
Delft University of Technology

Literature Review

GPU acceleration of FEM solver with

applications to Geotechnical Engineering

Author:

Jorn Hoofwijk

University supervisor:

Prof. dr. ir. C. Vuik

Company supervisors:

Dr. ir. S. Brasile

Dr. ir. M. Parchei-Esfahani

A literature review submitted in partial ful�llment of the

requirements for the degree of Master of Science

in

Applied Mathematics

August 19, 2021

https://www.linkedin.com/in/jorn-hoofwijk/
http://ta.twi.tudelft.nl/users/vuik/Welcome.html
https://www.linkedin.com/in/sandro-brasile/
https://www.linkedin.com/in/mparchei/

Contents

1 Introduction 1

2 Discretization methods 2
2.1 Finite Di�erence for Heat equation 3
2.2 Finite Element for heat equation 4
2.3 Finite Element for solids . 6

3 Iterative solvers 9
3.1 Basic iterative methods / Fixed-Point iteration 10
3.2 Krylov Methods . 11
3.3 Preconditioning . 15
3.4 General Krylov methods . 16

4 Current solvers in Plaxis 18
4.1 PICOS . 18

5 Parallel preconditioners 20
5.1 Jacobi / diagonal scaling . 20
5.2 Incomplete LU (ILU) . 20
5.3 Sparse Approximate Inverse Preconditioners (SPAI) 25

6 De�ation methods 28
6.1 How does it work . 28
6.2 Choice of de�ation space . 29

7 Preliminary experimentation 32
7.1 Test problems . 32
7.2 ParILU . 32
7.3 ParILUT . 33
7.4 SPAI . 34
7.5 ISAI . 34
7.6 approximate eigenvalue de�ation 38
7.7 Levelset de�ation . 38

8 Method 41

i

1 Introduction

Computers and �nite element software have helped engineers to more accu-
rately and quickly investigate structural properties of their designs. Still a lot
of computational power is required to run these simulations quickly. With the
advancement of GPU based computing in the past decade, a lot of computa-
tional power has become accessible to the public. However, classical iterative
solvers may not always be able to make use of this resource. So, in order to
harness the power of the GPU, newer algorithms have been developed and eval-
uated. It has to be noted that there are FEM/CFD software packages that
already support GPU computations (such as Ansys Fluent [19]) and several
research teams have shown the capabilities of using GPU's for certain applica-
tions [9]. However, the e�ectiveness of an iterative method greatly depends on
the problem, preconditioner and de�ation methods used. Thus, the goal of my
research is to �nd a combination of preconditioner, de�ation vectors and Krylov
method which is most suitable for the type of problems for which Plaxis 3D is
generally used. This algorithm will be compared, in terms of speed, accuracy
and memory usage with the existing solvers in Plaxis 3D.

Section 2 will explain the principles of �nite elements. Section 3 gives an
overview of what iterative methods are and how one can apply them to e�ciently
approximate the solution of a matrix problem. Section 4 gives a short overview
of the current iterative linear solver used in Plaxis 3D. In Section 5 an overview
of several parallel preconditioning methods is given, followed by an overview
of some de�ation methods in Section 6. Some preliminary experimentation of
these methods is shown in Section 7. Finally in Section 8 the approach to �nd
the best GPU based iterative method is discussed.

1

2 Discretization methods

The behaviour of physical systems, such as heat conduction in solids, are mod-
eled using partial di�erential equations combined with boundary conditions.
Usually, it is impossible to analytically �nd a solution to such problems. So,
numerical methods are used to approximate the solution. There are a few op-
tions to do this. One of the easiest methods is by using the Finite Di�erence
Method. In this method, we take a regular grid (as illustrated in Figure 1a)
and approximate the solution in the grid points. This method is generally very
easy to apply on a regular square grid, but can become very di�cult for more
complex shapes. For more general shapes, usually the Finite Element Method
is used. Using the Finite Element Method, we split the domain into many small
elements, such as triangles (see Figure 1b) and try to to come up with a solution
such that the PDE is valid on each element. This method is more versatile and
can be used to model irregularities in the domain shape. It also allows local
re�ning or coarsening of the grid according to the required accuracy.

Both methods construct a set of equations that approximately model the
physical behaviour of the system. These equations are linearized if needed and
assembled into a system of equations, usually written in matrix form:

Ax = b.

This system of equations is then solved for the unknown vector x. The solution
is then converted into something an engineer can interpreted, for example to
�nd the maximal load of a bridge.

(a) Finite Di�erence Grid (b) Finite Element Mesh

Figure 1: Discretization options

2

2.1 Finite Di�erence for Heat equation

First, we will look at the �nite di�erence method applied to the steady state
heat di�usion equation. The heat di�usion equation, for a material with unit
heat conductivity, is given by:

∂2u

∂x2
+
∂2u

∂y2
= f for interior points (2.1)

u(x, y) = g(x, y) on the boundary (2.2)

Where u is the temperature and f is the heat source term. Generally f and
g can be any function, but for simplicity, we take f(x, y) = 1 and g(x, y) = 0.
Meaning that we assume the temperature at the boundary is 0 units (can be
degrees Celsius), while throughout the plate, heat is being generated at a rate
of 1 units/second. The �rst step is do discretize the domain, we represent the

(a) Grid numbering (b) Grid renumbering

Figure 2: Discretization options

domain by a regular grid of points ui,j , where i is the column index and j is the
row index (see Figure 2a). Then, using a Taylor expansion we can approximate
the second derivative (with respect to x) at each interior point using:

∂2ui,j
∂x2

≈ ui−1,j − 2ui,j + ui+1,j

∆x2
. (2.3)

We may do the same for the y-direction, to get:

∂2ui,j
∂y2

≈ ui,j−1 − 2ui,j + ui,j+1

∆y2
. (2.4)

This system has two indices for the grid points, one in the x and one in the y
direction, to prepare for putting it in matrix form, we will renumber the nodes,

3

starting at the top-left and line by line work to the bottom-right to number all
nodes (see Figure 2b). As an example the �nite di�erence equation for node 33
then becomes (assuming ∆x = ∆y) :

1

∆x2
[u23 + u32 − 4u33 + u34 + u43] = f33 (2.5)

The resulting equations are written in matrix form. We also need to take the
boundary conditions into account, usually they are removed from the coe�cient
matrix (A) and their in�uence on surrounding elements is taken into account in
the right-hand side vector (b). The resulting coe�cient matrix has a structure
as illustrated in Figure 3, the non-zero elements are colored black. We can see
that most of the matrix elements are zero (white). Such a matrix is called a
sparse matrix. A lot of memory and computational cost can be saved by only
storing non-zero values and remembering that all values that are not stored are
zero and therefore can be ignore. We also see that we get a banded structure,
meaning that all values lie within a certain sized band around the diagonal.

Figure 3: Structure of A

2.2 Finite Element for heat equation

For �nite elements the approach is a little di�erent. We again start from the
di�erential equation. This time we will use a mathematical notation using the
di�erential operator (∇):

−∇2u = ∇ · ∇u =
∂2u

∂x2
+
∂2u

∂y2
= f. (2.6)

Which can be rewritten into:

∇2u+ f = 0 (2.7)

4

Interestingly, as ∇2u+ f is zero in the interior, we can multiply it with another
function (φ), which is zero on the boundary, integrate it and the product will
still be zero.¨

Ω

(
∇2u+ f(x, y)

)
φ(x, y) dx dy =

¨
Ω

0·φ(x, y)dx dy = 0 for any function φ : (φ|Γ = 0).

(2.8)
We can then split this into¨

Ω

φ∇2udx dy +

¨
Ω

fφdx dy = 0

−
¨

Ω

φ∇2udx dy =

¨
Ω

fφdx dy (2.9)

And using Gauss divergence theorem, combined with φ|Γ = 0, we can rewrite
this into: ¨

Ω

φf dx dy = −
˛
∂Ω

φ
∂u

∂n
dΓ +

¨
Ω

∇φ · ∇udx dy (2.10)

=

¨
Ω

∇φ · ∇u dx dy (2.11)

This is called the weak formulation of the problem, and it holds for any admissi-
ble function φ, we can even chose multiple functions φi and the equality will hold
for all of them. These φi are called the test functions. In the Galerkin approach,
these test functions also form the basis functions for constructing the solution,
u, and they determine how we will solve the problem. The simplest example
would be to use linear triangular elements. Linear referring to the idea that the
basis function will be linear within each triangle. The exact basis functions for
a single triangle are illustrated in Figure 4. The function is 1 at one node and
0 at all other nodes. Within each element, we then have three non-zero basis
functions. In general form, these equations are given by Equation 2.12.

Figure 4: Basis function for linear triangular element, as taken from [4]

φ1(x, y) = a1 + b1x+ c1y

φ2(x, y) = a2 + b2x+ c2y (2.12)

φ3(x, y) = a3 + b3x+ c3y

5

As these functions are linear, the �rst derivatives are constants:

∂φ1

∂x
= b1

∂φ1

∂y
= c1. (2.13)

And as such, integrating the left-hand side of Equation 2.10 for the three basis
functions inside this element becomes very easy, we usually write it in matrix
form, this matrix is called the element sti�ness matrix (note this system is
di�erent for every element): S11 S12 S13

S21 S22 S23

S31 S32 S33

 u1

u2

u3

 =

 f1

f2

f3

 . (2.14)

Where Sij is given by

Sij =

¨
Ω

∇φi · ∇φj dΩ

=

¨
Ω

[
bi
ci

]
·
[
bj
cj

]
dΩ (2.15)

= (bibj + cicj)

¨
Ω

1dΩ.

