
Delft University of Technology

Faculty of Electrical Engineering, Mathematics and Computer Science

Delft Institute of Applied Mathematics

Developing a parallel solver for mechanical

problems

A thesis submitted to the

Delft Institute of Applied Mathematics

in partial fulfillment of the requirements

for the degree

MASTER OF SCIENCE

in

APPLIED MATHEMATICS

by

Konrad Borys Kaliszka

Delft, The Netherlands

September 18, 2010

Copyright c© 2010 by Konrad Borys Kaliszka. All rights reserved.

MSc THESIS APPLIED MATHEMATICS

"Developing a parallel solver for mechanical
problems"

Konrad Borys Kaliszka

Delft University of Technology

Daily supervisor Responsible professor

Dr. ir. Martin van Gijzen Prof.dr.ir. Kees Vuik

Committee members

Prof.dr.ir. Kees Vuik Dr. Ir. Martin van Gijzen

Dr.ir. Hai Xiang Lin

September 18, 2010 Delft, The Netherlands

Contents

1 Description of the problem 3
1.1 Introduction . 3
1.2 Acknowledgements . 4
1.3 Overview . 5
1.4 Short description of problem . 6

1.4.1 Deformation Theory . 6
1.4.2 Global iterative solution procedure . 8

2 Finite Element Method 9
2.1 Introduction . 9
2.2 Variational Equation . 9
2.3 Galerkin Equations . 10

3 Conjugate Gradient Method 11
3.1 Introduction . 11
3.2 Basic Iterative Methods . 11
3.3 Conjugate Gradient Method . 12
3.4 Preconditioned Conjugate Gradient Method . 14

4 Deflation 16
4.1 Deflated CG and PCG Methods . 18
4.2 Deflation Vectors . 19

4.2.1 Subdomain Deflation Vectors . 19
4.2.2 Rigid Body Modes . 20

5 Domain Decomposition Methods 21
5.1 Introduction . 21
5.2 Schwarz Alternating Procedures . 22
5.3 Schur Complement . 24
5.4 Numerical Illustration . 28

5.4.1 Multiplicative Schwarz Method . 30
5.4.2 Additive Schwarz Method . 31

6 Numerical Tests and Experiments 32
6.1 Introduction . 32
6.2 Choice of the Method . 32
6.3 Region Growing Algorithm . 33

6.3.1 Region Growing 1.0 algorithm . 33
6.3.2 Region Growing 1.1 algorithm . 34

1

6.3.3 Region Growing 2.0 algorithm . 34
6.4 Deflation Tests . 35

6.4.1 The Choice of Deflation Vectors . 35
6.5 Choice of the subdomains . 41

6.5.1 Metis . 44
6.6 Contrast between an algebraical and a domain based preconditioning 48
6.7 Tests with the Habanera solver . 50

6.7.1 Problem 6 . 50
6.7.2 Problem 10 . 51
6.7.3 Problem 5 . 51
6.7.4 Problem 11 . 52
6.7.5 Variations of Problem 6 . 52

7 Strategy and Conclusions 54
7.1 Strategy . 54
7.2 Conclusions and Future Research questions . 54

8 Appendix 56
8.1 Test Problems . 56
8.2 Region Growth Algorithms Implementations . 67

8.2.1 Region Growth algorithm ver. 1.1 . 67
8.2.2 Region Growth algorithm ver. 2.0 . 70

8.3 Logs from test with Habanera solver . 72

Bibliography 83

2

Chapter 1

Description of the problem

1.1 Introduction

Plaxis B.V. is a company specialized in finite element software intended for 2D and 3D
analysis of deformation, stability and groundwater flow in geotechnical engineering. Geotech-
nical applications require advanced constitutive models for the simulation of the non-linear
and time-dependent behavior of soils. In addition, since soil is a multi-phase material, special
procedures are required to deal with hydrostatic and non-hydrostatic pore pressures in the soil.

Within the finite element formulation large linear systems have to be solved. At this moment
fast and robust iterative solvers are available for sequential computing. Since more and more
present day computers consists of more cores, Plaxis is working on parallelization of these
solvers. It is not so easy to parallelize the current solver with the same amount of iterations. In
this project other techniques are investigated in order to develop robust and efficient parallel
solvers. As a first approach domain decomposition methods have to be studied. After a good
DD method has been selected the properties of this method is investigated for the problems
originating from geotechnical applications. A combination of this method with a second level
preconditioner is the next step in this investigation. Finally, instead of an arbitrary data
partitioning, the decomposition of the computational domain should be based on the physical
properties of the domain. This decomposition can be used to have special preconditioners for
certain subdomains and can also be used to develop a good second level preconditioner.

3

1.2 Acknowledgements

I would like to thank all people who were involved in this project. Special thanks are to due
Kees Vuik, Martin van Gijzen, Paul Bonnier, Ronald Brinkgreve, Eric Jan Lingen who help
me to finish this Master Thesis and to Dorota Kurowicka, Jolanta Misiewicz and Roger Cooke,
without whom I would not be able to come to Delft.

At this moment I would express my gratitude to all the staff at the TU Delft. Also my family
and my close friends did a splendid job in helping me to accommodate in the Netherlands.

However the biggest thanks are reserved to my mother, Bozena Kaliszka. Mamo,dziekuje za
wszystko.

4

1.3 Overview

In this Master Thesis, we are going to present the theory which is will be used to solve the
problem. We will also present numerical experiments which were done during the work on this
master thesis. In the end we will draw conclusions and state any possible future directions of
the research.

We will start this Maser Thesis with a short description of the Plaxis software and the systems
which are solved by it. After that, we make a short introduction to the Finite Element Method,
which is done in the next chapter. After that, we are going to describe the Conjugate Methods,
one of ingredients of the approach chosen to be the solution for our problem. This chapter is
followed by a description of the Deflation method and it’s combination with PCG. After that
we present the idea of the Domain Decomposition approach, through presentation of two basic
methods from this block of mathematics.

After the theory, we will we will present the results of tests done on the data provided by
Plaxis. In the end we will conclude everything with a suggested strategy, which should be
applied to an arbitrary problem.

5

1.4 Short description of problem

As mentioned before, Plaxis B.V. is a company specialized in finite element software in-
tended for 2D and 3D analysis of deformation, stability and groundwater flow in geotechnical
engineering. The soil can consist of different layers and each can have a different material model
and/or different parameters within it specification. In addition, there can be specified several
structural elements, like sheet pile wall or anchors which may be taken into account when sim-
ulating. When a problem is created it is subdivided into a large number of finite elements and
equilibrium is solved in several steps and iterations. It is also worth to mention, that Each
of these nodes has the ability to move in the x,y and z directions. However some nodes are
fixed on the boundary and have limited to no freedom of movement. We use the term degree
of freedom as the unknowns in the linear system and they will correspond to the direction of
nodes in which they are able to move. For each direction one row will be introduced in the
matrix, so two or three adjacent rows can correspond to the same node.

An important part of the calculation time, especially for larger 3D projects, is solving a linear
system of equations. For large systems, direct solution techniques cannot be used so iterative
solution techniques are often used.
We will now present some basic equations and theory, which is used within the Plaxis software.
More information can be found in [5].

1.4.1 Deformation Theory

The formula for the static equilibrium can be written in the following way:

LTσ + b = 0 (1.1)

where σ = [σx σy σz σxy σyz σzx]
T is the stress vector, b is the body forces vector and LT is the

transpose of a differential operator defined as:

LT =

∂
∂x

0 0 ∂
∂y

0 ∂
∂z

0 ∂
∂y

0 ∂
∂x

∂
∂z

0

0 0 ∂
∂z

0 ∂
∂y

∂
∂x

(1.2)

We will also use the the kinematic relation, which can be formulated as:

ǫ = Lu (1.3)

where ǫ is the stress vector. The link between Eq. (1.1) and (1.3) is formed by a constitutive
relation representing the material behaviour i.e., the relation between the rates of stress and
strain, which can be written as:

σ̇ = Mǫ̇, (1.4)

and where

6

The combination of Eqs. (1.1), (1.3) and (1.4) would lead to a second-order partial differen-
tial equation in the displacements u. However, instead of a direct combination, the equilibrium
equation is reformulated in a weak form according to Galerkin’s variation principle:

∫

δuT
(

LTσ + b
)

dV = 0 (1.5)

In this formulation δu represents a kinematically admissible variation of displacements. Apply-
ing Green’s theorem for partial integration to the first term in Eq (1.5), we get:

∫

δǫTσdV =

∫

σuT bdV +

∫

δuT tdS (1.6)

This introduces a boundary integral in which the boundary traction appears. The three com-
ponents of the boundary traction are assembled in the vector t. Eq. (1.6) is referred to as the
virtual work equation.

The development of the stress state σ, can be seen as an incremental process:

σi = σi−1 +∆σ

∆σ =

∫

σ̇dt

(1.7)

In this relation σi represents the actual state of stress which is unknown and σi−1 represents the
previous state of stress which is known. The stress increment ∆σ is the stress rate integrated
over a small time increment.
If Eq. (1.6) is considered for the actual state i, the unknown stresses σi can be eliminated using
(1.7):

∫

δǫT∆σdV =

∫

δuT bidV +

∫

δuT tidS −

∫

δǫTσi−1dV (1.8)

The Eq. (1.8) is then solved with the use of Finite Element Method, which will be described fur-
ther in this report and that is why we will omit the derivation associated with it. Nevertheless,
as the result we end up with the following equation:

∫

BδdV =

∫

NbidV +

∫

NT tidS −

∫

Bσi−1dV (1.9)

,where B is the strain interpolation matrix, which contains the spatial derivatives and of the
interpolation functions, and N is a matrix which stores interpolation functions of the displace-
ment vector, known also as the shape functions.

The above equation is the elaborated equilibrium condition in discretised form. The first
term on the right-hand side together with the second term represent the current external force
vector and the last term represents the internal reaction vector from the previous step. A dif-
ference between the external force vector and the internal reaction vector should be balanced
by a stress increment ∆σ.

The relation between stress increments and strain increments is usually non-linear. As a result,
strain increments can generally not be calculated directly, and global iterative procedures are
required to satisfy the equilibrium condition (2.13) for all material points.

7

1.4.2 Global iterative solution procedure

The formula for the global iterative solution procedure has the following form:

Ki∆vi = f i
ex − f i−1

in (1.10)

where K is the stiffness matrix, ∆v is the incremental displacement vector, fex is the external
force vector and fin is the internal reaction vector. The superscript i refers to the step number.
However, because the relation between stress increments and strain increments is generally non-
linear, the stiffness matrix cannot be formulated exactly beforehand. That is why the global
iteration process can be written as:

Kjδvj = f i
ex − f

j−1
in (1.11)

where the superscript j refers to the iteration number, δv is a vector containing subincremental
displacements, which contribute to the displacement increment of step i:

∆vi =
n
∑

j=1

δvj (1.12)

where n is the number of iterations within step i. The stiffness matrix K, represents the mate-
rial behavior in an approximated manner. The more accurate the stiffness matrix is, the fever
iterations are required to obtain equilibrium within a certain tolerance.

In a its simplest form, K represents a linear-elastic response. In this case, the stiffness matrix
can be formulated as:

K =

∫

BTDeBdW (1.13)

where De is the elastic material matrix according to Hooke’s law and B is the strain interpo-
lation matrix.

8

Chapter 2

Finite Element Method

2.1 Introduction

When dealing with partial differential equations, we need to have a tool which will allow us to
solve them or at least to get an approximation of the solution. In this chapter we will present
a famous method called Finite Element Method, which let us create an approximation of the
PDE we are dealing with, which preserves complex geometries and is quite easy to understand.
FEM method is used all over the world in thousands of application.

We will illustrate the Finite Element method with the solution of a Poisson equation with
Dirichlet boundary condition, where Ω is a bounded open domain in R

2 and Γ is its boundary.

−∆u = f (2.1)

2.2 Variational Equation

To solve this problem approximately, we will need to extract a system of algebraic equations
which will yield the solution. To do that, we will use a common approach, namely the weak
formulation of the problem. Denote:

a(u, u) =

∫

Ω

< ∇u|∇u > dx

(f, v) =

∫

Ω

fv dx

It is easy to show, that a is bilinear. Now, from Green’s formula we get:

a(u, v) = −(∆u, v) = (∇u,∇v)

Hence, now we can reformulate the problem into following one

Find u ∈ V such that ∀v ∈ V : a(u, v) = (f, v) (2.2)

where V ⊂ L2 is the subspace of all functions whose derivatives up to first order are in L2 and
which have zeros on Γ. The resulting space is called H1

0 (Ω). The above condition is called a
Variational Equation.

9

2.3 Galerkin Equations

Let Ωh denote an approximation of the domain Ω by the union of the m triangles Ki, which
come from the triangulation of Ω. Now, we can replace the space V with a finite dimensional
space Vh, which is defined as the space of all functions which are piecewise linear and continuous
on the polygonal region Ωh, and which vanish on the boundary Γ. To be more precise:

Vh = {φ : φ|Ωh
- continuous, φIΓh

= 0, φ|Kj
- linear for all j} (2.3)

If xj , where j ∈ {1, ...,n} are the nodes of the triangulation, then a function φj in Vh, can be
actually associated with each of them, so that it satisfies the following condition:

φj(xi) =

{

1, if xi = xj

0, if xi 6= xj
. (2.4)

The above condition makes φi, i = 1, ..., n defined uniquely. Also the φi’s form a basis of the
space Vh, so each function now can be represented as a linear combination of them:

∀u ∈ Vh : u(x) =

n
∑

i=1

ξiφi(x) (2.5)

If we now recall the variational equation, and write it for the Vh space, then we will get:

Find u ∈ Vh such that ∀v ∈ Vh : a(u, v) = (f, v) (2.6)

by the linearity of a with respect to v, one can impose the condition a(u, φi) = (f, φi), for
i = 1, ..., n. But from (2.5), we know that u can be represented as the linear combination of
the basis function. If we combine those two facts, we will get:

n
∑

i=1

αijξj = βj , for all i = 1, ...n. (2.7)

where αij = a(φi, φj) and βi = (f, φi).

