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1 Abstract

Dit is eerste deel scriptie. Hoofdoel: introductie van het probleem met de MG
solver. Het probleem uit de praktijk wordt overgeheveld naar een wiskundig
model. Dit model resulteert in een formulering van de Maxwell vergelijkingen
met PEC randvoorwaarden. Voor het oplossen van deze vergelijkingen wordt
een MG methode gebruikt. Anisotropie door gridstretching levert problemen
op in convergentiesnelheid en robuustheid. Dit verschijnsel kan (gedeeltelijk)
verholpen worden door het gebruik van semicoarsening en een line-smoother.
(Afmaken/aanpassen pas als thesis is voltooid)

2 Preface

In this thesis the first (X) chapters will present a detailed overview of the prac-
tical use of EM methods, the governing equations: the Maxwell equations, the
discretization and the mathematical problems encountered by solving the result-
ing system of equations with a Multigrid solver. It has to be said that almost all
of this pre-investigation has been done by Wim Mulder from Shell International
Exploration and Production as it is his research this thesis will use as a starting
point. However, in order to give the reader a clear view of the basics of the new
research it is almost impossible to ignore the problem statement given as it is
by Mulder. Therefore, the introduction of this thesis can be seen as a (some-
times) more extended version of Mulder’s article concerning EM 3-D diffusion
methods, ’a multigrid solver for 3-D electromagnetic diffusion’.

As stated above, the second part of this thesis will handle the improve-
ments made on the Multigrid solver and the resulting mathematical implica-
tions. (more text here when research/thesis is extended)

3 Practical Problem/Application EM diffusion

3.1 Introduction EM methods

Electromagnetic methods (EM) have played a minor role in hydrocarbon explo-
ration (oil/gas). Because EM methods use signals that diffuse in the Earth, they
cannot provide the same vertical resolution as modern seismic exploration. Due



to improvements in magnetotelluric (MT) data collection, application of MT in
settings where other exploration methods fail and MT being a complementary
information source to seismic exploration, EM methods become more widely
used in hydrocarbon exploration.

Just as in seismic exploration, EM methods can contribute to effective hy-
drocarbon exploration in two distinct ways:

1. Imaging structures that could host potential reservoirs and/or source rocks

2. Providing evidence for direct indication of the presence of hydrocarbons
(e.g. the Troll field)

The table below summarizes the most common EM methods used in oil and
gas exploration.

Method Source Signal type Measured Depth of Land or
(freq or time Fields (elecivic | investigationin | marine
domain) or Magne tic) a sedime niary

hasin

LT Matural Frequency EandH 1-10km Both

AMT (audio | MNatural Frequency EandH 100 - 1000 m | Land

MT)

C3AMT Grounded Frequency EandH 100 -2000m | Both

{controlled Dipole

source audio

MT)

Next a review of an arbitrary EM method is presented which can be used in
seabottom exploration.

3.2 Basics EM diffusion

Consider the next situation. Suppose there is an indication that there might be
a reservoir of an unknown liquid or gas in the bottom, as drawn in the figure
below:

0

sea !
EM[Sburce

seabottom

At the surface between sea and seabottom, a large number of receivers is
placed. Next, a ship with a large cable, which works as an EM source, sails
above the receivers.



The EM waves coming from the source, with frequencies in the band 103-
10~* Hz, travel through the water and diffuse into the earth and attenuate
rapidly with depth. The penetration depth is called the skip depth. The surface
measurement of electric and magnetic fields at the receivers gives the average
resistivity from the surface to a depth equivalent of the skin depth. The skin
depth increases as frequency decreases, and therefore a resistivity profile of the
seabottom can be achieved by recording a range of frequencies. However, the
seawater in deep oceans, a major conductor, screens out high frequency signals
(above 1072 Hz) needed to image structure in the upper few kilometers of the
seabottom. But with modern recording equipment in low noise environments,
higher frequency signals can be detected in moderate water depths.

For example a resistivity model from Xiao and Unsworth (2004) derived by
2D inversion of the University of Alberta MT profile using the algorithm of
Rodi and Mackie (2001). The black triangles show locations where MT data
was recorded:
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4 Maxwell equations

Changes in the electromagneticfield described in the previous chapter are gov-
erned by the Maxwell equations. Later on it becomes clear that these equations
are the basis for the EM diffusion method.

The Maxwell equations (ME) are the set of four fundamental equations gov-
erning electromagnetism, i.e. the behavior of electric and magnetic fields. For
time-varying fields, the differential form of these equations is:

VXE+4+9B=0 (Faraday’s law)

VxH-9D=J (Maxwell-Ampére law)
V-D=
V-B=

Pe 1)
0

The quantities above are functions of space x and time ¢. The vector fields
are E (the electric field), H (the magnetic field), D (the electric displacement)
and B (the magnetic induction). The scalars are J (the electric current density)
and p, (the electric charge density).

The equations from (1) form an underdetermined system (Aruliah, 7). A
determinate system requires further assumptions. Hence, impose constitutive



relations between the field quantities in order to make the system (1) definite.
These take the form:

D = cE
B = uH
J = oE+J,

Where € is the electric permittivity, p is the magnetic permeability and ¢ is
the conductivity of the media in which the electromagnetic field exists. Notify
that ¢E is in fact Ohm’s law and Jg is the current density due to an external
applied electric source (e.g. the cable under the ship, Chapter 1.2).

In free space, € and p are isotropic and homogeneous. The corresponding
permittivity of free space is constant and denoted €y while the permeability of
free space is also constant and denoted . Free space is nonconductive so o = 0.
In this situation an exact solution of the Maxwell equations can be determined.
However, for more realistic problems, like geophysical data inversion, the mate-
rial properties are usually not homogeneous and have discontinuities across the
material boundaries (e.g. air and sea, sea and bottom).

Choose F and H as the unknown fields, Maxwell equations now become:

VxE+uoH=0

VxH-0oE —-e,E=J, )
V'(GE):pe

V- -(uH)=0

In this particular case, ¢ and p are assumed to be constant and can be
written as: € = €,€0 and p = p,.145. Where, €, is the relative permittivity and e
the vacuum value. Similarly, p, is the relative permeability and p, the vacuum
value. Also, the last two Maxwell equations are not taken into account as they
are of no importance for this EM method (further investigation has to be done
here).

The magnetic field can be eliminated from (2):

V x E+/LatH:0 <~ —,LL_lv x E :atH
VXH—O'E—EatE:JS — VX@tH—U&gE—eatthath
4

V x ;flv x E+ cr@tE + €attE = _81&']3

As described in Chapter 1 most electromagnetic fields are in the frequency
domain. Also to avoid the use of an implicit (more difficult) time-stepping
scheme, a transformation from the time to the frequency domain is introduced.
Consider the following Fourier transformation:

o0

1 ~ .
E(x,t) = E/ E (x,w)e “dw

— 00



Suppose Fy; (f(z,t)) (w) is the fouriertransform of f(x,t) then for the n'"
derivative this yields:

Foa [ (e, )] () = ()" Frce [ (x,8)] ()

Therefore the following equation is obtained:

iwpgo B — V x u 'V x E = —iwpuyd, (3)

Where, 6(x) = o — iwe is the complex conductivity. Usually, |we| < o.
From now, E will be written as E for convenience. On the boundaries of all
domains introduced in the following chapters, perfectly electrically conducting
(PEC) boundary conditions will be used:

nxE=0and n-H =0

Here, n is the outward normal on the boundary of the domain.

5 Discretization equations

Equation (3) can be discretized by the Finite Integration technique (FIT) (Clemens
& Weiland, 2001). This scheme can be viewed as a finite-volume generalization
of Yee’s scheme (Yee, 1966) for tensor-product Cartesian grids with variable
grid spacings. An error analysis has been made for the constant-coefficient case
(Monk & Siili, 1994) and both the electric and magnetic field components appear
to have second-order accuracy. (Mulder, 2005)

Introduce a tensor-product grid with nodes at positions (zg,yr, z;m) with
k =0..N;, Il = 0..N, and m = 0...N,. Note that NV,, N, and N, are odd,
integers and can be described as: IN; = 2™ + 1. The grid contains N, x N, x N,
cells with these nodes as vertices. The cell centres are located at:

1
They = 5 (g + Thy1)
1
Yyl = 3 (Y1 + Yi+1)
1
Fmydt = ) (2m + Zm+1)

Analogue to Yee’s scheme, the electric field components are located at posi-
tioned at the edges of the cells and the magnetic field components are located
at the middle of the faces of the cell:



(X Vi1, 2m+1) (X Wt 1,2m+1)

(Xga 1M1, Zm+1)

(X Zm1) (XN Zm+1)

(¥ 10157m) (Fes10157m)

Now, the component of the electricfield £, ;1 ; ,, represents the average of
Ei(x,y1, 2m) over the edge from xy to xpi1 at given y; and z. This can be
written as:

1 Thk+1
Ey(zyy1,m) = m/ Ey (2, y1, 2m)dz
Tk

Other components of the electricfield are defined in a similar way. The
material properties, & and u~ ! are assumed to be given as cell-averaged values.

Next, each part of equation (3) will be discretized First, dual volumes related
to the edges are introduced. For a given edge, the dual volume is the sum of
the quarters of the total volume of the four neighboring cells:

(X1 M11:2me1)

(Hia1o1.Zme1) (X1 M110.Zmas)

Xies1,M115,Zm14)

(*eYi1,Zm1)

(¥Y1-1.2m1)
(X 1M 1:Zm 1) — (X1 b1 1,2m 1)

e

The volume of a normal cell is defined as:

— hZ Y z
Veriittmts = hk-i—%hH-% m+3
With,

x — J—

K+l T Thtl T Tk

Y = —
hl+% = Y1 W

fnJr% = Zm+1 — %m

The dual volume of the edge on which E, ;1 ;. lives:



— h?
VkJF*lm - k+2 Z Z hl—*-'r?nz m—3+ms

mao=0m3=0

Where,
T
k= Tppl — Tk 1
Yy
di = Y4l — Y3
z —
dm - Zm-l—%_zm—%
So,
. T Y 3z
Vchr%,l,m - hk+%dldm
— Y T JZ
Vk,lJr%,m - hl_,_%dkdm
— z x 7Y
Vk,l,m+% - hm+%dkdl

Note that dj, d] and dZ, are not defined at the boundaries yet. There are
two options. First, take dj = hi at k =0 and d;, = h?vxfl at k = N, repeat
2 2

for other directions. Or secondly, use Monk & Siili, df = %hﬁ at k = 0 and
2
r _ lpx —
Nx — Eth—% at k = NJE
The discretization of (3):

1. dwp,oE
The discrete form of this term multiplied by the corresponding dual volume
(Finite Integration Technique) becomes Sy 1 1 By ki 3 1m0 Skt 2 mEo ke + 11m
Shlm+ 1 B3k imy for the first, second and *hird component respectively.
Here S = iwpyoV is defined in terms of cell-averages.

e.g. The coefficient for Fy ;. becomes:

%,l,'m

Sktiim = *(Sk+l Imtm—t FSkyliplmo1

PRASS 2

+Sk+1 d—3m+3 +Sk+1 l+%,m+%)

2. VX pu 'VxE

The discretization of this term is not straightforward. First, the curl of the
electricfield components is discretized and placed at the middle of the faces
of the grid cells. When divided by iwpu, these are in fact the components
of the magneticfield (see figure MULDER) that are normal to the face of
the cell. Next, the curl of the discretized components is again discretized
in a similar way.



