
Mathematical Modelling of a Pulse

Combustor of the Helmholtz-type

P.A. van Heerbeek

August 2008

Delft University of Technology

Faculty of Electrical Engineering, Mathematics and Computer Science

Delft Institute of Applied Mathematics

Mathematical Modelling of a Pulse Combustor of

the Helmholtz-type

A thesis submitted to the

Delft Institute of Applied Mathematics

in partial fulfillment of the requirements

for the degree

MASTER OF SCIENCE

in

APPLIED MATHEMATICS

by

PIETER ANTHON VAN HEERBEEK

Delft, the Netherlands

August 2008

Copyright c© 2008 by Pieter Anthon van Heerbeek. All rights reserved.

MSc THESIS APPLIED MATHEMATICS

“Mathematical Modelling of a Pulse Combustor of the Helmholtz-type”

PIETER ANTHON VAN HEERBEEK

Delft University of Technology

Daily supervisor Responsible professor

Dr.ir. M.B. van Gijzen Prof. dr.ir. C. Vuik

Other thesis committee members

Ir. M.R. de la Fonteijne Ir. H.F.M. Corstens

August 2008 Delft, the Netherlands

Contact information

Delft University of Technology

P.A. van Heerbeek

Delft University of Technology
Delft Institute of Applied Mathematics
Mekelweg 4 (Room HB07.030)
2628 CD Delft
The Netherlands

E-mail: P.A.vanHeerbeek@student.tudelft.nl

Ir. M.R. de la Fonteijne

DLF Sustainable
P.O. Box 1077
2600 BB Delft
The Netherlands

Mobile: +31 621885101
E-mail: marcel@dlfsustainable.nl
Web-site: www.dlfsustainable.nl

Mathematical modelling of a pulse

combustor of the Helmholtz-type

Preface

This report is my Master’s thesis for the study “Applied Mathematics” at the
Delft University of Technology (TU Delft). The project is conducted in collabo-
ration with DLF Sustainable and aims at developing mathematical tools to aid
in the design of pulse combustors and to gain insight into the physical processes
that make them work (or not).

At the start of the research project, DLF Sustainable was already involved
in a joint research project on pulse combustion with the Eindhoven University
of Technology (TU Eindhoven). A small pulse combustor has been made avail-
able for experimenting (see Figure 1a). The pulse combustor is much simpler
in design than the industrial pulse combustors of interest to DLF Sustainable
(see Figure 1b), but the working principles are basically the same. Experi-
mental research with the pulse combustor at the TU Eindhoven can be use-
ful for validation of a mathematical model. Research at the TU Eindhoven
is mainly progressed via Bachelor’s thesis projects, which are concentrated on
zero-dimensional models of pulse combustors from literature. I have taken note
of two Bachelor’s theses on pulse combustion [31,33], produced at the TU Eind-
hoven. They will be mentioned at the appropriate places in this report.

Pieter van Heerbeek,
August 2008, Delft.

(a) Small pulse combustor at TUE (b) An advanced pulse combustor

Figure 1: Two pulse combustors: (a) a small pulse combustor made available
for experimenting at the TU Eindhoven (TUE), photo (a) is from Tiemessen
and Bastiaans [31]; (b) an advanced pulse combustor.

ix

x

DLF Sustainable is a specialist in the field of thermodynamics, with a focus on
sustainable energy generation and energy saving in an industrial environment.
Keywords are: biomass gasification, pyrolysis, CHP, solar power, PV, cogen.

Because pulse combustion can have a positive impact on reducing environ-
mental emission, DLF Sustainable asked Pieter van Heerbeek to investigate
pulse combustion from a theoretical point of view. In this study Pieter van
Heerbeek examined thoroughly several models from literature, in order to be
capable of defining goals for the second part of his Master’s thesis. This re-
sulted in several corrections of models shown in literature, the results of which
are presented in a poster session on the Combura 2007 symposium at NBC in
Nieuwegein (Holland) on the 10th of October 2007.

In this second part, the steady-state points were examined in more detail
in relation to stable pulse combustion. He showed under which circumstances
pulse combustion will occur. This resulted in a poster presentation at the ECMI
conference in July 2008 and an article to be published.

Pieter showed himself to be a nice and intelligent person with a high level
of integrity. I am very pleased to see the enthusiasm of Pieter doing this study
and I appreciate his sound working attitude.

Thanks Pieter, I wish you all the best with your future plans.

Marcel de la Fonteijne,
DLF Sustainable.

Contents

1 Introduction 1

1.1 Background and motivation . 1
1.2 Objective and outline . 2

2 Working principles of pulse combustion 5

2.1 A typical pulse combustion cycle 5
2.2 Rayleigh’s criterion . 6

2.2.1 A heuristic explanation 7
2.2.2 A mathematical formulation 8

3 A model suggested by Kilicarslan 11

3.1 Nomenclature . 12
3.2 Derivation of model equations . 13

3.2.1 Conservation of energy . 14
3.2.2 Mass flow rate into combustion chamber 15
3.2.3 Coupling to tailpipe dynamics by conservation of momen-

tum . 16
3.2.4 Complete set of model equations 16

3.3 Prediction of frequency of pulse combustion 17
3.4 Comments on the mathematical model 17

3.4.1 Damping effects . 17
3.4.2 Using Rayleigh’s criterion to explain damping effect . . . 18

3.5 Numerical implementation and experiments 18
3.6 Conclusions . 21

4 A model suggested by Ahrens, et al 23

4.1 Nomenclature . 24
4.2 Derivation of model equations . 24

4.2.1 Conservation of energy . 25
4.2.2 Rate of heat release . 26
4.2.3 Mass of reactants in combustion chamber 26
4.2.4 Mass flow rate into combustion chamber 27
4.2.5 Coupling to tailpipe dynamics by conservation of momen-

tum . 27
4.2.6 Complete set of model equations 28

4.3 Prediction of frequency of pulse combustion 29
4.4 Searching for a stable oscillation 29

4.4.1 No accumulation/depletion of reactants 30

xi

xii CONTENTS

4.4.2 Zero mean pressure . 31

4.4.3 Combining the two stability criteria 33

4.5 Comments on the mathematical model 33

4.5.1 Damping effects . 34

4.5.2 Requirement of presence of reactants in combustion cham-
ber and burning rate modelling 35

4.5.3 Conditions for oscillatory solutions 36

4.6 Numerical implementation and experiments 36

4.7 Conclusions . 40

5 A model suggested by Richards, et al 43

5.1 Nomenclature . 44

5.2 Derivation of model equations . 45

5.2.1 Conservation of energy . 46

5.2.2 Conservation of mass . 49

5.2.3 Introducing dimensionless state variables and characteris-
tic times . 49

5.2.4 Rate of heat release and mass fractions in combustion
chamber . 50

5.2.5 Coupling to tailpipe dynamics by conservation of momen-
tum . 53

5.2.6 Complete set of model equations 54

5.3 Numerical implementation . 56

5.3.1 Rewriting the model equations 56

5.3.2 Specifying model parameters and initial conditions 59

5.4 Numerical results and discussion 63

5.4.1 Steady combustion, oscillatory combustion, and flame ex-
tinction . 64

5.4.2 Influence of the heat transfer coefficient 68

5.4.3 Influence of the friction coefficient 69

5.4.4 Influence of the tailpipe length 72

5.4.5 Influence of the flow time 74

5.4.6 Influence of microscale mixing 76

5.5 Steady-state solutions and their stability 80

5.5.1 Stability theory; application to model equations 80

5.5.2 Computation of the critical points 82

5.5.3 Computation of the Jacobian matrices 86

5.5.4 Results from stability analysis 91

5.6 Comment on related literature 103

5.7 Conclusions . 104

6 Conclusions and suggestions for future research 107

A Matlab codes model Kilicarslan 115

A.1 Numerical implementation . 116

A.2 Generating data for graphs . 120

A.3 Plotting graphs . 122

CONTENTS xiii

B Matlab codes model Ahrens, et al 125

B.1 Numerical implementation . 126
B.2 Generating data for graphs . 130
B.3 Plotting graphs . 133

C Matlab codes model Richards, et al 139

C.1 Numerical implementation . 140
C.2 Generating data for graphs . 145
C.3 Calculating amplitudes and frequencies 151
C.4 Plotting graphs . 156

D Matlab codes auxiliary functions 169

D.1 Adjusting model parameter structure 169

xiv CONTENTS

Chapter 1

Introduction

1.1 Background and motivation

The company DLF Sustainable in Delft is a specialist in the field of thermo-
dynamic applications. Examples of industrial applications are: gas fired instal-
lations (for direct or indirect heat generation, central heating boilers), dryers
(for feed stock, industrial sewage/sludge), incinerators (for hazardous waste,
thermal oxidation of gases/fluids/solids) and gasifiers (for biomass gasification).
This list is by no means exhaustive.

During years of experience in the field and doing research, DLF Sustainable
has developed an advanced pulse combustor for industrial applications such as
mentioned above (see Figure 1.1). Compared to conventional (steady flow) com-
bustion systems, this type of combustor can achieve production increases as high
as 40%, and fuel savings of 10–50%, depending on the application. Also, it pro-
duces very low emissions of harmful substances. These advantages are typical of
pulse combustors and can be related to the generation of intense oscillatory fluid
motions (sound waves) in the combustion system, which is a fundamental part
of the operating conditions. The high-intensity sound waves cause enhanced
heat and mass transfer, higher combustion intensities, lower emissions of nitro-
gen oxides (NOx) and higher thermal efficiencies, all by a considerable factor of
magnitude compared to conventional combustion systems [9,10,14,16,22]. Also,
usually pulse combustors provide their own means for pumping fuel and air, ob-
viating the need for extra devices such as fans or a chimney. This may lead
to more compact designs. The mentioned advantages make pulse combustion a
practically, economically and environmentally attractive technique for burning
and heating applications.

There are disadvantages to pulse combustion. First, the process is inherently
noisy. At higher frequencies this is not a major obstacle, since the sound and
associated vibrations can then be damped by conventional methods of isolation.
And sometimes the sound generated is a plus. For example in drying applica-
tions, where sound induced oscillations in a drying chamber not only increase
the drying rates, but also prevent depositing of substances on the walls. A more
serious problem results from the highly coupled physical and chemical processes
in a working pulse combustor, such as the interaction between (turbulent) com-
bustion and the system’s acoustics. These interactions cause problems when

1

2 CHAPTER 1. INTRODUCTION

(a) Advanced pulse combustor in action (b) Close-up of pulse combustor

Figure 1.1: A gas-fired pulse combustor with a secondary burner. (a) The
pulse combustor in operation, the eight tailpipes are glowing. In the secondary
burner, pulverized brown coal is ignited by a flame from the pulse combustor’s
aerovalve. (b) A close-up of the pulse combustor, showing the gas supply at the
front, and a flame from the aerovalve entering the secondary burner.

trying to scale up or improve upon a working design. Adjusting the geometry
of the pulse combustor may produce the desired effect, but sometimes it may
be detrimental to the system’s performance instead. Therefore, improvement of
a design is mainly a process by trial-and-error.

To aid in the design of pulse combustors and to get a better understanding
of the fundamental physical processes that govern the pulse combustion phe-
nomenon, a mathematical model capturing the most important aspects of pulse
combustion is desired. The work reported here is a preparing step for research
aimed at developing such a mathematical model.

1.2 Objective and outline

The goal of this work is (a) to describe the physics behind three simple models
for pulse combustion and to present their mathematical formulation, and (b) to
determine conditions under which these models can describe stable operation of
a pulse combustor.

The three models are lumped parameter models: physical processes are mod-
elled by spatial averaging. In this way, modelling of the details of the pulse
combustion process is avoided, while one tries to retain the most important
characteristics.

This report is organized in the following way. The basic principles of pulse
combustion operation are described in Chapter 2. Of special interest is the
Rayleigh criterion. It is a condition under which periodic heat release may
drive acoustic oscillations, which is a fundamental part of the pulse combustion
process. In each of the Chapters 3–5, one simple mathematical model from
literature is described and analyzed in detail. Conclusions of the study of these
models are presented at the end of the relevant chapters. In Chapter 3 a model
presented by Kilicarslan [17] is discussed. Shortcomings of this model to describe
a pulse combustion process were reason to study the model of Ahrens et al. [2],

1.2. OBJECTIVE AND OUTLINE 3

that provided the basis for Kilicarslan’s model. The model of Ahrens et al.
is discussed in Chapter 4. The mathematical model of Richards et al. [25]
is the third model that was studied. It includes physical processes that were
neglected in the other two models; it is described in Chapter 5. Finally, in
Chapter 6 overall conclusions are presented, and suggestions for future research
are given. suggested. Computational analysis of the three models was performed
using Matlab [29] software. The codes that were used, can be found in the
appendices.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Working principles of pulse
combustion

The principles of operation of a pulse combustor are based on a coupling be-
tween intermittent (pulse) combustion and (resonant) acoustics in the burner
system. The interaction of the system’s acoustics with the combustion process
(e.g. fuel supply, mixing processes, reaction rates, etc.) is such that the resulting
intermittent combustion process feeds energy into the acoustical oscillations.

Although the acoustical oscillations in a pulse combustor are obviously driven
by the combustion process, the term ‘combustion-driven oscillations’ is gener-
ally associated with disturbances (instabilities) of a steady combustion process.
Putnam et al. [22] distinguished between combustion-driven oscillations, which
may be harmful in devices designed for steady combustion, and pulse combus-
tion, where oscillations are deliberately stimulated in order to obtain increased
mixing rates, higher heat transfer rates, etc. A condition under which unsteady
combustion may drive pressure waves, that is often mentioned in the study of
combustion instabilities, is Rayleigh’s criterion. It will be discussed below, after
describing the operation of a typical pulse combustor.

2.1 A typical pulse combustion cycle

Figure 2.1 depicts an idealized cycle of operation of a pulse combustor with
an aerodynamic valve (or, aerovalve). In the first stage of the cycle (1), a
combustible mixture in the combustion chamber ignites, and a burning region
expands, driving gases into the tailpipe (to the right) and through the aerovalve
(to the left). In the second stage of the cycle (2), when most of the fuel has been
consumed, the gases continue their motion due to inertia, thereby lowering the
pressure in the combustion chamber. Eventually, the pressure in the combustion
chamber falls below atmospheric pressure. Then the third phase of the cycle
starts (3). Fresh air (and fuel) enter the combustion chamber, following the
remnant of combustion products from the aerovalve. Due to inertia, the flow in
the tailpipe takes longer to slow down and it may reverse its direction at a later
moment. In the last stage of the cycle (4), inertia of the gases flowing toward
the combustion chamber cause the pressure to rise above the ambient pressure.
Then, the cycle is started anew with the ignition of the combustible mixture.

5

6 CHAPTER 2. WORKING PRINCIPLES OF PULSE COMBUSTION

1. Ignition and combustion

2. Expansion

3. Purging and recharging

4. Recharging and

compression

Figure 2.1: An idealized (aerovalved) pulse combustion cycle (adapted from
Putnam et al. [22]). With a flapper valve, the flow in the direction of the valve
is completely blocked during the expansion phase.

The exact ignition mechanism is not clear; it may be caused by flame remnants,
contact with hot combustion products, or a hot-spot in the combustion chamber.

There are many different types of pulse combustors. A pulse combustor can
be mechanically valved (e.g., it may be equipped with flapper valves or with
reed valves), or aerodynamically valved. In case of mechanical valves, back flow
through the valve is prevented: flow through the valves only occurs in stages
3 and 4 of Figure 2.1. Also, an aerovalve may be designed to greatly resist
back flow, acting somewhat like a badly leaking flapper valve. There is a great
variety in the geometry of pulse combustors, too. Typical examples are pulse
combustors of the Helmholtz-type, the Schmidt (or, quarter-wave) type, and
the Rijke-type. The pulse combustor sketched in Figure 2.1 is of the Helmholtz-
type: a volume (the combustion chamber) acts like a Helmholtz resonator on
the tailpipe gases. A Schmidt-type pulse combustor typically consists of a tube
closed at one end (where combustion takes place) and open at the other end;
it acts like a quarter-wave tube. In a Rijke-type pulse combustor, combustion
takes place in the lower half of a vertical tube, acting like a Rijke-tube. In
this configuration, the combustion process is typically enhanced by (acoustical)
velocity fluctuations. Other configurations are possible. In a review article
on pulse combustion, Putnam et al. [22] provide a historic overview of pulse
combustor designs, and describe the operating characteristics of mechanically
valved and aerovalved pulse combustors.

2.2 Rayleigh’s criterion

A pulse combustor can be viewed as a harmonic resonator used to store acousti-
cal energy. Moments of low pressure are used for refueling, while periodic com-
bustion sustains the acoustical oscillations by feeding energy to the resonator.
A widely used condition under which periodic heat release (e.g. by combustion)

2.2. RAYLEIGH’S CRITERION 7

can sustain acoustical oscillations, is Rayleigh’s criterion. In short, it states
that acoustical oscillations are stimulated when heat is released in phase with
the pressure variations, while the oscillations are damped when heat is released
out of phase.

In 1878, Rayleigh [23] formulated it as follows:

“If heat be periodically communicated to, and abstracted from, a
mass of air vibrating (for example) in a cylinder bounded by a piston,
the effect produced will depend upon the phase of the vibration at
which the heat transfer takes place. If heat be given to the air at the
moment of greatest condensation, or taken from it at the moment
of greatest rarefaction, the vibration is encouraged. On the other
hand, if heat be given at the moment of greatest rarefaction, or
abstracted at the moment of greatest condensation, the vibration is
discouraged.”

He also noted that the frequency can be changed, depending on the phase of
heat release:

“If the air be at its normal density at the moment when the transfer
of heat takes place, the vibration is neither encouraged nor discour-
aged, but the pitch is altered. Thus the pitch is raised, if heat be
communicated a quarter period before the phase of greatest con-
densation, and the pitch is lowered if the heat be communicated a
quarter period after the phase of greatest condensation.”

Rayleigh remarked that in general heat release produces both kinds of effects.
He went on to illustrate the principle by successfully applying it to explain
certain acoustical phenomena.

2.2.1 A heuristic explanation

Intuitively, Rayleigh’s criterion is easily understood. For example, consider a
volume of air vibrating in a surrounding fluid. Energy of condensation of the
volume (i.e. its potential energy) and kinetic energy of the surroundings are
exchanged through work performed on the boundaries of the volume. Heat
addition will cause the volume of air to expand, obtaining a new equilibrium
volume. When heat is added to the volume at a moment of condensation, the
action of the volume of air is supported in converting potential energy into
kinetic energy (or vice versa), and the vibration is encouraged. On the other
hand, when heat is added at a moment of rarefaction, the action of the volume
of air on the surroundings is counteracted, and the vibration is discouraged. The
greater the pressure difference of the volume and the surroundings, the more
work is done per unit of expansion. Thus, the effect of heat addition is greater
if the condensation is greater. When the volume of air is at its equilibrium
pressure, it is not doing any work on the surroundings, and heat addition will
neither encourage nor discourage the vibration.

The effect of (periodic) heat release on the frequency of the vibration can
be understood intuitively, too. If heat is added before the moment of greatest
condensation, the induced expansion works against the compression by the sur-
roundings, and the state of greatest condensation is reached sooner. Therefore,

8 CHAPTER 2. WORKING PRINCIPLES OF PULSE COMBUSTION

the frequency is increased. If heat is added after the moment of greatest conden-
sation, the induced expansion works with the expansion by the surroundings,
and the state of greatest rarefaction is reached later. Therefore, the frequency
is decreased.

2.2.2 A mathematical formulation

An often used mathematical formulation of the Rayleigh criterion for mainte-
nance of oscillations is

∫ TP

0

∫

V

p′Q′ dV dt > 0, (2.1)

where the product of the pressure fluctuations p′ and the fluctuations in heat
release Q′ is integrated over the volume V and the time interval [0, TP], with TP a
period of oscillation. It can be viewed as an expression of the heuristic argument
put forward in the previous subsection. More generally, in order for the heat
release to provide the oscillations with sufficient energy to overcome energy
losses, the integral on the left-hand side should be great enough to overcome
the sum of the energy losses (

∑
i Li) occurring in the volume over a period of

oscillation:

γ − 1

γp0

∫ TP

0

∫

V

p′Q′ dV dt >
∑

i

Li. (2.2)

The factor γ−1
γp0

is introduced in anticipation of analysis later in this chapter;
it cannot be missed for dimensional reasons. Energy losses may be associated
with viscous dissipation, heat conduction, energy fluxes through the boundary
of the volume, etc. This is a generalized version of the Rayleigh criterion.

In an article on the energy transfer to small disturbances in fluid flow, Chu [6]
has provided a foundation for expressions like (2.1) and (2.2), quantifying the
conditions under which heat release encourages fluctuations in fluid flow. In
this report, no quantification of the Rayleigh criterion is used, therefore the
article of Chu will not be discussed at length here. However, to illustrate how
the Rayleigh criterion may appear from the general equations of fluid motion,
a simplified derivation may be insightful. Such a derivation will be considered
next. For details on the derivation, see the paper by Chu [6].

Consider a uniform homogeneous perfect gas at rest: its state may be ex-
pressed by velocity u0 = 0, pressure p = p0, density ρ = ρ0 and temperature
T = T0, all constant. Assume that the specific heats for constant pressure
cp and constant volume cv are constant, and that effects of viscosity and heat
conduction may be neglected. Now introduce some small heat release Q′, and
associated small disturbances in velocity (u′), pressure (p′), density (ρ′), and
temperature (T ′). The disturbances are considered small if: |u′|/c0 ≪ 1 (with
c0 the speed of sound of the undisturbed fluidum), |p′/p0| ≪ 1, |ρ′/ρ0| ≪ 1, and
|T ′/T0| ≪ 1. Now, substitution of p = p0 + p′, u = u0 + u′, etc., in the con-
tinuity equation, the momentum equation, the energy equation, and the state
equation, and neglecting cross-products of fluctuations, leads to the following

2.2. RAYLEIGH’S CRITERION 9

equations for the disturbances in the fluid flow:

∂ρ′

∂t
+ ρ0∇ · u′ = 0, (continuity) (2.3)

ρ0
∂u′

∂t
= −∇p′, (momentum) (2.4)

ρ0cv
∂T ′

∂t
+ p0∇ · u′ = Q′, (energy) (2.5)

T ′

T0
+

ρ′

ρ0
=

p′

p0
. (state) (2.6)

To see how the heat release Q′ drives the pressure disturbances, substitute T ′

from the state equation (2.6) into the energy equation (2.5), and then write the
time-derivative of ρ′ in terms of the rate of expansion (∇·u′) using the continuity
equation (2.3). Using γ = cp/cv and the perfect gas properties p0 = Rρ0T0 and
R = cp − cv, with R the gas constant, this gives

1

γp0

∂p′

∂t
+ ∇ · u′ =

Q′

cpρ0T0
. (2.7)

Differentiating this equation with respect to time, and eliminating the time
derivative of the rate of expansion (∂

∂t∇ · u′) by substitution of the momentum
equation (2.4) after taking the divergence, leads to

∂2p′

∂t2
− c2

0∇2p′ = (γ − 1)
∂Q′

∂t
, (2.8)

where the relation c2
0 = γp0/ρ0 for speed of sound has been used. This is an

inhomogeneous wave equation, with the time-derivative of the heat release rate
as source term.

An expression for the acoustic energy can be derived from the momentum
equation equation (2.4) and equation (2.7), leading to a quantification of the
Rayleigh criterion. Adding the product of p′ and equation (2.7) to the inner
product of u′ and equation (2.4), and using ρ0c

2
0 = γp0 and 1

cpρ0T0
= γ−1

γp0
,

yields
∂

∂t

[
1

2

p′2

ρ0c2
0

+
1

2
ρ0u

′ · u′
]

+ ∇ · (p′u′) =
γ − 1

γp0
p′Q′. (2.9)

This is an equation for the acoustic energy: the two terms in the square brackets
are the energy associated with compression (first term, a potential energy) and
the kinetic energy (second term), and the divergence on left-hand side expresses
the flux of acoustic energy. The right-hand side shows a source term for the
production of acoustic energy. Integrated over a volume V with boundary S
and a period of oscillation [0, TP], this equation provides a quantification of
Rayleigh’s criterion: in order for the acoustic disturbances to be maintained,
the relation between the pressure fluctuations p′ and heat release Q′ should
satisfy the inequality

γ − 1

γp0

∫ TP

0

∫

V

p′Q′ dV dt >

∫ TP

0

∫

S

p′u′ · n dS dt, (2.10)

where n denotes the outwardly directed normal on the surface S. To convert
the volume integral of the divergence to the surface integral, Gauss’ theorem
has been used.

10 CHAPTER 2. WORKING PRINCIPLES OF PULSE COMBUSTION

In his article, Chu [6] included viscous and heat conduction terms, source
terms for mass and heat, and body forces. Taking the fluxes across the boundary
of the volume of interest equal to zero, he derived an expression that generalizes
the acoustic energy of the fluctuations to an expression including the fluctuations
in entropy. If heat conduction can be neglected, and without mass sources and
body forces, his expression for the rate of change of the energy of fluctuations
splits into two distinct expressions:

∂

∂t

∫

V

[
1

2

p′2

ρ0c2
0

+
1

2
ρ0u

′ · u′
]

dV =
(γ − 1)

γp0

∫

V

p′Q′ dV −
∫

V

Φ′ dV, (2.11)

where Φ′ is a viscous dissipation term, and

∂

∂t

∫

V

[
1

2

(γ − 1)

γ
p0

(
S′

R

)2
]

dV =
1

cp

∫

V

S′Q′ dV, (2.12)

where S′ is the fluctuation in entropy. The last equation can be obtained di-
rectly from the energy equation if it is expressed in terms of entropy instead of
temperature: ρ0T0

∂S′

∂t = Q′. Based on equation (2.11), the Rayleigh criterion
may be expressed as

∫ TP

0

∫

V

p′Q′ dV dt >
γp0

(γ − 1)

∫ TP

0

∫

V

Φ′ dV dt, (2.13)

but equation (2.12) shows that the Rayleigh criterion does not tell the whole
story. If heat is released in phase with the entropy fluctuations, the flow may
become unstable, even without any pressure fluctuations. If heat conduction
cannot be neglected, the contributions of source terms to the energy of fluctua-
tions cannot be split into an acoustical part and an entropic part, as was done
with (2.11) and (2.12).

Further, Chu [6] applied the theory of the energy of fluctuations to study
transfer of energy from a steady main stream, with extra source terms derived
from the main stream. He then discussed the special case of a two-dimensional
parallel shear flow as main stream, showing the work done by the Reynolds stress
and the transport of entropy spottiness across the temperature shear layers as
production terms of the energy of fluctuations.

In a closely related article, Nicoud and Poinsot [20] first derived an exact
nonlinear equation, similar to the equation for the energy of fluctuations. From
this, they derived an equation for the energy of fluctuations by linearization.
They mentioned an extra production term for the energy of fluctuations, that
appears to be missing in the derivation by Chu: − p0

RCp
S′u′ · ∇S0, where S0 is

the entropy of the mean flow. After an estimation of the order of magnitude
of the extra term, they noted that it may be larger that the classic Rayleigh
term. They concluded that for the investigation of combustion instabilities, the
energy of fluctuations should be used instead of Rayleigh’s criterion.

Chapter 3

A model suggested by
Kilicarslan

Note: In a Bachelor’s thesis project at the Eindhoven University of Tech-
nology, Tiemessen and Bastiaans [31] adjusted the model of Kilicarslan
[17], which is discussed in this chapter, with the purpose of predicting the
frequency of an experimental aerovalved pulse combustor. This report
was studied, but the discussion in this chapter focuses only on the work
presented by Kilicarslan.

In this chapter a zero-dimensional model for a gas-fired flapper-valved pulse
combustor of the Helmholtz-type, presented in an article by Kilicarslan [17],
will be examined. Figure 3.1 shows a schematic of the modelled pulse com-
bustor. In the model, the combustion chamber is taken as control volume and
an energy balance for this control volume is formulated. The amount of en-
ergy in the control volume is changed by reactants mixture entering the control
volume, by combustion inside the control volume and by products leaving the
control volume via the tailpipe. The inflow of reactants mixture is modelled
by quasi-steady flow orifice equations and depends upon the pressure difference
between the combustion chamber pressure and the supply pressure (assumed to
be atmospheric). The tailpipe flow is modelled as a plug flow, i.e., of constant
density and solely driven by the pressure difference over the tailpipe. The heat
release by combustion is assumed to be equal to the heat of combustion of the
reactants mixture entering the combustion chamber. No energy losses, e.g., by
viscous effects or heat transfer, are modelled. The gases are assumed to be per-
fect. The specific heats of the reactants entering the combustion chamber, of
the gases inside it, and of the products leaving it to the tailpipe, are assumed
to be constant and all equal. Apparently, some kind of average value is used.
This is also assumed for the gas constants of the reactants, the products, and
the mixture inside the combustion chamber.

From the mathematical model, Kilicarslan derived a frequency of operation
for the pulse combustor. In the article, the theoretical frequency of operation
is compared to experimental results with a tunable pulse combustor. In the
experiments, the tailpipe length, tailpipe diameter, combustion chamber volume
and supply pressure were varied.

Below, the derivation of the mathematical model of Kilicarslan is given,

11

12 CHAPTER 3. A MODEL SUGGESTED BY KILICARSLAN

Figure 3.1: A schematic of the modelled gas-fired pulse combustor. (1) Mixer
head, (2) combustion chamber, (3) tailpipe, (4) air supply, (5) gas supply, (6,7)
flapper valves. The figure is taken from the article by Kilicarslan [17].

largely following Kilicarslan’s presentation in [17]. The nomenclature is changed
to ease the comparison with the other models examined in this report. As
will be seen, the model for the heat release implies a timing of heat release
such that the oscillatory motions necessary for pulse combustion operation are
damped. Therefore, this model is not a proper description of a working pulse
combustor. In the derivation of the theoretical frequency, Kilicarslan assumed
that the damping that results from the (incorrect) modelling of the heat release
is negligible. The fact that the Rayleigh criterion is not satisfied, which is an
indication that the model does not correctly describe a pulse combustion process,
manifests itself in the (neglected) damping term. This may be the reason why
the incorrect modelling of the heat release has gone unnoticed.

3.1 Nomenclature

Roman symbols

A–C Auxiliary constants, see (3.18)–(3.20)
Atp Area of tailpipe cross-section [m2]
Av Effective flow area air/gas valve [m2]
CD Discharge coefficient of valve [−]
cp Specific heat for constant pressure [J/kg K]
cv Specific heat for constant volume [J/kg K]
e Specific internal energy [J/kg]
E Total energy [J]
f Frequency [Hz]
F Auxiliary function, see (3.21)
h Specific enthalpy [J/kg]
kg Gas valve parameter [kg1/2 m1/2]
Ltp Tailpipe length [m]
ṁ Mass flux [kg/s]

Continued on next page

3.2. DERIVATION OF MODEL EQUATIONS 13

Roman symbols, continued

p Gauge pressure (in combustion chamber) [Pa]
P Pressure (in combustion chamber) [Pa]

Q̇ Rate of heat release [J/s]
r Air-fuel mass ratio [−]
R Specific gas constant [J/kg K]
t Time [s]
T Temperature [K]
V Volume [m3]

Greek symbols

∆Hf Heat of combustion per unit fuel mass [J/kg]
γ Ratio of specific heats, = cp/cv [−]
ω0 Angular frequency [rad/s]
ρ Density [kg/m3]

Subscripts

0 initial/standard/ambient value
a air (oxidizer)
cc combustion chamber
e exit combustion chamber/entrance tailpipe
g gas (fuel)
p products (burnt reactants)
r reactants (fuel and oxidizer)
tp tailpipe

3.2 Derivation of model equations

The combustion chamber is chosen as a control volume. See Figure 3.2 for a
schematic of the control volume and sign conventions. Reactants entering the
combustion chamber consist of premixed air and gas with a constant air-fuel
ratio r (on mass basis). All reactants are assumed to be converted to products by
combustion. The products leave the combustion chamber through the tailpipe.

