Midterm review:

Mimetic

Isogemetric FEM

M.Sc. Thesis project

by Stevie-Ray Janssen

Combine ideas from isogeometric analysis and mimetic methods to develop a structure-preserving discretization for the Euler equations for incompressible fluids.

Project outline

• Planning:

Start Date:	1-9-2015	dinsdag	-																																									
			First	t Day of	Week	(Mor	n=2): 2	2 <							3	>																												
			ŝ		•	æ	Ę																																					
			ay	e	s/e	plet	aini	15	15	15	15	15	15	12	15 15	15	15	15	15	15	16	16	19	16	16 16	16	16	16	16	18	16	16	16	16 16	16	16	16	16	16	16 15	16	16	-16	16
			ē	plet	ő	Ë	E	- Bri	e e	eb	ġ ż	¥ 1	ż ż	No.	- NO	No.	- voi		- je	an -	ė	an -	ģ	ė.	ė ė	ė	i i	É	Ť N	- <u>-</u>	4	- ini	-iei	nei-	-jei	s s	ŚŚ	ś	÷.	i i	÷	8 9	5	ŝ
			tior	Ē	ů,	Ő	۲Ŷ				2-2	2 2	8-6		2 2		2.2		Ľ.		12	5 1	5 2		5-1	6		121		-		5 - 2	5	5 5	3	-9	5 3	1	4.		ģ			2 - 3
	C 4	F 4	ura	Ö	Vork	ays	ays	6	8 7	2	0		- 0	18	8 7	8	8 8	5 7	2 2	N 0	-	- 0	0	0,	- 0	5		2	~ ~	-	- 0	0	0	- ~	ē	• •	- ~	10	° .	- -	~	6 a	÷	5
Tasks	Start	End	20	*	5	20	<u> </u>	-			-		_		_			_		-					_		_	_	_	_		_		_		_	_			_		_		_
Rickon Readies (Orientias	9-1-15	9-30-15	30	100%	22	30	0																																					
Nearing/Orienting	9-1-15	9-10-15	10	100%	0	10	0																																					
Kinkoff	0, 28, 15	9-30-15	12	100%	1	12	0																																					
Fundamentals Phase I	10-1-15	1-3-16	95	100%	67	95	0																																					
Reading	10-1-15	10-27-15	27	90%	19	24	3																																					
Work, Implementation, and Analysis	10-28-15	11-23-15	27	90%	19	24	3						-																															
Writing	11-24-15	12-20-15	27	80%	19	21	6																																					
Holiday	12-21-15	1-3-16	14	100%	10	14	0													i –																								
Euler equations, Phase II	1-4-16	3-31-16	88	30%	64	26	62												_																									
Mid-term meeting	1-11-16	1-11-16	1	0%	1	0	1													1	1																							
Reading	1-4-16	2-2-16	30	30%	22	9	21																																					
Work, Implementation, and Analysis	2-3-16	3-2-16	29	30%	21	8	21																																					
Writing	3-3-16	3-31-16	29	20%	21	5	24																																					
Iterative solving, Phase III	4-1-16	6-26-16	87	0%	61	0	87																																					
Mid-term meeting	4-28-16	4-28-16	1	0%	1	0	1																																					
Reading	4-1-16	4-29-16	29	0%	21	0	29																																					
Work, Implementation, and Analysis	4-30-16	5-28-16	29	0%	20	0	29																																					
Writing	5-29-16	6-26-16	29	0%	20	0	29																																					
Hand in Literature Report	6-26-16	6-26-16	1	0%	0	0	1																																					
Thesis & Graduation	6-26-16	8-31-16	67	0%	48	0	67																																					
Holiday	6-26-16	7-8-16	13	0%	10	0	13																																۰.	_				
Verification/Validation of Results	7-9-16	7-21-16	13	0%	9	0	13																																	۰.				
Wrang	7-22-16	8-23-16	33	0%	23	0	33																																	_				
Green light review	7-29-16	7-29-16		0%	1	0	1																																					-
Hand in Thesis	8-23-16	8-23-16	1	0%	1	0	1																																					- L.
I nesis getence	8-24-16	8-30-16		0%	5	0	(

ŤUDelft

Project outline (cnt'd)

- Phase I questions:
 - How can we use IGA to solve PDE's?
 - What structures are facilitated in elliptic PDE's?
 - How can we preserve these structures?
 - Can we construct a MIMIGA method to discretize an elliptic PDE problem?

This presentation - literature review

- Introduction
 - Isogeometric Analysis & Mimetic Methods
- Approach for elliptic PDE's
 - Exterior calculus
 - DeRham complex
 - Application: Scalar Poisson equation in 2D
- Conclusion
- Future work

Introduction – Isogeometric Analysis

- Introduced by the Hughes group in 2005 to bridge the gap between CAD and FEM
- Isogeometric paradigm

B-splines make an excellent basis for FEM

Introduction – Mimetic Methods

- PDE's facilitate physical structures and symmetries.
- Tools from exterior calculus and algebraic topology are used to capture these structures.
- Growing awareness: Disrete exterior calculus, discrete hodge theory, exterior finite element method, compatible methods, mimetic finite diference, etc

Why exterior calculus?

- Structures become apparent.
- Distinction between topological and metric dependencies.
- Generalized for *n* dimensions.

Differential Forms; $\alpha^{(k)}$

- Differential forms are elements from the dual vector space,
- Associated with geometric structure,

- 0-form:
$$f^{(0)} = f(x, y)$$

- 1-form: $\alpha^{(1)} = \alpha_1(x, y)dx + \alpha_2(x, y)dy$
- "Measurement of physical variables,"

$$-M = \oiint \rho^{(2)} = \oiint \rho(x, y) dx \wedge dy$$

Space of k-forms: Λ^(k)

Exterior derivative; d

- Exterior derivative d generalizes ∇f , $\nabla \times \underline{\omega}$, $\nabla \cdot \underline{v}$ $d\alpha^{(1)} = \left(\frac{\partial \alpha_2}{\partial x} - \frac{\partial \alpha_1}{\partial y}\right) dx \wedge dy$ • $d: \Lambda^{(k)} \to \Lambda^{(k+1)}$ $\mathbb{R} \longrightarrow \underbrace{\left(\frac{1}{2} - \frac{1}{2}\right)^2}_{\Lambda^{(0)} = \frac{1}{2} - \frac{1}{2}} \xrightarrow{d} \underbrace{\left(\frac{1}{2} - \frac{1}{2}\right)^2}_{\Lambda^{(1)} = \frac{1}{2} - \frac{1}{2}} \xrightarrow{d} \underbrace{\left(\frac{1}{2} - \frac{1}{2}\right)^2}_{\Lambda^{(2)} = \frac{1}{2} - \frac{1}{2}} \xrightarrow{d} \underbrace{\left(\frac{1}{2} - \frac{1}{2}\right)^2}_{\Lambda^{(2)} = \frac{1}{2} - \frac{1}{2}} \xrightarrow{d} \underbrace{\left(\frac{1}{2} - \frac{1}{2}\right)^2}_{\Lambda^{(2)} = \frac{1}{2} - \frac{$
- Exact sequence, the DeRham complex
- Nilpotent, $dd\alpha^{(k)} = 0$
- Independent of metric

Hodge-* operator;

- Maps forms to dual geometry,
- Metric dependent,
- Double DeRham complex,

Codifferential; d^*

- $d^* \coloneqq d \star$
- Adjoint of d: $(\cdot, d^* \cdot) = (d \cdot, \cdot) \int bc's$
- Laplace operator: $\Delta = dd^* + d^*d$

Scalar Poisson equation

- E.g. Potential flow, electrostatics,
- Given $f(x, y) = 2\pi^2 \sin(\pi x) \sin(\pi y)^{-1} \int_{\lambda_{2}^{1/2}}^{0.4} \int_{0.8}^{0.4} \int_{10^{0.0}}^{0.0} find \varphi(x, y)$ such that $\Delta \varphi = f$ on $\Omega = [0,1]^2$ with $\varphi = 0$ on $\partial \Omega$

