
Isogeometric Analy-
sis of a Reaction-
Diffusion Model for
Human Brain Devel-
opment
Jochen Hinz

T
ec

hn
is

ch
e

U
ni

ve
rs

it
ei

t
D

el
ft

Isogeometric Analysis of a
Reaction-Diffusion Model for
Human Brain Development

by

Jochen Hinz

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Tuesday January 28, 2016 at 02:00 PM.

Student number: 1545337
Project duration: March 18, 2015 – January 28, 2016
Thesis committee: Dr. ir. F. J. Vermolen, TU Delft, supervisor

Dr. M. Möller, TU Delft, supervisor
Prof. dr. ir. C. Vuik, TU Delft
Dr. ir. W. T. van Horssen, TU Delft

This thesis is confidential and cannot be made public until January 28, 2016.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

Before you lies the thesis "Isogeometric Analysis of a Reaction-Diffusion Model for Human Brain
Development" which has been written to fulfill the graduation requirements of the Applied Mathe-
matics Program at the Delft University of Technology. I was engaged in this project from March 2015
to January 2016.
I chose for a subject related to the finite element method (FEM) since I had already been confronted
with topics from numerical linear algebra during my project "The Scattering Algorithm for Sparse
Linear Hermitian Systems", which would have been my first choice otherwise.
This thesis is written for people with a background in (applied) mathematics and numerical analysis
in particular. I have done my best to translate the basic principles of differential geometry into a for-
malism that is compatible with the formalism that is common in FEM-related topics.
I would like to thank my thesis supervisors Dr. ir. F.J. Vermolen and Dr. M. Möller for providing me
with this exciting and challenging project and for their support and plenty of helpful advice during
my time at the department. Furthermore, I would like to thank Joost for his help with the implemen-
tation of the numerical solver and for helping me improve my mathematical, as well as my program-
ming skills with his useful tips.
I would like to thank my parents for encouraging me to pursue a double degree despite the additional
study costs associated with it.
Last but not least, I would like to thank everyone who takes his time to read this (rather lengthy)
thesis.

Jochen Hinz
Delft, January 2016

i

Contents

1 Introduction 1
1.1 Problem Description . 1
1.2 Motivation . 2
1.3 Notation. 3
1.4 Thesis Overview . 3

2 Calculus on Geometric Objects 5
2.1 Preliminaries . 6
2.2 Integration over Geometric Objects. 7
2.3 Differential Operators on Geometric Objects . 7
2.4 Curvature of Parametric Surfaces . 10

2.4.1 Principal Curvature. 12
2.4.2 Mean Curvature. 12
2.4.3 Gaussian Curvature. 13
2.4.4 Relating Principal Curvature to Gaussian and Mean Curvature 14

3 Finite-Element Analysis 15
3.1 General Idea . 15
3.2 Elements and FEA Bases . 16
3.3 Properties . 16
3.4 Basic Example: Diffusion on a Monge Patch . 18

4 Isogeometric Analysis 20
4.1 Knot Vectors . 21
4.2 Constructing B-Splines . 21
4.3 Refinement in One Dimension . 25
4.4 L2-Projection . 27
4.5 B-Spline Surfaces . 28
4.6 Refinement in Two Dimensions . 30
4.7 Example: IgA on a Monge Patch. 33

5 Computational Aspects 36
5.1 Integration Techniques . 36

5.1.1 Univariate Case . 36
5.1.2 Bivariate Case . 37

5.2 Matrix Assembly and Choice of Linear Solver . 38
5.3 Concluding Remarks . 40

6 The Gray-Scott Reaction-DiffusionModel for Human Brain Development 41
6.1 The Gray-Scott Reaction-Diffusion Equations . 41
6.2 Including Curvature . 42
6.3 Including Growth. 42

7 Isogeometric Implementation 45
7.1 Formulation as a System of Equations . 45
7.2 Temporal Discretization . 46

ii

7.3 Spatial Discretization . 47
7.4 Essential Boundary Conditions and Choice of Basis. 49
7.5 Natural Boundary Conditions . 50
7.6 Properties of the Numerical Scheme . 51

7.6.1 Temporal . 51
7.6.2 Spatial . 51

7.7 Time-Step Selection . 52

8 Implementation on a Torus 55
8.1 Constructing a Torus . 55
8.2 Constructing a Basis . 56

8.2.1 Utilizing Clamped Knot Vectors . 56
8.2.2 Higher Order Continuity . 58

9 Implementation on a Sphere-Like Shaped Initial Geometry 61
9.1 Multipatch Approach . 61
9.2 Constructing a Sphere . 63
9.3 Constructing a Basis . 65
9.4 Improving Smoothness . 67

10 Refinement Strategies 72
10.1 Refinement Based on Cell Size . 72
10.2 Refinement Based on Curvature . 73

11 Results 76
11.1 Implementation on the Torus . 76
11.2 Implementation on the Gaming Sphere . 80

11.2.1 F = 0.04 . 81
11.2.2 F = 0.0285 . 86

11.3 Discussion . 93

12 Numerical Experiments 96
12.1 Numerical Experiments for p = 2 . 97

12.1.1 Ordinary Sphere . 98
12.1.2 Gaming Sphere . 100

12.2 Numerical Experiments for p = 3 . 103
12.2.1 Ordinary Sphere . 103
12.2.2 Gaming Sphere . 106

12.3 Discussion . 108
12.4 Existing Shortcomings and Possible Remedies. 109

13 Space-TimeGalerkin 113
13.1 Discretization. 113
13.2 Time-Slabbing . 116

A Appendix 118
A.1 Appendix Calculus on Geometric Objects . 118
A.2 Appendix Finite-Element Analysis . 119
A.3 Appendix Isogeometric Analysis . 120
A.4 Appendix Isogeometric Implementation . 120
A.5 Appendix Space-Time Galerkin . 122

Bibliography b

iii

1

Introduction

In this chapter we introduce the problem that will be the subject of this thesis. We outline the short-
comings of an existing numerical implementation and how we aim to improve upon it. We end this
chapter on introducing the notation that we shall adhere to in the remainder of this thesis.

1.1. Problem Description

Neural development has become a topic of growing interest in the past decades. On the one hand
healthy adult individuals exhibit qualitatively similar neural structures, on the other hand neural de-
velopment exhibits a substantial degree of randomness, which is largely confirmed by the observa-
tion that even monozygotic twins exhibit significant anatomical differences [7]. Among other factors,
this neural ‘fingerprint’ manifests itself mainly through the patterns formed in the neural folding and
buckling process occurring naturally after the twentieth week of fetal development (see figure 1.1).
This suggests that environmental factors can have a profound influence on the course of neural de-

Figure 1.1: Typical patterns formed at the surface of human brains.

velopment, which in turn suggests that the underlying biological process, mathematically, exhibits

1

a high degree of sensitivity toward perturbations in the initial condition. On the other hand, a pro-
ficient model for human brain development should be capable of producing qualitatively similar
outcomes for similar setups and explain neural pathologies like lissencephaly and polymicrogyria
(see figure 1.2) by quantitatively different starting conditions. The derivation of proficient models for
human brain development is greatly hindered by the unethicalness of experimentation on human
fetuses.
For this reason existing models postulate various driving forces behind pattern formation and assess

(a) (b)

Figure 1.2: Polymicrogyria (a) and Lissencephaly (b).

their validity by comparing the results of simulations to existent brains. Furthermore quality is as-
sessed through above criteria. Existing models for brain pattern formation can be split into two broad
categories: intrinsic and extrinsic. Intrinsic models postulate a chemical process, whereas extrinsic
models a physical process as the driving force behind neural buckling and folding. Researchers in
the field aim to identify the most-likely driving force by comparing various models in order to reduce
the amount of experimentation needed to a minimum.
The model proposed by Lefèvre et al. [25] shall be the subject of this thesis. It adopts a modified
version of the Gray-Scott reaction-diffusion equations as a basic model for pattern formation. The
resulting system of equations shall be tackled numerically using the principles of Isogeometric Anal-
ysis (IgA) [17].
The concentration of one of the two chemical species considered in the model is postulated as growth-
activator, leading to deformations in the geometry that resemble typical folding patterns found in
human brains. The implicit assumption of the model is that neural growth can, to a good approxi-
mation, be considered as taking place only at the surface. The results from the numerical implemen-
tation presented in the article exhibit a high degree of qualitative similarities for similar setups as
well as quantitative differences resulting from perturbations in the initial condition. The outcomes
also show qualitative differences for different reaction rates and the authors were able to reproduce
certain characteristics from various brain anomalies by changing the numerical values of the param-
eters. Since these findings are well-establish by a great amount of simulations in the paper, in this
thesis we will only present three simulations with different setups.

1.2. Motivation

The model proposed by the authors of the article results in a complex system of equations that can-
not be solved analytically. The main challenge is the fact that the chemical species affect the local
topological properties of the geometry which in turn affects the local expressions of the differential
operators acting on the concentrations of the chemical species, leading to a highly nonlinear system.

2

Complexity is further aggravated by the existence of nonlinear reaction terms. The authors present
a numerical scheme that utilizes a finite-difference discretization in the temporal component, treat-
ing some terms implicitly and others explicitly, as well as a classical finite-element approach in the
spatial components. The initial geometry is given by a triangular tessellated spherical shell.
Growth is incorporated by extracting the value vx of the concentration of one of the chemical species
at triangle vertex x and shifting its position by an amount proportional to vx in the direction of the
normal vector at x. On a tessellated surface, due to the non-smooth transition between triangles, the
normal vector does not exist at the triangle vertices. It is not explicitly stated in the article how the
normal vector is computed but it is apparent that it has been computed by a weighed average of the
normal vectors of the surrounding (planar) triangles. Within an implementation that is mainly fo-
cused on minimizing computational costs (in order to allow for a large amount of simulations), such
an approach is reasonable. I does, however, lack overall mathematical rigor.
Thus, being able to construct smooth geometries would obviously constitute an improvement of
above shortcoming. Furthermore, smoothness in the geometry will most likely result in more ap-
pealing outcomes since non-smooth geometries are not realistic from a biological standpoint.
To achieve smoothness, the evident choice is to replace the classical finite-element approach by an
approach based on isgoeometric analysis. This approach, apart from some restrictions, allows for the
replacement of the piecewise-linear basis functions by smooth B-spline basis functions of arbitrary
polynomial order. It is customary to construct approximations of the geometry from a global map-
ping that uses the same set of (smooth) basis functions that is used to approximate the unknowns
on the geometry. The geometry will thus inherit the continuity properties of the basis. Another ad-
vantage of smoothness is that it allows for a (non-discrete) measure of curvature, which can subse-
quently serve as local refinement criterion.
The computational costs are expected to be higher than in the approach proposed in the article. This
is why this approach should be considered quality-oriented.

1.3. Notation

We represent vectors and vector-valued functions utilizing bold-faced letters. The n-th entry of
vector(-valued function) r is denoted by rn or (r)n . Matrices are presented in square brackets. The
n-th entry in the m-th column of matrix [A] is denoted by [A]n,m .
Let ξ= (ξ1, . . . ,ξn)T and x = (x1, . . . , xm)T . We define the vector-by-vector derivative of x with respect
to ξ as follows

∂x

∂ξ
=

∂x1
∂ξ1

∂x1
∂ξ2

. . . ∂x1
∂ξn

∂x2
∂ξ1

∂x2
∂ξ2

. . . ∂x2
∂ξn

...
...

. . .
...

∂xm
∂ξ1

∂xm
∂ξ2

. . . ∂xm
∂ξn

 , (1.1)

this is also referred to as the Jacobian matrix [J] of x.
In this thesis we will frequently work with finite-element bases. Usually the basis shall we denoted by
Σ= {w1, . . . , wN }. Whenever we refer to spanΣ, we mean the set of all possible linear combinations of
the wi ∈ spanΣ. Here we will also allow for weights form Rn with n 6= 1. The value of n will always be
clear from context.

1.4. Thesis Overview

In chapter 2, we will present a brief introduction the principles of differential calculus on geometric
objects. Here, we will discuss the generalizations of frequently used identities to cases in which the

3

Jacobian matrix (see equation (1.1)) of the mapping between domain and geometry is not square.
Furthermore, we will present several measures for the curvature of a parametric surface.
In chapter 3, we will briefly discuss the basics of finite-element analysis (FEA) and in chapter 4 we
will extend it with the principles from IgA.
Numerical integration and matrix assembly techniques will be treated in chapter 5 which constitutes
the last chapter treating the theoretical aspects of this report.
In chapter 6, we will present the model and corresponding equations as proposed by Lefèvre et al.
and in chapter 7 we present a general IgA implementation of this model.
Concrete implementations based on the principles from chapter 7 will be the subject of chapters 8
and 9 which will be extended with refinement strategies in chapter 10. The results of both implemen-
tations will be presented in chapter 11.
We will present some numerical experiments testing the numerical scheme from chapter 7 in chap-
ter 12 and in chapter 13, we will present a possible alternative scheme for future implementations of
this model.

4

2

Calculus on Geometric Objects

In this thesis we shall make frequent use of parameterizations. The mapping s :Ω→M , withΩ⊂Rn

and M ⊂ Rm , that parameterizes the geometry M with points from the parametric domain Ω shall
be of major importance. ‘Local’ functions living on Ω shall generally be represented utilizing lower-
case letters, for example w :Ω→ R. Functions living in parameter space Ω can be made ‘global’ by
utilizing the inverse s−1 : M →Ω of s and are generally represented by the corresponding upper-case
letter, here: W : M →R. Their relationship is given by

W = w ◦s−1, (2.1)

see figure 2.1.
In practice, we will rarely need W (so we do not have to find s−1) since most calculations are carried
out in Ω. Thus, W will only be important when explaining mathematical concepts. Sometimes, we
shall refer to W as ’the projection of w onto the geometry M ’.
The mapping s is presented in bold-faced type since it is, in fact, a vector-valued function with its
vector-dimensionality matching that of the target space (here M ⊂ Rm , so the dimensionality is m).
In general, a vector-valued function whose domain is given byΩ shall receive a bold-faced lower-case
letter, whereas a vector-valued function over M receives a bold-faced upper-case letter.

Remark. In this thesis it is more natural to adopt the relation

W ◦s = w, (2.2)

as opposed to (2.1). This is especially true whenever s fails to be bijective, in which case we require
that w assumes the same value on segments of Ω that overlap on M , in order to avoid having to
work with open sets (see figure 2.2).

P

p2

p1
s

Figure 2.2: The point P ∈M has two points {p1, p2} ⊂Ω that point to it via the mapping s, such that s can not be invertible.
Periodic boundary conditions have been imposed to ensure that w is single-valued when projected onto M .

5

Figure 2.1: Schematic representation of the relation between local and global functions.

2.1. Preliminaries

Let s :Ω→ M be a mapping that parameterizes an n-dimensional geometry M ⊂ Rm ,m > n. Thus,
Ω⊂Rn and we denote its free variables by ξ1, . . . ,ξn such that (x1, . . . , xm)T = s(ξ1, . . . ,ξn).
As a next step we will characterize the tangent plane TP M of M at point P ∈ M by the vectors that
span it. The tangent plane has the property that every curve C ⊂M that passes through P is tangen-
tial to TP M at point P . TP M is spanned by{

∂s

∂ξ1

∣∣∣∣
p

, . . . ,
∂s

∂ξn

∣∣∣∣
p

}
, (2.3)

where p ∈Ω is the point that satisfies s(p) = P . Note that above vectors are exactly the column vectors
of the Jacobian matrix [J] of s at point p. Since x = s(ξ), we have

[J] = ∂x

∂ξ
. (2.4)

Remark. Note that [J] is not square whenever n 6= m.
In the remainder of this chapter, p ∈Ω and P ∈M , will always be related by P = s(p).

The set {(P,V) : P ∈ M ,V ∈ TpM }, i.e. the set of all vectors that are tangent to M along with the
information to which point of M they are tangent, is referred to as the ‘tangent bundle’ [23, p. 65].
Let U : M → TP M , i.e. let U be a vector-valued function that assumes some V ∈ TP M at each point

6

P ∈ M . As a general rule, the vector-valued function u : Ω → Rn is related to U in the following
way

U◦s = [J]u. (2.5)

Thus, u(p) represents U(P) in the canonical basis of TP M and is referred to as the local counterpart
of U or U in local coordinates. Whenever the domain of a function is M and its co-domain is TP M ,
it will receive a bold-faced upper-case letter and its local counterpart will receive the corresponding
lower-case letter. Furthermore, we shall simply utilize U as opposed to U◦s whenever it is clear from
the context that we are evaluating in ξ as opposed to x. This is equivalent to saying

U(ξ) ≡ U◦s. (2.6)

With (2.5) in mind, we define the surface metric [g] in the following way

[g] = [J]T [J]. (2.7)

The terminology ‘surface metric’ stems from the fact that it induces a canonical inner product for
vectors or vector-valued functions in local coordinates. Using (2.5) and (2.6), we have

A ·B(ξ) = aT [J]T [J]b

= aT [g]b

≡ 〈a,b〉g , (2.8)

where ‘ · ’ stands for the standard inner-product in Rm .

2.2. Integration over Geometric Objects

Since direct integration over complex geometries like M is generally not possible, the idea is to re-
place the domain of integration M by the simpler parametric domainΩ. Since geometries are usually
parametrized by relatively simple domains (for instance quadrilaterals in R2), the limits of integra-
tion follow very naturally from the shape ofΩ.
An integral of any function W : M →R over the geometry M can be related to an equivalent integral
in parameter spaceΩ as follows [23, p. 654]∫

M
W dx =

∫
Ω

w
√

det[g]dξ. (2.9)

The function
√

det[g] acts as a scaling factor, relating infinitesimal (hyper-)surface elements on M

to those fromΩ. It is referred to as the Riemannian volume form [23, p. 389]. For the sake of brevity,
we define

√
det[g] ≡ p

g and dΩ ≡ p
g dξ. In this context, dΩ represents the infinitesimal surface

element on Ω in the presence of scaling and dξ in the absence of scaling. It is seen that the change
of domain is accompanied by a change of integrand. As a result of the scaling

p
g , the complexity of

the integrand usually increases which is why one might favor an approximation with an appropriate
quadrature-scheme over a symbolic approach (see chapter 5).

2.3. Differential Operators on Geometric Objects

Having defined the notion of tangent plane and the relation between local and global vector-valued
functions, we can proceed to defining the geometrical counterparts of the gradient, divergence and
Laplace operators.

7

Let W : Rm → R, we define the directional derivative of W in the direction of V (where ‖V‖ = 1),
denoted by ∂VW , as follows

∂VW (P) = d

dt
W (P + tV)

∣∣∣∣
t=0

. (2.10)

With the chain rule, it evaluates to

∂VW =∇W ·V. (2.11)

The definition from (2.10) is equivalent to [30, p. 190]

∂VW (P) = d

dt
W (γ(t))

∣∣∣∣
t=0

, (2.12)

where the parameterization γ(t), t ∈ [a,b] of the curve C satisfies

γ(0) = P and
d

dt
γ(t)

∣∣∣∣
t=0

= V. (2.13)

Equation (2.12) can be utilized for functions on M by requiring C ⊂M , since then W (γ(t)) is defined
for all t . Note that V ∈ TP M . In light of the ordinary gradient∇W producing a vector that points in the
direction of the steepest ascent inRm , it is obvious that its geometry-counterpart ∇M W should point
into the direction of the steepest ascent on M . Therefore, it obviously may not possess a component
in the direction orthogonal to the geometry. Thus, for each W : M →R, we have ∇M W (P) ∈ TP M .
Since ∇W satisfies

∇W (P) ·V = ∂VW (P), ∀ V ∈Rm , (2.14)

the natural definition of ∇M W , for functions W : M →R, is as follows

∇M W (P) ·V = ∂VW (P), ∀ V ∈ TP M . (2.15)

This definition can be translated to local coordinates

〈∇M w(p),v〉g (p) = ∂VW (P), ∀ V ∈ TP M , (2.16)

where [J (p)]v = V. The function ∇M W that satisfies (2.15) is, in local coordinates, given by [18,
p.62]

∇M w = [g]−1∇̂w, (2.17)

where ∇̂ denotes the ordinary nabla operator in local coordinates.
Its global counterpart thus satisfies

∇M W (ξ) = [J]∇M w. (2.18)

In the remainder, we shall replace ∇M →∇ for convenience. In most textbooks, ∇W is referred to as
the surface gradient.

Remark. Just like the ordinary gradient, ∇W : M → TP M points in the direction of steepest in-
crease of W on M . This is easily seen from (2.15) by noting that ∂VW , with ‖V‖ = 1, is maximized
over V ∈ TP M whenever V points into the same direction as ∇W .

8

We can utilize the above definition of the surface gradient to find an equivalent expression for the
geometric divergence. In Rn , for smooth compactly supported functions W and vector-valued func-
tions U, the divergence can be regarded as the negative adjoint operator of the gradient, i.e.∫

Rn
W ∇·Udx =−

∫
Rn

∇W ·Udx. (2.19)

Let U : M → TP M and W : M → R, analogous to the standard divergence, the geometric divergence
is defined as the negative adjoint of the surface gradient. This translates to local coordinates as fol-
lows ∫

Ω
〈w,∇·u〉g

p
g dξ=−

∫
M

〈∇w,u〉g
p

g dξ, (2.20)

for all functions W that vanish on ∂M . The function that satisfies (2.20) is, in local coordinates, given
by [34, p. 18]

∇·u = 1p
g

n∑
i=1

∂

∂ξi

(p
g ui

)
. (2.21)

The global counterpart of ∇·u satisfies

∇·U(ξ) =∇·u. (2.22)

The Laplace-Beltrami operator, being the counterpart of the ordinary Laplace-operator, consequently
satisfies ∆w ≡∇·∇w . After some rearrangement, we find [20]

∆w = 1p
g

n∑
i , j=1

∂

∂ξi

(p
g g i , j ∂

∂ξ j
w

)
, (2.23)

where the g i , j are the entries of [g]−1. As before, its global counterpart satisfies

∆W (ξ) =∆w. (2.24)

Remark. Above expressions for the standard differential operators on geometries can exclusively
be computed in Ω, not on M directly. This appears like a shortcoming since mapping the ex-
pressions in local coordinates onto their corresponding global counterparts is a laborious task. In
practice, however, this mapping is never explicitly carried out: all computations are carried out in
Ω, such that the global expressions only possess a conceptual relevance.

In (2.3), the definition of the surface gradient, we have related the local and global expression via the
Jacobian matrix [J]. As a general rule, a pair of local and global vector-valued functions carrying the
same letter are related by

U(ξ) = [J]u, (2.25)

whenever U : M → TP M . If the target space of U is not TP M (but, for instance Rm), we adopt the
same relation as defined for scalar functions

U(ξ) = u. (2.26)

Finally, we can state the following two lemmas.

9

Lemma 1. The divergence theorem holds on M . Let U : M → TP M be a sufficiently smooth
function, then we have ∫

M
∇·Udx =

∫
∂M

U ·N∂M dl , (2.27)

where N∂M : M → TP M is the unit outward normal along ∂M (see figure 2.3) and dl is the in-
finitesimal (hyper-) length element along ∂M .

Figure 2.3: The difference between N and N∂M . In this case it is normal to the plane spanned by ∂s
∂ξ

and N.

Proof. See [23, p. 424].

Note that the right-hand side of equation (2.27) vanishes whenever M has no boundary (for example
when M is a spherical shell in R3). With lemma 1 in mind, we can state the following

Lemma 2. On geometries without boundary, we have∫
M

W∆U dx =−
∫
M

∇W ·∇U dx, (2.28)

or in local coordinates ∫
Ω

w∆u
p

g dξ=−
∫
Ω
〈∇w,∇u〉g

p
g dξ. (2.29)

Proof. See lemma A.1.2 in the appendix.

2.4. Curvature of Parametric Surfaces

In this section, we will introduce several measures for the curvature of a parametric surface. To this
end, we first define the notions of ‘first and second fundamental form’ and ‘shape operator’.
Let s :Ω→M , withΩ⊂R2, M ⊂R3 and x = s(ξ,η). With (2.7) in mind, we have

[g] =
[
∂s
∂ξ · ∂s

∂ξ
∂s
∂ξ · ∂s

∂η
∂s
∂η · ∂s

∂ξ
∂s
∂η · ∂s

∂η

]
. (2.30)

10

In some textbooks, the metric [g] is referred to as ‘the first fundamental form’. Analogously, the ‘sec-
ond fundamental form’ is given by [26, p. 109]

[L] =
[

∂2s
∂ξ2 ·n ∂2s

∂ξ∂η ·n
∂2s
∂ξ∂η ·n ∂2s

∂η2 ·n

]
, (2.31)

where

n = 1∥∥∥ ∂s
∂ξ × ∂s

∂η

∥∥∥
(
∂s

∂ξ
× ∂s

∂η

)
, (2.32)

for positively oriented geometries. Finally, the ‘shape operator’ is defined as

[S] = [g]−1[L]. (2.33)

In light of (2.12), the directional derivative of the unit outward normal N : M →R3 of M in the direc-
tion T ∈ TP M , with ‖T‖ = 1 at P is given by

∂TN(P) = d

dt
N(γ(t))

∣∣∣∣
t=0

, (2.34)

where γ satisfies

γ(0) = P and
d

dt
γ(t)

∣∣∣∣
t=0

= T. (2.35)

Note that ∂TN is itself a vector-valued function.
Let us define dN : TP M ×M →R3, via

dN(T,P) = ∂TN(P) (2.36)

It can be shown that [30, p. 193] dN(T,P) satisfies dN(T,P) ∈ TP M . Thus, let

T = [J (p)]t, (2.37)

dN is related to (2.33) as follows [43]

dN(T,P) =−[J (p)][S(p)]t. (2.38)

Hence, the local counterpart dn(t, p) of dN(T,P) satisfies

dn(t, p) =−[S(p)]t. (2.39)

It is seen that the shape operator [S] at p represents the operator dN(T,P) in the canonical ba-
sis {

∂s

∂ξ

∣∣∣∣
p

,
∂s

∂η

∣∣∣∣
p

}
(2.40)

of the tangent bundle at point P (i.e. in local coordinates).

