Motivation: Almatis Rotary Kiln Governing Equations for Turbulent Reacting Flows OpenFOAM. Sandia Flame D Validation Combustion Test Case Pollutant NO₂ Formation Conclusions and Recommendations

Modelling Turbulent Non-Premixed Combustion in Industrial Furnaces

Using the Open Source Toolbox OpenFOAM

Ali Kadar Supervised by: Dr. Domenico Lahaye

August 24, 2015

Overview

- Motivation: Almatis Rotary Kiln
- Overning Equations for Turbulent Reacting Flows
- OpenFOAM.
- Sandia Flame D Validation
- Combustion Test Case
- 6 Pollutant NO_x Formation
- Conclusions and Recommendations

Overview

- 1 Motivation: Almatis Rotary Kiln
- @ Governing Equations for Turbulent Reacting Flow
- OpenFOAM.
- Sandia Flame D Validation
- Combustion Test Case
- 6 Pollutant NO_x Formation
- Conclusions and Recommendations

Motivation: Almatis Rotary Kiln

- Cement kiln used for the production of calcium-aluminate cement.
- Fuel used is a mixture of different alkanes (95% CH₄).
- Kiln operates at temperatures upto 1800° C.

Figure: General layout of a direct fired rotary kiln used in cement manufacturing

Figure: Important physical phenomenon to be incorporated in the model

Figure: Important physical phenomenon to be incorporated in the model

Multi-Physics Model for Industrial Furnaces Developed in OpenFOAM

Figure: Important Physical Phenomenon to be Incorporated in the Model

Burner Flow Reactor Test Case

Figure: Stream tracer and glyphs for velocity

Overview

- 1 Motivation: Almatis Rotary Kiln
- Overning Equations for Turbulent Reacting Flows
- OpenFOAM.
- Sandia Flame D Validation
- Combustion Test Case
- 6 Pollutant NO_x Formation
- Conclusions and Recommendations

Averaging the Navier Stokes Equations

Reynolds-averaging

$$\Phi = \underbrace{\overline{\Phi}(x)}_{\substack{\text{time} \\ \text{averaging}}} + \underbrace{\Phi'(x,t)}_{\substack{\text{turbulent} \\ \text{fluctuations}}}, \quad \overline{\Phi} = \lim_{T \to \infty} \frac{1}{T} \int_0^T \Phi(x,t) dt$$

Favre-averaging

$$\Phi = \underbrace{\tilde{\Phi}(x)}_{\substack{\text{density} \\ \text{weighted} \\ \text{averaging}}} + \underbrace{\Phi''(x,t)}_{\substack{\text{turbulent density} \\ \text{weighted fluctuations}}}, \quad \tilde{\Phi}(x) = \frac{\rho \Phi(x)}{\overline{\rho}}$$

Averaging the Navier Stokes Equations

Reynolds-averaging

$$\Phi = \underbrace{\overline{\Phi}(x)}_{\substack{\text{time} \\ \text{averaging}}} + \underbrace{\Phi'(x,t)}_{\substack{\text{turbulent} \\ \text{fluctuations}}}, \quad \overline{\Phi} = \lim_{T \to \infty} \frac{1}{T} \int_0^T \Phi(x,t) dt$$

Favre-averaging

$$\Phi = \underbrace{\tilde{\Phi}(x)}_{\substack{\text{density} \\ \text{weighted} \\ \text{averaging}}} + \underbrace{\Phi''(x,t)}_{\substack{\text{turbulent density} \\ \text{weighted fluctuations}}}, \quad \tilde{\Phi}(x) = \frac{\rho \Phi(x)}{\overline{\rho}}$$

Favre-averaged Continuity Equation

Favre-averaged Momentum Equations

Favre-averaged Species Transport Equations

Favre-averaged Enthalpy Transport Equation

Overview

- 1 Motivation: Almatis Rotary Kiln
- Of Governing Equations for Turbulent Reacting Flows
- OpenFOAM.
- Sandia Flame D Validation
- Combustion Test Case
- 6 Pollutant NO_x Formation
- Conclusions and Recommendations

OpenFOAM (Open Field Operation and Manipulation)

- Open source CFD toolbox written in C++.
- Not a point and click CFD software.
- OpenFOAM employs collocated FVM discretisation for solving PDE's.

OpenFOAM structure

Convection-diffusion equation in the incompressible form.

$$\frac{\partial T}{\partial t} + \nabla \cdot (\mathbf{U}T) - \nabla^2 (\mathcal{D}_{\mathrm{T}}T) = 0 \tag{1}$$

Representation in OpenFOAM

```
solve
(
    fvm::ddt(T)
    + fvm::div(phi, T)
    - fvm::laplacian(DT, T)
==
    0
);
```

Why OpenFOAM!?

Open Source

- No license costs!.
- Complete access to the source code.
- Offers great scope for custom development.

Reliability

- First stable release: Dec 2004.
- Detailed validation and verification studies for several benchmark problems.
- Large user community across commercial and academic organizations.
 Example NRG, Tata Steel, Dynaflow

Why OpenFOAM!?

Open Source

- No license costs!.
- Complete access to the source code.
- Offers great scope for custom development.

Reliability

- First stable release: Dec 2004.
- Detailed validation and verification studies for several benchmark problems.
- Large user community across commercial and academic organizations.
 Example NRG, Tata Steel, Dynaflow

Solver for Turbulent Combustion - reactingFoam

Conjugate Combustion Models Heat Transfer **PaSR** Not Available 1 Available 1 reactingFoam Transient Solver. Non-premixed Combustion. Not Available # Available \Downarrow **Turbulence Models** Radiation Models Standard $k - \epsilon$ P1 Approximation.

Solver for Turbulent Combustion + Radiation = **furnaceFoam**

Conjugate Combustion Models Heat Transfer **PaSR** Not Available 1 Available 1 furnaceFoam Transient Solver. Non-premixed Combustion. Available **#** Available \Downarrow Turbulence Models Radiation Models Standard $k - \epsilon$ P1 Approximation.

Overview

- 1 Motivation: Almatis Rotary Kiln
- Q Governing Equations for Turbulent Reacting Flows
- OpenFOAM.
- Sandia Flame D Validation
- Combustion Test Case
- Pollutant NO_x Formation
- Conclusions and Recommendations

Sandia National Laboratories Flame D

Turbulent piloted methane-air diffusion flame.

Central fuel jet(49.6 m/s, Re 22400) consists of a 25/75%(by volume) methane-air mixture.

Hot pilot jet(11.4 m/s) surrounding the central fuel jet for stabilisation and ignition.

Slow coflow of air(0.9 m/s) outside.

Computational Domain and Mesh

Figure: Computational domain ${\bf a}$ and mesh near the inlet ${\bf b}$

Temperature distribution along the central axis

Chemical species concentration along the central axis

Run Time (in Hours) on 4 cores using OpenMPI.

Test Case	Mesh C1(#5835)	Mesh R1(#23340)	Mesh R2(#45822)
Global Reaction Mechanism (1-step)	0.62	3.58	16.73
Detailed Reaction Mechanism (325-steps)	59.94	-	-

Overview

- 1 Motivation: Almatis Rotary Kiln
- Operation of the Control of the C
- OpenFOAM.
- Sandia Flame D Validation
- **5** Combustion Test Case
- 6 Pollutant NO_x Formation
- Conclusions and Recommendations

Test Case: Burner Flow Reactor (BFR) Geometry

BFR located at Brigham Young University, USA.

Axi-symmetric, vertical-fired reactor with a swirling flow (9.5°).

Used for validating new CFD code.

Block Structured Mesh for BFR

Figure: Orthogonal Mesh C1

Figure: Non-Orthogonal Mesh N1

Non-Orthogonality Tests - Isothermal Flow

Figure: OpenFOAM sensitivity to Mesh Non-Orthogonality.

Contour Plots of Velocity and Temperature - Reacting Flow

Figure: Contours of velocity magnitude (m/s)

Comparison of Results with Ansys Fluent

Comparison of Results with Ansys Fluent

Computational Time (in Hours) on 4 cores using OpenMPI.

	Test Case	Isothermal Flow	Reacting Flow
ANSYS Fluent	R2 – GLB – P1	~ 0.1	~ 3
OpenFOAM	R2 - GLB - P1	0.12	32.68
OpenFOAM	C13D - Inf - fvDOM	0.83	82.01

R2 Axi-symmetric mesh with cell count # 46800

C13D..... 3D mesh with cell count # 421200

GLB Global Reaction Mechanism

Inf. Infinite Fast Chemistry

Overview

- 1 Motivation: Almatis Rotary Kiln
- Of Governing Equations for Turbulent Reacting Flows
- OpenFOAM.
- Sandia Flame D Validation
- Combustion Test Case
- 6 Pollutant NO_x Formation
- Conclusions and Recommendations

$$NOx = NO + NO2$$

 NO_{\times} causes \Rightarrow

Ozone depletion

Acid rain Smog formati

Smog formation

Main sources of $NO_x \Rightarrow$

Industrial combustion processes

NO_x from industrial sources is predominantly Nitric Oxide NO

Sources of NO

Thermal NO - Main contribution

Other Sources - Prompt NO, Fuel NO, NO from N_2O Intermediate.

$$NOx = NO + NO2$$

 NO_X causes \Rightarrow Ozone depletion
Acid rain
Smog formation

Main sources of $NO_X \Rightarrow$ Industrial combustion proce

NO_x from industrial sources is predominantly Nitric Oxide NO

Sources of NO

Thermal NO - Main contribution Other Sources - Prompt NO, Fuel NO, NO from N_2O Intermediate

$$NOx = NO + NO2$$

 NO_{\times} causes \Rightarrow

Ozone depletion Acid rain Smog formation

Main sources of $NO_x \Rightarrow$

Industrial combustion processes Automobiles.