The above equation allows us to formulate a linear system:

Ax = b (2.8)

with A = [αij]n×n and b = [β1 ... βn]
T

The matrices generated by this method have some nice properties. The most important are
the facts, that A is Symmetric Positive Definite and sparse. Knowing this, we may now use
one of the CG variants for solving these linear systems.

10

Chapter 3

Conjugate Gradient Method

3.1 Introduction

One of our main problems is to solve a linear system:

Ax = b, (3.1)

where A ∈ R
n×n is called a coefficient matrix, b ∈ R

n a right-hand side vector, and where
n ∈ N. Keeping in mind the fact, that we are dealing with matrices from the discretization, we
will assume that A is symmetric and semi-positive definite.

There are many ways to solve this problem. In this chapter we will focus on a well-known
iterative method, called Conjugate Gradient or, in short-hand notation CG, developed by E.
Stiefel and by M.R Hestenes[3], which allows us to compute the solution of the above mentioned
system of equations. The success of this algorithm lies in it’s simplicity. However, to describe
the Conjugate Gradient method precisely, we have to know exactly what is a basic iterative
method.

3.2 Basic Iterative Methods

Basic iterative solution methods are used to generate a sequence (xi, i = 0, 1, ...) which may
be finite or not, consisting of the approximations of the exact solution x. The compute this
sequence, the following recursive formula is used,

xi+1 = xi +M−1(b−Axi) (3.2)

We can substitute ri = b − Axi, to which we will from now on refer as the i-th residual,
which is used to measure the difference of the i-th approximation and the exact solution and
rewrite the above equation once again in a more pleasant way,

xi+1 = xi +M−1ri (3.3)

If we now write the first steps of this iteration process,

11

x0 = x0,

x1 = x0 +M−1r0,

x2 = x1 +M−1r1 = x0 +M−1r0 +M−1(b− Ax0 − AM−1r0)

= x0 + 2M−1r0 −M−1AM−1r0
... (3.4)

we can conclude that

xi ∈ x0 + span{M−1r0,M
−1A(M−1r0), ..., (M

−1A)i−1(M−1r0)} (3.5)

The subspace which occurs in the last formula is actually a special case of a Krylov-space,
which is defined as Ki(A, r0) = span{r0, Ar0, ..., Ai−1r0}. From this we conclude that for each
basic iterative method the following is fulfilled

xi ∈ x0 +Ki(M−1A;M−1Ar0) (3.6)

These methods are also called Krylov(-subspace) methods. We see that there are two prob-
lems which arise from the formula of the basic iterative method. Given the matrix M−1(which
also called a "preconditioner") the first problem is to find a suitable basis for Ki(:, :) such that
the iterative method has a fast convergence rate with a reasonable accuracy and efficiency with
respect to memory storage and computational time. Second, is actually finding the xi.

3.3 Conjugate Gradient Method

The present section will be devoted to a description of the Conjugate Gradient Method, which
nowadays is probably the best known and mostly used iterative method for solving SPD linear
systems.

To explain how the CG method works, let us define first what an A-inner product and what
an A-norm is.

Definition 3.1. The A-inner product is defined by

< x|y >A= xTAy

Definition 3.2. The A-semi-norm is defined by

||x||A =
√

< x|x >A

Whenever A is Positive Define, we may talk of an A-norm.

12

The underlying idea of CG is very simple. The sequence (xj, j = 0, 1, 2, ...) should have the
following property:

||x− xj ||A = min
y∈Kj(A;r0)

||x− y||A, for all j. (3.7)

We are sure about the existence of the minimum only if A is SPD. However due to our knowledge
about the matrices coming from the discretization of PDE’s we do not have to worry about
this.

Notice that

||x− x1||
2
A = (x− α0r0)

TA(x− α0r0) = xTAx− 2α0r
T
0 Ax+ α2

0r
T
0 Ar0 (3.8)

Which can be considered as a parabola of the variable α0. Hence the minimum is achieved for

α0 =
rT0 Ax

rT
0
Ar0

=
rT0 b

rT
0
Ar0

.

In the steepest descent method, each next iteration step is determined by the formula

xk+1 = xk + αkpk, (3.9)

where pk is the direction of minimum search function for the energy of the system. If we
multiply the above equation by A and subtract b from it, we will get

Axk+1 − b = Axk − b+ αkApk

But this nothing else but

rk+1 = rk − αkApk. (3.10)

If we now assume, that p and pk are conjugate, then from

< p|rk+1 >=< p, |rk > +αk < p,Apk > (3.11)

we see, that if < p|rk >= 0, then also < p|rk+1 >= 0. This the main condition of the CG
method, that for each j = 0, 1, ..., k we have that < pj |rk+1 >= 0. If we now define

p0 = −r0,
rT0 Ax

rT0 Ar0
=

< rk|pk >

< pk|pk >
and pk+1 = −rk + βkpk for k = 0, 1, 2, ... (3.12)

where βk induce that pk+1 and pk will be conjugate, then we are done. The only thing which is
left to do, is to find βk. To do that, let us notice that

< pk+1|pk >A=< −rk+1 + βkpk|pk >A= − < rk+1|pk >A +βk < pk|pk >A= 0

when βk =
<rk+1|pk>

<pk|pk>A
.

Knowing all those facts, we can write a pseudo-code of the Conjugate Gradient algorithm.
However, in most of the literature, for example [9], the coefficients αk and βk, are computed in
a slightly different way. The pseudo-code which is presented, is using the ones which are used
more often.

13

Conjugate Gradient Algorithm

Choose x0, set i = 0, r0 = b−Ax0.

WHILE rk 6 =0 DO

i := i+ 1

IF i = 0 DO

p1 = r0

ELSE

βi =
rTi−1ri−1

rTi−2ri−2

pi = ri−1 + βipi−1

ENDIF

αi =
rTi−1ri−1

pTi Api

xi = xi−1 + αipi

ri = ri−1 − αiApi

END WHILE (3.13)

It is very important to notice, that to use CG we need only to remember four vectors and one
matrix which makes it attractive in the usage of memory space.

From [6], we now that the convergence rate of the CG-method can be easily estimated using
the following theorem:

Theorem 3.3. Let A and x be the coefficient matrix and the solution of (1.1), and let (xi, i =
0, 1, 2...) be the sequence generated by the CG method. Then, elements of the sequence satisfy
the following inequality:

||x− xi||A ≤ 2

(

√

κ(A)− 1
√

κ(A) + 1

)i

||x− x0||A, (3.14)

where κ(A) is the condition number of A in the 2 - norm.

We clearly see, that the convergence depends on the condition number of A, hence we can
conclude that the closer κ(A) is to 1, the faster we approach the solution of the (3.1). Therefore
it is desired to have a matrix with as low as possible condition number. This leads us to a
modification of the CG, called Preconditioned Conjugate Gradient Method.

3.4 Preconditioned Conjugate Gradient Method

The idea which helps us to escape the barrier created by Theorem 3.3 and improve the efficiency
and robustness of CG is to transform the original linear system (3.1) into one which has the
same solution, but is easier to solve with CG.
Let us consider the following problem:

A∗x∗ = b∗, (3.15)

14

where A∗ = P−1AP−T , x∗ = P−Tx and b∗ = P−1b, where P is a non-singular matrix. The
SPD matrix M defined by M = PP T is called the preconditioner. We can now use the original
CG algorithm to solve our new system. The result is the algorithm for the Preconditioned
Conjugate Gradient method, or in short-hand notation PCG-method. However, the presented
pseudo-code will be rewritten in such a way, that we will only use quantities without the ∗ sign
occurs.

Preconditioned Conjugate Gradient Algorithm

Choose x0, set i = 0, r0 = b−Ax0.

WHILE ri 6 =0 DO

zi = M−1ri

i := i+ 1

IF i = 0 DO

p1 = z0

ELSE

βi =
rTi−1zi−1

rTi−2zi−2

pi = zi−1 + βipi−1

ENDIF

αi =
rTi−1zi−1

pTi Api

xi = xi−1 + αipi

ri = ri−1 − αiApi

END WHILE (3.16)

From Theorem (1.1), which determines the convergence rate, we see, that in PCG, κ(P−1AP−t)
will be the coefficient telling us about the speed. That’s why the success will be depending on
a good choice of the matrix P.

There are two extreme choices, which show the range of PCG. If P = I, we will go back to
the original CG-method, whereas if we choose PP T = A, we will converge to the solution in
one iteration. There are many possibilities of choosing the preconditioner. However, we should
keep in mind, that the more complex our preconditioner will be, the more time we will spend
on construction and application in the program. That’s why, we will present only one easy
precoditioner.

For example, if we, take as M , the diagonal of matrix A, we will be dealing with the
most standard preconditioner, called Jacobi preconditioner, due to the origins in the Jacobi
method. The reason to choose this matrix is the fact, that it is easy to construct, the matrix
multiplication is very fast, because of the big number of zero elements. At last, but not least
diag(A∗) = 1, which results in saving n multiplications in the matrix vector product.

15

Chapter 4

Deflation

Definition 4.1. Let A be an SPD coefficient matrix from (1.1). Suppose that Z ∈ R
n×k, with

full rank, and k ≥ n − d is given and d is the number of zero eigenvalues of A. Then the
deflation matrix P ∈ R

n×n is defined as follows:

P := I − AQ (4.1)

where:

• Q := ZE−1ZT is called the correction matrix.

• E := ZTAZ is called Galerkin matrix.

Z is often called "deflation-subspace matrix" whose k columns are the "deflation vectors"
or "projection vectors". Right now, they do not need to be specified. However, they will be
chosen in such a way, that matrix E will be nonsingular[9].

We will now go back to our original linear problem, and solve it using the following decom-
position of the solution vector.

x = (I − P T)x+ P Tx (4.2)

notice, that

I − P = I − (I − AQ) = AQ (4.3)

AP T = A(I − AQ)T = A(I −QA) = A− AQA = (I − AQ)A = PA (4.4)

16

ET = (ZTAZ)T = ZTATZ = ZTAZ = E (4.5)

QT = (ZE−1ZT)T = ZE−TZT = ZE−1ZT = Q (4.6)

Let us now go back to (2.2)

x = (I − P T)x+ P Tx

x = Qb+ P Tx

Ax = AQb+ AP Tx

b = AQb+ PAx

(I − AQ)b = PAx

Pb = PAx (4.7)

It is crucial to notice, that the solution of (4.7) does not have to be a solution of the original
linear system(1.1), because PA is singular. That’s why, we will denote the solution of (4.7) as
x̄ to distinguish from x. We may now formulate a deflated system of our original problem as:

PAx̄ = Pb, (4.8)

and solve it using CG. However we need still to connect the solutions of (3.1) and (4.7), otherwise
the whole procedure would not have any reason to exist. The following Lemma [9]will provide
the needed link:

Lemma 4.2. Let P be the deflation matrix and Q be the correction matrix of the (1.1) under
the assumption that Z satisfies the requirements of Definition (2.1) and b is the right hand-side
of (1.1). Suppose that x be the solution of (3.1) and x̄ be the solution of (4.8). Then, the
following formula holds

x = Qb+ P T x̄ (4.9)

Proof. Notice that if we decompose x̄ as

x̄ = x+ y,

where y ∈ R(Z) ⊂ N (PA), then

P T x̄ = P Tx+ P Ty = P Tx, (4.10)

because P ty = On. This property have arisen from the fact that

P TZ = (I −QA)Z = Z −QAZ = Z − Z = On×k (4.11)

Hence, now it is easy to see that:

x = (1− P)Tx+ P Tx = Qb+ P T x̄.

It can be shown, that PA is SPSD, hence it can be interpreted as the new coefficient matrix
of the linear system (4.8).

17

4.1 Deflated CG and PCG Methods

We can now write the pseudo-code of the deflated CG method:

Deflated Conjugate Gradient Algorithm

Choose x̄0, set i = 0, r̄0 = P (b− Ax̄0).

WHILE r̄k 6 =0 DO

i := i+ 1

IF i = 0 DO

p1 = r̄0

ELSE

βi =
r̄Ti−1r̄i−1

r̄Ti−2r̄i−2

pi = r̄i−1 + βipi−1

ENDIF

αi =
r̄Ti−1r̄i−1

pTi PApi

x̄i = x̄i−1 + αipi

r̄i = r̄i−1 − αiPApi

END WHILE

xorginal = Qb+ P T x̄last (4.12)

We see that the algorithm is barely touched, the are only little differences between it and
the original CG algorithm.
We can also make a preconditioning of the system by using an SPD precondtioner M−1, and
then apply onto it Deflated CG method. As the result we get Deflated Preconditioned CG
Method, for which present the pseudo-code on the next page.

18

Deflated Preconditioned Conjugate Gradient Algorithm

Choose x̄0, set i = 0, r̄0 = P (b− Ax̄0).

WHILE r̄k 6 =0 DO

i := i+ 1

IF i = 1 DO

y0 = M−1r̄0

p1 = y0

ELSE

yi−1 = M−1r̄i−1

βi =
r̄Ti−1yi−1

r̄Ti−2yi−2

pi = yi−1 + βipi−1

ENDIF

αi =
r̄Ti−1r̄i−1

pTi PApi

x̄i = x̄i−1 + αipi

r̄i = r̄i−1 − αiPApi

END WHILE

xorginal = Qb+ P T x̄last (4.13)

4.2 Deflation Vectors

The choice of the deflation vectors is a very important part of the whole process of deflation
methods. In literature [9], we can find several proposition for the candidates to use. The most
known strategies for construction of those vectors are:

• Approximated Eigenvector Deflation Vectors

• Recycling Deflation Vectors

• Subdomain Deflation Vectors

• Multigrid and Multilevel Deflation Vectors

• Rigid Body Modes

It is worth to mention, that right know we do not have a universal strategy for constructing
deflation vectors, which would give the best results, when applied to every problem.
In this chapter we will restrict ourself to present only two strategies, namely Subdomain De-
flation and Rigid Body Modes.