11

2.4.1. Principal Curvature

The principal curvatures at point P , denoted by κ1(P) and κ2(P), are defined as the eigenvalues of
[S(p)] [30, p. 200]. For an example of the idea behind principal curvature, see figure 2.4.

Figure 2.4: Schematic explanation of the idea behind principal curvature. At P1, dN (T,P1) points in the opposite direction
of T and the surface bends toward the normal, which makes the principal curvature corresponding to T positive. At P2,
dN (T,P2) points in the direction of T and the surface bends away from the normal which makes the principal curvature
negative.

The principal directions, in local coordinates, are given by the corresponding eigenvectors of [S] and
can be made global by multiplication with [J].
Loosely speaking, the principal curvatures at P are the reciprocals of the radii of the two circles that

pass through point P and are tangent to one of the principal directions (see figure 2.5). They corre-
spond to the minimum and maximum radii of all possible tangent circles trough P . The sign in front
of κi is positive whenever the surface curves toward the normal vector and negative else. For para-
metric surfaces, they can be utilized as a measure for curvature. The question is under which con-
ditions the shape operator is diagonalizable (and hence two principal curvatures with correspond-
ing linearly independent principal directions exist at P ∈ M). To this end, let us state the following
proposition

Proposition 1. Let [A] be symmetric and let [B] be symmetric positive definite (SPD). Then [B][A]
is diagonalizable.

Proof. See proposition A.1.1 in the appendix.

From proposition (1), we may conclude that the shape operator is guaranteed to be diagonalizable
whenever [g]−1 is SPD. Since [g] is SPD whenever

p
g 6= 0 ([g] being an inner-product matrix), we

may conclude the same for [g]−1. It follows that the shape operator is diagonalizable at points on the
geometry where [g] is non-singular.

2.4.2. Mean Curvature

In the previous subsection, we have introduced the principal curvatures κ1 and κ2 at point P ∈M as
the eigenvalues of the shape operator [S] at point p ∈Ω. The mean curvature κm is simply given by

12

P

Figure 2.5: The principal curvatures at point P are the reciprocals of the minimum and maximum radii of all possible
osculating circles through P .

the average of the two principal curvatures

κm(P) = 1

2
(κ1(P)+κ2(P)) . (2.41)

As the trace of a diagonalizable matrix is equal to the sum of its eigenvalues (including multiplicities),
we have

κm = 1

2
Tr[S]. (2.42)

Note that κm can be zero even though the two principal curvatures are nonzero. This happens when-
everκ1 =−κ2, thus, saddle points can potentially constitute points with nonzero principal curvatures
but zero mean curvature.

2.4.3. Gaussian Curvature

The Gaussian curvature κg is defined as follows

κg = κ1κ2. (2.43)

As the determinant of a matrix is equal to the product of its eigenvalues, assuming that [g] contains
no singularities, we may equivalently write

κg = det[S] = det[L]

det[g]
.

Note that κg is zero whenever one or both of the κi is zero in a point.

13

2.4.4. Relating Principal Curvature to Gaussian and Mean Curvature

With the expressions of κg and κm in mind, we can relate them to the principal curvatures as fol-
lows

κ1 = κm +
√
κ2

m −κg

κ2 = κm −
√
κ2

m −κg . (2.44)

These relations are a useful tool whenever κ1 and κ2 are of relevance, since the computations of
matrix trace and determinant are relatively cheap operations. In chapter 10, we will make use of the
various measures for curvature as a basis for refinement.

14

3

Finite-Element Analysis

In this chapter, we will briefly discuss the basics of finite element analysis (FEA).

3.1. General Idea

The finite element method (FEM) is a proficient tool to approximate solutions to partial differential
equations (PDEs). Given an equation of the form

find U : M →R s.t. L(U) = F on M , subject to boundary conditions (BCs) (3.1)

with some differential operator L and geometry M , the first step is to multiply (3.1) by a test function
W and integrate over M to derive the weak form

find U ∈ ρ s.t.
∫
M

W L(U)dx =
∫
M

W F dx, ∀W ∈σ (3.2)

or more compactly

find U ∈ ρ s.t. (W,U)L = (W,F), ∀W ∈σ. (3.3)

Here ρ is called the trial space andσ the test space. They usually follow from the continuity properties
that (3.2) imposes on W and U and depend on the application.
Usually some sort of partial integration is performed on (3.2) to equalize (and minimize) the order of
the differential operators applied to W and U and to implement natural boundary conditions. The
discretization is carried out by introducing a finite basis Σ= {W1, . . . ,WN } and replacing both ρ and σ
by spanΣ, whereby essential BCs are built into test and trial spaces.
The discretized counterpart of (3.3) is as follows

find U ∈ spanΣ s.t. (Wi ,U)L = (Wi ,F), ∀Wi ∈Σ, (3.4)

assuming that (·, ·)L is still linear in its first argument after partial integration.
By substituting

U =∑
i

ci Wi (3.5)

into (3.4), one can derive a system of equations for the ci . Let us define

R(W) = (W,U)L − (W,F). (3.6)

15

It is seen that U satisfies

∀i ∈ {1, . . . , N } : R(Wi) = 0, (3.7)

which is weaker than

R(W) = 0, ∀W ∈ ρ. (3.8)

3.2. Elements and FEA Bases

So far, we have not talked about the choice of Σ. Before we proceed to this topic, we will talk about
elements and tesselation.
The geometry M on which the differential equation takes place does not necessarily have to be pla-
nar but can be curved. In that case it is customary to build and approximation M∗ of M that is
comprised of a finite set of triangles, referred to as triangular tesselation (see figure [reference forth-
coming]). The triangle vertices {P1, . . . ,PN } ⊂M∗ that result from this tesselation are, in a typical FEM
setting, utilized to construct a piecewise polynomial basis Σ= {W1, . . . ,WN } that satisfies

Wi (P j) = δi , j . (3.9)

The most straight-forward tesselation technique is to select a set of points {P1, . . . ,PN } from M itself
and interpolate linearly between neighbouring points. The triangles A = {ε1, . . . ,εm} that emerge this
way are referred to as elements. Since their amount is finite, as well as the cardinality of Σ, the ter-
minology finite element method follows. A typical feature of FEM bases, apart from (3.9), is their C 0-
continuity across certain element boundaries, regardless of their polynomial order. This is a direct
consequence of the fact [40] that higher order FEM basis functions are usually constructed by com-
bining several Lagrangian polynomials into one function with compact support (to acquire a banded
system matrix). Integration of basis functions (or their derivatives) is then carried out element-wise.
For example, consider the geometrical mass matrix

[A]i , j =
∫
M ∗

Wi W j dx. (3.10)

Let σi , j =
{
εk ∈A | εk ⊂ (

suppWi ∩ suppW j
)}

, then

[A]i , j =
∑

εk∈σi , j

∫
εk

Wi W j dx. (3.11)

Each triangle εk is parameterized by a reference triangle and a local mapping si that induces a canon-
ical metric in each of the integrals of (3.11) (see chapter 2).

Remark. It is possible, though less common, to tesselate using curved triangles as long as they all
can be parametrized from a reference triangle.

3.3. Properties

Whenever L is an inner product operator, there exist some easy to derive properties of the approxi-
mate solution U over spanΣ. As before, we define

(U ,V)L ≡
∫
M

U L(V)dx. (3.12)

16

Lemma 3. Let (·, ·)L be an inner product, i.e. let L satisfy

(U ,V)L = (V ,U)L

(αU ,V)L =α(U ,V)L

(U +V ,W)L = (U ,W)L + (V ,W)L

(U ,U)L ≥ 0 and (U ,U)L = 0 =⇒ U = 0. (3.13)

Furthermore, let Σ= {W1, . . . ,WN } be a (linearly independent) basis over M . Then the matrix

[M] =

 (W1,W1)L . . . (W1,WN)L
...

...
(WN ,W1)L . . . (WN ,WN)L

 (3.14)

is symmetric positive-definite (SPD), and thus non-singular.

Proof. See lemma A.2.1 in the appendix.

Lemma 4. Let (·, ·)L be an inner product and let U∗ be the exact solution of L(U) = F on M .
Furthermore let Σ= {W1, . . . ,WN } be a (linearly independent) basis over M . If c satisfies

[M]c = F (3.15)

with [M] as in (3.14) and

Fi =
∫
M

Wi F dx, (3.16)

then U =∑
j c j W j minimizes ‖U∗−U‖L , where

‖U‖2
L = (

U∗−U ,U∗−U
)

L (3.17)

over spanΣ.

Proof. See [10].

Whenever we approximate a known function F by some U ∈ spanΣ with a finite-element approach,
we are confronted with a problem of the form

find U ∈ spanΣ s.t. (Wi ,U) = (Wi ,F), ∀Wi ∈Σ, (3.18)

thus L is the identity operator.
In this case, lemma 4 tells us that the solution U is the best approximation of F from spanΣw.r.t. the
L2(M) norm. We shall therefore refer to such an approximation as the L2-projection of F onto Σ. For
projections, [M] is simply given by the mass-matrix [A] of Σ

[A]i , j =
∫
M

Wi W j dx. (3.19)

We will discuss L2-projection in more detail in section 4.4.

17

3.4. Basic Example: Diffusion on a Monge Patch

In this section, we will give an explicit example of a typical FEM approach to finding an approximate
solution to a diffusion problem on a curved surface.
Consider the PDE

∂tU = d∆MU on M

∇U ·N∂M = 0 on ∂M
U (t = 0) =U0

, (3.20)

where d is a positive constant.
M is parameterized by s :Ω→M , whereΩ= [0,1]× [0,1] and

s(ξ,η) =
 ξ

η

1− (ξ−1/2)2

 . (3.21)

As a first step, we discretize in time utilizing an implicit backward Euler scheme∫ tk+1

tk

∂tU dt =
∫ tk+1

tk

d∆MU dt

' hk D∆MU k+1, (3.22)

where hk = tk+1 − tk and U k = U (tk). We can utilize the fundamental theorem of calculus on the
left-hand side to derive a system for U k+1 in terms of U k .

(I −hk d∆M)︸ ︷︷ ︸
L(U k+1)

U k+1 =U k . (3.23)

As a next step we multiply by a test function W and integrate, in order to derive the weak form∫
M

W L(U k+1)dx =
∫
M

W U k dx.

⇐⇒
(
W,U k+1

)
+hk d

(
∇M W,∇MU k+1

)
2
=

(
W,U k

)
, (3.24)

where we made use of lemma (2) in conjunction with the fact that ∇U k+1 ·N∂M = 0.
Here, (

∇M W,∇MU k+1
)

2
=

∫
M

∇M Wi ·∇M W j dx. (3.25)

As a next step, we build a triangularly tessellated approximation M∗ of M . This can, for example,
be achieved by evaluating s at a set of points {p1, . . . , pn} ⊂Ω, such that one acquires a set of (equally
spaced) points {P1, . . . ,Pn} ⊂ M . M∗ is then built by linear interpolation between the Pi . The trian-
gles {ε1, . . . ,εm} ≡A , one acquires this way form the elements of the FEM approach and

m⋃
i=1

εi =M∗. (3.26)

As a next step, we build a piecewise linear FEM basis that satisfies

Wi (P j) = δi , j . (3.27)

18

In (3.24), we replace M → M∗, W → Wi and U k+1 = ∑
i ck+1

i Wi . We derive the following system of

equations for the ck+1
i

{[A]+hk d [D]}ck+1 = [A]ck , (3.28)

where

[A]i , j =
∫
M ∗

Wi W j dx

[D]i , j =
∫
M ∗

∇M ∗Wi ·∇M ∗W j dx. (3.29)

Let σi , j =
{
εk ∈A | εk ⊂ (

suppWi ∩ suppW j
)}

, then above expressions reduce to

[A]i , j =
∑

εk∈σi , j

∫
εk

Wi W j dx

[D]i , j =
∑

εk∈σi , j

∫
εk

∇M ∗Wi ·∇M ∗W j dx. (3.30)

Given that element εk has area Ak and defining Hi as the height (vector) of triangle εk from Pi , as-
suming that Wi and W j are have common support on εk , the following identities hold [25]

∫
εk

Wi W j dx =

Ak
6 i = j

Ak
12 i 6= j

(3.31)

and ∫
εk

∇M ∗Wi ·∇M ∗W j dx = Hi

‖Hi‖
· H j

‖H j‖
Ak . (3.32)

We can now approximate the initial condition via polynomial interpolation

U 0 '∑
i

U0(Pi)Wi , (3.33)

choose a fixed or variable time-step hk and commence the time-stepping procedure to solve for the
U k .

19

4

Isogeometric Analysis

Isogeometric analysis is a recent development that aims to combine the techniques of FEA with the
flexibility of spline basis functions. Splines constitute piecewise polynomial functions that can be
constructed so as to satisfy various continuity properties at the places where the polynomials con-
nect.
Splines are widely utilized within the field of computer-aided design (CAD). Their versatility is taken
advantage of when constructing parameterizations for complicated geometries. Within the realm of
industrial mathematics, they find applications in FEM approximations of PDEs that impose certain
continuity properties on the trial and test spaces (see chapter 3). Even though there exist various
types of spline functions, we will exclusively utilize B-splines (basis splines).
The B-spline basis functions N1, . . . , Nn live in parameter space, in one dimension usually the inter-
val Ω = [0,1], i.e. Ni : Ω → R. This interval is utilized to parametrize a B-spline curve in Rk (the
one-dimensional geometry M) in the following way: s(ξ) =∑n

i=1 Ni (ξ)Bi , where ξ ∈Ω and the Bi are
points in Rk (referred to as the ‘control points’).
Bivariate B-splines, or B-splines with higher-order variable dependencies are straight-forwardly con-
structed from univariate B-splines through tensor-products and can be utilized to construct B-spline
surfaces, solids or higher-order geometric objects (see section 4.5). When s is a bivariate mapping,
quadrilaterals in the parametric domain are referred to as ‘patch’. In many application a single patch
suffices to parameterize M but in more complicated settings several patches are needed. In this case
it is customary to either construct M from several patch-specific mappings or craft a global mapping
from a parametric domain consisting of several patches.

Remark. For convenience, we will assume that M is always the result of one global mapping
operator s :Ω→M (soΩ can be comprised of several patches).

The basic idea of isogeometric analysis (IgA) is to utilize the same set of spline-functions as a basis
for the geometry M as well as the solution space. Thus, any function on M is approximated by an
element from the linear span of the very same basis that is utilized to parameterize it via the operator
s :Ω→ M . In this context one might regard the global mapping s as a vector-valued function com-
prised of k + l , where l is the amount of unknows on M , functions from spanΣ with scalar weights,
such that all components of s and all relevant functions on M jointly make up a collection of scalar
functions all from the linear span of the same basis Σ. This is referred to as the isoparametric con-
cept.
Unlike in standard FEM, tessellation of M is very uncommon. This is a result of the fact that a
cleverly-chosen spline basis is often capable of parametrizing M exactly. If M is too complicated for

20

an exact parameterization, it is customary to build an approximation from Σ, utilizing L2-projection
(see section 4.4) or polynomial interpolation.

Remark. The main motivation to utilize B-splines in this work, is the resulting smoothness of the
geometry.

The most striking difference between IgA and FEM, apart from the basis functions used, is the utiliza-
tion of a global operator s to parameterize M as opposed to the parameterization of each individual
element from a reference element. In IgA the individual patches of the parametric domain are thus
local to the geometry as opposed to individual elements.
We start off by introducing the concept of univariate B-spline basis functions and one-dimensional
refinement techniques. After that, we generalize these principles to bivariate B-spline functions and
present refinement techniques in two dimensions. We end this chapter with an example for a typical
IgA-approach to the problem from section 3.4.

4.1. Knot Vectors

B-splines come in various shapes and with various continuity properties. Their properties follow
from the way they are constructed using the so-called knot vector. A knot vector is a partition of the
parameter space (here: Ω= [0,1]) into segments. It is written in the following way:

Ξ= {ξ1,ξ2, . . . ,ξn+p+1},

where n is the amount of (desired) basis functions, p their polynomial order and ξi ∈Ω is the i th knot.
The knot vector is an non-decreasing sequence of knots (i.e. ξ j ≥ ξi for j > i), that usually starts on
ξ0 = 0 and ends on ξn+p+1 = 1. The knot vector also allows for the repetition of knots, the cardinality
of each repetition in conjunction with the knot-spacing leading to the great variety of different pos-
sible shapes.
The knot vector without the repeated knots forms the equivalent of a grid and each segment of the
the grid, fenced off by two unequal consecutive knots, is called an element (analogous to standard-
FEA).

4.2. Constructing B-Splines

Given a knot vector Ξ = {ξ1,ξ2, . . . ,ξn+p+1}, the i th basis function Ni ,p (ξ) with polynomial order p is
constructed recursively starting from

Ni ,0 =
{

1 if ξi ≤ ξ< ξi+1,
0 otherwise

, (4.1)

utilizing the recurrence relation (with 0
0 ≡ 0)

Ni ,q (ξ) = ξ−ξi

ξi+q −ξi
Ni ,q−1(ξ)+ ξi+q+1 −ξ

ξi+q+1 −ξi+1
Ni+1,q−1(ξ), (4.2)

and iterating until q = p [12].
In general, the support of basis function Ni ,p (ξ) is given by the interval [ξi ,ξi+p+1] in parameter
space, thus higher order basis functions tend to have a larger support unless they are accompanied
by repeated knots.
It is easily seen that for p = 0 and p = 1, the basis functions that are constructed this way coincide with

21

Figure 4.1: B-spline basis functions with p = 1,2 and 3, all constructed from the knot vectorΞ= {0,1/10,2/10, . . . ,1} utilizing
formulae (4.1) and (4.2). Individual functions are represented in various colors. Note that ξ1 = 0 and ξ10 = 1 such that the
amount of basis functions is given by n(p) = 10− (p +1). Furthermore note that the maximum value that is attained by
each individual function decreases as p increases while their supports broaden. Each basis with p < 3 can be regarded
as the result of an intermediate iteration of the iterative process prescribed by (4.1) and (4.2) and each basis with p = q is
constructed from the basis with p = q −1.

the ordinary zeroth and first order basis functions from FEA. This changes for p ≥ 2 (see figure 4.1).
From the way the basis functions are constructed utilizing the knot vector, it is seenthat in general
Ni ,p (ξ) has p −m j continuous derivatives across knot ξ j ∈ {ξi , . . . ,ξi+p+1}, where m j is the multiplic-
ity of the value of ξ j in {ξi , . . . ,ξi+p+1}. This means that pth order basis functions constructed from
a knot vector without repeated knot values have at least p − 1 continuous derivatives everywhere,
unlike ordinary higher order basis functions that remain interpolatory across the boundaries of their
support irrespective of their polynomial order.
Additionally, we can state the following lemma about B-splines

Lemma 5. Let Σ be the pth-order B-spline basis constructed from Ξ = {ξ1, . . . ,ξn+p+1}, then the

22

Ni ,p ∈Σ form a partition of unity on the interval [ξp+1,ξn−p−1], i.e.∑
i

Ni ,p (ξ) = 1, ∀ξ ∈ [ξp+1,ξn+1]. (4.3)

Furthermore, B-spline functions are non-negative on the entire parametric domain.

Proof. See [12, p. 22].

Knot-vectors over the interval [0,1] with the property

Ξ=

 0, . . . ,0︸ ︷︷ ︸
p+1 times

,ξp+2, . . . ,ξn︸ ︷︷ ︸
n−p−1 terms

, 1, . . . ,1︸ ︷︷ ︸
p+1 times

 , (4.4)

with 0 < ξi < 1, can be utilized to construct ‘clamped’ bases. For p > 1, B-spline functions do not,
in general, assume the value 1 at some element boundary which means that B-spline curves do not
necessarily cross their control points. The term clamped refers to the fact that the functions N0,p

and Nn,p resulting from a clamped knot vector do assume the value 1 at ξ= 0 and ξ= 1, respectively.
This means that B-spline curves constructed from a clamped basis have the property that the control
points B1 and Bn constitute the starting and end points of the B-spline curve, irrespective of the
polynomial order p. Thus the terminology stems from the fact that the curve is ‘clamped’ between
B1 and Bn .
In general we can state that if a knot value has multiplicity p, the basis will be interpolatory at that
knot (meaning C 0 continuous and some basis function will attain the value 1 there such that all others
assume the value 0). If it has multiplicity p +1 the basis will acquire C−1 continuity, which implies
the existence of discontinuity. For an example of an interpolatory knot see figure 4.2.

0.00 0.10 0.17 0.30 0.38 0.50 0.57 0.70 0.78 0.90 1.00

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Figure 4.2: B-spline basis with p = 3, resulting from the knot vectorΞ= {0,0.1,0.17,0.3,0.38,0.5,0.5,0.5,0.57,0.7,0.78,0.9,1}.
It is seen that the knot value 0.5 has multiplicity 3 = p such that the basis is interpolatory at ξ = 0.5. Additionally, this
B-spline basis is non-uniform since it has unequally spaced knots. The basis forms a partition of unity on the interval
[0.3,0.7].

According to lemma 5, clamped B-spline bases form a partition of unity on the entire parametric
interval [0,1], i.e.

n∑
i=1

Ni ,p (ξ) = 1, ∀ξ ∈Ω. (4.5)

23

In the remainder of this thesis knot vectors of the form

Ξ=

 0, . . . ,0︸ ︷︷ ︸
p+1 times

,
1

n −p
,

2

n −p
, . . . ,

n −p −1

n −p︸ ︷︷ ︸
n−p−1 terms

, 1, . . . ,1︸ ︷︷ ︸
p+1 times

 (4.6)

will be of major importance. We shall refer to them as ‘uniform, clamped knot vector of length n and
order p’.

Figure 4.3: The B-spline bases constructed from uniform knot vectors of length 10 and orders p = 1,2 and 3. Note that the
amount of basis functions that are ‘different’ from functions that are supported by internal elements is exactly equal to p at
each interval boundary. Since the multiplicity of knot values 0 and 1 is equal to p+1, the outermost basis functions at either
side attain the value 1, irrespective of the polynomial degree p. If the interval were to be slightly extended, a discontinuity
(C−1 continuity) in the outermost functions would become visible.

24

0.00 0.33 0.67 1.00

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Figure 4.4: A B-spline curve resulting from the p = 3 basis with Ξ= {0,0,0,0,0.33,0.67,1,1,1,1} and a set of control points.
Notice that the curve intersects only with control points B1 and B6, which is a result of the clamped basis property.

Examples of bases resulting from uniform, clamped knot vectors are depicted in figure 4.3. An exam-
ple of a one-dimensional B-spline curve in R2 can be found in figure 4.4.

4.3. Refinement in One Dimension

In numerical simulations, especially in time-stepping methods, one is frequently confronted with
problems of the form

solve for ck+1 from F (ck+1) =G(ck), (4.7)

where the ck contains the weights of a functional from spanΣ at time instance t k and F,G are (usually
linear) operators.
In certain settings it can make sense to replace an element from the linear span of the coarse basis Σ,
by an element from the finer basis Σ̄ and continue the iterative process utilizing the finer basis. This
can, for instance, become a necessity in problems that enforce local increase of the resolution like
shock waves or in settings with a time-dependent geometry. Thanks to the possibility to construct
a finer basis Σ̄ that satisfies spanΣ⊂ span Σ̄, this replacement can be carried out without projection
errors. In light of (4.7), if refinement is carried out after the kth iteration, ck is replaced by its corre-
sponding vector with respect to Σ̄ and the iterative process is continued using Σ̄. It is convenient to

25

be able to carry out this basis transformation without projection errors as it may be hard to deter-
mine how they propagate in (4.7).
All refinement techniques can be divided into three broad categories: refinement based on order el-
evation, refinement based on knot-insertion and a third that has no classical FEM counterpart [12, p.
41]. The technique that closest resembles the traditional h-refinement from FEA is the technique of
knot-insertion and it will be the subject of the discussion that follows (in this thesis order elevation
will not be discussed as we shall exclusively utilize bases of uniform order).

Remark. Generally speaking, the density of (unequal) knots in a given segment of Ω is positively
correlated with the ‘resolution’ of the basis there.

This is a result of the fact that a higher density of knots implies the presence of a higher density of
basis functions, leading to a locally higher resolution.
Given a knot vector Ξ = {ξ1,ξ2, . . . ,ξn+p+1}, we can refine the grid by adding m new knots such that
we acquire Ξ⊂ Ξ̄= {ξ1 = ξ̄1, ξ̄2, . . . , ξ̄n+m+p+1 = ξn+p+1}.
We shall refer to Ξ̄ as an enriched knot-vector. As an example, consider Ξ = {0,0.5,1}, then Ξ̄ =
{0,0.25,0.5,0.75,1} is an enriched knot vector of Ξ. We can state the following lemma

Lemma 6. Let Σ be a B-spline basis constructed from the knot-vector Ξ. If Σ̄ is a B-spline basis
constructed from an enriched knot-vector Ξ̄ of Ξ, then spanΣ⊂ span Σ̄.