NO_x from industrial sources is predominantly Nitric Oxide NO.

Sources of NO

Thermal NO - Main contribution Other Sources - Prompt NO, Fuel NO, NO from N_2O Intermediate

$$\mathsf{NOx} = \mathsf{NO} + \mathsf{NO2}$$

 NO_{\times} causes \Rightarrow

Ozone depletion Acid rain

Smog formation

Main sources of $NO_x \Rightarrow$

Industrial combustion processes Automobiles.

NO_x from industrial sources is predominantly Nitric Oxide NO.

Sources of NO

Thermal NO - Main contribution Other Sources - Prompt NO, Fuel NO, NO from N_2O Intermediate

$$NOx = NO + NO2$$

 NO_{\times} causes \Rightarrow

Ozone depletion

Acid rain

Smog formation

Main sources of $NO_x \Rightarrow$

Industrial combustion processes Automobiles.

Automobiles.

 NO_x from industrial sources is predominantly Nitric Oxide NO.

Sources of NO

Thermal NO - Main contribution

Other Sources - Prompt NO, Fuel NO, NO from N_2O Intermediate.

Implementation of NO_x Post-Processor in OpenFOAM

NO concentrations generated in combustion systems are very low.

1-way coupling

Flow and Temperature ⇒ NOx Chemistry

Governing convection diffusion equation for Thermal NO transport

$$\underbrace{\frac{\partial \rho Y_{NO}}{\partial t}}_{\text{Transient term}} + \underbrace{\nabla \cdot (\rho \vec{u} Y_{NO})}_{\text{Convection term}} = \underbrace{\nabla \cdot (\rho D_{\text{eff}} \nabla Y_{NO})}_{\text{Diffusion term}} + \underbrace{S_{Y_{NO}}}_{\text{Source Term}}$$

$$S_{Y_{NO}} = M_{NO} \quad 1.32 \times 10^{10} \quad \underbrace{e^{-65493/T} \ T^{1/2}}_{Sensitivity \ To \ Temperature} [O_2]^{1/2} [N_2] \quad \underbrace{\left(1 - \frac{k_{b1} \ k_{b2} \ [NO]^2}{k_{f1} \ k_{f2} \ [N_2] \ [N_2]}\right)}_{Non-l \ inest \ Term}$$

 ρ , \vec{u} , D_{eff} , $[O_2]$, $[N_2]$, $T \rightarrow$ Input from flow calculations.

Validation with ANSYS Fluent

Figure: Thermal NO mass fraction (in ppm) along the central axis of the furnace.

Thermal NO Reduction - Equivalence Ratio Variation

Figure: Variation of NO mass fraction with equivalence ratio $\phi = \frac{(A/F)_{st}}{(A/F)_{ac}}$.

Overview

- Motivation: Almatis Rotary Kiln
- Of Governing Equations for Turbulent Reacting Flows
- OpenFOAM.
- Sandia Flame D Validation
- Combustion Test Case
- 6 Pollutant NO_x Formation
- Conclusions and Recommendations

Conclusions

- Validated furnaceFoam with Sandia Flame D experimental data.
- Validated NOxFoam with ANSYS Fluent using BFR test case.
- Demonstrated the effectiveness of NOx reduction mechanisms using BFR test case.
- OpenFOAM is found to be a promising alternative to costly commercial packages.
- The transient solver furnaceFoam is found to be 10 times slower then the steady state combustion solver in ANSYS Fluent.
- OpenFOAM is sensitive to mesh Non-orthogonality.

Recommendations

- Implementation of Conjugate Heat Transfer into furnaceFoam.
- Implementation of computationally less expensive equilibrium chemistry models.
- Implementation of steady state combustion solver to reduce the runtime.
- Prediction of other sources of NO i.e Prompt NO and NO from intermediate N2O.
- Linking PETSc with OpenFOAM for the solution of large sparse linear systems.

Motivation: Almatis Rotary Kili Governing Equations for Turbulent Reacting Flows OpenFOAM. Sandia Flame D Validation Combustion Test Case Pollutant NO₂, Formation Conclusions and Recommendations

Thank you for your Attention !!