Isogeometric Analysis for Compressible Flows with Application in Turbomachinery MSc Thesis Defense

Andrzej Jaeschke

August 31, 2015

Overview

- Introduction
 - Motivation
 - Scope of the thesis
- B-splines as basis for analysis
 - B-splines
 - IGA approach to Poisson's problem
- 3 Algebraic Flux Correction
- 4 Constrained L2 projection
 - Standard L2 projection
 - Constrained L2 projection
- Flow problems
 - Stationary convection-diffusion equation
 - Time-dependent convection-diffusion equation
 - Compressible Euler equations
- 6 Conclusions

Overview

- Introduction
 - Motivation
 - Scope of the thesis
- B-splines as basis for analysi
 - B-splines
 - IGA approach to Poisson's problem
- 3 Algebraic Flux Correction
- 4 Constrained L2 projection
 - Standard L2 projection
 - Constrained L2 projection
- 5 Flow problems
 - Stationary convection-diffusion equation
 - Time-dependent convection-diffusion equation
 - Compressible Euler equations
- 6 Conclusions

Turbomachinery

Source: http://www.pointwise.com/

- Complex (smooth) geometry
- Structural, heat and flow analysis
- Hard to optimize using engineering experience

Turbomachinery

Source: http://www.pointwise.com/

- Complex (smooth) geometry
- Structural, heat and flow analysis
- Hard to optimize using engineering experience

Used in many applications:

- automobile
- aerospace
- energy production
- heating

Why to optimize?

- Lower emissions
- Lower fuel consumption
- Longer life-cycle

Why to optimize?

- Decrease mass
- Decrease flow losses
- Increase TET by improving cooling
- Evaluate particle impact on the blade

Why IGA?

- No manual re-meshing automation of optimization possible
- **Idea:** Use the same function space to represent the geometry and to solve the problem
- Represents the geometry exactly
- The same numerical method for fluid and structural simulation
- No gaps between domains

Objectives of the thesis

Main goal:

Develop a solver for the compressible Euler equations

Side goals:

- Apply the AFC stabilization in the IGA framework
- Develop the constrained L2 projection in the IGA framework

Schedule of the thesis

Literature study:

- Implement the B-spline constructor and evaluator
- Implement the IGA solver for Poisson equation
- Extend it to arbitrary 2D geometry

Schedule of the thesis

Literature study:

- Implement the B-spline constructor and evaluator
- Implement the IGA solver for Poisson equation
- Extend it to arbitrary 2D geometry

Main part of thesis project:

- Implement the IGA solver for stationary convection-diffusion equation
- Extend it to time-dependent problems
- Implement the Compressible Euler equations solver

Overview

- Introduction
 - Motivation
 - Scope of the thesis
- B-splines as basis for analysis
 - B-splines
 - IGA approach to Poisson's problem
- Algebraic Flux Correction
- 4 Constrained L2 projection
 - Standard L2 projection
 - Constrained L2 projection
- 5 Flow problems
 - Stationary convection-diffusion equation
 - Time-dependent convection-diffusion equation
 - Compressible Euler equations
- 6 Conclusions

B-spline basis functions on uniform knot vector

The higher order B-spline basis functions are computed with recursive Cox-de Boor formula.

B-spline basis functions on nonuniform knot vector

 $\begin{aligned} & \text{Quadratic functions on} \\ \pmb{\xi} = [0, 0, 0, 1, 2, 2, 3, 4, 5, 5, 6, 6, 6] \end{aligned}$

Properties:

- Positivity
- Partition of unity
- Compact support (at most p + 1 knot spans)
- C^{p-m} continuity at knots

B-spline curves

B-spline curves

$$\mathbf{C}(\xi) = \sum_{i=1}^{n} N_{i,p}(\xi) \mathbf{B_i}$$

B-spline surfaces

B-spline surfaces

$$\mathbf{S}(\xi,\eta) = \sum_{i=1}^{n} \sum_{j=1}^{m} N_{i,p}(\xi) M_{j,q}(\eta) \mathbf{B}_{\mathbf{i},\mathbf{j}}$$