Proof. See [13]

According to lemma (6), any element from the coarse function space Σ is also contained in Σ̄, we
will now present a method to find the new control points from the old control points. We can con-
struct a new set of control points B̄ = {B̄1, B̄2, . . . B̄n+m} from the original set of control points B =
{B1,B2, . . . ,Bn}, utilizing a suitable linear transformation of the vectors contained in B. The matrix
[T p] associated with the transformation can be constructed recursively in the following way [12, p.
37]

[T 0]i , j =
{

1 ξ̄i ∈ [ξ j ,ξ j+1)
0 else

(4.8)

and

[T q+1]i , j =
ξ̄i+q −ξ j

ξ j+q −ξ j
[T q]i , j +

ξ j+q+1 − ξ̄i+q

ξ j+q+1 −ξ j+1
[T q]i , j+1 for q = 0,1,2, . . . , p −1. (4.9)

The new and old weights are related as follows

∀i ∈ {1, . . . ,n +m} : B̄i =
n∑

j=1
[T p]i , j B j . (4.10)

Above transformation ensures that the parametrization is not altered, i.e.

n+m∑
i=1

N̄i ,p B̄i (ξ) =
n∑

i=1
Ni ,p Bi (ξ), ∀ξ ∈Ω, (4.11)

where the N̄i ,p are the new basis functions constructed from Ξ̄. Note that above procedure is com-
patible with functions from spanΣwith scalar weights.
Refinement is a proficient tool to increase the local resolution of the function space. With above
principles, we are capable of refining the basis locally, by only adding knots in a subregion ofΩ. The

26

trade-off between precision and computational costs is the main motivation for local refinement as a
global refinement may increase the resolution (and by that the computational costs) in regions where
it is unnecessary.
For an example of a locally refined basis, see figure 4.5.

0.0 0.2 0.4 0.6 0.8 1.0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.2 0.3 0.4 0.5 0.6 0.8 1.0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Figure 4.5: The p = 2 bases resulting from Ξ = {0,0,0,0.2,0.4,0.6,0.8,1,1,1} and the locally enriched knot vector Ξ̄ =
{0,0,0,0.2,0.3,0.4,0.5,0.6,0.8,1,1,1}. The bases satisfy spanΣ⊂ span Σ̄.

4.4. L2-Projection

In section 4.3, we introduced the concept of refinement via knot-insertion. We have introduced a
general method to construct the new control points (scalars) B̄i that preserve the geometry (function)
under refinement. In this section we will present an alternate way to determine the weights with
respect to the refined basis. This approach constitutes a Galerkin-based projection as opposed to a
collocation technique.
To determine the B̄i , we can simply project each component of the vector-valued function s(ξ) onto
the refined basis Σ̄= {w̄1, . . . , w̄m}, utilizing L2-projection (see section 3.3). The objective is

find u = s,

s.t. ui ∈ span Σ̄. (4.12)

Since s(ξ) :Ω→Rk , we are, in fact, confronted with a problem of the form

∀i ∈ {1, . . . ,k} :

{
find ui (ξ) = si (ξ)
s.t. ui ∈ span Σ̄

. (4.13)

Each individual system can now be solved utilizing an L2-projection. It is customary to carry out this
projection over the geometry (i.e. minimizing the L2(M)-error as opposed to the L2(Ω)-error), since

27

usually the geometrical mass-matrix

[A]i , j =
∫
Ω

w̄i w̄ j
p

g dξ, (4.14)

is needed for other computations as well (and thus has to be assembled only once).
Again, since span Σ̄ ⊂ spanΣ, this projection should in principle be possible without projection er-
rors.
L2-projection is applicable outside of refinement, as well. Going back to some IgA basisΣ, in general,
if the local counterpart f of the right hand side function F : M → Rk is not contained in spanΣ, we
can nevertheless find a ‘good’ approximation from spanΣ utilizing an L2-projection. Again, it is rec-
ommended to carry out this projection over M as opposed to Ω since the geometrical mass-matrix
has to be assembled either way and the L2(M)-norm is ‘canonical’ for functions U : M → Rk . The
problem can then be formulated as follows

∀i ∈ {1, . . . ,k} : find min
ui∈spanΣ

∫
Ω

(
ui − fi

)2pg dξ. (4.15)

The weights c i
1, . . . ,c i

n of ui with respect to Σ= {w1, . . . , wn}, are found by solving

[A]ci = fi , (4.16)

where

fi
j =

∫
Ω

fi w j
p

g dξ, (4.17)

and [A] is the mass-matrix corresponding to Σ.
For its ease of implementation and the availability of the geometrical mass-matrix, the L2-projection
method is, in fact, more popular than the method presented at the end of section 4.3.
We end this section with the following proposition

Proposition 2. Let the B-spline basis Σ̄ satisfy 1 ∈ spanΣ, then the L2-projection is mass conserv-
ing.

Proof. See proposition A.3.1 in the appendix.

4.5. B-Spline Surfaces

We shall now generalize the principle of B-splines to two dimensions.
Two-dimensional parametric surfaces embedded in Rk require two free variables instead of one in
order to be parameterized. We shall use ξ and η as free variables in parameter space. We utilize two
knot vectors Ξ = {ξ1,ξ2, . . . ,ξn+p+1} and H = {η1,η2, . . . ,ηm+q+1} to construct the pth- and q th-order
bases {N1,p , . . . , Nn,p } and {M1,q , . . . , Mm,q }. B-spline surfaces are then parameterized in the following
way

s(ξ,η) =
n∑

i=1

m∑
j=1

Ni ,p (ξ)M j ,q (η)Bi , j , (ξ,η) ∈Ω (4.18)

whereΩ= [0,1]× [0,1].
Here the Ni ,p (ξ)M j ,q (η) become the N = n ×m new bivariate basis functions and the Bi , j are the

28

control points in Rk . One may choose to replace the tensor-product numbering i , j by a single index
such that

s(ξ,η) =
N∑

i=1
wi (ξ,η)Bi , (4.19)

where the global index usually follows from a lexicographical numbering. The bivariate B-spline
basis Σ is then simply given by Σ= {w1, . . . , wN }.
If the two individual, one-dimensional bases are a partition of unity, then so will be their tensor-
product basis, since

n∑
i=1

m∑
j=1

Ni ,p (ξ)M j ,q (η) =
(

n∑
i=1

Ni ,p (ξ)

)(
m∑

j=1
M j ,q (η)

)
= 1. (4.20)

For an example of a bivariate tensor-product basis with lexicographical global numbering, see figure
4.6.

N4,2

M9,2

N8,2

M5,2

w56

w100

Figure 4.6: Bivariate tensor-product basis constructed from the knot vectors Ξ = H =
{0,0,0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,1,1}, with p = q = 2. The indices of the wi follow from a lexicographical
ordering of the form (k, l) → k + (l −1)n, with n = 12.

29

Remark. In the bivariate case, the two-dimensional elements follow from a tensor-product of the
elements belonging to each of the univariate bases. The techniques from section 4.4 are applicable
in the bivariate case in the exact same way.

4.6. Refinement in Two Dimensions

The knot-insertion technique from section 4.3 is also applicable in two dimensions. We can refine
in ξ and η by adding knots to the corresponding knot vectors, Ξ and H , respectively. Thanks to the
tensor-product property of two-dimensional B-spline basis functions, the basis Σ̄ constructed from
the enriched knot-vectors Ξ̄ and H̄ satisfies span Σ̄⊂ spanΣ, too.
The drawback of refinement via enriched knot vectors in two dimensions, however, is its non-local
nature. Since we build a new basis from a global knot vector, refinement in one direction stretches
out over the entirety of the complementary direction (see figure 4.7). This leads to a possibly too
rich refinement, that demands heavier computations in regions where refinement might not even be
necessary.
A more advanced refinement technique is hierarchical refinement. To understand hierarchical re-

Figure 4.7: The non-local nature of refinement via knot-vectors. Even though only a single cell should be refined, the
refinement stretches out over the entire domain leading to a refinement in regions where it might not be necessary.

finement, let us assume that we start with a basis B1 that is constructed from two uniform knot
vectors Ξ1 and H1. We can construct the finer bases Bk recursively by taking the knot vectors Ξk−1

and Hk−1 and adding new knots. Let us assume that we enrich the knot vectors in a straight-forward
fashion by simply halving the spacing between all (unequal) knots. Carrying out a tensor-product,
we acquire the bases B1,B2, . . . that live on the increasingly finer grids T1,T2,
The basic idea of hierarchical refinement is to divide Ω into a disjoint set of elements A from the
hierarchical grids T1,T2, . . ., such that the elements from A jointly make up Ω. Usually, A is ini-
tialized to A = T1. Grid refinement is then carried out by selecting elements from A and replacing
them with several elements from the finer grid T2 and so on. From the hierarchical knot-structure of
the Ti elements from coarser grids can always be completely replaced by elements from finer grids,
such that the grids we acquire with this procedure always make up Ω. Element replacement is ac-
companied by basis refinement, replacing coarse basis functions living on finer elements by their
finer counterparts. The following lemma will help us derive an efficient way to do so

30

Lemma 7. Let w k
i ∈Bk and let

σl
i ,k = {w l

j ∈Bl |supp w l
j ⊂ supp wk

i }.

If l > k, then w k
i ∈ spanσl

i ,k , i.e. w k
i can be represented by a linear combination of the w l

j ∈σl
i ,k .

Proof. See [42, p. 86].

In hierarchical refinement it is important to note that it is usually not recommended to refine single
cells. The reason being that these single cells might be too small to contain a full basis function of the
current basis and/or to harbor finer basis functions (thus making the refinement pointless). It might
therefore be necessary to choose the refinement region slightly larger than anticipated, which makes
the refinement technique not fully local but sufficiently local in practice.
Nevertheless, we present a refinement algorithm that refines A utilizing no more than a set of ele-
ments ε from A as input. The basic idea is to refine the grid and replace a coarse function by its finer
counterparts whenever it is nonvanishing exclusively on elements from a higher level in the element
hierarchy after refinement. For simplicity we assume that A ⊃ ε ⊂ Tk , i.e. ε only contains elements
from A from one level in the element hierarchy. Efficient element selection depends on the appli-
cation and will be further discussed in chapter 10. Algorithm 1 gives the pseudocode to refining A

Algorithm 1 Refine A (ε) * ε ⊂ A should only contain elements from the same level Tk in the
element hierarchy

1: for all εk
i ∈ ε do

2: replace εk
i by {εk+1

j ∈Tk+1|εk+1
j ⊆ εk

i } in A

3: end for
4: σ← {

Σ 3 wk
i ∈Bk |wk

i is nonvanishing exclusively on elements from Tk+1 contained in A
}

5: if σ 6= ; then
6: for all wk

i ∈σ do

7: Project wk
i onto σk+1

i ,k = {wk+1
j ∈Bk+1|supp wk+1

j ⊂ supp wk
i }

8: In each function from spanΣ, replace wk
i by its projection from spanσk+1

i ,k

9: Σ←Σ\ {wk
i }∪σk+1

i ,k
10: end for
11: end if

from a set of elements ε. It is loosely based on the algorithm given in [42] but has been modified for
the purposes of this thesis. The if clause in line number (5) serves as to ensure that whenever a coarse
basis function wk

i is replaced by finer ones, each function of the form

u = ∑
j 6=i

c j w j + ci wk
i (4.21)

is replaced by

u = ∑
j 6=i

c j w j + ci

(
cαwk+1

α + . . .+ cγwk+1
γ

)
, (4.22)

where cαwk+1
α + . . .+ cγwk+1

γ is the projection of wk
i onto σk+1

i ,k . Above procedure transforms each
function into an element from the linear span of the updated basis.

31

Remark. Being able to carry out a global basis transformation by a sequential projection of all
components onto the relevant elements from the refined basis as in line number (8) of algorithm
(1), is a result of lemma 7. A sequential approach can be cheaper than a global projection when
only a few basis functions are nonvanishing exclusively on the refinement region. If the refine-
ment region supports many coarse basis functions, one might choose to update the basis first and
utilize the principles from section 4.4 to project each function onto the newly formed basis in a
global fashion. Algorithm (2) represents the pseudocode corresponding to refinement with global
projection.

Algorithm 2 Refine Globally A (ε) * ε ⊂ A should only contain elements from the same level Tk

in the element hierarchy

1: for all εk
i ∈ ε do

2: replace εk
i by {εk+1

j ∈Tk+1|εk+1
j ⊆ εk

i } in A

3: end for
4: σ← {

Σ 3 wk
i ∈Bk |wk

i is nonvanishing exclusively on elements from Tk+1 contained in A
}

5: if σ 6= ; then
6: Σold ←Σ

7: for all wk
i ∈σ do

8: σk+1
i ,k ← {wk+1

j ∈Bk+1|supp wk+1
j ⊂ supp wk

i }

9: Σ←Σ\ {wk
i }∪σk+1

i ,k
10: end for
11: Project each function u ∈ spanΣold onto Σ, using an L2-projection
12: end if

The if-clause also ensures that whenever the refinement of A does not lead to the case in which
some Bk 3 wk

i ∈ Σ is completely supported by elements from Tk+1, the basis is not changed (note,
however, that the elements in A are nevertheless refined). In principle basis extension without re-
placement is a possibility, as long as the linear independence is not compromised (this would lead to
singular system matrices). Allowing for the possibility to add fine functions without removing coarse
functions is, in principle, possible. We will, however, not allow for it since it would require a compli-
cated mechanism in algorithm (1) to preserve the linear independence of Σ. The refinement criteria
encountered in this thesis will be solely based on function replacement as opposed to extension.
With algorithm (1) in mind, note that coarse functions may actually be partially supported by finer
elements contained in A . This does not pose a problem. Thanks to the piecewise-polynomial na-
ture of the basis functions, functions from Bk are C∞-continuous on elements from Tk and thus, by
extension, on elements from Tk+1 (the converse is not true and will lead to quadrature errors, see
chapter 5).

Remark. After refining hierarchically, the basis Σ is likely to lose its partition of unity property.
This is easily seen by noting that if

∑
i w1

i = 1 and w1
j is replaced by w2

α, . . . , w2
γ, then the updated

basis satisfies
∑

i 6= j w1
i + cαw2

α+ . . .+ cγw2
γ = 1, in which, generally, cα, . . . ,cγ 6= 1. Note that never-

theless, 1 ∈ spanΣ.
For an example of a hierarchically refined univariate basis, see figure 4.8.

As a result of the hierarchical refinement, the amount of nonzero basis functions per element usually
increases. This results in an increased bandwidth of the system matrix and by that in increased as-
sembly costs. This effect can be partially suppressed by the usage of truncated hierarchical B-splines
(THB-splines). For more information, see [15].

The key-features of algorithms (1) and (2) are schematically illustrated in figure 4.9

32

0 1/6 2/6 3/6 4/6 5/6 1

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(a)

0 1/12 2/12 3/12 4/12 5/12 6/12 7/12 8/12 9/12 10/12 11/12 1

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(b)

0 2/12 3/12 4/12 5/12 6/12 7/12 8/12 9/12 10/12 1

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(c)

Figure 4.8: The univariate p = 2 bases B1 and B2 resulting from the uniform. clamped knot vectors with spac-
ing 1/6 and 1/12, respectively and the hierarchically refined basis Σ resulting from the set of to be refined elements

ε =
{

[1
6 , 2

6], [2
6 , 3

6], [3
6 , 4

6], [4
6 , 5

6]
}

. The dotted functions in a) and the undotted ones in b) represent the functions from B1

and B2 that are completely supported by elements from T2 in A after refinement. They are removed from and added
to the basis Σ initialized to Σ = B1. The boundaries of the newly formed set of elements contained in A which make up
Ω= [0,1], are drawn on the x-axis of basis c), as well.

4.7. Example: IgA on a Monge Patch

In this section, we consider the same problem as in section 3.4, i.e.
∂tU = d∆MU on M

∇U ·N∂M = 0 on ∂M
U (t = 0) =U0.

(4.23)

33

refinement region too small
to completely support coarse
function

the combined refinement regions
support one coarse function
which is replaced by (p+2)2 finer
functions (only the non-
overlapping functions are shown)

refinement affects the elements
but the basis is unchanged

=>
=>

Figure 4.9: The key-features of refinement via replacement.

Again, M is parameterized by s∗ :Ω→M , with

s∗(ξ,η) =
 ξ

η

1− (ξ−1/2)2

 . (4.24)

The first step, just like in section (3.4), is to derive the weak form of the implicit Euler-scheme, with
boundary condition handled by partial integration(

W,U k+1
)
+hk d

(
∇M W,∇MU k+1

)
2
=

(
W,U k

)
. (4.25)

As a next step, we introduce two uniform, clamped knot-vectors

Ξ1 =
{
0,0,0, 1

10 , 2
10 , . . . , 9

10 ,1,1,1
}

Ξ2 =
{
0,0,0, 1

20 , 2
20 , . . . , 19

20 ,1,1,1
}

, (4.26)

to construct the univariate p = 2 bases σ1 and σ2.
As a next step, we construct the bivariate tensor-product bases B1 and B2 from σ1 ×σ1 and σ2 ×σ2,

34

respectively. We initialize the basis Σ to Σ=B1 and the elements to A =T1. Since elements from the
centering region of Ω= [0,1]× [0,1] are larger than boundary elements when projected onto M , we
refine the region [4

10 , 8
10]× [4

10 , 8
10] ⊂Ω and update Σ. Finally, we project U0 and s∗ onto Σ (refined) in

order to acquire the first iterand c0 and the mapping s. As the components of s∗ all have polynomial
order ≤ 2, they are contained in spanΣ [14]. We commence the time-stepping procedure where we
iterate according to {

[A]+hk d [D]
}

ck+1 = [A]ck , (4.27)

where

[A]i , j =
∫
Ω

wi w j
p

g dξ

[D]i , j =
∫
Ω
∇wi ·∇w j

p
g dξ. (4.28)

The key-steps of the IgA-approach after the weak form has been derived are outlined in algorithm
(3).

Algorithm 3 IgA approach to the Monge Patch Problem
1: Construct B1,T1 and B2,T2 from σ1 ×σ1 and σ2 ×σ2, respectively.
2: A ←T1
3: Σ←B1
4: ε← {ε1

i ∈T1 | ε1
i ⊂ [4

10 , 8
10]× [4

10 , 8
10]

5: call Refine Globally(ε)
6: c0 ← projection of U0 w.r.t. Σ
7: s ← projection of s∗ onto Σ
8: Assemble [A] and [D], choose hk and commence the time-stepping procedure

35

5

Computational Aspects

5.1. Integration Techniques

In order to construct the matrices and vectors involved in the weak formulation, it is necessary to
evaluate an array of integrals. This can be done using the integration technique called ’Gaussian
quadrature’.
We start off by introducing the concept for one-dimensional integrals, which we shall generalize to
two-dimensional integrals in subsection 5.1.2.

5.1.1. Univariate Case

Let

Q(f) =
∫ b

a
f (x)dx, (5.1)

the main idea behind quadrature, in general, is to find {c1, . . . ,cn} and {x1, . . . , xn} such that

Q(f) '
n∑

i=1
ci f (xi). (5.2)

Here n is called the order of the quadrature scheme. In a Gaussian quadrature scheme, the weights
ci and abscissa xi are chosen such that (5.2) holds for polynomials up to order 2n − 1 exactly. For
a =−1, b = 1 and n = 2, for instance, this means that we have to solve the system

f = 1 =⇒ Q(f) = 2 = c1 + c2

f = x =⇒ Q(f) = 0 = c1x1 + c2x2

f = x2 =⇒ Q(f) = 2
3 = c1x2

1 + c2x2
2

f = x3 =⇒ Q(f) = 0 = c1x3
1 + c2x3

2

. (5.3)

(5.3) is solved by

(c1,c2) = (1,1)

(x1, x2) =
(
− 1p

3
, 1p

3

)
. (5.4)

Usually the system that belongs to a certain scheme is solved using a multidimensional nonlinear
solver. In general, it follows from the linearity of integrals that we can evaluate the integral of any

36

≤ (2n −1)-dimensional polynomial exactly, utilizing a total of n function evaluations. For a table of
coefficients for the interval [a,b] = [−1,1] corresponding to values of n up to 64, see [1].
To go from the interval [−1,1] to any interval [a,b], one can use substitution. Utilizing the coordinate
transformation x = b−a

2 t + b+a
2 , any integral of the form

I =
∫ b

a
f (x)dx (5.5)

can be brought to the form

I =
∫ 1

−1
f

(
b −a

2
t + b +a

2

)(
b −a

2

)
dt , (5.6)

and be tackled with a suitable quadrature scheme.
Since not all functions are polynomials, the question is how accurate the method is for non-polynomial
functions. It can be shown [19] that for a function that possesses 2n continuous derivatives, the error
is bounded by ∣∣∣∣∣Q(f)−

n∑
i

ci f (xi)

∣∣∣∣∣≤ (b −a)n+1(n!)4

(2n +1)[(2n)!]3

∣∣ f (2n)(ξ)
∣∣ , for some ξ ∈ (a,b), (5.7)

which tends to decrease for increasing n.
Note that B-spline basis functions are no polynomials and may fail to possess 2n continuous deriva-
tives everywhere. However, they are piecewise polynomial and therefore Gaussian quadrature can be
applied piecewise and above error estimate holds on polynomial segments. In practice, the integrals
are carried out element-wise, i.e. the integral over Ω is split into a sum of integrals that are then ap-
proximated utilizing the above principle. In the remainder, we will always ensure that quadrature of
piecewise-polynomial functions is performed over a set elements that coincides with the polynomial
segments of the integrand.

5.1.2. Bivariate Case

We shall now extend the principles from section 5.1.1 to two dimensions. Given

Q(f) =
∫ b

a

∫ d

c
f (x, y)dydx, (5.8)

we first utilize substitution to transform the integral into an integral over [−1,1]×[−1,1] as follows

Q(f) =
∫ 1

−1

∫ 1

−1
f

(
b −a

2
s + b +a

2
,

d − c

2
t + d + c

2

)(
b −a

2

)(
d − c

2

)
dsdt

=
∫ 1

−1

∫ 1

−1
g (s, t)dsdt . (5.9)

We utilize an nth-order Gauss-scheme with weights {c1, . . . ,cn} and abscissa {x1, . . . , xn} to approxi-
mate the inner integral

Q(f) =
∫ 1

−1

∫ 1

−1
g (s, t)dsdt

'
∫ 1

−1

n∑
i=1

ci g (xi , t)dt

=
n∑

i=1
ci

∫ 1

−1
g (xi , t)dt . (5.10)

37

Since g (xi , t) = hi (t), each hi (t) can be approximated by an mth-order Gauss-scheme with weights
{d1, . . . ,dm} and abscissa {y1, . . . , ym}

Q(f) '
n∑

i=1

m∑
j=1

ci d j g (xi , y j). (5.11)

It is customary to utilize the same scheme for both one-dimensional integrals. It is seen that the
two-dimensional scheme has the same form as (5.2) with weights ci d j and abscissa (xi , y j), where
(i , j) ∈ {1, . . . ,n}× {1, . . . ,m}.

Remark. Suppose we are given some tensor-product Gauss-scheme over [−1,1]×[−1,1] with weights
ci , j = ci d j and abscissa (xi , y j), where (i , j) ∈ {1, . . . ,n}× {1, . . . ,m}, we can see from (5.9) that con-
verting any integral over [a,b]× [c,d] to an integral over [−1,1]× [−1,1] is equivalent to replacing

ci d j → ci d j

(
b −a

2

)(
d − c

2

)
(5.12)

and

(xi , y j) →
(

b −a

2
xi + b +a

2
,

d − c

2
y j + d + c

2

)
, (5.13)

and carrying the integral out over the original interval [a,b]× [c,d].
In the remainder of this chapter, whenever we present a scheme over an arbitrary quadrilateral
[a,b]× [c,d], we will assume that the weights and abscissa suit this interval through an appropri-
ate conversion utilizing (5.12) and (5.13).

5.2. Matrix Assembly and Choice of Linear Solver

The bivariate integration-techniques from subsection 5.1.2 can be utilized to assemble system ma-
trices of IgA-problems. Suppose, for example, we are dealing with the geometry M parameterized by
s :Ω→ R3, and we would like to project the function U : M → R onto the basis Σ= {w1, . . . , wN }, uti-
lizing the principles from section 4.4. In order to do so, we first have to assemble the mass matrix [A]
of Σ. Thus, we first have to evaluate (or at least approximate) an array of integrals of the form

[A]i , j =
∫
M

Wi W j dx

=
∫
Ω

wi w j
p

g dξ. (5.14)

Of course, in any IgA-setting, the integrals have to be carried out element-wise. Thus, let A =
{ε1, . . . ,εm} be the set of elements that corresponds to the basis Σ, naively, each entry of [A] could
be computed in the following way

∀(i , j) ∈ {1, . . . , N }× {1, . . . , N } : [A]i , j =
∑
εk∈A

∫
εk

wi w j
p

g dξ, (5.15)

where each integral from the sum on the right-hand side can is approximated by repeated one-
dimensional Gaussian quadrature (since elements are rectangularly shaped on Ω, the limits of inte-
gration follow naturally from their vertices). This approach, however, is highly inefficient for several
reasons:

38

• The sum is carried out over all elements even though only the elements on which both wi and
w j are nonzero should be taken into account.

• n ×n (where n is the order of the quadrature-scheme) function evaluations of
p

g can be ex-
pected whenever a quadrature over element εk is carried out. Since εk is integrated over N 2

times, this makes for a total of N 2n2 function evaluations of
p

g per element.

• [A]i , j and [A] j ,i are computed separately even though they are equal.

It is thus recommendable to look for more efficient ways to assemble. Let an array of to-be-evaluated
integrals be given

∀(i , j) ∈ {1, . . . , N }× {1, . . . , N } : [M]i , j =
∫
Ω

fi , j (ξ,η)
√

g (ξ,η)dξ, (5.16)

with fi , j = f j ,i (as for example in (5.14)).
Choosing some tensor-product Gauss-scheme with weights ck

q,r and abscissa (xk
q , yk

r) on element εk ,

we can proceed as follows: for each element εk we first evaluate
√

g (ξ,η) in the abscissa (xk
q , yk

r) and

store the result
√

g (xk
q , yk

r) in memory. As a next step, we select all fi , j with i ≥ j that are nonvanishing

on εk and evaluate them in (xk
q , yk

r), in order to compute∫
εk

fi , j
p

g dξ'∑
q,r

ck
q,r fi , j (xk

q , yk
r)

√
g (xk

q , yk
r), (5.17)

and add it to the corresponding entry in [M]. After looping over all elements, the matrix [M] can then
be reflected in the diagonal in order to incorporate all entries with j > i , even though in a sparse-
matrix setting, it makes more sense to only store the upper or lower triangular entries of a symmetric
matrix. The corresponding pseudocode can be found in algorithm 4. Thus,

p
g is evaluated only n2

Algorithm 4 Matrix Assembly

1: [M] ←;N×N

2: for all εk ∈A do

3: allocate memory and store
√

g (xk
q , yk

r), ∀(i , j) ∈ {1, . . . ,n}× {1, . . . ,n}

4: λ← {
fi , j | fi , j is nonvanishing on εk

}
5: for all fi , j ∈λ do

6: [M]i , j ← [M]i , j + ∑
q,r

ck
q,r fi , j (xk

q , yk
r)

√
g (xk

q , yk
r)

7: end for
8: end for

times per element, only the fi , j that are nonzero on εk are looped over and [M]i , j is computed only for
i ≥ j . Algorithm 4 still constitutes a rather crude implementation, efficiency can be improved further
using the tensor-product property of B-spline basis functions, for more information see [4].