Where
˜

Ω
1 dΩ is the area of the triangular element. The right-hand side of

Equation 2.10 is more di�cult to integrate. But we can use numerical inte-
gration, such as Newton-Cotes to approximate the right-hand side to use in
Equation 2.14. With linear elements this would yield:

fi =

¨
Ω

φif dx dy
Newton-Cotes

≈
3∑

j=1

φi (xj) f (xj) =

3∑
j=1

δijf (xj) =
1

3
f (xi) .

(2.16)
Where δij is the Kronecker delta function. When we compute all element sti�-
ness matrices and right-hand sides, we can assemble them into one big system
of equations, which we write in a familiar form, Ax = b.

2.3 Finite Element for solids

In geotechnical applications one of the main interests is the structural integrity
of civil structures and the underlying soil. The steps that have to be taken to
construct the system of equations are very similar to the heat equation, but the
di�erential equations are di�erent, leading to some extra considerations. For
solids, we have displacements in the x and y-direction, leading to strains, given

6

by:

εx =
∂u

∂x
(2.17)

εy =
∂v

∂y
(2.18)

γxy =
∂v

∂x
+
∂u

∂y
(2.19)

Where u, v are the displacement in the x and y-direction, respectively. εx, εy are
the normal strains, and γxy is the (engineer) shear strain. The normal strain is
a measure of how much the substance gets compressed in a direction, whereas
the shear strain indicates how much it is sheared (see Figure 5). Given these

(a) Normal strain (b) Shear strain

Figure 5: Strains

strains, and the material properties, we can derive the stresses. If we assume a
linear relation, we can write in matrix notation: σx

σy
τxy

 =
E

1− ν2

 1 ν 0
ν 1 0
0 0 1

2 (1− ν)

 εx
εy
γxy

 . (2.20)

Where E is the Young modulus (indicating the sti�ness of a material), ν is the
Poisson ration (indicating the orthogonal expansion of a material upon compres-
sion in one direction), σx, σy is the normal stress, and τxy the shear stress. These
stresses indicate a (directional) force per unit area, which has to be balanced in
all points in order to �nd a steady state solution.

In the end, the equations in structural analysis are a bit more complicated
than the di�usion equation, yet can be approached similarly using the �nite
element method. There are a few mayor di�erences one has to take into account:

1. There are multiple unknowns per node, so that on top of choosing in what
order to number the nodes. One also can choose whether to start number-
ing the unknowns �rst by element, then by dimension (e.g. [u1, v1, u2, v2, ...])
or �rst by dimension, then by element (e.g. [u1, u2, ..., uN , v1, v2, ...])

7

2. Equation 2.20 is a bit over-simpli�ed. It is presented as if the material
properties are determined by a few linear parameters. Whereas in reality
these relations are non-linear, meaning that we �rst have to linearize, and
then solve the system, linearize again, etc... In Plaxis this non-linear it-
eration is done using a Quasi-Newton method for fast convergence. As a
result, the system to be solved does not contain the displacements them-
selves, but a derivative thereof.

3. For the structural engineering we get some extra compatibility equations
that have to be satis�ed, see [21].

4. For the most part Plaxis 3D uses quadratic tetrahedral elements. But
there are also, plate elements, beam elements, interface elements, etc...

5. It is possible to state the system of equations as function of strains, or
stresses rather than displacements. These three methods yield di�erent
systems. In Plaxis 3D the systems are displacement based.

6. The boundary conditions become somewhat di�erent. E.g. on some
boundaries we may have constraints on the normal displacement, but not
on the orthogonal displacement.

These topics are interesting on their own, yet mostly out of scope for this re-
port. These factors do, however, impact the resulting system of equations to be
solved. Therefore they are relevant, especially for the choice of preconditioner.
Furthermore, as the linear systems are part of a non-linear iteration, they form
a collection of related linear systems. This relation can potentially be exploited
to improve performance.

8

3 Iterative solvers

This chapter is mostly based on information provided in the books of Vuik [24]
and Saad [22].

Consider the system of equations Ax = b. This system can be solved directly
by inverting A explicitly, i.e. x = A−1b. For big matrices however, doing this
in practice is very slow and memory consuming. A slightly more e�ciently
approach may decompose A into a lower and upper triangular matrix such that
A = LU and solve the systems LUx = b. This system can be solved in two
steps by a forward and backward substitution. However, this is usually still
quite slow.

Another issue that arises with this method is that using the Finite Element
Methods, one usually generates very sparse matrices, where every row of A has
only a few non-zero entries. Sparse matrices like these can be very e�ciently
stored in memory by only considering the non-zero elements. However, when
inverting the matrix explicitly, or by LU -decomposition, this sparsity is lost
(see Figure 6), meaning there are many more non-zero entries, which requires
a lot of memory and is undesirable. There are methods that somewhat address
this issue, for example by reordering [8] or using special direct solvers like Intel
MKL PARDISO [12] but generally direct methods cost a lot of memory. To
counter the memory limitations and speed up the process, iterative methods
have been developed. These methods do not solve the system of equations
exactly, but instead start with a guess for the solution and iteratively improve
the solution (hence their name). Generally, these methods use less memory
than direct methods [ref] and can often be made faster than direct solvers,
depending on the method used and the desired accuracy [ref], making them a
popular choice for solving large sparse systems. To measure the accuracy of an

(a) Structure of A (b) Full LU decomposition, structure of L

Figure 6: Sparsity pattern of LU decomposition

9

iterative method, one is interested in the error

ek = x− xk (3.1)

We desire that this error will go to zero. However, as the exact solution, x, is
not known, the error can not be computed exactly. A more popular measure of
accuracy is the residual, which is de�ned by:

rk := b−Axk
= Ax−Axk = Aek. (3.2)

It has the nice property that, when the error goes to zero, so does the residual.
And the residual is much easier to compute than the error itself.

3.1 Basic iterative methods / Fixed-Point iteration

The Basic Iterative Method (BIM) is one of the simplest iterative methods.
Generally, these methods are not very e�cient, but they are quite easily under-
stood. First we will look at the method, then we will give a numerical example.
BIMs are based on a splitting of the matrix A into two components

A = M −N. (3.3)

One can now rewrite

Ax = b ⇐⇒ (M −N)x = b ⇐⇒ Mx = Nx+ b (3.4)

Which can then be converted into an iterative scheme:

xk+1 = M−1 (Nxk + b)

= M−1 ((M −A)xk + b)

= M−1 (Mxk + b−Axk) (3.5)

= xk +M−1 (b−Axk)

= xk +M−1rk.

Depending on your choice of M and N , you will get di�erent methods. Note
that in this iterative scheme the computation Axk is used, which is relatively
cheap when A is sparse. Furthermore, M−1rk has to be solved, in order to get
an e�cient method, this should be an �easy� operation. This is the case when
M is diagonal or triangular. Furthermore, the error at every iteration can be
stated in recurring form:

ek+1 =
(
I −M−1A

)
ek. (3.6)

From this recurring relation we can derive that the error ek will go to zero if and
only if the absolute value of the eigenvalues of the iteration matrix I −M−1A
are strictly less than 1. In other words: the spectral radius of I−M−1A should

10

be strictly less than 1 in order for xk to converge to x. Furthermore, when the
spectral radius is smaller, fewer iterations are needed to obtain a su�ciently
accurate solution. Depending on the choice of M , the method may or may not
converge, and if it does, the speed of convergence is heavily in�uenced by the
choice of M . The method is very simple and memory e�cient, yet generally
converges quite slowly which makes it not a popular choice of iterative method
in practice.

Example 1 One of the simplest BIMs is constructed by the splitting

M = diag(A) (3.7)

N = diag(A)−A. (3.8)

The resulting BIM is called Jacobi iteration. Let us look at the example with

A =

[
5 −4
−1 2

]
, b =

[
0.5
1

]
, soM =

[
5 0
0 2

]
, N =

[
0 4
1 0

]
. (3.9)

Which has x =
(

5
6 ,

11
12

)T
as the exact solution. The eigenvalues of I −M−1A

are ±
√

0.4 = ±0.6324. Which means that this BIM should converge and the
error is reduced with about 37% each iteration. Figure 7 shows the the �rst 10
Jacobi iterations for the starting vectors[

0
0

]
,

[
2
1

]
,

[
2
2

]
.

We can see that for all starting vectors this method converges to the exact
solution. Furthermore, Table 1 shows the values of the �rst 10 iterations along
with the norm of the error, we can see that for this problem the error is reduced
about a hundred times after 10 iteration.