(a) v=V x E
The curl of E can be discretized with Stokes’s theorem (Adams,
2000):

Z{E-dr:/(VxE)-ndV

\%
Now consider the grid cell in figure (MULDER). First, apply Stokes’s
Theorem at components F; and E3 lying at edge of the surface
[k, Trt1] X [2m, Zm1]. In detail:

-
-

El ke Lol "

Bz Lo / Es 41, 1ot
_,-"' vz,kd'ﬁ-"'z, 1 m+¥z

-
-

Elprvalm

In continuous form with n the outward normal of the grid cell,

fE -dr :%El(a:,y,z)dx—I—Eg(x,y,z)dy = /(V x E)-ndV
C c \%
In discrete form,
(Eg(mk,y[,zm+%)hf7L+% + El(xk+%aylvzm+l)hﬁ+%>
- <E3(mk+1aylﬂzm+%)h;+% + El(%r%,yz,zm)hz%)
T
= V(VXE) (0 1 0) :V"U2(xk:+%7ylﬂz’m+%)
= hf’l+%hi+%~’l}2(£k+%,’yl,z7n+%)

Note that the path integral follows the direction of the curl op-
erator and therefore two electricfield components (E; ;. 10,m and

E3’k+1’l’m+%) point in the opposite direction.

Simplify,
1
V2ktglmtby T g (E3($k’yl’zm+$) - E3(xk+17yl7z7n+%)>
k+3
1
_hzi (El(kar%vyh Zm+1) - E1($k+%,yl, Zerl))
m+%



Repeat this procedure two gain the two remaining discretized curl
components v; and va:

1
vl,k,l+%,m+% = hy (E3(xk,yl+1,zm+%) - E3(xk7yl7 Zm+%))
I+3
1
_hz (El(xkvyH»%?Zn"rFl) _El(xkayH»%uzm))
m+%
1
U3,k+%,l7yyl+% = W (E2($k+17yl+%azm) - EZ(xkvyl.l,_%azm))
ktl
1
7hy7 <El(xk+%7yl+la Zm) - El(xk_p%ayla Zm))
I+3

plV x E
The scaling by u ' at the face requires another averaging proce-
dure because the material properties are assumed to be given as cell-

averaged values:
[ vt v
\%

Hence, define M = V1

— HT Yy z —1
Miesiirimelt = hk+%hz+%hm+%“r,k+%,l+%,m+%
for a given cell (k + %J + %,m + %) So, an averaging step in the

z-direction provides:

Mk-‘r%,l-‘r%,m = (Mk—i-%,l—i-%,’m—% + Mk-l—%,l—&-%,'m-l—%)

N =

m) between the cells (k+ 3,0+ 3, m + 3)

at the face (k + %,l + 1%,
2)-

and (k+ 3,0+ 1, m—

In the previous step the curl of E has been discretized. Now multiply
with the discrete factor u 1V :

U kitimtet = MeislmedVikitdmed

(YT My 1 1 mt 102 k4 L Lmt )

U3 k+1,1,m+1 Mk+%,l,m+%”3,k+%,l,m+%

10



() Vx u'VxE
At last, only V x u has to be discretized. Note that the components
of u are related to the magnetic field components by:

U pgidmrt = WHOVirrdmt 3 Hik i3 msd
u2,k’+%,l,m+% = Zw:uOVk—Q—%,l,m—i-%H2,k+%,l,m+%
U3 k+3,l,m+3 W Vit 1 tmt3 Ha kot 3 1me+3

where,

_ T 1Y z
Vk,l+%7m+% - dkh

14+1"m+4

— T Y1,z
Vk+%,l7m+% - k+%dl hm+%
Vieig,, 1 = h¥ hY | d*
k+35,lm+35 k+% l+% m

The components of u lie on the edges of the dual volumes as intro-
duced earlier:

V2 ket¥e, L

|
U3 Je+¥s) v,

~<=———n

U3 ke, Lo

U2 sty | ot

The first component of the curl, wy, is evaluated by applying Stokes’s
Theorem again:

]C{E-dr:g(VxE)-ndV

With C a rectangle of the dual volume that is obtained for constant
x and V the volume of the dualvolume.

2. twppds
(a) The discretization of the source term is straightforward:

S1k+ilm = Zwy’ovk—&-%,l,m‘]l,k—i-%,l,m

32,k,l,m+% ZMMOVk,l+%,mJ2,k,l,77L+%

83kl m+i = ZWMOVk7l,m+% J3,k,z,m+§

11



Let the residual for an arbitrary electric field that is not necessarily a solution
to the problem, be defined as:

r=V (iwuoffﬁ) —Vxpu 'VxE+ iwqus)

In discrete form:

Tlkriim = Stkttim T %l imErrrlim
Yy Yy
- {ez+%“3vk+é,l+%,m *617%“37k+é,l—é,m}

z z
ey Uk bty ~C U2k it

Tokdtdm = S2kitdm T OkirdmEekirtm
— e au —e° _Lu
m+L YLk +gmt 5 T Cm— LUk 44 m—

1
2
x T
+ [ek+%u37k+%,l+%,m *ek,%u&k_%,pr%,m]

T3 ktmtt = S3kimtt t Skimri B3 imyl
_ xT _ T
Cht L U2kt 0mt§ T Ok L U20k— L 1t
+€y 1 ULy 41 1—ey 1 ULy -1 1
I+3 70k I+gmt5 -3 " Vkil—5,mt3

It may appear that the weighting of the differences is in contradiction with
Stokes’s theorem as stated above in step 2c. However, the differences have been
multiplied by the local dual volume.

The discretization has been completed. The next step is to find the solution
E of r =0 for a given domain, material parameters, source term and boundary
conditions.

6 Multigrid solver

In this chapter a brief summary of the basic principles of multigrid is given. At
the end of this chapter a description of the different multigridcomponents used
by Mulder can be found.

6.1 Basics Multigrid (two-grid)

Consider the following discretization of an arbitrary equation on a grid with
spatial mesh size h, Qp:

12



Ah.'L‘h = bh

If the solution of this equation is approximated by z}", the residual and error
are as follows:

ey 1 o=xp—x)
o =by — Apxy)

This results in the defect equation which is equivalent with the original
equation because xj) = 27" + e} :

If a basic iterative method, like Jacobi or Gauss-Seidel, is used to solve the
equation and the error is computed then it appears that the error becomes
smooth after several iteration steps. In that case the iteration formula can be
interpreted as an error averaging process. This error-smoothing is one of the two
basic principles of the multigrid approach. The other principle is based on the
fact that a quantity that is smooth on a certain grid can also be approximated on
a coarser grid. So if the error of the approximation of the solution has become
smooth after several relaxation sweeps, then this error can be approximated
with a suitable procedure on a coarser grid.

Suppose that the matrix Aj; can be approximated by a more manageable
matrix Ah then:

A am _ ..m m+1 __ . m ~m
Apep' =y — 2y =ap 4+ €

The idea of multigrid is to approximately solve the defect equation on a
coarser grid with spatial mesh size, e.g. H := 2h. Obviously, this will take less
time and work than a conventional direct method.

AHéE = ,,,nHm

Assume that Aj;' exists. As r} and é are grid functions on the coarser
grid, introduce two (linear) transfer operators:

It 2 G(Q) — G(Qm), Ity - G(Qr) — G()

These functions are necessary to restrict and prolongate the residuals and
approximations of the error to different coarser and finer grids. This yields,

o = IHPT vestrict ' to Qp

em . =1héem ) prolongate € to Qp

13



One choice can be the injection operator. For instance, the residual on a
coarse grid Qpy will be mapped directly to the finer grid ;. No weighting
has been applied. Other operators are based on (full) weighting and linear or
bilinear interpolation. The next section will provide more insight.

Unfortunately coarse grid correction alone is not enough. In general, the
interpolation of coarse grid corrections reintroduces high frequency error com-
ponents on the fine grid (Oosterlee, 2007). One natural approach to reduce
them is to introduce one or a few additional smoothing sweeps after the coarse
grid correction. These sweeps are known as pre- and post-smoothing.

6.1.1 Multigrid cycle

Together the different multigrid components pre-smoothing, coarse grid correc-
tion and post-smoothing form one multigrid cycle. In the Appendix (??) an
overview of a general multigridcycle can be found.

If multigrid is applied recursively, a strategy is required for moving through
the various grids. Several possibilities are the V-cycle, W-cycle and F-cycle.
The main differences between these approaches are the number of pre- and
post-smoothing steps and the different number of coarser grids used. However,
through trial and error the F-cycle has proven itself as a relative low-cost and
reliable multigrid cycle for this particular case (Maxwell equations). Therefore,
the other cycles are not taken into account throughout the rest of this thesis.

One reason why multigrid methods may fail to converge is strong anisotropy
in the coefficients of the governing equation. In that case more sophisticated
smoothers or coarsening strategies may be required. If slow convergence is
caused by just a few components of the solution, a Krylov subspace method
can be used to effectively remove them. In this particular case the matrix A
is non-symmetric and complex. Therefore BiCGstab (Van der Vorst, 1992) is
a suitable alternative. Multigrid will be accelerated by the Krylov method.
Alternatively, the multigrid can also be seen as a preconditioner for BiCGstab.

6.2 Multigrid Components Mulder

As described above, the following multigrid components have to be defined:
e Coarse grid specification
e Smoother
e Restriction operator

e Prolongation operator

In Feigh et al. (2003) a multigrid method for a FIT discretization has been
presented. Mulder uses this approach as a starting point and adapts some
components of the multigrid solver.

14



6.2.1 Coarse grid specification

The FIT discretization uses a tensor-product Cartesian grid. The coarse-grid
cells are formed by combining 2x2x2 fine-grid cells, this is a special case of the
method in Feigh et al (2003) where arbitrary coarser-grids are used with nodes
that are not necessarily a subset of those on the fine grid. Obvious, in this case
the coarse-grid nodes are a subset of the fine-grid nodes. For example, consider
the very simplified 2-D situation below:

. NN

— (4)

The fine grid with 4x4 cells maps to a coarser-grid with 2x2 cells. Four
neighboring fine grid cells are put together in order to form one coarser-grid
cell. This example can easily be extended to three dimensions and a more
sophisticated (stretched) tensor-product Cartesian grid.

6.2.2 Smoother

The smoother has to vital tasks. First, of course, it acts as a smoother. The
high-frequency error components on the fine grids are smoothed down. Secondly,
it computes locally a new approximation for the solution xy of Agxy = by,
with H the coarsest spatial mesh size.

As smoother the method proposed by Arnold et al (2000) is used. This
smoother has the nice property that it automatically imposes the divergence-
free character of 6E and does not require an explicit divergence correction as in
Hiptmair (1998).

The method selects one node and solves for the six degrees of freedom on the
six edges attached to the node. The smoother is applied in a symmetric Gauss-
Seidel fashion, following the lexicographical ordering of the nodes (zk,yr, 2m)-
This means that the index goes from (z1,y1,21) to (zna, Y1, 21) and then from
(21,y2,21) to (TNz, Y2, 21) ete. Due to the PEC boundary conditions the system
of equations of the nodes on the boundary have not to be solved because the
solution of the electricfield components is already known there.

After each node is done, the electricfield components are updated with the
most recent solution. When the first smoothing step is finished the next one is
carried out in opposite direction. So, the index starts with (znz, yny, 2n-) and
follows it’s way in a lexicographical order back to (x1,y1,21).

When this smoother is applied to equation (3), a 6x6 system of equa-
tions has to be solved locally. Suppose a node at position (xg, yi, 2, ) has been
selected:

15



E3kl.m¥:

ElJ-t1m
E2 )k l+%h m
im
B2 L¥em Elk+%lm
Ea ) lsbem

This yields the following (local) system of equations

AEk,l,m = _(5 + BEsur) (5)

Where, Ej ;. is a vector containing the six electricfield components lying
at the surrounding edges of the node. Matrix A contains all the coefficients
belonging to six entries of the vector Ej;.,. The vector s contains the six
corresponding source terms (see equation 3) and the vector resulting from the
matrix-vector multiplication BFy,,, contains all information from surrounding
electricfield components. The latter have to be taken into account because they
are needed to compute the curl operator of equation (3). Consider figure below:

.."
:
L3 .
= i
¥ L - a
=¥ i
o il ikﬂ\::o
--__‘\*L ' _"_J-—"

o :
o -4

The red arrows represent the six unknown electricfield components lying
on the edges and surrounding grid node (zg,y;, 2mm). The 24 blue arrows are
the electricfield components corresponding to neighboring grid nodes which are
needed to compute the discretization of the curl operator lying on the same
edges as the entries of Ej ;.. All matrices and vectors of (5) are described in
detail and can be found in Appendix (77).

The question remains when this smoother is applied? One full multigridcycle
contains two post-smoothing steps (vo = 2, see multigridcycle Appendix) which
is equivalent with one symmetric Gauss-Seidel iteration. Furthermore, pre-
smoothing has not been applied (v; = 0) and other choices have not been
studied here.

There is one remark. In the case that ¢ = 0, which may occur if the elec-
tricfield in air is modelled and €, is set to zero, the local 6x6 systems become

16



singular. This problem can be (artificially) avoided when solving the small local
systems by replacing & with a small positive number.

6.2.3 Restriction Operator

In this section the restriction operator will be described.

Suppose for simplicity that N, = N, = N, = 2" 4 1, with integer m > 1.
The coarse grid is defined as above (Coarse grid specification).
The discrete operator on the coarser grids is chosen to be the same as the one
obtained by direct discretization. The cell-averaged material properties are ob-
tained from the finer grids by summing the values of S and M of the fine-grid
cells lying inside a coarser-grid cell. The coarsest grid has 2x2x2 grid cells. Here,
the smoother acts as a direct solver.
When normal coarsening is applied the following situation occurs:

—————————————————————————————————————————

The figure shows the grid from besides, the z-direction is perpendicular to the
paper. The blue dots represent the coarse grid electricfield components, Fjy,
lying at the edges of the grid cells. The red dot in the middle represents the fine
grid electricfield component E. The thick red lines are the edges of the coarse
grid cells, whereas the black lines represent the edges of the fine grid cells.
The idea behind the restriction of the fine grid components to coarse grid com-
ponents is that the calculation of the coarse grid electricfield components is in
fact a weighted summation of surrounding fine grid electricfield components.
Each fine grid electricfield component is multiplied with a weighting factor and
than the values all of 18 surrounding components are summed up to become the
value of one coarse grid electricfield component. The question remains, how to
determine the weighting factors?

Remember that in previous sections the dualvolumes were introduced. These
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volumes determine how much a fine-grid electricfield component should be taken
into account when restricting to a coarser grid. In the figure above, the yellow
and blue striped rectangles represent the parts of the dual volumes of the fine
grid electricfield components which lie in the dualvolume of the coarse-grid elec-
tricfield component. The weighting factor for each blue dot is the quotient of
how much of the dualvolume lies in the coarse-grid dualvolume and the com-
plete dualvolume of this fine-grid electricfield component. One can see and
easily deduce that for the blue dots above this will be factors %,i, % and 1.

It should be noted that this restriction operator is second order accurate
(exact for linear functions in a pointwise sense) on equidistant grids, but only
first-order accurate on stretched grids. Another, more simple, choice can be
made for this restriction operator. However, numerical experiments on stretched
grids showed that this choice led to divergence in some cases.

6.2.4 Prolongation

After computing the exact of approximate solution of the discrete equations on
the coarse grids, the solution needs to be interpolated back to the fine grid and
added to the fine-grid solution. A natural prolongation operator is the rescaled
transpose of the restriction operator. This means that the same weights as
above are applied for the electricfield components. This operator is identical to
constant interpolation in the coordinate direction of the component and bilinear
interpolation for the other coordinates.

In practice, this can be done with a matlab procedure interpn which can
perform linear interpolations.

7 Overview problems Multigrid

In this chapter a short summary is given of the problems encountered by Mul-
der in the performance of the multigridsolver. First a testproblem will be in-
troduced. This problem is defined by Mulder and based on an approach which
can be found in Aruliah et al (2001). With this test case the multigrid solver of
Mulder has been tested. Problems which did arise from other test cases done
by Mulder are listed at the end of this chapter.

7.1 Testproblem: eigenvalues

This testproblem is based on eigenfunctions and first introduced in Aruliah et
al (2001). It has been modified by mulder to allow for the use of perfectly
conduction (PEC) boundary conditions. The domain is © = [0, 27]> m3. Define
1 = sin kx sin ly sin mz with k,[ and m positive integers.

Let the exact solution be,

By =009, Ey = a0yy, E3=a30,9
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The domain {2 is split into two parts, 2 with z < 7 and Q5 for z > =, so that
Q is the union of their closure. The conductivity o = og+01 (z + 1) (y +2) (2 — 7)
in Qy, and 0 = 0 in Qz. Set e, =0,p, =1 and w = 10°Hz. The other parame-
ters are chosen as to be a; = ag = -2V, a3 =1V, k=1l=m = 1,09 = 10S/m
and o1 = 1S/m. Note that ¢ is based on sine functions, causing the tan-
gential electricfield components to vanish at the boundaries in agreement with
the PEC boundary conditions used here. The current source is defined by
J, = —6E+V x (iwp) ' V x E. Using the exact solution this results in:

2

alazd]
JS = —0 Ozgayw +
O438zw
12 (a1 — ag) + m? (a — a3)] 0.0
(o™ [ [ (a2 — @) + m? (a3 — )] Oy

(k% (a3 — 1) + 1 (a3 — a2)] 0.0

Next section a short description of grid-stretching is given. In the last section
of this chapter a list can be found of the several tests and problems encountered
by using the multigridsolver to solve this testproblem.

7.1.1 Grid stretching

The grid stretching used by Mulder is called power law grid stretching. For
instance, assume there are N, = N, = N, =2"" +1 gridpoints in each direction.
One option can be a equidistant grid with spatial mesh size h. However, suppose
there is a small, compact area like a sphere were many discontinuities occur in
the parameters of the equation which lives on whole domain. Furthermore, from
a particular distance from this area there are no problems with the parameters
anymore. On an equidistant every the spatial mesh size is the same. Because
it would be very expensive to refine the whole grid, it would be very useful to
have more fine gridcells only in the sphere and to keep the number of gridpoints
the same. The solution is grid stretching.

The idea behind stretching is to make the cells around the origin very small
and let the spatial mesh size increase for each cell that lays further from this
origin. The spatial mesh ratio between two arbitrary neighboring cells is the
same, 1 + «. Obviously, this is called power law stretching as the spatial mesh
size satisfies the following formula:

hi(j) = hi(0)(1 + @)

Where h;(j) is the spatial mesh size of cell j in direction ¢ = z,y,z. And
h;(0) is the spatial mesh size of the first grid cell lying at the origin.
An example of a grid stretched from the source:
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7.2 Problems encountered (test) cases

In this section a list of problems and there possible causes encountered solving
these problems with the multigridsolver described above.

1. Consider the testproblem based on eigenvalues (section ?7). Let o9 =
10S/m and ¢y = 1S/m which avoids zero values for the conductivity.

N fmax MG Dbl /B2, lmax/h2

max max

16 039 7 6 20 0.41
32 020 8 7 20 0.48 (Table 1)
64 0.098 8 7T 21 0.49
128 0.049 8 6 21 0.49

The table above lists the number of iterations and errors. The number of
gridcells in each direction is given by N, = N, = N, = N. For each grid,
the number of iterations with pure multigrid (MG) and with multigrid as
a preconditioner for BiCGstab (bi) is given. Note that BiCGstab costs
a bit more per iteration because it requires an additional evaluation of
the residual. Also, each BiCGstab is counted two iterations because it
involves two multigrid cycles. Because convergence checks are carried out
halfway and at the end of a full iteration step, the method may stop after
an odd number of iterations. The iterations were stopped when the o
norm (see Appendix ??) of the residual had dropped a factor 10~® from
it’s original value for a zero solution. The error in the numerical solution
is listed in various norms. Here [,y (see Appendix 7?7) is the maximum
difference with the exact solution. For the exact solution the point-values
at the edge midpoints have been used.

The results in the table above show grid independent convergence for the
multigrid method. The number of iterations of BiCGstab is one less but
not worth the extra cost in terms of CPU time. The errors confirm the
second order accuracy of the solution. They have been divided by the
square of the largest spatial mesh size hyax = max{h§,h},hZ,}.
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2. Again, consider the testproblem based on eigenvalues. Let o9 = 10S/m
and o1 = 1S/m and use power law grid stretching with a spatial mesh size
ratio (1 + «) between two neighboring cells. Let a = 0.04.