Remark. Since most IgA matrices contain integrals over either Wi W j or ∇Wi ·∇W j in each entry,
determining λ in line 4 of algorithm 4 is just a matter of book-keeping.
Due to the additional factor

p
g when integrating over M , it is advisable to utilize a somewhat

higher-order Gauss-scheme than the one one would normally utilize.

The sparsity of IgA matrices suggest the usage of an iterative solver. This is especially true in time-
stepping methods, where the solution of the previous time-step can be utilized as an initial guess
for the current time-step, to reduce the amount of iterations needed until convergence. Whenever

39

it can be guaranteed that the differential equation that is tackled with an IgA-approach satisfies the
inner-product property, lemma 3 holds and the best choice is an CG-type algorithm [16]. Should
the opposite be the case, the usage of a solver based on GMRES [35] or BiCGSTAB [39] is an option.
Preconditioning is recommended to speed up the convergence.

5.3. Concluding Remarks

The assembly of right-hand side vectors can straight-forwardly be incorporated into the assembly
of system matrices. After refinement of the basis Σ (see section 4.6), it is usually necessary to carry
out L2-projections onto the refined basis Σ̄ in order to acquire representations of the functions in the
new basis. Thus given some right-hand side function F : M →R, we have to assemble the right-hand
side vector F with

Fi =
∫
Ω

w̄i f
p

g dξ. (5.18)

This assembly can be carried out over Ā even though f may be nonvanishing on coarser elements
in A . This does not pose a problem since f is C∞-continuous on each element from A and thus, by
extension, C∞-continuous on elements from Ā . In chapter 10, we present refinement strategies that
do not allow for coarsening, which is why we can carry out the assembly over Ā after refinement. In
section 12.4, however, we will encounter a refinement-strategy that does perform refinement along-
side coarsening. In this case it is of importance that a grid is selected that suits both the continuity-
properties of the w̄i as well as the right hand side function f in the assembly process. Details will be
given in aforementioned section.

40

6
The Gray-Scott Reaction-Diffusion Model

for Human Brain Development

Now that the theoretical foundation for the mathematical aspects of this thesis has been laid, we can
proceed to introducing the actual model that will be the subject of the analysis that follows. The
model was proposed in 2010 by Lefèvre et al. [25] and adopts a modified version of the Gray-Scott
reaction-diffusion equations as a basic model for human brain growth. It aims to reproduce brain
foldings and pattern formation occurring naturally after the 20th week of fetal development. The orig-
inal Gray-Scott equations are extended to include surface curvature and by a mechanism that leads
to surface deformation, leading to geometric pattern formation. In order to acquaint the reader with
all the key-features of this model, we shall start off by presenting the Gray-Scott reaction-diffusion
model and the corresponding system of equations. After the basic features have been established,
we shall modify the reaction-diffusion equations by the novel features proposed in the paper.

6.1. The Gray-Scott Reaction-Diffusion Equations

The Gray-Scott reaction-diffusion model features three chemical species u, v and p that undergo
mutual conversion. Species u and v are assumed to be fed and drained by an outside source so as
to keep their concentrations U and V at a reference level in the absence of mutual reaction. The
reference concentration of u is given by one and the reference concentration of v is given by zero.
The feeding / drainage process takes place at a constant rate F . Mathematically, the aforementioned
process takes the form

∂tU = F (1−U)

∂t V =−FV. (6.1)

On top of the drainage through the external source, species v is assumed to be converted into species
p at a constant rate H

v
H→ p. (6.2)

This essentially acts as an additional drainage of v since p exhibits additional reaction properties
with neither u nor the external source. Apart from its draining effect on v , p can and shall henceforth
be disregarded in this model.
The species u and v undergo mutual transformation at a constant rate of one in the following way

u +2v → 3v. (6.3)

41

Here the numerical values of H and F should be regarded in relation to the reference reaction rate
at which (6.3) takes place. Assuming that the reaction takes place on a planar surface, the Gray-Scott
model for human brain growth reads [25]{

∂tU = d1∆U +F (1−U)−UV 2

∂t V = d2∆V − (F +H)V +UV 2 , (6.4)

subject to initial and boundary conditions.
Here d1 and d2 are the diffusion constants of U and V on the surface and ∆ is the ordinary two-
dimensional Laplace operator. The additional terms −UV 2 and +UV 2 are a result of (6.3), while the
additional drainage term −HV in the governing equation for concentration V is a result of (6.2).
The function (U ,V) = (1,0) constitutes a linearly stable steady-state solution of (6.4) [32].
The (non-equilibrium) solutions of (6.4) are characterized by a large number of patterns for different
values of F and H (alternating between low and high concentration). Pattern formation has been
verified both experimentally [24] and computationally [32] and the field has broadened, greatly facil-
itated by computational simulation. For an overview of the typical patterns that species V exhibits for
various compositions of (F, H), see figure 6.1. Patterns produced by the Gray-Scott reaction-diffusion
- and similar models - resemble many patterns seen in nature. Connections have been proposed, for
instance, in hair follicles [29], leaves [36], butterfly wings and mammalian coat markings [28].

6.2. Including Curvature

The reaction-diffusion process need not take place on a planar geometry. The geometry M can, for
instance, be a curved surface parameterized by the mapping s :Ω→ M , where Ω⊂ R2. As reaction-
diffusion type equations commonly follow from mass-conservation considerations, the local curva-
ture of the surface must have an effect on the system of PDEs. According to [33], in the presence of
curvature, one has to replace∆→∆M in (6.4) (see chapter 2). Thus, in the global sense, the reaction-
diffusion equation reads {

∂tU = d1∆MU +F (1−U)−UV 2

∂t V = d2∆M V − (F +H)V +UV 2 , on M , (6.5)

subject to initial and boundary conditions.
Above system of PDEs is easily translated to local coordinates by replacing U → u and V → v .

Remark. In the remainder, u and v will refer to the local counterparts of U and V , as opposed to
the chemical species from section 6.1. We adopt the standard relation between local and global
functions that we established in chapter 2.

6.3. Including Growth

The most distinguishing feature of the model proposed by Lefèvre et al. is the inclusion of surface
deformation. It is assumed that species V acts as a growth activator and U as inhibitor. To be specific,
it is suggested that the species affect the mapping operator s(ξ,η, t) in the following way

∂t s(ξ,η, t) = l
(
u(ξ,η, t), v(ξ,η, t)

)
n(ξ,η, t), (6.6)

where l (u, v) is some growth function and n the unit outward normal vector in local coordinates. The
most straight-forward choice for l (u, v) is

l (u, v) = K v, (6.7)

42

Figure 6.1: A color-coded plot of the typical kinds of patterns that V forms as a function of F and H (source: [2]). Dark
regions refer to low and bright to high concentrations of V . It is seen that there exists a narrow band in the H −F -plane in
which V exhibits a variety of different patterns. The numerical values of H and F at which this band is localed depend on
the diffusion constants d1,d2 and the geometry on which the reaction takes place.

for some K > 0. Thus, with this choice of growth function, the geometry M will deform at places
where V is nonzero, which is why V acts as a growth activator.

Remark. Since U is not directly involved in the surface deformation, one might regard it as a
passive growth inhibitor. Even though one could easily find a growth function l (u, v) in which u
does actively inhibit growth, in the remainder of this thesis, we will restrict out attention to the
choice from (6.7).

As s, in the presence of growth, becomes a time-dependent function, the geometry will receive a
time-subscript M → Mt , where Mt is parameterized by s(ξ,η, t). Similarly, the surface metric re-
ceives a time-indicator [g] → [g t] as well as the Riemannian volume form

p
g →p

g t .
Obviously, the inclusion of geometry deformation has an influence on mass-conservation consid-
erations over control surfaces. According to [33], in equation (6.5) the governing equations for the

43

concentrations U and V have to be modified so as to contain an additional term. This term is, in
local coordinates, given by −u∂t (ln

p
g t) and −v∂t (ln

p
g t), respectively. With that in mind, the mod-

ified equations in local coordinates read{
∂t u = −u∂t

(
ln

p
g t

)+d1∆t u +F (1−u)−uv2

∂t v = −v∂t
(
ln

p
g t

)+d2∆t v − (F +H)v +uv2 , onΩ, (6.8)

where ∆t ≡∆Mt .
These additional terms ensure that the average concentrations decrease upon surface expansion and
increase upon surface contraction. Since −∂t

(
ln

p
g t

) < 0 whenever the surface locally expands and
−∂t

(
ln

p
g t

)> 0 whenever it (locally) contracts, the modification makes intuitive sense.
The basic idea behind the model is that patterns formed on the surface will manifest themselves in
surface deformations through the extension of the model via (6.6) and (6.7). With the right choice for
F and H , the patterns formed resemble the typical patterns found on the surface of human brains
(see figure 6.1).
Note that we did not explicitly impose any BCs on u and v . Whenever the geometry Mt has no
boundary for all t , there exist no explicit spatial BCs on U and V but only an initial condition. Under
all circumstances, however, BCs have to be imposed on u and v . Whenever there are spatial BCs on
the global concentrations, the local BCs follow straight-forwardly from an appropriate conversion
into local coordinates. Whenever there are no BCs on the global concentrations, the boundary con-
ditions of the local counterparts should be chosen so as to ensure that the function values of u and
v are equal on the segments of ∂Ω that overlap on Mt . On a domain comprised of a single patch,
for example, this usually reduces to periodic boundary conditions across pairs of boundaries. Thus,
local BCs follow from the way in which Ω is mapped onto Mt but statements can not in general be
made. We will elaborate upon this topic in sections 7.4, 8.2.1 and 9.3.

44

7

Isogeometric Implementation

In this section, we present a general numerical scheme with which the differential equation from
chapter 6 is tackled. We will not presume any specific form of Ω but derive conditions that any IgA-
basis should satisfy in the most general way. Tangible applications of these principles for various
initial conditions shall be the subject of chapters 8 and 9.
In the remainder of this chapter we will assume that the Riemannian volume form

p
g t satisfies the

following condition: for all t , there exist strictly positive constants mt , Mt , with Mt > mt , such that
mt ≤p

g t ≤ Mt .

7.1. Formulation as a System of Equations

We can formulate the system comprised of substrates U and V and geometry Mt parameterized by
s as a system of equations in local coordinates

∂t

u

v

s

=

−u∂t

(
ln

p
g t

)+d1∆t u +F (1−u)−uv2

−v∂t
(
ln

p
g t

)+d2∆t v − (F +H)v +uv2

K vn

 , (7.1)

with

n(s) = 1∥∥∥ ∂s
∂ξ × ∂s

∂η

∥∥∥
(
∂s

∂ξ
× ∂s

∂η

)
. (7.2)

Defining

u =
u

v
s

 (7.3)

and

f(u) =

−u∂t

(
ln

p
g t

)+d1∆t u +F (1−u)−uv2

−v∂t
(
ln

p
g t

)+d2∆t v − (F +H)v +uv2

K vn

 , (7.4)

45

the system of equations can be written as

∂t u = f(u). (7.5)

The individual components of f(u) shall be referred to as fu , fv and fs. Note that fs is itself a vector-
valued function.

7.2. Temporal Discretization

We integrate both sides of (7.5) ∫ t k+1

t k
∂t udt =

∫ t k+1

t k
f(u)dt

=⇒ u
(
t k+1

)
−u

(
t k

)
=

∫ t k+1

t k
f(u)dt . (7.6)

Before proceeding to the discretization, we define uk as the approximation of u
(
t k

)
, resulting from

the discretized scheme.
The right-hand-side integral of (7.6) is approximated by a mixed implicit / explicit quadrature. Defin-
ing hk = t k+1 − t k , we utilize∫ t k+1

t k
f(u, v,s)dt ' hk

[
g(uk+1, vk+1,sk ,sk−1)+h(uk , vk , vk+1,sk)

]
, (7.7)

where

g(uk+1, vk+1,sk ,sk−1) =

−uk+1∂h
t

(
ln

p
gk

)+d1∆k uk+1 −Fuk+1

−vk+1∂h
t

(
ln

p
gk

)+d2∆k vk+1 − (F +H)vk+1

0

 (7.8)

and

h(uk , vk , vk+1,sk) =

−uk

(
vk

)2 +F

uk
(
vk

)2

K nk vk+1

 , (7.9)

with nk = n(sk), ∆k ≡∆t k and
p

gk ≡p
g t k .

The expression ∂h
t

(
ln

p
gk

)
represents the time-discretization of ∂t

(
ln

p
gk

)
∂h

t

(
ln

p
gk

)= ln
p

gk − ln
p

gk−1

hk−1
, (7.10)

we utilize a backward-difference scheme to avoid having to include
p

gk+1 which is unknown at time-
instance t = t k . In this setting, it also becomes apparent why g is a function of sk and sk−1: sk−1

appears in
p

gk−1 and sk in
p

gk as well as the operator ∆k (see section 2.3).
We can cast the discretized system into the form

L(uk+1) = uk +hk h
(
uk , vk , vk+1

)
, (7.11)

where

L
(
uk+1

)
=

{
hk

[
∂h

t

(
ln

p
gk

)−d1∆k +F
]+1

}
uk+1{

hk
[
∂h

t

(
ln

p
gk

)−d2∆k +F +H
]+1

}
vk+1

sk+1

 . (7.12)

46

As before, the individual components of L,g and h are referred to utilizing u, v and s subscripts. Note
that L satisfies

L(a1u1 +a2u2) = a1L(u1)+a2L(u2) (7.13)

and that each component of L(uk+1) only depends on the corresponding component in uk+1.

7.3. Spatial Discretization

System (7.11) can and should not be solved exactly. It cannot in general be solved exactly since the
operator ∆k assumes too complicated expressions on most geometries to allow for a symbolic so-
lution method. Another reason is the fact that h(uk , vk , vk+1,sk) contains nk which is a function of
the derivatives of sk . A symbolic computation of the derivatives for arbitrary sk is usually unfeasi-
ble or even impossible, for this reason, uk and vk and sk are approximated using an IgA-approach.
We first multiply by a test-function W and integrate over Mk . Here Mk refers to the geometry at
t = t k before the spatial discretization. Assuming that M0 constitutes a boundaryless geometry, for
each of the k, sk parameterizes a geometry without boundary. For the sake of brevity, we utilize
dΩk ≡p

gk dξ ∫
Mk

W Lu(U k+1)dx =
∫
Mk

W
[
U k +hk hu

(
U k ,V k

)]
dx

⇐⇒
hk d1

∫
Ω
〈∇k w,∇k uk+1〉gk dΩk +

∫
Ω

w
[(
∂h

t

(
ln

p
gk

)+F
)

hk +1
]

uk+1dΩk

=
∫
Ω

w
[

uk +hk hu

(
uk , vk

)]
dΩk .

(7.14)

Similarly, ∫
Mk

W Lv (V k+1)dx =
∫
Mk

W
[

V k +hk hv

(
U k ,V k

)]
dx

⇐⇒
hk d2

∫
Ω
〈∇k w,∇k vk+1〉gk dΩk +

∫
Ω

w
[(
∂h

t

(
ln

p
gk

)+F +H
)

hk +1
]

vk+1dΩk

=
∫
Ω

w
[

vk +hk hv

(
uk , vk

)]
dΩk .

(7.15)

Here, we have made use of lemma 2. As a next step, we introduce a local basis Σ = {w1, . . . , wN }. In
(7.14) and (7.15), we successively replace w → wi and we approximate uk , vk and sk by elements
from spanΣ,

uk =∑
j

ck
j w j

vk =∑
j

d k
j w j

sk =∑
j

ek
j w j , (7.16)

with

ek
j =

(
e1

j

)k(
e2

j

)k(
e3

j

)k

≡

e1
j

e2
j

e3
j

k

. (7.17)

47

Note that through the introduction of (7.16) we have implicitly replaced the exact expression of Mk

by its discretized counterpart, parameterized by the discrete sk . In the following, Mk ,uk , vk and sk

will always refer to the spatially discretized expressions. Introducing [A], [B], [D], fr and w with

[A]i , j =
∫
Ω

wi w j
p

gk dξ

[D]i , j =
∫
Ω
〈∇k wi ,∇k w j 〉gk

p
gk dξ

[B]i , j =
∫
Ω

wi w j∂
h
t

(
ln

p
gk

)p
gk dξ

(fr)i =
∫
Ω

wi uk
(
vk

)2p
gk dξ

(w)i =
∫
Ω

wi
p

gk dξ, (7.18)

we can construct a system of equations for ck+1 = (
ck+1

1 , . . . ,ck+1
N

)T
and dk+1 = (

d k+1
1 , . . . ,d k+1

N

)T
. They

satisfy

{[A](1+hk F)+d1hk [D]+hk [B]}ck+1 = hk F w−hk fr + [A]ck (7.19)

and

{[A](1+hk (F +H))+d2hk [D]+hk [B]}dk+1 = hk fr + [A]dk . (7.20)

Note that, strictly speaking, the matrices and vectors from (7.18) should receive a time-superscript
k since they are not constant but have to be recomputed after each iteration (due to the non-static
nature of Mk). For the sake of brevity, however, we shall omit this superscript and assume that the
reader is aware of the time-dependence involved.
After systems (7.19) and (7.20) have been solved, we are in the position to update the geometry. Equa-
tions (7.11) and (7.12) suggest that we should update according to the relation

sk+1 = sk +hk hs

(
vk+1,sk

)
= sk +hk K vk+1nk . (7.21)

For reasons mentioned at the beginning of this section, continuing the computations with this pa-
rameterization is not feasible which is why we project sk+1 onto Σ. Assuming that sk is in the form of
(7.16) this is accomplished by solving

∀i ∈ {1,2,3} : [A]
(
ei

)k+1 = [A]
(
ei

)k +hk K li (vk+1,sk), (7.22)

with (
li (vk+1,sk)

)
j
=

∫
Ω

w j vk+1
(
nk

)
i

p
gk dξ (7.23)

and (
ei

)k =
((

e i
1

)k
, . . . ,

(
e i

N

)k
)T

. (7.24)

After (7.22) has been solved, sk+1 is given by

sk+1 =∑
j

ek+1
j w j , (7.25)

with the ek+1
j as in (7.17).

48

7.4. Essential Boundary Conditions and Choice of Basis

Assuming that sk parameterizes a boundaryless geometry for all k, there exist no essential spatial
boundary conditions on the Wi : Mk → R. There do, however, exist boundary conditions in Ω and
some initial condition

u(t = 0) = i. (7.26)

Depending on the complexity of the individual components iu , iv and is, it might be necessary to
project the exact expressions ontoΣ to acquire approximations from spanΣ before the time-stepping
procedure commences. In particular, this might be necessary for is when n (is) is not known or hard
to compute. These approximations then become the first iterands u0, v0 and s0.
The boundary conditions inΩ follow from the following observation: in order for the uk and vk to be
compatible with the weak forms from (7.14) and (7.15), their global counterparts U k and V k must at
time instance t k be elements from H 1(Mk), the Sobolev space of order one. This is accomplished by
requiring that they are elements from C 0(Mk) everywhere and elements from C 1(Mk) almost every-
where. In this case almost everywhere allows for violations on subsets of Mk that have measure zero.
These requirements can be translated to boundary conditions on Ω, which in turn enforce certain
constraints on the wi ∈ Σ. Before we derive these constraints, note that sk , is not bijective when Mk

has no boundary. This is easily seen by noting that each point from ∂Ω has to coincide with at least
one other point from ∂Ω when mapped onto the geometry Mk , in order for it to possess no bound-
ary.
Thus, suppose that γ⊂ ∂Ω is an overlapping set at some time-instance t k , i.e. it satisfies

sk (pi) = P ∈Mk , ∀pi ∈ γ= {p1, . . . , pn}, (7.27)

where γ has a cardinality of at least two. A set {p1, . . . , pn} that satisfies (7.27) is referred to as a set of
‘equivalent points’. Let us define intΩ=Ω\∂Ω. Following [9], we call U : Mk →R a function on Mk if
its local counterpart u satisfies:

u|intΩ is a function on intΩ and u assumes equal function values on equivalent points. (7.28)

In order for any function U : Mk → R to satisfy U ∈ H 1(Mk), we require that its local counterpart
satisfy

U is a function w.r.t. Mk and u ∈ H 1(Ω). (7.29)

The two conditions from (7.29) ensure that there are no discontinuities on the geometry on equiva-
lent points (see figure 7.1). The easiest way to ensure that each sk parameterizes a geometry that does
not possess a boundary and that each u ∈ spanΣ satisfies (7.29) for all k, is to impose the following
condition on the wi

Wi is a function w.r.t. M− and wi ∈ H 1(Ω), (7.30)

where M− is parameterized by is (M0 already refers to its projection onto Σ).
That (7.30) indeed produces geometries without boundary is easily seen by noting that the condition
wi ∈ H 1(Ω) prevents any ‘holes’ on Mk , resulting from points from intΩ. Furthermore, the condition
that U be a function on M− ensures that each γ⊂ ∂Ω that constitutes an overlapping set on the initial
geometry stays an overlapping set with respect to each of the sk . As the initial geometry is assumed
to possess no boundary, these two conditions ensure that it remains without boundary.
The definition from (7.30) will be applied in chapters 8 and 9 where they reduce to certain periodicity
requirements on the wi on segments of ∂Ω. In sections 8.2.1 and 9.3, we will construct bases that
satisfy (7.30) utilizing regular knot-vectors and some additional tweaking.

49

Figure 7.1: One-dimensional example of (7.29). The function u is in H1(Ω) but this does not exclude discontinuities in its
global counterpart U .

7.5. Natural Boundary Conditions

In section 7.3 we established a spatial discretization of the numerical scheme and were able to reduce
the continuity requirements of the basis from second order to first (in the weak sense). This was
accomplished by replacing ∫

Mk

W∆kU dx →−
∫
Mk

∇kW ·∇kU dx, (7.31)

under the implicit assumption that the corresponding mapping sk is sufficiently smooth and param-
eterizes a geometry without boundary (such that lemma 2 holds).
We replaced the smooth sk by an element from spanΣ, which could violate the smoothness criterion
(since the wi are only required to satisfy (7.30)).
Let us assume thatΩ is comprised of m patches

Ω=
m⋃

i=1
Ωi (7.32)

and that we choose a basis compliant with (7.30) that satisfies

wi ∈C p−1(intΩi), ∀i ∈ {1, . . . ,m} (7.33)

with p ≥ 2.
Violations of the second order smoothness requirement can thus only occur on ∂Ωi . Thus, we can
apply the intermediate result of lemma A.1.2∫

M
W∆MU dx =−

∫
M

∇M W ·∇MU dx+
∫
∂M

W ∇MU ·N∂M dl (7.34)

to each patch individually. Let M i
k ≡ sk |Ωi , we have∫

Mk

W∆kU dx =
m∑

i=1

∫
M i

k

W∆kU dx

=−
m∑

i=1

∫
M i

k

∇kW ·∇kU dx+
m∑

i=1

∫
∂M i

k

W ∇kU ·N∂M i
k
dl

=−
∫
Mk

∇kW ·∇kU dx+
m∑

i=1

∫
∂M i

k

W ∇kU ·N∂M i
k
dl . (7.35)

50

Thus, we implicitly required

m∑
i=1

∫
∂M i

k

W ∇kU ·N∂M i
k
dl = 0, (7.36)

which can be regarded as the weak imposition of the condition

∇kU (x) ·N∂M i
k
(x) =−∇Uk (x) ·N

∂M
j

k
(x), for x ∈

(
∂M i

k ∩∂M
j

k

)
, i 6= j (7.37)

that holds for diffusive processes strongly. Note that this also holds for m = 1 and that above condi-
tion is strongly satisfied when the basis is sufficiently smooth everywhere.

7.6. Properties of the Numerical Scheme

In this section we will present an order-error for the temporal discretization, as well as a condition
under which lemma 4 holds for the spatial discretization.

7.6.1. Temporal

In equation (7.7), we introduced the temporal discretization of the right-hand side term f(u, v,s)
with ∫ t k+1

t k
fudt ' hk

[
−uk+1∂h

t

(
ln

p
gk

)+d1∆k uk+1 −Fuk+1 −uk
(
vk

)2 +F

]
∫ t k+1

t k
fv dt ' hk

[
−vk+1∂h

t

(
ln

p
gk

)+d1∆k vk+1 − (F +H)vk+1 +uk
(
vk

)2
]

∫ t k+1

t k
fsdt ' hk K nk vk+1. (7.38)

In appendix A.4, we derive the local truncation errors τk for the individual components of the tem-
poral discretization. They are given by

τk (fu) =O (hk)+O (hk−1)

τk (fv) =O (hk)+O (hk−1)

τk (fs)i =O (hk) (7.39)

The global error is of the same order [37].