Enriching the basis

Shape preserving operations:

- Inserting new knots (equivalent to **h-refinement**)
- Increasing the order of the basis (equivalent to **p-refinement**) results in n-1 new DOFs
- k-refinement firstly increase the order and then add new knot values - No counterpart in standard FEM

Result: Generalized tensor product basis

Poisson's problem on arbitrary geometry

Problem description

$$-\Delta u(x, y) = f(x, y) \quad \text{in } \Omega,$$

$$u(x, y) = 0 \quad \text{on } \partial\Omega$$

with load vector $f(\xi, \eta) = 2\pi^2 \sin(\pi \xi) \sin(\pi \eta)$.

Poisson's problem on arbitrary geometry

Main steps of solving the problem:

- Derive the weak formulation taking into account mapping of parametric domain onto physical domain
- ② Use the B-spline tensor product basis function as the basis functions for analysis (careful indexing)
- Write the problem in the form of linear system
- Evaluate the basis functions at points required for integration
- **5** Evaluate the mapping matrix function
- Integrate numerically and assemble the matrix and RHS
- Solve the linear system

Parametric and physical domains

FEA:

IGA:

Source: J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, "Isogeometric Analysis: Towards Integration of CAD and FEA"

Poisson's problem on arbitrary geometry

Uniform open knot vectors, n = 4, m = 3, p = q = 2

Poisson's problem on arbitrary geometry

- The Matlab code written during the literature study was not efficient enough.
- It was decided to use the C++ library G+SMO for further work

Overview

- Introduction
 - Motivation
 - Scope of the thesis
- B-splines as basis for analysis
 - B-splines
 - IGA approach to Poisson's problem
- 3 Algebraic Flux Correction
- 4 Constrained L2 projection
 - Standard L2 projection
 - Constrained L2 projection
- 5 Flow problems
 - Stationary convection-diffusion equation
 - Time-dependent convection-diffusion equation
 - Compressible Euler equations
- 6 Conclusions

Framework of AFC

High-order method

- Accurate in smooth regions
- Producing oscillations in vicinity of discontinuities and steep gradients

Low-order method

- Guaranteeing no oscillations in vicinity of discontinuities and steep gradients
- Overly diffusive

In framework of AFC low-order method is obtained from high-order method by **algebraic operations** on matrices.

Framework of AFC

Anti-diffusion

Difference between high-order and low-order schemes

Idea: Add limited amount of anti-diffusion to low-order scheme in non-linear fashion

Flux limiting

- Decompose the anti-diffusion into fluxes between the nodes
- Limit them separately using available algorithms
- Compose the anti-diffusion back from the individual fluxes

Challenge: Extend flux limiting to non-nodal DOFs!

Overview

- Introduction
 - Motivation
 - Scope of the thesis
- 2 B-splines as basis for analysis
 - B-splines
 - IGA approach to Poisson's problem
- Algebraic Flux Correction
- 4 Constrained L2 projection
 - Standard L2 projection
 - Constrained L2 projection
- 5 Flow problems
 - Stationary convection-diffusion equation
 - Time-dependent convection-diffusion equation
 - Compressible Euler equations
- 6 Conclusions

For IGA Nodal assignment of initial and boundary conditions is **NOT** possible.

Standard L2 projection

Find such a projection of analytical f to V^h that the residual

$$R(Pf) = Pf - f$$

is orthogonal to V^h . In other words:

$$(Pf - f, v) = 0, \quad \forall v \in V^h$$

$$(f,g) = \int_{\Omega} f(\mathbf{x})g(\mathbf{x})d\mathbf{x}$$

Find
$$f^h \in V^h$$
 such that for all $v^h \in V^h$, $(f^h, v^h) = (f, v^h)$.