0-form,

2-form,

Find $\varphi^{(0)}$ s.t. $d^*d\varphi^{(0)} = f^{(0)}$

Find $\sigma^{(2)}$ s.t. $dd^* \sigma^{(2)} = f^{(2)}$

Same solution, different discretization

1.0 0.8

- 0.6 - 0.4 u[-] - 0.2 - 0.0 - 0.2 - 0.4

< 1.0 0.8

0.6 0.4 2

0.2

0-form Poisson; $d^*d\varphi^{(0)} = f^{(0)}$

- Weak formulation, $\begin{pmatrix} w^{(0)}, d^*d\varphi^{(0)} \end{pmatrix}_{\Omega} = \begin{pmatrix} w^{(0)}, f^{(0)} \end{pmatrix}_{\Omega} \\ \Leftrightarrow \\ \begin{pmatrix} dw^{(0)}, d\varphi^{(0)} \end{pmatrix}_{\Omega} = \begin{pmatrix} w^{(0)}, f^{(0)} \end{pmatrix}_{\Omega} - \oint_{\partial\Omega} w^{(0)} \wedge \star d\varphi^{(0)} \end{pmatrix}_{\Omega}$
- Well-posedness through Lax-Milgram,

0-form Poisson; FEM

- Conforming FEM, take $\Lambda_{h}^{(k)} \subset \Lambda^{(k)}$
- Use B-spline spans $\Lambda_{h}^{(0)} = S^{p,p}$

0-form Poisson; edge functions

• Applying the exterior derivative (1D-example)

– Nodal basis:
$$\varphi_h^{(0)} = \sum_{i=0}^n \varphi_i h_i^p(x) = \left(\underline{\varphi}\right)^T \underline{R}^0$$

- Then,
$$d\varphi_h^{(0)} = \sum_{i=1}^n (\varphi_i - \varphi_{i-1}) e_i^{p-1}(x) = \left(\mathbb{E}^{(10)}\underline{\varphi}\right)^T \underline{R}^1$$

Differences of coefficients are captured in matrix using {-1,0,1}

New edge type basis function emerges with a polynomial degree less

0-form Poisson; edge functions (cnt'd)

- Extension to 2D using tensor products of nodal and edge type basis
- Nodal/edge
 - 0-form
 - 1-form
 - 2-form

0-form Poisson, Matrices

•
$$\left(dw_{h}^{(0)}, d\varphi_{h}^{(0)}\right)_{\Omega} = \underline{w}^{T} (\mathbb{E}^{10})^{T} \left(\int_{\Omega} \left(\underline{R}^{(1)}\right)^{T} \underline{R}^{(1)}\right) (\mathbb{E}^{10}) \underline{\varphi}$$

• Result: $\left(\mathbb{E}^{(10)}\right)^T \mathbb{M}^{(11)} \mathbb{E}^{(10)} \varphi = f$

ŤUDelft

0-form Poisson, Matrices (cnt'd)

- Exact discretization of $v^{(1)} = d\varphi^{(0)}$ through incidence matrices, $\underline{v} = \mathbb{E}^{(10)}\varphi$
- Incidence matrices are nilpotent $\mathbb{E}^{(21)}\mathbb{E}^{(10)} = \emptyset$, and satisfy the DeRham sequence
- Hodge-* operator (metric) is discretized through mass matrix M⁽¹¹⁾

0-form Poisson, Results

ŤUDelft

0-form Poisson, Results (cnt'd)

TUDelft

2-form Poisson; $dd^*\sigma^{(2)} = f^{(2)}$

Weak formulation;

$$\left(w^{(2)},dd^{*}\sigma^{(2)}\right)_{\Omega}=\left(w^{(2)},f^{(2)}\right)_{\Omega}$$

Integration by parts? No, take mixed formulation:

$$\begin{cases} d^* \sigma^{(2)} = \psi^{(1)} \\ d\psi^{(1)} = f^{(2)} \end{cases}$$

