lives in 3D space. This comes
in handy when using matrices (which are commonly used in scientific simulations), since
each matrix element could be easily assigned to a thread and could be addressed by a
thread Id.

5.1.2 Execution of Threads

Threads inside a block are grouped into warps. A multiprocessor on the GPU is assigned
some number of blocks. The scheduler that picks up threads for execution, does so in
granularity of a warp. So, if the warp size is say, 32, it will pick 32 threads with consecutive
thread Ids and schedule them for execution in the next cycle.

Each thread executes on one of the scalar processors. The Multiprocessors are capable
of executing a number of warps simultaneously. This number can vary from 512 upto 1024
on the GPUs depending on the type of card. At the time of issue from the scheduler the
SMs are handed over a number of blocks to execute. These can vary on the requirement
that each thread imposes in terms of registers and shared memory since they are limited
on each multiprocessor.

For example suppose that maximum number of threads that can be scheduled on a
multiprocessor is 768. Further if each warp is composed of 32 threads then we can have
maximum of 24 warps. Now many possible schemes for division could be laid down:

1. 256 threads per block * 3 blocks

2. 128 threads per block * 6 blocks

3. 16 threads per block * 48 blocks

Now each SM has a restriction on the number of blocks that can simultaneously run on
it. So if the maximum number of blocks is say 8 then only the 1st and 2nd schemes could
form a valid execution configuration.

5.1.3 Memory Model

Each multiprocessor has a set of memories associated with it. These memories have
different access times. It must be noted that these memories are on the device (the GPU)
and not on the DRAM available with the CPU. They are:

1. Register Memory

There are fixed number of registers that must be shared amongst the number of
threads that are configured (by the previously discussed allocation of threads in
blocks and grids). Registers are exclusive to each thread.

2. Shared Memory

Shared memory is accessible to all the threads within a block. It is the next best
thing after registers since accessing it is cheaper than the global memory.
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3. Texture Memory

Texture memory is read-only and could be read by all the threads across blocks on
a single multiprocessor.

4. Global Memory

This memory if the biggest in size at is placed farthest from the threads executing
on the multiprocessors. Its access times compared to the shared memory latency
might be up to 200 times more.

An important consequence of the different access times of the available memories is that
it often becomes important to hide the latency with available computation. Register
Usage can also decide how many blocks (consequently how many threads) might execute
in parallel. So suppose if we have 8192 registers and each thread (in a 16×16 block) uses
10 registers then the maximum number of blocks that can execute on a SM is 3 since
10 ∗ 256 = 2560 and 8192/2560 gives 3 (integer) as result. Increasing by only one register
per thread reduces the number of blocks by 1.

Figure 18: Coalesced Memory Accesses in a GPU

Global memory access if done in a regular fashion (regularly spaced or aligned) and
is consistent within a warp (all accesses are at equal strides or increments) then the data
can be brought from global memory in less number of instructions. This alignment called
coalescing could yield performance benefits when data is neatly aligned.
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5.1.4 Usability for Scientific Computing

Previous work [Bolz, Farmer, Grinspun, and Schröoder, 2003] [Krüger and Westermann,
2003] has shown the suitability of the data parallel architectures for solving sparse matrices
using iterative methods. However most of these approaches used the then available shader
languages and texture manipulation paradigms to write the application. Some of the
approaches [de Sturler and Loher, 1998] used other parallelization primitives like HPF for
such solvers. A variety of interesting implementations have come up in the last few years
which use the CUDA API for adapting the Iterative Solvers on the GPU. We discuss them
next.

6 Parallel Iterative Methods on the GPU

Solving with FFTs[Shi, Cai, Hou, Ma, Tan, Ho, and Wang, 2009].

6.1 Mixed Precision Techniques on the GPU

It is possible to use double precision calculations for some part of the iterative method and
use single precision for others thereby achieving a tradeoff that meets precision criteria and
converges as good as the double precision case. At the same time the rate of convergence
is also not affected very much. [Baboulin, Buttari, Dongarra, Kurzak, Langou, Langou,
Luszczek, and Tomov, 2008] use a similar approach for direct and iterative solution method
for sparse systems where in they pose the problem as the refinement of the solution xi+1

which can be written as:
xi+1 = xi +M(b−Axi), (233)

where M is the preconditioner and approximates S−1. If we use right preconditioning
then the system Ax = b reduces to the following

AMu = b, (234)

x = Mu (235)

Further they suggest calculating M using an iterative method and for the solution of the
original system a Krylov Subspace method is employed. This system of Inner and Outer
Iteration is now ready for Mixed Precision use. The idea here is that a single precision
arithmetic matrix-vector product is used as a fast approximation of the double precision
operator in the inner iterative solver. They have reported the results for a non-symmetric
solver wherein the outer iteration is of a FMGRES and the inner one is a GMRES cycle.

They report a speedup of 15 for some selected test problems.

6.2 Sparse Matrix Vector Products- SpMVs

Using the prefix sum technique in a sparse matrix vector multiply it is possible to speedup
this operation. The proposed method can achieve a scan operation with O(n) complexity
for a problem size of n. It has been further explored [SenGupta, Harris, Zhang, and
Owens, 2007] and extended as a primitive to implement operations like Sparse Matrix
Vector Multiply which are of interest to us.

The idea is to build a balanced binary tree on the input data and sweep it to and from
the root to compute the prefix sum. A binary tree with n leaves has d = log2n levels, and
each level d has 2d nodes. If we perform one add per node, then we will perform O(n)
adds on a single traversal of the tree. The algorithm consists of two phases: the reduce
phase (also known as the up-sweep phase) and the down-sweep phase. In the reduce phase,
we traverse the tree from leaves to root computing partial sums at internal nodes of the
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tree, as shown in Figure 19. This is also known as a parallel reduction, because after this
phase, the root node (the last node in the array) holds the sum of all nodes in the array.

Figure 19: An Illustration of the Up-Sweep, or Reduce, Phase of a Work-Efficient Sum
Scan Algorithm

In the down-sweep phase, we traverse back down the tree from the root, using the
partial sums from the reduce phase to build the scan in place on the array. We start by
inserting zero at the root of the tree, and on each step, each node at the current level
passes its own value to its left child, and the sum of its value and the former value of its
left child to its right child. The down-sweep is shown in Figure 20,

Figure 20: An Illustration of the Down-Sweep Phase of the Work-Efficient Parallel Sum
Scan Algorithm

Details can be found out in the GPU Gems article available online [Harris, Sengupta,
and Owens, 2007]. In the same document one can also find methods suggested by the
authors to optimize the scan for the GPU by taking into account memory bank conflicts,
shared memory and provisions for handling arbitrary array sizes (i.e. where n is not a
power of 2).

NVIDIA released its SpMV library which uses a hybrid storage format for sparse
matrices. It stores the matrices in a ELLpack-COO hybrid format, wherein the rows with
more than a threshold number of non-zero elements are stored in the COO format. The
rows with less than the threshold are stored in ELLPack format. Details can be found in
[Bell and Garland, 2008]. In this extensive study they compare the performance of the
kernels they have developed for the GPU vis− a, − vis other architectures like STI Cell,
and CPUs like Xeon, Opteron etc.

In a recent study by [Monakov and Avetisyan, 2009] they suggest a hybrid use of a
blocked method and the ELL-COO format of the storing the sparse matrix. Then they
perform vector multiply in order to extract more performance on both the fronts. Of
course their method relies on an initial sweep on the matrix to find out the number of
non-zero elements and the decision to divide the matrix into two different formats for
storage. They suggest a dynamic programming approach to calculate optimal selection of
blocks and also an heuristic approach based on greedy block selection.
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The CUDA library can also be enriched with CUDAPP [Harris, Sengupta, Owens,
Tseng, Zhang, and Davidson, 2009] which provides a routine cudppSparseMatrix, for sparse
matrix vector multiply routine which comes in handy when solving through iterative meth-
ods. To use a method the user first declares a Plan in which he/she specifies the input
output arrays, the number of elements etc.