We can rewrite the problem in the matrix-vector form:

$$M_C \mathbf{x} = \mathbf{b}$$

$$M_C = \{m_{ij}\}$$
 - the consistent mass matrix; $m_{ij} = \int_{\Omega} \varphi_i \varphi_j d\mathbf{x}$

$$\mathbf{b} = \{b_i\}$$
 - the right hand side vector; $b_i = \int_{\Omega} f \varphi_i d\mathbf{x}$.

$$f(\mathbf{x}) = \sin(\pi x_1) \sin(\pi x_2) \text{ in } \Omega = [0, 1] \times [0, 1]$$

Number of degrees of freedom in one dimension - n

$$f(x) = \begin{cases} 0 & \text{if } x < 0.5 \\ 1 & \text{if } x \ge 0.5 \end{cases} \text{ in } \Omega = [0, 1]$$

DOFs

(a) p = 2 and varying number of (b) varying p and equivalent number of DOFs

Constrained L2 projection

Idea: Use approach similar to AFC.

High-order method

Standard L2 projection

$$M_C \mathbf{x}^H = \mathbf{b}$$

Low-order method

$$M_L \mathbf{x}^L = \mathbf{b}$$

 M_L - result of row-sum mass lumping of M_C

Resulting method

$$M_L \mathbf{x} = M_L \mathbf{x}^L + \mathbf{\bar{f}}(\mathbf{x}^H)$$

 $\bar{\mathbf{f}}(\mathbf{x}^H)$ - limited anti-diffusion

Constrained L2 projection

$$p = 2$$
, $n = 34$

Constrained L2 projection

Number of degrees of freedom in one dimension - n

Overview

- Introduction
 - Motivation
 - Scope of the thesis
- B-splines as basis for analysis
 - B-splines
 - IGA approach to Poisson's problem
- Algebraic Flux Correction
- 4 Constrained L2 projection
 - Standard L2 projection
 - Constrained L2 projection
- Flow problems
 - Stationary convection-diffusion equation
 - Time-dependent convection-diffusion equation
 - Compressible Euler equations
- 6 Conclusions

Stationary convection-diffusion equation

Definition of problem

$$-\nabla \cdot (D\nabla u(\mathbf{x})) + \nabla \cdot (\mathbf{v}(\mathbf{x})u(\mathbf{x})) = R(\mathbf{x}) \quad \text{in } \Omega$$
$$u(\mathbf{x}) = \gamma(\mathbf{x}) \quad \text{on } \Gamma_D$$
$$\frac{du}{d\mathbf{n}}(\mathbf{x}) = \beta(\mathbf{x}) \quad \text{on } \Gamma_N$$

 $u(\mathbf{x})$ - the variable of interest

D - the diffusion tensor (or scalar coefficient d)

 $\mathbf{v}(\mathbf{x})$ - the average velocity of quantity

 $R(\mathbf{x})$ - the source term.

Stationary convection-diffusion equation

Dicrete problem

$$(S - K)\mathbf{u} = \mathbf{r}$$

 $S = \{s_{ij}\}$ - discrete diffusion operator

$$s_{ij} = \int_{\Omega} (D
abla arphi_j \cdot
abla arphi_i) d\mathbf{x}$$

 $K = \{k_{ij}\}$ - discrete convection operator

$$\mathbf{k}_{ij} = -\mathbf{v}_j \cdot \mathbf{c}_{ij}, \quad \mathbf{c}_{ij} = \int_{\Omega} \nabla \varphi_j \varphi_i d\mathbf{x}$$

r - right-hand side vector

$$r_i = \int_{\Omega} R arphi_i d\mathbf{x} + \int_{\Gamma_N} D eta arphi_i ds$$

Benchmark problem

$$|\mathbf{v}|=1$$

Element Peclet number

$$Pe_h = \frac{|\mathbf{v}|h}{2d}$$

 $Pe_h > 1$ convection-dominated $Pe_h < 1$ diffusion-dominated (on the length scale of mesh)

Source: J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, "Isogeometric Analysis: Towards Integration of CAD and FEA"

Benchmark problem on p = 2, 18×18 B-spline basis

(a)
$$d = 0.1$$
, $Pe_h = 0.56$

(b)
$$d = 0.01$$
, $Pe_h = 5.56$

(c)
$$d = 0.001$$
, $Pe_h = 55.56$

Algebraic flux correction

Remedy: Use AFC stabilization.