The gases are assumed to be perfect, i.e., (i) they obey the ideal gas law:

P = ρRT, (3.1)

where P is the pressure, ρ the density, R the specific gas constant and T the
temperature of the gas, and (ii) the ratio of specific heats, γ, is constant:

γ =
cp

cv
= constant, (3.2)

where cp and cv are the specific heat for constant pressure and volume, respec-
tively. Since the molecular weight is constant the specific gas constant does not
vary in absence of chemical reaction. In that case the specific heats are both
constant and the specific internal energy and specific enthalpy can be written
as

e = cvT, (3.3)

14 CHAPTER 3. A MODEL SUGGESTED BY KILICARSLAN

ṁa

ṁg

ṁr ṁe

Vcc

∗ P0P

Ltp

Figure 3.2: Control volume (i.e., the combustion chamber, with volume Vcc) of
the modelled pulse combustor, with sign conventions and (some) model param-
eters. The values of the mass fluxes ṁg, ṁa, ṁr and ṁe are taken positive in
the directions indicated. Mixing of gas and air takes place in the mixer head (∗)
and the reactants entering the combustion chamber are assumed to be perfectly
mixed.

and

h = cpT, (3.4)

respectively. Kilicarslan assumes that the ratios of the specific heats for constant
volume to the specific gas constants are equal for reactants and products, thus

(cv

R

)
r

=
(cv

R

)
p

=
cv

R
=

1

γ − 1
= constant. (3.5)

The reactants occupy a volume Vr of the combustion chamber and the prod-
ucts occupy a volume Vp. The combustion chamber is assumed to be fully
occupied at all times, thus, with Vcc denoting the volume of the combustion
chamber:

Vr + Vp = Vcc. (3.6)

The state variables of the reactants and products are assumed to be uniform
throughout their volumes and the pressures of the reactants, Pr, and products,
Pp, associated with the volumes Vr and Vp, respectively, are assumed to be equal
at all times:

ρrRrTr = Pr = P = Pp = ρpRpTp. (3.7)

3.2.1 Conservation of energy

An energy balance over the control volume (i.e., the combustion chamber) yields

dEcc

dt
= Q̇ + hrṁr − heṁe, (3.8)

where Ecc is the total energy in the combustion chamber, Q̇ is the rate of
heat release by combustion, ṁr and ṁe are the mass fluxes into and out of
the combustion chamber, respectively, and hr and he are the specific (sensible)
enthalpies1 of the reactants and products, respectively. Under the assumptions

1 A standardized (or, absolute) enthalpy (per unit mass) h(T) at a temperature T can
be written as h(T) = ho

f
(Tref) + ∆hs(T), where ho

f
(Tref) is the enthalpy of formation of the

substance (associated with the chemical bonds) at a certain reference temperature Tref and
∆hs(T) is the sensible enthalpy change, i.e., the difference in enthalpy when going from the

3.2. DERIVATION OF MODEL EQUATIONS 15

mentioned above the total energy in the combustion chamber can be written as

Ecc = ρrerVr + ρpepVp =
cv

R
(PrVr + PpVp) =

PVcc

γ − 1
. (3.9)

The rate of heat release Q̇ in the combustion chamber is given by

Q̇ = ṁr
∆Hf

1 + r
= ṁr(he − hr), (3.10)

where ∆Hf is the heat of combustion per unit mass of fuel.

3.2.2 Mass flow rate into combustion chamber

The mass flow rate for the reactants (gas and air separately) are modelled by
quasi-steady orifice flow equations, assuming the flapper valves to be either fully
open or fully closed. In order to keep the air-fuel ratio, r, constant the pressure
at the gas-supply is assumed to be equal to the atmospheric pressure, P0, at
which the air is supplied. This yields for the time-dependent mass flow rate of
gas, ṁg,

ṁg(t) = kg

√
|p| 1(−∞,0)(p), (3.11)

where kg is a constant parameter corresponding to the flow through the gas
valve, p is the gauge pressure of the combustion chamber, i.e., p = P − P0, and
1X(x) is an indicator function equal to one if x is an element of the set X ⊂ R

and zero otherwise. Thus, there is only inflow if the pressure in the combustion
chamber is below the atmospheric pressure. Since

√
|p| =

√−p for p < 0,
expression (3.11) could equivalently be written with −p instead of the absolute
value |p|. The form given in (3.11) is preferred in order to avoid confusion about
the meaning of

√−p for p > 0. The constant kg is given by

kg =
√

2ρgCD,gAv,g, (3.12)

where ρg is the density of the gas, CD,g is a discharge coefficient of the gas valve
and Av,g is the effective flow area of the gas valve (see Ahrens et al. [2]).

For the mass flow rate of air, ṁa, a similar expression can be written with
corresponding parameters ρa, CD,g and Av,a. Using the air-fuel ratio, r, the
mass flow rate of the reactants can be expressed as ṁr = ṁg(1 + r), thus

ṁr(t) = kg(1 + r)
√

|p| 1(−∞,0)(p). (3.13)

Note that for p < 0 the air-fuel ratio is given by r = ṁa/ṁg, yielding

r =

√
ρa

ρg

CD,aAv,a

CD,gAv,g
. (3.14)

reference temperature Tref to the temperature T : ∆hs =
∫ T

Tref
dh. The heat of combustion

(∆hf) at a certain reference state is defined as the difference of the standardized enthalpies
of the reactants (hreac) and the products (hprod) at that reference state and, thus, is equal to
the difference in enthalpies of formations at that reference state: ∆hf (Tref) = hreac(Tref) −
hprod(Tref) = ho

f,reac
(Tref) − ho

f,prod
(Tref). In the derivation of the model equations, the

enthalpies of formation are contained in the heat release term, so the enthalpies hr and he in
the derivation are sensible enthalpies, or sensible enthalpy changes. See, for example, [32, p.24–
31] for details.

16 CHAPTER 3. A MODEL SUGGESTED BY KILICARSLAN

3.2.3 Coupling to tailpipe dynamics by conservation of
momentum

The flow in the tailpipe is assumed to behave like a plug flow: it is considered
to be of constant density and moving frictionlessly under the influence of the
pressure difference between tailpipe inlet and exit. Conservation of momentum
in the tailpipe gives the following differential equation for the mass flow rate ṁe

into the tailpipe:

Ltp
dṁe

dt
= pAtp, (3.15)

where Ltp is the tailpipe length and Atp the area of its cross-section.

3.2.4 Complete set of model equations

Substitution of the total energy (3.9), the rate of heat release (3.10) and the
mass flow rate of reactants (3.13) into the energy balance equation (3.8) together
with equation (3.15) for conservation of momentum lead to the following system
of first-order nonlinear differential equations

dp

dt
= AF (p) − B ṁe, (3.16)

dṁe

dt
= C p, (3.17)

where

A = kg(1 + r)
(γ − 1)he

Vcc
, (3.18)

B =
(γ − 1)he

Vcc
, (3.19)

C =
Atp

Ltp
, (3.20)

F (p) =
√

|p| 1(−∞,0)(p), (3.21)

with (see expression (3.10))

he =

(
hr +

∆Hf

1 + r

)
. (3.22)

By differentiating equation (3.16) and substitution of equation (3.17) a single
second-order nonlinear differential equation is derived. Note that the function
F (p) is not differentiable in p = 0. Thus, its derivative F ′(p) is not properly
defined in that point; it will be defined as F ′(0) ≡ 0, i.e., equal to the right-hand
derivative of F in p = 0. This yields the model equation of Kilicarslan for the
gauge pressure p in the combustion chamber:

d2p

dt2
− AF ′(p)

dp

dt
+ BCp = 0, (3.23)

where

F ′(p) =
dF

dp
= − 1

2
√

|p|
1(−∞,0)(p). (3.24)

The mathematical model is completed by supplying appropriate initial condi-
tions, e.g., prescribing the initial gauge pressure, p(0) = p0, and initial mass
flux out of the combustion chamber, ṁe(0) = ṁe,0.

3.3. PREDICTION OF FREQUENCY OF PULSE COMBUSTION 17

3.3 Prediction of frequency of pulse combustion

Kilicarslan uses equation (3.23) to estimate the frequency of a stable pulse com-
bustion process. Without giving much justification it is implicitly assumed that
the damping term −AF ′(p)dp

dt of equation (3.23) is of negligible effect on the
frequency of the pulse combustion process. In that case the approximated fre-
quency of the simulated combustion process, f0, is given by

f0 =
ω0

2π
=

1

2π

√
BC =

√
(γ − 1)he

2π

√
Atp

VccLtp
, (3.25)

where ω0 is the angular frequency associated with the harmonic oscillator de-
scribed by ignoring the damping term −AF ′(p)dp

dt in equation (3.23). Note
that this is simply the frequency of a Helmholtz resonator without resistance
in the case that the speed of sound is given by that in the tailpipe:

√
γRTe =√

(γ − 1)cpTe =
√

(γ − 1)he, where Te is the temperature in the tailpipe, i.e.,
at the exit of the combustion chamber. (See Thompson [30, pp. 549–550] for a
derivation of the resonant frequency of a Helmholtz resonator.)

3.4 Comments on the mathematical model

3.4.1 Damping effects

The model equation (3.23) can be written as

ẍ + h(x, ẋ) + ω2
0x = 0, (3.26)

where x = p(t), ω0 is given by expression (3.25), a dot denotes a time derivative
and h(x, ẋ) is defined by

h(x, ẋ) = −AF ′(x)ẋ, (3.27)

with F ′(x) given by (3.24). The equation can be interpreted as describing a
linear oscillator with nonlinear damping. Following the analysis of Jordan and
Smith [13, pp. 16–17], we can write the total mechanical energy E of the oscillator
as

E = T + V =
1

2
ẋ2 +

1

2
ω2

0x2, (3.28)

where T = 1
2 ẋ2 and V = 1

2ω2
0x2 are the kinetic energy and a potential energy,

respectively. Along a phase path (x(t), ẋ(t)) the energy variation with time is
given by

dE
dt

=
dT
dt

+
dV
dt

= ẋẍ + ω2
0xẋ = −h(x, ẋ)ẋ. (3.29)

Integration of this expression with respect to time from t0 to t1 gives

E(t1) − E(t0) = −
∫ t1

t0

h(x, ẋ)ẋdt. (3.30)

Because h(x, ẋ)ẋ = −AF ′(x)ẋ2 ≥ 0 for all times (and strictly so if x < 0) the
energy will be decreasing as time passes. The amplitudes of oscillation in x, i.e.,
in the gauge pressure p in the combustion chamber, will be diminishing in time
and never increasing. Thus, the mathematical model presented by Kilicarslan
cannot describe a stable operating pulse combustor.

18 CHAPTER 3. A MODEL SUGGESTED BY KILICARSLAN

3.4.2 Using Rayleigh’s criterion to explain damping effect

Above it was found that the amount of damping (in the sense of energy loss
per unit of time) is related to −AF ′(p)(dp

dt)2 ≥ 0, which is proportional to
the parameter A. This parameter is given by expressions (3.18) and (3.22)
and it comes from mass flow of reactants into the combustion chamber (part
of the sum in A proportional to hr, see (3.22)) and from heat release in the
combustion chamber (part of A proportional to ∆Hf , see (3.22)). On noting
that the mass flow rate into the combustion chamber occurs when the gauge
pressure is negative and the rate of heat release is modelled to be proportional
to the mass flow rate an explanation for the damping is given by application of
the Rayleigh’s criterion. At the moment of greatest rarefaction both mass and
heat are added to the combustion chamber, both with the effect of diminishing
the pressure amplitude. In pulse combustors the heat release should be greatest
at moments of greatest condensation thereby amplifying the oscillatory motion.

Clearly the heat release is modelled incorrectly in the work of Kilicarslan.
His mathematical model for pulse combustion is largely based on that of Ahrens
et al. [2]. The main difference is in the modelling of the heat release. That is
why in the next chapter the model of Ahrens et al. will be examined.

3.5 Numerical implementation and experiments

The system of model equations (3.16)–(3.22) is numerically implemented using
Matlab [29] software. The standard Matlab ODE-solver ode452 is used to
solve the equations. The implementation in Matlab is straightforward; the
codes can be found in Appendix A.

In order to solve the model equations numerically, the model parameters need
to be specified, as well as the initial conditions. For the purpose of showing
the damping of the pressure fluctuations in the mathematical model, one or
two sets of parameters will suffice. In the experiments of Kilicarslan, the gas
supply pressure and geometrical properties of the combustor (the volume of the
combustion chamber, and the tailpipe length and diameter) were varied. For
the numerical evaluation of the model equations, the gas supply pressure will
be chosen equal to the air supply pressure of 1 atm. The other parameters
that were varied in the experiments are listed in Table 3.1, along with ranges
over which they were varied and the values that were selected for the numerical
evaluation of the model equations. These parameters are chosen such that they
lie somewhere in the middle of the intervals over which they were varied.

Except for the gas and air supply pressure (the latter equal to 1 atm), none
of the other model parameters were specified by Kilicarslan. Nor is the kind of
gas mentioned that was used in the experiments. Therefore, for the numerical
evaluation of the model equations, the model parameters are assigned rather
arbitrary, although reasonable, values. In order to obtain reasonable values, the
article of Ahrens, et al. [2] (upon which a large part of Kilicarslan’s analysis is
based) was consulted. The heat of combustion of the fuel used for the numerical

2The Matlab function ode45 is part of a suite of ODE-solvers. It is an implementation of a
one-step method with adaptive step-size control that uses two explicit Runge-Kutta methods,
based on the Dormand-Prince (4,5) pair. That is, it uses fifth and fourth order Runge-Kutta
formulae to obtain an estimate for the local error in order to determine the step-size. See [28]
for a comprehensive description of the Matlab ODE suite.

3.5. NUMERICAL IMPLEMENTATION AND EXPERIMENTS 19

Parameter Range in experiments Value used Unit

Dtp 0.038 − 0.051 0.042 m
Ltp 1 − 3 2 m

Vcc

1.739800 × 10−3

2.609705 × 10−3

3.479607 × 10−3

2.609705 × 10−3 m3

Table 3.1: Model parameters connected to the shape of the pulse combustor, the
ranges over which the values of these parameters are varied in the experiments
of Kilicarslan, and the values used in the numerical evaluation of Kilicarslan’s
model equations.

evaluation is that of methane (CH4). The reference temperature and pressure for
the heat of combustion are 298.15 K and 1 atm, respectively. The lower heating
value (LHV) is used, since part of the heat released is used to evaporate formed
water from the reference temperature to the temperature of the products. The
discharge coefficients of the valves are chosen the same as in the article of Ahrens
et al., who, lacking information for a correct value, chose rather arbitrarily the
value 0.6. Air property values (at 300 K and 1 atm) are used for the gas
constant and the heat capacity at constant pressure. The value used for the
effective flow area of the gas valve is based on that of a pulse combustor of
comparable dimensions mentioned in the article of Ahrens et al., and is about
1/100 of the value used for the area of the tailpipe cross-section. Thus, the gas
valve diameter is in the order of a tenth of the diameter of the tailpipe. It is
assumed that the dimensions of the air valve are such that the air-fuel ratio, r,
is constant at the stoichiometric value. This ratio is easily calculated by using
the common approximation of air as consisting of 21% oxygen (O2) and 79%
nitrogen (N2) (by volume), i.e., for each mole of O2 there is 79

21 ≈ 3.76 moles of
N2 in air. Then, using the chemical balance

CH4 + 2 (O2 + 3.76N2) −→ CO2 + 2H2O (g) + 7.52N2, (3.31)

the air-fuel ratio (on mass basis) is given by

r =
2 (MWO2

+ 3.76 × MWN2
)

MWCH4

=
2 (31.999 + 3.76 × 28.013)

16.043
≈ 17.12, (3.32)

where MWX denotes the molecular weight of a substance X. The values of the
molecular weights are obtained from [27, Table 2, p.343].

Some auxiliary constants are needed to compute the model parameters. All
values used in the numerical evaluation of the model equations are listed in
Table 3.2 (in addition to Table 3.1).

The initial conditions are chosen as indicated in Table 3.3. That is, the initial
gauge pressure is equal to the atmospheric pressure (thus, the initial pressure in
the combustion chamber is twice the atmospheric pressure) and the initial mass
flux into the tailpipe is zero, making the initial pressure a (local) maximum.

The pressure development in the combustion chamber over time predicted
by the model equations is shown in Figure 3.3. The figure shows such strong
damping that not even one cycle is completed. In order to get some kind of
oscillations into the system, the model parameters are adjusted. Oscillation can

20 CHAPTER 3. A MODEL SUGGESTED BY KILICARSLAN

Parameter Value used Unit Comment

Atp = πD2
tp/4 m2

Av,g 6.26 × 10−5 m2 Ahrens, et al.
CD,g 0.6 − Ahrens, et al.
cp 1009.7 J/kg K air prop., [27, p.346]

he = hr +
∆Hf

1+r J/kg

hr = cpT0 J/kg

kg =
√

2ρgCD,gAv,g kg1/2 m1/2

MWg 16.043 kg/kmol mol. weight, [27, p.343]
P0 1.01325 × 105 Pa = 1 atm
r 17.12 − stoich. ratio, computed
Ra 287 J/kg K air prop., [27, p.343]
Rg = Ru/MWg J/kg K
Ru 8.31441 × 103 J/kmolK univ. gas const., [27, in back]
T0 300 K
∆Hf 50.016 × 106 J/kg LHV, [32, p.543]

Table 3.2: Model parameters (and auxiliary values to compute model param-
eters) used for the numerical evaluation of Kilicarslan’s model equations. Pa-
rameters are taken from work of Ahrens et al. [2], computed, or looked up in
tables in [27] or [32].

Initial condition Value used Unit

p(0) 1.01325 × 105 Pa
ṁe(0) 0 kg/s

Table 3.3: Initial conditions used for the numerical evaluation of Kilicarslan’s
model equations.

0 0.05 0.1 0.15
−20

0

20

40

60

80

100

120

Time (s)

G
au

ge
p
re

ss
u
re

(k
P
a)

Figure 3.3: Development of the pressure in the combustion chamber over time,
as predicted by the model equations of Kilicarslan. The model parameters were
given ‘reasonable’ values; very strong damping results.

3.6. CONCLUSIONS 21

0 0.05 0.1 0.15
−100

−50

0

50

100

150

Time (s)

G
au

ge
p
re

ss
u
re

(k
P
a)

Figure 3.4: Development of the pressure in the combustion chamber over time,
as predicted by the model equations of Kilicarslan. Model parameters were
changed significantly in order to achieve oscillations. Still, very strong damping
remains.

be achieved by decreasing the damping, for example by decreasing the effective
flow area of the gas valve, Av,g: that decreases kg, see (3.12), which decreases
the constant A, see (3.18), decreasing the damping term in (3.22). If the effective
flow area of the air valve is decreased by the same factor, the air-fuel ratio will
be unchanged (see (3.14)). An increase of the frequency can be achieved by, for
example, increasing the volume of the combustion chamber, or decreasing the
tailpipe length, as is suggested by the formula for the frequency of operation (see
(3.25)). Only with the use of very different values can some oscillations in the
system be achieved. Figure 3.4 shows the results after halving the effective flow
area of the gas valve, and taking ten times the combustion chamber volume and
a quarter of the tailpipe length used above. Still, the damping is very strong.

It is clear that the model equations cannot correctly describe a stable oper-
ating pulse combustor.

3.6 Conclusions

Kilicarslan [17] has suggested a lumped parameter model for a gas-fired Helm-
holtz pulse combustor with flapper valves. In his paper, an energy balance
analysis of the combustion chamber, with simple steady-flow orifice equations
describing the reactants inflow and a certain heat release model for the com-
bustion, is linked to a plug flow description of the products in the tailpipe. It
leads to a second order differential equation for the pressure in the combustion
chamber. Neglecting the damping term, an approximation for the operating
frequency of the pulse combustor is arrived at.

In this chapter, the model mentioned above has been examined analytically
and numerically. The derivation of the model equations has been given, largely
following Kilicarslan’s presentation. The heat release model of Kilicarslan comes

22 CHAPTER 3. A MODEL SUGGESTED BY KILICARSLAN

down to releasing an amount of heat equal to the heat of combustion of the re-
actants entering the combustion chamber, at the moment of entrance. This can
be viewed as burning the entering reactants upon entrance into the combustion
chamber. By Rayleigh’s criterion, this timing of heat release would dampen
oscillations in the system, rather than amplify them. A simple analysis of the
model equations shows that pressure fluctuations in the combustion chamber
are indeed damped, according to the mathematical model. A numerical in-
vestigation of the model equations shows that the damping predicted by the
mathematical model is very strong for ‘reasonable’ choices of the model param-
eters. It can be concluded that the mathematical model suggested by Kilicarslan
cannot describe a stable operating pulse combustor.

The predicted value of the frequency is obtained by neglecting the damp-
ing term in the mathematical model, assuming that the damping effect is of
negligible effect upon the operating frequency. In the article by Kilicarslan no
investigation into the mathematical model is made, except for the predicted
frequency, which may explain why the failure of the model to describe a stable
pulse combustor has gone unnoticed.

The model may be corrected by modelling the heat release in a different way,
allowing for reactants to build up in the combustion chamber and igniting them
at a more convenient moment, satisfying Rayleigh’s criterion. Since Kilicarslan’s
model is very similar to the lumped model presented by Ahrens et al. [2], in fact
only differing in the way the heat release is modelled, the latter model is worth
investigating.

Chapter 4

A model suggested by
Ahrens, et al

The mathematical model of Kilicarslan presented in the previous chapter is
largely based on that of Ahrens et al. [2], which will be investigated in this
chapter. The only real difference is in the modelling of the heat release by com-
bustion. Ahrens et al. assume the reaction zone to be separated in a cool zone
occupied by the reactants and a hot zone occupied by the combustion prod-
ucts. Combustion is assumed to take place in a thin flame sheet separating
the two zones. The heat release is modelled by the movement of an equivalent
plane flame sheet spanning the combustion chamber cross-section, moving at a
pressure-independent ‘flame speed’. In this way, if the density of the reactants
in the combustion chamber increases, more reactants mass is burnt and more
heat is released. At constant temperature of the reactants, an increase in den-
sity means an increase in pressure. Thus, with this heat release model, more
heat is released at moments of increased pressure, thereby satisfying Rayleigh’s
criterion.

The assumptions lead to a second-order differential equation, similar to the
one given by Kilicarslan, but with a different damping term. According to
the mathematical model of Ahrens et al., the heat release indeed amplifies the
pressure oscillations. Also, in accordance with Rayleigh’s criterion, the entrance
of reactants at moments of low pressure attenuates the pressure oscillations.
Ahrens et al. assume that stable operation of a pulse combustor can be described
by choosing the model parameters (e.g., the constant flame speed), such that
these two counteracting effects are in balance. As in the approach of Kilicarslan,
the frequency of operation is estimated by neglecting the damping term.

In this chapter, the mathematical model suggested by Ahrens et al. will
be investigated, largely following the presentation given in their article. The
nomenclature is adjusted in order to ease the comparison of the three models
described in this report. In the end, it will be shown that the assumption that
stable operation of a pulse combustor can be described by balancing the two
counteracting damping effects, is questionable.

23

24 CHAPTER 4. A MODEL SUGGESTED BY AHRENS, ET AL

4.1 Nomenclature

Roman symbols

Ab Area of combustion chamber cross-section [m2]
Atp Area of tailpipe cross-section [m2]
Av Effective flow area air/gas valve [m2]
CD Discharge coefficient [−]
cp Specific heat for constant pressure [J/kg K]
cv Specific heat for constant volume [J/kg K]
e Specific internal energy [J/kg]
E Total energy [J]
f Frequency [Hz]
h Specific enthalpy [J/kg]
kg Gas valve parameter [kg1/2 m1/2]
Ltp Tailpipe length [m]
ṁ Mass flux [kg/s]
p Gauge pressure (in combustion chamber) [Pa]
P Pressure (in combustion chamber) [Pa]

Q̇ Rate of heat release [J/s]
r Air-fuel mass ratio [−]
R Specific gas constant [J/kg K]
t Time [s]
T Temperature [K]
Uf Model parameter related to flame speed [m/s]
V Volume [m3]

Greek symbols

∆Hf Heat of combustion per unit mass fuel [J/kg]
γ Ratio of specific heats, = cp/cv [−]
ω0 Angular frequency [rad/s]
ρ Density [kg/m3]

Subscripts

0 initial/standard/ambient value
a air (oxidizer)
b concerning burning of reactants
cc combustion chamber
e exit combustion chamber/entrance tailpipe
g gas (fuel)
p products (burnt reactants)
r reactants (fuel and oxidizer)
tp tailpipe

4.2 Derivation of model equations

Since Kilicarslan based his mathematical model of a pulse combustor largely on
the work by Ahrens et al., the derivations of the model equations are nearly
equivalent. The derivation of the model equations of Ahrens et al. will not be

4.2. DERIVATION OF MODEL EQUATIONS 25

Uf

ṁa

ṁg

ṁe

Vcc

P0P

Ltp

Figure 4.1: Control volume (i.e., the combustion chamber, with volume Vcc) of
the modelled pulse combustor, with sign conventions and (some) model param-
eters. The values of the mass fluxes ṁg, ṁa and ṁe and the ‘flame speed’ Uf

are taken positive in the directions indicated.

described here in great detail. Rather, only deviations from the derivation of
Kilicarslan’s model given in the previous chapter, will be highlighted.

Ahrens et al. assume that the burning process inside the combustion cham-
ber takes place in a thin zone (a moving flame front) separating a cold zone
containing the reactants, perfectly mixed, from a hot zone containing the com-
bustion products. The state variables are assumed to be uniform in both the
zones. The volumes of the two zones add up to the volume of the combus-
tion chamber. Apart from the modelling of the heat release this more clearly
defined picture of the combustion process seems to be the only difference with
Kilicarslan’s presentation. Figure 4.1 shows a schematic of the pulse combustor,
with model parameters and sign conventions.

4.2.1 Conservation of energy

The assumptions described in Chapter 3 for the derivation of Kilicarslan’s model
equations of the gases behaving as perfect gases, of the ratio of specific heats
being constant and of the ratio of specific heats for the reactants and products
being equal, are also applied here. Taking the combustion chamber as a control
volume together with the assumptions on the uniform properties in the two
zones lead to the same energy balance equation as (3.8):

dEcc

dt
= Q̇ + hrṁr − heṁe, (4.1)

where Ecc is the total energy in the combustion chamber, Q̇ is the rate of
heat release by combustion, ṁr and ṁe are the mass fluxes into and out of
the combustion chamber, respectively, and hr and he are the specific (sensible)
enthalpies1 of the reactants and products, respectively. As before (see expression
(3.9)), the total energy in the combustion chamber can be written as:

Ecc =
PVcc

γ − 1
, (4.2)

where γ = cp/cv is the ratio of specific heat for constant pressure, cp, and for
constant volume, cv, P is the pressure and Vcc is the volume of the combustion

1See footnote on page 14

26 CHAPTER 4. A MODEL SUGGESTED BY AHRENS, ET AL

chamber. The rate of heat release Q̇ in the combustion chamber is given by

Q̇ = ṁb
∆Hf

1 + r
= ṁb(he − hr), (4.3)

where ṁb is the mass burning rate of the reactant mixture (to be specified later),
∆Hf is the heat of combustion per unit mass of fuel, r is the air-fuel ratio on
mass basis and he and hr are the enthalpies leaving the combustion chamber
to the tailpipe and entering the combustion chamber, respectively. Note that
Kilicarslan assumed the mass burning rate to be equal to the mass rate of
reactants entering the combustion chamber, i.e., ṁb = ṁr, and thus assumed
burning the exact amount of mass entering the chamber at the exact moment
of entrance. In Chapter 3 it was shown that then the burning occurs at an
inconvenient moment of rarefaction of the gases in the combustion chamber.

4.2.2 Rate of heat release

The heat release is modelled by specifying the burning rate of the reactant mix-
ture. The mass burning rate caused by the flame separating the zones of unburnt
(reactants) and burnt gases (products) is assumed to be equivalent to that of a
plane flame sheet across a cross-section of the combustion chamber, moving at
a certain pressure-independent ‘flame speed’ Uf relative to the unburnt gases.
Denoting the area of the cross-section of the combustion chamber by Ab the
mass burning rate is given by

ṁb = ρrAbUf , (4.4)

where ρr is the density of the reactants. With T0 denoting the constant tem-
perature of the reactants and using the perfect gas law there follows

ṁb =
P

RT0
AbUf =

P0 + p

RT0
AbUf , (4.5)

where p = P −P0 is the combustion chamber gauge pressure with P0 the atmo-
spheric pressure and R is the specific gas constant of the reactants. Note that
the mass burning rate, and thus the rate of heat release, is directly proportional
to the pressure in the combustion chamber. So for this model of the heat release
Rayleigh’s criterion for amplification of the pressure amplitude is fulfilled at all
times.

In their article, Ahrens et al. stress that Uf is not to be regarded as a flame
velocity (i.e., the velocity at which the flame front spreads in the combustion
chamber), but rather as a system parameter related to the combustion process
that attains has a certain value if the pulse combustor is operating stably. Al-
though not explicitly stated, it is clear from the article that Uf is assumed to
be constant throughout the derivation of the model equations.

4.2.3 Mass of reactants in combustion chamber

To be able to use the above given model of reactants burning process at all
times, it is assumed that there is a certain amount of reactants in the combustion

4.2. DERIVATION OF MODEL EQUATIONS 27

chamber present at all times. The rate of change of the total mass of reactants
present in the combustion chamber, Mr, is given by

dMr

dt
= ṁr − ṁb, (4.6)

i.e., by the mass flow rate of reactants entering the combustion chamber minus
the mass burning rate of the reactants. In the article of Ahrens et al., this
requirement is used only for a stably operating pulse combustor, where there
should not be any accumulation or depletion of reactants in the combustion
chamber over a cycle. Then the requirement on the mass flow and mass burning
rates amounts to ∫

cycle

(ṁr − ṁb)dt = 0, (4.7)

where the integration is taken over a period of one cycle.

4.2.4 Mass flow rate into combustion chamber

The modelling of the mass flow rate through the valves as done by Ahrens et al.
is already treated above in the derivation of the mass flow rates in Kilicarslan’s
mathematical model. The result for the mass flow rate of reactants into the
reaction chamber is, see (3.13):

ṁr(t) = kg(1 + r)
√

|p| 1(−∞,0)(p), (4.8)

where kg is a constant parameter corresponding to the flow through the gas
valve and 1X(x) is an indicator function equal to one if x is an element of the
set X ⊂ R and zero otherwise. The constant kg is given by, see (3.12):

kg =
√

2ρgCD,gAv,g, (4.9)

where ρg is the density of the gas, CD,g is a discharge coefficient of the gas valve
and Av,g is the effective flow area of the gas valve. The constant air-fuel ratio
is given by, see (3.14):

r =

√
ρa

ρg

CD,aAv,a

CD,gAv,g
, (4.10)

where ρa is the density of the air, CD,a is a discharge coefficient of the air valve
and Av,a is the effective flow area of the air valve.

4.2.5 Coupling to tailpipe dynamics by conservation of
momentum

Modelling of the tailpipe flow is done as shown above in the derivation of Kili-
carslan’s model. Thus, see (3.15):

Ltp
dṁe

dt
= pAtp, (4.11)

where Ltp is the tailpipe length and Atp the area of its cross-section.