4.2.1 Subdomain Deflation Vectors

In this variant of deflation, we choose the deflation vectors in the following way:
Let q > 1 and j ∈ {1 , . . . , q}. We divide the computational domain Ω into q subdomains

19

Ωj , by the following rules:

Ω̄ = ∪q
j=1Ω̄j ∧ ∀i 6=j Ωi ∩ Ωj = Ø (4.14)

Let’s also denote Ωh and Ωhj
, for the discretized domain and subdomains respectively. After

that we can introduce the deflation vector zj associated with the j-th subdomain as follows:

zj(i) =

{

0, xi ∈ Ωh\Ωhj

1, xi ∈ Ωhj

. (4.15)

After this step, we define Z = [z1 z2 . . . zq]. This finish the construction.

This method is strongly related to approaches known as Domain Decomposition Methods.

4.2.2 Rigid Body Modes

In the recent research in the field of deflation, we can find another approach for choosing the
deflation vectors. In [13], we may find an introduction to the Rigid Body Modes used as the
engine for the deflation vectors. The main idea is to set for the i-th deflation vector the i-th
vector of the null space of As, which is a submatrix created from the elements from the FEM
discreatisation, which are composing the aggregate subdomains.

20

Chapter 5

Domain Decomposition Methods

5.1 Introduction

With the rapid growth of high speed computing, we get a powerful tool to our hand. Multi-core
processors gives us a possibility to solve very big computation problems in a much faster way
than the traditional sequential ones, using the advantages which come from the architecture
of the machine used to compute. Among techniques which are based on the parallelization
of the computation process, domain decomposition methods are undoubtedly the best known
and perhaps the most promising for the problem studied by Plaxis. These methods combine
ideas from Partial Differential Equations, linear algebra, mathematical analysis and some part
of graph theory. In this chapter we will focus on the decomposition methods, which are based
on the general concepts of graph partitioning.

Definition 5.1. We will call a method a Domain Decomposition method, if its main idea will
be based on the principle of divide and conquer applied on the domain of the problem.

Figure 5.1: An example of domain decomposition

21

Let us consider the following problem. We want to solve the Laplace Equation on domain
Ω partitioned as shown in the figure above. Domain Decomposition methods attempt to solve
the problem on the entire domain

Ω =
s
⋃

i=1

Ωi (5.1)

from the problem solution on the subdomain Ωi. There are several reasons why this approach
can be advantageous. First of all, the subdomains may have a simpler geometry then Ω. Also
sometimes the problem may have a natural split into smaller regions, in which we can have
different equations that describe the model. However maybe the most important reason to use
Domain Decomposition Methods is the fact, that they are the best choice for the solution of a
problem, if we want to parallelize the computational process. Last, but not least, they allow
us to deal with the lack of memory, by splitting the domain into parts which will fit into our
computers.

There are several methods in the Domain Decomposition family. This report presents only
some of them.

5.2 Schwarz Alternating Procedures

The earliest known domain decomposition method is the alternating method of H. Schwarz
dating back to 1870. It consisted of three parts: alternating between two overlapping domains,
solving the Dirichlet problem on one domain at each iteration and taking boundary conditions
based on the most recent solution obtained from the other domain.
Let’s consider a domain Ω as shown in Figure 5.1 with two overlapping subdomains Ω1 and Ω2

on which we want to solve a PDE of the following form:

{

Lu = f, in Ω
u = g, on ∂Ω

. (5.2)

Let ∂Ω denote the boundary of Ω and the artificial boundaries, Γi, are the part of the boundary
of Ωi that is interior to Ω, and s is the number of subdomains. Schwarz Alternating Procedure
(SAP) for s subdomain problem will be of the following form:

Schwarz Alternating Procedure

Choose u0

WHILE no convergence DO

FOR i = 1, ...s DO

Solve Lu = f in Ωi with u = uij in Γij

Update u values on Γij, ∀j

END FOR

END WHILE (5.3)

In our case, s = 2.

22

In many applications, it is possible to use a matching grid in the overlap region to avoid the
duplication of the unknowns on the overlap. The matching version of the alternating method
is known as the multiplicative Schwarz method (MSM). Writing the linear system for the
discretized problem as Au = f , we can write the iteration in two fractional steps:

un+1/2 = un +

[

A−1
Ω1

0
0 0

]

(f − Aun)

un+1 = un+1/2 +

[

0 0
0 A−1

Ω2

]

(f − Aun+1/2) (5.4)

where AΩi
stays for the discrete form of the operator L restricted to Ωi.

We can easily see, that the main part of the multiplicative Schwarz method is sequential, so it
cannot directly use the benefits of the multi-core architecture and therefore it is not a suitable
choice when making a parallel solver.

In literature [10] we can find also another approach to SAP, which is more parallel-oriented.
This method, called Additive Schwarz method (ASM), can be considered as a parallel
version of the multiplicative Schwarz method. Its main idea is to change presented previous
algorithm by combining the computation of influences to the solution from of each subdomain
into one iteration, instead of doing this in each step. For our our example with two domain,
the iteration step can be written as:

un+1 = un +

([

A−1
Ω1

0
0 0

]

+

[

0 0
0 A−1

Ω2

])

(f −Aun) (5.5)

If we make a substitution of Bi = Rt
iA

−1
Ωi
Ri, where Ri is the rectangular restriction matrix that

returns the vector of components defined in the interior of Ωi, then the above equation will be
of the following form,

un+1 = un + (B1 +B2)(f − Aun) (5.6)

Having this equation, we can easily generalized ASM for s number of subdomains, by simply
adding Bi(f −Aun) to the right-hand side. As the result of this, for a domain Ω =

⋃s
i=1Ωi,we

can write the algorithm for Additive Schwarz Method in a following form

Additive Schwarz Method

Choose u0, i = 0,

WHILE no convergence DO

ri = b−Aun

FOR i = 1, ...s DO

δi = Biri

END FOR

un+1 = un +

s
∑

i=1

δi

i = i+ 1

END WHILE (5.7)

23

5.3 Schur Complement

Let’s consider a following problem:

Lu = f in Ω

u = g on ∂Ω (5.8)

with the domain Ω partitioned onto s subdomains. After discretization of the problem, we
can label the nodes by subdomain in a specific way, so the linear system will have a following
structure:

B1 E1

B2 E2

. . .
...
Es

F1 F2 . . . Fs C

x1

x2
...
xs

y

=

f1
f2
...
fs
g

(5.9)

where each xi represents the subvector of unknowns that are interior to subdomain Ωi, and y

represents the vector of all interface unknowns. It is useful to write the system in a more simple
form, i.e.

A

[

x

y

]

=

[

f

g

]

,where A =

[

B E

F C

]

(5.10)

and where E represents the subbdomain to interface coupling seen from the subdomains, while
F represents the interface to subdomain coupling seen from the interface nodes. To illustrate
this, let us consider a domain split into only two subdomains. Let’s assume that the subdomains
are of the same size and both are squared. Then an illustrative mesh and corresponding
coefficient matrix A will look like

Figure 5.2: An exemplary mesh for the problem described above.

24

Figure 5.3: Matrix associated with the finite difference mesh of the figure 5.2

Now, we can easily express x with the new terms. From the the first equation it follows
that

x = B−1(f − Ey) (5.11)

If we now substitute this into the second equation, we will obtain a reduced system,

Sy = g − FB−1f (5.12)

where the matrix S is called the Schur complement and is created by the following rule:

S = C − FB−1E (5.13)

If we can form S and solve the associated linear system, then the interface variable y

can be obtained. From this we can easily obtain the remaining variable x. Because of the
block structure of B, we notice that the solution of the system reduce to solving s separate
systems. Because the sets of the variables in each of the system are disjoint, we can solve them
simultaneously in parallel. This approach is called Block Gaussian Elimination (BGE). The
algorithm for it will be now presented:

Block Gaussian Elimination Algorithm

SOLVE BE ′ = E, Bf ′ = f

COMPUTE g = g − Ff ′, S = C − FE ′

SOLVE Sy = g′

COMPUTE x = f ′ − E ′y (5.14)

The partitioning used for the BGE method was edge-based. It means, that a given edge
in the graph does not straddle two domains and if any two vertices are coupled, they have to
belong to the same subdomain. In the graph theory, this point of view is less common than

25

the vertex-based partitioning, in which a vertex is not shared by two subdomains (except when
subdomains overlap).

We will call interface edges all edges which link vertices that are not in the same subdomain.
Interface vertices will be those vertices in a given subdomain, that are adjacent to an interface
edge. Now due to the fact, that we split the domain according to a new rule, we change the
ordering of the nodes. Now the interface nodes are labeled as the last nodes in each subdomain.
To illustrate this, let us recall the example used to present edge-based partitioning and apply
new rules to it. As the result we will receive the following mesh and coefficient matrix:

Figure 5.4: An exemplary mesh for the problem described above

Figure 5.5: Matrix associated with the finite difference mesh of the figure 5.4

Let us consider now the Schur complement system obtained with the new numbering of the
nodes. The coefficient matrix A now has a natural s-block structure. For example, if s = 2,
the matrix will be of the following form:

A =

[

A1 A12

A21 A2

]

. (5.15)

26

Also for each subdomain, the variables will be now have it’s own local structure, i.e.,

zi =

[

xi

yi

]

where xi now denotes interior nodes, while yi denotes the interface nodes associated with
subdomain i. Now each matrix Ai, will be called local matrix and it will have similar structure
to matrix A from (4.9),

Ai =

[

B1 Ei

Fi Ci

]

. (5.16)

as before, Bi represents the matrix associated with the internal nodes of subdomain i, Ei and
Fi represents the susbdomain to interface coupling seen from the subdomains and interface to
subdomain coupling seen from the interface nodes respectively and Ci will be the local part of
the interface matrix C, which represents the coupling between local interface nodes. Matrices
Aij contains zero sub-block in the part that acts on the variable xj , therefore we can write that

Aij =

[

0
Cij

]

It is worth to mention, that most of the Cij matrices are zero, since only those indices j of the
subdomains that have coupling with subdomain i will yield a nonzero Cij.

If we now write the part of linear system that is local to subdomain i, as

Bixi + Eiyi = fi
Fixi + Ciyi +

∑

j∈Ni
Cijyj = gi

. (5.17)

The term Cijyj is the influence coming from the neighboring subdomain with number j. Nj is
a set of indexes of the subdomains which are adjacent to subdomain j.
If we assume that Bi are nonsingular, then we can apply the similar solution technique, which
we used to develop the BGE. As the result of this, we receive a system of reduced systems

Siyi +
∑

j∈Ni

Eijyj = gi − FiB
−1
i Ei (5.18)

where Si is the "local" Schur complement, and is defined as

Si = Ci − FiB
−1
i Ei. (5.19)

27

5.4 Numerical Illustration

The presented numerical experiments in this section illustrate how does the theory from this
paragraph acts in practice. Both presented methods, namely Schur Complement Method and
Schwarz have been tested on the standard test equation, i.e. on the Poisson equation

−∆u = f, (5.20)

on the domain Ω, which was chosen to be of a rectangular shape, and with Dirichlet boundary
condition. However due to the fact, that we are going to work with the Schwarz method in the
future, we restrict ourself only to present results only for this method.

The domain Ω after discretization has a n × 2n + 1 size. We decided to split it into two
subdomains Ω1 and Ω2 along the vertical middle, with a overlap at it. Below we can see a
graphical illustration of this process, when n = 4.

Figure 5.6: Domain Ω split into two subdomains, Ω1 and Ω2.

We decided to enumerate the nodes along the columns, i.e. the node at (i, j) position will be
consider to be i+ (j − 1)n-th node in the ordering.

28

Now we are going to see how does the Schwarz alternating process do works for this problem.
We will check both standard variants of SAP, i.e. Schwarz Additive and Schwarz Multiplicative
Method. We will not only present only how does the convergence rate for each of the methods
looks like, we will also look into the effect of the overlap region’s size. We will do this simply
by adding a next column to each of the subdomain. We will say. Below we can see a example
of adding two columns to the subdomains after discretization, for n = 4.

Figure 5.7: Domain Ω split into two subdomains, Ω1 and Ω2, with extended overlap of size 2.

We will say, that a subdomain has a extended overlap of size k, if it will consist of the base
subdomain nodes and k additional columns.

29

5.4.1 Multiplicative Schwarz Method

First, we will look at the MSM method. We present how does the convergence behavior changes
by increment of the overlapping region of two subdomains.

Iteration step

S
iz

e
of

 th
e

ov
er

la
p

5 10 15 20 25 30 35 40
1

2

3

4

5

6

7

8

9

10

−12

−10

−8

−6

−4

−2

0

Figure 5.8: Contour plot of the log10 (i-th residuum) for MSM

The figure above shows us an essential information about the Multiplicative Schwarz Method.
We see, that depending on the size of the overlap of two subdomains, we get faster or slover
convergence of the method. We can notice, that the we are dealing here with a logarithmic
dependency, between the size of overlap and number of iteration needed to achieve a certain
error size.

30

5.4.2 Additive Schwarz Method

Now, we will present the result of the same experiment done for ASM.

Iteration step

S
iz

e
of

 th
e

ov
er

la
p

5 10 15 20 25 30 35 40
1

2

3

4

5

6

7

8

9

10

−12

−10

−8

−6

−4

−2

0

2

Figure 5.9: Contour plot of the log10 (i-th residuum) for ASM

As it was expected, we get a similar result as in MSM. Also here we have a logarithmic de-
pendency between the number of iterations needed to achieve wanted error size and the size of
overlap. However we may notice a slight slowdown of the convergence rate, which was expected,
because ASM unlike MSM is computing the correction from each subdomain without any up-
dates from neighboring subdomains. This is a drawback, however we can easily neglected it,
because of the fact, that the corrections can be computed simultaneously, which can speeds up
the whole processes in the sense of spent time.

We stop at this moment further investigation of the Schwarz method, due to the fact, that
it is tested on a trivial problem. We will go deeper in the next chapter, when we will be
working with test problems, provided by Plaxis.

31

Chapter 6

Numerical Tests and Experiments

6.1 Introduction

After presenting all the theory, which was needed, we can start to work in finding a good,
parallel-friendly, solver for linear systems which are generated by Plaxis software. We have
already done some tests, which are presented in the Literature Study Report and we will not
show them again. However, we will recall our initial guess for the method which we will use to
solve systems.

6.2 Choice of the Method

Initially we have chosen, a Domain Decomposition approach was a starting point for solving
the problem, due to the fact of the good results noted in this field of mathematics. Nowadays,
domain decomposition methods are getting more popular, because the underlying idea gives
plenty of possibilities to parallelize the solution process, which is a wanted property when
solving big systems of equations.

From the big family of methods of this branch of mathematics, we have chosen to use one
of the Schwarz Alternating Processes approaches, i.e the Additive Schwarz Method (ASM)
as our solver. First reason for it was the fact, that the code can be easily converted into a
parallel program. Secondly, there was already a try to use a Schur Complement approach, but
the results were not as good as it was expected. Also there are examples of many successful
implementations of Schwarz methods in real life problems, which only encouraged us to take
ASM as our framebox for the solution of the linear systems.

Now when we have chosen ASM, to be our main core of the solver, we are going to upgrade it,
by incorporating onto it two methods, which were presented in this report, i.e. Preconditioned
Conjugate Gradient Method, for the solution of the linear systems of the subdomains, and the
Deflation method to improve the spread of the information coming from one subdomain to
other ones. This combined together is going to be our tool in solving the linear systems.

The choice of the subdomains on which we will perform the ASM is going to be done not
by an arbitrary cut of the coefficient matrix. Instead, we are going to create the blocks in the
preconditioner, by adding the elements from the FEM process, which contribute to an area of
the same material type. In this way, we will have a possibility to incorporate an intelligent
partition of the domain, which will preserve the physical structure of the problem.

32

Remark Unless stated otherwise, all implementations of the algorithms which were pre-
sented in this Master Thesis and are used in numerical experiments, are written by us in Matlab.
Also, if not mentioned, the machine used for tests is a Lenovo computer (Model R61) with a
Intel(R) Core(TM)2 Duo CPU T5550 @ 1.83GHz and 2 GB of RAM.

6.3 Region Growing Algorithm

We start by using simple problems in which layers are regular and the same number of elements.
We were able to set subdomains easily, by looking at the picture of the problem. Now, it is
natural to start working with more complicated examples. It is obvious, that the first thing
which should be changed is the structure of the layer. Instead of having rectangular layers,
which are parallel to each other, we consider problems in which the parts of the same material
type have different shapes and sizes. Some of them may be embedded in other layers. Because
of that, we need to have a tool, which we will use to recognize those areas inside the domain. For
this purpose, we develop a Region Growing approach. However, we need additional information
about the connectivity of Elements from the FEM discretisation, to be to perform in an efficient
way.

6.3.1 Region Growing 1.0 algorithm

The first approach to this issue, based on the available knowledge, was a direct, primitive
algorithm. Due to the fact, that at the beginning all we knew about the Element was what
kind of material it is made of, we could separate the set of all Elements into disjoint subsets of
Elements of the same type. Next, we take the first Element, put it into an array and compare
it with each of the other Elements from the same set. If the intersection of the indices of the
degrees of freedom was not empty, we know that they are connected with each other. So we
put the checked Element into the array and remove it from the set. After that we check the
next one from the set till the last one. After that, we go the second Element in the array,
and perform the procedure of comparing and removing from the set in a loop, until the point
when there was no expansion of the array in an iteration. This would mean, that all Elements
in the array are creating an area of the same material type, which is not connected with any
other Element of the same type. After this, if the subset of Element with the same material
type were still non empty, then we would perform the procedure again, as described above, till
the moment when there were no more Elements of the same type, which would be in the base
subset. Then we would go the next material type and do the same again etc.
As we see, this algorithm is quite primitive, because in each loop it has to compare the chosen
Element with all the Elements of the same material type, which for big problems can be a
serious drawback. Actually we can come up with a simple example of a problem, in which
the number of needed comparisons is at least (n−1)(n−2)

2
, where n is the number of Elements.

If we consider Elements as nodes which are connected whenever the Elements share at least
one degree of freedom, then we will see that for a path graph [16] we will have to do exactly
(n−1)(n−2)

2
calls of the comparing function, because the first node will need to be compared with

(n−1) nodes, the second one with (n−2) and so on. By induction we can state that ultimately

we will end up with (n−1)(n−2)
2

comparisons.
However, we have an improved version of this algorithm, which works much faster.

33

6.3.2 Region Growing 1.1 algorithm

The main difference, between the improved version and the original one lies in the change in
the comparison procedure. Rather then comparing in each outer loop, the degrees of freedom of
the chosen Element with the Elements taken in the inner loop to see, whenever both Elements
are connected, we now remember each degree of freedom of Elements already included in the
array and compare them with the ones of the checked Element. This tightens up the whole
procedure considerably, because in each call of the function we have already checked to see it
if the Element is connected with any of the Elements from the area which are known at this
time.We also notice, that if an Element is connected with the area, then it is included to the
area, which means that the next Element which will be checked will be checked whenever it
is also connected with the just included Element. Those two advantages makes this Region
Growing algorithm a version which can and should be used instead of the first one.

6.3.3 Region Growing 2.0 algorithm

We see that both algorithms do not use any information about the connectivity of the Ele-
ments, which implies that if we have two disjointed areas of the same material type, then when
we "discover" the first one, we will always check all Elements from the second one, if they
are connected with it. This leads to the conclusion, that we will have plenty of unnecessary
function calls. Also if we manipulate the example used to show how many comparisons we need
to perform, namely we would then change the enumeration, then we could end up again with
the same number.
For that reason we decided to get more information about the Elements, to have a better al-
gorithm for recognition of the areas of the same material type. We receive information about
the neighbours of an Element. With this, we can now rewrite our algorithm to a form where
we will not do any unnecessary calls function. Actually, our problem can now be seen, as
finding spanning trees in a graph, which is a well known problem in the Graph Theory and has
several algorithms for finding them. Because in our case each call of the function is regarded
as the same in the sense of cost to perform it, we can easily choose for our problem the BFS

(Breadth-first search) algorithm as the optimal tool.
A spanning tree of a connected, undirected graph G, is a tree composed of its vertices. For
more information, see [15].

We conclude this section with a table which shows the CPU time for each of the presented
algorithms to find each area for Problem 6 [see Appendix 8.1]:

Algorithm Time
Version 1.0 493.717990 seconds.
Version 1.1 5.24848 seconds
Version 2.0 0.673795 seconds.

Table 6.1: CPU time for Region Growth Algorithms

We can find Matlab implementations of versions 1.1 and 2.0 in the Appendix (8.2).

34

6.4 Deflation Tests

In the Literature Study Report, all of the presented results are from tests, without Deflation.
The reason for this is that there were no reasonable results which could be shown. As we
emphasized before, Deflation plays an important role in our study and that is why we investi-
gated this subject. In this chapter we show the results obtained when analysing the influence
of certain strategies while constructing deflation vectors. We would like also to mention, that
the vectors are computed

6.4.1 The Choice of Deflation Vectors

We start by answering the question about the construction of the Deflation matrix, which plays
an important role in the whole algorithm. At the beginning of this project, we decided to use
the Rigid Body Modes approach for the creation of Deflation Vectors. We will now present the
results, which will confirm that our decision was the right choice.
We do the following. For each area of the same material type, we assemble all associated
Elements to it and add them together. The result of this operation will be then used to
compute its null space which are used as Deflation(s) Vector(s). We will check whenever we
should take all areas or we can neglect some of them. As our first test problem for this, we
will use Problem 3. Below we can see, how does the inclusion of different layers affect the
convergence rate of the method. First we will look at the case, when we do not usethe Schwarz
method in preconditioning. Instead, we will use a diagonal scaling. This approach allows us to
see the real effect of the Deflation on the convergence of DPCG.

0 100 200 300 400 500 600 700 800
−10

−8

−6

−4

−2

0

2

Iteration step

lo
g1

0(
 R

es
id

ua
l /

 n
or

m
(b

)
)

Wihout

1st layer

2nd layer

3rd layer

1st 3rd layers

1st 2nd 3rd Layer

Subdomain

Figure 6.1: Problem 3 with diagonal scaling and several choices for deflation vectors

35

36

In the picture we can see, that the use of Deflation technique, can have a big impact on the
convergence rate of the method. Because we have only 4 layers in this problem and the one
on the bottom is fixed, we can have only several possibilities to test. The first and the third
layer is composed of a much stiffer material than the second one. We see, that the best results
we get, when we include those two stiff layers in the Deflation matrix. We also notice, that
an additional inclusion of the second layer does not improve significantly the already achieved
convergence rate.
The results of this test were stimulating to check whenever the observed property is a singularity
or a regularity. For that we prepared a variation of Problem 3, namely Problem 4, in which we
have more layers made of stiff and soft material types, which are ordered from the top. We
present now the results of the same experiment for the new problem.

0 200 400 600 800 1000 1200
−10

−8

−6

−4

−2

0

2

Iteration step

lo
g1

0(
 R

es
id

ua
l /

 n
or

m
(b

)
)

Wihout

1st layer

5 layers

1st 3rd 5th layer

3rd layer

5th Layer

2nd 4th layeer

Subdomain

Figure 6.2: Problem 4 with diagonal scaling an several deflation vectors choices

Once again, we notice, that the best choice for the Deflation Vectors, is to take the null spaces
of the stiff layers from the Problem. In this example, this are the 1st, 3rd and the 5th one. We
see, that we deal here with a noticeable change of the error size. Also in this problem we can
notice, that the addition to the Deflation Vectors the ones which correspond to the soft layers,
when we have already included the stiff ones, does not improve the convergence rate.
At this point, we need to emphasize the fact, that those test were done without the Schwarz
method as preconditioner. Therefore it is crucial, to check whenever the result which were
just presented are valid for the Schwarz preconditioner. That is why, we will now show the
output of the same tests, but with Additive Schwarz Method (ASM) used as the preconditioner.

37

We return now to the Problem 3.

0 10 20 30 40 50 60 70
−10

−8

−6

−4

−2

0

2

Iteration step

lo
g1

0(
 R

es
id

ua
l /

 n
or

m
(b

)
)

Wihout

1st layer

2nd layer

3rd layer

1st 3rd layers

1st 2nd 3rd Layer

Subdomain

Figure 6.3: Problem 3 with ASM preconditioning and Complete Cholesky Factorization

In this example, we use 4 subdomains for the preconditioner, each corresponding to a layer
of the same material type soil. We notice that the use of Deflation method which we aim to
use, has no significant affect on the speed of finding the solution. We only see, that it does
not deteriorate it, as it is in the Subdomain Deflation method. However, in this case we used
Complete Cholesky Factorization for the precondioner, which forces us to remember all values
of it, which is a serious drawback in the memory sense. Therefore, we will investigate now, if
the change to an Incomplete Cholesky Factorization, will affect the observed results.

38

0 20 40 60 80 100 120 140
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

Iteration step

lo
g1

0(
 R

es
id

ua
l /

 n
or

m
(b

)
)

Wihout

1st layer

2nd layer

3rd layer

1st 3rd layers

1st 2nd 3rd Layer

Subdomain

Figure 6.4: Problem 3 with ASM preconditioning and Incomplete Cholesky Factorization

The drop tolerance in Incomplete Cholesky is set to 10−3 and we use the same preconditioner
as before. We now observe, that the Deflation is now making a difference in the speed of our
method. Once again, we see that the best choice is to take the stiff layers for the Deflation
Vectors, and once again we see that the addition of soft layers, if we already took the stiff
ones does not drastically improve the rate of convergence. Nevertheless, we observe, that the
difference in the number of iteration of DPCG with only stiff layers and PCG without any
Deflation is equal 16. This may be regarded as not much, however the size of the problem is
also small. We may expect that, for larger problems this number will be more perceptible.
Let us now check the same for the second problem used in this section, i.e. Problem 4.

39

0 5 10 15 20 25 30 35
−10

−8

−6

−4

−2

0

2

Iteration step

lo
g1

0(
 R

es
id

ua
l /

 n
or

m
(b

)
)

Wihout

1st layer

5 layers

1st 3rd 5th layer

3rd layer

5th Layer

2nd 4th layeer

Subdomain

Figure 6.5: Problem 4 with ASM preconditioning and Complete Cholesky Factorization

As we could expect, the number of iterations needed to achieve the desired level for all
chosen methods is quite close. This is similar to the results for Problem 3. However in this
example, the numerical fluctuation is much stronger, therefore we have a difference in the speed.
Because of that, we may expect a bigger gap between the DPCG for the stiff layers and PCG,
when we will the use Incomplete Cholesky Factorization.

40

0 10 20 30 40 50 60 70 80 90
−10

−8

−6

−4

−2

0

2

Iteration step

lo
g1

0(
 R

es
id

ua
l /

 n
or

m
(b

)
)

Wihout

1st layer

5 layers

1st 3rd 5th layer

3rd layer

5th Layer

2nd 4th layeer

Subdomain

Figure 6.6: Problem 4 with ASM preconditioning and Incomplete Cholesky Factorization

Again, one more time we see, that the fastest method is the one with the stiff layers used
to compute the Deflation Vectors. And once again we see that the addition of soft layers has
no affect on the speed.
We conclude this section on the base of the presented results with a statement, that the best
choice to create the Deflation Vectors is a physic based approach, which recognizes areas of the
same material type. Also, we can neglect the soft areas due to the fact, that the influence of
the stiff domain dominate the effect of Deflation.