7.6.2. Spatial

In section (7.3), we have derived the weak forms for uk+1 and vk+1. We have done so by multiplying
by a test-function and integrating over Mk . Choosing Mk instead of Mk+1 is a necessity since Mk+1

is unknown at time-instance t k (sk+1 has not yet been solved for). Assuming that Lu and Lv are
inner-product operators, according to lemma 4, the approximate solutions uk+1 and vk+1 constitute
the best approximation from spanΣ to the exact solutions with respect to the Lu(Mk)- and Lv (Mk)-
norm, respectively. Since L is obviously an operator whose components satisfy the linearity as well
as the symmetry requirement, the inner-product property rests on positive-definiteness. We now
derive a (not necessarily sharp) condition for positive definiteness of the individual components of

51

L.
We have∫

Mk

U Lu(U)dx = (hk F +1)
∫
Ω

u2dΩk +hk d1

∫
Ω
〈∇k u,∇k u〉gk dΩk +hk

∫
Ω
∂h

t

(
ln

p
gk

)
u2dΩk

≥ (hk F +1)
∫
Ω

u2dΩk +hk

∫
Ω
∂h

t

(
ln

p
gk

)
u2dΩk

= (hk F +1)
∫

suppu

u2dΩk +hk

∫
suppu

∂h
t

(
ln

p
gk

)
u2dΩk . (7.40)

Thus, if suppu 6= ;, we need to require∫
suppu

(
hk∂

h
t

(
ln

p
gk

)+hk F +1
)

u2pgk dξ> 0. (7.41)

Since u2pgk > 0 on suppu, a sufficient condition for (7.41) to hold is

∂h
t

(
ln

p
gk

)>− 1

hk
−F, (7.42)

pointwise.
A similar analysis leads to the v-counterpart of (7.42)

∂h
t

(
ln

p
gk

)>− 1

hk
−F −H , (7.43)

pointwise.
Exact statements, concerning the conditions under which (7.43) is satisfied are difficult to make in
general. However, assuming that K in (7.9) satisfies K ¿ F + H , in conjunction with the fact that
the outward orientation of n is likely to lead to local growth of

p
gk (ξ,η) (and thus of ln

p
gk), it is

reasonable to assume that (7.42) and (7.43) is not violated.
This suggests the usage of a CG-type algorithm to tackle (7.19) and (7.20), as well as each of the
projections from (7.22). Of course it is advisable to utilize the solution vector of the previous time-
step as initial guess in order to speed up the convergence.

Remark. Should (7.43) or (7.43) be violated at some time-instance t = t k , this does not necessarily
imply that (7.41) is violated over the finite IgA basis Σ.

7.7. Time-Step Selection

So far we have not discussed how to choose the time-step hk . Since the system-matrices have to be
rebuilt after each iteration, the time-step selection should be based on the following principles:

• as large as possible with respect to numerical stability

• small enough with respect to the characteristic time-scale of the equation to warrant numerical
accuracy

• time-step selection should be a cheap operation.

With above principles in mind, time-step selection based on the PID-controller proposed by Valli
et al. [38] constitutes a proficient choice. The basic ingredient of this PID-controller is a recursive

52

time-step selection based on the following scheme

hk+1 =
(

ek−1

ek

)kP
(

1

ek

)kI
(

e2
k−1

ek ek−2

)kD

hk , (7.44)

where

ek = max(eu ,ev ,e1,e2,e3) , (7.45)

and

eu = e∗u
tol

e∗u =
∥∥uk+1 −uk

∥∥
2∥∥uk+1

∥∥
2

ev = e∗v
tol

e∗v =
∥∥vk+1 − vk

∥∥
2∥∥vk+1

∥∥
2

ei =
e∗i
tol

e∗i =
∥∥sk+1

i − sk
i

∥∥
2∥∥sk+1

i

∥∥
2

. (7.46)

Whenever K ¿ 1, it is reasonable to remove the ei , i ∈ {1,2,3} from (7.45) and base the time-step
selection purely on eu and ev . Here tol constitutes a tolerance to which the relative change in norm
(of uk or vk) between two iterations is tuned. kP , kI and kD are positive constants. The recursive
selection scheme (7.44) is mostly heuristical and serves the purpose to ensure that en gets as close
as possible to but does not exceed tol . Choosing the value of tol sufficiently small ensures that
the time-step is appropriate for the characteristic time-scale of the problem and that no numerical
instabilities occur (in which case the relative change would exceed tol as well). Finally, time-step
selection is cheap since we can utilize∥∥∥uk −uk−1

∥∥∥2

2
=

∫
Mk

(
U k −U k−1

)2
dx

=
(
ck −ck−1

)T
[A]

(
ck −ck−1

)
, (7.47)

and similar expressions for the other norms involved. The overall time-stepping scheme is then com-
prised of four parts [21, p. 275]
The PID-controller by Valli et al.

1. Carry out the kth time-step and compute the relative changes of the chosen indicator variable
ek .

2. If ek > tol , reject uk and recompute it using

hk ← tol

ek
hk .

3. Adjust the time-step for the next iteration smoothly using

hk+1 =
(

ek−1

ek

)kP
(

1

ek

)kI
(

e2
k−1

ek ek−2

)kD

hk .

4. Limit the growth and reduction of the time-step so that

hmin ≤ hk+1 ≤ hmax m ≤ hk+1

hk
≤ M .

53

Adjusting the time-step smoothly as in (7.44) also aims to ensure that the rejection of uk is a sel-
dom occurrence. The default values of the PID parameters are given by KP = 0.075, kI = 0.175 and
kD = 0.01, which we shall utilize throughout the remaining chapters.

54

8

Implementation on a Torus

Now that we have presented a general isogeometric implementation and established the require-
ments that the basis functions have to satisfy, we can commence with an explicit implementation.
Within the framework of human brain development, a sphere-like shaped initial geometry is the ob-
vious choice. As a sphere constitutes a challenging geometry in any discrete setting, it is advisable
to start with a simpler geometry. The torus constitutes a good starting point since it can be param-
eterized from a single patch and its parameterization does not contain any singularities (unlike the
sphere from a single patch).

8.1. Constructing a Torus

As parametric domain, we chooseΩ= [0,1]× [0,1] and parameterize the torus via

is =

(
R1 +R2 cos(2πη−π)

)
cos(2πξ−π)(

R1 +R2 cos(2πη−π)
)

sin(2πξ−π)

R2 sin(2πη−π)

 . (8.1)

Here R1 constitutes the inner radius of the torus and R2 the outer. It is advisable to initialize the radii
to values that satisfy R1 >C R2, for some C > 1. In fact, it is recommended to choose C > 2 since that
reduces the chances of the geometry clashing with itself at later stages of the growth process.
As a next step, we will characterize the overlapping sets of is. The parameterization of the torus can
be regarded as a two-step process, step one glues together the western and eastern boundaries of Ω
to form an open cylinder and step two fuses the two open ends together to form the torus M−. Thus,
the western and eastern boundaries overlap on M−, as well as the northern and southern. Hence,
the collection ΓT of all overlapping sets is given by the collection of pairs of points that satisfy

ΓT = {
{p1, p2} ⊂Ω | (

p1 = (0, s)T ∧p2 = (1, s)T)∨ (
p1 = (s,0)T ∧p2 = (s,1)T)

, s ∈ [0,1]
}

. (8.2)

Thus, on the torus we are essential dealing with periodic boundary conditions across the western
and eastern, and southern and northern boundaries.
As stated in chapter 7, it is advisable to project the initial geometry onto a suitable IgA basis. Con-
structing bases that are compliant with (7.30) will be the subject of the next section.

55

8.2. Constructing a Basis

Now that we have introduced the parameterization of the torus and the collection of all overlapping
sets with respect to that parameterization, we are in the position to construct a basis that satisfies
(7.30). The basic ingredient of this basis shall be a set of bivariate tensor-product B-spline functions
(see chapter 4), that we shall slightly modify in order to satisfy (7.30).

8.2.1. Utilizing Clamped Knot Vectors

The most obvious choice is a basis based on clamped knot vectors. Given some order p ≥ 1 and
n ≥ p +1, we introduce the uniform, clamped knot vector

Ξn,p =

 0, . . . ,0︸ ︷︷ ︸
p+1 times

,
1

n −p
, . . . ,

n −p −1

n −p︸ ︷︷ ︸
n−p−1 terms

, 1, . . . ,1︸ ︷︷ ︸
p+1 times

 , (8.3)

to construct the univariate basis

σn,p = {N1,p , . . . , Nn,p }. (8.4)

The univariate basis resulting from Ξ13,3 is depicted in figure 8.1. By γ1, γ2, γ3 and γ4, we denote the

Figure 8.1: An univariate basis resulting from Ξ13,3

southern, eastern, northern and western boundaries ofΩ. In the previous section we discovered that
we are essentially dealing with periodic boundary conditions across γ1 and γ3, as well as γ2 and γ4.
Thus, in order to construct a basis compliant with (7.30), we have to construct basis functions that
are periodic across these segments, as well. As a result of the relatively simple topology of the torus,
this can be done on a univariate level. To be specific, the only thing we have to require is that N1,p

and Nn,p be combined into one function, i.e.

N1,p → N1,p +Nn,p . (8.5)

The univariate basis σ∗
n,p = {N1,p , . . . , Nn−1,p }, with N1,p as in (8.5) (see figure 8.2) can then be utilized

to construct the bivariate tensor-product basis B1 from σ∗
n,p ×σ∗

n,p .

Remark. Being able to couple in the univariate basis as opposed to the bivariate basis is a result
of the relatively simple topology of the torus. We will see in chapter 9 that coupling is usually a
more laborious task on more complicated domains in which case it might not be possible on a

56

univariate level.
The idea behind coupling on a univariate level is schematically depicted in figure 8.3.

Figure 8.2: The coupled counterpartσ∗
n,p of the univariate basisσn,p constructed fromΞ13,3. The dotted functions are left

unaffected by the coupling process but it is seen that N1,3 and N13,3 have been combined to form one function supported
by elements ε1 = [0, 1

10] and ε10 = [9
10 ,1].

The basis B1, containing the coupled functions then constitutes the basis to which Σ is initialized.
Similarly, the set of elements A is initialized to T1 whose elements are simply given by the tensor-
product elements resulting fromΞn,p×Ξn,p (without knot repetitions). Acquiring hierarchically finer
bases B2,B3, . . . and grids T1,T2, . . . is accomplished by repeating above steps with n → 2n −p, n →
4n −3p, etc.

Figure 8.3: One-dimensional, schematic representation of the idea behind function coupling. It is seen that the coupling
in w1 prevents any discontinuities of W1 at the spot where the two boundaries of Ω = [0,1] connect on the circle. In the
absence of coupling there would have been a discontinuity there which we avoided by having w1 satisfy (7.30). Note that
this one-dimensional example on the circle can be regarded as a cross-sectional representation of the parametric coupling
in one direction on the torus.

57

8.2.2. Higher Order Continuity

The basis presented in section 8.2.1 satisfies the condition from (7.30) but is only C 0-continuous at
the places where the boundaries ofΩ connect on M−. Achieving higher order continuity is generally
a challenging task, however, in the case of the torus it can be done with relative ease. We have learned
in section 8.2.1 that coupling on a univariate level is equivalent to coupling on a bivariate level. We
shall take advantage of this observation and present a method to construct bases that exhibit C p−1

continuity everywhere. Again, we shall choose some fixed n and p > 1 and introduce the uniform
knot-vector

Hn,p =
{

0,
1

n
,

2

n
, . . . ,

n +p

n

}
. (8.6)

An example of the basis σn,p that Hn,p produces is depicted in figure (8.4). Note that each function
has at least p − 1 continuous derivatives at each point. As usual, we are aiming at expressing the

0 1/7 2/7 3/7 4/7 5/7 6/7 7/7 8/7 9/7 10/7

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Figure 8.4: The univariate basis resulting from H7,3

0 1/7 2/7 3/7 4/7 5/7 6/7 1

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Figure 8.5: The duplicated counterpart of the basis depicted in figure (8.4). The functions are given in various colors
without repetitions. It is seen that there are three (= p) functions that are cut off at one interval boundary and continue at
the other boundary in a periodic fashion.

basis σn,p on the interval [0,1]. However, it is seen that Hn,p does not end on one. The idea is to cut
off the part that protrudes ξn+1 = 1 and have it continue at ξ = 0. In fact, it is not even necessary to
cut, the only thing we have to do in σn,p = {

N1,p , . . . , Nn,p
}

is to require

∀Ni ,p ∈σn,p : Ni ,p (ξ) → Ni ,p (ξ)+Ni ,p (ξ+1). (8.7)

58

Figure 8.6: One-dimensional, schematic representation of the effect that the shifted duplication has on a global level.

Restricting our attention to ξ ∈ [0,1], this shifted duplication results in a basis that satisfies periodic
boundary conditions on the parametric interval [0,1]. It is seen that the Ni ,p ∈σn,p inherit the C p−1-
continuity they possess on [0,1] whenever the interval is mapped onto a smooth and closed curve (a
circle, for instance). For an example of the duplicated counterpart of the basis depicted in figure 8.4,
see figure 8.5. The higher-order continuity counterpart of figure 8.3 is depicted in figure 8.6.
As before, the basis to which Σ is initialized is given by B1 = σn,p ×σn,p and A is initialized to T1.
Finer bases and grids can be acquired by repeating above steps with n → 2n, 2n → 4n and so on.
The torus from (8.1), after projection onto a basis with p = 3 and n = 50, is depicted in figure 8.7.

59

Figure 8.7: The torus resulting from a projection onto a smooth IgA-basis. The grid has been turned on in order to demon-
strate the smoothness of the projection. There are no fringing effects by the segments where patch boundaries meet. The
grid lines form smooth curves which would not have been the case when using the basis from section 8.2.1.

60

9
Implementation on a Sphere-Like Shaped

Initial Geometry

The implementation on a torus is relatively simple but within the context of brain pattern formation,
unrealistic. We would like a sphere-like shaped initial geometry on which pattern-formation and
growth will lead to a final geometry that more closely resembles a real brain and its folds. The usual
way to achieve a sphere-like shaped initial geometry M− from a parametric domain given by Ω =
[0,1]× [0,1] is to utilize the parameterization is :Ω→M−

is =

R sin(πη)cos(2πξ)

R sin(πη)sin(2πξ)

R cos(πη)

 (9.1)

and map the quadrilateralΩ onto a sphere of radius R.
This parametrization, however, poses numerous problems, for instance

• the segments of ∂Ω, given by γ1 = {(ξ,0) : ξ ∈ [0,1]} and γ3 = {(ξ,1) : ξ ∈ [0,1]} are contracted
into the points (0,0,R) ∈M0 and (0,0,−R) ∈M0, respectively. This leads to a singularity in the
metric at these points. In chapter 7 we required that

p
g t contain no singularities.

• The cells corresponding to a uniform grid on Ω become increasingly small near the poles
(0,0,R) and (0,0,−R) on M0. This effect intensifies on finer grids.

• The singularities will lead to issues in the quadrature of certain functions.

Overall, it is seen that the drawbacks of this approach outweigh the advantages, which is why we shall
choose for a different approach.

9.1. Multipatch Approach

Instead of utilizing a parametric domain comprised of a single patch of the formΩ= [0,1]× [0,1], we
shall now utilize six patches. To be specific, we shall choose

Ω=
6⋃

i=1
Ωi . (9.2)

61

Defining

q1 = (0,0)T q2 = (1,0)T

q3 = (1,−1)T q4 = (1,1)T

q5 = (2,0)T q6 = (3,0)T , (9.3)

patchΩi is given by

Ωi = [q i
1, q i

1 +1]× [q i
2, q i

2 +1]. (9.4)

The parametric domainΩ resulting from 9.2 is depicted in figure 9.1.
It is easily seen that Ω can be ‘folded’ into a (hollow) cube Ω∗ with faces at −1 and 1 in either di-

r3

r4

r1

r2

r6 r5

r8 r7

3 4

1 2

3 8

6

5 7 1

8 3

1 7

Figure 9.1: The parametric domain and the cube onto which it is mapped via linear interpolation.

rection by performing a set of elementary translation and rotation operations on the patches Ωi , i ∈
{1, . . . ,6}. We shall, however, utilize a linear isogeometric basis, constructed from the knot-vector
Ξä = {0,0,1,1} in order to construct the cube Ω∗ from Ω. To be specific, we construct the linear
basis {Nä

1 (ξ), Nä
2 (ξ)} utilizing formulae (4.1) and (4.2) with Ξ=Ξä and p = 1 and construct the two-

dimensional tensor-product basis Σä ≡ {wä
1 , wä

2 , wä
3 , wä

4 } with

{wä
1 , wä

2 , wä
3 , wä

4 } = {Nä
1 (ξ)Nä

1 (η), Nä
2 (ξ)Nä

1 (η), Nä
1 (ξ)Nä

2 (η), Nä
2 (ξ)Nä

2 (η)}. (9.5)

As a next step, we assign a number to each of the eight vertices of the cube Ω∗: ri , i ∈ {1, . . . ,8} and
characterize each patch Ωi by a patch-vector pi that contains the indices of the patch vertices that
become its corner-points onΩ∗. We define the pi as follows:

p1 = (1,2,4,3)T p2 = (2,5,6,4)T

p3 = (1,7,5,2)T p4 = (4,6,8,3)T

p5 = (5,7,8,6)T p6 = (7,1,3,8)T . (9.6)

The cube vertices are given by

r1 = (1,−1,−1)T r2 = (1,−1,1)T

r3 = (−1,−1,−1)T r4 = (−1,−1,1)T

r5 = (1,1,1)T r6 = (−1,1,1)T

r7 = (1,1,−1)T r8 = (−1,1,−1)T . (9.7)

62

The patch vector pi = (a1, a2, a3, a4)T serves as to indicate that the vertices of patch Ωi (in counter-
clockwise direction) correspond to the points {ra1 ,ra2 ,ra3 ,ra4 } onΩ∗.
The mapping s1 :Ω→Ω∗ that maps points from the parametric domain Ω onto the cube Ω∗ is con-
structed via linear interpolation, utilizing the basis Σä, the q1, . . . ,q6, the patch vectors p1, . . . ,p6 and
the vertices r1, . . . ,r8. It is given by

s1(ξ,η) =
6∑

i=1

4∑
j=1

w j (ξ−q i
1,η−q i

2)rp i
j
. (9.8)

The free variables ofΩ∗ are given by (x, y, z)T .
It is easily seen that (9.8) is orientation-preserving. Therefore, the normal vector on the cube satis-
fies

n∗ = 1∥∥∥∂s1
∂ξ × ∂s1

∂η

∥∥∥
(
∂s1

∂ξ
× ∂s1

∂η

)
. (9.9)

Remark. One may choose not to build a global topology as in (9.2) but regard the six patches
as separate spaces with their interactions established through the ‘domain manifold’. Whenever
an integral over Mk is carried out, the integral over Ω with the Riemannian volume form

p
g is

replaced by a sum over the Ωi with the local volume form
√

g i of each individual patch. For
details, see [9].
We will continue with the single domain as it fits well into the framework of the previous chapters,
where we exclusively discussed settings with one parametric domain.

9.2. Constructing a Sphere

The cube that the mapping from (9.8) produces can be ’inflated’ into a sphere M− of radius R, utiliz-
ing the mapping s2 :Ω∗ →M−, where

s2 = R√
x2 + y2 + z2

x
y
z

 , (9.10)

(see figure 9.2). Regarding each P∗ ∈Ω∗ as a vector P∗ pointing from the origin to P∗, the mapping
from (9.10) takes P∗ and maps it onto the point P ∈M− with P the vector of length R in the direction
of P∗. Since no two points P1 and P2 on Ω∗ are such that P1 = λP2 for some λ ∈ R, the mapping
s2 :Ω∗ →M− is bijective. It remains to mention that s2 produces a sphere since ‖s2(x)‖ = R, ∀x ∈Ω∗.
We can combine s1 and s2 to form the operator is :Ω→M− (the initial geometry) as follows

is = s2 ◦s1. (9.11)

The sphere that (9.11) produces is depicted in figure 9.2. Henceforth, we shall refer to the sphere that
(9.11) produces as the ‘ordinary sphere’.
An alternate way to mapΩ∗ to a sphere, is to use the following mapping

s∗2 = R

x
√

1− y2

2 − z2

2 + y2z2

3

y
√

1− z2

2 − x2

2 + z2x2

3

z
√

1− x2

2 − y2

2 + x2 y2

3

. (9.12)

63

Figure 9.2: The result of (9.11) with various patches highlighted in different colors. The cells become smaller toward the
patch boundaries but it is seen that there are no singularities in the parametrization. Note that the transition between the
patch boundaries is non-smooth !

This parameterization is based on the observation that the function

S∗(x, y, z) = x2 + y2 + z2 −x2 y2 − y2z2 − z2x2 +x2 y2z2 (9.13)

satisfies

S∗|Ω∗ = 1. (9.14)

Equation (9.13) is manipulated as follows

R2S∗(x, y, z) =R2 (
x2 + y2 + z2 −x2 y2 − y2z2 − z2x2 +x2 y2z2)

=R2x2
(
1− y2

2
− z2

2
+ y2z2

3

)
+

R2 y2
(
1− z2

2
− x2

2
+ x2z2

3

)
+

R2z2
(
1− x2

2
− y2

2
+ x2 y2

3

)
, (9.15)

from which (9.12) follows.
(9.14) and (9.15) imply that (9.12) indeed maps points fromΩ∗ to a sphere. The operator

is = s∗2 ◦s1 (9.16)

produces a sphere that is depicted in figure 9.3. Henceforth, we shall refer to the sphere that (9.16)
produces as the ‘gaming sphere’. The sphere M− that (9.11) or (9.16) produces can then be projected
onto an IgA basis Σ in order to form M0. Constructing a suitable IgA basis shall be the topic of the
next section.

64

Figure 9.3: The result of (9.16) with various patches highlighted in different colors. The cells become smaller toward the
patch boundaries but the effect is somewhat smaller than in figure 9.2. Note also that the angle that the cells make with
one another at the boundaries is reduced.

9.3. Constructing a Basis

In section 7.4, we have deduced the general properties that any basis Σ should satisfy in order to be
compatible with the temporal and the spatial discretization schemes. We will now present a concrete
procedure to construct a basis compliant of the principles from section 7.4, utilizing clamped knot
vectors (see section 4.2) and some additional tweaking. Given some order p ≥ 1, some n ≥ p +1 and
the uniform, clamped knot vector

Ξn,p =

 0, . . . ,0︸ ︷︷ ︸
p+1 times

,
1

n −p
, . . . ,

n −p −1

n −p︸ ︷︷ ︸
n−p−1 terms

, 1, . . . ,1︸ ︷︷ ︸
p+1 times

 , (9.17)

we construct the univariate basis (see figure 8.1)

σn,p = {N1,p , . . . , Nn,p } (9.18)

to construct the bivariate tensor-product basis

Σ1 = {w1
1 , . . . , w1

n2 }, (9.19)

from σn,p ×σn,p . The w1
i ∈ Σ1 are only supported on Ω1. We can ‘copy’ the basis Σ1 to form Σi ,

containing functions supported onΩi as follows

Σi = {w1
1(ξ−q i

1,η−q i
2), . . . , w1

n2 (ξ−q i
1,η−q i

2)}. (9.20)

The corresponding elements are acquired from the elements corresponding toΣ1 by the same shifted
duplication. Some functions from

Σ̃=
6⋃

i=1
Σi (9.21)

65

do not satisfy (7.30). These are exactly the functions containing the clamped functions N1,p , Nn,p , or
a shifted copy in their tensor-product structure. Their global counterparts will exhibit a discontinuity
when projected fromΩ onto M−. As a result of the clamped basis property, the set

{wk
i ∈ Σ̃ | W k

i does not satisfy (7.30)}

is identical to the set

Σd = {wk
i ∈ Σ̃ | wk

i |∂Ωk 6= 0}. (9.22)

Like in chapter 8, a remedy is the coupling of degrees of freedom (DOFs). We combine some func-
tions wk

i ∈Σd in Σ̃ to form a single function such that the resulting basis Σ satisfies (7.30). The termi-
nology stems from the fact that the merging of a set of functions is equivalent to requiring that their
weights be equal in each function from span Σ̃. Thanks to the Σi being shifted copies of one another,
functions on either side of the patch boundaries are ‘compatible’ with one another in the sense that
they can be coupled so as to form a basis compliant with (7.30).
Let us assume that each index i of wk

i ∈Σk is the result of a lexicographical numbering, i.e.

wk
(j−1)n+i = Ni ,p (ξ−qk

1 ,η−qk
2)N j ,p (ξ−qk

1 ,η−qk
2). (9.23)

Furthermore, let us refer to the southern, eastern, northern and western boundary of patchΩk by γ1
k ,

γ2
k , γ3

k and γ4
k , respectively. With the numbering from (9.23) in mind, the sets

Σk
j ≡

{
wk

i ∈Σk | wk
i |γ j

k
6= 0

}
, (9.24)

are given by

Σk
1 = {wk

1 , wk
2 , . . . , wk

n}

Σk
2 = {wk

n , wk
2n , . . . , wk

n2 }

Σk
3 = {wk

(n−1)n+1, wk
(n−1)n+2, . . . , wk

n2 }

Σk
4 = {wk

1 , wk
1+n , . . . , wk

(n−1)n+1}. (9.25)

A pair of functions w j
i ∈Σ j

k , w r
q ∈Σr

s , j 6= r should be coupled whenever their global counterparts are
each other’s reflection across some patch boundary on the sphere (or cube, see figure 9.4)

Remark. In (9.24) some of the sets will, strictly speaking, be empty. This is a result of the fact that
according to (4.1), Nn,p (1) = 0 (since the C−1 discontinuity has been chosen to occur at ξ = 1− as
opposed to ξ= 1+). Here we may assume that Nn,p (1) = 1. In the remainder we will disregard such
mathematical subtleties for the sake of convenience and assume that the reader is aware of the
subtleties involved.

Table (9.1) lists the boundary sets that ought to be coupled. The functions wk
i should be coupled via

their index i in ascending order. Whenever a column in (9.1) is marked by an ‘r’, the coupling should
be carried out in reverse, as for example in column 4:

Σ1
3 = { w1

(n−1)n+1, w1
(n−1)n+2, . . . , w1

n2 }
m m m

Σ4
4 = { w4

(n−1)n+1, w4
(n−2)n+1, . . . , w4

1 }.
(9.26)

Note that there will be eight functions that are each comprised of three functions from Σ̃. These

66

Figure 9.4: Functions w1
i and w4

j should be coupled because their global counterparts meet on the crossing between the

projections ofΩ1 andΩ4 on M−.

Boundary set Σy
x Σ1

1 Σ2
1 Σ3

1 Σ4
1 Σ1

2 Σ2
2 Σ3

2 Σ1
3 Σ2

3 Σ2
4 Σ3

4 Σ2
5

To be coupled with Σ4
3 Σ4

2 Σ4
4,r Σ2

6 Σ3
3 Σ4

5 Σ1
4 Σ1

6,r Σ1
5,r Σ3

5 Σ3
6,r Σ4

6

Table 9.1: All pairs of patch boundaries whose functions have to be coupled. The ’r’ indicates that functions have to be
coupled in reverse.

functions are comprised result from the coupling of three functions of the form

wk
i = Nr,p (ξ−qk

1 ,η−qk
2)Ns,p (ξ−qk

1 ,η−qk
2), (9.27)

with {r, s} ∈ {0,n}× {0,n}.
After the coupling has been completed, we form the basis B1 comprised of all coupled ‘boundary’
functions and uncoupled ‘internal’ functions. Finer bases B2, . . . can be constructed by repeating
above steps with n → 2n −p, n → 4n −3p, etc. The basis Σ can be initialized to Σ = B1 after which
the time-stepping procedure can commence.

9.4. Improving Smoothness

The basis from section 9.3 is a mathematically valid basis but it only possesses C 0-continuity by the
patch boundaries. As the mappings sk are elements from spanΣ, this lack of higher order smooth-
ness will most likely manifest itself through small ‘kinks’ in Mk located at the patch boundaries. It
would hence be convenient to be able to construct bases with higher order smoothness across patch
boundaries. On first glance, constructing a basis similar to the one from section 8.2.2 on each patch
individually and coupling ‘compatible’ basis functions across patch boundaries might seem like an
option. This coupling, however, will lead to compatibility problems at the ‘triple points’, the spots
where three patches meet (in Ω and M−). The vertex at which three patches meet is also referred to
as extraordinary vertex of valence three [11]. Higher-order smoothness is generally hard to achieve in
the vicinity of extraordinary vertices. This is also seen in the tensor-product structure of the C p−1-
continuous basis from section 8.2.2 that can be extended to acquire smoothness between pairs of
patches but not in the vicinity of extraordinary vertices (see figure 9.5). Thus, improving the smooth-
ness of the geometry (and the functions on it) proves to be a more challenging task than in the case of
the torus. Following [9], we will nevertheless present a method to improve the smoothness between
pairs of patches at segments of patch boundaries located sufficiently far from the patch vertices.

67

Figure 9.5: As an example of the incompatibility of basis functions near the triple points, we consider the tensor-product
function resulting from the two univariate functions plotted in green. The function is supported by segment a) and to
achieve smoothness in the vertical direction, we have to couple with the function supported by b). Finally, to achieve
smoothness in the horizontal direction we have no choice but to couple b) with c) but then c) is not compatible with a).

As indicated in figure 9.5, there is no non-trivial way to couple functions in the vicinity of triple points
in order to achieve higher-order continuity. Further away from the triple points, coupling can take
place in a way similar to section 8.2.2. The idea is to introduce the knot-vector

Hn,p =
{
− p

n −p
,− p +1

n −p
, . . . ,0,

1

n −p
,

2

n −p
, . . . ,1,

n −p +1

n −p
, . . . ,

n

n −p

}
, (9.28)

and restrict the functions to the interval [0,1] by disregarding all the parts that are not supported by
this interval (see figure 9.6). As before, the restricted basis σ̃n,p = {Ñ1,p , . . . , Ñn,p } is utilized to con-
struct the tensor-product basis Σ̃1 = σ̃n,p × σ̃n,p .
Σ̃1 is copied and shifted as in (9.20) to form the bases Σ̃i , i ∈ {1, . . . ,6} with w̃k

i ∈ Σ̃k satisfying supp wk
i ⊂

68

(a)

(b)

Figure 9.6: Example of a basis resulting from the knot-vector H9,3. (a) shows the basis in the absence of restriction and (b)
in the presence.

Ωk . Here,

Σ̃k =
{

w̃k
1 , . . . , w̃k

n2

}
. (9.29)

Again, we shall assume that each global index i of a function w̃k
i ∈ Σ̃k is the result of a lexicograph-

ical numbering. As a next step the DOFs are coupled. The coupling is carried out in a way that is
compliant with table (9.1) with the difference that this time several layers are coupled. It is seen from
figure 9.6 that exactly p layers have to be coupled (per pair of patch boundaries). Let us define the
sets

Σk
1,q =

{
w̃k

1+(q−1)n , w̃k
2+(q−1)n , . . . , w̃k

n+(q−1)n

}
Σk

2,q =
{

w̃k
n−(q−1), w̃k

2n−(q−1), . . . , w̃k
n2−(q−1)

}
Σk

3,q =
{

w̃k
(n−q)n+1, w̃k

(n−q)n+2, . . . , w̃k
(n−q+1)n

}
Σk

4,q =
{

w̃k
1+q , w̃k

1+q+n , . . . , w̃k
1+q+(n−1)n

}
, (9.30)

with q ∈ {1, . . . , p}.
These sets are coupled in a fashion similar to that of section 9.3, with the difference that whenever
table (9.1) suggests that Σi

j and Σk
l should be coupled, we couple Σi

j ,q with Σk
l ,p−q+1 instead (for all

69

q ∈ {1, . . . , p} and coupling in reverse whenever the corresponding column contains an ‘r’). The basis
B∗

1 containing all the coupled basis functions as well as all internal functions from the Σ̃k exhibits
improved smoothness across patch boundaries but will suffer from the problem depicted in figure 9.5
that occurs nearby the triple points. The idea is to remove all functions that suffer from this issue and
replace them by functions that are C 0-continuous across patch boundaries but smooth everywhere
else (and do not suffer from the same issue).
To this end, let us assume that we are in possession of the bases B∗

1 and B1, where B1 is constructed
using the same parameters n, p (see section 9.3), we initialize B+

1 toΣ=B∗
1 . As a next step we define

the security layers. Defining the intervals

χi+ ≡
[

i , i + p
n−p

]
χi− ≡

[
i − p

n−p , i
]

, (9.31)

the security layers βi are given by

β1 =
(
χ0+ ×χ0+

)∪ (
χ1+ ×χ−1+

)∪ (
χ4− ×χ0+

)
β2 =

(
χ1− ×χ0+

)∪ (
χ1+ ×χ0+

)∪ (
χ1+ ×χ0−

)
β3 =

(
χ0+ ×χ1−

)∪ (
χ1+ ×χ2−

)∪ (
χ4− ×χ1−

)
β4 =

(
χ1− ×χ1−

)∪ (
χ1+ ×χ1−

)∪ (
χ1+ ×χ1+

)
β5 =

(
χ2− ×χ0+

)∪ (
χ2− ×χ0−

)∪ (
χ2+ ×χ0+

)
β6 =

(
χ2− ×χ1−

)∪ (
χ2− ×χ1+

)∪ (
χ2+ ×χ1−

)
β7 =

(
χ3− ×χ0+

)∪ (
χ3+ ×χ0+

)∪ (
χ2− ×χ−1+

)
β8 =

(
χ3− ×χ1−

)∪ (
χ3+ ×χ1−

)∪ (
χ2− ×χ2−

)
. (9.32)

Here, the index i matches the index of ri that forms the center of the i th triple point on the cubeΩ∗.
around which the βi are located. The security layers for a setting with p = 3 and n = 18 are depicted
in figure 9.7.
The next step is to remove all functions wi ∈ B+

1 with supp wi ⊂ β j , for some j ∈ {1, . . . ,8}. The re-
duced basis is enriched with all functions wi ∈ B1 with supp wi ⊂ β j , for some j ∈ {1, . . . ,8}. Upon
completion of these steps, the basis B+

1 forms a nonzero partition of unity on Ω with improved
smoothness [9]. C p−1-continuity is achieved everywhere apart from the βi ⊂ Ω. Furthermore, the
relative size of the security layers decreases for finer initial grids. Given some n, p and initial basis
B+

1 , hierarchically finer bases are constructed by repeating above steps with halved spacing but us-
ing the same set of security layers βi that correspond to B+

1 . Decreasing the size of the βi with the
spacing is not recommended since finer bases do not satisfy spanB+

i ⊂ spanB+
j in that case.

Constructing finer bases while adjusting the size of the security layers according to the new spacing
will lead to projection errors upon refinement but increases the relative size of the segments ofΩ on
which C p−1-continuity is achieved.

70

Figure 9.7: As an example of the incompatibility of basis functions near the triple points, we consider the tensor-product
function resulting from the two univariate functions plotted in green. The function is supported by segment a) and to
achieve smoothness in the vertical direction, we have to couple with the function supported by b). Finally, to achieve
smoothness in the horizontal direction we have no choice but to couple b) with c) but then c) is not compatible with a).

71

10

Refinement Strategies

In section 4.6, we have introduced the concept of hierarchical refinement. We presented algorithms
(1) and (2) as a basic tool for refinement. Both algorithms take a set of elements ε as input, so far, we
have not discussed possible strategies for element selection.
There are two main strategies that come to mind: refinement based on cell size and refinement based
on curvature. In this chapter, we will discuss possible strategies for element selection based on these
two properties and possible refinement criteria.

10.1. Refinement Based on Cell Size

Let u∗ be the u-component of the exact solution u∗ of (7.1). One can measure the quality of the
approximate solution at time-instance t k utilizing, for example, the L2(Mk)- norm

r k
u =

(∫
Ω

(
u∗∣∣

t=t k −uk
)2p

gk dξ

)1/2

, (10.1)

or any other norm with measure
p

gk . Even though u∗ will in most cases not be known, we can see
from (10.1) that deviations of u from u∗ on segments of Ω where

p
gk is large have to be considered

more critical in the assessment of numerical quality. It therefore makes sense to refine elements on
which

p
gk is large with respect to some reference value µcell.

A possibility is to base this reference value on the initial condition. Assuming that the initial grid res-
olution has been appropriately chosen with respect to the initial geometry, the reference value can
be based on the average value of

p
g0 on each element. For reasons mentioned in section 4.6, how-

ever, it is not recommended to refine single cells. It is more favorable to craft a refinement criterion
based on function support, this way it is ensured that at least one coarse function is replaced by finer
ones upon refinement. Thus, let Σ = {w1, . . . , wN } be the isogeometric basis at time instance t k , we
define

µi
0 =

∫
supp wi

p
g0dξ∫

supp wi

1dξ
, ∀wi ∈Σ. (10.2)

As a next step, we define the reference value as follows

µcell =
1

N

N∑
i=1

µi
0. (10.3)

72

After the time-stepping procedure commences, the geometry will deform and the average value ofp
gk will most likely increase on each element which is why it should be compared to the reference

value after each iteration. To this purpose, we introduce

µi
k =

∫
supp wi

p
gk dξ∫

supp wi

1dξ
(10.4)

as the average value of
p

gk over supp wi . Here, we will assume that each cell is refined only once, i.e.
∀εi ∈A : εi ∈T1 or εi ∈T2. With these considerations in mind, in words, a criterion to add an ele-
ment εi ∈A to the set of to-be-refined elements ε during the kth iteration, could be as follows:

For all µi
k , if µi

k > kcellµcell, add all elements that support wi

and are elements from T1 to ε. (10.5)

For some kcell > 1.
The collection of to-be-refined elements ε can then be extended by elements that should be refined
due to curvature (see section 10.2), after which either algorithm (1) or (2) is called with argument ε.
A further improvement of above principles is to compute (10.2) and (10.4) with an additional wi -
measure, i.e.

µi
0 =

∫
supp wi

wi
p

g0dξ∫
supp wi

wi dξ
(10.6)

and

µi
k =

∫
supp wi

wi
p

gk dξ∫
supp wi

wi dξ
. (10.7)

The idea behind this change is that, in deciding whether a function should be refined or not, one
might argue that deviations from the reference value µi

0 inside the ‘bulk’ of the function (where the
function value is large) should be considered more critical than deviations on points outside of the
bulk. This extension of the measure is valid since wi > 0 on supp wi . Since we only refine functions
from B1, in order to save computational resources, it makes sense to only computeµi

k forΣ 3 wi ∈B1

during each iteration.

10.2. Refinement Based on Curvature

At all time-instances t k , sk is an element from spanΣ. Thus, it is important that the resolution of the
basis suffices to capture all important geometrical details. In section 10.1 we introduced to concept
of refinement via cell size. Another refinement criterion that comes to mind is the refinement based
on curvature. Intuitively, segments of Mk that are strongly curved, are the surface-equivalent to large
gradients in functions.
In section 2.4.1, we introduced the concept of principal curvature and in subsection 2.4.4, we pre-
sented a cheap way to compute the two principal curvatures. We will now deduce a feasible refine-
ment strategy based on curvature. As in section 10.1, it makes sense to introduce a reference value
of the curvature µcurve based on the initial condition, keeping in mind that the sign of the curvature

73

should not matter for the refinement. With (10.6) in mind, this suggests a function-support based
average of the form

κi
0 =

∫
supp wi

(|κ1(ξ)|+ |κ2(ξ)|)wi
p

g0dξ∫
supp wi

wi
p

g0dξ
, (10.8)

where κ1 and κ2 are the two principal curvatures, extracted from the shape-operator [S] through
equation (2.44). The problem with (10.8), however, is that it is not compatible with quadrature
schemes whenever either of the κi (or both) change sign inside one function-support (since the in-
tegrand is not a C∞-continuous functions anymore in that case). A workaround for this issue is to
introduce the initial support-based averages via

κi
0 =

∫
supp wi

(κ2
1(ξ)+κ2

2(ξ))wi
p

g0dξ∫
supp wi

wi
p

g0dξ
, (10.9)

and define the reference-value by

µcurve = 1

N

N∑
i=1

κi
0. (10.10)

Analogous to (10.7), we introduce

κi
k =

∫
supp wi

(κ2
1(ξ)+κ2

2(ξ))wi
p

gk dξ∫
supp wi

wi
p

gk dξ
, (10.11)

as a measure for curvature within one function-support after the kth iteration. A criterion to add an
element εi ∈A to the set of to-be-refined elements ε, could be

For all κi
k , if κi

k > kcurveµcurve, add all elements that support wi

and are elements from T1 to ε. (10.12)

For some kcurve > 1.
After (10.5) and (10.12) have been carried out, if ε is not empty, algorithm (1) or (2) is called with ε as
argument. The corresponding pseudocode can be found in algorithm (5).

Remark. Both the average value of
p

gk and the average curvature do not change after refinement.
This is why finer functions might be refined again after the next iteration. We circumvented this
issue by requiring that cells from T2 are not eligible for refinement (refining only once is sufficient
in this problem). In settings where it makes sense to refine twice or more, this issue could be solved
by introducing reference values that are multiples of µcell and µcurve for functions from B2 and
their finer counterparts.

74

Algorithm 5 Refinement Based on Cell Size and Curvature
1: ε←;
2: for all Σ 3 wi ∈B1 do
3: if µi

k > kcellµcell then
4: λ← {

εi ∈ supp wi | εi ∈T1
}

5: ε← ε∪λ
6: end if
7: if κi

k > kcurveµcurve then
8: λ← {

εi ∈ supp wi | εi ∈T1
}

9: ε← ε∪λ
10: end if
11: end for
12: call Refine A (ε)

75

11

Results

In this chapter we will present the results of both an implementation on a torus, as well as a (gaming)
sphere. The implementation generally follows the principles from chapter 7, with IgA bases and
domains from chapter 8 and 9, respectively. The PID-parameters (see section 7.7) have been set to
tol = 0.01, hmin = 0.1 and hmax = 15. We did not limit the growth and reduction of the time-step
(i.e. m = 0 and M =∞). The matrix and vector assemblies are carried out with Gauss-schemes (see
chapter 5) of order six and the linear systems are solved with an iterative CG-solver. The refinement
strategies from chapter 10 are present in the implementation with the parameters kcell = 2.1 and
kcurve = 120 for the torus and kcurve = 160 for the sphere. The implementation has been realized in
the Python-package Nutils [3].
As in [25], the algorithm was manually terminated in order to avoid geometric intersection at later
stages.

11.1. Implementation on the Torus

We have implemented the numerical scheme on the torus utilizing the basis from section 8.2.2 with
the initial basis B1 constructed using the parameters p = 3 and n = 50 (making for an initial basis of
cardinality 2500). The outer and inner radii have been set to R2 = 40 and R1 = 20, respectively. The
function ‘initial’ is given by four three-dimensional Gauss-functions Gx0

Gx0 (x) = exp

(
−

3∑
i=1

(
xi −x0

i

20

)2)
. (11.1)

The Gx0 are centered at

x0 = is(ξi ,ηi), (11.2)

with is as in (8.1). The (ξi ,ηi) are given by (ξ1,η1) = (1/2,1/2), (ξ2,η2) = (0.6,0.55), (ξ3,η3) = (0.75,0.7)
and (ξ4,η4) = (0.85,0.9). The initial conditions satisfy

U (t = 0) = 1−0.75× initial

V (t = 0) = 0.5× initial, (11.3)

and are projected onto Σ before the first iteration, as well as the initial geometry-parameterization
is (see figure 11.1, in the plots ‘usol’ corresponds to U k and ‘vsol’ to V k at t = t k). We used the pa-
rameters F = 0.04, H = 0.06, K = 0.001, d1 = 0.2 and d2 = 0.1. Since K ¿ 1, the geometry has been
disregarded in the time-step selection.

76

(a) (b)

Figure 11.1: Initial condition of U (a) and V (b) plotted on M0. The local counterparts of the functions shown form the first
iterants of the time-stepping scheme.

(a) (b)

Figure 11.2: Substrate V depicted on the geometry at (a) t 400 = 2000 and (b) t 800 = 6800.

Figures 11.2 and 11.3 show the state in which V k and the geometry Mk find themselves for various
t k . In figure 11.2 (a) we see first signs of pattern formation that intensify in (b). In figure 11.3 (a) the
patterns have spread out further and we see the first clear signs of geometric deformation. In figure
11.3 (b), the patterns have spread over the entire geometry and deformation has intensified. The grid
has been enabled in order to indicate the segments of Mk that have been refined. In 11.3 (b), we
can see that the solver has refined a large portion of the inner side of the torus, most likely due to
curvature. Figures 11.4 to 11.6 show the geometry after the last iteration from various angles.

77

(a)

(b)

Figure 11.3: Substrate V depicted on the geometry at t 1200 = 13000 (a) and t 1600 = 19000 (b). The grid has been enabled in
order to indicate where the solver refined.

78

Figure 11.4: The final geometry at t 1740 = 2.2×104.

Figure 11.5: The geometry after the last iteration.

79

Figure 11.6: The geometry after the last iteration.

11.2. Implementation on the Gaming Sphere

In this section, we will present results corresponding to an implementation of the numerical scheme
on the gaming sphere (see section 9.2), using the basis from section 9.3 with parameters n = 28 and
p = 3. The radius of the initial sphere is given by R = 40. We present two simulations, one simulation
with the same parameters as in section 11.1 and another simulation with F changed to F = 0.0285.
This time, the function ‘initial’ is given by four three-dimensional Gauss-functions

Gx0 (x) = exp

(
−

(
xi −x0

i

20

)2

−
(

xi −x0
i

15

)2

−
(

xi −x0
i

15

)2)
. (11.4)

centered at

x0(ξi ,ηi) = R
[
sin(ξi)cos(ηi),sin(ξi)sin(ηi),cos(ξi)

]
, (11.5)

with (ξ1,η1) = (0,0), (ξ2,η2) = (0.3π,0.4π), (ξ3,η3) = (0.4π,0.7π) and (ξ4,η4) = (0.65π,π). As before,
the initial concentrations satisfy

U (t = 0) = 1−0.75× initial

V (t = 0) = 0.5× initial, (11.6)

see figure 11.7.

80

(a) (b)

Figure 11.7: Initial condition of U (a) and V (b) plotted on M0. The local counterparts of the functions shown form the first
iterants of the time-stepping scheme.

11.2.1. F = 0.04

For a simulation with F = 0.04, figures 11.8, 11.9 and 11.10 show the state in which V k and the geom-
etry Mk find themselves for various t . In figure 11.8 (a), we see that the four Gaussians have formed
several narrow bands of nonzero concentration and in (b) we see strong pattern formation as well as
the first signs of geometrical deformations. These deformations intensify in figure 11.9 and we can
see that the solver has performed the first local refinements, most likely due to curvature. In figure
11.10, the deformation intensify further and we can see that the solver has refined a large portion of
the grid. Figures 11.11 to 11.13 show the geometry after the last iteration from various angles. The
simulation has been terminated after 1650 iterations.

(a) (b)

Figure 11.8: Substrate V and the geometry for F = 0.04 at (a) t 400 = 1650 and (b) t 800 = 6980.

81

F
ig

u
re

11
.9

:S
u

b
st

ra
te

V
an

d
th

e
ge

o
m

et
ry

fo
r

F
=

0.
04

at
t12

00
=

1.
3
×1

04
.

82

F
ig

u
re

11
.1

0:
Su

b
st

ra
te

V
an

d
th

e
ge

o
m

et
ry

fo
r

F
=

0.
04

at
t16

00
=

1.
9
×1

04
.

83

Figure 11.11: The final geometry for F = 0.04 at t 1650 ' 2×104.

84

Figure 11.12: The geometry after the last iteration for hte simulation with F = 0.04.

85

Figure 11.13: The geometry after the last iteration for the simulation with F = 0.04.

11.2.2. F = 0.0285

For a simulation with F = 0.0285, figures 11.14, 11.15 and 11.16 show the state in which V k and the
geometry Mk find themselves for various t k . As opposed to figure 11.8 (a), figure 11.14 (a) does not
show a connected band of high concentration but only a number small dots. In (b) the amount of
dots increases. The amount of dots increases futher in 11.15 and we also see one little narrow strip.
We see the first signs of geometric deformation. In figure 11.16 the deformations intensify and we
see that the solver has refined many of the dots, due to curvature or cell size. Figures 11.17 to 11.19
show the geometry after the last iteration from various angles. The simulation has been terminated
after 1930 iterations.

86

(a)

(b)

Figure 11.14: Substrate V and the geometry for F = 0.0285 at (a) t 400 = 224 and (b) t 800 = 2050.

87

F
ig

u
re

11
.1

5:
Su

b
st

ra
te

V
an

d
th

e
ge

o
m

et
ry

fo
r

F
=

0.
02

85
at

t12
00

=
7.

6
×1

03
.

88

F
ig

u
re

11
.1

6:
Su

b
st

ra
te

V
an

d
th

e
ge

o
m

et
ry

fo
r

F
=

0.
02

85
at

t16
00

=
1.

54
×1

04
.

89

Figure 11.17: The final geometry for F = 0.0285 at t 1930 ' 2×104.

90

Figure 11.18: The geometry after the last iteration for the simulation with F = 0.0285.

91

Figure 11.19: The geometry after the last iteration for the simulation with F = 0.0285.

92

11.3. Discussion

The numerical scheme from chapter 7 has been succesfully implemented on both the torus and the
sphere and the results meet the expectations. Pattern formation of the cencentrations is present on
both geometries and the patterns manifest themselves in surface deformations. The deformations
show a high degree of resemblence to typical brain patterns found in healthy adult individuals for
F = 0.04 on both the torus and the (gaming) sphere (see figures 11.20 and 11.4).

(a) (b)

Figure 11.20: Typical neural patterns in a healthy brain (a) and the results from the simulation with F = 0.04 on the gaming
sphere (b).

The implementation with F = 0.0285 shows mild resemblence with the neuropathology polymicro-
gyria (see figure 11.21), which suggests that within the framework of this model, neuropathologies
can be explained by deviations of the reaction rate F due to genetical anomalies or other extrinsic
influences.

(a) (b)

Figure 11.21: Polymicrogyria (a) and the results from the simulation with F = 0.0285 on the gaming sphere (b).

93

With above simulations we were largely able to confirm the findings presented in [25]. Note that we
have used a growth factor K = 0.001 as opposed to K = 0.0005 in [25]. Overall the results from the IgA-
scheme, not surprisingly, exhibit improved smoothness when compared to their FEM-counterpart
from [25] (see figure 11.22) and the smoothness greatly contributes to the overall visual appeal of the
results. It is noteworthy that the time-scale necessary to achieve similarly-sized folds as in [25] is
about a factor five larger even though the growth factor is doubled. A possible explanation is that we
used a different initial condition.

(a) (b)

Figure 11.22: The resulting geometry of a simulation with the classical FEM-approach from [25] (a) and the geometry
resulting from the IgA-scheme introduced in chapter 7 (b).

The effect of the patch boundaries is visible in figures 11.11 to 11.13 and manifests itself in ‘kinks’
at the transition between pairs of patches due to the locally reduced smoothness of the IgA basis
from 9.3. This kink can lead to oppositely directed normal vectors which facilitates unphysical self-
intersections of the geometry and other defects whenever the simulation is not terminated in time.
Figure 11.23 shows the geometry resulting from a simulation using F = 0.04 and a different initial
condition that was terminated after 1800 instead of 1650 iterations. Figure 11.23 shows stronger
folding but a large amount of geometrical intersections and strong kinks occuring predominantly by
the patch boundaries.
This suggest that the results can be further improved by a range of cosmetic interventions like local
smoothing of either the geometry or the normal vector by the patch boundaries. The effect of the
patch boundaries can be further reduced by the utilization of the basis from section 9.4, possibly in
conjunction with smoothing by the security layers. That the absense of patch boundaries is likely
to reduce the amount of defects is further substantiated by the fact that they are not visible in the
results from the torus. The improved smoothness will most likely lead to greater visual appeal of
the results but also to stronger folds as it may be possible to perform a larger amount of iterations
without geometric clashing. Of course, the possibility of self-intersection may also be regarded as a
shortcoming of the model. The effect of the patch boundaries on the concentrations will be studied
in detail in chapter 12.