28 CHAPTER 4. A MODEL SUGGESTED BY AHRENS, ET AL

4.2.6 Complete set of model equations

The equations above lead to the following system of first-order nonlinear differ-
ential equations

dp

dt
= AF (p) + B(p + P0) − C ṁe (4.12)

dṁe

dt
= Dp (4.13)

where

A = kg(1 + r)
γ − 1

Vcc
hr (4.14)

B =
AbUf

RT0

γ − 1

Vcc

∆Hf

1 + r
(4.15)

C =
(γ − 1)he

Vcc
(4.16)

D =
Atp

Ltp
(4.17)

F (p) =
√
|p| 1(−∞,0)(p) (4.18)

with (see expression (4.3))

he =

(
hr +

∆Hf

1 + r

)
. (4.19)

By differentiating equation (4.12) and substitution of equation (4.13) a single
second-order nonlinear differential equation is derived. As before, the function
F (p) is not differentiable in p = 0 and its derivative F ′(p) will defined as F ′(0) ≡
0, i.e., equal to the right-hand derivative of F in p = 0. This yields a model
equation for the gauge pressure p is the combustion chamber equivalent to that
of Ahrens et al.:

d2p

dt2
− (AF ′(p) + B)

dp

dt
+ CDp = 0, (4.20)

where

F ′(p) =
dF

dp
= − 1

2
√

|p|
1(−∞,0)(p). (4.21)

To the system of first-order differential equations (4.12)–(4.13), or the second-
order differential equation (4.20), appropriate initial conditions must be added,
for example by prescribing the initial gauge pressure, p(0) = p0, and the initial
mass flux out of the combustion chamber, ṁe(0) = ṁe,0.

The requirement that reactants must be present in the combustion chamber
at all times, is presented by the inequality Mr(t) > 0 for all t. The total mass of
the reactants in the combustion chamber, Mr, satisfies the differential equation
(see (4.6))

dMr

dt
= ṁr − ṁb, (4.22)

with ṁr and ṁb given by (4.8) and (4.5), respectively. This differential equation
should be supplemented with an initial condition, for example by specifying the
total mass of reactants Mr,0 present in the combustion chamber at a certain
starting point t = 0:

Mr(0) = Mr,0. (4.23)

4.3. PREDICTION OF FREQUENCY OF PULSE COMBUSTION 29

4.3 Prediction of frequency of pulse combustion

In the article by Ahrens et al., it is noted that the differential equation (4.20)
is similar to one describing a linear oscillator with nonlinear damping. The
equation can be written as

ẍ + h(x, ẋ) + ω2
0x = 0, (4.24)

where x = p(t), a dot denotes a time derivative, the nonlinear damping term
h(x, ẋ) is defined by

h(x, ẋ) = −(AF ′(x) + B)ẋ, (4.25)

with F ′(x) given by (4.21) and ω0 is defined as

ω0 =
√

CD =
√

(γ − 1)he

√
Atp

VccLtp
. (4.26)

It is also noted that the contributions to the damping term by heat release
(−Bẋ) and by reactants mass inflow (−AF ′(x)ẋ) are of opposite sign, since
F ′(x) ≤ 0 for all x. Thus, they have counteracting effects on the oscillations,
the heat release amplifying the oscillations and the mass inflow of reactants
attenuating them.

Ahrens et al. note that for an undamped oscillation the frequency, f0, would
be given by

f0 =
ω0

2π
=

√
(γ − 1)he

2π

√
Atp

VccLtp
. (4.27)

They also mention that “in principle the damping term will cause a frequency
shift from the undamped value,” but that in their results this shift was very
small. The frequency f0 can be used as an estimate for the frequency of oscil-
lations of a stable pulse combustion process. They also mention that f0 is the
frequency of a Helmholtz resonator. (Note that

√
(γ − 1)he =

√
(γ − 1)cpTe =√

γRTe, which is the speed of sound in the tailpipe.)

4.4 Searching for a stable oscillation

Ahrens et al. mention that they have solved the model equations numerically
and that they found that for a stable oscillating solution the model parameter Uf

and the amplitude of the oscillation pmax must both have a specific value for each
set of the other model parameters. They proceed by formulating two stability
criteria, which are analyzed under simplifying assumptions. The analysis yields
two expressions relating Uf and pmax, with which the unique values for these
parameters can be estimated.

One of the stability criteria is the requirement that there is no accumulation
or depletion of reactants in the combustion chamber over a cycle. The other
stability criterion is that the pressure amplitude of the oscillations, and the mean
pressure, should be independent of time. Ahrens et al. note that in the present
case the mean pressure should be zero, as a consequence of the assumption that
there is no friction in the tailpipe.

30 CHAPTER 4. A MODEL SUGGESTED BY AHRENS, ET AL

4.4.1 No accumulation/depletion of reactants

The requirement of no accumulation or depletion of reactants is formulated by
equation (4.7), repeated here for convenience:

∫

cycle

(ṁr − ṁb)dt = 0, (4.28)

with ṁb and ṁr given by expressions (4.5) and (4.8), respectively, also repeated
here for convenience:

ṁr(t) = kg(1 + r)
√

|p| 1(−∞,0)(p), (4.29)

ṁb =
P0 + p

RT0
AbUf . (4.30)

Imposing the simplifying assumption that the pressure variation in time is of
the form

p(t) = −pmax cos(ω0t), (4.31)

and using the substitution τ = ω0t, Ahrens et al. show that evaluation of the
integral in (4.28) leads to

2kg(1 + r)
√

pmax

∫ π
2

0

√
cos τ dτ − 2π

P0

RT0
AbUf = 0. (4.32)

The integral in this equation can be evaluated using complete elliptic integrals
K and E, and is given by Ahrens et al. to be

I =

∫ π
2

0

√
cos τ dτ = 2

√
2E
(

1
2

√
2
)
−
√

2K
(

1
2

√
2
)

. (4.33)

This gives the relation between pmax and Uf :

Uf =
I

π
RT0

kg(1 + r)

P0Ab

√
pmax. (4.34)

Ahrens et al. evaluate the integral to give I/π = 0.375 (thus, I = 1.1781),
which is different from a Matlab evaluation based on a quadrature algorithm
(using the function quad) giving I = 1.1981 (thus, I/π = 0.381). Formula
(4.33) is correct and can be derived as follows. Using the relation cos τ =
1 − 2 sin2(τ/2), the integral I can be written as

I =

∫ π
2

0

√
cos τ dτ = 2

∫ π
4

0

√
1 − 2 sin2 τ̂ dτ̂ = 2E

(π

4
,
√

2
)

, (4.35)

where E(ϕ, k) ≡
∫ ϕ

0

√
1 − k2 sin2 φ dφ has been used as definition for the in-

complete integral of the second kind, with amplitude ϕ and modulus k. The
modulus in the right-hand side of (4.35) is greater than unity. Most tables on
elliptic integrals only deal with moduli less than or equal to unity, as does the
Matlab function ellipke2 for evaluating complete elliptic integrals. A trans-
formation can be applied to express the right-hand side of (4.35) in terms of

2Note that the Matlab function ellipke evaluates the complete integrals of the first and
second kind for the parameter m as argument. The parameter m is related to the modulus k
by m = k2.

4.4. SEARCHING FOR A STABLE OSCILLATION 31

incomplete integrals of the first and second kind with a modulus less than unity
(see [5, 114.01, p. 12]): if k1 = 1/k and sinϕ1 = k sin ϕ, then

E(ϕ, k) = k1[k
2E(ϕ1, k1) + (1 − k2)F (ϕ1, k1)], (4.36)

where F (ϕ, k) denotes the incomplete integral of the first kind with amplitude
ϕ and modulus k. It follows that

I = 2E
(π

4
,
√

2
)

=
√

2

[
2E

(
π

2
,

1√
2

)
− F

(
π

2
,

1√
2

)]

= 2
√

2E
(

1
2

√
2
)
−

√
2K

(
1
2

√
2
)

. (4.37)

As a check for the evaluation of the integral I using the Matlab function
ellipke, the integral was also evaluated using Table 17.2 in [1, pp. 610–611] for
the complete elliptic integrals. Both methods of evaluation yield I = 1.1981,
consistent with the value previously found by using the Matlab quadrature
function and different from the value given by Ahrens et al. In order to avoid
further confusion, the value for the integral I in (4.34) will not be substituted;
if needed, the value I = 1.1981 can be used as the correct value, or the value
I = 1.1781 can be used for easy comparison with derived quantities in the article
by Ahrens et al.

Note that the value of I in (4.34) comes from the integral of the reactants
mass flux ṁr over a cycle and depends on the pressure variation p(t) as function
of time. In general, for p(t) not prescribed, I could be defined as

I =
1

2TP

∫

cycle

√
|p̂(t)|1(−∞,0)(p̂(t)) dt, (4.38)

with p̂ = p/pmax giving the ‘shape’ of the pressure variation over time, and TP

the period of oscillation. If the second criterion of stability is invoked, i.e., the
mean pressure variation over a cycle is zero, the integral over the mass burning
rate ṁb is the same as before and expression (4.34) is valid for I as just given.
Thus, the exact relationship between Uf and pmax is given by expression (4.34)
for some value of I, which was approximated above by assuming the pressure
variation to be sinusoidal with frequency ω0

2π , giving I = 1.1981.

4.4.2 Zero mean pressure

In order to arrive at another expression relating Uf and pmax, Ahrens et al. use
the stability criterion that the mean pressure variation over a cycle must be
zero. They use some simplifying assumptions, based on a general shape of the
pressure variation as function of time. In Figure 4.2 a sketch of the pressure
variation as function of the time is shown for a cycle, with some typical points
in time marked on the time axis. The simplifying assumptions, which are not
motivated, come down to the following (referring to Figure 4.2):

• the maximum variation in pressure is as great above zero as below zero,
i.e., pmax = −pmin;

• the ratios of the shaded areas above and below the time axis to the total
areas above and below the time axis, respectively, are equal. Thus,

∫ t2
t1

p(t) dt
∫ t2

t0
p(t) dt

=

∫ t3
t2

p(t) dt
∫ t4

t2
p(t) dt

. (4.39)

32 CHAPTER 4. A MODEL SUGGESTED BY AHRENS, ET AL

pmax

pmin

t0 t1 t2 t3 t4

0

Figure 4.2: Sketch of the gauge pressure as function of the time during a cycle.
The marked times on the time axis are: t0, start of the cycle (p = 0); t1,
moment of maximum pressure (p = pmax); t2, moment of zero pressure (p = 0);
t3, moment of minimum pressure (pmin < 0); and t4, end of the cycle (p = 0).

With the mean pressure variation being zero, the last assumption is equivalent
to assuming that the shaded areas are of equal size, with the integrals of opposite
sign: ∫ t2

t1

p(t) dt = −
∫ t3

t2

p(t) dt. (4.40)

Integration of the second-order nonlinear differential equation (4.20) from
time τ0 to time τ1 gives

0 =

∫ τ1

τ0

(
d2p

dt2
− (AF ′(p) + B)

dp

dt
+ CDp

)
dt

=

[
dp(t)

dt
− (AF (p(t)) + Bp(t))

]τ1

t=τ0

+ CD

∫ τ1

τ0

p(t) dt, (4.41)

where the term with square brackets denotes the difference of the term evaluated
for the superscript and the term evaluated for the subscript, [f(t)]

b
t=a = f(b) −

f(a). It follows that

∫ τ1

τ0

p(t) dt = − 1

CD

[
dp(t)

dt
− (AF (p(t)) + Bp(t))

]τ1

t=τ0

. (4.42)

Using the expressions −p(t3) = −pmin = pmax = p(t1) and p(t2) = 0, and the
function F (p) =

√
|p|1(−∞,0)(p) (see (4.18)), gives

AF (p) + Bp =





B pmax, t = t1
0, t = t2
A
√

pmax − B pmax, t = t3

(4.43)

With dp(t)
dt = 0 for t = t1, t3, and using expression (4.42), it is easy to show that

the assumption (4.40) leads to B pmax = A
√

pmax − B pmax, or

√
pmax =

A

2B
=

kg(1 + r)2hrRT0

2AbUf∆Hf
, (4.44)

4.5. COMMENTS ON THE MATHEMATICAL MODEL 33

where the expressions (4.14) and (4.15) for A and B, respectively, have been
substituted. (Note that the value of dp

dt (t = t2) is not needed, since it appears
on both sides of the equal sign, and thus drops from the equation.) This is the
second relation between pmax and Uf given by Ahrens et al.

Actually, the derivation of expression (4.44) given by Ahrens et al. is some-
what more elaborate than presented above. In the process of deriving this
expression, they determine the exact solution of the pressure variation in the
interval of the cycle where the pressure is positive. In such an interval, the
nonlinear contribution to the damping term caused by the reactants inflow is
zero, so that the exact solution in the interval is easily found. From this exact
solution, Ahrens et al. infer an additional requirement on the model parameters
that need to be fulfilled in order to get a stable operation of the pulse combustor.
Some comments on this will be given below in Section 4.5, entitled “Comments
on the mathematical model.”

4.4.3 Combining the two stability criteria

Substitution of expression (4.34) for Uf into (4.44) leads in a straightforward
way to the unique pressure amplitude expressed in the model parameters:

pmax =

(
2I

π

)−1
P0(1 + r)hr

∆Hf
. (4.45)

Back-substitution of this expression into (4.34) gives an expression of Uf in
other model parameters than pmax:

Uf =

√
I

2π

RT0(1 + r)3/2

Ab

√
P0

√
hr

∆Hf
. (4.46)

These expressions for the model parameters Uf and pmax are used as estimates
for the values that are necessary for a stable oscillation of the pressure in the
combustion chamber. More accurate values can be obtained by solving the
model equations numerically and requiring the fulfillment of the two stability
criteria. Some comments on the imposed requirements to obtain a stable oscil-
lating pressure amplitude are given in the next section.

4.5 Comments on the mathematical model

The process of pulse combustion as modelled by Ahrens et al. is one of com-
bustion inducing pressure increase, resulting in products outflow and a drop
in pressure (eventually dropping below ambient pressure), whereupon the cycle
starts anew with the inflow of reactants. The heat release as modelled by Ahrens
et al. satisfies Rayleigh’s criterion at all times and therefore the combustion pro-
cess continuously amplifies pressure oscillations. The amplitude of the pressure
oscillations would grow without limit, if it were not for some limiting factors.

For stable operation of a pulse combustor the model presented by Ahrens
et al. requires a balance between damping of pressure oscillations by reactants
inflow and amplification thereof by combustion. The model parameters Uf

(which is associated with the combustion process and firing rate of the pulse

34 CHAPTER 4. A MODEL SUGGESTED BY AHRENS, ET AL

combustor) and pmax (the amplitude of the pressure oscillations) are determined
by requiring such a balance.

As mentioned by Ahrens et al., many pulse combustion phenomena are not
represented in the model. This raises the question whether the damping by
reactants inflow is indeed the most important limiting factor. This question is
addressed in this section.

4.5.1 Damping effects

Without the nonlinear damping term −AF ′(p)dp
dt in model equation (4.20)

caused by the reactants inflow, an analytical solution of the model equation can
be to obtained by elementary methods. Then, given initial conditions p(0) = 0
and dp

dt (t = 0) = ṗ0 for some ṗ0 > 0 at a starting point t = 0, and provided the
solution p(t) of the model equation will return to zero in a finite time span, the
solution would be given by

p(t) =
ṗ0

β
eαt sin(βt), (4.47)

where

α =
B

2
(4.48)

and

β =
1

2

√
|B2 − 4CD|. (4.49)

Thus, without damping by reactants inflow the pressure amplitude would be
amplified each (half-)cycle by the same factor. During the half-cycles that the
gauge pressure is positive, there is no reactants inflow and the exact solution
of the model equations is given by (4.47). (At least, if the pressure does return
to zero after the start of the half-cycle. Conditions for this will be discussed
below.) From (4.47) it is clear that the greater (i.e., the more positive) the rate
of change of the gauge pressure dp

dt at the beginning of the half-cycle is, the
greater is the pressure amplitude during the half-cycle and the more negative is
the rate of change of the gauge pressure at the end of the half-cycle.

During the half-cycle that the gauge pressure is negative, the inflow of reac-
tants counteracts the amplification of the pressure amplitude. However, since
F ′(p) = −1/(2

√
|p|) for p < 0 (see (4.21)), the damping effect is less for more

negative gauge pressure. At the beginning of reactants inflow (then p = 0) the
gauge pressure grows negative more rapidly if the rate of change of the gauge
pressure dp

dt is more negative, resulting in less damping during the cycle. Thus,
if the damping by reactants inflow during a cycle is not sufficient to counteract
the amplification of the pressure amplitude by combustion, the rate of change
of the gauge pressure at the beginning of the reactants inflow will be more nega-
tive in the next cycle, resulting in even less damping. On the other hand, if the
damping by reactants inflow is greater than the amplification by combustion,
the rate of change of the gauge pressure at the moment of reactants inflow for
the next cycle will be less negative than that in the previous cycle, resulting
in even more damping. From this it may be expected that either the pressure
amplitude will grow without limit (if the damping is not strong enough) or the
pressure oscillations will die out (if the damping is too strong). The numerical

4.5. COMMENTS ON THE MATHEMATICAL MODEL 35

results in the next section confirm these expectations of the behaviour of the
solution of the model equations.

From this it may be concluded that, according to the mathematical model
of Ahrens et al., the damping by reactants inflow does not drive a pulse com-
bustion system toward stable operation. ‘Stable’ operation requires an exact
relationship between the initial rate of change of the gauge pressure, ṗ0 (or,
equivalently, the pressure amplitude pmax sought after in Section 4.4), and the
model parameter Uf . Any deviation from that relationship and the pressure os-
cillations will die out or grow without limit. This suggests that other damping
factors than reactants inflow are responsible for stabilizing a pulse combustion
system. Therefore, the premise that the model parameter Uf (related to the
combustion) can be obtained by requiring a balance between the effects of com-
bustion and reactants inflow on the pressure oscillations seems questionable. If
other factors are indeed important in limiting pressure oscillations, one might
even strive for system parameters that, according to the model of Ahrens et al.,
would let the pressure oscillations grow without limit. A real pulse combustor
designed with such parameters could operate stably due to damping by other
factors than reactants inflow.

4.5.2 Requirement of presence of reactants in combustion
chamber and burning rate modelling

One requirement for stable operation of a pulse combustor that Ahrens et al.
used to determine the model parameter Uf , is that there should be no reactants
mass build up or depletion in the combustion chamber. This in fact excludes one
physical process that could be a limiting factor on growth of the pressure ampli-
tude in a real pulse combustor: if all the reactants in the combustion chamber
are consumed by combustion, there will be no extra heat release, and thus no
extra rise in pressure. Ahrens et al. mention that the presence of reactants in
the combustion chamber throughout the combustion cycle “appears to be con-
sistent with the observed operation of pulse combustion burners.” But this does
not mean that the burning model prescribing the burning rate of reactants ṁb

expressed by (4.5) is an appropriate one throughout the cycle. One may expect
that when the reactants run low, the reaction rate is no longer representable by
the thin flame sheet across the entire combustion chamber cross-section moving
at a certain flame speed Uf , but instead might be described by such a flame
sheet (using the same flame speed Uf) across a smaller area. Then, as opposed
to the burning model of Ahrens et al., reactants could be present throughout
the cycle while the heat release diminishes significantly if most of the reactants
are consumed by combustion, thereby limiting the amplification of the pressure
oscillations. Thus, the requirement in the model of Ahrens et al. that there is
always some reactants mixture present in the combustion chamber, combined
with the burning model that prescribes the consumption of the mixture at a
certain rate only dependent on the pressure in the combustion chamber, seems
to impose a limit on the capability of the model to describe stable operating
pulse combustors.

36 CHAPTER 4. A MODEL SUGGESTED BY AHRENS, ET AL

4.5.3 Conditions for oscillatory solutions

In the analysis on the damping effects, it was assumed that the solution p(t) of
the model equations starting at some point t = 0 in time, with initial conditions
p(0) = 0 and dp

dt (t = 0) = ṗ0 > 0, would return to zero in a finite time span.
With the nonlinear damping term in model equation (4.20) being zero if p > 0,
it is easy to show that for the gauge pressure to return to zero the relation B2−
4CD < 0, or equivalently B/

√
CD < 2, must be satisfied: if this condition is

satisfied, the solution of the model equations will be oscillatory on time intervals
of positive gauge pressure; otherwise, it will be continuously increasing in time.
Formulated in model parameters, the condition is

AbUf∆Hf

RT0(1 + r)

√
(γ − 1)Ltp

heAtpVcc
< 2 (4.50)

(see (4.15), (4.16) and (4.17) for expressions of B, C and D in model parame-
ters). Similar arguments3 lead Ahrens et al. to suspect that stable pulse combus-
tor operation may be impossible for model parameters not satisfying inequality
(4.50). They mention that in practice this condition is usually met, so that it
is not a serious restriction in the design of pulse combustors. They also men-
tion that the condition could not be put to the test in their article, since for
all the pulse combustors they used data of, the system parameters satisfied the
condition.

According to the model of Ahrens et al., sets of system parameters not
satisfying inequality (4.50) result in a continuously increasing pressure in the
combustion chamber. This would ultimately result in the consumption of all
the reactants present in the combustion chamber, which violates a criterion of
Ahrens et al. for stable pulse combustion burner operation. Considering the
discussion above on the requirement of presence of reactant mixture throughout
a cycle in combination with the burning rate model used by Ahrens et al., it
seems questionable to consider inequality (4.50) as a restriction on design choices
of the system parameters for pulse combustors. For a better understanding
of the conditions under which a pulse combustion burner may operate stably,
additional physical processes should be included in the model and/or physical
processes should be modelled in greater detail (for example the burning rate).

4.6 Numerical implementation and experiments

The system of model equations (4.12)–(4.19) is numerically implemented using
Matlab [29] software. The standard Matlab ODE-solver ode454 is used to
solve the equations. The implementation in Matlab is straightforward; the
codes used can be found in Appendix B.

In order to solve the model equations numerically, the model parameters
and the initial conditions need to be specified. The model parameters chosen
by Ahrens et al. that are related to the dimensions of a pulse combustor are

3They use the exact solution of the model equations for positive gauge pressure, but state
incorrectly that the condition B/

√

CD < 2 must hold, for otherwise the gauge pressure“would
approach zero asymptotically and, therefore, cannot switch over to the negative pressure
regime.”

4See footnote 2 on page 18

4.6. NUMERICAL IMPLEMENTATION AND EXPERIMENTS 37

Parameter Value used Unit

Ab 8.11 × 10−3 m2

Atp 7.92 × 10−4 m2

Av,g 6.26 × 10−5 m2

Ltp 1.52 m
r 19.8 −
Vcc 1.97 × 10−3 m3

Table 4.1: Model parameters associated with pulse combustor dimensions as
used for numerical evaluation of the model equations. Values are taken from
Table 1 (AGA experimental burner No. 2) in the article [2] of Ahrens et al.

based on existing pulse combustion burners. In their article, the dimensional
properties of the burners are presented clearly in Table 1 on AGA Experimental
Burners. Of these, the dimensions associated with burner No. 2 are used for
the numerical evaluation of the model equations in this report. This choice
is made, because of the available data presented in the table this particular
burner operates with the gas pressure supplied at the ambient (atmospheric)
value, which is an assumption used in developing the model equations. Other
listed pulse combustion burners operate with a slightly pressurized gas supply.
There is one other burner listed operating with the gas pressure supplied at the
ambient value: it has the same dimensions except for a tailpipe that is more
than twice as long. The burner with the shorter tailpipe is listed operating
with a mean chamber pressure that is less than that with the burner with the
longer tailpipe (7, 421Pa versus 11, 204Pa). Since no friction was assumed in
the derivation of the model equations, the mean chamber pressure should be
zero in the mathematical model. The influence of friction in the tailpipe is less
with the burner with the shorter tailpipe, thus that tailpipe length is chosen
to numerically evaluate the model equations. The values chosen for the model
parameters related to the dimensions of the pulse combustor are listed in Table
4.1.

The other model parameters that are needed for the numerical evaluation of
the model equations, and some auxiliary parameters used to compute the model
parameters, are listed in Table 4.2. As in the article of Ahrens et al., the values
chosen for the model parameters are based on methane as fuel and air property
values. The parameter values needed are computed or looked up in literature
(see the caption of the table). For the ambient temperature and associated air
property values T0 = 300 K is used, almost equal to the value of T0 = 530◦ R
used by Ahrens et al. Since the appropriate values for the discharge coefficients
CD,g of the gas valves of the pulse combustion burners were unknown to Ahrens
et al., they chose (rather arbitrarily) the value CD,g = 0.6 for it.

The initial conditions needed for numerical evaluation of the model equations
(4.12)–(4.19) are chosen in the following way. The numerical evaluation is chosen
to start at a point in time (t = 0) of maximum gauge pressure p0, thus dp

dt (t =

0) = 0. Substitution of dp
dt (t = 0) and p(0) = p0 in differential equation (4.12) for

38 CHAPTER 4. A MODEL SUGGESTED BY AHRENS, ET AL

Parameter Value used Unit Comment

CD,g 0.6 −
cp 1009.7 J/kg K air prop., [27, p.346]

he = hr +
∆Hf

1+r J/kg

hr = cpT0 J/kg

kg =
√

2ρgCD,gAv,g kg1/2 m1/2

MWg 16.043 kg/kmol mol. weight, [27, p.343]
P0 1.01325 × 105 Pa = 1 atm
Ra 287 J/kg K air prop., [27, p.343]
Rg = Ru/MWg J/kg K
Ru 8.31441 × 103 J/kmolK univ. gas const., [27, in back]
T0 300 K
∆Hf 50.016 × 106 J/kg LHV [32, p.543]
ρg = P0/(RgT0) kg/m3

Table 4.2: Model parameters (and auxiliary values to compute model parame-
ters) used for the numerical evaluation of the model equations of Ahrens et al.
The value of the parameter CD,g is that chosen by Ahrens et al. [2]; the other
parameter values are based on air property values (as used by Ahrens et al.) at
a reactants temperature of 300 K (close to the choice of 530◦ R of Ahrens et
al.) and the fuel choice of methane. The reference temperature and pressure
for the LHV of methane is 298.15K and 1 atm, respectively. The air and fuel
properties were looked up in tables in [27] and [32].

the rate of change of the gauge pressure yields the following initial conditions:

p(0) = p0, (4.51)

ṁe(0) = ṁe,0 =
B

C
(p0 + P0), (4.52)

where ṁe,0 denotes the prescribed initial mass flux into the pulse combustor
tailpipe.

The initial (maximum) gauge pressure should be related to the model pa-
rameter Uf in some way in order to obtain a ‘stable’ oscillating solution. As a
first guess, the values of p0 and Uf are chosen as those given by pmax and Uf

in expressions (4.45) and (4.46), respectively, that resulted from the analysis of
Ahrens et al. The value of I in these expressions is chosen to be consistent with
the (incorrect) value used by Ahrens et al., i.e. I/π = 0.375, so that pmax and
Uf are given by

pmax =
1

0.75

P0(1 + r)hr

∆Hf
, (4.53)

Uf =
√

0.1875
RT0(1 + r)3/2

Ab

√
P0

√
hr

∆Hf
. (4.54)

This first choice of parameters p0 (= pmax) and Uf does not result in a stable
oscillating solution: the initial oscillation quickly dies out. Keeping Uf and pmax

constant at the values chosen above, the initial gauge pressure p0 is adjusted

4.6. NUMERICAL IMPLEMENTATION AND EXPERIMENTS 39

0 0.05 0.1 0.15
−200

−150

−100

−50

0

50

100

150

200

Time (s)

G
au

ge
p
re

ss
u
re

(k
P
a
)

(a) p0 = 1.242pmax

0 0.05 0.1 0.15
−200

−150

−100

−50

0

50

100

150

200

Time (s)

G
au

ge
p
re

ss
u
re

(k
P
a
)

(b) p0 = 1.243pmax

Figure 4.3: Gauge pressure as function of time for different, but very close,
initial conditions p0 = (1 + δ)pmax: (a) δ = 0.242, (b) δ = 0.243.

(increased if the oscillations die out, decreased if the amplitude of oscillations
grows continuously) by choosing it to be a multiple of pmax:

p0 = (1 + δ)pmax, (4.55)

for a certain δ > −1. This procedure for searching a ‘stable’ oscillating solution
will yield a set of parameters p0 and Uf satisfying only the requirement of zero
mean gauge pressure in the combustion chamber, not the requirement of the
presence of reactants in the combustion chamber throughout the cycle. However,
for illustrating that the sought-after stable oscillating solution does not exist
(i.e., the pressure oscillations will either grow without limit, or they will die out),
it will suffice. The solution of the model equations will show a similar behaviour
for the pair of model parameters p0 and Uf for which the requirement on the
reactants appears to be satisfied. Of course, the fulfillment of this requirement
cannot be maintained if the pressure oscillations grow too large, or die away.

Figure 4.3 shows plots of the computed gauge pressure versus time for the
values δ = 0.242 and δ = 0.243. The difference of the initial gauge pressures is
very small and the computed gauge pressures appear to be oscillating stably in
the beginning. However, after some time has passed, the graphs show signifi-
cantly different behaviour of the gauge pressure: for δ = 0.242 the oscillations
die out, while for δ = 0.243 the amplitude increases without bounds.

The difference in evolution of the computed gauge pressure for the two
choices of δ is illustrated by the phase diagram shown in Figure 4.4. The phase
path associated with δ = 0.242 starts at (0, 1.242pmax) and spirals inwardly to
the origin. The phase path associated with δ = 0.243 starts at (0, 1.243pmax)
and spirals outwardly.

The graphs clearly shows the influence of the damping: around p = 0, where
for p < 0 the damping is the greatest, the rate of change of the gauge pressure in
absolute sense is decreased and change in gauge pressure is severely inhibited.
The graphs suggest the existence of a limit cycle for a value of δ somewhere
between 0.242 and 0.243. However, for a value of δ slightly different the damping
will continuously increase or decrease and while for some time the phase paths
may stay close to the limit cycle, they will eventually diverge.

40 CHAPTER 4. A MODEL SUGGESTED BY AHRENS, ET AL

−100 −50 0 50 100
−5

−4

−3

−2

−1

0

1

2

3

4

5
x 10

4

d
p
/d

t
(k

P
a/

s)

Gauge pressure p (kPa)

Figure 4.4: Trajectories in phase plane corresponding to the nonlinear model
equation (4.20) for two different, but very close, initial conditions. One tra-
jectory, corresponding to an initial condition p0 = 1.242pmax, spirals inwardly
toward the origin. The other trajectory, corresponding to the initial condition
p0 = 1.243pmax, spirals outwardly.

4.7 Conclusions

In their article [2] Ahrens et al. present a lumped parameter model for a pulse
combustion burner. An energy balance analysis of the combustion chamber,
with simple steady-flow orifice equations describing the reactants inflow and
a heat release given by combustion of the reactants at a constant volumetric
rate, is linked to a plug flow description of the products in the tailpipe. No
energy losses, for example by friction in the tailpipe or heat transfer to the
combustion chamber wall, are modelled. The analysis of Ahrens et al. leads to
a second-order differential equation for the gauge pressure in the combustion
chamber with a negative (linear) damping term associated with the combustion
process and a positive (nonlinear) damping term associated with the inflow of
reactants. The constant volumetric burning rate is equivalent to that of a thin
flame sheet across the combustion chamber moving at a certain constant ‘flame
speed’. Ahrens et al. found this constant ‘flame speed’ and the amplitude of
the pressure variation in the combustion chamber to be uniquely determined if
the solution of their model equation is to satisfy two criteria for stable pulse
combustion burner operation. One criterion they mention is that the mean
gauge pressure in the combustion chamber should be zero (since no energy losses
are modelled). The other criterion is that there should be no accumulation or
depletion of reactants in the combustion chamber. Also, the model equations of
Ahrens et al. impose a certain condition on the model parameters which must be
satisfied for the solution to be oscillatory. Ahrens et al. conclude from this that
a pulse combustion burner with design parameters not satisfying that condition
might not work properly.

4.7. CONCLUSIONS 41

In this chapter, the mathematical model presented by Ahrens et al. has been
examined analytically and numerically. The derivation of the model equations
has been given, largely following the presentation of Ahrens et al. The anal-
ysis shows that the impact of damping of the pressure oscillation by inflow of
reactants diminishes if the amplitude of the oscillation increases. According to
the model equations, the inflow of reactants causes pressure oscillations either
to die out or to continuously increase in amplitude. Other physical processes
than the inflow of reactants, for example a burning rate that is different from
the one used in the model, seem to be responsible for reaching a stable oscilla-
tion. The premise that model parameters of a stably operating pulse combustor
should satisfy the conditions that yield a ‘stable’ oscillatory solution of the model
equations, is therefore questionable. Besides the inflow of reactants, other phys-
ical processes that may influence the stability of oscillations should be included
in the model in order to gain more insight in the conditions under which a pulse
combustor may operate properly.

42 CHAPTER 4. A MODEL SUGGESTED BY AHRENS, ET AL

Chapter 5

A model suggested by
Richards, et al

Note: In a Bachelor’s thesis project at the Eindhoven University of Tech-
nology, Van Mullem and Bastiaans [33] examined the model of Richards
et al. [25], which is discussed in this chapter. They gave a quick investiga-
tion into the effect of changing the air/fuel ratio. This report was studied,
but the discussion in this chapter focuses only on the work presented by
Richards et al.

Richards et al. [25] introduced a mathematical model to describe a combus-
tion system with a continuous fuel supply. This is different from a typical pulse
combustor, where fuel periodically enters the combustion chamber because of
time-dependent pressure differences over valves. They show that pulsation can
occur even for a continuous fuel supply. To indicate the impact of heat transfer
on the pulsating process, they termed it thermal pulse combustion.

The model is a lumped parameter model, taking the combustion chamber as
a control volume. The amount of energy in the combustion chamber is changed
by inflow of reactants, combustion, outflow of combustion products, and heat
transfer to the chamber wall. The combustion process is modelled by a one-step
Ahrrenius law for a bimolecular reaction between fuel and oxidizer. The gases
in the combustion chamber are assumed to be well-stirred. The tailpipe flow
is modelled as a slug flow, i.e. of constant density and driven by the pressure
difference over the tailpipe. Flow from the combustion chamber into the tailpipe
is assumed to be isentropic. Wall friction of the tailpipe gases is taken into
account. It is assumed that the gases are perfect, and that all mixtures of
reactants and products have the same (constant) specific heats. By applying
conservation of mass, energy and species to the control volume, and coupling
this to the tailpipe dynamics by conservation of momentum, Richards et al.
derived a system of four ordinary differential equations.

The numerical results obtained by Richards et al. showed three possible
modes of operation, depending on the model parameters: steady combustion,
flame extinction, or oscillatory combustion. The influence of microscale mixing
was also investigated numerically. The numerical results showed a qualitative
agreement to experimental data.

In this chapter, the mathematical model suggested by Richards et al. will be

43

44 CHAPTER 5. A MODEL SUGGESTED BY RICHARDS, ET AL

investigated. The nomenclature used by Richards et al. is adjusted in order to
ease the comparison with the other models that are investigated in this report.
The numerical results of Richards et al. will be reproduced (for as far as this
was possible). As will be seen in the discussion of the results in this report,
the phase difference between heat release and the acoustic oscillations provides
an intuitive explanation of the system’s behaviour. Although the importance of
the phase difference may be obvious from Rayleigh’s criterion, Richards et al.
did not give it much attention in the discussion of their results.

5.1 Nomenclature

Roman symbols

A–G Auxiliary constants

Â Kinetic constant for fuel reaction [m3/kg s K
1

2]
A′ Modified kinetic constant, = Aρ0

√
T0Sr [1/s]

Atp Area of tailpipe cross-section [m2]
As Surface area of combustion zone [m2]
cp Specific heat for constant pressure [J/kg K]
cv Specific heat for constant volume [J/kg K]
Dtp Tailpipe diameter [m2]
e Specific internal energy [J/kg]
EA Activation energy [J/mol]
f Friction coefficient (in tailpipe) [−]
Ff Friction force (in tailpipe) [N]
h Specific enthalpy [J/kg]

ĥ Heat transfer coefficient [W/m2 K]
L1 First characteristic length, = Vcc/As [m]
L2 Second characteristic length, = Vcc/Atp [m]
Ltp Tailpipe length [m]
M Mach number [−]
ṁ Mass flow rate [kg/s]
MWX Molecular weight of chemical compound X [g/mol]
n Outward normal on control volume boundary [−]
P Pressure (in combustion chamber) [Pa]
q Heat flow per unit of area [J/m2 s]

Q̇ Rate of heat release per unit volume [J/m3 s]
R Specific gas constant [J/kg K]

Ṙf Fuel reaction rate [kg/m3 s]

Ṙo Oxygen reaction rate [kg/m3 s]
Ru Universal gas constant [J/mol K]
RR Auxiliary reaction rate [1/s]

R̂R Auxiliary reaction rate, modified for mixing time [1/s]
Sr Stoichiometric oxygen-fuel mass ratio [−]
t Time [s]

Continued on next page

5.2. DERIVATION OF MODEL EQUATIONS 45

Roman symbols, continued

T Temperature [K]

T̃act Dimensionless activation temperature, = EA/RuT0 [−]
Tw Wall temperature of combustion chamber [K]
u Velocity of tailpipe plug flow [m/s]
uc Characteristic tailpipe velocity, = ṁi/ρ0Atp [m/s]
v Velocity vector (in tailpipe) [m/s]
v2 = v · v [m2/s2]
V Volume [m3]
Y Mass fraction (in combustion chamber) [−]
Z Auxiliary parameter, = ṁ/V [kg/m3 s]

Greek symbols

γ Ratio of specific heats, = cp/cv [−]
∆Hf Heat of combustion per unit mass fuel [J/kg]
Ω Control volume [−]
ρ Density [kg/m3]

τc Combustion time, = cpρ0T0/Q̇ [s]
τcm Combined combustion and mixing time, = τc + τm [s]
τf Flow time, = ρ0/Zi [s]

τHT Heat transfer time, = L1cpρ0T0/ĥTw [s]
τm Mixing time [s]
τwall Friction shear stress at tailpipe wall [N/m2]
χX molal fraction of chemical compound X [−]

Other symbols

˜ (Over variable) Indicates normalized variable
∂Ω Boundary of control volume

Subscripts

0 initial/standard/ambient value
cc combustion chamber
e exit combustion chamber/entrance tailpipe
f fuel (except for Ff and τf , see above)
i inlet of combustion chamber
mix mixture
o oxygen
w combustion chamber wall

Superscripts

∗ average value
tot total (or, stagnation) variables

5.2 Derivation of model equations

In this section the derivation of the model equations will be given, largely fol-
lowing the presentation of Richards et al. For clarity, some in-between steps in

46 CHAPTER 5. A MODEL SUGGESTED BY RICHARDS, ET AL

i
e

ṁi

ṁe

q

Vcc

P0P

Ltp

Figure 5.1: Control volume (i.e., the combustion chamber, with volume Vcc) of
the modelled thermal pulse combustor, with sign conventions and (some) model
parameters. The values of the mass fluxes ṁi at the inlet i, and ṁe at the
tailpipe entrance e are taken positive in the directions indicated. The heat flux
q is directed outward of the combustion chamber.

the derivation are added where Richards et al. only show the resulting equations
or mention the way to get them.

5.2.1 Conservation of energy

The combustion chamber is chosen as a control volume. Let Ω denote the
control volume and ∂Ω its boundary. See Figure 5.1 for a schematic of the
control volume and sign conventions. Conservation of energy over this control
volume is expressed by

d

dt

∫

Ω

ρ(e +
1

2
v2) dV = −

∫

∂Ω

ρv · n(e +
1

2
v2) dA −

∫

∂Ω

Pv · n dA

+

∫

Ω

Q̇ dV −
∫

∂Ω

q · n dA (5.1)

where ρ is the density, e is the specific internal energy, P is the pressure, Q̇ is
the rate of heat release per unit volume, v is the fluid velocity, v2 denotes v ·v, q
is the heat flow per unit area out of the control volume, and n is the outwardly
directed normal on the boundary. The integral on the left-hand side represents
the rate of change of the total amount of energy in the control volume. The
first integral on the right-hand side is the energy flux through the boundary out
of the control volume. The second integral on the right-hand side is the rate of
flow work done by the control volume. The third integral on the right-hand side
is the rate of heat release inside the control volume and the last integral is the
heat flux through the boundary out of the control volume.

It is assumed that the specific kinetic energy inside the control volume is
negligibly small compared to the specific internal energy. The gases (reactants
and the products) are assumed to be perfect, i.e., they obey the perfect gas law

P = ρRT, (5.2)

with R the gas constant and T the temperature, and the ratio of specifics heats
is constant:

γ =
cp

cv
= constant, (5.3)

5.2. DERIVATION OF MODEL EQUATIONS 47

where cp is the specific heat for constant pressure and cv is the specific heat for
constant volume. Also, the specific heats and gas constants of the reactants are
assumed to be equal to those of the products. The control volume is considered
to be well-mixed and therefore the state variables are considered to have a
uniform value over the volume. With the specific internal energy given by

e = cvT, (5.4)

and with the relation
R = cp − cv, (5.5)

and under the assumptions mentioned above, the left-hand side of equation (5.1)
can be written as

d

dt

∫

Ω

ρ(e +
1

2
v2) dV = Vcc

1

γ − 1

dP

dt
, (5.6)

where Vcc is the volume of the combustion chamber.
The conditions at the inlet and exit of the combustion chamber are assumed

to arise from isentropic acceleration of the gases to their inlet and outlet veloc-
ities. Thus,

(
T tot

T

)

i/e

=

(
1 +

γ − 1

2
M2

)

i/e

=

(
P tot

P

) γ−1

γ

i/e

=

(
ρtot

ρ

)γ−1

i/e

, (5.7)

with the subscript i/e denoting the variables at either the inlet (i) or exit (e) of
the combustion chamber. Here T tot, P tot and ρtot are the total, or stagnation,
temperature, pressure and density, respectively. (See Thompson [30, pp. 267–
268] for a derivation of these equations.) Because inside the combustion cham-
ber v2/2 is set to zero (it is assumed to be negligibly small compared to the
specific internal energy), the state variables inside the combustion chamber are
equal to their total state variables:

T tot
cc = T, P tot

cc = P, ρtot
cc = ρ, (5.8)

where the subscript cc expresses the correspondence to the state variables inside
the control volume (i.e., inside the combustion chamber). The Mach number at
the inlet is assumed to be negligibly small, Mi ≈ 0. For the total temperatures
at the inlet and exit there follows

cpTi/e +
v2

i/e

2
= cp

(
1 +

1

2cp
M2

i/eγR

)
Ti/e

= cp

(
1 +

γ − 1

2
M2

i/e

)
Ti/e = cpT

tot
i/e .

(5.9)

Thus, using the relation R = cp − cv (5.5) and with T tot
i = Ti and T tot

e = T ,

∫

∂Ω

v · n
(

ρ(e +
v2

2
) + P

)
dA =

∫

∂Ω

ρv · n
(

v2

2
+ e + RT

)
dA

=

∫

∂Ω

ρv · n
(

cpT +
v2

2

)
dA = cp(ṁeT − ṁiTi), (5.10)

48 CHAPTER 5. A MODEL SUGGESTED BY RICHARDS, ET AL

where use is made of the identities (ρv · n)i = −ṁi and (ρv · n)e = ṁe, the
subscripts indicating values at inlet and exit and ṁe being the mass flow rate
at the entrance of the tailpipe. Note that this result could have been obtained
easier by using the specific enthalpy h = e + P/ρ = cpT and using the fact that
an isentropic flow is adiabatic (i.e., no change in heat content) so that for a
perfect gas the enthalpy does not change.

It should be stressed that in the derivation of equation (5.10), use of the
relation T tot

e = T , prescribing the total temperature at the tailpipe entrance by
isentropic acceleration of gases from the combustion chamber, is valid only for
flow exiting the combustion chamber. For flow in the reverse direction, from
tailpipe into the combustion chamber, the total temperature at the tailpipe
entrance only contributes to the temperature in the combustion chamber, and
should be independent from it. This means that for flow into the combustion
chamber (i.e. when ṁe < 0), the term cpṁeT in equation (5.10) should be
replaced by cpṁeT

tot
e for some appropriate T tot

e based on the temperature and
velocity of the tailpipe gases. Although Richards et al. do not explicitly describe
how they implemented the isentropic acceleration/deceleration of the tailpipe
gases, the term cpṁeT appears in their formulas, without making any distinction
between the cases ṁe < 0 and ṁe ≥ 0. It introduces a modelling error. Most
of the numerical results show a negative mass flux at the tailpipe entrance (i.e.,
flow into the combustion chamber) only for a small portion of a cycle, and at
a relatively low value in absolute sense. Therefore the effect of the modelling
error may be small, although this should be confirmed more rigorously. It
would be preferable to correct the model equations to account for flow from the
tailpipe back into the combustion chamber, but since this chapter is focused
on evaluation of the model and numerical results presented by Richards et al.,
this will not be pursued here. For the remainder of the derivation of the model
equations, it will be assumed that the effect of flow from the tailpipe back into
the combustion chamber is negligible.

The heat flux per unit of area at the boundary of the control volume given
by Newton’s cooling law is q · n = ĥ(T − Tw), where Tw is the combustion

chamber wall temperature and ĥ is a heat transfer coefficient. With ĥ assumed
to be constant and the assumption of uniformity inside the control volume, the
last two integrals of equation (5.1) are given by

∫

Ω

Q̇ dV = Q̇Vcc, (5.11)

∫

∂Ω

q · n dA = −ĥ(Tw − T)As, (5.12)

where As is the surface area of the combustion zone.
For convenience Richards et al. introduce the following definitions:

Zi =
ṁi

Vcc
, (5.13)

Ze =
ṁe

Vcc
, (5.14)

L1 =
Vcc

As
, (5.15)

They call the parameter L1 the first characteristic length and announce a sec-
ond characteristic length to be introduced later. It will be associated with a

5.2. DERIVATION OF MODEL EQUATIONS 49

characteristic velocity in the tailpipe.
Substituting the expressions for the integrals (5.6), (5.10)–(5.12) in the en-

ergy balance equation (5.1) and using the definitions (5.13)–(5.15), the energy
balance equation (5.1) can be written as

1

γ − 1

dP

dt
= cp(TiZi − TZe) + Q̇ +

ĥ

L1
(Tw − T). (5.16)

5.2.2 Conservation of mass

Under the assumption of uniformity, conservation of mass over the control vol-
ume gives d(ρVcc)/dt = ṁi − ṁe. With the definitions (5.13)–(5.14) this yields

dρ

dt
= Zi − Ze. (5.17)

5.2.3 Introducing dimensionless state variables and char-
acteristic times

The dimensionless state variables P̃ , T̃ and ρ̃ are introduced by

P̃ =
P

P0
, (5.18)

T̃ =
T

T0
, (5.19)

ρ̃ =
ρ

ρ0
, (5.20)

where P0 is the ambient pressure, T0 is the ambient temperature and ρ0 =
P0/RT0 (these constants are characteristic state parameters). Using these rela-
tions in the energy conservation equation (5.16) with Ti = T0 and P0 = ρ0T0R,
and noting that P0

γ−1 =
cp

γ ρ0T0 yields

dP̃

dt
= γ

(
Zi

ρ0
+

Q̇

cpρ0T0
+

ĥTw

L1cpρ0T0

)
− γ

(
Ze

ρ0
+

ĥ

L1cpρ0

)
T̃ . (5.21)

For the mass conservation equation (5.17) it is easy to see that

dρ̃

dt
=

Zi

ρ0
− Ze

ρ0
. (5.22)

At this point Richards et al. introduce the following ‘characteristic times’
that are recognizable in the equations (5.21)–(5.22):

τf =
ρ0

Zi
, (5.23)

τHT =
L1cpρ0T0

ĥTw

(5.24)

τc =
cpρ0T0

Q̇
. (5.25)

They call τf a flow time, indicating the time that it takes non-reacting isothermal
gases to pass through the combustion chamber. It can be compared to the

50 CHAPTER 5. A MODEL SUGGESTED BY RICHARDS, ET AL

cold residence time of a steady-state reactor, but since in the pulsating case
it is not a residence time, the term ‘flow time’ was introduced for τf . The
characteristic time τHT is associated with the heat transfer and τc is associated
with the combustion process. Note that τc is not a constant because of Q̇ in the
denominator (to be modelled later). Since a characteristic parameter is usually
a constant, it may be confusing to call τc a characteristic time. Also, it will be
shown later (see p. 67) that the ‘characteristic time’ τHT is not characteristic
for the heat transfer process, contrary to what the terminology may suggest.
Nonetheless, in this report the terminology of Richards et al. is followed, and
the constant τHT and variable τc will be called characteristic times.

Using the characteristic times in the energy and mass conservation equations
(5.21)–(5.22) gives

dP̃

dt
= γ

(
1

τf
+

1

τc
+

1

τHT

)
− γ

(
Ze

ρ0
+

1

τHT

T0

Tw

)
T̃ (5.26)

and
dρ̃

dt
=

1

τf
− Ze

ρ0
. (5.27)

Richards et al. use a differential equation for the temperature rather than
the mass conservation equation (5.27). It is derived as follows. Using the char-

acteristic state parameters (5.18)–(5.20) and the perfect gas law gives P̃ = ρ̃ T̃
and using the mass conservation equation (5.27) it follows that

dP̃

dt
=

d

dt
(ρ̃ T̃) = T̃

dρ̃

dt
+ ρ̃

dT̃

dt
= T̃

(
1

τf
− Ze

ρ0

)
+

P̃

T̃

dT̃

dt
. (5.28)

Solving for dT̃
dt gives

dT̃

dt
=

T̃

P̃

dP̃

dt
−
(

1

τf
− Ze

ρ0

)
T̃ 2

P̃
. (5.29)

With substitution of dP̃
dt from equation (5.26) the time derivative of the dimen-

sionless temperature is expressed in terms of the dimensionless pressure and
temperature:

dT̃

dt
= γ

(
1

τf
+

1

τc
+

1

τHT

)
T̃

P̃
−
(

(γ − 1)
Ze

ρ0
+

1

τf
+

γ

τHT

T0

Tw

)
T̃ 2

P̃
. (5.30)

5.2.4 Rate of heat release and mass fractions in combus-
tion chamber

The rate of heat release (per unit of volume), Q̇, is simply the heat of reaction per
unit of fuel mass, ∆Hf , times the fuel mass reaction rate (per unit of volume),

Ṙf , i.e.

Q̇ = ∆Hf Ṙf . (5.31)

The mass fuel rate of reaction is modelled by a bimolecular reaction rate law
between fuel and oxygen:

Ṙf = ÂT 1/2ρ2YoYf exp(−EA/RuT). (5.32)

5.2. DERIVATION OF MODEL EQUATIONS 51

where Â is some kinetic constant, Yf and Yo are the mass fractions of fuel
and oxygen, respectively, EA is the activation energy and Ru is the universal
gas constant. The mass oxygen rate of reaction is simply the stoichiometric
oxygen-fuel mass ratio, Sr, times the mass fuel rate of reaction:

Ṙo = SrṘf . (5.33)

Relations for the mass fractions Yf and Yo can be derived by considering
mass conservation of species in the control volume under the assumption of
uniformity inside the control volume. Mass conservation of species for the fuel,
for example, is expressed by

d

dt

∫

Ω

ρYfdV = −
∫

∂Ω

ρYfv · ndA −
∫

Ω

ṘfdV, (5.34)

where the left-hand side is the amount of fuel mass added to the control volume
per unit of time, the first integral on the right-hand side is the fuel mass flux
out of the control volume and the second integral on the right-hand side is the
amount of fuel mass consumed by combustion in the control volume per unit of
time. Under the assumption of uniformity inside the control volume this leads
to

d

dt
(ρYf) = −(Yf,eZe − Yf,iZi) − Ṙf , (5.35)

where Yf,i and Yf,e are the fuel mass fractions at the inlet and exit of the
combustion chamber, respectively. Applying the chain rule of differentiation
yields

ρ
dYf

dt
+ Yf

dρ

dt
= −(Yf,eZe − Yf,iZi) − Ṙf . (5.36)

This equation can be expressed in the dimensionless pressure and temperature
by using the identities ρ = ρ0ρ̃ and ρ̃ = P̃ /T̃ and substitution of the mass
conservation equation (5.27) for dρ̃

dt :

P̃

T̃

dYf

dt
= −

(
1

τf
− Ze

ρ0

)
Yf − (Yf,e

Ze

ρ0
− Yf,i

Zi

ρ0
) − Ṙf

ρ0
. (5.37)

From (5.31) and (5.25) it follows that

Ṙf

ρ0
=

Q̇

ρ0∆Hf
=

1

τc

cpT0

∆Hf
(5.38)

and with Zi

ρ0
= 1

τf
by definition of τf (see (5.23)) equation (5.37) can be written

as

P̃

T̃

dYf

dt
= −

(
Yf,e

Ze

ρ0
− Yf,i

1

τf

)
−
(

1

τf
− Ze

ρ0

)
Yf − 1

τc

cpT0

∆Hf
. (5.39)

With the assumption of uniformity inside the control volume it follows that
Yf,e = Yf , thus

dYf

dt
=

T̃

P̃

(
1

τf
(Yf,i − Yf) − 1

τc

cpT0

∆Hf

)
. (5.40)

Note that the relation Yf,e = Yf used in the derivation of equation (5.40) is
valid only for flow from the combustion chamber into the tailpipe. For flow in the

52 CHAPTER 5. A MODEL SUGGESTED BY RICHARDS, ET AL

reverse direction, from the tailpipe into the combustion chamber, the fuel present
in the tailpipe only contributes to the mass fuel fraction in the combustion
chamber, and should be independent from it. Equation (5.40) is used as model
equation by Richards et al. without making any distinction between Ze ≥ 0
(i.e., flow is from the combustion chamber into the tailpipe) and Ze < 0 (i.e.,
flow is from the tailpipe into the combustion chamber). Recall that the model
equations of this chapter are derived under the assumption that the flow from
the tailpipe back into the combustion chamber is negligible (see the discussion
in the first new paragraph after equation (5.10) on page 48).

The equation for conservation of the oxygen mass fraction can be derived in
a completely analogous manner, leading to a similar expression only differing
in the last term because the reaction rate is a factor Sr higher (see (5.33) and
(5.38)):

dYo

dt
=

T̃

P̃

(
1

τf
(Yo,i − Yo) −

1

τc

SrcpT0

∆Hf

)
. (5.41)

An expression for the characteristic combustion time τc in terms of the mass
fractions and the dimensionless pressure P̃ = P/P0 and temperature T̃ = T/T0

is given by

1

τc

(5.25)
=

Q̇

cpρ0T0

(5.31)
=

Ṙf∆Hf

cpρ0T0

(5.32)
=

∆Hf

cpT0
ρ0T

1/2
0 Â

P̃ 2

T̃ 3/2
YoYf exp

(
− EA

RuT0T̃

)
.

(5.42)

Richards et al. simplified the equations by assuming stoichiometric inlet con-
ditions and complete combustion, i.e., burnt fuel is completely converted to car-
bon dioxide and water molecules. Then, at all times the oxygen mass fraction
is given by Yo = SrYf . Substituting this expression for Yo in (5.42) and writing

A′ = Âρ0T
1/2
0 Sr and T̃act = EA/RuT0 gives

1

τc
= A′ ∆Hf

cpT0

P̃ 2

T̃ 3/2
Y 2

f exp(−T̃act/T̃). (5.43)

Values used by Richards et al. for propane reaction were obtained from a paper
by Kretschmer and Odgers [18] and are given by A′ = 3.85×108 s−1 and T̃act =

50, where the value T̃act corresponds to an activation energy of 30 kcal/kmol.

Richards et al. remark that this reaction rate can be used for fuel lean com-
bustion, although the computed oxygen levels will be artificially low in that
case. But this seems to be inconsistent with the general reaction rate that is
described in the paper of Kretschmer and Odgers [18], on which Richards et al.
based their reaction rate parameters. The general reaction rate that is given in
the article of Kretschmer and Odgers depends on the equivalence ratio, which
is absent in the reaction rate that Richards et al. prescribed. How the reaction
rate of Richards et al. is distilled from the one given by Kretschmer and Odgers
should be examined more closely.

5.2. DERIVATION OF MODEL EQUATIONS 53

5.2.5 Coupling to tailpipe dynamics by conservation of
momentum

For the coupling of gases exiting the combustion chamber with the dynamics in
the tailpipe it is assumed that the gases in the tailpipe move as a slug flow, i.e.,
moving as a whole under the pressure difference between the entrance of the
tailpipe and the exit of the tailpipe (at atmospheric pressure). A certain wall
friction force Ff is assumed to be acting in the tailpipe. Applying Newton’s law
then gives

(Pe − P0)Atp + Ff =

∫

Ωtp

ρ dV
du

dt
, (5.44)

where Atp is the tailpipe cross-section area, u is the velocity of the tailpipe gases
(taken positive if directed toward the tailpipe exit), and the integral is taken
over the tailpipe volume. Richards et al. approximate the volume integral of the
density in the tailpipe by

∫

Ωtp

ρ dV = ρeAtpLtp, (5.45)

where Ltp is the tailpipe length (i.e., AtpLtp is the tailpipe volume), yields

(Pe − P0)Atp + Ff = ρeAtpLtp
du

dt
. (5.46)

Note that Richards et al. assume that the (average) density in the tailpipe
at any moment is equal to the density of the gases entering the tailpipe at that
moment. This means that at moments of low density at the tailpipe entrance,
the mass of the gases in the tailpipe is underestimated, while it is overestimated
when the density is high. Therefore an error in the velocity of the gases in the
tailpipe is produced. The impact of the error introduced in the velocity is not
clear. The fact that the velocity appears not only in the momentum equation,
but, via the mass outflow (ṁe), also in the model equations for the pressure and
temperature, obscures it even further.

The issue can easily be resolved by introducing an extra differential equation,
which describes the rate of change of the average density in the tailpipe. Using
ρtp =

mtp

Vtp
for the average density in the tailpipe, where mtp denotes the mass of

the tailpipe gases and Vtp = LtpAtp is the tailpipe volume, and assuming that
the tailpipe gases are of uniform density and flow toward the tailpipe exit, it
follows that

dρtp

dt
=

1

Vtp
lim

∆t→0

∆mtp

∆t
=

(ρe − ρtp)Atpu

Vtp
=

(ρe − ρtp)u

Ltp
. (5.47)

Instead of the density ρe at the tailpipe entrance, the average density of the
tailpipe gases ρtp should be used in the derivation of the momentum equation.

Preliminary results incorporating the adjustments to the tailpipe density as
described above, suggest that the modifications may have a significant effect. For
example, under the default parameter values introduced later in this chapter,
adjusting the momentum equation as described above decreases the peak-to-
peak pressure amplitude of oscillations in the combustion system from 71 kPa
to 47 kPa, and increases the frequency from 150Hz to 164Hz. However, since

54 CHAPTER 5. A MODEL SUGGESTED BY RICHARDS, ET AL

this chapter is focused on evaluation of the model and numerical results of
Richards et al., the differential equation for the average density in the tailpipe
and associated changes to the model equations are not implemented here.

A characteristic velocity uc and an associated second characteristic length
L2 are defined by

uc ≡ ṁi

ρ0Atp
=

Zi

ρ0

Vcc

Atp
=

1

τf

Vcc

Atp
(5.48)

and

L2 ≡ Vcc

Atp
. (5.49)

Thus L2 = ucτf , expressing the characteristic length L2 in terms of the char-
acteristic velocity uc and the flow time τf . Introducing the dimensionless ve-

locity ũ = u/uc and the dimensionless state variables P̃e = Pe/P0, T̃e = Te/T0,
ρ̃e = ρe/ρ0, equation (5.46) can be written as

P0(P̃e − 1)Atp + Ff = AtpLtpρ0ρ̃e
L2

τf

dũ

dt
(5.50)

and thus
dũ

dt
= (P̃e − 1)

P0τf

LtpL2ρ0ρ̃e
+

τf

L2

Ff

AtpLtpρ0ρ̃e
. (5.51)

The friction force in the tailpipe is given by the product of the surface area of
the tailpipe wall and the friction shear stress at the wall. Taking the tailpipe to
be cylindrical, its surface area is given by πDtpLtp, where Dtp is the tailpipe di-
ameter. Using Schlichting’s [26, pp. 596–597] friction shear stress on the tailpipe
wall τwall = 1

8fρeu
2, where f is the dimensionless coefficient of resistance (here

called the friction coefficient), the wall friction force can be expressed as

Ff = −1

8
(πDtp Ltp)fρeu

2 u

|u| = −π

8
Dtp Ltp fρ0ρ̃e

(
L2

τf

)2

ũ2 ũ

|ũ| , (5.52)

where the factor −u/|u| gives the right direction of the friction force, i.e., against
the flow direction. Substitution of this expression for the friction force into
equation (5.51) and using the relations Pe = ρeRTe, P0 = ρ0RT0 (thus ρ̃e =

P̃e/T̃e) and Atp = π
4 D2

tp gives

dũ

dt
= (P̃e − 1)

RT0τf

LtpL2

T̃e

P̃e

− L2f

2Dtpτf

ũ3

|ũ| . (5.53)

5.2.6 Complete set of model equations

As mentioned before, the state variables in the tailpipe entrance are obtained
by isentropic acceleration of the gases leaving the combustion chamber to the
tailpipe entrance Mach number. For completeness, the equations relating the
pressures and temperatures in the tailpipe and the combustion chamber are
worked out below. Richards et al. do not explicitly describe how the state
variables at the tailpipe entrance are obtained, except that isentropic accelera-
tion/deceleration is used.

By using the total state relations (5.7), the state variables in the tailpipe
can be expressed in their total (or, stagnation) variables, which, for flow from

5.2. DERIVATION OF MODEL EQUATIONS 55

the combustion chamber into the tailpipe, are equal to the state variables in the
combustion chamber. Using the Mach number Me = u/

√
γRTe for the tailpipe

flow, this yields

T

Te
= 1 +

γ − 1

2
M2

e = 1 +
γ − 1

2

u2

γRTe
, (5.54)

P

Pe
=

(
T

Te

) γ
γ−1

. (5.55)

Solving equation (5.54) for Te gives

Te = T − γ − 1

2

u2

γR
= T

(
1 − γ − 1

2

u2

γRT

)
. (5.56)

Thus, the temperature and pressure at the tailpipe entrance, in normalized form,
are given by

T̃e = T̃

(
1 − γ − 1

2

(
L2

τf

)2
ũ2

γRT0T̃

)
, (5.57)

P̃e = P̃

(
T̃e

T̃

) γ
γ−1

. (5.58)

Note that, because the state variables at the tailpipe entrance are derived from
those in the combustion chamber (via isentropic acceleration), these equations
are valid only for flow from the combustion chamber into the tailpipe.

The last term that needs to be specified to complete the mathematical model
is Ze/ρ0. This term is specified by considering mass conservation: with ṁe =
Atpρeu it follows that

ṁe

ρ0
= Atpucρ̃eũ = Atp

L2

τf
ρ̃eũ (5.59)

and thus, by definitions of Ze and L2 and since ρ̃e = P̃e/T̃e,

Ze

ρ0
=

ṁe

ρ0Vcc
=

Atp

Vcc

L2

τf
ρ̃eũ =

1

τf

P̃e

T̃e

ũ, (5.60)

completing the model equations.
The model equations are summarized by

dP̃

dt
= γ

(
1

τf
+

1

τc
+

1

τHT

)
− γ

(
Ze

ρ0
+

1

τHT

T0

Tw

)
T̃ , (5.61)

dT̃

dt
= γ

(
1

τf
+

1

τc
+

1

τHT

)
T̃

P̃

−
(

(γ − 1)
Ze

ρ0
+

1

τf
+

γ

τHT

T0

Tw

)
T̃ 2

P̃
, (5.62)

dũ

dt
= (P̃e − 1)

RT0τf

LtpL2

T̃e

P̃e

− L2f

2Dtpτf

ũ3

|ũ| , (5.63)

dYf

dt
=

T̃

P̃

(
1

τf
(Yf,i − Yf) − 1

τc

cpT0

∆Hf

)
. (5.64)

56 CHAPTER 5. A MODEL SUGGESTED BY RICHARDS, ET AL

The time-dependent variables at the tailpipe entrance (found from isentropic
acceleration of the gases in the combustion chamber) and the time-dependent
combustion time τc are given by

T̃e = T̃

(
1 − γ − 1

2

(
L2

τf

)2
ũ2

γRT0T̃

)
, (5.65)

P̃e = P̃

(
T̃e

T̃

) γ
γ−1

, (5.66)

Ze

ρ0
=

1

τf

P̃e

T̃e

ũ, (5.67)

1

τc
= A′ ∆Hf

cpT0

P̃ 2

T̃ 3/2
Y 2

f exp(−T̃act/T̃). (5.68)

The constant parameters are given by

L1 =
Vcc

As
, (5.69)

L2 =
Vcc

Atp
, (5.70)

τf =
ρ0

Zi
=

ρ0Vcc

ṁi
, (5.71)

τHT =
cpL1ρ0T0

ĥTw

. (5.72)

5.3 Numerical implementation

In this and the following section, the system of model equations (5.61)–(5.72) is
numerically investigated. This section focuses on the numerical implementation
of the model equations. Numerical results will be discussed in the next section.
First the system of model equations (5.61)–(5.72) is rewritten to a form more
suitable for numerical implementation, as will be explained below.