6.5 Choice of the subdomains

We already presented some results of the tests which shown us how to choose the subdomains
in the Literature Study Report. However, at that time we did not use Deflation method in it,
which can speed up the whole process. Also, the fact that at that time we were working mainly
with Problem 3, which is quite regular. Therefore, we show some of our new results in the case
of the choice of the subdomain, which will confirm our consequent selection of the physic based
decomposition of the domain.
We start with a study of the number of subdomains, for the Problem 4.The problem consist
of 120 elements, which compose 6 disjoint layers of the same material type. Each layer can be
decompose into 2 sublayers, hence we deal here with 12 sublayers which can be combined into
2, 3, 4, 6 and 12 subdomains. We now present the result of the tests which shows us how the
number of the specified subdomains affects the convergence rate. We use the Deflation Vectors
made from the 1st, 3rd and 5th layer (Stiff ones). For the following results, we do not use
Cholesky Factorisation with a drop tolerance. Instead we use the whole information from it.

41

We also set the stop criterion to 10−6.

2 3 4 6 12
0

50

100

150

200

250

300

350

subdomains

ite

ra
tio

ns

Figure 6.7: Problem 4 with Deflation and ASM preconditioning

We can see, that in two cases, we need much more iterations to complete the task of
solving the system, i.e. for the case with 4 layers and 12 layers. Both of them have the same
property, which is the decomposition of the layers of the same material type. In the case of
only 2 subdomain we assembled first 3 layers to one of the subdomains and the next 3 layers
to the second one. In the case of 3 subdomains we assembled 2 layers to each. In the case
of 6 subdomains we just take each layer as a subdomain. But for 4 subdomains, we had to
stop thinking in layers of material type and start to look at the problem from the angle of
sublayers. Therefore we had to assemble 3 sublayers to each subdomain, which destroyed the
physic based structure of the preconditioner. The same problem occurs with 12 layers. Hence
we can conclude, that the decomposition of the layers of the same material type in the setting
of the subdomains has a strong influence in deteriorating the rate of the convergence.
Due to the fact, that the aim is to use Incomplete Cholesky Factorisation within the solution
of the problem, we will now present the results of the tests with the use of Cholesky. How does
the size of the drop tolerance in the Cholesky Factorisation affects the convergence rate in this
test. We set the drop tolerance to 10−3.

42

2 3 4 6 12
0

50

100

150

200

250

300

350

subdomains

ite

ra
tio

ns

Figure 6.8: Problem 4 with Deflation and ASM preconditioning

As we could expect, the number of iteration has grown, because we have increased the size
of the drop tolerance, hence we lose more information about the problem. However, the crucial
aspect of those results is that we have preserved the behaviour which was noticed in the first
test, i.e. that the smallest number of iterations is when we do not allow to decompose the areas
of the same material within the problem. Also an interesting fact can be read from the plot
above, namely the smallest number of iterations is achieved when we take 6 subdomains for
creating the preconditioner. Although it is not visible in the picture, we need to perform 69
iteration steps for this case, when for 2 subdomains we need 77 iterations and for 3 subdomains
76.

43

6.5.1 Metis

As we seen on the page before, we need to have a strategy when decomposing the domain of the
model. However we should also have a solution to a case, when one or more of the subdomains,
which were recognized by the Region Growing algorithm, are much bigger then the rest. This
can be a serious problem, because we may end up with a scenario, when we will need to wait for
the computations associated with one of the subdomains, while all the others will be already
done long time ago. Therefore we need to have an idea how to split those big ones.

One of the approaches for solving this problem, could be an algebraic split of the matrix
A into number of blocks, with an overlap parameter. However this leads us to the following
questions: where should we split? How big should be the overlap? We already know from the
tests performed on the whole domains, that the algebraic split is a complex problem and it is
not easy to deduct where should we cut, if we only look on the matrix. We did some tests
with this approach only to conclude, that actually we move in the dark and there is no simply
answers to questions stated before.

On the other hand, we could divide the Elements, which contribute to the big subdomains,
into subsets, where each of them would be now an independent subdomain. But then what
should be the criterion for creating subsets?
Definitely, the Elements from one set should be connected with each other. For that, we would
need a tool which ensures that we do have this property. We could use the Region Growing
algorithm and apply it to the big subdomain. After having almost the half of the Elements in
the array, we would stop and set the input of it as one of the new subdomains. For the rest
we would have to apply the algorithm one more time, to be sure that it is connected. This
seems to be a good idea, but actually it does not gives us certainty, that we will end up with
similar sized subdomains, due to the fact, that the region growths in each side. This can ,
combined with some structures of the mesh, to bad cases, when we would have one medium
sized subdomain, and a few small ones. Also everything would depend on the seed Element,
which would be chosen as the starting one. We could think of trying to modify the Region
Growth algorithm, to somehow avoid those obstacles, for example try to use DFS (Depth First
Search) instead of BFS, but it would lead us only to reformulation of the difficulties which
occurs. Actually the roots of those problems lies in the essence of graph search algorithms, or
to be more precisely in a graph itself and it’s topological aspects, like the lack of recognition
of the space in which it is. Therefore we need to neglect this approach due to it’s internal barrier.

Fortunately for us, there is a tool for creating those subsets called the MeTiS software.
MeTiS is a set of serial programs for partitioning graphs, partitioning finite element meshes, and
producing fill reducing orderings for sparse matrices. The algorithms implemented in MeTiS are
based on the multilevel recursive-bisection, multilevel k-way, and multi-constraint partitioning
schemes. For more information, see [References to MeTiS Manual]

44

We now present the results of partitioning the big layers via MeTiS. For the tests, we
decide first to take X Problem 8a and Problem 8b. We set the drop tolerance in Incomplete
Cholesky Factorisation to 10−2. For the Deflation Vectors we take all of the recognizable layers.
It means, that we do not use MeTiS at this step.
First, Problem 8a.

0 10 20 30 40 50 60 70 80
−8

−6

−4

−2

0

2

4

Iteration step

Lo
g 10

(j−
th

 r
es

id
uu

m
)

Without MeTiS
With MeTiS − Split into 2
With MeTiS − Split into 3
With MeTiS − Split into 4
With MeTiS − Split into 5
With MeTiS − Split into 6

Figure 6.9: Problem 8a and split of the layer with MeTiS

From the figure above we clearly see, that MeTiS works splendid. The split of the big layers
into two, has only a slight affect on the convergence rate. We see that they are almost the
same, the difference is of the size of 4 iteration only, which is a really small number, if we like to
compare it with several tests which were perform with the use of algebraic split. We also notice
an interesting fact, which is that the split into 4 subdomains, is better than splitting it into 3.
This is a result, which is at least intriguing, and for which we do not have an explanation for
now.

45

Now, Problem 8b. Again, we are the witness of the magnificent work of MeTiS software.

0 10 20 30 40 50 60 70 80
−8

−6

−4

−2

0

2

4

Iteration step

Lo
g 10

(j−
th

 r
es

id
uu

m
)

Without MeTiS
With MeTiS − Split into 2
With MeTiS − Split into 3
With MeTiS − Split into 4
With MeTiS − Split into 5
With MeTiS − Split into 6

Figure 6.10: Problem 8b and split of the layer with MeTiS

In this case, the difference between the approach without splitting the biggest subdomain and
the one with it, is only 3 iteration. Again, it is a big success for MeTiS. However we see, that
it takes more iterations for solving the problem, than it took in the previous test, but this is
due to some numerical problems with computing the Deflation Vectors which actually can be
notice, if we look at the curves of the error functions. Also in this problem, we encounter the
same behavior between the split into 3 and into 4 subdomains.

Presented results of both problems and the ones which were not, encourages us into further
investigation and application of MeTiS as a essential tool for splitting bigger subdomains.

46

After seeing the results of the test with MeTiS done for two versions of Problem 8, we
going one step further, to Problem 9, which also has one big layer. Once again we would like
to see, how does the partition of it affects the convergence of the method. For the Deflation
Vectors, we take subdomains which correspond to the stiff areas. We set the drop tolerance for
Incomplete Cholesky to 10−2. Below we see the results of this test.

0 10 20 30 40 50 60 70 80
−8

−6

−4

−2

0

2

4

Iteration step

Lo
g 10

(j−
th

 r
es

id
uu

m
)

Without MeTiS
With MeTiS − Split into 2
With MeTiS − Split into 3
With MeTiS − Split into 4
With MeTiS − Split into 5
With MeTiS − Split into 6
With MeTiS − Split into 7
With MeTiS − Split into 8
With MeTiS − Split into 9
With MeTiS − Split into 10

Figure 6.11: Problem 9 and split of the layer with MeTiS

Again, we see that the choice of using MeTiS as a tool to split big subdomains, is a right
choice. After splitting the biggest part of the model into 2, the number of needed iteration is
only increased by 5. This, combined with the fact, that we use a drop tolerance of size 10−2 is
an achievement, which should not be neglected.
Also in this problem, we observe a behaviour which may seems odd, i.e. the speed of the case,
when we split into 8 subdomains. It turns out, that it is much better to divide the big layer into
8 parts instead of 4,5,6 or 7. Unfortunately, we still do not know what is the reason for that.
We may expect only, that it is connected with the structure of the graph which corresponds to
the connections of the Elements. That it is much better in the sense of minimizing the loss of
connections, to divide it into 8 parts. But this is a thing, which could not be predicted.

47

6.6 Contrast between an algebraical and a domain based

preconditioning

We would like to show the contrast in using the investigated approach which incorporates the
physics of the problem, with one which does not take it into account, i.e. an algebraical split.
The following test was performed in Matlab. To illustrate this, we use Problem 7 as our test
problem.

• In the first solution, we will use our Region Growing Algorithm to identify areas of the
same material type, and use them to create preconditioner blocks.

• In the second approach, we will create the blocks by simply dividing the coefficient
matrix A into 6 blocks in the following way:
We will take the dimension size n, divide it by six and call it l. Then we will create the
first block by cutting from matrix A a squared matrix, starting from the position (1, 1)
and ending at (l + overlap, l + overlap). The second block will be created in the same
way, but now the starting point will be (l − overlap, l − overlap) and the ending one at
(2l+ overlap, 2l+ overlap), and so one. In our case we have taken the overlap of size 20.

For this test we do not use Deflation technique, neither Cholesky Factorisation. Below we can
see the result of this test:

0 200 400 600 800 1000 1200
−8

−6

−4

−2

0

2

4

Iteration step

Lo
g 10

(j−
th

 r
es

id
uu

m
)

First Solution
Second Solution

Figure 6.12: Problem 7 without Deflation

This plot shows us the true influence of the physic based approach to the problem. We can
see, that the number of iteration needed to achieve the desired size of the residual, which in

48

our case is 10−6, is for the first solution a really small number, if we compare it with the second
one. We see here the power of the inclusion of physics in choosing how to partition the problem
into subdomains. The plot above is one more proof, that the algebraic split of the coefficient
matrix A, which does not incorporate the knowledge about the modelled phenomenon, is no
match to the one based on physical knowledge.

49

6.7 Tests with the Habanera solver

Some of the test cases, which we obtained from Plaxis, were of the size, that we could not
use Matlab any more, due to its limitation. Therefore we switched to C, and rewrote most
of the code, but there occurred some problems with the implementation of the Incomplete
Cholesky Factorisation. However, by the kindness of Habenera, the company which is writing
the parallel version of the solver, which is going to be used in the Plaxis software, we are able to
use a preliminary version of it, to check, how does our partitioning work in the real environment.

Picos (Plaxis Iterative Concurrent Solver) [14]can be used to solve sparse linear systems of
equations of the form

Kx = b (6.1)

efficiently on computers with multiple processing cores. It is based on the domain decompo-
sition method in which concurrency is obtained by dividing the degrees of freedom (DOFs)
into slightly overlapping groups, called subdomains, that are assigned to different threads of
execution. PICOS applies a local, domain-wise preconditioner in combination with a global
algebraic coarse grid preconditioner to improve the convergence rate of the solution process.
In the early stage of the development of PICOS, the preconditioner was based on the MeTiS
software applied to the nodes of model. We will refer from now on to this partition scheme
as MeTiS based. Two types of solvers are provided by PICOS: one based on the Conjugate
Gradient (CG) method, and another based on the Generalized Minimum Residual (GMRES)
method. The former can be used only to solve linear systems involving a symmetric, positive
definite coefficient matrix. The latter can handle non-symmetric coefficient matrices and is
more robust than CG, but requires more memory. In our tests we will work only with the CG
based method.
The preconditioner is based on the Restrictive Additive Schwarz method, a variation of the
normal ASM, with non overlapping subdomains. Then, it adds to each of the subdomain one
an additional layer of Degrees of Freedom, which are associated with the nodes of the outer
sphere of the subdomain. They are use to compute a better correction for the subdomain. They
are not treated as the part of the subdomain, they are only use to achieve a more accurate
solution, i.e. when computing the correction for the subdomain, we use the original Degrees
of Freedom from the subdomain and the additional ones. But after this, when we apply the
correction, we apply it only to the original ones.

6.7.1 Problem 6

For the first test, we decided to check the performance of our approach with the Problem 6, an
example with which we already worked and we know what expect. We could find 6 subdomains,
each of them corresponding to one area which consist of one material type.
The results of applying the physics based partitioning in this solver were beyond our expec-
tations. It took only 15 iterations, to obtained the desired solution, while with the MeTiS
based partitioning, with the same number of subdomains, had to perform 57 of them. Also,
with this partitioning within the Habanera solver, we were able to beat the case, when for the
preconditioner we took the whole coefficient matrix A, because it needed 53 iteration to obtain
the solution of the same error size.