[M. Baskaran and Bordawekar, 2008] demonstrate improvements over the methods
discussed above [Bell and Garland, 2008] [Harris, Sengupta, Owens, Tseng, Zhang, and
Davidson, 2009] by exploiting some of the architectural optimizations to the Sparse Matrix-
Vector Multiplication code. In particular they center the optimization efforts on the
following four points:

• Exploiting Synchronization-Free Parallelism,

• Optimized Thread Mapping,

• Aligned Global Memory Access;

• Data-Reuse.

6.3 Conjugate Gradient

[Georgescu and Okuda, 2007] discuss how conjugate gradient methods could be aligned
to the GPU architecture.They also discuss the problems with precision and implementing
preconditioners to accelerate convergence. In particular they state that for double precision
calculations problems having condition numbers less than 105 may converge and give a
speed-up also. They however warn that above a threshold value of the condition number
the Conjugate Gradient Method will not converge. This last observation relates to the
limited precision available on the GPU.

[Buatois, Caumon, and Levy, 2009] discuss their findings on implementing single prec-
sion iterative solvers on the GPU and show that for Jacobi preconditioning and a limited
number of iterations the GPU is able to provide a solution of comparable accuracy but as
the iterations increase the precision drops in comparision to the CPU.

They use the CG method exploiting some of the techniques like register blocking, vec-
torization and the Block Compressed Row storage(BCRS) to extract parallel performance
on the GPU.

They alike other implementations try to maximize the throughput for the memory
transactions by using 4×4 blocks in the BCRS format. This format later proves benefical
for stripmining operations. Using such an arrangement complemented with the vector
data types available on the GPU (for example float4 that allows storing 4 32-bit floats to
be stored at one index). By making arrays of such aggregate data types one can access
data in chunks thereby saving address calculation. For e.g. in the case of a 4 × 4 block
storage an array of 4 float4’s can be used and accessing all elements is possible with a
single address that of the array.

Further they suggest that individual elements within an aggregate data type could be
allocated to multiple threads and such a pattern could be followed among the other ele-
ments of this 4-float4 element array. Thereby providing speedups in reduction operations.

An important finding that is indicated in their results is that reordering of the type
Cuthill-McKee did not show any influence on the implmentations they executed for the
GPU and the CPU.

6.4 Preconditioning

Techniques that are basically dependent on the Sparse Matrix Vector Multiply discussed
in previous sections have been suggested in literature for accelerating Preconditioning
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Figure 21: Sum reduction on a Scalar architecture with shared Memory

of Iterative Solvers like GMRES and Conjugate Gradient. [Wang, Klie, Parashar, and
Sudan, 2009] use an LU Block Preconditioner, which has poor convergence qualities but is
easier to parallelize, for solving a sparse linear system by the GMRES method. Coefficient

Figure 22: Block ILU preconditioner

matrix A is divided into equal sized sub-matrices which are then locally decomposed using
ILU, as shown in Figure 22. The blocks shown in Figure 21 do not communicate to each
other during the decomposition and also in solving it, this scheme fits well in the data
parallel paradigm. A stream now is a collection of sub-matrices along the main diagonal.