94

Figure 11.23: Typical defects that arise whenever the simulation is not terminated in time. The red circles show the spots at
which the geometry intersects with itself and the blue circles show places with noticable kinks. The circles in red and blue
show places geometric clashing that occurs by the patch boundaries.

95

12

Numerical Experiments

In this chapter, we present numerical experiments with which we aim to test the resolution offered
by the time-stepping scheme from section 7.2 with corresponding spatial discretization from section
7.3 on an initial geometry given by a sphere. Again, we use the basis introduced in section 9.3 and
the PID-controller from section 7.7. Apart from that, the main motivation for these experiments is to
examine the effects of the patch boundaries and compare results of an implementation on the ordi-
nary sphere and the gaming sphere. Unfortunately, the differential equation (7.1) is too complicated
to derive an exact solution that could serve as a meaningful benchmark for the numerical scheme.
This is why we will present qualitative results based on the following observation: since the differ-
ential equation, in the global sense, does not treat any direction with favoritism, in the presence of
a spherically symmetric initial condition, the solution is expected to stay spherically symmetric (see
figure 12.1).

V V

Figure 12.1: Given a spherically symmetrical initial condition (in both U and V), the solution should stay spherically sym-
metrical. Assuming there is a coordinate system with the z-axis intersecting the radial center of the initial condition, for
fixed t , we can expect the exact solution to be a function of the azimuthal angle φ only

96

We adopt the same parameters as in section 11.2 with F = 0.04.
We will present numerical experiments for p = 2 and p = 3 with n = 12, n = 22, n = 32 and n = 42 (see
section 9.3). Plots will be shown of the initial condition V 0 (k = 0), V 100, V 200 and V 300. U and V are
initialized to the Gaussians (in a global sense)

U (t = 0) = 1−0.75exp

(
−

3∑
i=1

(
xi −x0

i

20

)2)

V (t = 0) = 0.5exp

(
−

3∑
i=1

(
xi −x0

i

20

)2)
, (12.1)

where

x0 = R
(
0,sin

π

4
,cos

π

4

)T
. (12.2)

The center of the Gaussian(s) from (12.1) is through (12.2) located exactly on the border where two
patches meet (see figure 12.2).

(a) Initial condition in V (b) Various patches highlighted in different colors

Figure 12.2: Position of the initial condition

Before the time-stepping procedure commences, the first iterands u0, v0 and s0 are constructed from
a projection of (12.1) onto Σ and by a projection of either s2 ◦ s1 (ordinary sphere) or s∗2 ◦ s1 (gaming
sphere, see section 9.2) onto the same basis Σ, initialized to Σ←B1. Since substrate V is the driving
force behind surface derformation, we will focus our attention on V and all figures will depict the
state in which V finds itself.

Remark. Since the PID-controller from section 7.7 selects step-sizes based on the behavior of uk

and vk an equal amount of iterations does not necessarily correspond to an equal amount of
elapsed time between different simulations. We will bluntly ignore this issue for the sake of conve-
nience. Heuristically, the time frames after 300 iterations fall within 20% deviation of one another.

A color-coded legend is depicted on the right of each picture. It shows the minimum and the maxi-
mum value (over all evaluation points) that V k assumes on Mk .

12.1. Numerical Experiments for p = 2

In this section, we present numerical experiments for bases of order two (in either direction). We start
off by presenting results for n = 12, n = 22, n = 32 and n = 42 on the ordinary sphere and continue
with results from the same parameters on the gaming sphere.

97

12.1.1. Ordinary Sphere

(a) k = 0 (b) k = 100

(c) k = 200 (d) k = 300

Figure 12.3: V k for n = 12, p = 2 after (a) 0, (b) 100, (c) 200 and (d) 300 iterations on the ordinary sphere.

In figure 12.3, we see strong blurring at the wavefront of V 100, it is also seen that spherical symme-
try already starts to suffer. The presence of individual basis functions is clearly noticable. In V 200,
symmetry is clearly broken as the wavefront separates into two pieces which intensifies after 300 it-
erations. Apart from the low resolution, figure 12.3 shows a noticable fringing-effect along the patch
boundary of the first iterand. That the separation of V k aligns with this patch boundary might be an
after-effect of this fringing.
In figure 12.4, as a result of the higher resolution, we see less fringing of the first iterant. V 100 shows
effects similar to 12.3 (b) but significantly reduced. In (c), spherical symmetry starts to break as the
wavefront starts to form a shape that more closely resembles an ellipse with its major axis aligned
with the patch boundary. This effect intensifies in V 300.
Figure 12.5 (a) exhibits no fringing effects. Spherical symmetry is still present after 100 and 200 itera-
tions along with relatively sharp wavefronts. Symmetry, however, breaks after 300 iterations in a way
similar to figure 12.4 (d).
Just as figure 12.5, figure 12.6 shows unnoticable initial fringing. Strong symmetry is present in (b)
as well as (c), along with evident sharpness of the wavefront. Even (d) still clearly shows spherical
symmetry along with sharpness at both the inner and outer radius of the wavefront.

98

(a) k = 0 (b) k = 100

(c) k = 200 (d) k = 300

Figure 12.4: Results for n = 22, p = 2 after (a) 0, (b) 100, (c) 200 and (d) 300 iterations on the ordinary sphere.

(a) k = 0 (b) k = 100

(c) k = 200 (d) k = 300

Figure 12.5: Results for n = 32, p = 2 after (a) 0, (b) 100, (c) 200 and (d) 300 iterations on the ordinary sphere.

99

(a) k = 0 (b) k = 100

(c) k = 200 (d) k = 300

Figure 12.6: Results for n = 42, p = 2 after (a) 0, (b) 100, (c) 200 and (d) 300 iterations on the ordinary sphere.

12.1.2. Gaming Sphere

(a) k = 0 (b) k = 100

(c) k = 200 (d) k = 300

Figure 12.7: Results for n = 12, p = 2 after (a) 0, (b) 100, (c) 200 and (d) 300 iterations on the gaming sphere.

100

In figure 12.7, the fringing effects are somewhat reduced when compared to figure 12.3 (a). In V 100,
blurring at the wavefront is comparable to figure 12.3 (b), spherical symmetry, however, seems to be
slightly improved. In V 200, symmetry is clearly broken as the wavefront forms a rounded sphere and
the effect intensifies in (c). Note, however, that unlike in figure 12.3, separation does not occur. This
might support the hypothesis that after-effects of the initial fringing are suppressed on the gaming
sphere.
Figure 12.8 shows little fringing in the first iterant. Spherical symmetry as well as a resonably sharp
wavefront are still present in (b). Figure 12.8 (c) still exhibits decent symmetry and sharpness, in (d)
however, symmetry is broken in a fashion similar to figure 12.4 (d). Note however, that the effect is
significantly reduced when compared to its counterpart from the ordinary sphere.
Figure 12.9 (a) (b) and (c) show strong symmetry as well as sharpness. In (d), however, symmetry
is slightly broken at the inner circle of the wavefront at the places where the patches meet. Overall,
figure 12.9 shows better results than figure 12.5.
Figure 12.10 shows symmetry as well as sharpness in all of its subplots. Even the inner part of the
wavefront in (d) is still noticably symmetrical. Overall the results are comparable to figure 12.6.

(a) k = 0 (b) k = 100

(c) k = 200 (d) k = 300

Figure 12.8: Results for n = 22, p = 2 after (a) 0, (b) 100, (c) 200 and (d) 300 iterations on the gaming sphere.

101

(a) k = 0 (b) k = 100

(c) k = 200 (d) k = 300

Figure 12.9: Results for n = 32, p = 2 after (a) 0, (b) 100, (c) 200 and (d) 300 iterations on the gaming sphere.

(a) k = 0 (b) k = 100

(c) k = 200 (d) k = 300

Figure 12.10: Results for n = 42, p = 2 after (a) 0, (b) 100, (c) 200 and (d) 300 iterations on the gaming sphere.

102

12.2. Numerical Experiments for p = 3

In this section, analogous to section 12.1, we present numerical experiments for bases of order three
(in either direction) for n = 12, n = 22, n = 32 and n = 42 on the ordinary sphere as well as the gaming
sphere.

12.2.1. Ordinary Sphere

(a) k = 0 (b) k = 100

(c) k = 200 (d) k = 300

Figure 12.11: Results for n = 12, p = 3 after (a) 0, (b) 100, (c) 200 and (d) 300 iterations on the ordinary sphere.

As before, figure 12.11 (a) shows strong fringing effects. The wavefront in (b) is unsharp but symmetry
is still decent. After k = 200 the wavefront seems to separate, in (d), however, the separation has been
reversed. Overall, the results are slightly better than in figure 12.3, even though symmetry is clearly
compromised in (d).
Figure 12.12 shows results that are comparable to figure 12.8. (b) and (c) both show decent symmetry
and sharpness which is compromised in (d).
Figure 12.13 b) and (c) show strong symmetry as well as sharpness but (d) shows slight symmetry
breaking, especially at the inner circle of the wavefront. Overall the results are better than those from
figure 12.5 but slightly worse than figure 12.9.
Finally, figure 12.14 shows sharpness as well as symmetry in (a) through (d). Overall the results are
comparable to figures 12.6 and 12.10.

103

(a) k = 0 (b) k = 100

(c) k = 200 (d) k = 300

Figure 12.12: Results for n = 22, p = 3 after (a) 0, (b) 100, (c) 200 and (d) 300 iterations on the ordinary sphere.

(a) k = 0 (b) k = 100

(c) k = 200 (d) k = 300

Figure 12.13: Results for n = 32, p = 3 after (a) 0, (b) 100, (c) 200 and (d) 300 iterations on the ordinary sphere.

104

(a) k = 0 (b) k = 100

(c) k = 200 (d) k = 300

Figure 12.14: Results for n = 42, p = 3 after (a) 0, (b) 100, (c) 200 and (d) 300 iterations on the ordinary sphere.

105

12.2.2. Gaming Sphere

(a) k = 0 (b) k = 100

(c) k = 200 (d) k = 300

Figure 12.15: Results for n = 12, p = 3 after (a) 0, (b) 100, (c) 200 and (d) 300 iterations on the gaming sphere.

Figure 12.15 shows strong blurring at the wavefront in (b) and (c). Symmetry is broken as well, which
is clearly seen in (d). Overall we see slightly less blurring than in figure 12.7 but similar results when
it comes to symmetry.
Figure 12.16 shows strong symmetry as well as sharpness in (a), (b) and (c) which is, however, broken
in (d). Again, the major axis of the elliptical shape in (d) aligns with the patch boundary. Overall the
results are comparable, yet slightly worse than those from figure 12.5. In direct comparison to figure
12.12, the results from figure 12.5 are clearly better.
Figure 12.17 shows strong radial symmetry as well as sharpness in (a) through (c). In (d) symmetry is
still decent but some minor fringing appears at the patch boundaries. Overall, the results are signifi-
cantly better than in figure 12.13 and slightly better than in figure 12.9.
Finally, figure 12.18 shows strong symmetry in (a) through (d), as well as sharpness. The results are
comparable to figures 12.6, 12.10 and 12.14.

106

(a) k = 0 (b) k = 100

(c) k = 200 (d) k = 300

Figure 12.16: Results for n = 22, p = 3 after (a) 0, (b) 100, (c) 200 and (d) 300 iterations on the gaming sphere.

(a) k = 0 (b) k = 100

(c) k = 200 (d) k = 300

Figure 12.17: Results for n = 32, p = 3 after (a) 0, (b) 100, (c) 200 and (d) 300 iterations on the gaming sphere.

107

(a) k = 0 (b) k = 100

(c) k = 200 (d) k = 300

Figure 12.18: Results for n = 42, p = 3 after (a) 0, (b) 100, (c) 200 and (d) 300 iterations on the gaming sphere.

12.3. Discussion

In sections 12.1 and 12.2, we presented numerical experiments, testing the overall performance of
the numerical scheme introduced in chapter 7 for various basis resolutions on both the ordinary
and the gaming sphere. In a direct comparison, the gaming sphere emerges as clear winner over
the ordinary sphere. This might be a result of the reduced angle that cells make with one another at
the patch boundaries and the reduced fringing effects that result. Another reason might be the fact
that the ratio between the largest cells (in the center of patches) and the smallest cells (by the patch
boundaries) is significantly larger on the ordinary sphere. This manifests itself in a reduced resolu-
tion nearby the center of patches which results in increased blurring of the wavefront which can, for
example, be seen by comparing figures 12.13 and 12.17. On the other hand, the increased resolution
by the patch boundaries is largely compromised by the fringing effects resulting from the steep angle
that cells make with one another there.
Symmetry is usually broken in a way that reveals the location of the patch boundary as for example
in figures 12.4, 12.7 and 12.8. The alignment of wavefronts with the patch boundary after symmetry
breaking is likely a result of the different (lower) continuity properties of nearby basis functions. An-
other reason could be the coupling of DOFs by the boundaries that locally decreases the resolution.
A possible conclusion is the need to refine by the boundaries before the time-stepping procedure
commences.
Overall, it is seen that a resolution of n = 42 is necessary to warrant symmetry over a time-frame that
corresponds to 300 iterations, as can be seen in figures 12.6, 12.10, 12.14 and 12.18. The only simula-
tion with n 6= 42 that performs decently for all k, is the one shown in figure 12.17.
In all of the simulations, it is seen that bases with p = 3 slightly outperform their counterparts with
p = 2. One might be tempted to conclude that higher-order bases should be favored over lower-order

108

ones, this conclusion, however, might be premature. Since the basis introduced in section (9.3) has
exactly (p + 1)2 nonzero basis functions on each element, the bandwidth of the system matrix will
grow with p. This will manifest itself mainly through increased assembly costs since more nonzero
entries have to be computed. Another drawback of higher-order bases is their increased support,
which makes the refinement strategies from chapter 10 less efficient, due to the reduced locality. It
is thus important to make trade-offs between computational costs and performance. Quantitative
numerical experiments are needed to determine how the computational costs scale with increasing
p and how this compares to the increased costs resulting from the increase in n needed to achieve
quantitatively similar results for lower-order bases.
Finally it should be mentioned that in almost all figures from sections 12.1 and 12.2, we can see un-
physical negative concentrations. These negative concentrations are most likely a result of wiggle
formation in the vicinity of steep gradients. A possible remedy is the inclusion of a flux-limiter in the
spatial discretization of the numerical scheme of chapter 7. Note, however, that this would consti-
tute a ‘cosmetic’ intervention rather than a substantial mathematical improvement of the scheme (in
fact, the L2(Mk)-error is expected to increase). For this reason, we have chosen to ignore unphysical
oscillations and it is seen that wiggle-formation is negligible for bases with n = 32 or higher (greatly
facilitated by the smoothness of the basis functions).

12.4. Existing Shortcomings and Possible Remedies

As a result of the necessity to reassemble the system matrix after each iteration, it is of utmost impor-
tance to find proficient refinement criteria. In chapter 10, we have introduced two strategies that are
based on the local properties of the geometry. Possibly the biggest shortcoming of the current imple-
mentation is the absense of refinement based on the behavior of the iterands uk and vk on Mk . The
benchmark problem from sections 12.1 and 12.2 is characterized by three stages:

1. rapid radially outward diffusion and formation of a wavefront with high concentration and
inner layer with moderate concentration (transition from (a) to (b) in the figures),

2. depletion of the inner layer and formation of a narrow ring with steep gradients (transition
from (b) to (c)),

3. sluggish radially outward as well as inward diffusion (transition from (c) to (d)).

It is seen that even moderate resolutions (those with n = 22) perform decently in the first two of these
stages since symmetry tends to be still present in (c) but absent in (d). A possible reason for this
behavior is the formation of the narrow ring in (c), which might be too narrow or contain too steep
gradients to be accurately represented by an element from the linear span of a low-resolution basis.
This suggests the introduction of an adaptive shockwave-refinement in conjunction with coarsening,
based on average function value and / or gradient that continuously refines and coarsens based on
the position of the wavefront.
The results from an experimental implementation based on these principles is shown in figure 12.19.
The solver operates as follows: after the kth iteration, the set of function supports of B1 = {w1, . . . , wN }
that violate either of the criteria ∫

supp wi

vkpgk dξ∫
supp wi

p
gk dξ

< 0.95µval (12.3)

109

or ∫
supp wi

〈∇k vk ,∇k vk
〉

gk

p
gk dξ∫

supp wi

p
gk dξ

< 2.5µgrad, (12.4)

is determined and the set ε of all elements contained in this subset of Ω is stored in memory. Here
(12.3) considers the average function value of V k and (12.4) the average norm of the gradient of V k

as a criterion for refinement.
Analogous to chapter 10, the values of µval and µgrad given by

µval =
1

N

N∑
i=1

∫
supp wi

v
p

g0dξ∫
supp wi

p
g0dξ

µgrad = 1

N

N∑
i=1

∫
supp wi

〈∇0v,∇0v〉g0

p
g0dξ∫

supp wi

p
g0dξ

, (12.5)

where v is the local counterpart of the V -component of the exact initial condition from (12.1) (note
that the exact initial geometry has already been projected onto Σ). Before each iteration the set of
functions that violate (12.3) or (12.4) is determined and the set elements ε of the corresponding basis
functions is stored in memory.
At the beginning of each iteration,Σ is reset to default: Σ←B1 and the integrals from (12.3) and (12.4)
are computed utilizing the current set of elements. As a next step the set of elements is set to default
as well A ← T1 and ε is passed to algorithm (2) in order to acquire a basis refined on the segments
of Ω that violate (12.3) or (12.4). Given Σk as the basis during the kth iteration that results from this
procedure, algorithm (2) ensures that each component of the solution vector at tk is projected onto
the newly formed basis Σk+1.

Remark. Note that this projection might not be possible without projection errors since Σk 6⊂Σk+1

whenever the set of to be refined elements during the kth iteration is unequal to that from the
k +1th iteration.
There are more subtleties involved here when it comes to projection and matrix assembly. The mass
matrix as well as the right hand side vector F can not be built by looping over the set of elements
A k+1 during the k+1th iteration. This is a result of the fact that for the assembly of both functions
containing

p
gk have to be integrated.

p
gk might contain functions from B2 that are supported

by elements from T1 in A k+1 (leading to quadrature errors, see chapter 5). Each component of the
right-hand side vector F of the projection is of the form

Fi =
∫
Ω

wi f
p

gk dξ, (12.6)

and the mass matrix

[A]i , j =
∫
Ω

wi w j
p

gk dξ, (12.7)

thus, the assembly should be carried out over a grid C k+1 that contains all elements from T2 in

110

A k+1 and A k (or simply over T2 itself, which is, however, more expensive).

After the projection is completed, a time-step is carried out with basis Σk+1.

Remark. Since [B] (see section 7.3) contains
p

gk , as well as
p

gk−1, its assembly should be carried
out by looping over T2.
We use the exact expression of v in (12.5) to compute the reference values in order to ensure that
the first iterant v0 is already an element from the span of a basis compliant with (12.4) and (12.5).
In chapter 10, we were not confronted with the problem of incompatible grids since spanΣk ⊂
spanΣk+1 for all k. Not allowing for coarsening when refining based on the properties of the ge-
ometry is reasonable since manifestations of surface deformation through the vk are largely irre-
versible.

Figure 12.19 shows very strong radial symmetry as well as sharpness at the wavefronts. Overall, the
results are comparable to those that result from a high resolution scheme as in figure 12.10, while the
computational costs are only slightly larger than in the simulation from 12.8.
Combining the refinement technique presented in this chapter with the ones from chapter 10 is a
nontrivial task since the techniques presented there do not allow for coarsening. Furthermore, coars-
ening can have a negative effect on the quality of the geometry since shockwave refinement does not
take into account the geometrical properties like curvature and cell size. A possible remedy is to only
coarsen when the corresponding projection error is sufficiently small.
Here we have chosen an initial basis B1 whose basis functions are supported by large segments of
Ω (and Mk) with respect to the characteristic dimensions of the wavefront. When finer bases are
utilized it is recommended to not only refine the function supports that violate(12.4) or (12.5) but
also the supports of the n nearest neighbours (where the value of n depends on the resolution of the
basis).

111

(a) k = 0 (b) k = 50

(c) k = 100 (d) k = 150

(e) k = 200 (f) k = 250

(g) k = 300

Figure 12.19: Results with shockwave-refinement for n = 22, p = 2 after (a) 0, (b) 50, (c) 100, (d) 150, (e) 200, (f) 250 and (g)
300 iterations on the gaming sphere. The grid has been turned on in order to see where the solver refines. The refinement
regions are characterized by the increased density of grid points.

112

13

Space-Time Galerkin

In chapter 7, we introduced a general discretized scheme to tackle (7.1) utilizing a finite-difference
discretization in time. In this chapter, we will conceptually present a possible way to discretize based
on the principles from FEA in both the spatial as well as the temporal component. None of the fol-
lowing has been practically realized and we only present a starting point that may serve as inspiration
for the interested reader.
The advantage of a FEM-discretization in the temporal component is the possibility to locally refine
and coarsen in time. This might save computational ressources on segments ofΩ where the chemi-
cal species u and v are relatively static.
A disadvantage, however, is the fact that a complete FEM-discretization will lead to a non-linear sys-
tem which demands an iterative approach utilizing Picard- or Newton-iteration. Since in the scheme
from chapter 7 the matrices have to be rebuilt after each iteration, the difference in computational
costs may be less severe and the possibility to locally refine in time (and space) may save computa-
tional ressources. This chapter provides possible inspiration for improvements of the current imple-
mentation.
We start off by presenting the discretization after which we will introduce a Newton-scheme to tackle
it. We end this chapter on possible temporal refinement strategies.

13.1. Discretization

Introducing the operator

L

u
v
s

=
d1∆t u +F (1−u)−u∂t ln

p
g t −uv2 −∂t u

d2∆t v − (F +k)v − v∂t ln
p

g t +uv2 −∂t v
K vn(s)−∂t s

 , (13.1)

we can write (7.1) in the form

L
(
u∗)= 0, ∀(ξ, t) ∈Ω× [t k , t k+1] (13.2)

where u∗ is the exact solution of (7.1) over the spatial domainΩ and temporal interval [t k , t k+1] with
some initial condition

u∗∣∣
t=t k = fk . (13.3)

The s-component of u∗ then parameterizes Mt over the temporal interval [t k , t k+1].
It is convenient to have a domain of the formΩ×[0,1] withΩ as in the previous chapters andΩ×[0,1]

113

representing its extension in the temporal direction. This is accomplished by replacing [t k , t k+1] →
[0,1], dt → hk dτ and ∂t → ∂τ = 1

hk
∂̂τ, where as before hk = t k+1 − t k and

∂̂τ = ∂

∂τ
. (13.4)

Henceforth u will refer to the (approximate) solution overΩ× [0,1].
As a first step, we determine the weak form of (13.2) by multiplying by a test function w(ξ, t) and
integrating overΩ× [0,1] with measure

p
g t hk∫ 1

0

∫
Ω

wL(u)
p

gτhk dξdτ= 0, (13.5)

thus

∫ 1

0

∫
Ω

d1〈∇τw,∇τu〉gτ +wF (1−u)−wu∂τ ln
p

gτ−wuv2 −w∂τu
d2〈∇τw,∇τv〉gτ −w(F +k)v −w v∂τ ln

p
gτ+wuv2 −w∂τv

wK vn−w∂τs

pg t hk dξdτ= 0, (13.6)

where ∇τ refers to the Laplace-Beltrami operator of Mt with t = hkτ.
As a next step we construct a basis Σ = {w1, . . . , wN } that is compliant with (7.30). Restricting our
attention to a spherically shaped initial geometry, we can simply use the basis from 9.3. As a next
step we extend it in the temporal direction in a tensor-product way. Hence, let

Ξτm,p =

 0, . . . ,0︸ ︷︷ ︸
p+1 times

,
1

m −p
, . . . ,

m −p −1

m −p︸ ︷︷ ︸
m−p−1 terms

, 1, . . . ,1︸ ︷︷ ︸
p+1 times

 , (13.7)

be the clamped knot vector utilized to construct

σt
n,p = {

N1,p (τ), . . . , Nm,p (τ)
}

. (13.8)

Given a collection {w1, . . . , wN } of bivariate basis functions from section 9.3, the trivariate basis can
be constructed via

wi , j (ξ,η,τ) = wi (ξ,η)N j ,p (τ). (13.9)

The tensor-product index i , j is then replaced by a single global index such that we acquire the trivari-
ate basis Σ̄= {w1, . . . , wM }.
An additional constraint we have to impose on the wi is wi (ξ,η,0) = 0. This is easiest achieved by
disregarding N1,p (τ) in the tensor product from (13.9) . Thus, let us introduce the bases

Σ= {
wi ∈ Σ̄ | wi |τ=0 = 0

}
(13.10)

and

Σ1 = {
wi ∈ Σ̄ | wi |τ=0 6= 0

}
. (13.11)

With the tensor-product structure of the basis functions in mind, we see thatΣ has cardinality N (m−
1) andΣ1 has cardinality N . In order to be conform with the previous chapters, we replace N (m−1) →

114

N and N → N /(m −1) for the global function indices.
We can approximate u, v and s as follows

u =∑
j

cu
j w j +u0

v =∑
j

cv
j w j + v0

s =∑
j

cs
j w j +s0, (13.12)

where

u0|τ=0 = f k
u

v0|τ=0 = f k
v

s0|τ=0 = fk
s . (13.13)

Here f k
u , f k

v and fk
s refer to the individual components of the temporal boundary condition fk .