• Weak form:

$$\begin{cases} \left(dq^{(1)}, \sigma^{(2)}\right)_{\Omega} = \left(q^{(1)}, \psi^{(1)}\right)_{\Omega} - \oint_{\partial\Omega} q^{(1)} \wedge \star \sigma^{(2)} \\ \left(w^{(2)}, d\psi^{(1)}\right)_{\Omega} = \left(w^{(2)}, f^{(2)}\right)_{\Omega} \end{cases}$$

Well posedness through Inf-Sup conditions

ŤUDelft

2-form Poisson; FEM

Can we take,

$$-\Lambda_{h}^{(1)} = S^{p,p}?$$
$$-\Lambda_{h}^{(2)} = S^{p,p}?$$

 No, well-posedness depends on the DeRham sequence. We take

$$-\Lambda_{h}^{(1)} = S^{p-1,p} \times S^{p,p-1}$$

$$-\Lambda_h^{(2)} = S^{p-1,p-1}$$

• Which satisfy exact sequence

$$S^{p,p} \xrightarrow[\mathsf{d}]{\mathbb{E}^{(10)}} S^{p-1,p} \times S^{p,p-1} \xrightarrow[\mathsf{d}]{\mathbb{E}^{(21)}} S^{p-1,p-1}$$

ŤUDelft

• Or
$$\left(\mathbb{M}^{(22)}\mathbb{E}^{(21)}\right)^T \left(\mathbb{M}^{(11)}\right)^{-1} \left(\mathbb{M}^{(22)}\mathbb{E}^{(21)}\right) \underline{\Psi} = \underline{f}$$

$$\begin{bmatrix} -\mathbb{M}^{(11)} & \left(\mathbb{M}^{(22)}\mathbb{E}^{(21)}\right)^T \\ \mathbb{M}^{(22)}\mathbb{E}^{(21)} & \emptyset \end{bmatrix} \begin{bmatrix} \underline{\psi} \\ \underline{\sigma} \end{bmatrix} = \begin{bmatrix} \underline{0} \\ \underline{f} \end{bmatrix}$$

$$\begin{cases} -(q^{(1)}, \psi^{(1)})_{\Omega} + (dq^{(1)}, \sigma^{(2)})_{\Omega} = 0 \\ (w^{(2)}, d\psi^{(1)})_{\Omega} = (w^{(2)}, f^{(2)})_{\Omega} \end{cases}$$

$$\begin{cases} -(q^{(1)}, \psi^{(1)})_{\Omega} + (dq^{(1)}, \sigma^{(2)})_{\Omega} = 0\\ (w^{(2)}, d\psi^{(1)})_{\Omega} = (w^{(2)}, f^{(2)})_{\Omega} \end{cases}$$

2-form Poisson; Results

TUDelft

Conclusion

- Elliptic problems can be discretized using mass matrices and incidence matrices.
- Solution spaces are chosen such that they satisfy the DeRham complex.

Conclusion (cnt'd)

• Comparison 0-form & 2-form Poisson:

0-form	2-form									
$\left(\mathbb{E}^{(10)} ight)^T\mathbb{M}^{(11)}\mathbb{E}^{(10)}$	$\begin{bmatrix} -\mathbb{M}^{(11)} & \left(\mathbb{M}^{(22)}\mathbb{E}^{(21)}\right)^T \\ \mathbb{M}^{(22)}\mathbb{E}^{(21)} & \emptyset \end{bmatrix}$									
Obtain solution $arphi^{(0)}$	Obtain solutions $\sigma^{(2)}$, $\psi^{(1)}$									
Dirichlet is essentialNeumann is natural	Dirichlet is naturalNeumann is essential									
Gradient exact $\mathbb{E}^{(10)}\underline{\varphi} = \underline{v}$	Divergence exact $\mathbb{E}^{(21)} \underline{\Psi} = \underline{0}$ i.e. $\nabla \cdot v = 0$									

Future Work

- Towards the incompressible Euler equations:
 - Extend to hyperbolic problems,
 - Linear advection equation.
 - Construction of periodic domain.

- Staggering velocity and vorticity in time?

TUDelft

Questions

ŤUDelft