50

The PICOS solver incorporates the IC factorisation used by the Plaxis company in their soft-
ware.

6.7.2 Problem 10

After the encouraging results with Problem 6, we moved to a more complex model, namely
Problem 10, which had some plates and anchors in it. There were 13 types of materials used
in this project. We decided that first we will use all of them as independent material types.
After applying the Region Growth Algorithm, we received 13 subdomains. When we used the
partitioning in the solver, we managed to get 42 iterations. When we used the MeTiS based
approach, it took 52.
However, when we looked closely at the sizes of subdomains, we noticed, that couple of the
subdomains were really small. They were the ones which were connected to the anchors and
plates. We decided, to combine them to see how much it affects the convergence. With this
partition, the solver took 24 iterations, when the MeTiS based partitions needed 41.

6.7.3 Problem 5

For the next project, we decided to take an problem which we wanted to solve at the very
beginning of this Master Thesis, i.e. Problem 5, which is a project that can be described as
tunnel embedded in the ground composed of the same material type. In this project, we could
recognize 3 subdomains. The first one was the subdomain connected with soil. The second
one, was the subdomain corresponding to the interface elements, which are used in the Plaxis
software to connect the plate elements with the soil elements. And the last one, was for the
tunnel, i.e. the plate elements.
Once again, we were able to achieve great results with our physics-based decomposition ap-
proach. To solve the problem we had to perform only 46 iteration steps, while with the MeTiS
based approach, with the same number of subdomains, we needed 70. And in the case, when
we do not use any partitioning of the domain, and take the whole matrix A as the precondi-
tioner,we needed 125 iteration to achieve the desired solution.
And once again, if we look at the sizes of preconditioner blocks, we can notice that one of the
subdomains in the physics based approach is much bigger then the rest. It is the one which
were made from the soil material type. The size of this subdomain is a natural situation, be-
cause our partition was based on recognizing the areas of the same material type and the model
is actually a big area of soil with a tunnel in it. Therefore we decided to split the area into
two parts and see the result. For the partitioning, we used the approach described before, i.e.
we use the MeTiS software and apply it to the connection graph of Elements from which the
coefficient matrix is composed. As the result of this, we have now 4 subdomains.
With the physics-based approach, we need 49 iteration, which compared to the previous 46 is
not a loss. The sizes of subdomains are more or less balanced, three out of four are around the
size of 12000 DoF, so managed to overcome the non-equal distribution of the subdomain sizes
in the partition, while keeping the efficiency. On the other hand, the MeTiS based approach,
with 4 subdomains needed 79 iterations to get to the solution. So we can see that it also had
to perform more instances of the CG loop in order to solve the problem.

51

We also split the big layer into 3 layers and ended with 51 iterations with the physic based
approach and 80 with the MeTiS based.

6.7.4 Problem 11

After dealing with Problem 5, we moved to yet another complex project, which could be cre-
ated by a regular user of the Plaxis software. We are referring here to problem called Problem
11. In this project, we may recognize several layers of different soil material type, plate elements
and beam elements. Overall, this allows us to identify 7 subdomains, based on this knowledge.
Once again, we check how much iterations do we need in order to get the solution, when we
take the whole coefficient matrix as the preconditioner. The result of this was 125 instances.
The MeTiS based approach worked much better for this project, because it needed only 108
iterations. However, when we applied the physics based approach we were able to decrease the
number of iterations to only 30, which once again proves the effectiveness of our method.
Based on the situation which happened in the previous example, we were expecting, that one
of the subdomains will be much bigger the the rest. And we were right. Therefore, we applied
the MeTiS software on the connectivity graph of the Elements in this layer in order to split
them. When we run the solver with the new partititon, we needed now 35 iterations, where the
MeTiS based approach set to generate 8 subdomains, had to perform 71 more of them, which
once again is a remarkable result.

6.7.5 Variations of Problem 6

In the end, we would like to go back to the Problem 6. We would like to see if the results
which we achieved with our partition scheme are consistent, when changing the parameters of
the model. Therefore we created Problems 6n, 6n1, 6n2, 6n3, 6n4. Theirs description, with
the numbers of Elements, nodes, etc. can be found in the Appendix 8.3 . Like in Problem 6,
we have six subdomains, which correspond to the areas which we could recognize. Now we will
only shortly characterize them:

• Problem 6n - The top layer is composed from a material which volume cannot change.

• Problem 6n1 - The mesh is 4 times finer than in Problem 6.

• Problem 6n2 - The mesh is 10 times finer than in Problem 6.

• Problem 6n3 - The top layer is 10 times stiffer than in Problem 6n.

• Problem 6n4 - The top layer is 100 times stiffer than in Problem 6n.

On the next page we present the table with the number of iterations, which we obtained by
applying the our physic based scheme of partitioning, compared with the MeTiS based approach
and when taking the whole matrix as the preconditioner:

We can notice that the material parameters have a higher impact on the speed of conver-
gence in the physics-based approach. This could be expected, due to the fact that the when
changing the values, we automatically change the condition number of all blocks composed
from this affected material. If we increase the stiffness, we deal with matrices, which are harder

52

Project 6 Project 6n Project 6n1 Project 6n2 Project 6n3 Project 6n4
Coefficient Matrix 53 61 77 87 56 50

MeTiS based 57 105 154 195 96 81
Physic based 15 30 19 24 41 61

to factorize and which become more numerically unstable. Also the fact, that the stiffness level
of the changed material started to get close to the value of the neighbouring layer may explain
the deterioration of the speed. When the layers become closer in stiffness, it is more likely that
we would like to keep the connection between them, since they are becoming being one rigid
object. We may also notice, that the MeTiS approach is starting to work better, when the
layers are starting to be less recognizable within theirs stiffness specification. Again, we could
expect that, because the values in the matrix are getting closer, the connectivity of the Degrees
of Freedom starts to have the bigger affect in the proper partitioning. And the MeTiS based
approach is optimized to deal with this problem.
We may also see, that the size of the problem isn’t a big factor in our method. It has an
influence, but it is of a much smaller factor then the variation of the stiffness parameter.

Remark We would like to mention the following thing about the Picos solver. The sub-
domains are used in this software are not allowed to share DoF with the other subdomains.
Therefore we had to come up with an idea how to convert our approach of creating subdo-
mains, which were created by adding up Elements. Therefore our subdomains had an natural
overlap on the boundaries. However, we were not able to preserve this property. Therefore we
decided to assign the all of DoF which correspond to the boundary to one of the subdomains
which shares them. We did this just by simply including them in the first subdomain in which
them occur. When we did this, we got a really bad result in the number of iterations. The
investigation of this problem lead to the conclusion, that we need to attach the boundary DoF
carefully. Because of the ordering in the subdomains, the first ones were always the ones which
corresponded to the softest material type. After we corrected this and started to attach those
DoF to the stiffest subdomain, we obtained the results, which were presented in this section.

We would also to remind, that the description of the Projects used in tests can be found
in the Appendix.

53

Chapter 7

Strategy and Conclusions

7.1 Strategy

We can summarize the results which were presented, with a draft of the strategy which should
be applied to an arbitrary problem. In all of the problems which we tested, we followed the
scheme below.

• Read data and put it into the right format.

• Apply the region growth algorithm for the recognition of areas of the same material type.

• Create the Deflation Vectors and Deflation Matrix, by taking only the stiff areas.

• Check which of the subdomains should be split. If a one or more subdomains are much
bigger then the rest, in the sense of numbers of degrees of freedom which create them, we
choose mark them as the ones to split.

• Split the chosen domains with MeTiS.

• Build the block preconditioner according to the Additive Schwarz Procedure.

• Use the Deflated Preconditoned Conjugate Gradient Method as the iterative solver.

7.2 Conclusions and Future Research questions

As we could saw in the last chapter of the Numerical Test and Experiments, the approach
proposed in this Master Thesis, to solve mechanical problems with a parallel solver, based on
the knowledge of the physical structure of the modelled project leads to astonishing results.
With this method, we were not only able to achieve consistent results while testing. With the
inclusion of the information about the problem we were able to get a faster convergence, we
were able to get a faster convergence with a parallel solver, then with the singular one. This is
a result which were not expected, when we started this project. We may only predict, that the
further development and investigation of the direction which we had chosen at the beginning,
will lead to a full understanding of the marvel achievement in which we were able to take a role.

The second conclusion which we may state based on the several experiments perform within

54

this project is the following one: The use of the Deflation technique, and especially the Rigid
Body Modes approach, does help in solving the linear systems which come from the real-life
applications. We notice in all of the cases that the convergence rate receives a speed up in the
number of iterations needed to solve the problem.
Also based on the experiments which were done for for this project, we may allow ourselves
to claim, that we do not need to use all of the subdomains for the Deflation. We can restrict
only to use the ones composed of stiff materials. The inclusion of the other subdomains in the
deflation vectors does not improve or deteriorate the convergence of the method. It only adds
a numerical fluctuation to the solution, which is of the size which can allow us to neglect it
importance due to the lack of significance in the whole process of solving the problem. There-
fore we state it once again, that within the use of Deflation method we need only to use the
subdomains composed of the stiff materials.

There are some questions, which were not answered and this project and which are definitely
something, which should be researched. We will allow ourselves to present only some of them,
which in our opinion are the most important:

1. Partition of the big subdomains. We can distinguish at least three approach to split the big
areas of one material type, i.e. based on Elements, Degrees of Freedom or based on nodes.
Due to lack of time, we were not able to investigate this question. This is a problem of a
great matter, cause we have seen, that the a reckless split of a subdomain may lead to a
great deterioration in the convergence speed. Also within this Master Thesis we limited
ourselves only to use MeTiS software to perform the actual split. Therefore we were not
able to see precisely, how does the partition is being made and although the mentioned
software allows to use weightening for the vertices and edges, we were not using this.

2. Transfer of the scheme. There is a natural question about the use of the method which we
develop into other branches of science. Does the inclusion of the physics of the modelled
phenomena is an inevitably approach in the area of solvers of linear systems? And to be
more concrete, does the method which we used can be applied to other problems without
any major changes?

3. The impact of overlap. The Habanera solver does not allows to have any overlap when
specifying the subdomains. Instead, the overlap is then added, in order go get better
corrections of each subdomains. However, the addition is done only with one layer of
nodes. So naturally we could ask what would happen if we would add more layers into
it. Or if we would allow to create subdomains which could share the degrees of freedom
on the border where they stick to.

4. The Region Growth Algorithm. The presented algorithm to recognize structures of the
same material type, was presented in three variants. However each of them was based
more or less on the same approach. Hoverer there may be a different solution to this.
Also the implementation of this algorithm was done sequential, why it could be done (At
least for different material types) parallel, due to the fact that different materials do not
share data with each other on the recognition in one of them does not affect other ones.

55

Chapter 8

Appendix

8.1 Test Problems

In this section we will describe test problems, which were used as a starting point in finding
the best solver for the linear system.

Problem 3: Description

The following diagram is a graphical representation of one of the sample problems given by
Plaxis for numerical experiments. From now on we shall will refer to it as Problem 3.

Figure 8.1: Problem 3

From the picture of Problem 3, we can clearly see that the shape of the problem is regular.
Each layer consist of the same number of elements, which are regularly distributed . The color
of an element is used to distinguish the type of soil, i.e. green is a stiff soil, yellow is a soft soil
and bright blue is a soil which cannot change its volumes size.

56

of Nonzeros 50483
of DoF 705
of nodes 367
of Elements 80
of distinguishable layers 4
of Material types 3

Table 8.1: Information about the problem

Problem 4: Description

The following diagram is a graphical representation of one of the sample problems given by
Plaxis for numerical experiments. From now on we shall will refer to it as Problem 4.

Figure 8.2: Problem 4

Problem 4 consists of 6 regular layers placed one on top of each other. In the picture we can
see that they are interchangeably determined by the material type, whereas before the green
color represented a stiff soil and yellow represented a soft soil.

57

of Nonzeros 78929
of DoF 1021
of nodes 497
of Elements 120
of distinguishable layers 6
of Material types 2

Table 8.2: Information about the problem

Problem 5: Description

The following diagram is a graphical representation of one of the sample problems given by
Plaxis for numerical experiments. From now on we shall will refer to it as Problem 6n1.

Figure 8.3: Problem 5

of Nonzeros 2209740
of DoF 27472
of nodes 10778
of Soil Elements 6872
of Interface Elements 401
of Plate Elements 401
of distinguishable subdomains 3
of soil types 1

Table 8.3: Information about the problem

Project 5 was a one of our goals at the beginning. We really wanted to test how does the
chosen scheme of solving problems is working with the projects in which we are dealing with
a tunnel embedded in a large area of soil. In this model we can distinguish a different type
of Elements, i.e. the Interface Elements and Plate Elements. In the preconditioning, we treat
them as they would stiff soil material types.

58

Problem 6: Description

The following diagram is a graphical representation of one of the sample problems given by
Plaxis for numerical experiments. From now on we shall will refer to it as Problem 6.

Figure 8.4: Problem 6 without two top layers of "yellow" elements

Figure 8.5: Problem 6

of Nonzeros 1199164
of DoF 10426
of nodes 3970
of Elements 1351
of distinguishable layers 6
of Material types 3

Table 8.4: Information about the problem

Problem 6 is a variation of Problem 4. The purpose of this problem is to see if the test
results performed on Problem 4 are comparable to the results for on a degenerated case, where
the layers have different sizes, and are not so regular as before. We can see that in the top
layer, there is a sublayer of concrete material. It was also the first problem, where we could
not set the subdomains by ourselves without having additional information. This leads us to
implementation of an Region Growing algorithm within the whole program in order to find the
various layers automatically.

59

Problem 6n1 and Problem 6n2: Description

The following diagrams are a graphical representation of two of the sample problems given by
Plaxis for numerical experiments. From now on we shall will refer to them as Problem 6n1 and
Problem 6n1.