In work published by [Asgasri and Tate, 2009] they discuss how the use of a chebyshev
polynomial based preconditioner could be utilised for achieving speedups in the Conjugate
Gradient method for solvign a linear system. The said preconditioner effectively reduces
the condition number of the coefficinet matrix thereby achieving convergence quickly.
It approximates the inverse of the coefficient matrix with linear combinations of matrix-
valued Chebyshev polynomials. This method uses only matrix multiplication and addition
to compute the approximate inverse of the coefficient matrix, which makes it suitable for
parallel platforms. In the implementation described in the paper, they use linear combi-
nations of the first few chebyshev polynomials to build a preconditioner. The combination
of Chebyshev preconditioner and Krylov subspace linear solver leads to a highly efficient
solver on parallel platforms.
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6.5 Multi-GPU Implementations

For getting better speed-ups in iterative methods for solutions of sparse systems [Cevahir,
Nukada, and Matsuoka, 2009] [Ament, Knittel, Weiskopf, and Straβer, 2010] suggest the
use of multiple GPUs mounted on a single main board. The CPU is responsible for
synchronization and holds the arrays where GPUs read from and write to. In the first
solution a Jagged Diagonal Format for storage of the matrix is employed along with
use of constant cache and texture memory to store the vector used in Matrix-Vector
Multiplication. Some additional padding is required in this method to make the data
access coalesced and this is one of the main reasons cited for the demonstrated speed-
up. The technique employed for solution is a inner-outer iteration based [Golub and
Qiang, 1997] technique where the refinement or outer iteration runs on the CPU and the
computation intensive inner iteration runs on the GPU.

In the second publication a new kind of preconditioner called the Incomplete Poisson
Preconditioner is utilized to achieve speed-up across multiple GPUs. The idea stems from
the inherently serial method of finding the approximation of the inverse of the coefficient
matrix A which will then be used as a preconditioner. Since this method would pull back
any possible speed-up on the GPU a new kind of preconditioner is suggested. Beginning
with an SSOR like preconditioner of the type

M−1 = (I − LD−1)(I −D−1LT ) (236)

where L is the lower triangular part of A and D is the diagonal matrix containing diagonal
elements of A. In turn it can be shown that

M = KKT (237)

where

K = I − LD−1 and KT = I −D−1LT . (238)

Considering a two-dimensional regular discretization and taking the case of an inner
grid cell, the stencil of the i-th row of A is

rowi(A) = (ay−1, ax−1, a, ax+1, ay+1) (239)

= (−1,−1, 4,−1,−1) (240)

Hence, the stencils for L, D−1, and LT

rowi(L) = (−1,−1, 0, 0, 0) (241)

rowi(D
−1) = (0, 0, 0.25, 0, 0) (242)

rowi(L
T ) = (0, 0, 0,−1,−1) (243)

In the next step, after performing the operations for (238).

rowi(K) = (0.25, 0.25, 1, 0, 0) (244)

rowi(K
T ) = (0, 0, 1, 0.25, 0.25) (245)

The final step is the matrix-matrix product KKT , which is the multiplication of a lower
and an upper triangular matrix. Each of the 3 coefficients in rowi(K) hits 3 coefficients in
KT but in different columns. The interleaved arrangement in such a row-column product
introduces new non-zero coefficients in the result. The stencil of the inverse increases to

rowi(M
−1) = (my−1,mx+1,y−1,mx−1,m,mx+1,mx−1,y+1,my+1) (246)

= (0.25, 0.0625, 0.25, 1.125, 0.25, 0.0625, 0.25) (247)
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Without going into too much detail here, the stencil enlarges to up to 13 non-zero elements
in three dimensions for each row, which would almost double the computational effort in a
matrix-vector product compared to the 7-point stencil in the original matrix. By looking
again at the coefficients in rowi(M

−1) it can be observed that the additional non-zero
values and are rather small compared to the rest of the coefficients. Furthermore, this
nice property remains true in three dimensions, so they use an incomplete stencil assuming
that these small coefficients only have a minor influence on the condition. They set them
to zero and obtain the following 5-point stencil in two dimensions

rowi(M
−1) = (0.25, 0, 0.25, 1.125, 0.25, 0, 0.25) (248)

Another important property of the incomplete formulation is the fact that symmetry is still
preserved as the cancellation always affects two pair-wise symmetric coefficients namely

(mx+1,y−1,mx−1,y+1) (249)

in two dimensions and

(mx+1,z−1,mx−1,z+1)(mx+1,y−1,mx−1,y+1)(my+1,z−1,my−1,z+1) (250)

in three dimensions. From this it follows that the CG method still converges and hence the
IncompletePoisson (IP) preconditioner. By calculating the product AM−1 and compar-
ing the element-wise distance of this product with the Identity Matrix they further show
that this preconditioner effectively reduces the condition number of the resulting matrix.