The cs
j are vectors in R3 and their components are

cs
j =

c1
j

c2
j

c3
j

 . (13.14)

As a next step, we assign some global ordering to the cu
j ,cv

j ,c1
j ,c2

j ,c3
j and define the vector c contain-

ing these weights in the corresponding order. One possible choice is

c = (
cu

1 ,cv
1 ,c1

1 ,c2
1 ,c3

1 , . . . ,cu
N ,cv

N ,c1
N ,c2

N ,c3
N

)T
. (13.15)

Note that with the definition from (13.12): u = u(c), v = v(c),s = s(c).
In (13.2), we successively replace w by each of the wi ∈ Σ. By that, we receive a system of 5N equa-
tions for 5N unknowns. Let us define

F i
u(c) ≡

∫ 1

0

∫
Ω

[
d1〈∇τwi ,∇τu〉gτ +wi

(
F (1−u)−u∂τ ln

p
gτ−uv2 −∂τu

)]p
gτhk dξdτ

F i
v (c) ≡

∫ 1

0

∫
Ω

[
d2〈∇τwi ,∇τv〉gτ −wi

(
(F +k)v − v∂τ ln

p
gτ+uv2 −∂τv

)]p
gτhk dξdτ

F i
sl

(c) ≡
∫ 1

0

∫
Ω

wi
[
K vnl − (∂τs)l

]p
gτhk dξdτ. (13.16)

Note that
p

gτ is a function of c, as well.
As a next step, we define the vector-valued function F(c) by choosing some global ordering of the
F i

u(c), F i
v (c), F i

sl
(c), for example the ordering corresponding to c

F(c) = (
F 1

u ,F 1
v ,F 1

s1
,F 1

s2
,F 1

s3
, . . . ,F N

u ,F N
v ,F N

s1
,F N

s2
,F N

s3

)T
, (13.17)

We have to solve the system F(c) = 0, this however cannot be done directly since F(c) is non-linear.
We choose for an iterative scheme based on the Newton-Raphson-method [6]. To this end, we define
the Jacobian matrix of F with respect to c by

∂F

∂c
=

∂F1
∂c1

∂F1
∂c2

. . . ∂F1
∂c5N

∂F2
∂c1

∂F2
∂c2

. . . ∂F2
∂c5N

...
...

. . .
...

∂F5N
∂c1

∂F5N
∂c2

. . . ∂F5N
∂c5N

 , (13.18)

115

the iteration is carried out as follows: we start with an initial guess c0 and update the l-th iterand cl

after each iteration via cl+1 = cl +∆c, where

∂F

∂c
(cl)∆c =−F(cl). (13.19)

The iteration is terminated once some termination criterion has been reached.
For a collection of derivatives that can be utilized to construct (13.19), see appendix A.5.

Remark. One might choose to replace the scheme from (13.19) by quasi-Newton approaches nearly
quadratic convergence without the need to assemble the Jacobian matrix analytically. Schemes
based on the secant method may be more suitable, further information can be found in [8] and
[22].

13.2. Time-Slabbing

The scheme from (13.19) together with the initial condition from (13.13) forms the basis of the algo-
rithm. Assuming that the initial temporal interval corresponds to [0, t 1] with some initial time-step
t 1, the functions u0, v0,s0 can be constructed, for example, by a tensor-product of the exact initial
condition(s) iu , iv , is with the temporal function N1,p (t). In an IgA-setting, however, it is costumary to
project the initial condition onto the function space before the iteration commences. Thus, let

Σ1
0 =

{
wi |τ=0 | wi ∈Σ1} , (13.20)

the initial condition can (approximately) be incorporated by selecting u0, v0,s0 as the L2-projections
of iu , iv , is onto Σ1

0 after which the Newton-scheme commences.
Let uk+1 denote the solution resulting form the iterative scheme (13.19) over the temporal interval
[t k , t k+1]. The basic idea is to utilize uk

∣∣
τ=1 as initial condition of the scheme over the temporal

interval [t k , t k+1]. Assuming that iterations k − 1 and k utilize the same bivariate spatial basis in
their tensor-product structure, this is accomplished by selecting the weights of uk

i , i ∈ [u, v,s] that
correspond to the functions of the form

wi = fi (ξ,η)Nm,p (τ) (13.21)

during the kth iteration and assigning them to the functions

Σ1 3 wi = fi (ξ,η)N1,p (τ), (13.22)

during the k +1th iteration to construct u0, v0, and s0.
A reasonable choice for the initial guess of (13.19) is the vector c0 that corresponds to the func-
tion

βk with βk (ξ,η,τ) =
u0(ξ,η,0)

v0(ξ,η,0)
s0(ξ,η,0)

 , (13.23)

i.e. the function that equals the initial condition over the entire temporal interval [0,1]. Again, this is
easily accomplished by assigning the weight of

Σ1 3 wi = fi (ξ,η)N1,p (τ) (13.24)

in each of the u0, v0, s0 to the entries in c0 that correspond to the weights of functions

Σ 3 w
i+(j−1) N

m
= fi (ξ,η)N j ,p (τ), j ∈ {2, . . . ,m} (13.25)

116

of the individual components of βk , βk
u ,βk

v and βk
s . If the Newton-scheme should fail to converge, a

possible remedy is to decrease the value of t k+1 and repeat above steps. More sophisticated ways of
choosing the initial guess can be found in [31]. Above scheme forms the basic algorithm.
As mentioned in the beginning of this chapter, discretizing in space and time utilizing an IgA ap-
proach yields the advantage of the possibility to refine locally in all parametric coordinates. Since
the soltion of (7.1) exhibits many different characteristics, like shockwaves (see section 12.4) and geo-
metric deformations but also relative idleness (after pattern formation has completed), approaching
refinement with more sophisticated measures may be a reasonable alternative to the method pre-
sented in this thesis. We shall not present concrete refinement strategies but refer to the publications
by Meitner et al. [27] and Rannacher et al. [5], for possible inspiration.

117

A

Appendix

A.1. Appendix Calculus on Geometric Objects

Lemma A.1.1. Given some sufficiently smooth U : M → TP M , the operator ∇· that satisfies∫
M

W ∇·Udx =−
∫
M

∇W ·Udx, (A.1)

for all functions W that vanish on ∂M , is, in local coordinates, given by

∇·u = 1p
g

n∑
i=1

∂

∂ξi

(p
g ui

)
. (A.2)

Proof. From (A.1), we can deduce an expression in local coordinates.∫
Ω

w∇·u
p

g dξ = −
∫
Ω
〈∇w,u〉g

p
g dξ

= −
∫
Ω

n∑
i=1

∂w

∂ξi
ui

p
g dξ

w |∂Ω=0=
∫
Ω

w
n∑

i=1

∂

∂ξi

(p
g ui

)
dξ. (A.3)

Comparing the left and right hand sides, we have

∇·u = 1p
g

n∑
i=1

∂

∂ξi

(p
g ui

)
. (A.4)

Lemma A.1.2. On geometries without boundary, we have∫
M

W∆U dx =−
∫
M

∇W ·∇U dx, (A.5)

118

or in local coordinates ∫
Ω

w∆u
p

g dξ=−
∫
Ω
〈∇w,∇u〉g

p
g dξ. (A.6)

Proof. Let W : M → R and U : M → TP M , utilizing equation (2.21), in local coordinates, we can
deduce

∇· (wu) = 1p
g

n∑
i=1

∂

∂ξi

(p
g wui

)
= 1p

g

n∑
i=1

[
w

∂

∂ξi

(p
g ui

)+ ∂w

∂ξi

p
g ui

]
= 1p

g

n∑
i=1

w
∂

∂ξi

(p
g ui

)+ n∑
i=1

∂w

∂ξi
ui

= w∇·u+〈∇w,u〉g . (A.7)

Translating above identity to global coordinates and rearranging yields

W ∇·U =∇· (W U)−∇W ·U. (A.8)

Replacing U →∇U , integrating over M and utilizing lemma 1, we find∫
M

W∆U dx =
∫
∂M

W ∇U ·N∂M dl −
∫
M

∇W ·∇U dx. (A.9)

For geometries without boundary, the integral over ∂M vanishes and the lemma follows.

Proposition A.1.1. Let [A] be symmetric and let [B] be symmetric positive definite (SPD). Then
[B][A] is diagonalizable.

Proof. As [B] is SPD, it possesses an SPD (and thus invertible) matrix root [B]1/2 with [B] = [B]1/2[B]1/2.
Now we have

[B]−1/2[B][A][B]1/2 = [B]1/2[A][B]1/2, (A.10)

where the matrix on the right-hand side is symmetric.
Hence, [B][A] is similar to a symmetric matrix and thus diagonalizable.

A.2. Appendix Finite-Element Analysis

Lemma A.2.1. Let (·, ·)L be an inner product, i.e. let L satisfy

(U ,V)L = (V ,U)L

(αU ,V)L =α(U ,V)L

(U +V ,W)L = (U ,W)L + (V ,W)L

(U ,U)L ≥ 0 and (U ,U)L = 0 =⇒ U = 0. (A.11)

119

Furthermore, let Σ= {W1, . . . ,WN } be a (linearly independent) basis over M . Then the matrix

[M] =

 (W1,W1)L . . . (W1,WN)L
...

...
(WN ,W1)L . . . (WN ,WN)L

 (A.12)

is SPD (and thus non-singular).

Proof. From the linear independence of Σ, we have 0 = ∑
j c j W j if and only if c j = 0,∀ j ∈ {1, . . . , N }.

Now take any 0 6=∑
j c j W j ∈ spanΣ. We have (U ,U)L > 0,∀U 6= 0, so, in particular(∑

j
ci W j ,

∑
j

c j W j

)
L

=∑
i

∑
j

ci c j (Wi ,W j)L

= cT [M]c > 0. (A.13)

Since the choice of the c j was arbitrary, it follows that [M] is SPD.

A.3. Appendix Isogeometric Analysis

Proposition A.3.1. Let the B-spline basis Σ̄ satisfy 1 ∈ spanΣ, then the L2-projection is mass con-
serving.

Proof. Suppose the function F : M → R is projected onto the basis Σ via an L2-projection. We call
the projection mass conserving whenever the projection U satisfies∫

M
U dx =

∫
M

F dx. (A.14)

Now let c1
1 , . . .c1

n be the weights that satisfy
∑

i c1
i wi = 1.

In an L2-projection, we craft U in such a way that it satisfies

∀i ∈ {1, . . . ,m} :
∫
M

Wi (U −F)dx = 0. (A.15)

Performing a weighed sum over all i , we find∫
M

∑
i

c1
i Wi (U −F)dx = 0

=⇒
∫
M

(U −F)dx = 0

=⇒
∫
M

U dx =
∫
M

F dx. (A.16)

A.4. Appendix Isogeometric Implementation

We start this section with the following lemma

120

Lemma A.4.1. Given a differentiable function f (t) on [a,b], let h = b −a and

Ih = f (a)h. (A.17)

Then ∣∣∣∣∫ b

a
f (t)dt − Ih

∣∣∣∣≤ 1

2
Mh2, (A.18)

where

M = max
t∈[a,b]

f ′(t). (A.19)

Proof. See [41, p. 49].

Consider the differential equation in integral form

uk+1 = uk +
∫ t k+1

t k
f (u)dt . (A.20)

Let

Ik =
∫ t k+1

t k
f (t)dt , (A.21)

and let I h
k denote the approximation of (A.21) utilized in the time-stepping scheme. We define the

local truncation error as follows

τk = Ik − I h
k

hk
. (A.22)

With (7.1) in mind, for fixed ξ,η, we have from lemma (A.4.1)∫ t k+1

t k
fu(t)dt =

[
−uk∂t

(
ln

p
gk

)+d1∆k uk −Fuk −uk
(
vk

)2 +F

]
hk +O (h2

k). (A.23)

Expanding uk = uk+1 +O (hk), we have∫ t k+1

t k
fu(t)dt =

[
−uk+1∂t

(
ln

p
gk

)+d1∆k uk+1 −Fuk+1 −uk
(
vk

)2 +F

]
hk +O (h2

k). (A.24)

and replacing

∂t
(
ln

p
gk

)→ ln
p

gk − ln
p

gk−1

hk−1
(A.25)

yields an additional O (hk−1)-error. Therefore, we have

τk (fu) =O (hk)+O (hk−1). (A.26)

Similarly, we find

τk (fv) =O (hk)+O (hk−1), (A.27)

121

and

τk (fs) =O (hk), (A.28)

where τk (fu), τk (fv) and τk (fs) constitute the local truncation errors of the time-discretization∫ t k+1

t k
fudt ' hk

[
−uk+1∂h

t

(
ln

p
gk

)+d1∆k uk+1 −Fuk+1 −uk
(
vk

)2 +F

]
∫ t k+1

t k
fv dt ' hk

[
−vk+1∂h

t

(
ln

p
gk

)+d1∆k vk+1 − (F +H)vk+1 +uk
(
vk

)2
]

∫ t k+1

t k
fsdt ' hk K nk vk+1, (A.29)

introduced in section 7.2.

A.5. Appendix Space-Time Galerkin

Here we list a collection of derivatives that can be used in chapter 13.

∂F i
u

∂cu
j

=
∫

0

∫
Ω

[
d1〈∇τwi ,∇τw j 〉gτ −wi w j (1+ v2)−wi∂τw j

]p
gτ−wi w j∂τ

(p
gτ

)
hk dξdτ

∂F i
u

∂cv
j

=
∫ 1

0

∫
Ω

[−2uv wi w j
]p

gτhk dξdτ

∂F i
u

∂c l
j

=
∫ 1

0

∫
Ω

wi
[
F (1−u)−u −uv2 −∂τu

] ∂pgτ

∂c l
j

+wi d1
∂

∂c l
j

(〈∇τwi ,∇τu〉gτ
p

gτ
)

hk dξdτ

∂F i
v

∂cu
j

=
∫ 1

0

∫
Ω

wi w j v2pgτhk dξdt

∂F i
v

∂cv
j

=
∫ 1

0

∫
Ω

[
d2〈∇τwi ,∇τw j 〉gτ −wi w j (2uv −F −k)−wi∂τw j

]p
gτ−wi w j∂τ

(p
gτ

)
hk dξdτ

∂F i
v

∂c l
j

=
∫ 1

0

∫
Ω

wi
[−v(1+F +k)+uv2 −∂τv

] ∂pgτ

∂c l
j

+wi d2
∂

∂c l
j

(〈∇τwi ,∇τu〉gτ
p

gτ
)

hk dξdτ

∂F i
sl

∂cu
j

= 0

∂F i
sl

∂cv
j

=
∫ 1

0

∫
Ω

wi
[
K w j nl −∂τw j

]p
gτdξdτ

∂F i
sl

∂cr
j

=
∫ 1

0

∫
Ω

wi

[
K v

∂nl

∂cr
j

− ∂

∂cr
j

(∂τs)l

]
p

gτ+wi
[
K vnl − (∂τs)l

] ∂pgτ
∂cr

j

hk dξdt , (A.30)

where

∂τ
p

gτ = 1

2
p

gτ

∂

∂t

∥∥∥∥∂s

∂ξ
× ∂s

∂η

∥∥∥∥2

= 1p
gτ

(
∂s

∂ξ
× ∂s

∂η

)
· ∂
∂t

(
∂s

∂ξ
× ∂s

∂η

)
= n ·

[(
∂2s

∂ξ∂t
× ∂s

∂η

)
+

(
∂2s

∂η∂t
× ∂s

∂ξ

)]
(A.31)

122

and

∂
p

gτ
∂cr

j

= 1

2
p

gτ

∂

∂cr
j

∥∥∥∥∂s

∂ξ
× ∂s

∂η

∥∥∥∥2

= 1p
gτ

(
∂s

∂ξ
× ∂s

∂η

)
· ∂

∂cr
j

(
∂s

∂ξ
× ∂s

∂η

)

= n ·
[
∂w j

∂ξ

(
er × ∂s

∂η

)
+

(
∂s

∂ξ
×er

)
∂w j

∂η

]
, (A.32)

where ei is the i -th canonical unit vector in R3.
Furthermore, we use

∂

∂c l
j

(〈∇τwi ,∇τu〉gτ
p

gτ
)=−〈∇τwi ,∇τu〉gτ

∂
p

gτ
∂cr

j

+ 1p
gτ

([
∂

∂cr
j

J̃

]
∇wi

)
· ([J̃

]∇u
)+ ([

J̃
]∇wi

) ·([∂

∂cr
j

J̃

]
∇u

)
, (A.33)

where [
J̃
]= (

∂s
∂η − ∂s

∂ξ

)
, (A.34)

and [
∂

∂cr
j

J̃

]
=

(
∂w j

∂η er −∂w j

∂ξ er

)
. (A.35)

a

Bibliography

[1] Gaussian quadrature weights and abscissae. http://pomax.github.io/bezierinfo/
legendre-gauss.html. Accessed: 29-06-2015.

[2] Gray-scott patterns for various f and h. http://mrob.com/pub/comp/xmorphia/. Accessed:
12-01-2016.

[3] Nutils. http://www.nutils.org/. Accessed: 12-01-2016.

[4] P Antolin, A Buffa, F Calabro, M Martinelli, and G Sangalli. Efficient matrix computation for
tensor-product isogeometric analysis: The use of sum factorization. Computer Methods in Ap-
plied Mechanics and Engineering, 285:817–828, 2015.

[5] Roland Becker and Rolf Rannacher. A feed-back approach to error control in finite element meth-
ods: Basic analysis and examples. Citeseer, 1996.

[6] Adi Ben-Israel. A newton-raphson method for the solution of systems of equations. Journal of
Mathematical analysis and applications, 15(2):243–252, 1966.

[7] A Biondi, H Nogueira, D Dormont, M Duyme, D Hasboun, A Zouaoui, M Chantome, and
C Marsault. Are the brains of monozygotic twins similar? a three-dimensional mr study. Ameri-
can journal of neuroradiology, 19(7):1361–1367, 1998.

[8] Charles G Broyden. A class of methods for solving nonlinear simultaneous equations. Mathe-
matics of computation, pages 577–593, 1965.

[9] Florian Buchegger, Bert Jüttler, and Angelos Mantzaflaris. Adaptively refined multi-patch b-
splines with enhanced smoothness. Applied Mathematics and Computation, 272:159–172, 2016.

[10] Jean Céa. Approximation variationnelle des problèmes aux limites. In Annales de l’institut
Fourier, volume 14, pages 345–444, 1964.

[11] Annabelle Collin, Giancarlo Sangalli, and Thomas Takacs. Approximation properties of multi-
patch c1 isogeometric spaces. arXiv preprint arXiv:1509.07619, 2015.

[12] J Austin Cottrell, Thomas JR Hughes, and Yuri Bazilevs. Isogeometric analysis: toward integration
of CAD and FEA. John Wiley & Sons, 2009.

[13] Carl De Boor. A Practical Guide to Splines, volume 10.

[14] Carl De Boor. A practical guide to splines. Mathematics of Computation, 1978.

[15] Carlotta Giannelli, Bert Jüttler, and Hendrik Speleers. Thb-splines: The truncated basis for hier-
archical splines. Computer Aided Geometric Design, 29(7):485–498, 2012.

[16] Magnus Rudolph Hestenes and Eduard Stiefel. Methods of conjugate gradients for solving linear
systems. 1952.

b

http://pomax.github.io/bezierinfo/legendre-gauss.html
http://pomax.github.io/bezierinfo/legendre-gauss.html
http://mrob.com/pub/comp/xmorphia/
http://www.nutils.org/

[17] Thomas JR Hughes, John A Cottrell, and Yuri Bazilevs. Isogeometric analysis: Cad, finite ele-
ments, nurbs, exact geometry and mesh refinement. Computer methods in applied mechanics
and engineering, 194(39):4135–4195, 2005.

[18] Tijana T Ivancevic. Applied differential geometry: a modern introduction. World Scientific, 2014.

[19] David Kahaner, Cleve Moler, and Stephen Nash. Numerical methods and software. Englewood
Cliffs: Prentice Hall, 1989, 1, 1989.

[20] E. Kreyszig. Differential Geometry. Differential Geometry. Dover Publications, 1991. ISBN
9780486667218. URL https://books.google.nl/books?id=P73DrhE9F0QC.

[21] Dimitri Kuzmin, Rainald Löhner, and Stefan Turek. Flux-Corrected Transport: Principles, Algo-
rithms, and Applications. Scientific Computation. Springer, 2005.

[22] Eric Kvaalen. A faster broyden method. BIT Numerical Mathematics, 31(2):369–372, 1991.

[23] John M Lee. Introduction to Smooth manifolds. Springer Verlag, New York, 2001.

[24] Kyoung J Lee, WD McCormick, Qi Ouyang, and Harry L Swinney. Pattern formation by interact-
ing chemical fronts. Science, 261(5118):192–194, 1993.

[25] Julien Lefèvre and Jean-François Mangin. A reaction-diffusion model of the human brain devel-
opment. In Biomedical Imaging: From Nano to Macro, 2010 IEEE International Symposium on,
pages 77–80. IEEE, 2010.

[26] Andrei Ludu. Nonlinear waves and solitons on contours and closed surfaces. Springer Science &
Business Media, 2012.

[27] Dominik Meidner, Rolf Rannacher, and Jevgeni Vihharev. Goal-oriented error control of the
iterative solution of finite element equations. Journal of numerical mathematics, 17(2):143–172,
2009.

[28] JD Murray. On pattern formation mechanisms for lepidopteran wing patterns and mammalian
coat markings. Philosophical Transactions of the Royal Society B: Biological Sciences, 295(1078):
473–496, 1981.

[29] BN Nagorcka and JR Mooney. The role of a reaction-diffusion system in the initiation of primary
hair follicles. Journal of theoretical biology, 114(2):243–272, 1985.

[30] Barrett O’neill. Elementary differential geometry. Academic press, 2006.

[31] Roger P Pawlowski, John N Shadid, Joseph P Simonis, and Homer F Walker. Globalization tech-
niques for newton-krylov methods and applications to the fully coupled solution of the navier-
stokes equations. SIAM review, 48(4):700–721, 2006.

[32] John E Pearson. Complex patterns in a simple system. Science, 261(5118):189–192, 1993.

[33] Ramón G Plaza, Faustino Sanchez-Garduno, Pablo Padilla, Rafael A Barrio, and Philip K Maini.
The effect of growth and curvature on pattern formation. Journal of Dynamics and Differential
Equations, 16(4):1093–1121, 2004.

[34] Steven Rosenberg. The Laplacian on a Riemannian manifold: an introduction to analysis on
manifolds. Number 31. Cambridge University Press, 1997.

c

https://books.google.nl/books?id=P73DrhE9F0QC

[35] Youcef Saad and Martin H Schultz. Gmres: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM Journal on scientific and statistical computing, 7(3):856–
869, 1986.

[36] T Sachs. Patterned differentiation in plants. Differentiation, 11(1):65–73, 1978.

[37] Endre Süli and David F Mayers. An introduction to numerical analysis. Cambridge university
press, 2003.

[38] AMP Valli, GF Carey, and ALGA Coutinho. Control strategies for timestep selection in simulation
of coupled viscous flow and heat transfer. Communications in Numerical Methods in Engineer-
ing, 18(2):131–139, 2002.

[39] Henk A Van der Vorst. Bi-cgstab: A fast and smoothly converging variant of bi-cg for the solution
of nonsymmetric linear systems. SIAM Journal on scientific and Statistical Computing, 13(2):
631–644, 1992.

[40] Jos van Kan, A Segal, and Fred Vermolen. Numerical methods in scientific computing. VSSD,
2005.

[41] C. Vuik, P Van Beek, F Vermolen, and J Van Kan. Numerical Methods for Ordinary differential
equations. VSSD, 2007.

[42] Anh-Vu Vuong. Adaptive Hierarchical Isogeometric Finite Element Methods. Springer Science &
Business Media, 2012.

[43] Julius Weingarten. Ueber eine klasse auf einander abwickelbarer flächen. Journal für die reine
und angewandte Mathematik, 59:382–393, 1861.

d

	Introduction
	Problem Description
	Motivation
	Notation
	Thesis Overview

	Calculus on Geometric Objects
	Preliminaries
	Integration over Geometric Objects
	Differential Operators on Geometric Objects
	Curvature of Parametric Surfaces
	Principal Curvature
	Mean Curvature
	Gaussian Curvature
	Relating Principal Curvature to Gaussian and Mean Curvature

	Finite-Element Analysis
	General Idea
	Elements and FEA Bases
	Properties
	Basic Example: Diffusion on a Monge Patch

	Isogeometric Analysis
	Knot Vectors
	Constructing B-Splines
	Refinement in One Dimension
	L2-Projection
	B-Spline Surfaces
	Refinement in Two Dimensions
	Example: IgA on a Monge Patch

	Computational Aspects
	Integration Techniques
	Univariate Case
	Bivariate Case

	Matrix Assembly and Choice of Linear Solver
	Concluding Remarks

	The Gray-Scott Reaction-Diffusion Model for Human Brain Development
	The Gray-Scott Reaction-Diffusion Equations
	Including Curvature
	Including Growth

	Isogeometric Implementation
	Formulation as a System of Equations
	Temporal Discretization
	Spatial Discretization
	Essential Boundary Conditions and Choice of Basis
	Natural Boundary Conditions
	Properties of the Numerical Scheme
	Temporal
	Spatial

	Time-Step Selection

	Implementation on a Torus
	Constructing a Torus
	Constructing a Basis
	Utilizing Clamped Knot Vectors
	Higher Order Continuity

	Implementation on a Sphere-Like Shaped Initial Geometry
	Multipatch Approach
	Constructing a Sphere
	Constructing a Basis
	Improving Smoothness

	Refinement Strategies
	Refinement Based on Cell Size
	Refinement Based on Curvature

	Results
	Implementation on the Torus
	Implementation on the Gaming Sphere
	F = 0.04
	F = 0.0285

	Discussion

	Numerical Experiments
	Numerical Experiments for p = 2
	Ordinary Sphere
	Gaming Sphere

	Numerical Experiments for p = 3
	Ordinary Sphere
	Gaming Sphere

	Discussion
	Existing Shortcomings and Possible Remedies

	Space-Time Galerkin
	Discretization
	Time-Slabbing

	Appendix
	Appendix Calculus on Geometric Objects
	Appendix Finite-Element Analysis
	Appendix Isogeometric Analysis
	Appendix Isogeometric Implementation
	Appendix Space-Time Galerkin

	Bibliography