Figure 8.6: Problem 6n1

Figure 8.7: Problem 6n2

6n1 6n2
of Nonzeros 4981645 13215378
of DoF 41185 108838
of nodes 15110 39756
of Elements 5415 14325
of distinguishable layers 6 3
of Material types 3 3

Table 8.5: Information about the problem

Problem 6n1 and Problem 6n2 are exaclty the same as Problem 6, but with bigger meshes.
Problem 6n1 is almost 4 time bigger in the sense of DoF and Problem 6n2 10 times bigger.
We created those projects, to see how much impact has the size of the problem on the solution
process.

60

Problem 6n and 6n3 and 6n4: Description

The following diagram is a graphical representation of one of the sample problems given by
Plaxis for numerical experiments. From now on we shall will refer to it as Problem 6n.

Figure 8.8: Problem 6n

of Nonzeros 1199514
of DoF 10426
of nodes 3970
of Elements 1351
of distinguishable layers 6
of Material types 4

Table 8.6: Information about the problem

Problem 6n is a variation of Problem 6. The material from which the top layer was created
got changed, to check the impact of this altering on the time of solution. The result of this
experiment lead as to an analysis of the dependency between the value of the stiffness of the
material on the number of iteration needed. We did by creating 2 more examples with larger
stifness values. Project 6n3 is Project 6n with a 10 times stiffer blue layer. Project 6n4 is
Project 6n with a 100 times stiffer blue layer.

61

Problem 7: Description

The following diagram is a graphical representation of one of the sample problems given by
Plaxis for numerical experiments. From now on we shall will refer to it as Problem 7.

Figure 8.9: Problem 7 without soft layers

Figure 8.10: Problem 7

of Nonzeros 1139552
of DoF 10460
of nodes 4022
of Elements 1389
of distinguishable layers 8
of Material types 3

Table 8.7: Information about the problem

Problem 7 is another generalization of Problem 4. It was created to confirm that the Region
Growing algorithm is working correctly. In the picture, we can see that we have added 2 more
concrete blocks inside the structure.

62

Problem 8a: Description

The following diagram is a graphical representation of one of the sample problems given by
Plaxis for numerical experiments. From now on we shall will refer to it as Problem 8a.

Figure 8.11: Problem 8a

of Nonzeros 64159
of DoF 881
of nodes 451
of Elements 100
of distinguishable layers 3
of Material types 2

Table 8.8: Information about the problem

Problem 8a is a problem that was especially created to investigate the question what is the
effect of splitting bigger sublayers of the same material type. We can see that the middle layer
is three times bigger than the other two. In this project, the stiff layer is inside.

63

Problem 8b: Description

The following diagram is a graphical representation of one of the sample problems given by
Plaxis for numerical experiments. From now on we shall will refer to it as Problem 8b.

Figure 8.12: Problem 8b

of Nonzeros 64153
of DoF 881
of nodes 451
of Elements 100
of distinguishable layers 3
of Material types 2

Table 8.9: Information about the problem

Problem 8b is only a slight modification of Problem 8a. The only difference is the change
in the material types. In this project, the stiff layers are outside.

64

Problem 9: Description

The following diagram is a graphical representation of one of the sample problems given by
Plaxis for numerical experiments. From now on we shall will refer to it as Problem 9.

Figure 8.13: Problem 9

Figure 8.14: Problem 9 from a different angle

of Nonzeros 296807
of DoF 3101
of nodes 1335
of Elements 380
of distinguishable layers 8
of Material types 2

Table 8.10: Information about the problem

Problem 9 has two purposes. One of them is to check the Region Growing algorithm, as a
case where there are many small regions. The second one is to be a variation of the Problem
8a and 8b. We can see that we are dealing here with one area of the same material type, which
covers almost the whole project.

65

Problem 11: Description

The following diagram is a graphical representation of one of the sample problems given by
Plaxis for numerical experiments. From now on we shall will refer to it as Problem 11.

Figure 8.15: Problem 11

of Nonzeros 19163035
of DoF 156039
of nodes 54187
of Soil Elements 19926
of Plate Elements 486
of Embedded Pile Elements 33
of Beam Elements 33
of distinguishable layers 7
of Material types 4

Table 8.11: Information about the problem

This Project was used as one of the validation of the Habanera Solver and our partitioning
scheme. It is one of the typical problems, which could be created by a user of the Plaxis software.
We have here in it several soil material types, plate elements, beam elements, embedded pile
elements.

66

8.2 Region Growth Algorithms Implementations

Below we present two examples of Region Growth algorithm implemetations in Matlab.

8.2.1 Region Growth algorithm ver. 1.1

label = 0;

soil_type_vector = unique(Element_type);

soil_type_number = length(soil_type_vector);

for soil_type=1:soil_type_number;

Type_Position{soil_type} = find(Element_type == soil_type_vector(soil_type));

end;

__

% Main loop

for soil_type=1:soil_type_number;

disp(sprintf(’Soil type = %d’,soil_type));

if isempty(Type_Position{soil_type})

continue;

end;

label =label +1;

Buf_Position = Type_Position{soil_type}(1);

[Infected not_important_variable] = find(Elements{Buf_Position});

S{label}(1) = Buf_Position;

disp(sprintf(’Label = %d’,label));

% S{label} - vector corresponding to the subdomain

i = 1;

for j=setdiff(Type_Position{soil_type},Buf_Position)

[was_infected Infected] = Infect(Infected,Elements{j});

if was_infected

i=i+1;

S{label}(i) = j;

end;

end;

if length(S{label}) > 1

67

to_infect = i;

while to_infect && ~isempty(setdiff(Type_Position{soil_type},S{label}));

to_infect = i;

for j=setdiff(Type_Position{soil_type},S{label});

[was_infected Infected] = Infect(Infected,Elements{j});

if was_infected

i=i+1;

S{label}(i) = j;

end;

end;

if (to_infect - i) == 0

to_infect = 0;

end;

end;

end;

Buf_Type_Position = setdiff(Type_Position{soil_type},S{label});

__

%% The rest of elements from the same subdomain

while (1 - isempty(Buf_Type_Position));

label = label +1;

disp(sprintf(’Label = %d’,label));

Buf_Position = Buf_Type_Position(1);

[Infected not_important_variable]= find(Elements{Buf_Position});

S{label}(1) = Buf_Position;

i = 1;

for j=setdiff(Buf_Type_Position,Buf_Position);

[was_infected Infected] = Infect(Infected,Elements{j});

if was_infected

i=i+1;

S{label}(i) = j;

end;

end;

if length(S{label}) > 1

to_infect = i;

while to_infect && ~isempty(intersect(Buf_Type_Position,S{label}));

to_infect = i;

for j=setdiff(Type_Position{soil_type},S{label});

68

[was_infected Infected] = Infect(Infected,Elements{j});

if was_infected

i=i+1;

S{label}(i) = j;

end;

end;

if (to_infect - i) == 0

to_infect = 0;

end;

end;

end;

Buf_Type_Position = setdiff(Buf_Type_Position,S{label});

end;

end;

__

number_of_blocks = label;

function [Result Infected] = Infect(Infected,Element)

[i not_important_variable]= find(Element);

if isempty(intersect(Infected,i))

Result = 0;

else

Result =1;

Infected = union(Infected,i);

end;

end

69

8.2.2 Region Growth algorithm ver. 2.0

label = 0;

how_many_nodes_in_a_element = 4;

soil_type_vector = unique(Element_type);

soil_type_number = length(soil_type_vector);

for soil_type=1:soil_type_number;

Type_Position{soil_type} = find(Element_type == soil_type_vector(soil_type));

end;

__

%% Main Loop

for soil_type=1:soil_type_number;

disp(sprintf(’Soil type = %d’,soil_type));

Buf_Type_Position = Type_Position{soil_type};

if isempty(Buf_Type_Position)

continue;

end;

label =label +1;

Buf_Position = Buf_Type_Position(1);

S{label}(1) = Buf_Position;

S_info(label) = soil_type; % We keep here information about

% the Subdomain soil type

disp(sprintf(’Label = %d’,label));

% S{label} - vector corresponding to the subdomain

Check = 1; % Variable use to say, if we need to make another

% instance of the loop

i = 1;

while Check

New_Neighbors = intersect(Buf_Type_Position,nonzeros(..

Neighbors_storage(S{label}(i),2:how_many_nodes_in_a_element+1)));

New_Neighbors = unique(New_Neighbors); %Sorting and droping multiple values

New_Neighbors = setdiff(New_Neighbors,S{label});

Check = length(New_Neighbors);

if Check

70

S{label} = [S{label} New_Neighbors];

i = i(end) + (1:Check) ;

end;

end;

Buf_Type_Position = setdiff(Type_Position{soil_type},S{label});

__

%% Rest of Elements from the same subdomain

while (1 - isempty(Buf_Type_Position));

label = label +1;

disp(sprintf(’Label = %d’,label));

Buf_Position = Buf_Type_Position(1);

S{label}(1) = Buf_Position;

S_info(label) = soil_type;

Check = 1;

i = 1;

while Check

New_Neighbors = intersect(Buf_Type_Position,nonzeros(..

Neighbors_storage(S{label}(i),2:how_many_nodes_in_a_element+1)));

New_Neighbors = unique(New_Neighbors);

New_Neighbors = setdiff(New_Neighbors,S{label});

Check = length(New_Neighbors);

if Check

S{label} = [S{label} New_Neighbors];

i = i(end) + (1:Check) ;

end;

end;

Buf_Type_Position = setdiff(Buf_Type_Position,S{label});

end;

end;

__

number_of_blocks = label;

71

8.3 Logs from test with Habanera solver

Problem 5

--

--

1 subdomain

Setting up the preconditioner ... 4.71094 sec (4.66 CPU sec).

Executing the solver 3.96191 sec (3.94 CPU sec).

Solver info:

threads ... 1

iterations ... 125

residual ... 8.581032e-06

Relative error = 8.581032e-06

Memory usage:

matrix 1.342327e+07

precon 2.465375e+07

solver 3.868058e+07

--

3 subdomains:

Metis on the nodes

subdomain 0 contains 11023 DOFs subdomain 1 contains 11240 DOFs

subdomain 2 contains 11504 DOFs

Setting up the preconditioner ... 2.82959 sec (5.16 CPU sec).

Executing the solver 2.58849 sec (4.26 CPU sec).

Solver info:

threads ... 3

iterations ... 70

residual ... 8.791751e-06

Relative error = 8.791751e-06

Memory usage:

matrix 1.588810e+07

precon 3.298598e+07

solver 2.593306e+07

Physics Based Domains

subdomain 0 contains 22666 DOFs subdomain 1 contains 8840 DOFs

subdomain 2 contains 11460 DOFs

Setting up the preconditioner ... 3.50673 sec (5.35 CPU sec).

Executing the solver 2.31269 sec (3.5 CPU sec).

Solver info:

threads ... 3

iterations ... 46

72

residual ... 7.963149e-06

Relative error = 7.963149e-06

Memory usage:

matrix 2.018612e+07

precon 4.197390e+07

solver 1.649894e+07

--

4 subdomains:

Metis on the nodes Domains

subdomain 0 contains 9692 DOFs subdomain 1 contains 8546 DOFs

subdomain 2 contains 9035 DOFs subdomain 3 contains 8861 DOFs

Setting up the preconditioner ... 2.44054 sec (4.57 CPU sec).

Executing the solver 3.08434 sec (5.47 CPU sec).

Solver info:

threads ... 4

iterations ... 79

residual ... 6.547770e-06

Relative error = 6.547770e-06

Memory usage:

matrix 1.684483e+07

precon 3.520984e+07

solver 2.775091e+07

Physics Based Domains

subdomain 0 contains 12159 DOFs

subdomain 1 contains 13756 DOFs

subdomain 2 contains 8840 DOFs

subdomain 3 contains 11460 DOFs

Setting up the preconditioner ... 3.11325 sec (5.71 CPU sec).

Executing the solver 2.40156 sec (4.24 CPU sec).

Solver info:

threads ... 4

iterations ... 49

residual ... 8.176662e-06

Relative error = 8.176662e-06

Memory usage:

matrix 2.143604e+07

precon 4.454828e+07

solver 3.549312e+07

73

--

5 subdomains:

Metis on the nodes Domains

subdomain 0 contains 7128 DOFs subdomain 1 contains 8172 DOFs

subdomain 2 contains 7558 DOFs subdomain 3 contains 7739 DOFs

subdomain 4 contains 7327 DOFs

Setting up the preconditioner ... 2.58386 sec (4.79 CPU sec).

Executing the solver 3.3323 sec (5.75 CPU sec).

Solver info:

threads ... 5

iterations ... 80

residual ... 8.635928e-06

Relative error = 8.635927e-06

Memory usage:

matrix 1.755151e+07

precon 3.658103e+07

solver 2.912563e+07

Physics Based Domains

subdomain 0 contains 8435 DOFs subdomain 1 contains 9263 DOFs

subdomain 2 contains 11643 DOFs subdomain 3 contains 8840 DOFs

subdomain 4 contains 11460 DOFs

Setting up the preconditioner ... 3.21581 sec (5.99 CPU sec).

Executing the solver 2.71131 sec (4.64 CPU sec).

Solver info:

threads ... 5

iterations ... 51

residual ... 7.664127e-06

Relative error = 7.664127e-06

matrix 2.274922e+07

precon 4.750062e+07

solver 3.494726e+07

--

--

Problem 11

--

--

1 subdomain

subdomain 0 contains 156039 DOFs

Setting up the preconditioner ... 57.6367 sec (54.59 CPU sec).

74

Executing the solver 32.6221 sec (32.18 CPU sec).

