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Turbomachinery

e Complex (smooth) geometry

@ Structural, heat and flow
analysis

@ Hard to optimize using
engineering experience

Source: http://www.pointwise.com/



Introduction

Turbomachinery

e Complex (smooth) geometry

@ Structural, heat and flow
analysis

@ Hard to optimize using
engineering experience

Used in many applications:

@ automobile

@ aerospace

@ energy production

@ heating

Source: http://www.pointwise.com/



Introduction

Why to optimize?

@ Lower emissions
@ Lower fuel consumption
@ Longer life-cycle

fot. G,MOrdalskimivw.r




Introduction
Why to optimize?

Decrease mass

Decrease flow losses
Increase TET by improving
cooling

Evaluate particle impact on
the blade




Why IGA?

No manual re-meshing - automation of optimization possible

@ Idea: Use the same function space to represent the geometry
and to solve the problem

Represents the geometry exactly

@ The same numerical method for fluid and structural simulation

No gaps between domains



Introduction
Objectives of the thesis

Main goal:

@ Develop a solver for the compressible Euler equations
Side goals:

@ Apply the AFC stabilization in the IGA framework

@ Develop the constrained L2 projection in the IGA framework



Introduction
Schedule of the thesis

Literature study:
@ Implement the B-spline constructor and evaluator
@ Implement the IGA solver for Poisson equation

o Extend it to arbitrary 2D geometry



Introduction
Schedule of the thesis

Literature study:
@ Implement the B-spline constructor and evaluator
@ Implement the IGA solver for Poisson equation
o Extend it to arbitrary 2D geometry

Main part of thesis project:

@ Implement the IGA solver for stationary convection-diffusion
equation

@ Extend it to time-dependent problems

o Implement the Compressible Euler equations solver
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@ B-splines as basis for analysis
@ B-splines
@ IGA approach to Poisson’s problem



B-splines as basis for analysis

B-spline basis functions on uniform knot vector

Basis functions of order 0 Basis functions of order 1 Basis functions of order 2
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The higher order B-spline basis functions are computed with
recursive Cox-de Boor formula.



B-splines as basis for analysis

B-spline basis functions on nonuniform knot vector

Basis functions of order 2

v Properties:

" @ Positivity

:EZ @ Partition of unity

— e Compact support
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B-splines as basis for analysis
B-spline curves

B-spline curves
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B-splines as basis for analysis
B-spline surfaces

B-spline surfaces
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B-splines as basis for analysis
Enriching the basis

Shape preserving operations:
o Inserting new knots (equivalent to h-refinement)

@ Increasing the order of the basis (equivalent to p-refinement)
results in n — 1 new DOFs

o k-refinement - firstly increase the order and then add new
knot values - No counterpart in standard FEM

Result: Generalized tensor product basis



B-splines as basis for analysis

Poisson’s problem on arbitrary geometry

Problem description
—AU(X,y) = f(Xay) in Qa
u(x,y) =0 on 02

with load vector f(£,7n) = 272 sin(m€) sin(7n).




B-splines as basis for analysis

Poisson’s problem on arbitrary geometry

Main steps of solving the problem:

@ Derive the weak formulation taking into account mapping of
parametric domain onto physical domain

@ Use the B-spline tensor product basis function as the basis
functions for analysis (careful indexing)

© Write the problem in the form of linear system

@ Evaluate the basis functions at points required for integration
© Evaluate the mapping matrix function

O Integrate numerically and assemble the matrix and RHS

@ Solve the linear system



B-splines as basis for analysis

Parametric and physical domains

FEA:

IGA:

Source: J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, " Isogeometric Analysis: Towards Integration of CAD and FEA”



B-splines as basis for analysis

Poisson’s problem on arbitrary geometry

Uniform open knot vectors, n=4, m=3, p=q =2



B-splines as basis for analysis

Poisson’s problem on arbitrary geometry

@ The Matlab code written during the literature study was not
efficient enough.

@ It was decided to use the C++ library G4+SMO for further
work

SolutionField
1.7880+00
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Eu 000e+00



Algebraic Flux Correction
Overview

© Algebraic Flux Correction



Algebraic Flux Correction
Framework of AFC

High-order method

@ Accurate in smooth regions
@ Producing oscillations in vicinity of discontinuities and steep
gradients

Low-order method

@ Guaranteeing no oscillations in vicinity of discontinuities and
steep gradients
e Overly diffusive

In framework of AFC low-order method is obtained from high-order
method by algebraic operations on matrices.



Algebraic Flux Correction
Framework of AFC

Anti-diffusion
Difference between high-order and low-order schemes

—

Idea: Add limited amount of anti-diffusion to low-order scheme in
non-linear fashion

@ Decompose the anti-diffusion into fluxes between the nodes
@ Limit them separately using available algorithms
@ Compose the anti-diffusion back from the individual fluxes

Challenge: Extend flux limiting to non-nodal DOFs!



Constrained L2 projection
Overview

@ Constrained L2 projection
@ Standard L2 projection
@ Constrained L2 projection



Constrained L2 projection

Standard L2 projection

For IGA Nodal assignment of initial and boundary conditions is
NOT possible.

Standard L2 projection

Find such a projection of analytical f to V" that the residual

R(Pf)=Pf —f
is orthogonal to V. In other words:

(Pf —f,v)=0, VYveVh

(f.g) = /Q F(x)g(x)dx




Constrained L2 projection

Standard L2 projection

Find 7 € V" such that for all v € V" (£ v") = (f,v").
We can rewrite the problem in the matrix-vector form:
Mcx =b

Mc = {mj;} - the consistent mass matrix; m; = [, ip;jdx

b = {b;} - the right hand side vector; b; = [, fy;dx.



Constrained L2 projection

Standard L2 projection

f(x) = sin(mx1)sin(mx2) in Q = [0,1] x [0, 1]
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Standard L2 projection

Constrained L2 projection

0 ifx<05
f(x) = nx in Q = [0,1]
1 if x>0.5

[} 02 04 oo s i

(a) p =2 and varying number of
DOFs

[ o2 04 oo s T

(b) varying p and equivalent
number of DOFs



Constrained L2 projection

Constrained L2 projection

Idea: Use approach similar to AFC.

High-order method

Standard L2 projection

Mcx =b
Low-order method
M;xt =b

M, - result of row-sum mass lumping of M¢
Resulting method
MLX = MLXL ol f(XH)

f(x") - limited anti-diffusion




Constrained L2 projection
Constrained L2 projection
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Constrained L2 projection

Constrained L2 projection

e =0,6161n2% ’\

e=0,7573n0502
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——Low order method
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Flow problems
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© Flow problems
@ Stationary convection-diffusion equation
@ Time-dependent convection-diffusion equation
@ Compressible Euler equations



Flow problems
Stationary convection-diffusion equation

Definition of problem

—V - (DVu(x)) + V- (v(x)u(x)) = R(x) in Q

u(x) =~y(x) onIp

%(x) = fB(x) onIy

u(x) - the variable of interest

D - the diffusion tensor (or scalar coefficient d)
v(x) - the average velocity of quantity

R(x) - the source term.




Flow problems
Stationary convection-diffusion equation

Dicrete problem

(S—Ku=r

S = {sjj} - discrete diffusion operator

Gp = /Q(DV<pj - Vi)dx

K = {kjj} - discrete convection operator

k,‘j = —V;-Cj, Cjj = / V(pjgo,-dx
Q

r - right-hand side vector

r,-:/ch,-dx—i—/ DBypjds
Q I'n




Flow problems

Benchmark problem

Element Peclet number

\ j Pe, = vl

Internal layer

Pep, > 1 convection-dominated
Pep, < 1 diffusion-dominated
u=1 (on the length scale of mesh)

u=1

Source: J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, " Isogeometric Analysis: Towards Integration of CAD and FEA”



Flow problems

Benchmark problem on p = 2, 18 x 18 B-spline basis

SolutionField
1.000e+00
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Flow problems

Algebraic flux correction

Remedy: Use AFC stabilization.

High-order method

(S—Ku=r
Low-order method
(S—Lu=r

L = K + D - result of adding the artificial diffusion to K
Resulting method
(S—Lu=r+f(u)

f(u) - limited anti-diffusion




Flow problems

AFC vs. SUPG

SolutionField
1.000e+00

SolutionField
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(a) AFC (b) SUPG
d = 0.0001, uniform p =2, 10 x 10 B-spline basis
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Flow problems

AFC vs. SUPG

—SUPG

Jor

07 Estimated L2 convergence rates:
0s p | AFC | SUPG

Zj 1| 171 0.69

0s 2103 | 0.40

02 31071 047

Ug { 41048 | 0.50

0.4

d = 0.0001, uniform p = 2,
130 x 130 B-spline basis



Flow problems

Time-dependent convection-diffusion equation

Definition of problem

du(x, t)

5r V- (DVu(x,t))+ V- (v(x, t)u(x,t)) = R(x,t) inQ

u(x,t) =~(x,t) onIp
ou

%(X, t) = /B(x’ t) on FN

u(x,0) = up(x), Vx €

u(x, t) - the variable of interest

D - the diffusion tensor (or scalar coefficient d)
v(x, t) - average velocity field