3.2 Krylov Methods

A more popular class of iterative methods are the Krylov based methods. The
general idea of Krylov methods is to iteratively construct a search space, which
is a subspace RN , and �nd the best solution within this search space. Then,
as the search space gets bigger, the approximate solution will approximate the
exact solution. The name of these methods stems from the search space that is
used, which is the Krylov subspace, this space is de�ned as:

Kk (A, r) = span
{
r,Ar,A2r, . . . , Ak−1r

}
(3.10)

with r the initial residual. So that we can de�ne a growing sequence of subspaces.

3.2.1 Conjugate Gradient

For the conjugate gradient method we will need a matrix A that is symmetric
and positive de�nite, i.e. xTAx > 0 ∀x ∈ RN \ {0}. Then ‖x‖A :=

√
xTAx is

11

Figure 7: Jacobi iteration with di�erent initial guesses for the system de�ned
by (3.9)

Table 1: First 10 Jacobi iterations for the system de�ned by (3.9) with starting

vector x0 = (0, 0)
T

Iteration x0 x1 Error

0 0.000 0.000 1.239
1 0.100 0.500 0.843
2 0.500 0.550 0.496
3 0.540 0.750 0.337
4 0.700 0.770 0.198
5 0.716 0.850 0.135
6 0.780 0.858 0.079
7 0.786 0.890 0.054
8 0.812 0.893 0.032
9 0.815 0.906 0.022
10 0.825 0.907 0.013

12

a well-de�ned norm. The conjugate gradient method iteratively searches along
a search direction and minimizes the error (in the A-norm) along that search
direction. This is similar to gradient descent method in that by searching along a
given search direction the problem is only one-dimensional and thereby easier to
solve. One problem with gradient descent however, is that it may repeat a search
direction. So, if we make sure that all search directions (pi) are orthogonal to one
another (with respect to the inner product induced by A, i.e. piApj = 0 i 6= j,
this is called conjugate) we will never need to search in the same direction twice.
In fact, if we minimize the error along a sequence of conjugate search directions,
we will actually get the approximate solution that minimizes the error over the
entire search space. This is the key of the conjugate gradient method.

Now the reason that this is a Krylov method, is that the �rst search direction
is chosen to be the initial residual r0, and every subsequent search direction is
chosen such that the search directions are conjugate and form a basis for the
Krylov space Kk (A, r0).

The full conjugate gradient method is given by Algorithm 1. Note that the
residual can also be computed as rj = b−Axj but the formulation in the given
algorithm is equivalent up to rounding errors and saves a matrix vector product
(as Apj can be re-used). The pj represents the search direction and α is the
contribution of that search direction. β is used to keep the search directions
conjugated. In exact arithmetic, CG will converge to the exact solution in

Initial guess: x0

r0 = b−Ax0

p0 = r0

For j = 0, 1, ... (until convergence)

αj =
rTj rj

pT
j Apj

xj+1 = xj + αjpj
rj+1 = rj − αjApj

βj =
rTj+1rj+1

rTj rj

pj+1 = rj+1 + βjpj

End

Algorithm 1: Conjugate Gradient Method as taken from Saad 2003[22]

N iterations. However, due to round-o� errors this does not happen exactly.
Furthermore, for large systems this property is not useful for it takes too many
iterations. Usually, the iteration is stopped when the residual is su�ciently
small.

3.2.2 Convergence rate

To compare the computational work to be done with the achieved accuracy,
usually one looks at the convergence rate of the iterative methods. This is

13

the amount that the error (or residual) decreases in each iteration. A better
convergence rate results in fewer iterations and therefore a lower solve time.
Figure 8 shows the norm of the residual for the Conjugate Gradient method
and the Jacobi method for a 2D Poisson problem on a 30 × 30 regular grid,
this problem corresponds to a heat equation. It is immediately clear that the
CG method has much faster convergence than the Jacobi method, which is to
be expected. Another interesting property we can see is that the CG method
initially converges only slightly faster than the Jacobi method, but after about
40 iterations, the convergence becomes much faster. This property is called
super linear convergence and it occurs when the error corresponding to the
lowest eigenvalue is eliminated. It can be shown that the convergence rate of

Figure 8: Convergence rate of Conjugate Gradient versus Jacobi method for a
2D Poisson problem on a 30× 30 grid.

the CG method depends on the condition number of the matrix. This condition
number in turn depends on the eigenvalues of the matrix A, speci�cally, when
the eigenvalues are sorted from smallest (λ1) to largest (λN):

κ2 (A) =
λN
λ1

. (3.11)

And the convergence rate can be written as√
κ2 (A) + 1√
κ2 (A)− 1

. (3.12)

This is more or less the convergence rate as seen between iteration 10 to 40.
After that, the error corresponding to the smallest eigenvalue is eliminated and
the convergence now depends on the e�ective condition number, which, at this
stage, is determined by the second smallest eigenvalue

κe�(A) =
λN
λ2

. (3.13)

14

This property, that the convergence rate improves after some number of iter-
ations is called super-linear convergence, which is a nice property that Krylov
methods have.

3.3 Preconditioning

As said before, the convergence rate of the CG method depends on the condition
number. So, to speed up the convergence, we can transform an ill-conditioned
system Ax = b into another system, with the same solution, but with a lower
condition number, such that we get faster convergence. This idea is called
preconditioning. Preconditioning is an essential step in getting a well performing
CG method. Mathematically, the transformation can be written as:

MAx = Mb (3.14)

Where M is the (left) preconditioner. The solution x is still the same, but the
convergence rate now depends on κ2 (MA), which is ideally much smaller than
κ2(A). We want M to be a good approximation of A−1, as this generally yields
fewer iterations. Unfortunately, when M approximates A−1 well, it will usually
also be expensive to compute and thereby resulting in very few, but slow itera-
tions. Thus, one has to �nd an optimum between having a fast preconditioner,
and having a preconditioner that approximates A−1 well. There are many dif-
ferent types of preconditioners, among the best known we �nd the Incomplete
LU decomposition, which will be further discussed in Section 5.2.

3.3.1 Incomplete Cholesky decomposition

The Incomplete Cholesky is very comparable to a full Cholesky decomposition,
it splits the matrix A into a lower and an upper triangular part C such that:

A ≈ CCT . (3.15)

Which is easily inverted. But, as said before, such a splitting may yield a lot of
�ll-in. However, usually the magnitude of the �ll-in values quickly decreases the
farther away the �ll-in is from the sparsity pattern of A. Therefore small �ll-in
values can be omitted while still keeping a fairly good approximation: One can
specify the amount of �ll-in that may occur, zero �ll-in means that C has the
same sparsity pattern as the lower triangular part of A. Then the amount of
�ll-in can be speci�ed as the amount of non-zero elements the method can add
to every row. This leads to a class of methods indicated by the amount of �ll-in,
ICCG(k) for Incomplete Cholesky Conjugate Gradient with k �ll-in elements
per row. Usually, more �ll-in leads to longer setup times, more memory usage
and slower iterations, but the total number of iterations is decreased, this is
illustrated in Figure 9, which shows the convergence for ICCG(k) for a 2D
Poisson problem on a 30 × 30 grid. For this case, the IC(0) preconditioner
reduces the number of iterations 39 (compared to 96 without preconditioning).
Allowing one �ll-in element per row, hardly increasing the computational load,
still reduces the number of iterations to just 25.

15

Figure 9: Convergence plot for ICCG(k) with di�erent amounts of �ll-in for a
2D Poisson problem on a 30× 30 grid.

3.4 General Krylov methods

So far we have only looked at CG, which requires the matrix to be SPD. There
are alternative methods that can deal with general matrices A which have sim-
ilar convergence properties as CG. Unfortunately, as the matrix is no longer
SPD, it does no longer de�ne a norm and therefore we cannot simply minimize
‖x− xk‖A, which means that some nice properties of CG are lost. As it turns
out, there is no optimal Krylov method for a-symmetric matrices, but there are
several methods that try to mimic CG and keep some of its nice properties.
We will look at two methods, Bi-CGSTAB and GMRES which both have their
advantages and disadvantages. They also need to be combined with a precondi-
tioner in order to get good convergence. Since they can solve general systems,
the preconditioner no longer needs to be SPD and so more choices of precon-
ditioners become available. We will look at speci�c preconditioners relevant to
this research in Section 5.

3.4.1 GMRES

GMRES minimizes the norm of residual in the search space. In every GMRES
iteration, the new search direction will be orthogonalized to all previous search
directions. As a result, we can prove that GMRES �nds the optimal solution in
the Krylov subspace. The big disadvantage is that this requires us to store all
previous search directions costing a lot of memory and orthogonalization will
cost a lot of computing power. Every iteration, GMRES will slow down a bit. If
the preconditioner is very good, very few iterations are needed and this method
is feasible. If many iterations are needed, one may throw away all previous
search directions and start over, which is called restarted GMRES. A major

16

downside is that any super-linear convergence is also thrown away, although
there are ways to still keep this good convergence [ref, ref, ref].

3.4.2 Bi-CGSTAB

Bi-CGSTAB takes a di�erent approach than GMRES. It has short recurrence,
meaning you do not need to store all search directions. Therefore the iteration
is faster and will not slow down. The trade-o� here is that there is no proof
of optimality nor a proof of convergence. In most practical applications, it will
converge [ref] although it requires more iterations than GMRES.