Solver info:

threads ... 1

iterations ... 123

residual ... 8.750293e-06

Relative error = 8.750294e-06

Memory usage:

matrix 1.159144e+08

precon 2.045206e+08

solver 1.597839e+08

--

7 subdomains

Metis on the nodes Domains

subdomain 0 contains 28319 DOFs subdomain 1 contains 29331 DOFs

subdomain 2 contains 29373 DOFs subdomain 3 contains 26503 DOFs

subdomain 4 contains 26307 DOFs subdomain 5 contains 28858 DOFs

subdomain 6 contains 28636 DOFs

Setting up the preconditioner ... 28.708 sec (54.66 CPU sec).

Executing the solver 37.8795 sec (70.92 CPU sec).

Solver info:

threads ... 7

iterations ... 108

residual ... 8.754482e-06

Relative error = 8.754490e-06

Memory usage:

matrix 1.390505e+08

precon 2.731998e+08

solver 2.146918e+08

Physics Based Domains

subdomain 0 contains 32735 DOFs subdomain 1 contains 84829 DOFs

subdomain 2 contains 17206 DOFs subdomain 3 contains 40931 DOFs

subdomain 4 contains 9764 DOFs subdomain 5 contains 1311 DOFs

subdomain 6 contains 5979 DOFs

Setting up the preconditioner ... 30.5872 sec (47.8 CPU sec).

Executing the solver 8.55941 sec (14.06 CPU sec).

Solver info:

threads ... 7

iterations ... 30

residual ... 8.343765e-06

Relative error = 8.343758e-06

Memory usage:

matrix 1.354006e+08

precon 2.708914e+08

75

solver 1.048587e+08

--

8 subdomains

Metis on the nodes Domains

subdomain 0 contains 25003 DOFs subdomain 1 contains 24403 DOFs

subdomain 2 contains 24087 DOFs subdomain 3 contains 26795 DOFs

subdomain 4 contains 25810 DOFs subdomain 5 contains 24433 DOFs

subdomain 6 contains 27102 DOFs subdomain 7 contains 26429 DOFs

Setting up the preconditioner ... 32.9677 sec (60.79 CPU sec).

Executing the solver 49.1155 sec (91.71 CPU sec).

Solver info:

threads ... 8

iterations ... 106

residual ... 8.939803e-06

Relative error = 8.939799e-06

Memory usage:

matrix 1.436574e+08

precon 2.870635e+08

solver 2.220195e+08

Physics Based Domains

subdomain 0 contains 32735 DOFs subdomain 1 contains 43837 DOFs

subdomain 2 contains 17206 DOFs subdomain 3 contains 39040 DOFs

subdomain 4 contains 53376 DOFs subdomain 5 contains 9764 DOFs

subdomain 6 contains 1311 DOFs subdomain 7 contains 5979 DOFs

Setting up the preconditioner ... 46.2319 sec (84.54 CPU sec).

Executing the solver 16.8142 sec (30.41 CPU sec).

Solver info:

threads ... 8

iterations ... 35

residual ... 7.282611e-06

Relative error = 7.282613e-06

Memory usage:

matrix 1.415436e+08

precon 2.837366e+08

solver 1.105669e+08

--

--

Problem 6n

1 subdomain

subdomain 0 contains 10426 DOFs

76

Setting up the preconditioner ... 3.09262 sec (3.04 CPU sec).

Executing the solver 0.859629 sec (0.86 CPU sec).

Solver info:

threads ... 1

iterations ... 61

residual ... 2.372472e-06

Relative error = 2.372475e-06

Memory usage:

matrix 7.258560e+06

precon 1.461126e+07

solver 5.671744e+06

--

6 subdomains

Metis on the nodes Domains

subdomain 0 contains 2793 DOFs subdomain 1 contains 3164 DOFs

subdomain 2 contains 2802 DOFs subdomain 3 contains 2604 DOFs

subdomain 4 contains 3064 DOFs subdomain 5 contains 2585 DOFs

Setting up the preconditioner ... 1.707 sec (3 CPU sec).

Executing the solver 2.38158 sec (3.93 CPU sec).

Solver info:

threads ... 6

iterations ... 105

residual ... 7.451430e-06

Relative error = 7.451437e-06

Memory usage:

matrix 1.064609e+07

precon 2.201982e+07

solver 1.633152e+07

Physics Based Domains

subdomain 0 contains 2419 DOFs subdomain 1 contains 1730 DOFs

subdomain 2 contains 4149 DOFs subdomain 3 contains 4194 DOFs

subdomain 4 contains 3910 DOFs subdomain 5 contains 1737 DOFs

Setting up the preconditioner ... 1.62862 sec (3.12 CPU sec).

Executing the solver 0.653403 sec (1.12 CPU sec).

Solver info:

threads ... 6

iterations ... 30

residual ... 9.199300e-06

Relative error = 9.199310e-06

Memory usage:

matrix 1.116456e+07

precon 2.305551e+07

solver 8.706720e+06

77

--

--

Project 6n1

--

--

1 subdomain

subdomain 0 contains 41185 DOFs

Setting up the preconditioner ... 14.4395 sec (14.29 CPU sec).

Executing the solver 4.58893 sec (4.57 CPU sec).

Solver info:

threads ... 1

iterations ... 77

residual ... 7.050555e-06

Relative error = 7.050524e-06

Memory usage:

matrix 3.013698e+07

precon 6.005480e+07

solver 4.480928e+07

--

6 subdomains

Metis on the nodes Domains

subdomain 0 contains 10471 DOFs subdomain 1 contains 9870 DOFs

subdomain 2 contains 10179 DOFs subdomain 3 contains 10055 DOFs

subdomain 4 contains 9282 DOFs subdomain 5 contains 9545 DOFs

Setting up the preconditioner ... 7.16859 sec (13.27 CPU sec).

Executing the solver 14.9015 sec (26.74 CPU sec).

Solver info:

threads ... 6

iterations ... 154

residual ... 8.477394e-06

Relative error = 8.477374e-06

Memory usage:

matrix 4.040156e+07

precon 8.345800e+07

solver 1.292588e+08

Physics Based Domains

subdomain 0 contains 15200 DOFs subdomain 1 contains 9581 DOFs

subdomain 2 contains 6848 DOFs subdomain 3 contains 16429 DOFs

subdomain 4 contains 16525 DOFs subdomain 5 contains 5511 DOFs

Setting up the preconditioner ... 7.58133 sec (14.49 CPU sec).

78

Executing the solver 1.70718 sec (3.2 CPU sec).

Solver info:

threads ... 6

iterations ... 19

residual ... 6.917198e-06

Relative error = 6.917216e-06

Memory usage:

matrix 4.529844e+07

precon 9.349035e+07

solver 3.588813e+07

--

--

Project 6n2

--

--

1 subdomain

subdomain 0 contains 108838 DOFs

Setting up the preconditioner ... 37.0956 sec (36.57 CPU sec).

Executing the solver 15.2002 sec (15.04 CPU sec).

Solver info:

threads ... 1

iterations ... 87

residual ... 3.414488e-06

Relative error = 3.414477e-06

Memory usage:

matrix 7.994530e+07

precon 1.603534e+08

solver 1.253814e+08

--

6 subdomains

Metis on the nodes Domains

subdomain 0 contains 21891 DOFs subdomain 1 contains 22962 DOFs

subdomain 2 contains 22587 DOFs subdomain 3 contains 22164 DOFs

subdomain 4 contains 21991 DOFs subdomain 5 contains 21129 DOFs

Setting up the preconditioner ... 16.1834 sec (31.63 CPU sec).

Executing the solver 45.6606 sec (86.73 CPU sec).

Solver info:

threads ... 6

iterations ... 195

residual ... 8.495129e-06

Relative error = 8.495133e-06

79

Memory usage:

matrix 9.341614e+07

precon 1.922354e+08

solver 2.888074e+08

Physics Based Domains

subdomain 0 contains 42133 DOFs subdomain 1 contains 25288 DOFs

subdomain 2 contains 18074 DOFs subdomain 3 contains 43362 DOFs

subdomain 4 contains 43755 DOFs subdomain 5 contains 6105 DOFs

Setting up the preconditioner ... 20.5723 sec (38.19 CPU sec).

Executing the solver 5.59561 sec (10.58 CPU sec).

Solver info:

threads ... 6

iterations ... 24

residual ... 9.287363e-06

Relative error = 9.287366e-06

Memory usage:

matrix 1.164810e+08

precon 2.417763e+08

solver 9.150310e+07

--

--

Project 6n3

--

--

1 subdomain

subdomain 0 contains 10426 DOFs

Setting up the preconditioner ... 3.26235 sec (3.17 CPU sec).

Executing the solver 0.816661 sec (0.78 CPU sec).

Solver info:

threads ... 1

iterations ... 56

residual ... 6.421310e-06

Relative error = 6.421316e-06

Memory usage:

matrix 7.258560e+06

precon 1.435961e+07

solver 5.671744e+06

--

6 subdomains

Metis on the nodes Domains

80

subdomain 0 contains 2793 DOFs subdomain 1 contains 3164 DOFs

subdomain 2 contains 2802 DOFs subdomain 3 contains 2604 DOFs

subdomain 4 contains 3064 DOFs subdomain 5 contains 2585 DOFs

Setting up the preconditioner ... 1.89165 sec (2.9 CPU sec).

Executing the solver 2.29658 sec (3.47 CPU sec).

Solver info:

threads ... 6

iterations ... 96

residual ... 4.667178e-06

Relative error = 4.667179e-06

Memory usage:

matrix 1.064609e+07

precon 2.198946e+07

solver 1.633152e+07

Physics Based Domains

subdomain 0 contains 2419 DOFs subdomain 1 contains 1730 DOFs

subdomain 2 contains 4149 DOFs subdomain 3 contains 4194 DOFs

subdomain 4 contains 3910 DOFs subdomain 5 contains 1737 DOFs

Setting up the preconditioner ... 1.83257 sec (3.09 CPU sec).

Executing the solver 0.957748 sec (1.46 CPU sec).

Solver info:

threads ... 6

iterations ... 41

residual ... 9.181167e-06

Relative error = 9.181169e-06

Memory usage:

matrix 1.116456e+07

precon 2.299729e+07

solver 8.706720e+06

--

--

Problem 6n4

--

--

1 subdomain

subdomain 0 contains 10426 DOFs

Setting up the preconditioner ... 3.25482 sec (3.17 CPU sec).

Executing the solver 0.726382 sec (0.69 CPU sec).

Solver info:

threads ... 1

iterations ... 50

residual ... 7.898489e-06

Relative error = 7.898487e-06

81

Memory usage:

matrix 7.258560e+06

precon 1.434010e+07

solver 5.671744e+06

--

6 subdomains

Metis on the nodes Domains

subdomain 0 contains 2793 DOFs subdomain 1 contains 3164 DOFs

subdomain 2 contains 2802 DOFs subdomain 3 contains 2604 DOFs

subdomain 4 contains 3064 DOFs subdomain 5 contains 2585 DOFs

Setting up the preconditioner ... 1.9318 sec (3.08 CPU sec).

Executing the solver 1.87377 sec (2.81 CPU sec).

Solver info:

threads ... 6

iterations ... 81

residual ... 9.379617e-06

Relative error = 9.379619e-06

Memory usage:

matrix 1.064609e+07

precon 2.174573e+07

solver 1.633152e+07

Physics Based Domains

subdomain 0 contains 2419 DOFs subdomain 1 contains 1730 DOFs

subdomain 2 contains 4149 DOFs subdomain 3 contains 4194 DOFs

subdomain 4 contains 3910 DOFs subdomain 5 contains 1737 DOFs

Setting up the preconditioner ... 2.1284 sec (3 CPU sec).

Executing the solver 1.70401 sec (1.78 CPU sec).

Solver info:

threads ... 6

iterations ... 61

residual ... 8.256644e-06

Relative error = 8.256645e-06

Memory usage:

matrix 1.116456e+07

precon 2.315868e+07

solver 1.741344e+07

--

--

82

Bibliography

[1] P. Bjorstad, B. Smith, W. Gropp, Domain Decomposition. Cambridge University Press:
Cambridge, 1996.

[2] A. Cegielski (Editor), Numerical Aspects in Applied Mathematics. ZP UZm Zielona Gora,
Poland, 2005.

[3] M. R. Hestenes,E. Stiefel, Methods of Conjugate Gradients for Solving Linear Systems.
Journal of Research of the National Bureau of Standards Vol 49, No 6.

[4] J. van Kan, A. Segal, F. Vermolen, Numerical Methods in Scientific Computing VSSD,
Delft, The Netherlands, 2005.

[5] Plaxis B.V., Plaxis 3D Foundation: Scientific Manual version 2, Delft, The Netherlands

[6] Y. Saad, Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, PA, USA, 2000.
Second edition.

[7] A. Segal, C. Vuik, Computational Fluid Dynamics II. Delft, The Netherlands, 2006.

[8] K.H. Tan, Local Coupling in Domain Decomposition. Utrecht, The Netherlands, 1995.

[9] J.M. Tang, Two-Level Preconditioned Conjugate Gradient Methods with Applications to
Bubbly Flow Problems. Delft, The Netherlands, 2008.

[10] A. Toselli, O. Widlund, Domain Decomposition Methods - Algorithms and Theory Springer-
Verlag Berlin Heidelberg, 2005.

[11] J. Willie, Internship report, Vortech Computing, Delft, The Netherlands, 2008.

[12] E. Vollebregt, De incomplete Cholesky preconditioner en de parallellisatie van Plaxis3D
via OpenMP, Memo EV/M08.029, version 1.1, VORtech, Juni 2008.

[13] T.B Jonsthvel, M.B. van Gijzen, C.Vuik, C. Kasbergen, A. Scarpas,
Preconditioned Conjugate Gradient Method Enhanced by Deflation of Rigid Body Modes
Applied to Composite Materials, CMES, vol.47, no.2, pp.97-118, 2009

[14] Habanera (habanera.nl), Manual for Picos, Delft, The Netherlands, 2010.

[15] Robin J. Wilson, Introduction to Graph Theory, Addison Wesley; 4 edition, 2 May 1996.

83