R(x, t) - source term




Flow problems

Time-dependent convection-diffusion equation

dicrete problem

Mc = {mj;} - consistent mass matrix

m,'j:/goj'go;dx
Q

Time discretization using:

o Forward Euler method
@ SSP-eRK-2 method
@ SSP-eRK-3 method



Flow problems

Algebraic flux correction

High-order method

du

MCE:(K—S)U—Fr J
Low-order method
du
MLE :(L—S)u+r

M, - result of row-sum mass lumping of M¢
L= K+ D - result of adding the artificial diffusion to K

Resulting method

MLE =(L—-S)u+r+f(u)

f(u) - limited anti-diffusion




Flow problems

Convection of smooth hump - AFC disabled




hump2.avi
Media File (video/avi)


Flow problems

Convection of smooth hump - AFC disabled

L2 error
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Time step size

uniform p =2, 66 x 66 B-spline basis



Flow problems
Convection of rectangular wave

— No siabllzafion
1.3 ——AFC
— Loworder method
127 — Exactsoluton
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uniform p =2, 66 x 66 B-spline basis
SSP-eRK-3, At = 0.0001



Flow problems

Convection of rectangular wave - AFC enabled

L2 errar
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Time step size

uniform p =2, 66 x 66 B-spline basis
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Flow problems
Compressible Euler equations

Problem in divergence form

ou
i .F =
8t+v 0

vector of conservative variables:

P
U= [pv
pE

vector of inviscid fluxes:
pv

F=|pv®Vv+ps
pEvV + pv




Flow problems
Compressible Euler equations

Semi-discrete problem

du
MCE:KUJFS(U)
U=[n (Wr GEn - on (v (0EW]

M - the block consistent mass matrix
M = mj;l, mjj = /ng,-apjdx
K - the discrete Jacobian operator
Kij =cji - A; Gy = /Q@,-Vgojdx

S - the boundary load vector




Flow problems

Algebraic flux correction

High-order method

du
Mc— = KU + S(U
C o + S(U) J
Low-order method
du
M — = LU+ S(U
L g +S(U)
M, - result of row-sum mass lumping of M¢
L = K + D - result of adding the artificial diffusion to K

Resulting method

ML% = LU+ S(U) + F(U)

F(U) - limited anti-diffusion
Limiting in terms of primitive variables




Flow problems

Convection of isentropic vortex - AFC disabled

Density p



Vortex.avi
Media File (video/avi)


Flow problems

Convection of isentropic vortex - AFC disabled

1
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Flow problems
Sod’s shock tube

Density Velocity Pressure



AFCrho.avi
Media File (video/avi)


AFCv.avi
Media File (video/avi)


AFCpo.avi
Media File (video/avi)


Flow problems
Sod’s shock tube

No stabilization AFC

p, uniform p = 1, 129 x 129 B-spline basis, SSP-eRK-3 At = 0.001



noAFC.avi
Media File (video/avi)


AFC.avi
Media File (video/avi)


Sod’s shock tube - AFC enabled

1
e =2,5484n0.552
e=3,1314n0572
L
5
]
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—s—p=12
p=3
0,1
2 20

Number of degrees of freedom in one dimension - n

p at t = 0.231, SSP-eRK-3 At = 0.001
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Conclusions

Outcome from this thesis project

@ Pilot implementation of IGA-based compressible Euler solver
@ Implementation of AFC generalized to non-nodal DOFs

@ Implementation of constrained L2 projection generalized to
non-nodal DOFs

@ Directions of further development of IGA based approach to
compressible flow problems



Conclusions

Outcome from this thesis project

Pilot implementation of |GA-based compressible Euler solver

@ Implementation of AFC generalized to non-nodal DOFs

Implementation of constrained L2 projection generalized to
non-nodal DOFs

Directions of further development of IGA based approach to
compressible flow problems

For author:
@ Understanding of B-splines and IGA
@ Experience with G+SMO and templated C++
@ Knowledge in field of compressible inviscid flows

@ Understanding of FCT, TVD and AFC frameworks



Conclusions
Future developments

Full Navier-Stokes solver

Optimization of code

Multi-patch problems

3D problems
e NURBS



Conclusions
Future developments

@ Full Navier-Stokes solver

@ Optimization of code

@ Multi-patch problems

@ 3D problems

e NURBS

@ Non-linear FCT or better linearisation
o Alternative time-discretization schemes

@ Investigation of limitation of convergence rates for Euler
equation (by 0.5 and 2)



Thank you for your attention!
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