17

4 Current solvers in Plaxis

At the moment, Plaxis 3D provides the user the choice between three linear
solvers:

1. PARDISO, this is a parallel direct solver library developed by Intel

2. Classic solver, this is a single core iterative solver that uses an incomplete
decomposition as preconditioner

3. PICOS, this is a multi-core iterative solver which is the successor of the
classic iterative solver.

As PARDISO is a third party direct solver, we will not go into the details. The
classic solver is quite straightforward, so we do not need to go into more detail.
But the last solver, PICOS, is a bit more complex, we shall give a short overview
of the methods it uses.

4.1 PICOS

PICOS achieves parallelism through domain decomposition [16]. It splits the
domain into a number of subdomains equal to the number of computer cores.
On each subdomain, it uses an incomplete decomposition as preconditioner. The
values of the boundary of each subdomain are communicated to the neighboring
subdomains in order to eventually reach a global solution. There are several
ways to do this, in PICOS this is done via the restricted additive Schwarz
method. The details of this method are not too important for this thesis, but
the e�ect is that it takes more iterations to solve the problem when it is split
into subdomains, but as you can solve it on multiple computer cores in parallel,
the total time for �nding the solution is reduced.

PICOS uses a second preconditioner, on the global level. This coarse grid
preconditioner is mathematically equivalent to de�ation. In particular, PICOS
uses rigid body modes (see Section 6.2.6) where the considered rigid bodies
correspond to the subdomains. This aims at reducing the cost of splitting the
domain into subdomains. It has to be noted that the subdomains are chosen
in a particular way, such that the subdomains correspond as much as possible
with regions of similar material. This is especially e�ective when the model has
a layered soil with vastly di�erent sti�ness (such as Figure 10).

18

Figure 10: Tunnel through layered soil[16]

19

5 Parallel preconditioners

As said before, preconditioners are essential to get good convergence rates for
Krylov methods. They aim to transform an ill-conditioned system into a new
system with a lower condition number, thereby improving the convergence rate.
Generally, you want a preconditioner to approximate the inverse of A. A better
preconditioner leads to fewer iterations at the cost of more work per iteration,
so there is a trade-o� to be made. Furthermore, as we are interested in GPU
computing, we will speci�cally look into highly parallel preconditioners.

5.1 Jacobi / diagonal scaling

One of the simplest preconditioners is the Jacobi preconditioner, also called
diagonal scaling. As the latter name suggests, it scales the system by the value
on the main diagonal, thereby scaling the diagonal back to 1. It is mostly
bene�cial when the diagonal values vary signi�cantly. This means that it is
interesting for applications in which material properties may vary signi�cantly.

The Jacobi preconditioner is memory e�cient, as it only needs to store one
diagonal vector and it is easily parallelizable, as each row can be considered
independent of every other row, which makes it a suitable preconditioner for
usage on a GPU. Every individual iteration is very fast, but many iterations
will be needed, as it is a very simple preconditioner. In some cases, these fast
iterations may outweigh the cost of doing many iterations [ref].

5.2 Incomplete LU (ILU)

A more advanced preconditioner is the Incomplete LU decomposition, or ILU
for short. It is comparable to the Incomplete Cholesky Decomposition except
that it works for non-symmetric matrices as well. It is based on the idea that,
if we allow pivoting, every non-singular matrix has an LU decomposition [ref].
Generally this decomposition is expensive to compute and requires a lot of mem-
ory due to �ll-in, which is illustrated in Figure 11. The idea for the Incomplete
LU decomposition is to approximate this LU decomposition by dropping small
values in every row to limit the amount of �ll-in. There is a choice to be made
as to how many and which values should be kept. The more values are keeps,
the better the approximation becomes, at the expense of more memory and
computational load. This method is very popular in CPU based solvers, yet
due to the forward and backward substitution steps it is not easy to parallelize,
we will look at some methods that make more e�cient use of the parallelism
available in GPUs.

5.2.1 ILU(n) and ILUT

For ILU there are two main ways to select which values are allowed to �ll-in.
ILU(n) is based solely on the sparsity pattern of the matrix, and allows �ll-in
of the locations corresponding to the second (or third, etc) level neighbors, as is

20

(a) Structure of A (b) Full LU decomposition, structure of L

Figure 11: Sparsity pattern of LU decomposition

illustrated in Figure 12. This has the advantage that the sparsity pattern can
be known in advance, especially when the grid is very regular.

The second method is Thresholded ILU (ILUT), where the �ll-in values are
kept if they are greater than a speci�c threshold. Generally this leads to better
preconditioners for the same amount of �ll-in, as the most signi�cant values
are kept. On the downside, it is more di�cult to compute and choosing the
right threshold is di�cult. It is also possible to specify the amount of �ll-in and
keep the largest n values in magnitude per row, leading to a more predictable
memory usage at the expense of some extra computational e�ort when building
the preconditioner.

5.2.2 Block-ILU

Block ILU works by splitting the domain into separate smaller regions and ap-
ply ILU to every subdomain discarding any non-zeros outside of the main block
diagonal. This is illustrated in Figure 13. One ends up with a block structure
in the preconditioner where every block can be considered independently by a
thread, without any information about other blocks and as such can be consid-
ered in parallel leading to fast iterations. However, this parallelism comes at
a cost. The main drawback of this method is that as you have more threads
(and thus more blocks) the preconditioner will become less e�ective [ref]. Since
the number of threads on a GPU is very large (order of 1024) this may be a
signi�cant drawback of using this method [ref].

5.2.3 Fine-grained parallel ILU

Normally we get parallelism by assigning di�erent rows of the matrix to di�erent
threads/cores. But if we have a lot of non-zeros per row, we can process a single

21

(a) ILU(0) decomposition (b) ILU(1) decomposition

Figure 12: Sparsity pattern of L in a ILU decomposition of A

(a) Structure of A (b) Block ILU(0) decomposition, structure
of L

Figure 13: Sparsity of Block ILU with a splitting of A into 4 domains

22

row in parallel by assigning a GPU thread to every non-zero in the row [1].
This is only possible when communication costs between threads are extremely
low, such as on a GPU. A big advantage of this method is that it has the same
convergence properties as the original ILU decomposition. On the downside,
it is very di�cult to implement e�ciently, and more importantly, it is only
bene�cial when every row of the preconditioner has a lot of non-zero elements,
otherwise, only a small fraction of the available computation power will actually
be used.

5.2.4 Iterative ILUT

The iterative ILU method is designed speci�cally for highly parallel hardware.
Instead of applying the preconditioner via forward and backward substitution,
the preconditioner can be solved using Jacobi iteration [7, 6]. For many prob-
lems just a few Jacobi iterations are needed to get an e�ective preconditioner,
although the optimal number of iterations is hard to determine beforehand.

Chow 2018 [7] also proposes a method for iteratively approximating the ILU
decomposition in parallel for a given sparsity pattern. Later, Anzt 2018 [2]
proposes a method called ParILUT for iteratively updating the sparsity pat-
tern to further improve the preconditioner while keeping the same number of
nonzero elements. Both methods were shown to yield good preconditioners in
few iterations.

Construction ILU We will �rst look at the parallel construction of an ILU
decomposition for a given sparsity pattern [7]. The method is based on the
property in the conventional ILU, that for the sparsity pattern S of L and U
we have:

(LU)ij = aij (i, j) ∈ S.

The elements of L and U can thus be written out explicitly as

lij =
1

ujj

(
aij −

j−1∑
k=1

likukj

)

uij = aij −
i−1∑
k=1

likukj .

This is also what is used to construct the conventional ILU decomposition.
Although these equations are non-linear, Chow proposes to use a �xed-point
iteration using this property. To improve the convergence properties, �rst the
matrix is scaled by symmetric diagonal scaling Â = DAD, where D is the
diagonal matrix such that the scaled matrix has unit diagonal. We start from
some initial guess with the desired sparsity pattern and then update this via
the procedure described in Algorithm 2. Although this name is not proposed by
Chow, we shall refer to it as ParILU. For starting the iterations, Chow proposes
two initial guesses, one they call the standard initial guess, which is to take the

23

Initial guess: L,U
For sweep = 0, 1, ... (until convergence)

Parallel For (i, j) ∈ S
If i > j

lij = 1
ujj

(
aij −

∑j−1
k=1 likukj

)
Else

uij = 1
lii

(
aij −

∑i−1
k=1 likukj

)
End

End

End

Algorithm 2: Parallel ILU Factorization [7]

lower and upper triangular parts of Â. Then the modi�ed initial guess is to
take the same, but now scale the rows of L and the columns of U such that the
product LU has a unit diagonal. If we are solving a sequence of linear problems
where the sparsity pattern does not change, we can take the LU decomposition
of the previous linear problem as initial guess, which can signi�cantly increase
performance.

The number of sweeps needed to get a good preconditioner is relatively low,
in most cases somewhere between 1 to 5, even though it is not yet converged,
the number of iterations needed in the Krylov method is almost equal to the
number that the standard ILU preconditioner would need.