N fmax MG bi  Ia/h2,.  Imax/B2

max max

16 045 8 6 1.9 0.36
32 026 11 8§ 1.9 0.33
64 017 12 14 1.7 0.29
128 0.13 81 32 1.6 0.28

The grid independent convergence rates of Multgrid are lost. However,
the BICG-method is able to deal with the slow converging components of
the solution and needs significant less iterations to converge. Again the
errors confirm second order accuracy.

In the article of Mulder ’a multigrid solver for 3-D electromagnetic diffusion’
several more test were carried out. Of course with different values for oy and o1,
also a minimum-norm solution is constructed when a vacuum region appears.
As to be expected, grid stretching causes more trouble. For some parameter
settings the multigrid method does not converge any more. The iterations were
stopped when the norm of the residual did not decrease. Even BiCGstab did
not converge in less than 100 iterations in that particular situation.

Also more ’realistic ’ testcases can be found in the article of Mulder. All
cases show the same pattern. Without grid stretching the method converges
usually, but when the power law ratio a becomes significant large (> 0.02)
Multigrid breaks down or needs a very large number of iterations to converge.
It can be said that stretching the grid has an effect similar to the use of variable
coefficients, in this case u; '(x), inside the difference operators. When these
coefficients show large variations or the grid is stretched the problem becomes
anisotropic. This will become more clear next chapter.

8 Anisotropy

As become clear in the previous section, anisotropy in the Maxwell equations
through grid stretching is the biggest problem in the deterioration of the con-
vergence rates of the multigridsolver. In the chapter concerning multigrid there
is mentioned earlier that anisotropy could be a possible troublemaker. In this
chapter a definition of anisotropy is given and afterwards how grid stretching
could cause this effect.

8.1 Definition

The Maxwell equations were stated in 3D. But to get a clear view of the de-
finition of anisotropy it is easier to give a 2D simple example. The extension
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from 2D to 3D, which will not be done here, is quite trivial because the basic
principles of anisotropy in 2D and 3D are the same. However, the problem is
a bit more complex in 3D because there are simply more possibilities to adapt
the multigridcomponents to solve the problem of anisotropy.

So, the Maxwellequations are temporarily not important and a 2D anisotropic
elliptic equation is introduced:

—elu— Oy = [Yay), (2=0,17, u=u@y) 6
u o= flzy), (09

Here 0 < € << 1, the case were € >> 1 is not any different but than the
role of the directions x and y interchange.

Discretize equation (6) with a standard 5-point difference operator, then the
following discrete problem is obtained:

An@un = [, ()
u, = [, (Tw)
where ), is a square grid with spatial mesh size h = h, = h,, (similar as in

figure (4)) and T'j, is the set of gridpoints lying on the boundary of 2. In stencil
notation, the discrete operator Ay(g):

—1
1
Ah(a):ﬁ — 2(1+¢) —¢
-1

h

In this case, the discrete anisotropy is aligned with the grid. In 2D such
problems are characterized by the coeflicients in fornt of the s, and u,, terms,
which may differ by orders of magnitude. In next section the role of anisotropy
introduced by discretization will be discussed. Indeed this is the case with
stretched grids.

So far, nothing seems wrong with the discrete oprator Ay (¢). However, if €
goes to 0, the h—ellipticity (uitleg!!) measure of the anisotropic operator tends
to 0. Soon it will become clear that the smoothing properties of a standard
pointwise smoothing scheme will deteriorate for e — 0. Suppose that a standard
pointwise relaxation such as Gauss-Seidel in lexicographical order (GS-LEX) is
applied to system above. Then it will appear that the smoothing effect of the
error is very ppor with respect to the z-direction. The reason is that pointwise
relaxation has a smoothing effect only with respect to the "strong coupling " in
the operator, i.e. the y-direction. If the error is plotted after several iteration
steps, the error will be smooth in y-direction and capricious in the z-direction.

For example, consider GS-LEX, then the error relation becomes:
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1
EZlH(xk,yz) = m[ﬁefﬂ (Tr—1,91) + ey (Trr1,91)

e (T, yim1) + e (Tk, Yig1)]
Now let € — 0,

1
e}{‘“(xk,yz) = 5[621’“ (ks y1-1) +ep (Tr, Yie1)]

Obviously, there is no averaging effect with respect to the z-direction and
therefore no smoothing with respect to this direction is achieved. Such non
smooth erros can no longer by efficiently reduced by means of a coarser grid
which is obtained by standard coarsening, thus by doubling the mesh size in
both directions.

This failure can be explained by applying LFA smoothing analysis (Oosterlee,
7??7) to the GS-LEX smoother for the problem. The multigrid convergence
factor will increase towards 1 for ¢ — 0 or ¢ — oco. In general, pointwise
relaxation and standard coarsening is not a reasonable combination for highly
anisotropic problems.

Next chapter will provide solutions for these complications.

8.2 Anisotropy on stretched grid

As said above, when stretched grids are used, the discretization may introduce
anisotropies. Consider a standard 2D Poisson like elliptic-equation:

—Opptt — Oyyu = [z, y), (Q:(O,1)2, u:u(w,y)) (7)
u = fF(x,y), (89)

Introduce the following, stretched, grid:

by

hx

¥

L.