5.3.1 Rewriting the model equations

Close inspection of the system of equations (5.61)–(5.72) reveals that numerical
implementation of several parameters needs to be done carefully. It concerns the
‘characteristic times’: τf , τc and τHT . Of these parameters, only the inverse of
τc and τHT are used, while τf shows up in the equations both inverted and not
inverted. For the sake of numerical experimenting, it is useful if in the numerical
implementation of the model equations the heat transfer to the combustion
chamber wall can be ‘turned off’ (for example by specifying ĥ = 0) or that the
combustion process can be ‘turned off’ (for example by specifying ∆Hf = 0).

A glance at expression (5.72) for τHT (with ĥ in its denominator) makes it
clear that this parameter should be implemented numerically by specifying and
using only its inverse. The same goes for τc (see expression (5.68)), although

the factor 1
τc

in the term 1
τc

cpT0

∆Hf
in equation (5.64) should be substituted by

the expression (5.68), yielding A′ P̃ 2

T̃ 3/2
Y 2

f exp(−T̃act/T̃) for the term in equation

5.3. NUMERICAL IMPLEMENTATION 57

(5.64). Implementing τf so that its inverse 1
τf

= ṁi

ρ0Vcc
may take the value 0 is

rather complicated (if not impossible) because both τf (in (5.63)) and 1
τf

(in

(5.61)–(5.65) and in (5.67)) are used. It is useful to be able to freely specify the
mass influx ṁi, and thus 1/τf , including the value 0 because then the model
equations can be used to describe a pulse combustor with varying mass inflow
(e.g., in the case of a combustor equipped with flapper valves). The problems
with the parameter τf arise from the non-dimensionalizing of the velocity of
the fluid in the tailpipe with the factor uc = L2/τf (see expressions (5.48)
and (5.49)). It is clear that in case of a pulse combustor with flapper valves, for
example, the mass inflow and the fluid velocity in the tailpipe are hardly directly
related. A more natural factor for non-dimensionalizing the fluid velocity in the
tailpipe would be the speed of sound of the ambient environment

√
γRT0, with

which the speed in the tailpipe (and thus the particle velocity in the tailpipe)
can be compared. Retracing the steps leading to the system of model equations
(5.61)–(5.72) shows that all the parameters τf in equations (5.61), (5.62) and
(5.64) are related to the mass influx ṁi, while all those in equation (5.63)
and expressions (5.65) and (5.67) are related to the tailpipe fluid velocity uc.
Thus, the problem with τf can be solved by introducing a different characteristic
velocity in cases where τf is related to (the inverse of) the tailpipe velocity and
numerically implementing and using only the inverse of τf where τf is related
to (the inverse of) the mass influx. Then the value ṁi = 0 can be used (yielding
1
τf

= 0).

The system of model equations (5.61)–(5.72) will now be rewritten, taking
into account the comments mentioned above. A characteristic speed for the
fluid velocity in the tailpipe is denoted by u0 in order to avoid confusion with
the uc used earlier. The following substitutions are made in the model equations
(5.61)–(5.72). The parameter 1/τf is replaced by the constant A in equations
where it is associated with the mass influx, thus in model equations (5.61),
(5.62) and (5.64); it is replaced by u0/L2 where it is associated with the tailpipe
fluid velocity, thus in (5.63), (5.65) and (5.67). The parameter 1/τc (see (5.68))

is written as 1/τc = B · RR, with B =
∆Hf

cpT0
and RR the reaction rate per

unit of mass RR =
Ṙf

ρ0
= A′ P̃ 2

T̃ 3/2
Y 2

f exp(−T̃act/T̃) (see (5.38)). To be able to

vary the wall temperature Tw independently of the heat transfer coefficient ĥ

the parameter 1
τHT

is replaced by 1
τHT

= CD with C = ĥ
cpL1ρ0

and D = Tw

T0
.

For ease of notation three extra constants are introduced. Two are given by
the constants in the two terms of the equation (5.63) for the tailpipe fluid
velocity: E = RT0

Ltpu0
and F = fu0

2Dtp
. (Note that the substitution u0 = L2

τf
is

applied.) The term ũ3

|ũ| in the same equation is replaced with the equivalent

ũ|ũ|, thereby avoiding divisions by zero. The third extra constant, G, is given

by defining Z̃e ≡ P̃e

T̃e
ũ (cf. expression (5.67), coming from (5.60)) and requiring

that GZ̃e = Ze

ρ0
. Using expression (5.60) this gives G = u0

L2
. The differential

equation for the temperature (5.62) is replaced by the equivalent equation (5.29)

from which the final form was found. Since dP̃
dt must be computed anyway, this

saves some computations and is more compact. Note that the equation for the
temperature (5.62) could also be replaced by the much simpler equation for the
density (5.27), and then use the perfect gas law to obtain the temperature. In

58 CHAPTER 5. A MODEL SUGGESTED BY RICHARDS, ET AL

order to be able to make a direct comparison of the results obtained here with
those obtained by Richards et al., this will not be implemented.

The adjusted equations are:

dP̃

dt
= γ

(
A + B · RR + CD − (C + GZ̃e) T̃

)
, (5.73)

dT̃

dt
=

(
dP̃

dt
− (A − GZ̃e)T̃

)
T̃

P̃
, (5.74)

dũ

dt
= E(P̃e − 1)

T̃e

P̃e

− F ũ |ũ|, (5.75)

dYf

dt
= (A(Yf,i − Yf) − RR)

T̃

P̃
, (5.76)

where RR, P̃e, T̃e and Z̃e are functions of P̃ , T̃ , ũ and Yf given by

RR = A′ P̃ 2

T̃ 3/2
Y 2

f exp(−T̃act/T̃), (5.77)

T̃e = T̃

(
1 − γ − 1

2

u2
0

γRT0

ũ2

T̃

)
, (5.78)

P̃e = P̃

(
T̃e

T̃

) γ
γ−1

, (5.79)

Z̃e =
P̃e

T̃e

ũ (5.80)

and A, B, C, D, E, F and G are constants given by

A =
1

τf
=

ṁi

ρ0Vcc
, (5.81)

B =
∆Hf

cpT0
, (5.82)

C =
ĥ

L1cpρ0
, (5.83)

D =
Tw

T0
, (5.84)

E =
RT0

Ltpu0
, (5.85)

F =
u0f

2Dtp
, (5.86)

G =
u0

L2
. (5.87)

The constants L1 and L2 are the two characteristics lengths introduced before.
Their definitions are repeated below for convenience:

L1 =
Vcc

As
, (5.88)

L2 =
Vcc

Atp
. (5.89)

5.3. NUMERICAL IMPLEMENTATION 59

Variable Initial value Unit

P̃ 1.0 −
T̃ 5.0 −
ũ 0.0 −
Yf 0.06 −

Table 5.1: Initial conditions for the numerical evaluation of model equations
(5.73)–(5.89). These are the same initial conditions as used by Richards et
al. [25].

The adjusted model equations can be implemented numerically without dif-
ficulty.

5.3.2 Specifying model parameters and initial conditions

The system of model equations (5.73)–(5.89) is numerically implemented using
Matlab [29] software. The standard Matlab ODE-solver ode451 is used to
solve the equations. The implementation in Matlab is straightforward; the
codes used can be found in Appendix C.

In order to evaluate the system of model equations (5.73)–(5.89) numerically,
the model parameters and suitable initial conditions need to be specified. Where
possible, these are chosen equal to those used by Richards et al. The initial
conditions and most parameter values are stated clearly in the article of Richards
et al., but some critical parameter values are not specified explicitly. This causes
some difficulties in trying to reproduce their numerical results. The choices for
the model parameters not specified by Richards et al. are discussed below.

The initial conditions used by Richards et al. are given in Table 5.1; they
are also used for the numerical evaluation in this report. The values correspond
to a combustion chamber that is filled with a stoichiometric fuel-air mixture at
ambient pressure, with no outflow and a temperature that is high enough to get
the combustion process going immediately. This choice of initial conditions (for
the temperature in particular) may be unrealistic, but Richards et al. mention
that the choice of initial conditions did not affect the final results.

The model parameters that are specified explicitly by Richards et al., and
that are used for the numerical evaluation of the model equations in this report,
are given in Table 5.2. Richards et al. based these values on properties of the
thermal pulse combustor they used in experiments, running on propane as fuel.

Values for the model parameters that are not specified explicitly by Richards
et al., are presented in Table 5.3. The choices for the ambient pressure P0 and
temperature T0 are natural. The choice for R (equal to that of air) is less
natural than it seems; this will be discussed below. Choosing the specific heat,
cp, and the ratio of specific heats, γ, is more difficult, since they depend on
the temperature of the mixture in the combustion chamber, as well as on its
composition. Note that because of the relation R = cp − cv = cp

γ−1
γ used in

the derivation of the model equations, the parameters cp, γ and R cannot be
specified independently of each other. The values chosen for cp and γ are based

1See footnote 2 on page 18

60 CHAPTER 5. A MODEL SUGGESTED BY RICHARDS, ET AL

Parameter Value used Unit

A′ 3.85 × 108 s−1

Dtp 0.0178 m
f 0.030 −
ĥ 120 W/m2/K
L1 0.0119 m
L2 0.8486 m
Ltp 0.6100 m

T̃act 50 −
Tw 1000 K
Yf,i 0.06 −
τf 0.030 s

Table 5.2: Model parameters for the evaluation of model equations (5.73)–(5.89),
as specified by Richards et al. in their article [25].

Parameter Value used Unit

cp 1350 J/kg · K
P0 1.01325 × 105 Pa
R 287 J/kg · K
T0 300 K
u0 =

√
γRT0 m/s

∆Hf 5 × 107 J/kg
γ = cp/(cp − R) −
ρ0 = P0/RT0 kg/m3

Table 5.3: Model parameters for the numerical evaluation of model equations
(5.73)–(5.89) that are not (explicitly) specified by Richards et al. in their article
[25].

5.3. NUMERICAL IMPLEMENTATION 61

on those specified in some articles in which the model equations of Richards et
al. are used. These choices will be discussed below.

Specifying the gas constant

The gas constant R is chosen to be that of air (i.e., R = 287 J/kg · K, see Table
2, p.343 of Reference [27]). This seems a natural choice, since it is used in the
derivation of the model equations to define the ambient density ρ0 = P0/RT0.
But it should be noted that it is also used as the gas constant of the mixture in
the combustion chamber, as can be seen from the relation P = ρRT . Since the
value of the gas constant depends on the composition of the mixture, some kind
of average value should be specified. Given that the fuel is propane (C3H8), as
used by Richards et al., the gas constants for the reactants (Rr) and the products
(Rp) are easily calculated from the molecular weights of the compounds forming
the mixtures. From the reaction equation

C3H8 + 5 (O2 + 3.76N2) −→ 3CO2 + 4H2O (g) + 18.8N2, (5.90)

it follows that the molecular weights of the reactants (MWr) and products
(MWp) are given by

MWr = χC3H8
MWC3H8

+ χO2
MWO2

+ χN2
MWN2

(5.91)

=
44.094 + 5 · 31.999 + 18.8 · 28.013

24.8
= 29.465 g/mol

and

MWp = χCO2
MWCO2

+ χH2OMWH2O + χN2
MWN2

(5.92)

=
3 · 44.010 + 4 · 18.015 + 18.8 · 28.013

25.8
= 28.323 g/mol.

Here χX denotes the molal fraction of a compound X. The values for the
molecular weights of the compounds are obtained from Reference [27, Table
2, p.344]. The gas constants are given by Rr = Ru/MWr = 282.2 J/kg · K and
Rp = Ru/MWp = 293.6 J/kg · K, where Ru = 8.31441 J/mol · K is the universal
gas constant (see Reference [27, in back]). The gas constant of a reactants-
products mixture in the reaction chamber will lie somewhere in between these
two values. It is approximately equal to the gas constant of the ambient envi-
ronment. Thus, the chosen value for R is rather convenient: a different choice
would yield a scaling density ρ0 different from that of the ambient environment.

Specifying the specific heat and ratio of specific heats

Choosing proper values for the specific heat (cp) and the associated ratio of
specific heats (γ =

cp

cp−R) is more complicated, since they depend on the tem-

perature as well as on the composition of the mixture in the combustion cham-
ber. The variation with the temperature of the specific heats of the products
and reactants mixtures can be obtained from literature. Table 3s, p.346, from
Reference [27] shows the temperature dependency of the molal specific heats at
constant pressure, c̄p, for various gases. From this table, the molal specific heat

62 CHAPTER 5. A MODEL SUGGESTED BY RICHARDS, ET AL

c̄p = a + b T + c T 2 + d T 3, [T in K, c̄p in J/mol · K]

Mixture a b c d

Reactants 26.88 1.416 × 10−2 −0.1655 × 10−5 −0.6336 × 10−9

Products 28.65 0.6108 × 10−2 0.3453 × 10−5 −1.782 × 10−9

Table 5.4: Temperature dependency of molal specific heats at constant pressure
for the reactants and products. Range of validity: 273–1500 K. The values are
compiled from Table 3s, p.346, in Reference [27].

of a mixture of compounds, c̄p,mix can be obtained by using the relation (see
Reference [27] for instance):

c̄p,mix =
∑

i

χic̄p,i. (5.93)

Here the sum is taken over all compounds of the mixture and χi and c̄p,i are
the corresponding mass fractions and molal specific heats, respectively. The
resulting (polynomial) expressions in temperature for the molal specific heats of
the reactants and products are given in Table 5.4. The specific heat at constant
pressure of a mixture (cp,mix) can be computed from the molal specific heat
(c̄p,mix) by using the relation

cp,mix =
c̄p,mix

MWmix
, (5.94)

where MWmix is the mixture’s molecular weight.
Figure 5.2 shows plots of the specific heats at constant pressure for the reac-

tants and products over the temperature range 273–1500K, the range of validity
of the values from the consulted reference. The plots show that the specific heats
vary significantly with the temperature. In the specified temperature range, the
specific heat rises roughly by 30 J/kg · K for every 100K the temperature rises.

The mean temperature in the combustion chamber is not known before-
hand. It will lie somewhere in between 300K, the temperature of the reactants
upon entrance, and 2267K, the adiabatic flame temperature of a stoichiometric
propane-air mixture (see Table B.1, p.543, in Reference [32]). Without addi-
tional information on the combustion process and associated temperatures it is
difficult to make a sensible choice for the model parameter cp.

Choosing parameters based on an average temperature from the numerical
results of Richards et al. did not yield the same numerical results. Also, the
numerical solution of the model equations is rather sensitive to the choice of
the model parameters. Since several model parameters need to be ‘guessed’ in
order to reproduce the numerical results of Richards et al., this means that a
process of trial and error is laborious. In the end, the model parameters used for
the numerical evaluation of the model equations were obtained from articles [8]
(co-authored by Richards) and [12], in which the model of Richards et al. is
used.

Both the articles use cp = 1200 J/kg · K and γ = 1.27. Using the relation
R = cp

γ−1
γ gives R = 255.1 J/kg · K for the gas constant, nowhere near the

value for the mixture in the combustion chamber computed above. Besides, the
numerical results when evaluating the model equations with these parameters

5.4. NUMERICAL RESULTS AND DISCUSSION 63

200 400 600 800 1000 1200 1400 1600
1000

1050

1100

1150

1200

1250

1300

1350

1400

1450

Reactants
Products

Temperature (K)

S
p
ec

ifi
c

h
ea

t
at

co
n
st

an
t

p
re

ss
u
re

,
c p

(J
/k

g
·K

)

Figure 5.2: Temperature dependency of specific heats at constant pressure of
the reactants and products.

are different from those of Richards et al. The specific heat associated with γ =
1.27 and R = 287 J/kg · K is given by cp = Rγ

γ−1 = 1350.0 J/kg · K. Using these
values for the numerical evaluation of the model equations yields results very
similar to those of Richards et al., if ∆Hf = 5× 107 J/kg is used for the heat of
combustion. Table B.1, p.543, in Reference [32] gives ∆Hf = 4.6357× 107 J/kg
for the heat of combustion (lower heating value) of propane, so the value used
for obtaining the numerical results could be a rough approximation. It should be
noted that the numerical solution of the model equations showed a very different
behaviour for values of ∆Hf less than 4.88 × 107 J/kg, showing the sensitivity
to the model parameters. The article [19] (also co-authored by Richards), found
after the numerical results presented in this section were already obtained, also
uses these model parameter values (for γ, cp, R and ∆Hf). This makes it more
likely that the values mentioned above were indeed used by Richards et al. in
their original article.

A remark on the parameter choices is in order. In none of the articles is the
choice for the model parameters cp and γ motivated. In fact, the choices do not
seem to correspond to the mean temperature in the combustion chamber that
the numerical evaluation of the model equations yields. Also, the numerical
solution of the model equations is sensitive to these parameters. This raises the
question whether the solution to the model equations would not show a very
different behaviour if the temperature dependency of cp and γ were accounted
for.

5.4 Numerical results and discussion

The model equations were solved with the Matlab-codes presented in Appendix
C. This appendix also contains all the codes that were used to produce the plots

On request of DLF Sustainable, pages 64–106 of

this Interim Report have been removed from the

public domain.

Chapter 6

Conclusions and suggestions
for future research

In this work we have analyzed three simple models to determine conditions
under which they can describe stable operation of a pulse combustor. Each
model is described and analyzed its own chapter. We refer to the end of those
chapters for conclusions on the models.

According to our analysis, the models of Kilicarslan and of Ahrens et al.
seem to be too simplified to describe a stably pulsating combustion process. In
contrast to these two, the model of Richards et al. accounts for heat transfer
to the combustion chamber wall and friction of the tailpipe flow and uses a
more detailed description of the burning rate. Numerical experiments show that
by incorporating these physical processes, stable pulsations can be achieved.
Stability analysis of the steady states has been shown to be very useful for
establishing conditions under which stable pulse combustor operation may be
possible, in a fraction of the time that would be needed for numerical integration
of the model equations.

In our opinion, for a sufficiently realistic description of an (aerovalved) pulse
combustor, the three models lack two important features. Firstly, a more
detailed description of the wave dynamics is needed. Secondly, they do not
model the effect of an aerovalve on the operation of a pulse combustor. While
aerovalved pulse combustion has been modelled in the work of Narayanaswami
and Richards [19] and of Richards and Gemmen [24] by extending the model of
Richards et al. (which was discussed in Chapter 5), it still results in a lumped
parameter model, that provides little insight into the wave dynamics. Therefore,
the development of a one-dimensional model, capable of providing an approxi-
mation to the wave dynamics inside an aerovalved pulse combustor, should be
the first step in the follow-up research.

The one-dimensional modelling of aerovalved pulse combustion can be di-
vided into a number of submodelling problems.

- The one-dimensional equations of gas dynamics need to be formulated, in-
cluding energy sources (from combustion) and energy sinks and dissipative
processes (such as heat transfer, wall friction). These describe the wave
dynamics in the system, driven by combustion and damped by dissipative
processes.

107

108CHAPTER 6. CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

- The heat released by combustion needs to be quantified. Factors of in-
fluence on this are the mixing processes of fuel and oxidizer, the mixing
of reactants and hot products, and a chemical reaction rate. In turn, the
mixing processes depend on the flow field and injection characteristics.

- The geometry of the pulse combustor needs to be specified. It could be
considered as a continuous volume, including aerovalve, combustion cham-
ber and tailpipe, in which the wave dynamics are described.

- Finally, boundary conditions, describing the effects of the aerovalve inlet
and the tailpipe exit, need to be specified.

These submodels can be taken from literature, with the model presented by
Barr and Dwyer [4] as an interesting starting point. In the modelling process,
the temperature dependency of the specific heat needs to be considered. To
gain insight into the pulse combustion process, the contributions of the various
physical terms to the energy of the oscillations need to be quantified.

The main focus of a follow-up research project should be on developing a
numerical scheme, that is capable of approximating the solution of the model
equations for given geometry and boundary conditions with sufficient accuracy.
Of course, a simple mathematical model will not be able to predict the exact
behaviour of a real pulse combustor, so it may be questioned how accurate the
numerical method needs to be. It is desirable that the calculated contributions
of the various physical processes to the operation characteristics are not affected
by artificial effects introduced by the numerical model. Specifically:

- Numerical dispersion. Phase differences between heat release by com-
bustion and the acoustic waves drive the pulse combustion process, and
it is very sensitive to these differences. Therefore, the numerical method
needs to limit the numerical dispersion.

- Numerical dissipation. Damping processes affect the amplification of
the system’s acoustics, which may significantly affect the amplitude of the
oscillations in the system. Also, damping processes may affect the system’s
frequency, which in turn affects the phase difference between heat release
and the acoustic waves. Therefore, the numerical method also needs to
limit the numerical dissipation.

- Numerical accuracy. Finally, the nature of pulse combustion opera-
tion is in the amplification and maintenance of disturbances, by favorably
linking heat release to resonant acoustics. Thus, a numerical method for
solving model equations that capture this nature, will be susceptible to
(numerical) disturbances. Therefore, the numerical method needs to be
sufficiently accurate.

Of course, the important question is: How accurate is ‘sufficiently accurate,’
and how much numerical dispersion and dissipation may be allowed? Also, are
these properties of a numerical scheme indeed as important as suggested above?
These questions are important elements in the verification of the numerical
model (i.e., the process of establishing whether the numerical model accurately
represents the model equations). For verification purposes, benchmark problems
and/or problems with an analytical solution need to be selected.

109

The final question is: Is the model capable of capturing the behaviour of a
pulse combustor, at least in a qualitative sense? Of course, a one-dimensional
model cannot describe the pulse combustion process accurately. Conditions for
which the one-dimensional approximation may be acceptable for describing (the
characteristics of) the pulse combustion process, need to be established. The
geometry of the modelled pulse combustor can be expected to be a major factor
in this respect. To address the final question, the model should be validated
against experimental results (of course under the conditions for which the model
is intended).

110CHAPTER 6. CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

Bibliography

[1] Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical Func-
tions: with formulas, graphs and mathematical tables. Dover Publications,
Inc., New York, 1965. For an online copy of the tenth printing (1972) of
this work, see web-site http://www.math.sfu.ca/~cbm/aands/.

[2] Frederick W. Ahrens, Choong Kim, and Shiu-Wing Tam. An analysis of
the pulse combustion burner. ASHRAE Transactions, 84, Part 1:488–507,
1978.

[3] P. K. Barr, J. O. Keller, T. T. Bramlette, C. K. Westbrook, and J. E. Dec.
Pulse combustor modeling demonstration of the importance of character-
istic times. Combustion and Flame, 82:252–269, 1990.

[4] Pamela K. Barr and Harry A. Dwyer. Pulse Combustor Dynamics: A
Numerical Study, chapter 22, pages 673–710. Volume 135 of Oran and
Boris [21], 1991.

[5] Paul F. Byrd and Morris D. Friedman. Handbook of Elliptic Integrals
for Engineers and Physicists. Die Grundlehren der Mathematischen Wis-
senschaften, Band LXVII. Springer-Verlag, Berlin, 1954.

[6] Boa-Teh Chu. On the energy transfer to small disturbances in fluid flow
(Part I). Acta Mechanica, 1(3):215–234, September 1965. (Printed.).

[7] Subhashis Datta, Achintya Mukhopadhyay, and Dipankar Sanyal. Modeling
and analysis of the nonlinear dynamics of a thermal pulse combustor. 42nd
AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2006.
9–12 July 2006, Sacramento, California. American Institute of Aeronautics
and Astronautics, Paper AIAA 2006-4396.

[8] C. Stuart Daw, John F. Thomas, George A. Richards, and Lakshmanan L.
Narayanaswami. Chaos in thermal pulse combustion. Chaos, 5(4):662–670,
1995.

[9] John E. Dec and Jay O. Keller. Pulse combustor tail-pipe heat-transfer
dependence on frequency, amplitude, and mean flow rate. Combustion and
Flame, 77:359–374, 1989.

[10] John E. Dec, Jay O. Keller, and Vedat S. Arpaci. Heat transfer enhance-
ment in the oscillating turbulent flow of a pulse combustor tail pipe. Inter-
national Journal of Heat and Mass Transfer, 35(9):2311–2325, 1992.

111

112 BIBLIOGRAPHY

[11] H. M. Heravi, J. R. Dawson, P. J. Bowen, and N. Syred. Primary pollutant
prediction from integrated thermofluid-kinetic pulse combustor models.
Journal of Propulsion and Power, 21(6):1092–1097, November-December
2005.

[12] Visarath In, Mark L. Spano, Joseph D. Neff, William L. Ditto, C. Stu-
art Daw, K. Dean Edwards, and Ke Nguyen. Maintenance of chaos in a
computational model of a thermal pulse combustor. Chaos, 7(4):605–613,
1997.

[13] Dominic William Jordan and Peter Smith. Nonlinear ordinary differen-
tial equations. Oxford applied mathematics and computing series. Oxford
University Press Inc., New York, 1994.

[14] J. O. Keller, T. T. Bramlette, J. E. Dec, and C. K. Westbrook. Pulse com-
bustion: The importance of characteristic times. Combustion and Flame,
75:33–44, 1989.

[15] J. O. Keller, T. T. Bramlette, C. K. Westbrook, and J. E. Dec. Pulse
combustion: The quantification of characteristic times. Combustion and
Flame, 79:151–161, 1990.

[16] J. O. Keller and I. Hongo. Pulse combustion: The mechanisms of NOx

production. Combustion and Flame, 80:219–237, 1990.

[17] Ali Kilicarslan. Frequency evaluation of a gas-fired pulse combustor. In-
ternational Journal of Energy Research, 29:439–454, 2005.

[18] D. Kretschmer and J. Odgers. Modeling of gas turbine combustors—a con-
venient reaction rate equation. Journal of Engineering for Power (Trans-
actions of the ASME), pages 173–180, July 1972.

[19] L. Narayanaswami and G. A. Richards. Pressure-gain combustion: Part I—
Model development. Journal of Engineering for Gas Turbines and Power,
118(3):461–468, July 1996.

[20] F. Nicoud and T. Poinsot. Thermoacoustic instabilities: Should the
Rayleigh criterion be extended to include entropy changes? Combustion
and Flame, 142:153–159, 2005.

[21] Elaine S. Oran and Jay P. Boris, editors. Numerical Approaches to Com-
bustion Modeling, volume 135 of Progress in Astronautics and Aeronautics.
The American Institute of Aeronautics and Astronautics, Inc., Washington,
DC, 1991.

[22] A. A. Putnam, F. E. Belles, and J. A. C. Kentfield. Pulse combustion.
Progress in Energy and Combustion Science, 12:43–79, 1986.

[23] Rayleigh. The explanation of certain acoustical phenomena. Nature,
18(455):319–321, July 1878.

[24] G. A. Richards and R. S. Gemmen. Pressure-gain combustion: Part II—
Experimental and model results. Journal of Engineering for Gas Turbines
and Power, 118(3):469–473, July 1996.

BIBLIOGRAPHY 113

[25] G. A. Richards, G. J. Morris, D. W. Shaw, S. A. Keeley, and M. J. Welter.
Thermal pulse combustion. Combustion Science and Technology, 94:57–85,
1993.

[26] H. Schlichting. Boundary Layer Theory. McGraw-Hill, New York, 1979.

[27] Philip S. Schmidt, Ofodike A. Ezekoye, John R. Howell, and Derek K.
Baker. Thermodynamics: An integrated learning system. John Wiley &
Sons, Inc., New York, 2006.

[28] Lawrence F. Shampine and Mark W. Reichelt. The Matlab ODE Suite.
SIAM Journal of Scientific Computing, 18(1):1–22, January 1997.

[29] The MathWorks, Inc. Matlab, version 7.3.0.298 (R2006b), 2006. Web-site:
http://www.mathworks.com.

[30] Philip A. Thompson. Compressible-Fluid Dynamics. Advanced Engineering
Series. McGraw-Hill, Inc., New York, 1972.

[31] N. A. W. Tiemessen and R. J. M. Bastiaans. Aerovalved pulse combustion.
Bachelor’s Thesis Project, Eindhoven University of Technology, Eindhoven,
October 2006. (In Dutch.).

[32] Stephen R. Turns. An Introduction to Combustion: Concepts and applica-
tions. McGraw-Hill Series in Mechanical Engineering. McGraw-Hill, Inc.,
New York, 1996.

[33] D. J. van Mullem and R. J. M. Bastiaans. Modelleren van een pulse com-
bustor. Bachelor’s Thesis Project, Eindhoven University of Technology,
Eindhoven, January 2007. (In Dutch.).

[34] Ferdinand Verhulst. Nonlinear Differential Equations and Dynamical Sys-
tems. Universitext. Springer-Verlag, Berlin, 2nd rev. and enlarged edition,
2000.

114 BIBLIOGRAPHY

Appendix A

Matlab codes for model of
Kilicarslan

In this chapter, the system of ordinary differential equations (ODEs) of Kili-
carslan’s model (see (3.16)–(3.22)) is numerically implemented using Matlab

[29] software. The standard Matlab ODE solver ode45 is used to solve the
equations. It is assumed that the user is familiar with Matlab, and the ODE
solver.

The Matlab ODE solvers for initial value problems (e.g. the solver ode45)
can be used to solve systems of ODEs written in the general form

dy

dt
= f(t,y), (A.1)

y(0) = y0, (A.2)

where y is a vector, f is a vector function, t is time, and y0 is a vector of initial
values. To obtain a numerical solution, a function implementing the right-hand
side of (A.1) must be passed to the solver, together with the initial values vector
y0. The function that is passed to the solver, should return a column vector.

In Section A.1 the model equations of Kilicarslan are written in the general
form of (A.1) and (A.2), and the function that can be passed to the solver is
given. In Section A.2 the code is given that was used to generate the data for
the figures of Section 3.5. Finally, Section A.3 presents the code that was used
to plot the figures of Section 3.5, using the generated data.

It should be mentioned that the code was written rather quickly, and no
attempt has been made to optimize it. In the implementation of the functions,
no attention is paid to checking whether the input arguments are of the correct
form. Thus, the user should take care when prescribing the input arguments,
although eventually an error will be produced if the input is of an unexpected
form. Also, plots produced by the code of Section A.3 may differ somewhat from
the figures in Section 3.5. This is because they were manipulated manually (e.g.
by resizing them, replacing labels) before including them in the report.

115

116 APPENDIX A. MATLAB CODES MODEL KILICARSLAN

A.1 Numerical implementation

The model equations of Kilicarslan (see (3.16)–(3.22)) can be written in the
general form of (A.1) and (A.2) by defining y and f in the following way:

y =

(
p

ṁe

)
, (A.3)

f(t,y) =

(
AF (y1) − B y2

C y1

)
, (A.4)

where A, B and C, expressed in the model parameters, are:

A = kg(1 + r)
(γ − 1)he

Vcc
, (A.5)

B =
(γ − 1)he

Vcc
, (A.6)

C =
Atp

Ltp
, (A.7)

F (p) =
√

|p| 1(−∞,0)(p). (A.8)

The function that must be passed to the solver (implementing f(t,y)), de-
pends on the model parameters. To be able to vary all of the model parameters,
it was chosen to pass a structure of model parameters to that function. The
structure has fields in which the model parameter values are stored; the field-
names correspond to the model parameters. Such a structure can be generated
with help of the function setKilicarslan (see Listing A.1.1 at the end of this
section). Calling the function without any input arguments returns a structure
with the model parameters set to their default values. Calling the function with
input of the form ’par1’,val1,... (i.e. in pairs of fieldnames and values), sets
the model parameters specified by the fieldnames parn to the corresponding val-
ues valn, while the other parameters are set to their default values. Together,
Tables A.1 and A.2 list the model parameters that are stored in a parameter
structure, their fieldnames, and the default values.

Not all model parameters can be specified independently: those that can, are
listed in Table A.1, while those that depend on others are listed in Table A.2.
While no error is produced if the input of the function setKilicarslan contains
one of the dependent model parameters, it will have no effect on the output. Its
value in the resulting structure will just be the value specified by the definition
given in Table A.2, which can be rewritten using solely independent parameters.
Of course, it is possible to generate, or manipulate, a model parameter structure
directly, but in doing so, one risks that the dependent model parameter values
are inconsistent with the independent parameter values. Thus, it is advised to
set the model parameters using the function setKilicarslan.

The function setKilicarslan uses the auxiliary function setparam, which
sets specified fields of a given structure to specified values. In the process, it
checks whether the specified fields exist in the structure, and it gives an error if
that is not the case. Since the function setparam is also used to set parameters
in the numerical implementation of the models of Ahrens et al. (see Appendix B)
and Richards et al. (see Appendix C), its implementation and usage is discussed
in Appendix D.

A.1. NUMERICAL IMPLEMENTATION 117

Parameter Fieldname Default value Unit

Av,g Avg 6.26 × 10−5 m2

CD,g CDg 0.6 −
cp cp 1009.7 J/kg/K
∆Hf DHf 50.016 × 106 J/kg
Dtp Dtp 0.042 m
Ltp Ltp 2 m
MWg MWg 16.043 kg/kmol
P0 P0 1.01325 × 105 Pa
r r 17.12 −
Ra Ra 287 J/kg/K
Ru Ru 8.31441 × 103 J/kmol/K
T0 T0 300 K
Vcc Vcc 2.609705 × 10−3 m3

Table A.1: Independent model parameters of Kilicarslan’s model, the fieldnames
under which they are stored in the parameter structure, their default values, and
the units in which they are expressed.

Parameter Fieldname Defined by Unit

Atp Atp = πD2
tp/4 m2

γ gam =
cp

cp−Ra
−

he he = hr +
∆Hf

1+r J/kg

hr hr = cpT0 J/kg

kg kg =
√

2ρgCD,gAv,g kg1/2 m1/2

Rg Rg = Ru/MWg J/kg/K

ρg rhog = P0

RgT0
kg/m3

Table A.2: Dependent model parameters of Kilicarslan’s model, the fieldnames
under which they are stored in the parameter structure, expressions defining
their values, and the units in which they are expressed.

118 APPENDIX A. MATLAB CODES MODEL KILICARSLAN

Function Input Description

odeKilicarslan t,y,s Returns the value of the function
f(t,y) of (A.4), for specified time
t, vector y, and the model pa-
rameters stored in structure s.

setKilicarslan none Returns a parameter structure
with default values, that can be
passed to the function odeKili-

carslan.
’par1’,val1,... Returns a parameter structure

with the independent parameters
parn set to the specified values
valn; the other parameters have
default values. The structure can
be passed to the function odeK-

ilicarslan.
setparam s,’fld1’,val1,... See Appendix D.

Table A.3: Overview of the functions that are defined in Section A.1.

The function odeKilicarslan is an implementation of the function f(t,y)
of (A.4). Besides the time t and the vector y, the implemented function also
needs a parameter structure specifying the model parameters as input. The
code of the function odeKilicarslan is given in Listing A.1.2 at the end of this
section.

An overview of the Matlab functions defined in this section, is presented
in Table A.3.

Listing A.1.1: Function setKilicarslan. Given a paired list of fieldnames and
values, it returns a structure of model parameters, which can be passed to the
function odeKilicarslan. Model parameter values that are not specified, are
set to their default values.

setKilicarslan.m

1 function sOut = setKilicarslan(varargin);

2

3 % Set default values

4

5 s = struct(...

6 ’Atp’ , [] ,... % (calculated, see below)

7 ’Avg’ , 6.26e-5 ,... % [m^2]

8 ’CDg’ , 0.6 ,... % [-]

9 ’cp’ , 1009.7 ,... % [J/kg/K]

10 ’DHf’ , 50.016e+6 ,... % [J/kg]

11 ’Dtp’ , 0.042 ,... % [m]

12 ’gam’ , [] ,... % (calculated, see below)

13 ’he’ , [] ,... % (calculated, see below)

14 ’hr’ , [] ,... % (calculated, see below)

15 ’kg’ , [] ,... % (calculated, see below)

A.1. NUMERICAL IMPLEMENTATION 119

16 ’Ltp’ , 2 ,... % [m]

17 ’MWg’ , 16.043 ,... % [kg/kmol]

18 ’P0’ , 1.01325e+5 ,... % [Pa]

19 ’r’ , 17.12 ,... % [-]

20 ’Ra’ , 287 ,... % [J/kg/K]

21 ’Rg’ , [] ,... % (calculated, see below)

22 ’rhog’, [] ,... % (calculated, see below)

23 ’Ru’ , 8.31441e+3 ,... % [J/kmol/K]

24 ’T0’ , 300 ,... % [K]

25 ’Vcc’ , 2.609705e-3); % [m^3]

26

27 % Set user specified model parameters

28

29 if nargin > 0

30 s = setparam(s,varargin{:});

31 end

32

33 % Calculate dependent model parameters

34

35 s.Atp = 0.25*pi*s.Dtp^2; % [m^2]

36 s.gam = s.cp/(s.cp - s.Ra); % [-]

37 s.hr = s.cp*s.T0; % [J/kg]

38 s.he = s.hr + s.DHf/(1 + s.r); % [J/kg]

39 s.Rg = s.Ru/s.MWg; % [J/kg/K]

40

41 s.rhog = s.P0/(s.Rg*s.T0); % [kg/m^3]

42 s.kg = sqrt(2*s.rhog)*s.CDg*s.Avg; % [kg^0.5 m^0.5]

43

44 % Assign output structure

45

46 sOut = s;

setKilicarslan.m

Listing A.1.2: Function odeKilicarslan. Given the following input arguments:
time t, the vector y (see (A.3)), and a model parameter structure, it returns the
vector f(t,y) defined by (A.4).

odeKilicarslan.m

1 function dydt = odeKilicarslan(t,y,s);

2

3 % Compute auxiliary constants

4

5 B = (s.gam - 1)/s.Vcc*s.he;

6 A = s.kg*(1 + s.r)*B;

7 C = s.Atp/s.Ltp;

8

9 F = @(p) sqrt(abs(min(p,0))); % function of gauge pressure, p

10

11 % Compute dydt

12 % y(1) == gauge pressure, [Pa]

13 % y(2) == mass flux at chamber exit, [kg/s]

14

120 APPENDIX A. MATLAB CODES MODEL KILICARSLAN

15 dy1dt = A*F(y(1)) - B*y(2);

16 dy2dt = C*y(1);

17

18 dydt = [dy1dt; dy2dt];

odeKilicarslan.m

A.2 Generating data for graphs

The script file dataKilicarslan.m (see Listing A.2.1) contains the code that
was used to generate the data for the figures of Section 3.5. By setting the
Matlab variable identifier in Line 16 to a certain string and running the
script, data for the figure associated with the identifier are generated, and stored
under an appropriate name. The available choices for the identifier are listed in
Table A.4, together with descriptions of the data that are generated for those
choices and the filenames under which the data are stored. The data that are
stored in the .mat files are: the model parameter structure and the initial values
vector that were passed to the ODE solver ode45, and the solution structure
that was returned by the solver. The initial conditions that were used, are given
in Table A.5.

Listing A.2.1: Script file dataKilicarslan.m. Generates data for the figures of
Section 3.5. The choice of the identifier set in Line 16 determines the data that
are generated.

dataKilicarslan.m

1 % dataKilicarslan.m

2

3 % Clear workspace, close figure windows, and clear command window

4

5 clear all

6 close all

7 clc

8

9 % Set identifier for generation of data for a certain figure from

10 % the Interim Report, Chapter 3. Choose from:

11 %

12 % ’Figure3_3’ = default parameter values; no oscillations

13 % ’Figure3_4’ = parameter values adjusted to show some

14 % oscillations

15

16 identifier = ’Figure3_3’;

17

18 % Set initial values for ODE-solver

19 % y(1) == gauge pressure, [Pa]

20 % y(2) == mass flux at chamber exit, [kg/s]

21

22 y1ini = 1.01325e+5; % [Pa]

23 y2ini = 0; % [kg/s]

24

25 y0 = [y1ini; y2ini];

26

A.2. GENERATING DATA FOR GRAPHS 121

Identifier Filename Description

’Figure3_3’ dataFigure3_3.mat Generates data for Figure 3.3.
Default parameter values are
used.

’Figure3_4’ dataFigure3_4.mat Generates data for Figure 3.4.
Three parameter values are
changed from their defaults to
get an oscillatory solution.

Table A.4: Identifier choices for the script file dataKilicarslan.m (see Line 16
of Listing A.2.1), and the filenames under which the generated data are stored.
The following data are stored in the .mat files: the parameter structure (s), the
initial values vector (y0), and the solution structure (sol) that is returned by
the ODE solver.

Initial condition Value used Unit

y0(1) = p(0) 1.01325 × 105 Pa
y0(2) = ṁe(0) 0 kg/s

Table A.5: Initial values, stored in the vector y0 that was passed to the ODE
solver to generate the data for the figures of Section 3.5.

122 APPENDIX A. MATLAB CODES MODEL KILICARSLAN

27 % Set options for ODE-solver

28

29 options = odeset(’AbsTol’,1e-8,’RelTol’,1e-6);

30

31 % Set time-span for ODE-solver

32

33 tmin = 0; % [s]

34 tmax = 0.15; % [s]

35 tspan = [tmin tmax];

36

37 % Initialize structure of model parameters (default values)

38

39 s = setKilicarslan;

40

41 % Select data to generate for plotting the figure, and save it

42

43 switch identifier

44

45 case ’Figure3_3’

46

47 % Run ODE-solver with default parameter values, and save

48

49 sol = ode45(@odeKilicarslan,tspan,y0,options,s);

50 save([’data’,identifier],’s’,’y0’,’sol’)

51

52 case ’Figure3_4’

53

54 % Run ODE-solver with parameter values adjusted to show

55 % some oscillations, and save

56

57 s = setKilicarslan(...

58 ’Avg’, 0.5 * s.Avg ,...

59 ’Ltp’, 0.25 * s.Ltp ,...

60 ’Vcc’, 10 * s.Vcc);

61 sol = ode45(@odeKilicarslan,tspan,y0,options,s);

62 save([’data’,identifier],’s’,’y0’,’sol’)

63

64 otherwise

65

66 error(’Unknown identifier choice.’);

67

68 end % switch

dataKilicarslan.m

A.3 Plotting graphs

The script file plotKilicarslan.m (see Listing A.3.1) contains the code that
was used to plot the figures of Section 3.5, using the data generated with the
script dataKilicarslan (see Section A.2). By setting the Matlab variable
identifier in Line 15 to a certain string and running the script, data for the
figure associated with that identifier is loaded, and a graph is plotted and saved
under an appropriate name. The available choices for the identifier are listed

A.3. PLOTTING GRAPHS 123

Identifier Filename 〈needed 〉 Description

’Figure3_3’ Figure3_3.fig

〈 dataFigure3_3.mat 〉
Plots Figure 3.3.

’Figure3_4’ Figure3_4.fig

〈 dataFigure3_4.mat 〉
Plots Figure 3.4.

Table A.6: Identifier choices for the script file plotKilicarslan.m (see Line
15 of Listing A.3.1). The figures are saved as .fig files. Data that is needed
to plot the figures, is loaded from the .mat files; they are indicated by angular
brackets.

in Table A.6. It mentions which figures are produced for those choices, and
the filenames under which the figures are saved (i.e. the .fig files). The data
files (extension: .mat) that are needed to plot the figures, are shown between
angular brackets.

Listing A.3.1: Script file plotKilicarslan.m. Plots the figures from Section 3.5,
using data generated with dataKilicarslan.m (see Section A.2). The choice
of the identifier set in Line 15 determines the graph that is plotted.

plotKilicarslan.m

1 % plotKilicarslan.m

2

3 % Clear workspace, close figure windows, and clear command window

4

5 clear all

6 close all

7 clc

8

9 % Set identifier to plot a certain graph from the Interim Report,

10 % Chapter 3. Choose from:

11 %

12 % ’Figure3_3’ = plot Figure 3.3 from Interim Report

13 % ’Figure3_4’ = plot Figure 3.4 from Interim Report

14

15 identifier = ’Figure3_3’;

16

17 % Select data to load, plot requested figure, and save it

18

19 switch identifier

20

21 case ’Figure3_3’

22

23 % Load data

24

25 load ’dataFigure3_3’;

26

27 % Extract data for time and gauge pressure from solution

28 % structure

29

30 t = sol.x.’;

124 APPENDIX A. MATLAB CODES MODEL KILICARSLAN

31 y = sol.y.’;

32 p = y(:,1); % gauge pressure, [Pa]

33

34 % Plot graph, annotate, and save

35

36 h = figure(’Name’,’Figure 3.3 of Interim Report’);

37 plot(t,p*1e-3) % time in [s], gauge pressure in [kPa]

38

39 title(’Figure 3.3’)

40 xlabel(’Time (s)’)

41 ylabel(’Gauge pressure (kPa)’)

42 xlim([0 max(t)])

43 grid on

44

45 saveas(h,’Figure3_3’,’fig’)

46

47 case ’Figure3_4’

48

49 % Load data

50

51 load ’dataFigure3_4’;

52

53 % Extract data for time and gauge pressure from solution

54 % structure

55

56 t = sol.x.’;

57 y = sol.y.’;

58 p = y(:,1); % gauge pressure, [Pa]

59

60 % Plot graph, annotate, and save

61

62 h = figure(’Name’,’Figure 3.4 of Interim Report’);

63 plot(t,p*1e-3) % time in [s], gauge pressure in [kPa]

64

65 title(’Figure 3.4’)

66 xlabel(’Time (s)’)

67 ylabel(’Gauge pressure (kPa)’)

68 xlim([0 max(t)])

69 grid on

70

71 saveas(h,’Figure3_4’,’fig’)

72

73 otherwise

74

75 error(’Unknown identifier choice.’);

76

77 end % switch

plotKilicarslan.m

Appendix B

Matlab codes for model of
Ahrens et al.

In this chapter, the system of ordinary differential equations (ODEs) of the
model of Ahrens et al. (see (4.12)–(4.19)) is numerically implemented using
Matlab [29] software. The standard Matlab ODE solver ode45 is used to
solve the equations. It is assumed that the user is familiar with Matlab, and
the ODE solver.

The Matlab ODE solvers for initial value problems (e.g. the solver ode45)
can be used to solve systems of ODEs written in the general form

dy

dt
= f(t,y), (B.1)

y(0) = y0, (B.2)

where y is a vector, f is a vector function, t is time, and y0 is a vector of initial
values. To obtain a numerical solution, a function implementing the right-hand
side of (A.1) must be passed to the solver, together with the initial values vector
y0. The function that is passed to the solver, should return a column vector.

In Section B.1 the model equations of Ahrens et al. are written in the general
form of (B.1) and (B.2), and the function that can be passed to the solver is
given. In Section B.2 the code is given that was used to generate the data for
the figures of Section 4.6. Finally, Section B.3 presents the code that was used
to plot the figures of Section 4.6, using the generated data.

It should be mentioned that the code was written rather quickly, and no
attempt has been made to optimize it. In the implementation of the functions,
no attention is paid to checking whether the input arguments are of the correct
form. Thus, the user should take care when prescribing the input arguments,
although eventually an error will be produced if the input is of an unexpected
form. Also, plots produced by the code of Section B.3 may differ somewhat from
the figures in Section 4.6. This is because they were manipulated manually (e.g.
by resizing them, replacing labels) before including them in the report.

125

126 APPENDIX B. MATLAB CODES MODEL AHRENS, ET AL

B.1 Numerical implementation

The model equations of Ahrens et al. (see (4.12)–(4.19)) can be written in the
general form of (B.1) and (B.2) by defining y and f in the following way:

y =

(
p

ṁe

)
, (B.3)

f(t,y) =

(
AF (y1) + B(y1 + P0) − C y2

D y1

)
, (B.4)

where A, B, C and D, expressed in the model parameters, are:

A = kg(1 + r)
γ − 1

Vcc
hr (B.5)

B =
AbUf

RT0

γ − 1

Vcc

∆Hf

1 + r
, (B.6)

C =
(γ − 1)he

Vcc
, (B.7)

D =
Atp

Ltp
, (B.8)

F (p) =
√
|p| 1(−∞,0)(p). (B.9)

The function that must be passed to the solver (implementing f(t,y)), de-
pends on the model parameters. To be able to vary all of the model parameters,
it was chosen to pass a structure of model parameters to that function. The
structure has fields in which the model parameter values are stored; the field-
names correspond to the model parameters. Such a structure can be generated
with help of the function setAhrensEa (see Listing B.1.1 at the end of this
section). Calling the function without any input arguments returns a structure
with the model parameters set to their default values. Calling the function with
input of the form ’par1’,val1,... (i.e. in pairs of fieldnames and values), sets
the model parameters specified by the fieldnames parn to the corresponding val-
ues valn, while the other parameters are set to their default values. Together,
Tables B.1 and B.2 list the model parameters that are stored in a parameter
structure, their fieldnames, and the default values.

Not all model parameters can be specified independently: those that can, are
listed in Table B.1, while those that depend on others are listed in Table B.2.
While no error is produced if the input of the function setAhrensEa contains
one of the dependent model parameters, it will have no effect on the output. Its
value in the resulting structure will just be the value specified by the definition
given in Table B.2, which can be rewritten using solely independent parameters.
Of course, it is possible to generate, or manipulate, a model parameter structure
directly, but in doing so, one risks that the dependent model parameter values
are inconsistent with the independent parameter values. Thus, it is advised to
set the model parameters using the function setAhrensEa.

The function setAhrensEa uses the auxiliary function setparam, which sets
specified fields of a given structure to specified values. In the process, it checks
whether the specified fields exist in the structure, and it gives an error if that is
not the case. Since the function setparam is also used to set parameters in the
numerical implementation of the models of Kilicarslan (see Appendix A) and

B.1. NUMERICAL IMPLEMENTATION 127

Parameter Fieldname Default value Unit

Ab Ab 8.11 × 10−3 m2

Atp Atp 7.92 × 10−4 m2

Av,g Avg 6.26 × 10−5 m2

CD,g CDg 0.6 −
cp cp 1009.7 J/kg/K
∆Hf DHf 50.016 × 106 J/kg
Ltp Ltp 1.52 m
MWg MWg 16.043 kg/kmol
P0 P0 1.01325 × 105 Pa
r r 19.8 −
Ra Ra 287 J/kg/K
Ru Ru 8.31441 × 103 J/kmol/K
T0 T0 300 K
Vcc Vcc 1.97 × 10−3 m3

Table B.1: Independent model parameters of the model of Ahrens et al., the
fieldnames under which they are stored in the parameter structure, their default
values, and the units in which they are expressed.

Parameter Fieldname Defined by Unit

γ gam =
cp

cp−Ra
−

he he = hr +
∆Hf

1+r J/kg

hr hr = cpT0 J/kg

kg kg =
√

2ρgCD,gAv,g kg1/2 m1/2

pmax pmax = 1
0.75

P0(1+r)hr

∆Hf
Pa

Rg Rg = Ru/MWg J/kg/K

ρg rhog = P0

RgT0
kg/m3

Uf Uf =
√

0.1875RT0(1+r)3/2

Ab

√
P0

√
hr

∆Hf
m/s

Table B.2: Dependent model parameters of the model of Ahrens et al., the
fieldnames under which they are stored in the parameter structure, expressions
defining their values, and the units in which they are expressed.

128 APPENDIX B. MATLAB CODES MODEL AHRENS, ET AL

Function Input Description

odeAhrensEa t,y,s Returns the value of the function
f(t,y) of (B.4), for specified time t,
vector y, and the model parameters
stored in structure s.

setAhrensEa none Returns a parameter structure with
default values, that can be passed
to the function odeAhrensEa.

’par1’,val1,... Returns a parameter structure with
the independent parameters parn
set to the specified values valn; the
other parameters have default val-
ues. The structure can be passed
to the function odeAhrensEa.

setparam s,’fld1’,val1,... See Appendix D.

Table B.3: Overview of the functions that are defined in Section B.1.

Richards et al. (see Appendix C), its implementation and usage is discussed in
Appendix D.

The function odeAhrensEa is an implementation of the function f(t,y) of
(B.4). Besides the time t and the vector y, the implemented function also needs
a parameter structure specifying the model parameters as input. The code of
the function odeAhrensEa is given in Listing B.1.2 at the end of this section.

An overview of the Matlab functions defined in this section, is presented
in Table B.3.

Listing B.1.1: Function setAhrensEa. Given a paired list of fieldnames and
values, it returns a structure of model parameters, which can be passed to the
function odeAhrensEa. Model parameter values that are not specified, are set
to their default values.

setAhrensEa.m

1 function sOut = setAhrensEa(varargin);

2

3 % Set default values

4

5 s = struct(...

6 ’Ab’ , 8.11e-3 ,... % [m^2]

7 ’Atp’ , 7.92e-4 ,... % [m^2]

8 ’Avg’ , 6.26e-5 ,... % [m^2]

9 ’CDg’ , 0.6 ,... % [-]

10 ’cp’ , 1009.7 ,... % [J/kg/K]

11 ’DHf’ , 50.016e+6 ,... % [J/kg]

12 ’gam’ , [] ,... % (calculated, see below)

13 ’he’ , [] ,... % (calculated, see below)

14 ’hr’ , [] ,... % (calculated, see below)

15 ’kg’ , [] ,... % (calculated, see below)

16 ’Ltp’ , 1.52 ,... % [m]

B.1. NUMERICAL IMPLEMENTATION 129

17 ’MWg’ , 16.043 ,... % [kg/kmol]

18 ’P0’ , 1.01325e+5 ,... % [Pa]

19 ’pmax’, [] ,... % (calculated, see below)

20 ’r’ , 19.8 ,... % [-]

21 ’Ra’ , 287 ,... % [J/kg/K]

22 ’Rg’ , [] ,... % (calculated, see below)

23 ’rhog’, [] ,... % (calculated, see below)

24 ’Ru’ , 8.31441e+3 ,... % [J/kmol/K]

25 ’T0’ , 300 ,... % [K]

26 ’Uf’ , [] ,... % (calculated, see below)

27 ’Vcc’ , 1.97e-3); % [m^3]

28

29 % Set user specified model parameters

30

31 if nargin > 0

32 s = setparam(s,varargin{:});

33 end

34

35 % Calculate dependent model parameters

36

37 s.gam = s.cp/(s.cp - s.Ra); % [-]

38 s.hr = s.cp*s.T0; % [J/kg]

39 s.he = s.hr + s.DHf/(1 + s.r); % [J/kg]

40 s.Rg = s.Ru/s.MWg; % [J/kg/K]

41

42 s.rhog = s.P0/(s.Rg*s.T0); % [kg/m^3]

43 s.kg = sqrt(2*s.rhog)*s.CDg*s.Avg; % [kg^0.5 m^0.5]

44

45 s.pmax = s.hr*(1 + s.r)*s.P0/s.DHf/0.75; % [Pa]

46 s.Uf = sqrt(0.1875*s.hr/s.DHf/s.P0)*s.kg*(1 + s.r)^1.5*s.Ra* ...

47 s.T0/s.Ab; % [m/s]

48

49 % Assign output structure

50

51 sOut = s;

setAhrensEa.m

Listing B.1.2: Function odeAhrensEa. Given the following input arguments:
time t, the vector y (see (B.3)), and a model parameter structure, it returns the
vector f(t,y) defined by (B.4).

odeAhrensEa.m

1 function dydt = odeAhrensEa(t,y,s);

2

3 % Compute auxiliary constants

4

5 tmp = (s.gam - 1)/s.Vcc;

6

7 A = s.kg*(1 + s.r)*tmp*s.hr;

8 B = s.Ab*s.Uf/s.Ra/s.T0*tmp*s.DHf/(1 + s.r);

9 C = tmp*s.he;

10 D = s.Atp/s.Ltp;

130 APPENDIX B. MATLAB CODES MODEL AHRENS, ET AL

11

12 F = @(p) sqrt(abs(min(p,0))); % function of gauge pressure, p

13

14 % Compute dydt

15 % y(1) == gauge pressure, [Pa]

16 % y(2) == mass flux at chamber exit, [kg/s]

17

18 dy1dt = A*F(y(1)) + B*(y(1) + s.P0)- C*y(2);

19 dy2dt = D*y(1);

20

21 dydt = [dy1dt; dy2dt];

odeAhrensEa.m

B.2 Generating data for graphs

The script file dataAhrensEa.m (see Listing B.2.1) contains the code that was
used to generate the data for the figures of Section 4.6. By setting the Matlab

variable identifier in Line 17 to a certain string and running the script, data
for the figure associated with the identifier are generated, and stored under an
appropriate name. The available choices for the identifier are listed in Table
B.4, together with descriptions of the data that are generated for those choices
and the filenames under which the data are stored. The data that are stored
in the .mat files are: the model parameter structure, the parameter δ (needed
to specify the initial conditions, see below), the initial values vector, and the
solution structure that was returned by the ODE solver.

The initial conditions that were used, are given in Table B.5. The constants
B and C (see (B.6) and (B.7)) in specifying the initial conditions conceal the
dependency on the model parameters somewhat. To keep the code in the script
file dataAhrensEa.m clear, the function iniOdeAhrensEa was written to produce
the initial conditions. It needs the model parameter structure and the ‘fine tun-
ing’ parameter δ as input arguments. The code of the function iniOdeAhrensEa

is given in Listing B.2.2.

For completeness, an overview of the Matlab functions defined in this sec-
tion, is presented in Table B.6.

Listing B.2.1: Script file dataAhrensEa.m. Generates data for the figures of
Section 4.6. The choice of the identifier set in Line 17 determines the data that
are generated.

dataAhrensEa.m

1 % dataAhrensEa.m

2

3 % Clear workspace, close figure windows, and clear command window

4

5 clear all

6 close all

7 clc

8

9 % Set identifier for generation of data for a certain figure from

10 % the Interim Report, Chapter 4. Choose from:

B.2. GENERATING DATA FOR GRAPHS 131

Identifier Filename Description

’Figure4_3a’ dataFigure4_3a.mat Generates data for Figure 4.3a.
Default parameter values are
used, δ = 0.242.

’Figure4_3b’ dataFigure4_3b.mat Generates data for Figure 4.3b.
Default parameter values are
used, δ = 0.243.

’Figure4_4’ dataFigure4_3a.mat

dataFigure4_3b.mat

Generates data for Figure 4.4.
Same as running the script with
the identifier choices ’Fig-

ure4_3a’ and ’Figure4_3b’

consecutively.

Table B.4: Identifier choices for the script file dataAhrensEa.m (see Line 17 of
Listing B.2.1), and the filenames under which the generated data are stored.
The following data are stored in the .mat files: the parameter structure (s), the
parameter δ (delta), the initial values vector (y0), and the solution structure
(sol) that is returned by the ODE solver.

Initial condition Value used Unit

y0(1) = p(0) = p0 (1 + δ)pmax Pa

y0(2) = ṁe(0) = ṁe,0
B
C (p0 + P0) kg/s

Table B.5: Initial values, stored in the vector y0 that was passed to the ODE
solver to generate the data for the figures of Section 4.6, expressed in model pa-
rameters. In the code, they can be obtained with the function iniOdeAhrensEa

(see Listing B.2.2), which needs the parameter structure and the parameter δ
as input arguments.

Function Input Description

iniOdeAhrensEa s,delta Returns the vector of initial values y0 as
specified in Table B.5, which depend on
the model parameters (stored in struc-
ture s) and the parameter δ (delta).

Table B.6: Overview of the functions that are defined in Section B.2.

132 APPENDIX B. MATLAB CODES MODEL AHRENS, ET AL

11 %

12 % ’Figure4_3a’ = default parameter values, delta = 0.242

13 % ’Figure4_3b’ = default parameter values, delta = 0.243

14 % ’Figure4_4’ -> produces same data as ’Figure4_3a’ and

15 % ’Figure4_3b’ separately

16

17 identifier = ’Figure4_3a’;

18

19 % Set options for ODE-solver

20

21 options = odeset(’AbsTol’,1e-8,’RelTol’,1e-6);

22

23 % Set time-span for ODE-solver

24

25 tmin = 0; % [s]

26 tmax = 0.18; % [s]

27 tspan = [tmin tmax];

28

29 % Initialize structure of model parameters (default values)

30

31 s = setAhrensEa;

32

33 if ~strcmp(identifier,’Figure4_3a’) && ...

34 ~strcmp(identifier,’Figure4_3b’) && ...

35 ~strcmp(identifier,’Figure4_4’)

36 error(’Unknown identifier choice.’);

37 end

38

39 % Select data to generate for plotting the figure, and save it

40

41 if strcmp(identifier,’Figure4_3a’) || strcmp(identifier,’Figure4_4’)

42

43 % Set initial values for ODE-solver for default values with

44 % delta = 0.242

45 % y0(1) == initial gauge pressure, [Pa]

46 % y0(2) == initial mass flux at chamber exit, [kg/s]

47

48 delta = 0.242;

49 y0 = iniOdeAhrensEa(s,delta);

50

51 % Run ODE-solver, and save

52

53 sol = ode45(@odeAhrensEa,tspan,y0,options,s);

54 save(’dataFigure4_3a’,’s’,’delta’,’y0’,’sol’)

55

56 end

57

58 if strcmp(identifier,’Figure4_3b’) || strcmp(identifier,’Figure4_4’)

59

60 % Set initial values for ODE-solver for default values with

61 % delta = 0.243

62 % y0(1) == initial gauge pressure, [Pa]

63 % y0(2) == initial mass flux at chamber exit, [kg/s]

64

B.3. PLOTTING GRAPHS 133

65 delta = 0.243;

66 y0 = iniOdeAhrensEa(s,delta);

67

68 % Run ODE-solver, and save

69

70 sol = ode45(@odeAhrensEa,tspan,y0,options,s);

71 save(’dataFigure4_3b’,’s’,’delta’,’y0’,’sol’)

72

73 end

dataAhrensEa.m

Listing B.2.2: Function iniOdeAhrensEa. Given a model parameter structure (s)
and the parameter δ (delta), the function returns the vector of initial values
(p0, ṁe,0)

T specified in Table B.5.

iniOdeAhrensEa.m

1 function y0 = iniOdeAhrensEa(s,delta);

2

3 % Compute auxiliary constants B and C (needed for specifying initial

4 % mass flux)

5

6 tmp = (s.gam - 1)/s.Vcc;

7

8 B = s.Ab*s.Uf/s.Ra/s.T0*tmp*s.DHf/(1 + s.r);

9 C = tmp*s.he;

10

11 % Set initial values for ODE-solver

12 % y0(1) == initial gauge pressure, [Pa]

13 % y0(2) == initial mass flux at chamber exit, [kg/s]

14

15 y01 = (1 + delta)*s.pmax;

16 y02 = B*(y01 + s.P0)/C;

17

18 y0 = [y01; y02];

iniOdeAhrensEa.m

B.3 Plotting graphs

The script file plotAhrensEa.m (see Listing B.3.1) contains the code that was
used to plot the figures of Section 4.6, using the data generated with the script
dataAhrensEa (see Section B.2). By setting the Matlab variable identifier

in Line 16 to a certain string and running the script, data for the figure associ-
ated with that identifier is loaded, and a graph is plotted and saved under an
appropriate name. The available choices for the identifier are listed in Table
B.7. It mentions which figures are produced for those choices, and the filenames
under which the figures are saved (i.e. the .fig files). The data files (extension:
.mat) that are needed to plot the figures, are shown between angular brackets.

In Figure 4.4, the graph of the time-derivative of the gauge pressure (dp
dt)

is plotted versus the gauge pressure (p). The time-derivative was not com-
puted within the script dataAhrensEa, so it must be computed within the script

134 APPENDIX B. MATLAB CODES MODEL AHRENS, ET AL

Identifier Filename 〈needed 〉 Description

’Figure4_3a’ Figure4_3a.fig

〈 dataFigure4_3a.mat 〉
Plots Figure 4.3a.

’Figure4_3b’ Figure4_3b.fig

〈 dataFigure4_3b.mat 〉
Plots Figure 4.3b.

’Figure4_4’ Figure4_4.fig

〈 dataFigure4_3a.mat 〉
〈 dataFigure4_3b.mat 〉

Plots Figure 4.4.

Table B.7: Identifier choices for the script file plotAhrensEa.m (see Line 16 of
Listing B.3.1). The figures are saved as .fig files. Data that is needed to plot
the figures, is loaded from the .mat files; they are indicated by angular brackets.

Function Input Description

derivative p,medot,s Given a vector p of gauge pressures, a vector
medot of fuel mass fluxes at the combustion
chamber exit, and a model parameter struc-
ture s, it returns the time-derivative of the
vector of gauge pressures. The time-derivative
is determined element-wise by the function
f1(t,y), see (B.4), p.104.

Table B.8: Overview of the functions that are used in Section B.3.

plotAhrensEa. To keep the code of the script clear, the function derivative

was written, and included as a subfunction in the script file plotAhrensEa.m

(see Listing B.3.1, Lines 138ff.). Given the following input arguments: gauge
pressure p (p), fuel mass flux at the combustion chamber exit ṁe (medot), and
a model parameter structure (s), it returns the time-derivative of the gauge
pressure dp

dt as given by f1(t,y) in equation (B.4).

For completeness, an overview of the Matlab functions defined in this sec-
tion, is presented in Table B.8.

Listing B.3.1: Script file plotAhrensEa.m. Plots the figures from Section 4.6,
using data generated with dataAhrensEa.m (see Section B.2). The choice of the
identifier set in Line 16 determines the graph that is plotted.

plotAhrensEa.m

1 % plotAhrensEa.m

2

3 % Clear workspace, close figure windows, and clear command window

4

5 clear all

6 close all

7 clc

8

9 % Set identifier to plot a certain graph from the Interim Report,

10 % Chapter 4. Choose from:

11 %

B.3. PLOTTING GRAPHS 135

12 % ’Figure4_3a’ = plot Figure 4.3a from Interim Report

13 % ’Figure4_3b’ = plot Figure 4.3b from Interim Report

14 % ’Figure4_4’ = plot Figure 4.4 from Interim Report

15

16 identifier = ’Figure4_3a’;

17

18 % Select data to load, plot requested figure, and save it

19

20 switch identifier

21

22 case ’Figure4_3a’

23

24 % Load data

25

26 load dataFigure4_3a

27

28 % Extract data for time and gauge pressure from solution

29 % structure

30

31 t = sol.x.’;

32 y = sol.y.’;

33 p = y(:,1); % gauge pressure, [Pa]

34

35 % Plot graph, annotate, and save

36

37 h = figure(’Name’,’Figure 4.3(a) of Interim Report’);

38 plot(t,p*1e-3) % time in [s], gauge pressure in [kPa]

39

40 title(’Figure 4.3(a), delta = 0.242’)

41 xlabel(’Time (s)’)

42 ylabel(’Gauge pressure (kPa)’)

43 xlim([0 max(t)])

44 ylim([-s.P0 s.P0]/500)

45 grid on

46

47 saveas(h,’Figure4_3a’,’fig’)

48

49 case ’Figure4_3b’

50

51 % Load data

52

53 load dataFigure4_3b

54

55 % Extract data for time and gauge pressure from solution

56 % structure

57

58 t = sol.x.’;

59 y = sol.y.’;

60 p = y(:,1); % gauge pressure, [Pa]

61

62 % Plot graph, annotate, and save

63

64 h = figure(’Name’,’Figure 4.3(b) of Interim Report’);

65 plot(t,p*1e-3) % time in [s], gauge pressure in [kPa]

136 APPENDIX B. MATLAB CODES MODEL AHRENS, ET AL

66

67 title(’Figure 4.3(b), delta = 0.243’)

68 xlabel(’Time (s)’)

69 ylabel(’Gauge pressure (kPa)’)

70 xlim([0 max(t)])

71 ylim([-s.P0 s.P0]/500)

72 grid on

73

74 saveas(h,’Figure4_3b’,’fig’)

75

76 case ’Figure4_4’

77

78 % Load data for delta = 0.242

79

80 load dataFigure4_3a

81

82 % Extract data for time, gauge pressure, and mass flux at

83 % combustion chamber exit

84

85 t = sol.x.’;

86 y = sol.y.’;

87 p = y(:,1); % gauge pressure, [Pa]

88 medot = y(:,2); % mass flux at chamber exit, [kg/s]

89

90 % Compute time-derivative of gauge pressure from ODEs

91

92 dpdt = derivative(p,medot,s);

93

94 % Plot graph

95

96 h = figure(’Name’,’Figure 4.4 of Interim Report’);

97 plot(p*1e-3,dpdt*1e-3) % gauge pressure in [kPa],

98 % time in [s]

99

100 % Load data for delta = 0.243

101

102 load dataFigure4_3b

103

104 % Extract data for time, gauge pressure, and mass flux at

105 % combustion chamber exit

106

107 t = sol.x.’;

108 y = sol.y.’;

109 p = y(:,1); % gauge pressure, [Pa]

110 medot = y(:,2); % mass flux at chamber exit, [kg/s]

111

112 % Compute time-derivative of gauge pressure from ODEs

113

114 dpdt = derivative(p,medot,s);

115

116 % Add to previous graph, annotate, and save

117

118 hold on

119 plot(p*1e-3,dpdt*1e-3) % gauge pressure in [kPa], its

B.3. PLOTTING GRAPHS 137

120 % time-derivative in [kPa/s]

121

122 title(’Figure 4.4’)

123 xlabel(’Gauge pressure p (kPa)’)

124 ylabel(’dp/dt (kPa/s)’)

125 axis([-100 100 -5e4 5e4])

126 grid on

127

128 saveas(h,’Figure4_4’,’fig’)

129

130 otherwise

131

132 error(’Unknown identifier choice.’);

133

134 end % switch

plotAhrensEa.m

Listing B.3.2: Function derivative. Given the following input arguments: a
vector of gauge pressures p (p), a vector of fuel mass fractions at the combustion
chamber exit ṁe (medot), and a model parameter structure (s), it returns a
vector of time-derivatives of the gauge pressures, dp

dt (given by the function
f1(t,y), see (B.4)), p.104 of the report.

derivative.m

1 function dpdt = derivative(p,medot,s);

2

3 % Compute auxiliary constants

4

5 tmp = (s.gam - 1)/s.Vcc;

6

7 A = s.kg*(1 + s.r)*tmp*s.hr;

8 B = s.Ab*s.Uf/s.Ra/s.T0*tmp*s.DHf/(1 + s.r);

9 C = tmp*s.he;

10

11 F = @(p) sqrt(abs(min(p,0))); % function of gauge pressure, p

12

13 % Compute dpdt, [Pa/s]

14

15 dpdt = A*F(p) + B*(p + s.P0)- C*medot;

derivative.m

138 APPENDIX B. MATLAB CODES MODEL AHRENS, ET AL

Appendix C

Matlab codes for model of
Richards et al.

In this chapter, the system of ordinary differential equations (ODEs) of the
model of Richards et al. (see (5.73)–(5.89)) is numerically implemented using
Matlab [29] software. The standard Matlab ODE solver ode45 is used to
solve the equations. It is assumed that the user is familiar with Matlab, and
the ODE solver.

The Matlab ODE solvers for initial value problems (e.g. the solver ode45)
can be used to solve systems of ODEs written in the general form

dy

dt
= f(t,y), (C.1)

y(0) = y0, (C.2)

where y is a vector, f is a vector function, t is time, and y0 is a vector of initial
values. To obtain a numerical solution, a function implementing the right-hand
side of (C.1) must be passed to the solver, together with the initial values vector
y0. The function that is passed to the solver, should return a column vector.

In Section C.1 the model equations of Richards et al. are written in the
general form of (C.1) and (C.2), and the function that can be passed to the
solver is given. In Section C.2 the code is given that was used to generate the
data for the figures of Section 5.4. Finally, Section C.4 presents the code that
was used to plot the figures of Section 5.4, using the generated data.

It should be mentioned that the code was written rather quickly, and no
attempt has been made to optimize it. In the implementation of the functions,
no attention is paid to checking whether the input arguments are of the correct
form. Thus, the user should take care when prescribing the input arguments,
although eventually an error will be produced if the input is of an unexpected
form. Also, plots produced by the code of Section C.4 may differ somewhat from
the figures in Section 5.4. This is because they were manipulated manually (e.g.
by resizing them, replacing labels) before including them in the report.

139

140 APPENDIX C. MATLAB CODES MODEL RICHARDS, ET AL

C.1 Numerical implementation

The model equations of Richards et al. (see (5.73)–(5.89), (5.97)), can be written
in the general form of (C.1) and (C.2) by defining y and f in the following way:

y =




P̃

T̃
ũ
Yf


 , (C.3)

and, writing P̃ , T̃ , ũ, Yf instead of y1, y2, y3, y4, respectively, (for easier refer-
ence to the model equations)

f(t,y) =




γ
(
A + B · RR + CD − (C + GZ̃e) T̃

)

(
f1(t,y) − (A − GZ̃e)T̃

)
T̃
P̃

E(P̃e − 1) T̃e

P̃e

− F ũ |ũ|

(A(Yf,i − Yf) − RR) T̃
P̃




, (C.4)

where RR, P̃e, T̃e and Z̃e are functions of P̃ , T̃ , ũ and Yf given by

RR = A′ P̃ 2

T̃ 3/2
Y 2

f exp(−T̃act/T̃), (C.5)

T̃e = T̃

(
1 − γ − 1

2

u2
0

γRT0

ũ2

T̃

)
, (C.6)

P̃e = P̃

(
T̃e

T̃

) γ
γ−1

, (C.7)

Z̃e =
P̃e

T̃e

ũ (C.8)

and A, B, C, D, E, F and G are expressed in the model parameters by:

A =
1

τf
=

ṁi

ρ0Vcc
, (C.9)

B =
∆Hf

cpT0
, (C.10)

C =
ĥ

L1cpρ0
, (C.11)

D =
Tw

T0
, (C.12)

E =
RT0

Ltpu0
, (C.13)

F =
u0f

2Dtp
, (C.14)

G =
u0

L2
. (C.15)

C.1. NUMERICAL IMPLEMENTATION 141

Parameter Fieldname Default value Unit

A′ Aprime 3.85 × 108 1/s
cp cp 1350 J/kg/K
∆Hf DHf 5 × 107 J/kg
Dtp Dtp 0.0178 m
f f 0.03 −
ĥ h 120 W/m2/K
1/τf itauf 1/0.030 1/s
L1 L1 0.0119 m
L2 L2 0.8486 m
Ltp Ltp 0.6100 m
P0 P0 1.01325 × 105 Pa
R R 287 J/kg/K
T0 T0 300 K

T̃act Tact 50 −
τm taum 0 s
Tw Tw 1000 K
Yf,i Yfi 0.06 −

Table C.1: Independent model parameters of the model of Richards et al., the
fieldnames under which they are stored in the parameter structure, their default
values, and the units in which they are expressed.

Note that f2(t,y) is defined using f1(t,y); it makes the notation more compact.
In fact, the numerical implementation of the vector function f of (C.4) is done in
an analogous way. To incorporate the mixing time τm in the model equations,
the term RR in the expression for f1 should be replace by R̂R defined by R̂R =

RR
1+B·RRτm

(see (5.97)).

The function that must be passed to the solver (implementing f(t,y)), de-
pends on the model parameters. To be able to vary all of the model parameters,
it was chosen to pass a structure of model parameters to that function. The
structure has fields in which the model parameter values are stored; the field-
names correspond to the model parameters. Such a structure can be generated
with help of the function setRichardsEa (see Listing C.1.1 at the end of this
section). Calling the function without any input arguments returns a structure
with the model parameters set to their default values. Calling the function with
input of the form ’par1’,val1,... (i.e. in pairs of fieldnames and values), sets
the model parameters specified by the fieldnames parn to the corresponding val-
ues valn, while the other parameters are set to their default values. Together,
Tables C.1 and C.2 list the model parameters that are stored in a parameter
structure, their fieldnames, and the default values.

Not all model parameters can be specified independently: those that can, are
listed in Table C.1, while those that depend on others are listed in Table C.2.
While no error is produced if the input of the function setRichardsEa contains
one of the dependent model parameters, it will have no effect on the output. Its
value in the resulting structure will just be the value specified by the definition
given in Table C.2, which can be rewritten using solely independent parameters.
Of course, it is possible to generate, or manipulate, a model parameter structure

142 APPENDIX C. MATLAB CODES MODEL RICHARDS, ET AL

Parameter Fieldname Defined by Unit

γ gam =
cp

cp−R −
ρ0 rho0 = P0

RT0
kg/m3

u0 u0 =
√

γRT0 m/s

Table C.2: Dependent model parameters of the model of Richards et al., the
fieldnames under which they are stored in the parameter structure, expressions
defining their values, and the units in which they are expressed.

Function Input Description

odeRichardsEa t,y,s Returns the value of the function
f(t,y) of (C.4), for specified time t,
vector y, and the model parameters
stored in structure s.

setparam s,’fld1’,val1,... See Appendix D.
setRichardsEa none Returns a parameter structure with

default values, that can be passed
to the function odeRichardsEa.

’par1’,val1,... Returns a parameter structure with
the independent parameters parn
set to the specified values valn; the
other parameters have default val-
ues. The structure can be passed
to the function odeRichardsEa.

Table C.3: Overview of the functions that are defined in Section C.1.

C.1. NUMERICAL IMPLEMENTATION 143

directly. As long as none of the model parameters γ, ρ0, or u0 are changed, there
is no objection against manipulating the structure of model parameters without
using the function setRichardsEa. However, care should be taken to spell the
fieldnames of the structure correctly, because if an incorrect name is used, a field
will be added to the structure (instead of changing the contents of the intended
field). No warning will be given in such a case, while if a similar mistake is made
using the function setRichardsEa, an error will be given.

The function setRichardsEa uses the auxiliary function setparam, which
sets specified fields of a given structure to specified values. In the process, it
checks whether the specified fields exist in the structure, and it gives an error if
that is not the case. Since the function setparam is also used to set parameters
in the numerical implementation of the models of Kilicarslan (see Appendix A)
and Ahrens et al. (see Appendix B), its implementation and usage is discussed
in Appendix D.

The function odeRichardsEa is an implementation of the function f(t,y) in
(C.4). Besides the time t and the vector y, the implemented function also needs
a parameter structure specifying the model parameters as input. The code of
the function odeRichardsEa is given in Listing C.1.2 at the end of this section.

An overview of the Matlab functions defined in this section, is presented
in Table C.3.

Listing C.1.1: Function setRichardsEa. Given a paired list of fieldnames and
values, it returns a structure of model parameters, which can be passed to the
function odeRichardsEa. Model parameter values that are not specified, are
set to their default values.

setRichardsEa.m

1 function sOut = setRichardsEa(varargin);

2

3 % Set default values

4

5 s = struct(...

6 ’Aprime’, 3.85e+8 ,... % [1/s]

7 ’cp’ , 1350 ,... % [J/kg/K]

8 ’DHf’ , 5e+7 ,... % [J/kg]

9 ’Dtp’ , 0.0178 ,... % [m]

10 ’f’ , 0.03 ,... % [-]

11 ’gam’ , [] ,... % (calculated, see below)

12 ’h’ , 120 ,... % [W/m^2/K]

13 ’itauf’ , 1/0.030 ,... % [1/s] (inverse of tauf)

14 ’L1’ , 0.0119 ,... % [m]

15 ’L2’ , 0.8486 ,... % [m]

16 ’Ltp’ , 0.6100 ,... % [m]

17 ’P0’ , 1.01325e+5 ,... % [Pa]

18 ’R’ , 287 ,... % [J/kg/K]

19 ’rho0’ , [] ,... % (calculated, see below)

20 ’T0’ , 300 ,... % [K]

21 ’Tact’ , 50 ,... % [-]

22 ’taum’ , 0 ,... % [s]

23 ’Tw’ , 1000 ,... % [K]

24 ’u0’ , [] ,... % (calculated, see below)

144 APPENDIX C. MATLAB CODES MODEL RICHARDS, ET AL

25 ’Yfi’ , 0.06); % [-]

26

27 % Set user specified model parameters

28

29 if nargin > 0

30 s = setparam(s,varargin{:});

31 end

32

33 % Calculate dependent model parameters

34

35 s.gam = s.cp/(s.cp - s.R); % [-]

36 s.rho0 = s.P0/(s.R*s.T0); % [kg/m^3]

37 s.u0 = sqrt(s.gam*s.R*s.T0); % [m/s]

38

39 % Assign output structure

40

41 sOut = s;

setRichardsEa.m

Listing C.1.2: Function odeRichardsEa. Given the following input arguments:
time t, the vector y (see (C.3)), and a model parameter structure, it returns the
vector f(t,y) defined by (C.4).

odeRichardsEa.m

1 function dydt = odeRichardsEa(t,y,s);

2

3 % Compute auxiliary constants

4

5 A = s.itauf;

6 B = s.DHf/(s.cp*s.T0);

7 C = s.h/(s.L1*s.cp*s.rho0);

8 D = s.Tw/s.T0;

9 E = s.R*s.T0/(s.Ltp*s.u0);

10 F = 0.5*s.u0*s.f/s.Dtp;

11 G = s.u0/s.L2;

12

13 % Compute time dependent variables

14

15 P = y(1);

16 T = y(2);

17 u = y(3);

18 Yf = y(4);

19

20 Te = T*(1 - 0.5*(s.gam - 1)*s.u0^2*u^2/(s.gam*s.R*s.T0*T));

21 Pe = P*(Te/T)^(s.gam/(s.gam - 1));

22 Ze = u*Pe/Te;

23 RR = s.Aprime*(P^2/T^1.5)*Yf^2*exp(-s.Tact/T);

24 RR = RR/(1 + B*RR*s.taum); % Reaction rate with mixing incorporated

25

26 % Compute dydt

27

28 dPdt = s.gam*(A + B*RR + C*D) - s.gam*(G*Ze + C)*T;

C.2. GENERATING DATA FOR GRAPHS 145

29 dTdt = (dPdt - (A - G*Ze)*T)*T/P;

30 dudt = E*(Pe - 1)*Te/Pe - F*u*abs(u);

31 dYfdt = (A*(s.Yfi - Yf) - RR)*T/P;

32

33 dydt = [dPdt; dTdt; dudt; dYfdt];

odeRichardsEa.m

C.2 Generating data for graphs

The script file dataRichardsEa.m (see Listing C.2.1) contains the code that was
used to generate the data for the figures of Section 5.4. By setting the Matlab

variable identifier in Line 28 to a certain string and running the script, data
for the figure associated with the identifier are generated, and stored under an
appropriate name. The available choices for the identifier are listed in Table
C.4, together with descriptions of the data that are generated for those choices
and the filenames under which the data are stored. The initial conditions that
were used, are given in Table C.5. They are the same for all choices of the
identifier. For uniformity in the generated data, the time span that was passed
to the ODE solver was also the same for all identifier choices, namely 0–1.3 s.
Although this is somewhat larger than is necessary to plot some of the figures,
it is the interval that is needed for generating nearly all of the data used for
plotting the figures of Section 5.4.

For each of the identifier choices, one or two parameter values are varied
over a certain range, using a fixed step size. The parameter values are stored
in an array named 〈par〉Data, where 〈par〉 is the name of the parameter that is
varied. For each of the parameter values in the array, a corresponding solution
structure can be obtained from the ODE solver. These solution structures are
stored in a cell array with the name sol〈par〉, where 〈par〉 is the name of the
parameter that is varied. The parameters that are varied, the names of the
arrays in which the various values are stored, and the names of the cell arrays
with the corresponding solution structures are given in Table C.6 for each of the
identifier choices.

Before running the script, a word of caution is in order:

Warning: Running the script dataRichardsEa with one of the
choices ’Figure5_10’, ’Figure5_11’, or ’Figure5_12’ for the vari-
able identifier (see Line 28 of Listing C.2.1) may take a consider-
able time to finish! Also, very large data structures are generated,
so one should have a large amount of memory and storage space
available! See Table C.7 for an indication of how much time and
memory/storage space is needed.

As can be seen from Table C.7, the amount of data generated is larger for smaller
values of the mixing time τm. The reason for this is, that for smaller mixing
times the model equations have oscillatory solutions for a wider range of the
model parameters τf and Tw, as can be seen from Figures 5.10–5.12. Since the
ODE solver can use a larger step size if the solution does not change very rapidly,
the solution structures that are returned by the ODE solver, are much smaller if
flame extinction or steady combustion occurs than for an oscillatory combustion
process. The amounts of data that are generated for the three choices of the

146 APPENDIX C. MATLAB CODES MODEL RICHARDS, ET AL

Identifier Filename Description

’Figure5_3’

’Figure5_4’

’Figure5_5’

dataFigures5_3-4-5.mat Generates data for
Figures 5.3–5.5.

’Figure5_6’ dataFigure5_6.mat Generates data for
Figure 5.6.

’Figure5_7’

’Figure5_8’

dataFigures5_7-8.mat Generates data for
Figures 5.7–5.8.

’Figure5_9’ dataFigure5_9.mat Generates data for
Figure 5.9.

’Figure5_10’ dataFigure5_10.mat Generates data for
Figure 5.10.

’Figure5_11’ dataFigure5_11.mat Generates data for
Figure 5.11.

’Figure5_12’ dataFigure5_12.mat Generates data for
Figure 5.12.

Table C.4: Identifier choices for the script file dataRichardsEa.m (see Line 28
of Listing C.2.1), and the filenames under which the generated data are stored.
The data that are saved in the .mat files, are: the parameter structure (s),
the initial values vector (y0), the array of values of the parameter that was
varied (see Table C.6) and the corresponding cell array containing the solution
structures (see Table C.6).

Initial condition Value used Unit

y0(1) = P̃ (0) 1 −
y0(2) = T̃ (0) 5 −
y0(3) = ũ(0) 0 −
y0(4) = Yf (0) = Yf,i 0.06 −

Table C.5: Initial values, stored in the vector y0 that was passed to the ODE
solver to generate the data for the figures of Section 5.4.

C.2. GENERATING DATA FOR GRAPHS 147

Identifier Par Range Unit Array Structure

’Figure5_3’

’Figure5_4’

’Figure5_5’

Tw 750, 1000, 1200 K TwData solTw

’Figure5_6’ ĥ 100 : 5 : 165 W/m2/K hData solh

’Figure5_7’

’Figure5_8’

f 0, 0.02, 0.0325 − fData solf

’Figure5_9’ Ltp 0.4 : 0.025 : 0.8 m LtpData solLtp

’Figure5_10’ τf 0.01 : 0.0025 : 0.09 s taufData soltaufTw

Tw 700 : 25 : 1400 K TwData

τm = 0 s
’Figure5_11’ τf 0.01 : 0.0025 : 0.09 s taufData soltaufTw

Tw 700 : 25 : 1400 K TwData

τm = 1.0 × 10−3 s
’Figure5_12’ τf 0.01 : 0.0025 : 0.09 s taufData soltaufTw

Tw 700 : 25 : 1400 K TwData

τm = 0.5 × 10−3 s

Table C.6: The model parameters that are varied to obtain data for the figures
of Section 5.4, associated with the identifier choices. The ranges over which the
parameters are varied (expressed in the listed units), are given in the format
start:step:end, or as a list of values. The parameter values are stored in arrays
and the corresponding solution structures in cell arrays; their names are listed
in the last two columns.

Identifier τm (ms) CPU time (min.) Data (MB)

’Figure5_10’ 0 21.0 889
’Figure5_11’ 1.5 10.7 453
’Figure5_12’ 0.5 15.1 638

Table C.7: CPU time taken and size of data generated by running the script
dataRichardsEa for the three listed identifier choices (see Line 28 of Listing
C.2.1). Each identifier choice is associated with a mixing time τm. The CPU
times were measured with the Matlab command cputime. The size of the data
is the storage space occupied in the workspace after the script has finished. (In
storage on hard disk less space is occupied, because Matlab compresses it by
default.) Used computer configuration: desktop with Intel Core 2 Duo-processor
E6300 and 1024MB DDR2 SDRAM memory (533MHz, 64-bits), and Windows
XP as operating system.

148 APPENDIX C. MATLAB CODES MODEL RICHARDS, ET AL

identifier are very large, because the model parameters τf and Tw are varied over
33 and 29 values, respectively, resulting in cell arrays that store 33 × 29 = 957
solution structures.

Of course, one way of limiting the demand on time and storage space is by
varying these parameters over less values. This can be done without any prob-
lems by modifying the script file dataRichardsEa.m in Lines 127 and 128, where
taufData and TwData are specified. (In fact, all model parameter ranges can be
adjusted in an analogous manner, without a need to rewrite other code.) Then,
when plotting the figures using the modified data, a graph of lower resolution
will result.

The data that were generated with the script dataRichardsEa was used to
examine the time history of the solutions for many different parameter values.
But if the data is only needed to plot the Figures 5.10–5.12 of Section 5.4,
it would be better to combine the code of the script file dataRichardsEa.m

with the code of the script file freqDataRichardsEa.m, which is given in the
next section. It was written to determine the amplitudes and frequencies of the
oscillatory solutions. By determining and storing the amplitude and frequency
information directly after a solution structure has been obtained, there is no need
to store the solution structures for later use. Then, the demands on memory or
storage capacity are minimal. It will probably not make much difference on the
needed CPU time.

Listing C.2.1: Script file dataRichardsEa.m. Generates data for the figures of
Section 5.4. The choice of the identifier set in Line 28 determines the data that
are generated.

dataRichardsEa.m

1 % dataRichardsEa.m

2

3 % Clear workspace, close figure windows, and clear command window

4

5 clear all

6 close all

7 clc

8

9 % Set identifier for generation of data for a certain figure from

10 % the Interim Report, Chapter 5. Choose from:

11 %

12 % ’Figure5_3’ = Three wall temperature values

13 % ’Figure5_4’ = -> produces same data as ’figure5_3’

14 % ’Figure5_5’ = -> produces same data as ’figure5_3’

15 % ’Figure5_6’ = Range of heat transfer coefficients

16 % ’Figure5_7’ = Three friction coefficient values

17 % ’Figure5_8’ = -> produces same data as ’figure5_7’

18 % ’Figure5_9’ = Range of tailpipe lengths

19 % ’Figure5_10’ = Range of flow times and wall temperatures, ...

20 % taum = 0 s

21 % ’Figure5_11’ = (idem), taum = 1.0e-3 s

22 % ’Figure5_12’ = (idem), taum = 0.5e-3 s

23 %

24 % WARNING! Choices ’Figure5_10’, ’Figure5_11’, ’Figure5_12’ may take

C.2. GENERATING DATA FOR GRAPHS 149

25 % a considerable time to process and they produce very large data

26 % structures!

27

28 identifier = ’Figure5_3’;

29

30 % Set initial values for ODE-solver

31

32 Pini = 1; % [-]

33 Tini = 5; % [-]

34 uini = 0; % [-]

35 Yfini = 0.06; % [-]

36

37 y0 = [Pini; Tini; uini; Yfini];

38

39 % Set options for ODE-solver

40

41 options = odeset(’AbsTol’,1e-8,’RelTol’,1e-6);

42

43 % Set time-span for ODE-solver

44

45 tmin = 0; % [s]

46 tmax = 1.3; % [s]

47 tspan = [tmin tmax];

48

49 % Initialize structure of model parameters

50

51 s = setRichardsEa;

52

53 % Select data to generate for plotting the figure, and save it

54

55 switch identifier

56

57 case {’Figure5_3’,’Figure5_4’,’Figure5_5’}

58

59 % Run ODE-solver with default values for three wall

60 % temperature values

61

62 TwData = [750, 1000, 1200]; % [K]

63 for n = 1:length(TwData)

64 s.Tw = TwData(n);

65 sol = ode45(@odeRichardsEa,tspan,y0,options,s);

66 solTw(n) = {sol};

67 end

68 filename = ’dataFigures5_3-4-5’;

69 save(filename,’s’,’y0’,’TwData’,’solTw’)

70

71 case ’Figure5_6’

72

73 % Run ODE-solver with default values for a range of heat

74 % transfer coefficients

75

76 hData = linspace(100,165,14); % [W/m^2/K], step = 5

77 for n = 1:length(hData)

78 s.h = hData(n);

150 APPENDIX C. MATLAB CODES MODEL RICHARDS, ET AL

79 sol = ode45(@odeRichardsEa,tspan,y0,options,s);

80 solh(n) = {sol};

81 end

82 filename = [’data’,identifier];

83 save(filename,’s’,’y0’,’hData’,’solh’)

84

85 case {’Figure5_7’,’Figure5_8’}

86

87 % Run ODE-solver with default values for three friction

88 % coefficient values

89

90 fData = [0, 0.02, 0.0325]; % [-]

91 for n = 1:length(fData)

92 s.f = fData(n);

93 sol = ode45(@odeRichardsEa,tspan,y0,options,s);

94 solf(n) = {sol};

95 end

96 filename = ’dataFigures5_7-8’;

97 save(filename,’s’,’y0’,’fData’,’solf’)

98

99 case ’Figure5_9’

100

101 % Run ODE-solver with default values for a range of tailpipe

102 % lengths

103

104 LtpData = linspace(0.4,0.8,17); % [m], step = 0.025

105 for n = 1:length(LtpData)

106 s.Ltp = LtpData(n);

107 sol = ode45(@odeRichardsEa,tspan,y0,options,s);

108 solLtp(n) = {sol};

109 end

110 filename = [’data’,identifier];

111 save(filename,’s’,’y0’,’LtpData’,’solLtp’)

112

113 case {’Figure5_10’,’Figure5_11’,’Figure5_12’}

114

115 switch identifier

116 case ’Figure5_10’

117 s.taum = 0; % [s]

118 case ’Figure5_11’

119 s.taum = 1.0e-3; % [s]

120 case ’Figure5_12’

121 s.taum = 0.5e-3; % [s]

122 end

123

124 % Run ODE-solver with default values for a range of flow

125 % times and wall temperatures

126

127 taufData = linspace(0.01,0.09,33); % [1/s], step = 0.0025

128 TwData = linspace(700,1400,29); % [K], step = 25

129 for n = 1:length(taufData)

130 s.itauf = 1/taufData(n);

131 for m = 1:length(TwData)

132 s.Tw = TwData(m);

C.3. CALCULATING AMPLITUDES AND FREQUENCIES 151

133 sol = ode45(@odeRichardsEa,tspan,y0,options,s);

134 soltaufTw(n,m) = {sol};

135 end

136 end

137 filename = [’data’,identifier];

138 save(filename,’s’,’y0’,’taufData’,’TwData’,’soltaufTw’)

139

140 otherwise

141

142 error(’Unknown identifier choice.’);

143

144 end % switch

dataRichardsEa.m

C.3 Calculating amplitudes and frequencies

The script file freqDataRichardsEa.m (see Listing C.3.1) contains the code that
was used to extract the amplitude and frequency information for the Figures
5.9–5.12 of Section 5.4 from the data generated with dataRichardsEa.m (see
Section C.2). By setting the Matlab variable identifier in Line 21 to a
certain string and running the script, data for the figure associated with the
identifier are generated, and stored under an appropriate name. The available
choices for the identifier are listed in Table C.8, together with descriptions of the
data that are generated for those choices, the filenames under which the data
are stored, and the data files that are needed for execution of the script with
the given identifier. The data files that are needed for execution of the script
are generated with the script dataRichardsEa (see Section C.2).