Preconditioner application To apply this preconditioner in parallel, we will
need to replace the forward-/backward substitution steps by a parallel triangular
solving algorithms. One method is to use Jacobi iteration (see Section 3.1)
on the triangular matrices [7]. Let DL and DU be the diagonal of L and U
respectively, then the Jacobi iteration is given by:

yk+1 =
(
I −D−1

U U
)
yk +D−1

U b

and when we are satis�ed with the upper triangular solution we will use

xk+1 =
(
I −D−1

L L
)
xk +D−1

L y

to complete the preconditioning step. As the iteration matrix (I −D−1
U U) has

zero diagonal, convergence is guaranteed. Unfortunately, the solution may di-
verge before converging. If the factors are (close to being) diagonally dominant,
only few iterations (order of 1 to 6) are needed to improve the method over
forward/backward substitution. Note that although the number of Krylov it-
erations is usually increased, the total time is reduced due to the improved
parallelism.

24

ParILUT construction ParILUT is an extension of ParILU where the pat-
tern is dynamically updated [2]. The method tries to �nd a lower and upper
triangular sparse matrix that approximates A. Formally this method aims to
minimize

‖LU −A‖F
using a predetermined number of non-zero elements in each of the factors. The
idea is to alternate one sweep of ParILU with an update of the sparsity pattern.
The exact procedure is given in Algorithm 3. The candidate locations are the

Initial guess: L,U
For sweep = 0, 1, ... (until convergence)

Add mL and mU candidate locations to SL and SU respectively.

Do one ParILU sweeps

Remove the mL and mU elements of smallest magnitude from SL and SU

Do one ParILU sweep

End

Algorithm 3: ParILUT algorithm [2]

points that are a non-zero of the residual matrix R = LU−A, one can choose to
add only the candidate locations corresponding to the biggest residual elements
in magnitude, however, Anzt considers it best to add all candidate points. For
the restriction step, the smallest elements of L and U are removed until the
desired number of non-zeros is left (always keeping the diagonal). This is hard
to perform in parallel, thus, Anzt suggests to divide the matrix in blocks of
rows and for each block compute a local threshold which would remove the
desired number of non-zeros from that block of rows. Then, compute a global
threshold as the median of all local thresholds. This results in the total number
of non-zeros to �uctuate a bit, but overall it should not diverge.

Once the preconditioner is constructed, Jacobi iteration is again used to
apply the preconditioner in the Krylov method.

SPD variants There are also two variants for SPD matrices, we shall call
them ParIC [7] for the static sparsity pattern and ParICT [2] for the method
with updates of the pattern. These methods are very similar to ParILU and
ParILUT respectively, except that it only needs to compute one Cholesky factor,
saving half the time and memory.

5.3 Sparse Approximate Inverse Preconditioners (SPAI)

Instead of decomposing the matrix into a lower and upper part, one may also
approximate the inverse of the matrix explicitly with another sparse matrix
[5, 9]. This method is known as Sparse Approximate Inverse Preconditioning

25

(SAIP or SPAI). Usually, the idea is to construct a preconditioner M with a
predetermined sparsity pattern that minimizes the error

‖I −AM‖F .

This preconditioner can be constructed and applied in parallel. Due to its
parallel performance, the preconditioner can have very fast iterations, but gen-
erally the convergence rate is quite slow [3]. Furthermore, the choice of sparsity
pattern heavily in�uences the performance of the preconditioner [source?]. Re-
gardless, in some cases it can outperform ILU based methods just because of its
fast iterations [3, 9].

5.3.1 Construction

The way that the SPAI preconditioner is constructed is by considering every
column of M independently via the relation [17]:

‖I −AM‖2F =

N∑
k=1

∥∥(I −AM) eTk
∥∥2

2
=

N∑
k=1

‖Amk − ek‖22 .

Where the mk form the columns of M and ek are the columns of I. We can
choose each mk independently of the others, making this a parallel method.
Furthermore, to save computational costs, we can use the predetermined sparsity
pattern of mk to reduce a big minimization problem into a much smaller one.
We denote the prescribed sparsity pattern of mk by Jk, the set of the non-zero
indices. Then we only need to consider the columns of A corresponding to Jk.
Furthermore, as A is also sparse, there are only a few rows that have a non-zero
element in the considered rows, we denote these rows with index Ik, formally:

Ik =

i ∈ {1, . . . , N} :
∑
j∈Jk

|aij | 6= 0


Now we can drop all rows and columns that would be guaranteed to lead to a
zero element in the product Amk (due to the sparsity of mk and A):

Âk = A (Ik,Jk)

m̂k = mk (Jk)

êk = ek (Ik)

‖Amk − ek‖22 =
∥∥∥Âkm̂k − êk

∥∥∥2

2
.

Restricting the system this way does not change the result, but the new least
squares problem is much smaller than the original problem and can be solved
easily using QR decomposition for example. After solving the least squares
problem, we can use mk to assemble the matrix M explicitly. The construction
here leads to a right preconditioner, but in a similar way we could also have
constructed a left preconditioner. It must be noted that generally M will not
be symmetric, even when A is SPD, thus conjugate gradient can not be used
with this preconditioner.

26

5.3.2 Sparsity pattern

The choice of the sparsity pattern greatly in�uences the performance of SPAI.
According to Lukash 2012 common choices are the main diagonal, similar to
Jacobi preconditioning, the sparsity pattern of A, and A2, A3, etc. [17]. Gener-
ally, more elements leads to better approximations, at the cost of computation
power and memory. It is also possible to update the sparsity pattern of the ap-
proximate inverse dynamically, adding candidate non-zeroes and dropping small
elements. However, they also found that as the construction of the precondi-
tioner is very expensive, the reduced number of iterations does not outweigh the
cost of iteratively updating the sparsity pattern, unless the original SPAI did
not lead to convergence.

5.3.3 FSAI (Factored Sparse Approximate Inverse)

The idea of FSAI [11, 17] is to �nd an approximate inverse of a factorization
of A. The advantage being that for a SPD matrix A, we get a SPD sparse
preconditioner M = CCT so we can use the conjugate gradient method. In
contrast to normal factorization, this preconditioner can be applied directly
and fully in parallel, on the downside, the Krylov method needs more iterations
to converge.

5.3.4 ISAI (Incomplete Sparse Approximate Inverse)

Anzt 2018 [3] proposes ISAI, which is a new method comparable to SPAI that
approximates an inverse of A on a given sparsity pattern for M . The main
di�erence however, is that instead of solving the least squares problem

min
mk

‖A (Ik,Jk)mk (Jk)− ek (Ik)‖22

it tries to minimize the least squares problem restricted to Jk, where Jk ⊂ Ik:

min
mk

‖A (Jk,Jk)mk (Jk)− ek (Jk)‖22 .

As the sub-matrix Ãk = A (Jk,Jk) is square, this can be solved exactly if Ãk

is non-singular. This ISAI preconditioner is cheaper to compute, and according
to [3] it also leads to better convergence. This method can be applied as is on
SPD matrices, but as we will see in Section 7, this is not bene�cial, instead it
is better to combine ISAI with ILU, similar to FSAI.

ILU + ISAI In the combination of ILU with ISAI, the �rst step is to compute
the ILU decomposition of A. Next, the triangular matrices are approximated
by a sparse approximate inverse, i.e. ML ≈ L−1,MU ≈ U−1 where ML has the
same sparsity pattern as L (or optionally L2, L3, ...). Then, these approximate
inverses may be used as preconditioners directly. Even though the quality of
the preconditioner is then decreased compared to standard ILU, it is now fully
parallelized, so that there may still be a signi�cant speed-up [3].

27

6 De�ation methods

De�ation is related to preconditioning in the sense that we try to transform a
linear system Ax = b into another system that is easier to solve. But in contrast
to conventional preconditioning, the system is now split into two independent
systems using projections onto a subspace and its complement. The idea is
then to solve the two sub-systems independently. In Section 6.1 we will look at
how this works conceptually and mathematically. Then, in Section 6.2, we will
discuss some di�erent choices for projections and their properties. Note that
the de�ation method can easily be combined with preconditioning.

6.1 How does it work

In this report we will assume A to be SPD for simplicity, following the proof
by Jönsthövel 2012 [13], for general matrices there are more di�cult proofs
available[10, 25]. In de�ation we chose some subspace S ⊂ Rn to de�ate and let
the columns of V ∈ Rn×k be a basis of S. We will split the solution x into two
parts, one part in the subspace S and one part in its complement Sc:

x =
(
I − PT

)
x+ PTx

where P is a projection matrix, de�ned by

P = I −AV
(
V TAV

)−1
V T .

When V has rank k, the product E = V TAV is SPD and thus invertible.
Usually we take k to be small, so that E and E−1 can be computed explicitly
or via QR-decomposition. Using this, we can compute one part of the solution
explicitly: (

I − PT
)
x = V E−1V TAx = V E−1V T b.

The other part of the solution PTx still has to be computed. Note that

PA = APT

We solve the projected problem using our preferred Krylov method (CG)

PAx̂ = Pb. (6.1)

We do have to note that PA is singular and thus the solution is not unique.
However, the projected solution PT x̂ is unique and equal to PTx. So that the
total solution becomes:

x = V E−1V T b+ PT x̂. (6.2)

Where V E−1V T b is calculated explicitly, while PT x̂ is found by solving PAx̂ =
Pb using a Krylov method. Now the big advantage comes from the fact that
the subspace S is no longer part of the problem PAx̂ = Pb, thus e�ectively
the subspace S is �hidden� from the Krylov method [13]. As we saw earlier,

28

the convergence depends condition number, and thus on the eigenvalues of the
matrix A:

κ(A) =
λN
λ1

When the eigenvectors corresponding to the lowest few eigenvalues are de�ated,
the e�ective condition number then becomes

κe�(A) =
λN
λk

,

which is usually a big improvement.
The full DPCG is given in Algorithm 4, it is also possible to apply classical

PCG to System (6.1) and use Equation (6.2) to �nd the full solution.

Initial guess: x0

r0 = b−Ax0

r̂0 = Pr0

y0 = M−1r̂0

p0 = y0

For j = 0, 1, ... (until convergence)

ŵj = PApj

αj =
r̂Tj yj

ŵT
j pj

x̂j+1 = x̂j + αjpj
r̂j+1 = r̂j − αjŵj

yj+1 = M−1r̂j+1

βj =
r̂Tj+1yj+1

r̂Tj yj

pj+1 = yj+1 + βjpj

End

x = ZE−1ZT b+ PT ûj+1

Algorithm 4: De�ated Preconditioned Conjugate Gradient Method as
taken from [13]

6.2 Choice of de�ation space

The de�ation method allows a lot of liberty in the choice of the de�ation sub-
space. We usually look at this subspace by de�ning its basis, the columns of
V .

6.2.1 Using exact eigenvalues

From a theoretical point of view it would be ideal to de�ate the eigenvectors
corresponding to �bad� eigenvalues, which are almost always the lowest eigenval-
ues. In practice however it is di�cult to compute this. If you can determine the

29

eigenvalues exactly, you probably do not need a computer to solve the system.
However, it can be used to formally prove statements about the convergence rate
from a theoretical point. And more importantly, you can view other methods
as perturbations of using the exact eigenvalues.

6.2.2 Using approximate eigenvalues

This method comes closest to the theoretically ideal de�ation. The eigenvectors
of the system are approximated via some iterative method, such as the Lanczos
algorithm. It turns out that the approximation does not have to be very precise
to be e�ective [14]. Unfortunately, �nding approximate eigenvectors is very
expensive, so it is often faster to not de�ate the eigenvectors this way. However,
when one needs to solve the same system many times, it may be bene�cial
to approximate these eigenvalues once and use them many times to speed up
convergence.

6.2.3 Reusing eigenvectors from repeated/restarted GMRES

Instead of approximating the eigenvectors beforehand, we can save a bit of
computation power by approximating the eigenvectors based on information
found by the GMRES algorithm. This is still expensive in practice [23], but a
part of the calculation has to be done anyway in order to solve the linear system,
it is cheaper than approximating eigenvalues beforehand. After the linear solve
is completed, some of the information that is stored in the GMRES iterations
can be condensed into an approximate eigenvector. Reusing this eigenvector for
the next system to be solved to speed up any subsequent solves. To a lesser
extend, this method can also be applied to restarted GMRES.

6.2.4 Subdomain de�ation

When the domain is split into subdomains, we can consider the indicator func-
tion on each domain

IDi
(v) =

{
1 v ∈ Di

0 otherwise
.

We can turn this into a vector which has elements 1 if the element on that
position is in that domain. Then all these vectors together can form the basis
for the de�ation space. The advantage of this is that it is very easy to construct
these de�ation vectors and all vectors are sparse. Unfortunately, this de�ation
space is not always e�ective as it need not correlate with the underlying physics,
although the domains can be chosen based on physical properties [15, 16].

6.2.5 Levelset de�ation

This de�ation method is based on the underlying physics. It is very similar to
subdomain de�ation in that we use a indicator function to construct the vectors,
but we do not need to split the domain into actual subdomains. Instead, we

30

group connected vertices together based on physical properties, such as sti�ness,
or permeability. We may even split these regions further using classical domain
splitting techniques. Then we de�ne the de�ation vectors as the indicator vec-
tors on these groups of vertices. Note again that these vectors are sparse. This
de�ation method is computationally quite e�cient and can sometimes be very
e�ective [23].

6.2.6 Rigid body modes

This is similar to, and slightly more advanced, than levelset de�ation but applied
to mechanical problems speci�cally. Again we split the domain into levelsets
based on sti�ness. We will then proceed to pretend that each group is a rigid
body, i.e. the group as a whole can move and rotate in all directions, but it
cannot bend or stretch. As a result, we get the following de�ation vectors (which
depend on the positions of the nodes) [16]:

translation along x-axis[1, 0, 0, 0, 0, 0]

translation along y-axis[0, 1, 0, 0, 0, 0]

translation along z-axis[0, 0, 1, 0, 0, 0]

rotation about x-axis[0,−z, y, 1, 0, 0]

rotation about y-axis[z, 0,−x, 0, 1, 0]

rotation about z-axis[−y, x, 0, 0, 0, 1]

For mechanical problems, these de�ation vectors generally lead to better de�a-
tion than the levelset de�ation, and can be computed beforehand. When only
considering the translations, the similarity to levelset de�ation is very apparent.
The strength of this method comes from the idea that the smallest eigenvectors
of a system can be approximated by a linear combination of these rigid body
modes, even though its not perfect it can perform very well in practice [16].

31

7 Preliminary experimentation

7.1 Test problems

We try di�erent preconditioners on a test problem. The test problems are based
on the 2D �nite di�erence heat problem with Dirichlet boundary conditions.

1. Matrix 1 is a simple 2D Poisson matrix using a 5-point stencil

2. Matrix 2 is a �nite di�erence heat problem using a 5-point stencil, for
this matrix, the problem has 3 regions where the conductivity is 100 times
higher than in other areas, as illustrated in Figure 14. This is noticeable
in the convergence plots by the three bends in the lines

Figure 14: Regions of conductivity for matrix 2, yellow corresponds to the area
with 100× the conductivity of the purple area

Both test problems are SPD, yet, as not all preconditioners are symmetric,
we will use full GMRES in all cases for easy comparison of the e�ect of the
di�erent preconditioners. We consider the method converged when the norm of
the residual is less than 10−8.

7.2 ParILU

I tested ParILU with two di�erent sparsity pattern: A (corresponding to ILU(0))
and A2 (corresponding to ILU(1)). The test problem is 30 × 30 heat equation
with high contrast (test problem 2), with symmetric diagonal scaling (as sug-
gested in Section 5.2.4). The convergence using GMRES is shown in Figure
15 for di�erent number of construction sweeps and Jacobi iterations. We can
see that as we increase the amount of sweeps/Jacobi iterations the convergence
of ParILU approximates that of ILU. However, possibly the fastest times are

32

achieved with a relatively inaccurate approximation, due to faster iterations,
this is to be researched. The reference ILU decomposition is implemented using
the ilupp python package, which is turn is based on ilu++ [18].

Figure 15: Convergence test for ParILU. The dashed lines represent conventional
ILU. The blue lines correspond to ILU(0) and its parallel approximation. The
green lines correspond to ILU(1) and its corresponding approximation. For the
paramaters in ParILU stand for ParILU(sparsity pattern, construction sweeps,
Jacobi iterations)

7.3 ParILUT

Using the same test problem we can test ParILUT. In our implementation, it was
built such that the desired number of non-zeros per factor can be chosen. As we
are using a 5-point stencil. The matrix has (for most rows) 5 non-zeros per row.

33

The ILU(0) decomposition then has 3 non-zeros per row for both factors, as the
diagonal is both in the lower and upper factor. The convergence for ParILUT is
with some parameters is shown in Figure 16. A overview is also given in Table
2. From this we can see that the scipy.sparse.linalg.spilu has the most
non-zeros while having the worst convergence. This is quite unexpected and I
do not understand why this happens. Furthermore, we see that for almost same
number of non-zeros, ParILUT(3600 nz) has slightly better convergence than
ILU(1) and ParILU(A2), this is possibly due to the (few) extra non-zeros or
better sparsity pattern, as [Anzt 2018] explained.

Method nnz nnz/row GMRES iterations

ILU(0) 2640 2.93 52
ParILU(A, 3, 3) 2640 2.93 63
ParILU(A, 5, 5) 2640 2.93 53
ILU(1) 3566 3.96 31
ParILU(A2, 5, 5) 3481 3.87 38
ParILU(A2, 10, 10) 3481 3.87 32
ParILUT(10, 15, 3600nz) 3600 4.00 28
ParILUT(10, 15, 4500nz) 4500 5.00 22
scipy.sparse.linalg.spilu 5014 5.57 64

Table 2: Overview of convergence and number of non-zeros for di�erent ILU
implementations.

7.4 SPAI

We test the same problem (on a 30×30 grid) with SPAI using di�erent sparsity
patterns. The convergence is shown in Figure 17. The SPAI preconditioner
yields a worse convergence rate than IC for the same number of non-zeros, but
again, due to its fast iteration, it may still be a good choice. SPAI(IC) stands
for SPAI applied to the IC(0) decomposition, this is the only symmetric SPAI
preconditioner in this test and could thus have been used with CG.