7 Research Questions

In this section we briefly outline what would be the main focus of the implementation
phase of this work. Many of the techniques already explored for Iterative Mehtods will be
used to find out their suitability for the GPU. At the same time we will contribute to the
exisiting research for GPU based solutions by providing results on Deflation Method.

7.1 Conjugate Gradient on GPU vs CPU

It is possible to use FFT based solution of the Conjugate Gradient but it requires constant
coefficient matrix which is not what we have in Bubbly Flow Problems. However some
possibilities exist??? for which this method could also be explored as FFTs are very well
optimized (CUFFT for CUDA) for the GPU. Using FISHpack for FFTs performance could
be compared with CUFFT library on the GPU.

7.2 Preconditioning Approaches

7.2.1 Preconditioned Conjugate Gradient on GPU vs CPU

In case of block preconditioners [Vuik and Frank, 2001] suggest that increasing the num-
ber of blocks leads to reduction in convergence. However an application of a Coarse-Grid
Correction a.k.a Deflation using domain decomposition can result in accleration of conver-
gence. A question could be the choice of the number of blocks and the number of domains
and how do they map to the processors available on the GPU.

7.2.2 Diagonal

It is expected and also discussed in previous work that this kind of preconditioners are
easy to parallelize, statistics will be reported for our method also.
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7.2.3 IC(0)

Incomplete Cholesky based preconditioners are the first choice when looking for an effective
preconditioner. However after evaluating the effectiveness of such a method a possible
direction could be to test out the variants discussed earlier in section 3.4.

7.2.4 MultiGrid

[Feng and Li, 2008] utilise a geometric multi-grid method and show impressive speed-up
by dividing the workload amongst the GPU and the CPU. [Göddeke, Strzodka, Mohd-
Yusof, McCormick, Wobker, Becker, and Turek, 2008] bring out the requirements for
cocde modification when considering GPUs or other multi-core platforms for acceleration
of Multi-Grid Solvers.

7.2.5 IP Preconditioning

The Incomplete Posisson Preconditioner can also be tried along with Deflation to see if
the convergence benefits from both of them and if yes, then how much.

7.3 Deflation Approaches

7.3.1 Deflated PCG on GPU vs CPU

SubDomain Deflation applied to a preconditioned Conjugate Gradient would be one of
the things this work would be contributing uniquely. Also the application of Bubbly flows
will be evaluated for this particular method of obtaining a solution.

7.3.2 DPCG on Many GPUs

Taking the cue form earlier works discussed in the previous section it would be beenficial
to predict/test out the implementation of the solution we propose on a cluster of GPUs.

7.4 Precision Statistics

First we will experiment with the Single Precision floating point available on the GPU to
see how much it affects convergence. A next step could be to see how Conjugate Gradient
with deflation performs when mixed precision strategies are used. The performance will be
reported both on the rate of convergence and with speed-ups over CPU and single-precision
GPU code.

8 Preliminary Results

8.1 Conjugate Gradient - Basic Version

As a first step we have implemented CG on the GPU. We have tried with three different
storage formats namely the CSR, DIA and Matrix-Free Format.

In this version we have largely relied on cublas and texture cache based(for CSR and
DIA) optimizations. The CPU versions are in double precision and GPU versions in single
precision arithmetic.

We get a speed-up of around 6 times but we expect to get even higher speedups by
use of chare memory and improvements in memory access patterns.
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Figure 23: Conjugate Gradient on GPU vs CPU
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