The frequencies of the numerical solutions that were obtained with the script
dataRichardsEa, are determined from a Discrete Fourier Transformation, using
Matlab’s Fast Fourier Transform algorithm fft. They are the frequencies that
maximize the approximated periodogram. To obtain the frequency information
for the periodogram, the time interval [0.3, 1.3] (in s) is divided into 4096 equally
spaced intervals, giving 4096 samples points (the point t = 1.3 s is not included).
The time interval and the number of sample points were chosen after testing
on given combinations of sine functions, and on some of the numerical solutions
of the model equations. Although the testing was not done rigorously, it was
found that a (much) shorter time interval would be unsuitable, because the
time domain truncation disturbs the frequency information of the signal. The
number of sample points that was chosen (4096), was found to be sufficient to
prevent serious aliasing of the frequencies. Note that it is a power of 2; the fft

is the most efficient for vector lengths that are powers of 2.
The testing that was done to determine the interval length and the number

of sample points, suggested that the (discrete) Fourier analysis would not give
the amplitudes of the time signal with satisfactory accuracy. The main cause
for lack of accuracy of the amplitudes is the time domain truncation. It was
found that increasing the time interval gave better results, but that would mean
very long computing times. Therefore, the (peak-to-peak) amplitudes were es-
timated from the sampled data by taking the difference of the maximum and
the minimum of the pressure on the time interval 1–1.3 s.

The amplitude information can be used to distinguish between steady com-

152 APPENDIX C. MATLAB CODES MODEL RICHARDS, ET AL

bustion or flame extinction (amplitude nearly zero) and oscillatory combustion.
To distinguish between flame extinction and combustion (steady, or oscillatory),
the (mean) fuel mass fraction can be used. Therefore, for Figures 5.10–5.12, the
mean fuel mass fraction is determined over the same time interval as the pressure
amplitudes, i.e. 1–1.3 s.

Before running the script, a word of caution is in order:

Warning: Running the script freqDataRichardsEa with one of
the choices ’Figure5_10’, ’Figure5_11’, or ’Figure5_12’ for the
variable identifier (see Line 21 of Listing C.3.1) may take a con-
siderable time to finish! See Table C.9 for an indication of how much
time is needed.

The differences in the CPU times that the script needs to finish, come from the
different amounts of data that needs to be analyzed for the frequency content.
The smaller the mixing time τm, the larger the amount of data, as was explained
in Section C.2.

Listing C.3.1: Script freqDataRichardsEa.m

freqDataRichardsEa.m

1 % freqDataRichardsEa.m

2

3 % Clear workspace, close figure windows, and clear command window

4

5 clear all

6 close all

7 clc

8

9 % Set identifier to generate frequency data (and amplitude data) for

10 % one of the Figures 5.9-5.12 from the Interim Report, Chapter 5.

11 % Choose from:

12 %

13 % ’Figure5_9’ = generate frequency data for Figure 5.9

14 % ’Figure5_10’ = generate frequency data for Figure 5.10

15 % ’Figure5_11’ = generate frequency data for Figure 5.11

16 % ’Figure5_12’ = generate frequency data for Figure 5.12

17 %

18 % WARNING! Choices ’Figure5_10’, ’Figure5_11’, ’Figure5_12’ may take

19 % a considerable time to process!

20

21 identifier = ’Figure5_9’;

22

23 % Select data to load, plot requested figure, and save it

24

25 switch identifier

26

27 case ’Figure5_9’

28

29 % Load data

30

31 load dataFigure5_9

32

C.3. CALCULATING AMPLITUDES AND FREQUENCIES 153

Identifier Filename 〈needed 〉 Description

’Figure5_9’ freqDataFigure5_9.mat

〈 dataFigure5_9.mat 〉
Extracts amplitude and
frequency information for
Figure 5.9.

’Figure5_10’ freqDataFigure5_10.mat

〈 dataFigure5_10.mat 〉
Extracts amplitude and
frequency information for
Figure 5.10.

’Figure5_11’ freqDataFigure5_11.mat

〈 dataFigure5_11.mat 〉
Extracts amplitude and
frequency information for
Figure 5.11.

’Figure5_12’ freqDataFigure5_12.mat

〈 dataFigure5_12.mat 〉
Extracts amplitude and
frequency information for
Figure 5.12.

Table C.8: Identifier choices for the script file freqDataRichardsEa.m (see Line
21 of Listing C.3.1), the filenames under which the generated data are stored,
and the files that are needed for execution of the script (in angular brackets).
The data that are saved in the .mat files, are: the arrays with the computed the
amplitudes (Amp) and frequencies (Freq), in addition to the parameter structure
(s), the initial values vector (y0), and the arrays of values of the parameters
that were varied (cf. Table C.6 in Section C.2). For the contour plots of Figures
5.10–5.12, the computed mean fuel mass fraction (YfMean) is also added to the
data files.

Identifier τm (ms) CPU time (min.)

’Figure5_10’ 0 9.5
’Figure5_11’ 1.5 4.7
’Figure5_12’ 0.5 6.5

Table C.9: CPU time taken by running the script freqDataRichardsEa for the
three listed identifier choices (see Line 21 of Listing C.3.1). Each identifier choice
is associated with a mixing time τm. The CPU times were measured with the
Matlab command cputime. Used computer configuration: desktop with Intel
Core 2 Duo-processor E6300 and 1024MB DDR2 SDRAM memory (533MHz,
64-bits), and Windows XP as operating system.

154 APPENDIX C. MATLAB CODES MODEL RICHARDS, ET AL

33 % Select points in time, in [s], which are used for the

34 % frequency analysis of the pressure oscillations

35

36 tstart = 0.3;

37 tend = 1.3;

38 N = 4096;

39 t = linspace(tstart,tend,N+1); % sample times, N intervals

40 t(end) = []; % do not include t = 1.3 -> N points

41

42 freqRes = 1/(tend - tstart); % frequency resolution

43 freqFFT = (0:N-1)*freqRes; % frequencies [Hz] from fft

44

45 % Pre-allocate space

46

47 nLtp = length(LtpData);

48 nt = length(t);

49

50 Amp = zeros(nLtp,1);

51 Freq = zeros(nLtp,1);

52

53 FFT_P = zeros(nt,1);

54 y = zeros(nt,4);

55 P = zeros(nt,1);

56

57 % The frequency information of the pressure oscillations

58 % is contained in the entries 2:N/2 of the FFT.

59 % To determine the pressure amplitudes, only the points in

60 % time > 1 sec. are used.

61

62 Ifreq = 2:N/2;

63 freqFFT = freqFFT(Ifreq);

64 I = find((t > 1),1); % index of first t > 1

65

66 % Extract data for pressure from solution structure, and

67 % determine peak-to-peak amplitudes [kPa] and frequencies

68 % [Hz]

69

70 for i = 1:nLtp

71 y(:,:) = deval(t,solLtp{i}).’;

72 P(:,1) = y(:,1);

73 Amp(i) = max(P(I:end)) - min(P(I:end));

74 FFT_P(:,1) = fft(P);

75 [val,ind] = max(abs(FFT_P(Ifreq))); % determine max.

76 % in periodogram

77 Freq(i) = freqFFT(ind);

78 end

79 Amp = Amp*s.P0*1e-3; % pressure amplitude [kPa]

80

81 % Save frequency and amplitude data

82

83 filename = [’freqData’,identifier];

84 save(filename,’s’,’y0’,’LtpData’,’Amp’,’Freq’)

85

86 case {’Figure5_10’,’Figure5_11’,’Figure5_12’}

C.3. CALCULATING AMPLITUDES AND FREQUENCIES 155

87

88 % Load data

89

90 filename = [’data’,identifier];

91 load(filename)

92

93 % Select points in time, in [s], which are used for the

94 % frequency analysis of the pressure oscillations

95

96 tstart = 0.3;

97 tend = 1.3;

98 N = 4096;

99 t = linspace(tstart,tend,N+1); % sample times, N intervals

100 t(end) = []; % do not include t = 1.3 -> N points

101

102 freqRes = 1/(tend - tstart); % frequency resolution

103 freqFFT = (0:N-1)*freqRes; % frequencies [Hz] from fft

104

105 % Pre-allocate space

106

107 ntauf = length(taufData);

108 nTw = length(TwData);

109 nt = length(t);

110

111 Amp = zeros(ntauf,nTw);

112 Freq = zeros(ntauf,nTw);

113 YfMean = zeros(ntauf,nTw);

114

115 FFT_P = zeros(nt,1);

116 y = zeros(nt,4);

117 P = zeros(nt,1);

118 Yf = zeros(nt,1);

119

120 % The frequency information of the pressure oscillations

121 % is contained in the entries 2:N/2 of the FFT.

122 % To determine the pressure amplitudes and mean fuel mass

123 % fraction, only the points in time > 1 sec. are used.

124

125 Ifreq = 2:N/2;

126 freqFFT = freqFFT(Ifreq);

127 I = find((t > 1),1); % index of first t > 1

128

129 % Extract data for pressure from solution structure and

130 % determine peak-to-peak amplitudes [kPa], mean fuel mass

131 % fractions [-], and frequencies [Hz]

132

133 for i = 1:ntauf

134 for j = 1:nTw

135 y(:,:) = deval(t,soltaufTw{i,j}).’;

136 P(:,1) = y(:,1);

137 Yf(:,1) = y(:,4);

138 Amp(i,j) = max(P(I:end)) - min(P(I:end));

139 FFT_P(:,1) = fft(P);

140 [val,ind] = max(abs(FFT_P(Ifreq)));

156 APPENDIX C. MATLAB CODES MODEL RICHARDS, ET AL

141 % determine max. in periodogram

142 Freq(i,j) = freqFFT(ind);

143 YfMean(i,j) = mean(Yf(I:end));

144 end

145 end

146 Amp = Amp*s.P0*1e-3; % pressure amplitude [kPa]

147

148 % Save frequency and amplitude data

149

150 filename = [’freqData’,identifier];

151 save(filename,’s’,’y0’,’taufData’,’TwData’,’Amp’,’Freq’,...

152 ’YfMean’)

153

154 otherwise

155

156 error(’Unknown identifier choice.’);

157

158 end % switch

freqDataRichardsEa.m

C.4 Plotting graphs

The script file plotRichardsEa.m (see Listing C.4.1) contains the code that was
used to plot the figures of Section 5.4, using the data generated with the scripts
dataRichardsEa (see Section C.2) and freqDataRichardsEa (see Section C.3).
By setting the Matlab variable identifier in Line 23 to a certain string and
running the script, data for the figure associated with that identifier is loaded,
and a graph is plotted and saved under an appropriate name. The available
choices for the identifier are listed in Table C.10. It mentions which figures are
produced for those choices, and the filenames under which the figures are saved
(i.e. the .fig files). The data files (extension: .mat) that are needed to plot the
figures, are shown between angular brackets.

For Figures 5.6–5.8 amplitude information is needed, which was not gener-
ated with the scripts dataRichardsEa or freqDataRichardsEa. It is therefore
computed in the script plotRichardsEa in this section. To be able to compare
the amplitude information of Figure 5.6 directly with those of Figures 5.9–5.12,
the amplitudes are determined in the exact same way, using the same sample
times.

A last remark on the code of plotRichardsEa.m: labels for the contour
plots of Figures 5.10–5.12 must be placed manually in the plots by pointing
and clicking the mouse on contour lines. You continue by pressing the ‘Return’
key. The contour plots are always produced in pairs: part (a) of the figure (the
amplitude information), and part (b) of the figure (the frequency information).
It may happen that the second contour plot is hidden behind the first, when
you are asked to place the labels manually. Just select the second figure window
to put it in the foreground, and continue with placing labels.

C.4. PLOTTING GRAPHS 157

Identifier Filename 〈needed 〉 Description

’Figure5_3’ Figure5_3.fig

〈 dataFigures5_3-4-5.mat 〉
Plots Figure 5.3.

’Figure5_4’ Figure5_4.fig

〈 dataFigures5_3-4-5.mat 〉
Plots Figure 5.4.

’Figure5_5’ Figure5_5.fig

〈 dataFigures5_3-4-5.mat 〉
Plots Figure 5.5.

’Figure5_6’ Figure5_6.fig

〈 dataFigure5_6.mat 〉
Plots Figure 5.6.

’Figure5_7’ Figure5_7.fig

〈 dataFigures5_7-8.mat 〉
Plots Figure 5.7.

’Figure5_8’ Figure5_8.fig

〈 dataFigures5_7-8.mat 〉
Plots Figure 5.8.

’Figure5_9’ Figure5_9.fig

〈 freqDataFigure5_9.mat 〉
Plots Figure 5.9.

’Figure5_10’ Figure5_10a.fig

Figure5_10b.fig

〈 freqDataFigure5_10.mat 〉

Plots Figures 5.10a
and 5.10b.

’Figure5_11’ Figure5_11a.fig

Figure5_11b.fig

〈 freqDataFigure5_11.mat 〉

Plots Figures 5.11a
and 5.11b.

’Figure5_12’ Figure5_12a.fig

Figure5_12b.fig

〈 freqDataFigure5_12.mat 〉

Plots Figures 5.12a
and 5.12b.

Table C.10: Identifier choices for the script file plotRichardsEa.m (see Line 23
of Listing C.4.1). The figures are saved as .fig files. Data that is needed to
plot the figures, is loaded from the .mat files; they are indicated by angular
brackets.

158 APPENDIX C. MATLAB CODES MODEL RICHARDS, ET AL

Listing C.4.1: Script file plotRichardsEa.m. Plots the figures from Section 5.4,
using data generated with dataRichardsEa.m (see Section C.2) and freq-

DataRichardsEa.m (see Section C.3). The choice of the identifier set in Line 23
determines the graph that is plotted.

plotRichardsEa.m

1 % plotRichardsEa.m

2

3 % Clear workspace, close figure windows, and clear command window

4

5 clear all

6 close all

7 clc

8

9 % Set identifier to plot a certain graph from the Interim Report,

10 % Chapter 5. Choose from:

11 %

12 % ’Figure5_3’ = plot Figure 5.3 from Interim Report

13 % ’Figure5_4’ = plot Figure 5.4 from Interim Report

14 % ’Figure5_5’ = plot Figure 5.5 from Interim Report

15 % ’Figure5_6’ = plot Figure 5.6 from Interim Report

16 % ’Figure5_7’ = plot Figure 5.7 from Interim Report

17 % ’Figure5_8’ = plot Figure 5.8 from Interim Report

18 % ’Figure5_9’ = plot Figure 5.9 from Interim Report

19 % ’Figure5_10’ = plot Figure 5.10 from Interim Report

20 % ’Figure5_11’ = plot Figure 5.11 from Interim Report

21 % ’Figure5_12’ = plot Figure 5.12 from Interim Report

22

23 identifier = ’Figure5_3’;

24

25 % Select data to load, plot requested figure, and save it

26

27 switch identifier

28

29 case ’Figure5_3’

30

31 % Load data

32

33 load dataFigures5_3-4-5

34

35 % Select time-span, time in [s]

36

37 tstart = 0;

38 tend = 0.3;

39 t = linspace(tstart,tend,501);

40

41 % Plot graph

42

43 h = figure(’Name’,’Figure 5.3 of Interim Report’);

44 nTwData = length(TwData);

45

46 for i = 1:nTwData

47

48 % Extract data for pressure at specified points in time

C.4. PLOTTING GRAPHS 159

49 % from solution structure

50

51 y = deval(t,solTw{i}).’;

52 P = y(:,1); % pressure, [-]

53

54 % Plot pressure versus time in subplot, and annotate

55

56 subplot(nTwData,1,nTwData - i + 1)

57 plot(t,P) % time in [s], pressure in [-]

58 axis([tstart tend 0.5 2])

59

60 xlabel(’Time (s)’)

61 ylabel({’Dimensionless’,’pressure’})

62 text(0.25,1.75,0,...

63 [’T_w = ’,num2str(TwData(i))],’FontSize’,9)

64

65 % Plot horizontal, dashed line at P = 1 (for reference)

66

67 hold on

68 plot([tstart tend],[1 1],’k--’)

69

70 end

71

72 % Save graph

73

74 saveas(h,’Figure5_3’,’fig’)

75

76 case ’Figure5_4’

77

78 % Load data

79

80 load dataFigures5_3-4-5

81

82 % Select time-span, time in [s]

83

84 tstart = 0;

85 tend = 0.05;

86 nt = 501;

87 t = linspace(tstart,tend,nt);

88

89 % Extract data for temperature from solution structure;

90 % collect data in array, with Tw varying over the columns

91

92 TArray = zeros(nt,length(TwData));

93 for i = 1:length(TwData)

94 y = deval(t,solTw{i}).’;

95 TArray(:,i) = y(:,2); % temperature, [-]

96 end

97

98 % Plot graph

99

100 h = figure(’Name’,’Figure 5.4 of Interim Report’);

101 plot(t,TArray)

102 axis([tstart tend 1 15]);

160 APPENDIX C. MATLAB CODES MODEL RICHARDS, ET AL

103

104 % Annotate graph

105

106 for i = 1:length(TwData)

107 strLegend{i} = [’T_w = ’, num2str(TwData(i)), ’ K’];

108 end

109

110 hleg = legend(strLegend{:});

111 set(hleg,’FontSize’,9)

112 text(0.041,10.75,0,...

113 [’\tau_f = ’,num2str(round(1/s.itauf*1e3)),’ ms’],...

114 ’FontSize’,9)

115 title(’Figure 5.4’)

116 xlabel(’Time (s)’)

117 ylabel(’Dimensionless temperature’)

118

119 % Save graph

120

121 saveas(h,’Figure5_4’,’fig’)

122

123 case ’Figure5_5’

124

125 % Load data

126

127 load dataFigures5_3-4-5

128

129 % Select time-span, time in [s]

130

131 tstart = 0;

132 tend = 0.05;

133 nt = 501;

134 t = linspace(tstart,tend,nt);

135

136 % Extract data for fuel mass fraction from solution

137 % structure; collect data in array, with Tw varying over the

138 % columns

139

140 YfArray = zeros(nt,length(TwData));

141 for i = 1:length(TwData)

142 y = deval(t,solTw{i}).’;

143 YfArray(:,i) = y(:,4); % fuel mass fraction, [-]

144 end

145

146 % Plot graph

147

148 h = figure(’Name’,’Figure 5.5 of Interim Report’);

149 plot(t,YfArray)

150 axis([tstart tend 0 s.Yfi]);

151

152 % Annotate graph

153

154 for i = 1:length(TwData)

155 strLegend{i} = [’T_w = ’, num2str(TwData(i)), ’ K’];

156 end

C.4. PLOTTING GRAPHS 161

157 hleg = legend(strLegend{:},...

158 ’Location’,’NorthWest’);

159 set(hleg,’FontSize’,9)

160 text(0.007,0.042,0,...

161 [’\tau_f = ’,num2str(round(1/s.itauf*1e3)),’ ms’],...

162 ’FontSize’,9)

163 title(’Figure 5.5’)

164 xlabel(’Time (s)’)

165 ylabel(’Fuel mass fraction’)

166

167 % Save graph

168

169 saveas(h,’Figure5_5’,’fig’)

170

171 case ’Figure5_6’

172

173 % Load data

174

175 load dataFigure5_6

176

177 % Select points in time, in [s], which are used to

178 % determine the peak-to-peak pressure amplitude (i.e, use

179 % the points in time consistent with those used for Figures

180 % 5.9-5.12 of the Interim Report)

181

182 tstart = 0.3;

183 tend = 1.3;

184 N = 4096;

185 t = linspace(tstart,tend,N + 1); % N intervals

186 I = find((t > 1),1); % index first t > 1

187 t = t(I:(end - 1)); % time span from 1 to 1.3,

188 % not including t = 1.3

189

190 % Extract data for pressure from solution structure,

191 % and determine peak-to-peak amplitude, in [kPa]

192

193 nh = length(hData);

194 Amp = zeros(nh,1);

195

196 for i = 1:nh

197 y = deval(t,solh{i}).’;

198 Amp(i) = max(y(:,1)) - min(y(:,1)); % amplitude, [-]

199 end

200 Amp = s.P0*Amp*1e-3; % peak-to-peak amplitude [kPa]

201

202 % Plot graph

203

204 h = figure(’Name’,’Figure 5.6 of Interim Report’);

205 plot(hData,Amp)

206

207 axis([100 165 0 80]);

208 set(gca,’Box’,’on’,’TickDir’,’out’)

209

210 % Annoatate, indicate areas of steady combustion and flame

162 APPENDIX C. MATLAB CODES MODEL RICHARDS, ET AL

211 % extinction

212

213 hold on

214 fill([100 110 110 100],[0 0 80 80],[.6 .6 .6])

215 text(105,40,’Steady combustion’,...

216 ’Rotation’,90,...

217 ’HorizontalAlignment’,’center’)

218 fill([155 165 165 155],[0 0 80 80],[.6 .6 .6])

219 text(160,40,’Flame extinction’,...

220 ’Rotation’,90,...

221 ’HorizontalAlignment’,’center’)

222

223 title(’Figure 5.6’)

224 xlabel(’Heat transfer coefficient (W/m^2/K))’)

225 ylabel(’Amplitude (peak-to-peak, in kPa)’)

226

227 % Save graph

228

229 saveas(h,’Figure5_6’,’fig’)

230

231 case ’Figure5_7’

232

233 % Load data

234

235 load dataFigures5_7-8

236

237 % Select time-span, time in [s]

238

239 tstart = 0.9;

240 tend = 0.92;

241 t = linspace(tstart,tend,501);

242 tplot = (t - tstart)*1e3; % time in [ms]

243

244 % Plot graph

245

246 h = figure(’Name’,’Figure 5.7 of Interim Report’);

247 nfData = length(fData);

248

249 for i = 1:nfData

250

251 % Extract data for pressure and velocity at specified

252 % points in time from solution structure

253

254 y = deval(t,solf{i}).’;

255 P = y(:,1); % pressure, [-]

256 u = y(:,3); % velocity, [-]

257

258 % Compute pressure amplitude, normalized pressure,

259 % and normalized velocity

260

261 Amp = s.P0*(max(P) - min(P))*1e-3; % pressure amplitude

262 % in [kPa]

263 P = P/max(P); % pressure normalized to its maximum

264 u = u/max(u); % velocity normalized to its maximum

C.4. PLOTTING GRAPHS 163

265

266 % Plot pressure and velocity versus time in subplot,

267 % and annotate

268

269 subplot(length(fData),1,nfData - i + 1)

270 plot(tplot,[P u]) % pressure and velocity,

271 % time in [ms]

272

273 axis([tplot(1) tplot(end) -0.5 1.1])

274 hleg = legend(’Normalized pressure’,...

275 ’Normalized velocity’,’Location’,’NorthOutside’);

276 set(hleg,’FontSize’,9)

277 xlabel(’Time (ms)’)

278 ylabel({’Normalized pressure’,’and velocity’})

279 text(0.5,-0.3,0,...

280 {[’f = ’,num2str(fData(i))],...

281 [’Pressure amplitude = ’,num2str(round(Amp)),...

282 ’ kPa’]},...

283 ’FontSize’,9)

284

285 % Plot horizontal, dashed line at y = 0 (for reference)

286

287 hold on

288 plot([tplot(1) tplot(end)],[0 0],’k--’)

289

290 end % for

291

292 % Save graph

293

294 saveas(h,’Figure5_7’,’fig’)

295

296 case ’Figure5_8’

297

298 % Load data

299

300 load dataFigures5_7-8

301

302 % Select time-span, time in [s]

303

304 tstart = 0.9;

305 tend = 0.92;

306 t = linspace(tstart,tend,501);

307 tplot = (t - tstart)*1e3; % time in [ms]

308

309 % Plot graph

310

311 h = figure(’Name’,’Figure 5.8 of Interim Report’);

312 nfData = length(fData);

313

314 for i = 1:nfData

315

316 % Extract data for pressure and fuel mass fraction at

317 % specified points in time from solution structure

318

164 APPENDIX C. MATLAB CODES MODEL RICHARDS, ET AL

319 y = deval(t,solf{i}).’;

320 P = y(:,1); % pressure, [-]

321 Yf = y(:,4); % fuel mass fraction, [-]

322

323 % Compute pressure amplitude, normalized pressure,

324 % and normalized fuel mass fraction

325

326 Amp = s.P0*(max(P) - min(P))*1e-3; % pressure amplitude

327 % in [kPa]

328 P = P/max(P); % pressure normalized to its maximum

329 Yf = Yf/max(Yf); % fuel mass fraction normalized to its

330 % maximum

331

332 % Plot pressure and fuel mass fraction versus time in

333 % subplot, and annotate

334

335 subplot(length(fData),1,nfData - i + 1)

336 plot(tplot,[P Yf]) % pressure and fuel mass fraction,

337 % time in [ms]

338

339 axis([tplot(1) tplot(end) 0 1.1])

340 hleg = legend(’Normalized pressure’,...

341 ’Normalized fuel mass fraction’,...

342 ’Location’,’NorthOutside’);

343 set(hleg,’FontSize’,9)

344 xlabel(’Time (ms)’)

345 ylabel({’Normalized pressure’,’and fuel mass fraction’})

346 text(0.5,0.2,0,...

347 {[’f = ’,num2str(fData(i))],...

348 [’Pressure amplitude = ’,num2str(round(Amp)),...

349 ’ kPa’]},...

350 ’FontSize’,9)

351

352 end % for

353

354 % Save graph

355

356 saveas(h,’Figure5_8’,’fig’)

357

358 case ’Figure5_9’

359

360 % Load data

361

362 load freqDataFigure5_9

363

364 % Plot graph

365

366 h = figure(’Name’,’Figure 5.9 of Interim Report’);

367 plot(LtpData,[Freq,Amp])

368 legend(’Frequency’,’Amplitude’,’Location’,’North’)

369 axis([0.475 0.825 0 250]);

370 set(gca,’Box’,’on’,’TickDir’,’out’)

371

372 % Annoatate, indicate areas of steady combustion and flame

C.4. PLOTTING GRAPHS 165

373 % extinction

374

375 hold on

376 fill([0.475 0.525 0.525 0.475],[0 0 250 250],[.6 .6 .6])

377 text(0.5,125,’Steady combustion’,...

378 ’Rotation’,90,...

379 ’HorizontalAlignment’,’center’)

380 fill([0.775 0.825 0.825 0.775],[0 0 250 250],[.6 .6 .6])

381 text(0.8,125,’Flame extinction’,...

382 ’Rotation’,90,...

383 ’HorizontalAlignment’,’center’)

384

385 title(’Figure 5.9’)

386 xlabel(’Tailpipe length (m)’)

387 ylabel(’Amplitude (kPa) and frequency (Hz)’)

388

389 % Save graph

390

391 saveas(h,’Figure5_9’,’fig’)

392

393 case {’Figure5_10’,’Figure5_11’,’Figure5_12’}

394

395 % Load data

396

397 filename = [’freqData’,identifier];

398 load(filename)

399

400 % Plot graph, part (a) contour plot of amplitudes

401

402 strFigure = [’Figure 5.’,identifier(end-1:end),’(a)’];

403 h = figure(’Name’,[strFigure,’a of Interim Report’]);

404

405 % Plot pressure amplitude contour lines

406

407 [XTw,Ytauf] = meshgrid(TwData,taufData);

408 [C,hC] = contour(XTw,Ytauf,Amp,[0:10:100],’k’);

409 axis([700 1400 0.01 0.09])

410

411 % Add lines indicating boundary between steady and

412 % oscillatory combustion

413

414 hold on

415 contour(XTw,Ytauf,Amp,0.01*s.P0*1e-3*[1 1],’k’,...

416 ’LineWidth’,2)

417

418 % Add lines indicating boundary between combustion and

419 % flame extinction

420

421 contour(XTw,Ytauf,YfMean,0.99*s.Yfi*[1 1],’k--’,...

422 ’LineWidth’,2)

423

424 % Annotate graph

425

426 title(strFigure)

166 APPENDIX C. MATLAB CODES MODEL RICHARDS, ET AL

427 xlabel(’Wall temperature (K)’)

428 ylabel(’Flow time (s)’)

429 text(1200,0.05,’Steady combustion’)

430 text(750,0.015,’Flame extinction’)

431

432 % Label contour lines manually by pointing and clicking with

433 % the mouse (press <Return> to continue)

434

435 clabel(C,hC,’manual’,’FontSize’,7)

436

437 % Save graph, part (a) contour plot of amplitudes

438

439 saveas(h,[identifier,’a’],’fig’)

440 %close(h)

441

442 % Plot graph, part (b) contour plot of frequencies

443

444 strFigure = [’Figure 5.’,identifier(end-1:end),’(b)’];

445 h = figure(’Name’,[strFigure,’b of Interim Report’]);

446

447 % Plot pressure frequency contour lines

448

449 [XTw,Ytauf] = meshgrid(TwData,taufData);

450 [C,hC] = contour(XTw,Ytauf,Freq,[70:10:200],’k’);

451 axis([700 1400 0.01 0.09])

452

453 % Add lines indicating boundary between steady and

454 % oscillatory combustion

455

456 hold on

457 contour(XTw,Ytauf,Amp,0.01*s.P0*1e-3*[1 1],’k’,...

458 ’LineWidth’,2)

459

460 % Add lines indicating boundary between combustion and

461 % flame extinction

462

463 contour(XTw,Ytauf,YfMean,0.99*s.Yfi*[1 1],’k--’,...

464 ’LineWidth’,2)

465

466 % Annotate graph

467

468 title(strFigure)

469 xlabel(’Wall temperature (K)’)

470 ylabel(’Flow time (s)’)

471 text(1200,0.05,’Steady combustion’)

472 text(750,0.015,’Flame extinction’)

473

474 % Label contour lines manually by pointing and clicking with

475 % the mouse (press <Return> to continue)

476

477 clabel(C,hC,’manual’,’FontSize’,7)

478

479 % Save graph

480

C.4. PLOTTING GRAPHS 167

481 saveas(h,[identifier,’b’],’fig’)

482

483 otherwise

484

485 error(’Unknown identifier choice.’);

486

487 end % switch

plotRichardsEa.m

168 APPENDIX C. MATLAB CODES MODEL RICHARDS, ET AL

Appendix D

Matlab codes of auxiliary
functions

D.1 Adjusting model parameter structure

The function setparam (see Listing D.1.1) was written to specify the contents
of multiple fields of a structure in an easy way. It also checks if the fieldnames
exist for which the contents is to be set, and it returns an error message if that
is not the case. So, by using the function setparam, the contents of multiple
fields of a structure can be set in one go, and the user is sure that the correct
fields are modified. However, since the input arguments of the function are not
checked for correctness, the user should take care that the input is specified in
the intended way. Otherwise, an unexpected error message may appear.

The input of the function setparam should be of the following form: a
structure (say, s), followed by a paired list of strings of fieldnames and values
(say, ...,’fldn’,valn,...). Thus, the input is: s,’fld1’,val1,.... The
function then returns an identical structure, except that the fields with the
names fldn are given the values valn.

The function setparam is used by the functions setKilicarslan (see Section
A.1), setAhrensEa (see Section B.1), and setRichardsEa (see Section C.1).

For completeness, an overview of the Matlab functions defined in this sec-
tion, is presented in Table D.1.

Function Input Description

setparam s,’fld1’,val1,... Returns a structure equal to s,
except that the fields fldn are
given the specified values valn.

Table D.1: Overview of the functions that are defined in Section D.1.

169

170 APPENDIX D. MATLAB CODES AUXILIARY FUNCTIONS

Listing D.1.1: Function setparam. Given a structure and a paired list of field-
names and values, it returns an identical structure, except that the specified
fields are set to the corresponding values.

setparam.m

1 function sOut = setparam(sIn,varargin);

2

3 % Copy input structure

4

5 sOut = sIn;

6

7 % Adjust user specified fields to user specified values

8

9 for i = 1:2:length(varargin)

10 if ~isfield(sOut,varargin{i})

11 error(’Unknown parameter.’);

12 end

13 sOut = setfield(sOut,varargin{i},varargin{i+1});

14 end

setparam.m

This report was provided with a CD-ROM in the
back, on which all the Matlab codes can be
found that were presented in the appendices.