7.5 ISAI

Figure 18 shows the convergence for the ISAI preconditioner using several spar-
sity patterns. Again ISAI(IC) stands for ISAI applied to the IC(0) decompo-
sition. Table 3 shows the number of iterations needed for both SPAI and ISAI
preconditioners. It has to be noted that SPAI(A) is better than ISAI(A), for
the other sparsity patterns and approximate inverses of IC(0), both methods
perform very comparable in terms of convergence. It also has to be noted that
the ISAI preconditioner is faster to construct than the SPAI preconditioner for
the same sparsity pattern.

34

Figure 16: Convergence test for ParILUT. The dashed lines represent conven-
tional ILU. The blue lines correspond to ILU(0) and its parallel approximation.
The green lines correspond to ILU(1) and its corresponding approximation.
For the parameters in ParILU stand for ParILU(sparsity pattern, construction
sweeps, Jacobi iterations) and for ParILUT(construction sweeps, Jacobi itera-
tions, allowed number of non-zeros)

35

Figure 17: Convergence test for SPAI

Method GMRES iterations

Jacobi 157
IC(0) 50
SPAI(A) 88
SPAI(A2) 65
SPAI(IC) 90
ISAI(A) 121
ISAI(A2) 63
ISAI(IC) 86

Table 3: Overview of convergence for SPAI and ISAI preconditioners.

36

Figure 18: Convergence test for ISAI

37

7.6 approximate eigenvalue de�ation

It has been noted above that for problem 2 there is a high contrast in conduc-
tivity, this leads to slow convergence. In particular, in every convergence plot
we see three bumps, corresponding to the 3 slowly converging eigenvalues. On
a small grid (30 × 30) the matrix is relatively small (900 × 900) and we can
compute the eigenvalues numerically. Figure 19 shows the 4 eigenvectors corre-

(a) (b) (c) (d)

Figure 19: De�ation vectors corresponding to the lowest 4 eigenvectors.

sponding to the 4 smallest eigenvalues. As can be seen, the large conductivity
regions are easily visible in the eigenvectors with some extra smoothing going
on in the neighborhood. Figure 20 shows the convergence plot with varying
number of eigenvalues de�ated. For both the Jacobi preconditioner and the
IC(0) preconditioner. We can see from the convergence that as the number of
de�ation vectors increases, the bumps in the convergence are removed one by
one. Furthermore, we see that the �rst 4 eigenvectors have a signi�cant impact
on the convergence, whereas the next few eigenvectors barely improve conver-
gence. All in all, using 4 eigenvectors reduces the amount of iterations by over
40%.

7.7 Levelset de�ation

Instead of using eigenvectors, we can opt for the levelset vectors. These vectors
are based on the physical properties of the problem. In the case of our test
problem, we could split it into 4 vectors based on conductivity. These vectors
are illustrated in Figure 21. They do not represent the eigenvectors, but a
linear combination of these may approximate an eigenvector good enough. The
convergence using these de�ation vectors is shown in Figure 22. Interestingly,
the convergence for 4 levelset vectors is almost equal to the convergence of the
4 lowest eigenvalues, this is very nice as this means that with 4 very cheap
de�ation vectors, we can improve convergence signi�cantly, as well as with 4
very expensive de�ation vectors.

38

(a) Using Jacobi preconditioning (b) Using IC(0) preconditioning

Figure 20: Convergence for eigenvector de�ation for di�erent amount of de�ated
eigenvectors.

(a) Background (b) Region 1 (c) Region 2 (d) Region 3

Figure 21: De�ation vectors corresponding to the levelsets.

39

Figure 22: Convergence using levelset de�ation versus eigenvalue de�ation (both
with 4 vectors).

40

8 Method

In this report we investigate di�erent combinations of preconditioners, Krylov
methods and de�ation vectors. As the performance of each combination depends
on the problem it is applied to, we will want to apply it to a set of test problems
that are representative for the cases that Plaxis users will encounter in practice.
The performance, in terms of time and memory, of the di�erent components
of the solver will then be analyzed, for di�erent preconditioners and sets of
de�ation vectors. This will be compared to the PICOS solver as well as the
PARDISO solver that are currently available in Plaxis 3D. The test models we
will use will be a sti� structure embedded in a softer soil, as this leads to high
contrast in sti�ness and thus ill-conditioned matrices.

1. A uniform soil with a load in the middle. As to verify that the GPU
algorithm performs well for very simple test cases.

2. A layered soil with di�erent sti�ness per layer, similar to Lingen 2014 [16],
model 1. The di�erent soil layers have an order of magnitude di�erent
sti�ness.

3. Tunnel through layered soil, similar to Lingen 2014 [16], model 2. The
di�erent soil layers have an order of magnitude di�erent sti�ness, and the
concrete lining inside the tunnel has a sti�ness several orders of magnitude
larger than the soil.

4. Loading of suction pile in clay, as taken from a Plaxis 3D tutorial [20].
The suction pile is a steel cylinder closed at the top and is used to anchor
large structures to the sea�oor. The cylinder is very sti� compared to
the surrounding soil, leading to such an ill-conditioned problem that the
tutorial suggest to use PARDISO as it solves the problem faster than
PICOS.

41

(a) Uniform soil (b) Layered soil

(c) Tunnel (d) Suction pile

Figure 23: Two test problems

42

Nomenclature

List of abbreviations

Abbreviation Long version

SPD Symmetric Positive De�nite (matrix)

SPSD Symmetric Positive Semi-De�nite (matrix)

FEM Finite Element Method

PARDISO PARallel Direct Solver

PICOS Plaxis Iterative COncurrent Solver

BIM Basic Iterative Method

QR-
decomposition

Decompose A = QR where Q is orthogonal and R upper
triangular

nz/nnz non-zeros / number of non-zeros

Preconditioners

LU Lower - Upper triangular decomposition. A = LU

ILU(k) Incomplete LU decomposition, k is denotes allowed �ll-in,
A ≈ LU

IC(k) Incomplete Cholesky decomposition, A ≈ CCT

SPAI SParse Approximate Inverse

ISAI Incomplete Sparse Approximate Inverse

FSAI Factored Sparse Approximate Inverse

ILUT(k, τ) Thresholded ILU, k is level of �ll-in, τ is the cuto� threshold

ParILU Parallel ILU

ParILUT Parallel Thresholded ILU

ICCG(k) Incomplete Cholesky (k) Conjugate Gradient

AMG Algebraic Multi-Grid

Krylov method collection term for CG, BiCGSTAB, GMRES, IDR etc

CG Conjugate Gradient

GMRES Generalized Minimal RESidual

BiCGSTAB Bi-Conjugate Gradient STABelized

IDR(s) Induced Dimension Reduction (s being the dimension of the
subspace)

43

Abbreviation Long version

FGMRES Flexible GMRES

PCG Preconditioned CG

DPCG De�ated Preconditioned CG

GPU Graphics Processing Unit

CPU Central Processing Unit

Common symbols

Some symbols remain the same throughout the thesis. Here is a list of some
mathematical symbols with a well de�ned meaning, as well as uno�cial conven-
tions that this thesis adheres to.

Symbol Meaning

R Real numbers, i.e. decimal numbers 5.53, − 1
12

N Integers, whole numbers, 7, −3

i, j, k iteration index or coordinates in a matrix

S a set, in Algorithm 2 it denotes the non-zero coordinates

p ∈ S �in�, to denote that p is an element of a set S.

S1 ⊂ S2 subset, all elements of S1are also in S2, S2 may have more
elements

A system matrix

M a preconditioner

P a (de�ation) projection

V Matrix whose columns span the de�ation subspace, generally
not square

I Identity matrix, size is implied by the context

U upper triangular matrix

L lower triangular matrix

λ1...λN eigenvalues of a matrix, sorted such that λ1 is the smallest and
λN the largest

ε / eps /
epsilon

tolerance, usually we declare convergence when the norm of
the residual is smaller than ε.

τ threshold / drop tolerance for elements in a preconditioner

44

Symbol Meaning

δij Kronecker delta: δij =

{
1 i = j

0 i 6= j

Ω domain, usually domain of integration in FEM

Γ / ∂Ω boundary of a domain (Ω)

α, β Other Greek letters usually refer to a real number

n,m Latin letters usually refer to an integer, m,n usually refer to
the size of a matrix

x solution of a system Ax = b

b right-hand side of a system Ax = b

ek elements in the standard basis of a space. ek has all zeros
except the k-th element which is 1. e.g. e2 = [0, 1, 0, ...]. The
length of the vector is implied by the context.

κ2(A) Condition number of a matrix, κ2(A) = λN/λ1

κe�(A) E�ective condition number of a matrix, which actually
determines the convergence rate

AT Transpose of A

A−1 Matrix inverse of A

I or J a set of indices

A (I,J) the matrix A restricted to keep only the rows I and columns J
x (I) the vector x restricted to keep only the elements with index in

I
ai,j or (A) i,j the element on row i and column j of matrix A.

xk approximate solution in an iterative method after k iterations

xi i'th element of a vector x. A bit con�icting with previous
de�nition, but usually clear from context.

rk residual after k steps: rk = b−Axk
pk (in Krylov methods) search direction in k-th iteration

‖x‖2 2-norm of a vector, de�ned as: ‖x‖2 =
√∑N

i=0 x
2
i

‖A‖2 2-norm of a matrix, which turns out to be the maximum row
sum. Not similar to the 2-norm of a vector.

‖A‖F Frobenius norm of a matrix: ‖A‖F =
√∑N

i=0

∑N
j=0 a

2
i,j .

Similar to a 2-norm of a vector.

45

Symbol Meaning

∇ Nabla, di�erential operator, de�ned as ∇ =
(

∂
∂x ,

∂
∂y

)T
(can be

3 dimensional as well based on context)

∆ Laplace operator, higher dimensional second derivative,

de�ned as ∆ = ∇2 = ∇ · ∇ =
(

∂2

∂x2 ,
∂2

∂y2

)T

46

References

[1] José I Aliaga, Ernesto Dufrechou, Pablo Ezzatti, and Enrique S Quintana-
Ortí. An e�cient gpu version of the preconditioned gmres method. The
Journal of Supercomputing, 75(3):1455�1469, 2019.

[2] Hartwig Anzt, Edmond Chow, and Jack Dongarra. Parilut�a new par-
allel threshold ilu factorization. SIAM Journal on Scienti�c Computing,
40(4):C503�C519, 2018.

[3] Hartwig Anzt, Thomas K Huckle, Jürgen Bräckle, and Jack Dongarra. In-
complete sparse approximate inverses for parallel preconditioning. Parallel
Computing, 71:1�22, 2018.

[4] Douglas Arnold, Richard Falk, and Ragnar Winther. Finite element ex-
terior calculus: From hodge theory to numerical stability. Bulletin of the
American Mathematical Society, 47, 06 2009.

[5] Edmond Chow. A priori sparsity patterns for parallel sparse approx-
imate inverse preconditioners. SIAM Journal on Scienti�c Computing,
21(5):1804�1822, 2000.

[6] Edmond Chow, Hartwig Anzt, Jennifer Scott, and Jack Dongarra. Using
jacobi iterations and blocking for solving sparse triangular systems in in-
complete factorization preconditioning. Journal of Parallel and Distributed
Computing, 119:219�230, 2018.

[7] Edmond Chow and Aftab Patel. Fine-grained parallel incomplete lu factor-
ization. SIAM journal on Scienti�c Computing, 37(2):C169�C193, 2015.

[8] Elizabeth Cuthill and James McKee. Reducing the bandwidth of sparse
symmetric matrices. In Proceedings of the 1969 24th national conference,
pages 157�172, 1969.

[9] Jiaquan Gao, Kesong Wu, Yushun Wang, Panpan Qi, and Guixia He. Gpu-
accelerated preconditioned gmres method for two-dimensional maxwell's
equations. International Journal of Computer Mathematics, 94(10):2122�
2144, 2017.

[10] André Gaul, Martin H Gutknecht, Jorg Liesen, and Reinhard Nabben. A
framework for de�ated and augmented krylov subspace methods. SIAM
Journal on Matrix Analysis and Applications, 34(2):495�518, 2013.

[11] Thomas Huckle. Factorized sparse approximate inverses for precondition-
ing. The Journal of Supercomputing, 25(2):109�117, 2003.

[12] Intel. onemkl pardiso - parallel direct sparse solver inter-
face. https://software.intel.com/content/www/us/en/develop/

documentation/onemkl-developer-reference-fortran/top/

47

https://software.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-fortran/top/sparse-solver-routines/onemkl-pardiso-parallel-direct-sparse-solver-interface.html
https://software.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-fortran/top/sparse-solver-routines/onemkl-pardiso-parallel-direct-sparse-solver-interface.html

sparse-solver-routines/onemkl-pardiso-parallel-direct-sparse-solver-interface.

html, 2021. [Accessed 24-06-2021].

[13] TB Jönsthövel, MB Van Gijzen, S MacLachlan, C Vuik, and A Scarpas.
Comparison of the de�ated preconditioned conjugate gradient method and
algebraic multigrid for composite materials. Computational Mechanics,
50(3):321�333, 2012.

[14] Karsten Kahl and Hannah Rittich. The de�ated conjugate gradient
method: Convergence, perturbation and accuracy. Linear Algebra and its
Applications, 515:111�129, 2017.

[15] K. B. Kaliszka, C. Vuik, and M. B. van Gijzen. Developing a
parallel solver mechanical problems. Master's thesis, Delft Uni-
versity of Technology, 2010. http://resolver.tudelft.nl/uuid:

cea77d32-d6df-443c-9cee-ca89e21733ac.

[16] FJ Lingen, PG Bonnier, RBJ Brinkgreve, MB Van Gijzen, and C Vuik. A
parallel linear solver exploiting the physical properties of the underlying
mechanical problem. Computational Geosciences, 18(6):913�926, 2014.

[17] Mykola Lukash, Karl Rupp, and Siegfried Selberherr. Sparse approximate
inverse preconditioners for iterative solvers on gpus. In Proceedings of the
2012 Symposium on High Performance Computing, page 13. Society for
Computer Simulation San Diego, CA, USA, 2012.

[18] Jan Mayer. Ilu++: A new software package for solving sparse linear systems
with iterative methods. In PAMM: Proceedings in Applied Mathematics and
Mechanics, volume 7, pages 2020123�2020124. Wiley Online Library, 2007.

[19] NVidia. Gpu-accelerated ansys �uent. https://www.nvidia.com/en-us/
data-center/gpu-accelerated-applications/ansys-fluent/. [ac-
cessed 17-08-2021].

[20] PLAXIS. Plaxis 3d - tutorial manual - loading of a suc-
tion pile. https://communities.bentley.com/products/

geotech-analysis/w/plaxis-soilvision-wiki/45575/

plaxis-3d-tutorial-03-loading-of-a-suction-pile, 2018. [ac-
cessed 24-06-2021].

[21] J. N. Reddy. Introduction to the Finite Element Method, Third Edition.
McGraw-Hill Education, New York, 3rd edition. edition, 2006.

[22] Y. Saad. Iterative methods for sparse linear systems. Society for Industrial
and Applied Mathematics, 2 edition, 2003.

[23] Joost H van der Linden, Tom B Jönsthövel, Alexander A Lukyanov, and
Cornelis Vuik. The parallel subdomain-levelset de�ation method in reser-
voir simulation. Journal of Computational Physics, 304:340�358, 2016.

48

https://software.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-fortran/top/sparse-solver-routines/onemkl-pardiso-parallel-direct-sparse-solver-interface.html
https://software.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-fortran/top/sparse-solver-routines/onemkl-pardiso-parallel-direct-sparse-solver-interface.html
http://resolver.tudelft.nl/uuid:cea77d32-d6df-443c-9cee-ca89e21733ac
http://resolver.tudelft.nl/uuid:cea77d32-d6df-443c-9cee-ca89e21733ac
https://www.nvidia.com/en-us/data-center/gpu-accelerated-applications/ansys-fluent/
https://www.nvidia.com/en-us/data-center/gpu-accelerated-applications/ansys-fluent/
https://communities.bentley.com/products/geotech-analysis/w/plaxis-soilvision-wiki/45575/plaxis-3d-tutorial-03-loading-of-a-suction-pile
https://communities.bentley.com/products/geotech-analysis/w/plaxis-soilvision-wiki/45575/plaxis-3d-tutorial-03-loading-of-a-suction-pile
https://communities.bentley.com/products/geotech-analysis/w/plaxis-soilvision-wiki/45575/plaxis-3d-tutorial-03-loading-of-a-suction-pile

[24] C. Vuik and D.J.P. Lahaye. Scienti�c Computing. Delft University of
Technology, 2019.

[25] M.C. Yeung, J.M. Tang, and C. Vuik. On the convergence of gmres
with invariant-subspace de�ation. http://resolver.tudelft.nl/uuid:

f21da1b4-d4ed-4e46-a604-e1a9bdef70de, 2010.

49

http://resolver.tudelft.nl/uuid:f21da1b4-d4ed-4e46-a604-e1a9bdef70de
http://resolver.tudelft.nl/uuid:f21da1b4-d4ed-4e46-a604-e1a9bdef70de

	Introduction
	Discretization methods
	Finite Difference for Heat equation
	Finite Element for heat equation
	Finite Element for solids

	Iterative solvers
	Basic iterative methods / Fixed-Point iteration
	Krylov Methods
	Preconditioning
	General Krylov methods

	Current solvers in Plaxis
	PICOS

	Parallel preconditioners
	Jacobi / diagonal scaling
	Incomplete LU (ILU)
	Sparse Approximate Inverse Preconditioners (SPAI)

	Deflation methods
	How does it work
	Choice of deflation space

	Preliminary experimentation
	Test problems
	ParILU
	ParILUT
	SPAI
	ISAI
	approximate eigenvalue deflation
	Levelset deflation

	Method