High-order method

$$(S-K)\mathbf{u}=\mathbf{r}$$

Low-order method

$$(S-L)\mathbf{u}=\mathbf{r}$$

L = K + D - result of adding the artificial diffusion to K

Resulting method

$$(S-L)\mathbf{u}=\mathbf{r}+\mathbf{\bar{f}}(\mathbf{u})$$

 $\bar{\mathbf{f}}(\mathbf{u})$ - limited anti-diffusion

AFC vs. SUPG

d=0.0001, uniform p=2, 10×10 B-spline basis

AFC vs. SUPG

d = 0.0001, uniform p = 2, 130×130 B-spline basis

Estimated L2 convergence rates:

ited LZ convergence			
	р	AFC	SUPG
	1	1.71	0.69
	2	1.03	0.40
	3	0.71	0.47
	4	0.48	0.50

Time-dependent convection-diffusion equation

Definition of problem

$$\frac{\partial u(\mathbf{x},t)}{\partial t} - \nabla \cdot (D\nabla u(\mathbf{x},t)) + \nabla \cdot (\mathbf{v}(\mathbf{x},t)u(\mathbf{x},t)) = R(\mathbf{x},t) \quad \text{in } \Omega$$

$$u(\mathbf{x}, t) = \gamma(\mathbf{x}, t) \text{ on } \Gamma_D$$

 $\frac{\partial u}{\partial \mathbf{n}}(\mathbf{x}, t) = \beta(\mathbf{x}, t) \text{ on } \Gamma_N$
 $u(\mathbf{x}, 0) = u_0(\mathbf{x}), \forall \mathbf{x} \in \Omega$

 $u(\mathbf{x},t)$ - the variable of interest D - the diffusion tensor (or scalar coefficient d) $\mathbf{v}(\mathbf{x},t)$ - average velocity field $R(\mathbf{x},t)$ - source term

Time-dependent convection-diffusion equation

Semi-dicrete problem

$$M_C \frac{d\mathbf{u}}{dt} = (K - S)\mathbf{u} + \mathbf{r}$$

 $M_C = \{m_{ij}\}$ - consistent mass matrix

$$m_{ij} = \int_{\Omega} \varphi_j \varphi_i d\mathbf{x}$$

Time discretization using:

- Forward Euler method
- SSP-eRK-2 method
- SSP-eRK-3 method

Algebraic flux correction

High-order method

$$M_C \frac{d\mathbf{u}}{dt} = (K - S)\mathbf{u} + \mathbf{r}$$

Low-order method

$$M_L \frac{d\mathbf{u}}{dt} = (L - S)\mathbf{u} + \mathbf{r}$$

 M_L - result of row-sum mass lumping of M_C L = K + D - result of adding the artificial diffusion to K

Resulting method

$$M_L \frac{d\mathbf{u}}{dt} = (L - S)\mathbf{u} + \mathbf{r} + \bar{\mathbf{f}}(\mathbf{u})$$

 $\bar{\mathbf{f}}(\mathbf{u})$ - limited anti-diffusion

Convection of smooth hump - AFC disabled

Convection of smooth hump - AFC disabled

uniform p = 2, 66×66 B-spline basis

Convection of rectangular wave

uniform p=2, 66×66 B-spline basis SSP-eRK-3, $\Delta t=0.0001$

Convection of rectangular wave - AFC enabled

uniform p = 2, 66×66 B-spline basis

Compressible Euler equations

Problem in divergence form

$$\frac{\partial U}{\partial t} + \nabla \cdot \mathbf{F} = 0$$

vector of conservative variables:

$$U = \begin{bmatrix} \rho \\ \rho \mathbf{v} \\ \rho E \end{bmatrix}$$

vector of inviscid fluxes:

$$\mathbf{F} = egin{bmatrix}
ho \mathbf{v} &
ho \mathbf{v} \\
ho \mathbf{v} \otimes \mathbf{v} +
ho \mathscr{I} \\
ho E \mathbf{v} +
ho \mathbf{v} \end{bmatrix}$$