H

Where, h, = % with 0 < € < 1 . Use standard central differences for
discretization with h, = h:
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_ —2
EU(xk 1Y) U(J;Ll;,yz)+u($k+1’yl) o012
u(,’I;k, yl—l) — QU(fL];yyl) + U(xk>yl+1) + O(h2)

1

Opah

Oyyt =~

Obviously, the same discrete operator as for equation (6) is obtained.

A similar procedure can be followed with more complex stretched grid, e.g.
as used in the testproblem above (power law grid stretching), however the idea
behind the anisotropy remains the same.

9 Solving anisotropy

In this chapter two possible solutions for the problems encountered with the
multigridsolver caused by anisotropy in the Maxwell equations are given. As a
lot research has been done on the problem of anisotropy, it is to be expected
that both remedies will improve the multigridsolver. However, keep in mind
that this is just a research proposal, maybe more advanced tools have to be
applied to get a better performance of the multigridsolver. These techniques
will not be introduced yet.

According to "Multigrid solution methods and parallelization for computa-
tional science applications " by Oosterlee et al (??) the use of semi coarsening
and linesmoothers will improve the multigrid performance.

9.1 Semi coarsening

Again, consider the example of the 2D elliptic equation (7) with anisotropy due
to grid stretching. The idea is to keep pointwise relaxation for smoothing but
to change the grid coarsening according to the one-dimensional smoothness of
errors. This means that a coarser grid is defined by doubling the mesh size only
in that direction in which the errors are smooth:

regulat coarsening

semmi coarsening l

Suppose regular (normal) coarsening has been used. After one gridcoarsen-
ing, the grid goes from 4x4 cells to 2x2 cells. But, the stretched cells are still
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intact and this yields an anisotropic discrete operator for equation (7). Now
apply semi coarsening. After one gridcoarsening, the grid goes from 4x4 cells
to 4x2 gridcells. It is easy to see that the grid cells are, in this particular case,
not rectangles but squares. Hence, H, = H, and the anisotropy at this coarser
grid will not be dominating in the discretization of the equation (7). It can be
shown by LFA analysis of the error that the quality of a smoother depends on
the range of high frequencies and thus on the choice of the coarse grid.

One remark has to be made. Of course there are practical complication with
the use of semi coarsening. The restriction and prolongation operators have to
be adapted to work on the coarser grids also. It is obvious that full weighting and
linear, bilinear interpolation as described above (Multigrid Components Mulder,
??7) use different electricfield components to compute coarse-grid electricfield
components when the structure of the grid changes.

9.2 Linesmoother

The other approach is the use of a linesmoother. The idea is to keep standard
multigrid coarsening, but to change the relaxation procedure from pointwise
relaxation to linewise relaxation. This means that all unknowns on one line
are updated simultaneously. A linesmoother in z-direction will update all the
unknowns lying on a line [z1, zy,] with y; arbitrary and constant. For y (and
in 3D z) this will be straightforward.

Gauss-Seidel-type line relaxations are particularly efficient smoother for anisotropic
problems (if the anisotropy is aligned with the grid). This is due to the general
observation that errors become smooth in both directions if strongly connected
unknowns are updated collectively. In case of grid stretching this is of course the
case. Suppose grid stretching only in z-direction as in Anisotropy on stretched
grid (section ?7). Obvious, there is a strong coupling between the unknowns in
z-direction due to the big differences between h, and h;.

In Oosterlee et al (77) LFA analysis is applied to a lexicographic line Gauss-
Seidel smoother. The use of such a smoother decreases the anisotropy signifi-
cantly. There are, of course, other line smoothers one can use, e.g. w-Jacobi or
zebra line Gauss-Seidel smoothing (line smoother z-direction, first all even rows
in y-direction and next the odd rows). However, Mulder uses a pointwise sym-
metric GS-LEX and therefore it is to be expected that a GS-LEX linesmoother
will give improvement on the performance of the Multigridsolver.

10 Research proposal

Wim Mulder of Shell International Exploration and Production has developed
a multigridsolver in order to solve the time-harmonic Maxwell equations. These
equations are coming from a 3D EM diffusion method which is used in the
exploration and investigation of possible oil/gas reservoirs in the (sea) surface

(77).
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For small scale (test) problems the multigridsolver shows no performance
leak. However, when the gridsize increases and (power law) grid stretching has
been applied, the discretization of the Maxwell equations become anisotropic
in all three directions. There are several possible solutions for this problem.
First, the research will focus on two improvements of the multigridsolver. Semi
coarsening and linesmoothing and of course the combination of these two math-
ematical tools.

In order to test these improvements a testproblem is used which is developed
by Mulder and based on a testproblem that can be found in Aruliah et al (2001).
The idea behind this problem is to express the solution of the Maxwell equation
in eigenfunctions.

Matlabcode is already provided by Mulder and has to be adapted to make it
more suitable for further adaptations of the components of the multigridsolver.
When the testproblem provides satisfactory results the improvements will be
implemented in more realistic problems and fine-tuning of these new components
will be necessary. Also, more analysis has to be done concerning the who and
why of the (possible) improvements of the solver. LFA and Fourier analysis can
be used.

At the end of this research, hopefully an improved multigrid solver can be
presented with a sound mathematical foundation.
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12 Appendix

* Code aangepaste multigridsolver zonder semicoarsening en linesmoother
* Voorlopig de kopieen van:
- Recursie overzicht F-cycle
- De pointsmoother uitgeschreven
- Overzicht F-cycle
* Matlab code functie overzicht
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