Compressible Euler equations

Semi-discrete problem

$$M_C \frac{dU}{dt} = KU + S(U)$$

$$U = \begin{bmatrix} \rho_1 & (\rho \mathbf{v})_1 & (\rho E)_1 & \cdots & \rho_N & (\rho \mathbf{v})_N & (\rho E)_N \end{bmatrix}^T$$

M - the block consistent mass matrix

$$M_{ij} = m_{ij}I, \qquad m_{ij} = \int_{\Omega} \varphi_i \varphi_j d\mathbf{x}$$

K - the discrete Jacobian operator

$$K_{ij} = \mathbf{c}_{ji} \cdot \mathbf{A}_{j}, \quad \mathbf{c}_{ij} = \int_{\Omega} \varphi_{i} \nabla \varphi_{j} d\mathbf{x}$$

S - the boundary load vector

$$S_i = -\int_{\Gamma_n} \varphi_i F_n ds$$

Algebraic flux correction

High-order method

$$M_C \frac{dU}{dt} = KU + S(U)$$

Low-order method

$$M_L \frac{dU}{dt} = LU + S(U)$$

 M_L - result of row-sum mass lumping of M_C L = K + D - result of adding the artificial diffusion to K

Resulting method

$$M_L \frac{dU}{dt} = LU + S(U) + \bar{F}(U)$$

 $\bar{F}(U)$ - limited anti-diffusion
Limiting in terms of **primitive variables**

Convection of isentropic vortex - AFC disabled

Density ρ

Convection of isentropic vortex - AFC disabled

Number of degrees of freedom in one dimension - n

SSP-eRK-3, $\Delta t = 0.005$

Sod's shock tube

Density Velocity Pressure

Sod's shock tube

No stabilization

AFC

ho, uniform p=1, 129 imes 129 B-spline basis, SSP-eRK-3 $\Delta t=0.001$

Sod's shock tube - AFC enabled

Number of degrees of freedom in one dimension - n

 ρ at t=0.231, SSP-eRK-3 $\Delta t=0.001$

Overview

- Introduction
 - Motivation
 - Scope of the thesis
- B-splines as basis for analysis
 - B-splines
 - IGA approach to Poisson's problem
- Algebraic Flux Correction
- 4 Constrained L2 projection
 - Standard L2 projection
 - Constrained L2 projection
- 5 Flow problems
 - Stationary convection-diffusion equation
 - Time-dependent convection-diffusion equation
 - Compressible Euler equations
- 6 Conclusions

Outcome from this thesis project

- Pilot implementation of IGA-based compressible Euler solver
- Implementation of AFC generalized to non-nodal DOFs
- Implementation of constrained L2 projection generalized to non-nodal DOFs
- Directions of further development of IGA based approach to compressible flow problems

Outcome from this thesis project

- Pilot implementation of IGA-based compressible Euler solver
- Implementation of AFC generalized to non-nodal DOFs
- Implementation of constrained L2 projection generalized to non-nodal DOFs
- Directions of further development of IGA based approach to compressible flow problems

For author:

- Understanding of B-splines and IGA
- Experience with G+SMO and templated C++
- Knowledge in field of compressible inviscid flows
- Understanding of FCT, TVD and AFC frameworks

Future developments

- Full Navier-Stokes solver
- Optimization of code
- Multi-patch problems
- 3D problems
- NURBS

Future developments

- Full Navier-Stokes solver
- Optimization of code
- Multi-patch problems
- 3D problems
- NURBS
- Non-linear FCT or better linearisation
- Alternative time-discretization schemes
- Investigation of limitation of convergence rates for Euler equation (by 0.5 and 2)

Thank you for your attention!

Full text of the thesis:

