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Chapter 1Desription of the problem
1.1 Introdution

Plaxis B.V. is a ompany speialized in �nite element software intended for 2Dand 3D analysis of deformation, stability and groundwater �ow in geotehnial en-gineering. Geotehnial appliations require advaned onstitutive models for thesimulation of the non-linear and time-dependent behavior of soils. In addition, sinesoil is a multi-phase material, speial proedures are required to deal with hydro-stati and non-hydrostati pore pressures in the soil.

Within the �nite element formulation large linear systems have to be solved. Atthis moment fast and robust iterative solvers are available for sequential omputing.Sine more and more present day omputers onsists of more ores, Plaxis is workingon parallelization of these solvers. It is not so easy to parallelize the urrent solverwith the same amount of iterations. In this projet other tehniques are investigatedin order to develop robust and e�ient parallel solvers. As a �rst approah domaindeomposition methods have to be studied. After a good DD method has beenseleted the properties of this method is investigated for the problems originatingfrom geotehnial appliations. A ombination of this method with a seond levelpreonditioner is the next step in this investigation. Finally, instead of an arbitrarydata partitioning, the deomposition of the omputational domain should be basedon the physial properties of the domain. This deomposition an be used to havespeial preonditioners for ertain subdomains and an also be used to develop agood seond level preonditioner. 3



1.2 Overview of the reportIn this report we are going to present the theory whih is will be needed to solvethe problem. We will also show some numerial experiments whih were done dur-ing the literature study period for better understanding the underlying aspets ofstudied materials. In the end we will draw some preliminary onlusions and statethe future diretions of the researh.We will start this report with a short desription of the Plaxis software and thesystems whih are solved by it. After that, we make a short introdution to theFinite Element Method, whih is done in the next hapter. After that, we are goingto desribe the Conjugate Methods, one of ingredients of the approah hosen tobe the solution for our problem. This hapter is followed by a desription of theDe�ation method and it's ombination with PCG. After that we present the ideaof the Domain Deomposition approah, through presentation of two basi methodsfrom this blok of mathematis.In the last hapter, we are going to show results of tests done on the data pro-vided by Plaxis. Also this will be the plae of some onlusions and setting goalsfor the next period.
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1.3 Short desription of problemAs mentioned before, Plaxis B.V. is a ompany speialized in �nite element soft-ware intended for 2D and 3D analysis of deformation, stability and groundwater�ow in geotehnial engineering. The soil an onsist of di�erent layers and eahan have a di�erent material model and/or di�erent parameters within it spei�a-tion. In addition, there an be spei�ed several strutural elements, like sheet pilewall or anhors whih may be taken into aount when simulating. When a problemis reated it is subdivided into a large number of �nite elements and equilibrium issolved in several steps and iterations. It is also worth to mention, that Eah of thesenodes has the ability to move in the x,y and z diretions. However some nodes are�xed on the boundary and have limited to no freedom of movement. We use the termdegree of freedom as the unknowns in the linear system and they will orrespond tothe diretion of nodes in whih they are able to move. For eah diretion one rowwill be introdued in the matrix, so two or three adjaent rows an orrespond tothe same node.An important part of the alulation time, espeially for larger 3D projets, is solv-ing a linear system of equations. For large systems, diret solution tehniques annotbe used so iterative solution tehniques are often used.We will now present some basi equations and theory, whih is used within thePlaxis software. More information an be found in [5℄.1.3.1 Deformation TheoryThe formula for the stati equilibrium an be written in the following way:
LT σ + b = 0 (1.1)where σ = [σx σy σz σxy σyz σzx]

T is the stress vetor, b is the body fores vetorand LT is the transpose of a di�erential operator de�ned as:
LT =
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(1.2)We will also use the the kinemati relation, whih an be formulated as:
ǫ = Lu (1.3)where ǫ is the stress vetor. The link between Eq. (1.1) and (1.3) is formed by aonstitutive relation representing the material behaviour i.e., the relation betweenthe rates of stress and strain, whih an be written as:

σ̇ = Mǫ̇, (1.4)and where M is the matrix whih represents the relations between rates of stressand strain. 5



The ombination of Eqs. (1.1), (1.3) and (1.4) would lead to a seond-orderpartial di�erential equation in the displaements u. However, instead of a diretombination, the equilibrium equation is reformulated in a weak form aording toGalerkin's variation priniple:
∫

δuT
(

LT σ + b
)

dV = 0 (1.5)In this formulation δu represents a kinematially admissible variation of displae-ments. Applying Green's theorem for partial integration to the �rst term in Eq(1.5), we get:
∫

δǫT σdV =

∫

σuT bdV +

∫

δuT tdS (1.6)This introdues a boundary integral in whih the boundary tration appears. Thethree omponents of the boundary tration are assembled in the vetor t. Eq. (1.6)is referred to as the virtual work equation.The development of the stress state σ, an be seen as an inremental proess:
σi = σi−1 + ∆σ

∆σ =

∫

σ̇dt (1.7)In this relation σi represents the atual state of stress whih is unknown and σi−1represents the previous state of stress whih is known. The stress inrement ∆σ isthe stress rate integrated over a small time inrement.If Eq. (1.6) is onsidered for the atual state i, the unknown stresses σi an beeliminated using (1.7):
∫

δǫT ∆σdV =

∫

δuT bidV +

∫

δuT tidS −

∫

δǫT σi−1dV (1.8)The Eq. (1.8) is then solved with the use of Finite Element Method, whih will bedesribed further in this report and that is why we will omit the derivation assoiatedwith it. Nevertheless, as the result we end up with the following equation:
∫

BδdV =

∫

NbidV +

∫

NT tidS −

∫

Bσi−1dV (1.9),where B is the strain interpolation matrix, whih ontains the spatial derivativesand of the interpolation funtions, and N is a matrix whih stores interpolationfuntions of the displaement vetor, known also as the shape funtions.The above equation is the elaborated equilibrium ondition in disretised form.The �rst term on the right-hand side together with the seond term represent theurrent external fore vetor and the last term represents the internal reation ve-tor from the previous step. A di�erene between the external fore vetor and theinternal reation vetor should be balaned by a stress inrement ∆σ.6



The relation between stress inrements and strain inrements is usually non-linear.As a result, strain inrements an generally not be alulated diretly, and globaliterative proedures are required to satisfy the equilibrium ondition (2.13) for allmaterial points.1.3.2 Global iterative solution proedureThe formula for the global iterative solution proedure has the following form:
Ki∆vi = f i

ex − f i−1
in (1.10)where K is the sti�ness matrix, ∆v is the inremental displaement vetor, fex is theexternal fore vetor and fin is the internal reation vetor. The supersript i refersto the step number. However, beause the relation between stress inrements andstrain inrements is generally non-linear, the sti�ness matrix annot be formulatedexatly beforehand. That is why the global iteration proess an be written as:

Kjδvj = f i
ex − f

j−1
in (1.11)where the supersript j refers to the iteration number, δv is a vetor ontainingsubinremental displaements, whih ontribute to the displaement inrement ofstep i:

∆vi =

n
∑

j=1

δvj (1.12)where n is the number of iterations within step i. The sti�ness matrix K, representsthe material behavior in an approximated manner. The more aurate the sti�nessmatrix is, the fever iterations are required to obtain equilibrium within a ertaintolerane.In a its simplest form, K represents a linear-elasti response. In this ase, thesti�ness matrix an be formulated as:
K =

∫

BT DeBdW (1.13)where De is the elasti material matrix aording to Hooke's law and B is the straininterpolation matrix.
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Chapter 2Finite Element Method
2.1 IntrodutionWhen dealing with partial di�erential equations, we need to have a tool whih willallow us to solve them or at least to get an approximation of the solution. In thishapter we will present a famous method alled Finite Element Method, whih let usreate an approximation of the PDE we are dealing with, whih preserves omplexgeometries and is quite easy to understand. FEM method is used all over the worldin thousands of appliation.We will illustrate the Finite Element method with the solution of a Poissonequation with Dirihlet boundary ondition, where Ω is a bounded open domain in
R

2 and Γ is its boundary.
−∆u = f (2.1)2.2 Variational EquationTo solve this problem approximately, we will need to extrat a system of algebraiequations whih will yield the solution. To do that, we will use a ommon approah,namely the weak formulation of the problem. Denote:

a(u, u) =

∫

Ω

< ∇u|∇u > dx

(f, v) =

∫

Ω

fv dxIt is easy to show, that a is bilinear. Now, from Green's formula we get:
a(u, v) = −(∆u, v) = (∇u,∇v)Hene, now we an reformulate the problem into following oneFind u ∈ V suh that ∀v ∈ V : a(u, v) = (f, v) (2.2)where V ⊂ L2 is the subspae of all funtions whose derivatives up to �rst order arein L2 and whih have zeros on Γ. The resulting spae is alled H1

0 (Ω). The aboveondition is alled a Variational Equation.8



2.3 Galerkin EquationsLet Ωh denote an approximation of the domain Ω by the union of the m triangles
Ki, whih ome from the triangulation of Ω. Now, we an replae the spae V witha �nite dimensional spae Vh, whih is de�ned as the spae of all funtions whihare pieewise linear and ontinuous on the polygonal region Ωh, and whih vanishon the boundary Γ. To be more preise:

Vh = {φ : φ|Ωh
- ontinuous, φIΓh

= 0, φ|Kj
- linear for all j} (2.3)If xj , where j ∈ {1, ...,n} are the nodes of the triangulation, then a funtion φj in

Vh, an be atually assoiated with eah of them, so that it satis�es the followingondition:
φj(xi) =

{

1, if xi = xj

0, if xi 6= xj
. (2.4)The above ondition makes φi, i = 1, ..., n de�ned uniquely. Also the φi's form a basisof the spae Vh, so eah funtion now an be represented as a linear ombination ofthem:

∀u ∈ Vh : u(x) =

n
∑

i=1

ξiφi(x) (2.5)If we now reall the variational equation, and write it for the Vh spae, then we willget: Find u ∈ Vh suh that ∀v ∈ Vh : a(u, v) = (f, v) (2.6)by the linearity of a with respet to v, one an impose the ondition a(u, φi) = (f, φi),for i = 1, ..., n. But from (2.5), we know that u an be represented as the linearombination of the basis funtion. If we ombine those two fats, we will get:
n
∑

i=1

αijξj = βj , for all i = 1, ...n. (2.7)where αij = a(φi, φj) and βi = (f, φi).The above equation allows us to formulate a linear system:
Ax = b (2.8)with A = [αij ]n×n and b = [β1 ... βn]TThe matries generated by this method have some nie properties. The mostimportant are the fats, that A is Symmetri Positive De�nite and sparse. Knowingthis, we may now use one of the CG variants for solving these linear systems.
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Chapter 3Conjugate Gradient Method
3.1 IntrodutionOne of our main problems is to solve a linear system:

Ax = b, (3.1)where A ∈ R
n×n is alled a oe�ient matrix, b ∈ R

n a right-hand side vetor, andwhere n ∈ N. Keeping in mind the fat, that we are dealing with matries from thedisretization, we will assume that A is symmetri and semi-positive de�nite.There are many ways to solve this problem. In this hapter we will fous on awell-known iterative method, alled Conjugate Gradient or, in short-hand notationCG, developed by E. Stiefel and by M.R Hestenes[3℄, whih allows us to ompute thesolution of the above mentioned system of equations. The suess of this algorithmlies in it's simpliity. However, to desribe the Conjugate Gradient method preisely,we have to know exatly what is a basi iterative method.3.2 Basi Iterative MethodsBasi iterative solution methods are used to generate a sequene (xi, i = 0, 1, ...)whih may be �nite or not, onsisting of the approximations of the exat solution
x. The ompute this sequene, the following reursive formula is used,

xi+1 = xi + M−1(b − Axi) (3.2)We an substitute ri = b − Axi, to whih we will from now on refer as the i-thresidual, whih is used to measure the di�erene of the i-th approximation and theexat solution and rewrite the above equation one again in a more pleasant way,
xi+1 = xi + M−1ri (3.3)If we now write the �rst steps of this iteration proess,
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x0 = x0,

x1 = x0 + M−1r0,

x2 = x1 + M−1r1 = x0 + M−1r0 + M−1(b − Ax0 − AM−1r0)

= x0 + 2M−1r0 − M−1AM−1r0... (3.4)we an onlude that
xi ∈ x0 + span{M−1r0, M

−1A(M−1r0), ..., (M
−1A)i−1(M−1r0)} (3.5)The subspae whih ours in the last formula is atually a speial ase of aKrylov-spae, whih is de�ned as Ki(A, r0) = span{r0, Ar0, ..., A

i−1r0}. From thiswe onlude that for eah basi iterative method the following is ful�lled
xi ∈ x0 + Ki(M−1A; M−1Ar0) (3.6)These methods are also alled Krylov(-subspae) methods. We see that thereare two problems whih arise from the formula of the basi iterative method. Giventhe matrix M−1(whih also alled a "preonditioner") the �rst problem is to �nda suitable basis for Ki(:, :) suh that the iterative method has a fast onvergenerate with a reasonable auray and e�ieny with respet to memory storage andomputational time. Seond, is atually �nding the xi.3.3 Conjugate Gradient MethodThe present setion will be devoted to a desription of the Conjugate GradientMethod, whih nowadays is probably the best known and mostly used iterativemethod for solving SPD linear systems.To explain how the CG method works, let us de�ne �rst what an A-inner produtand what an A-norm is.De�nition 3.1. The A-inner produt is de�ned by

< x|y >A= xT AyDe�nition 3.2. The A-semi-norm is de�ned by
||x||A =

√

< x|x >AWhenever A is Positive De�ne, we may talk of an A-norm.
11



The underlying idea of CG is very simple. The sequene (xj , j = 0, 1, 2, ...)should have the following property:
||x − xj ||A = min

y∈Kj(A;r0)
||x − y||A, for all j. (3.7)We are sure about the existene of the minimum only if A is SPD. However due toour knowledge about the matries oming from the disretization of PDE's we donot have to worry about this.Notie that

||x − x1||
2
A = (x − α0r0)

T A(x − α0r0) = xT Ax − 2α0r
T
0 Ax + α2

0r
T
0 Ar0 (3.8)Whih an be onsidered as a parabola of the variable α0. Hene the minimum isahieved for α0 =

rT
0 Ax

rT
0

Ar0
=

rT
0 b

rT
0

Ar0
.In the steepest desent method, eah next iteration step is determined by theformula
xk+1 = xk + αkpk, (3.9)where pk is the diretion of minimum searh funtion for the energy of the system.If we multiply the above equation by A and subtrat b from it, we will get

Axk+1 − b = Axk − b + αkApkBut this nothing else but
rk+1 = rk − αkApk. (3.10)If we now assume, that p and pk are onjugate, then from

< p|rk+1 >=< p, |rk > +αk < p, Apk > (3.11)we see, that if < p|rk >= 0, then also < p|rk+1 >= 0. This the main ondition ofthe CG method, that for eah j = 0, 1, ..., k we have that < pj|rk+1 >= 0. If we nowde�ne
p0 = −r0,

rT
0 Ax

rT
0 Ar0

=
< rk|pk >

< pk|pk >
and pk+1 = −rk + βkpk for k = 0, 1, 2, ... (3.12)where βk indue that pk+1 and pk will be onjugate, then we are done. The onlything whih is left to do, is to �nd βk. To do that, let us notie that

< pk+1|pk >A=< −rk+1 + βkpk|pk >A= − < rk+1|pk >A +βk < pk|pk >A= 0when βk =
<rk+1|pk>

<pk|pk>A
.Knowing all those fats, we an write a pseudo-ode of the Conjugate Gradientalgorithm. However, in most of the literature, for example [9℄, the oe�ients αk and

βk, are omputed in a slightly di�erent way. The pseudo-ode whih is presented isusing the ones whih are used more often. Later we will refer to the new oe�ientsas "O�ial Approah" and "Proof Approah" to the ones whih where de�ned duringthe derivation of the CG Method. 12



Conjugate Gradient AlgorithmChoose x0, set i = 0, r0 = b − Ax0.WHILE rk 6 =0 DO
i := i + 1IF i = 0 DO

p1 = r0ELSE
βi =

rT
i−1ri−1

rT
i−2ri−2

pi = ri−1 + βipi−1ENDIF
αi =

rT
i−1ri−1

pT
i Api

xi = xi−1 + αipi

ri = ri−1 − αiApiEND WHILE (3.13)It is very important to notie, that to use CG we need only to remember four vetorsand one matrix whih makes it attrative in the usage of memory spae.From [6℄, we now that the onvergene rate of the CG-method an be easilyestimated using the following theorem:Theorem 3.3. Let A and x be the oe�ient matrix and the solution of (1.1), andlet (xi, i = 0, 1, 2...) be the sequene generated by the CG method. Then, elements ofthe sequene satisfy the following inequality:
||x − xi||A ≤ 2

(

√

κ(A) − 1
√

κ(A) + 1

)i

||x − x0||A, (3.14)where κ(A) is the ondition number of A in the 2 - norm.We learly see, that the onvergene depends on the ondition number of A,hene we an onlude that the loser κ(A) is to 1, the faster we approah thesolution of the (3.1). Therefore it is desired to have a matrix with as low as possibleondition number. This leads us to a modi�ation of the CG, alled PreonditionedConjugate Gradient Method.3.4 Preonditioned Conjugate Gradient MethodThe idea whih helps us to esape the barrier reated by Theorem 3.3 and improvethe e�ieny and robustness of CG is to transform the original linear system (3.1)into one whih has the same solution, but is easier to solve with CG.Let us onsider the following problem:
A∗x∗ = b∗, (3.15)13



where A∗ = P−1AP−T , x∗ = P−Tx and b∗ = P−1b, where P is a non-singular matrix.The SPD matrix M de�ned by M = PP T is alled the preonditioner. We an nowuse the original CG algorithm to solve our new system. The result is the algorithmfor the Preonditioned Conjugate Gradient method, or in short-hand notation PCG-method. However, the presented pseudo-ode will be rewritten in suh a way, thatwe will only use quantities without the ∗ sign ours.Preonditioned Conjugate Gradient AlgorithmChoose x0, set i = 0, r0 = b − Ax0.WHILE ri 6 =0 DO
zi = M−1ri

i := i + 1IF i = 0 DO
p1 = z0ELSE
βi =

rT
i−1zi−1

rT
i−2zi−2

pi = zi−1 + βipi−1ENDIF
αi =

rT
i−1zi−1

pT
i Api

xi = xi−1 + αipi

ri = ri−1 − αiApiEND WHILE (3.16)From Theorem (1.1), whih determines the onvergene rate, we see, that in PCG,
κ(P−1AP−t) will be the oe�ient telling us about the speed. That's why thesuess will be depending on a good hoie of the matrix P.There are two extreme hoies, whih show the range of PCG. If P = I, wewill go bak to the original CG-method, whereas if we hoose PP T = A, we willonverge to the solution in one iteration. There are many possibilities of hoosingthe preonditioner. However, we should keep in mind, that the more omplex ourpreonditioner will be, the more time we will spend on onstrution and appliationin the program. That's while in this report we will present only two easy preodi-tioners, to show the possible hoies.If we, take as M , the diagonal of matrix A, we will be dealing with the most stan-dard preonditioner, alled Jaobi-preonditioner, due to the origins in the Jaobi-method. The reason to hoose this matrix is the fat, that it is easy to onstrut,the matrix multipliation is very fast, beause of the big number of zero elements.At last, but not least diag(A∗) = 1, whih results in saving n multipliations in thematrix vetor produt.
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The other proposition for the matrix M is to take a preondtioner of the followingform:
M =

1

2 − ω
(
1

ω
D + L)(

1

ω
D)−1(

1

ω
D + L)T (3.17)where D and L are the diagonal and the ower triangular of A respetively.This preonditioner is alled SSOR, and its name due to the onnetion with SSOR-method. The optimal value of the parameter ω, like the parameter in the SORmethod, will redue the number of iterations to a lower order. Although in pra-tie, the spetral information needed to get the optimal ω is quite expensive in theomputational sense.3.5 Numerial illustrationIn this setion, we will present some numerial experiments, whih were done to showhow CG and PCG work in pratie. For that, we hose a SPD matrix, on whihwe will perform methods presented in this hapter, namely we will deal here withthe CG with "proof oe�ients", CG with "O�ial oe�ients", PCG with Jaobipreonditioner "Proof oe�ients", PCG with Jaobi preonditioner and "O�ialoe�ients", PCG with SSOR preonditioner "Proof oe�ients", PCG with SSORpreonditioner and "O�ial oe�ients", PCG with Jaobi and SSOR preondi-tioner and "O�ial oe�ients". For SSOR we took ω = 0.5 and for SSOR withJaobi we took ω = 1.9.Below we an �nd the matrix whih was used for testing.

A =



























10 −4 1
−4 11 −4 1 0
1 −4 11 −4 1. . . . . . . . . . . . . . .. . . . . . . . . . . . . . .

1 −4 11 −4 1
0 1 −4 11 −4

1 −4 10

























with n = 40, and vetor b = [1 2 3 4 . . . 40]T . On the next page we an see theplot of the iteration step versus the log of error.
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Figure 3.1: Plot of log10(i-th residuum) for system Ax=bFrom the presented data, we learly see that the Conjugate Gradient Methodsworks perfetly for the given system, whih was expeted, beause matrix A a sym-metri strongly diagonally dominant whih implies that is SPD and whih allows usto expet onvergene.The reason for the fast onvergene of all methods is the onditional number ofmatrix A, whih is quite low. To be preise, it is equal to 4.988502495710613.However, if we now hange the system, and instead of the presented one, we willtest these CG variants for the system, whih we get from a disreatization of aproblem reated in Plaxis software, namely Seond Simple Problem (Whih is de-sribed in the last hapter of this report), we will get a di�erent behavior of theiteration proesses. On the next page we will present the �gure whih will show usthe onvergene of the CG methods.
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Figure 3.2: Plot of log10(i-th residuum) for Seond Simple ProblemWe see, that in this ase we an notie a big di�erene between the methods.For example, normal CG does not even get lose to the solution during the wholeiteration.If we now look at the onditional number of the system, we will see the reasonfor those results, beause cond(A) = 3.042123456938706 ∗ 108, while cond(A′) =
1.122208310761762∗ 106, where A′ is the preonditioned oe�ient matrix by PreS-SOR. This example shows us, that the use of Preonditioned Conjugate Gradientmethod is a right hoie for nontrivial linear systems.
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Chapter 4De�ation
4.1 IntrodutionIn the previous hapter we onsider the CG-method for solving linear systems with amatrix A whih is SPD. We also present a way to improve it's onvergene rate whihdepends mainly on the ondition number of the oe�ient matrix, by introduing atransformation of the original linear system into a new one with a smaller onditionnumber. This approah was alled preonditioning. We also presented some of thelassial preonditioners. In this hapter we will show another way of preonditioningalled de�ation.4.2 De�ationDe�nition 4.1. Let A be an SPD oe�ient matrix from (1.1). Suppose that Z ∈
R

n×k, with full rank, and k ≥ n− d is given and d is the number of zero eigenvaluesof A. Then the de�ation matrix P ∈ R
n×n is de�ned as follows:

P := I − AQ (4.1)where:
• Q := ZE−1ZT is alled the orretion matrix.
• E := ZT AZ is alled Galerkin matrix.
Z is often alled "de�ation-subspae matrix" whose k olumns are the "de�ationvetors" or "projetion vetors". Right now, they do not need to be spei�ed.However, they will be hosen in suh a way, that matrix E will be nonsingular[9℄.We will now go bak to our original linear problem, and solve it using the fol-lowing deomposition of the solution vetor.

x = (I − P T )x + P Tx (4.2)notie, that
I − P = I − (I − AQ) = AQ (4.3)
AP T = A(I − AQ)T = A(I − QA) = A − AQA = (I − AQ)A = PA (4.4)18



ET = (ZT AZ)T = ZT AT Z = ZT AZ = E (4.5)
QT = (ZE−1ZT )T = ZE−T ZT = ZE−1ZT = Q (4.6)Let us now go bak to (2.2)

x = (I − P T )x + P T x

x = Qb + P Tx

Ax = AQb + AP Tx

b = AQb + PAx

(I − AQ)b = PAx

Pb = PAx (4.7)It is ruial to notie, that the solution of (4.7) does not have to be a solution ofthe original linear system(1.1), beause PA is singular. That's why, we will denotethe solution of (4.7) as x̄ to distinguish from x. We may now formulate a de�atedsystem of our original problem as:
PAx̄ = Pb, (4.8)and solve it using CG. However we need still to onnet the solutions of (3.1) and(4.7), otherwise the whole proedure would not have any reason to exist. Thefollowing Lemma [9℄will provide the needed link:Lemma 4.2. Let P be the de�ation matrix and Q be the orretion matrix of the(1.1) under the assumption that Z satis�es the requirements of De�nition (2.1) and

b is the right hand-side of (1.1). Suppose that x be the solution of (3.1) and x̄ bethe solution of (4.8). Then, the following formula holds
x = Qb + P T x̄ (4.9)Proof. Notie that if we deompose x̄ as

x̄ = x + y,where y ∈ R(Z) ⊂ N (PA), then
P T x̄ = P Tx + P Ty = P Tx, (4.10)beause P ty = On. This property have arisen from the fat that

P T Z = (I − QA)Z = Z − QAZ = Z − Z = On×k (4.11)Hene, now it is easy to see that:
x = (1 − P )Tx + P Tx = Qb + P T x̄.It an be shown, that PA is SPSD, hene it an be interpreted as the newoe�ient matrix of the linear system (4.8).19



4.3 De�ated CG and PCG MethodsWe an now write the pseudo-ode of the de�ated CG method:De�ated Conjugate Gradient AlgorithmChoose x̄0, set i = 0, r̄0 = P (b − Ax̄0).WHILE r̄k 6 =0 DO
i := i + 1IF i = 0 DO

p1 = r̄0ELSE
βi =

r̄T
i−1r̄i−1

r̄T
i−2r̄i−2

pi = r̄i−1 + βipi−1ENDIF
αi =

r̄T
i−1r̄i−1

pT
i PApi

x̄i = x̄i−1 + αipi

r̄i = r̄i−1 − αiPApiEND WHILE
xorginal = Qb + P T x̄last (4.12)We see that the algorithm is barely touhed, the are only little di�erenes betweenit and the original CG algorithm. We an also make a preonditioning of the systemby using an SPD preondtioner M−1,and then apply onto it De�ated CG method.As the result we get De�ated Preonditioned CG Method, for whih present thepseudo-ode on the next page.
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De�ated Preonditioned Conjugate Gradient AlgorithmChoose x̄0, set i = 0, r̄0 = P (b − Ax̄0).WHILE r̄k 6 =0 DO
i := i + 1IF i = 1 DO

y0 = M−1r̄0

p1 = y0ELSE
yi−1 = M−1r̄i−1

βi =
r̄T
i−1yi−1

r̄T
i−2yi−2

pi = yi−1 + βipi−1ENDIF
αi =

r̄T
i−1r̄i−1

pT
i PApi

x̄i = x̄i−1 + αipi

r̄i = r̄i−1 − αiPApiEND WHILE
xorginal = Qb + P T x̄last (4.13)4.4 De�ation VetorsThe hoie of the de�ation vetors is a very important part of the whole proess ofde�ation methods. In literature [9℄we an �nd several proposition for the andidatesto use. The most known strategies for onstrution of those vetors are:

• Approximated Eigenvetor De�ation Vetors
• Reyling De�ation Vetors
• Subdomain De�ation Vetors
• Multigrid and Multilevel De�ation Vetors
• Rigid Body ModesIt is worth to mention, that right know we do not have a universal strategy foronstruting the de�ation vetors, whih gives the best result for every problem.In this hapter we will restrit ourself to present only two strategies, namely Sub-domain De�ation and Rigid Body Modes.4.4.1 Subdomain De�ation VetorsIn this variant of de�ation, we hoose the de�ation vetors in the following way:Let q > 1 and j ∈ {1 , . . . , q}. We divide the omputational domain Ω into q21



subdomains Ωj , by the following rules:
Ω̄ = ∪q

j=1Ω̄j ∧ ∀i6=j Ωi ∩ Ωj = Ø (4.14)Let's also denote Ωh and Ωhj
, for the disretized domain and subdomains respe-tively. After that we an introdue the de�ation vetor zj assoiated with the j-thsubdomain as follows:

zj(i) =

{

0, xi ∈ Ωh\Ωhj

1, xi ∈ Ωhj

. (4.15)After this step, we de�ne Z = [z1 z2 . . . zq]. This �nish the onstrution.This method is strongly related to approahes known as Domain DeompositionMethods.4.4.2 Rigid Body ModesIn the reent researh in the �eld of de�ation, we an �nd another approah forhoosing the de�ation vetors. In [13℄, we may �nd an introdution to the RigidBody Modes used as the engine for the de�ation vetors. The main idea is to set forthe i-th de�ation vetor the i-th vetor of the null spae of As, whih is a submatrixreated from the elements from the FEM disreatisation, whih are omposing theaggregate subdomains.
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Chapter 5Domain Deomposition Methods
5.1 IntrodutionWith the rapid growth of high speed omputing, we get a powerful tool to our hand.Multi-ore proessors gives us a possibility to solve very big omputation problems ina muh faster way than the traditional sequential ones, using the advantages whihome from the arhiteture of the mahine used to ompute. Among tehniqueswhih are based on the parallelization of the omputation proess, domain deom-position methods are undoubtedly the best known and perhaps the most promisingfor the problem studied by Plaxis. These methods ombine ideas from Partial Dif-ferential Equations, linear algebra, mathematial analysis and some part of graphtheory. In this hapter we will fous on the deomposition methods, whih are basedon the general onepts of graph partitioning.De�nition 5.1. We will all a method a Domain Deomposition method, if its mainidea will be based on the priniple of divide and onquer applied on the domain ofthe problem.

Figure 5.1: An example of domain deomposition23



Let us onsider the following problem. We want to solve the Laplae Equationon domain Ω partitioned as shown in the �gure above. Domain Deompositionmethods attempt to solve the problem on the entire domain
Ω =

s
⋃

i=1

Ωi (5.1)from the problem solution on the subdomain Ωi. There are several reasons whythis approah an be advantageous. First of all, the subdomains may have a sim-pler geometry then Ω. Also sometimes the problem may have a natural split intosmaller regions, in whih we an have di�erent equations that desribe the model.However maybe the most important reason to use Domain Deomposition Methodsis the fat, that they are the best hoie for the solution of a problem, if we wantto parallelize the omputational proess. Last, but not least, they allow us to dealwith the lak of memory, by splitting the domain into parts whih will �t into ouromputers.There are several methods in the Domain Deomposition family. This report presentsonly some of them.
5.2 Shwarz Alternating ProeduresThe earliest known domain deomposition method is the alternating method of H.Shwarz dating bak to 1870. It onsisted of three parts: alternating between twooverlapping domains, solving the Dirihlet problem on one domain at eah iterationand taking boundary onditions based on the most reent solution obtained fromthe other domain.Let's onsider a domain Ω as shown in Figure 5.1 with two overlapping subdomains
Ω1 and Ω2 on whih we want to solve a PDE of the following form:

{

Lu = f, in Ω
u = g, on ∂Ω

. (5.2)Let ∂Ω denote the boundary of Ω and the arti�ial boundaries, Γi, are the part ofthe boundary of Ωi that is interior to Ω, and s is the number of subdomains. ShwarzAlternating Proedure (SAP) for s subdomain problem will be of the following form:
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Shwarz Alternating ProedureChoose u0WHILE no onvergene DOFOR i = 1, ...s DOSolve Lu = f in Ωi with u = uij in ΓijUpdate u values on Γij, ∀jEND FOREND WHILE (5.3)In our ase, s = 2.In many appliations, it is possible to use a mathing grid in the overlap regionto avoid the dupliation of the unknowns on the overlap. The mathing version ofthe alternating method is known as themultipliative Shwarz method (MSM).Writing the linear system for the disretized problem as Au = f , we an write theiteration in two frational steps:
un+1/2 = un +

[

A−1
Ω1

0
0 0

]

(f − Aun)

un+1 = un+1/2 +

[

0 0
0 A−1

Ω2

]

(f − Aun+1/2) (5.4)where AΩi
stays for the disrete form of the operator L restrited to Ωi.We an easily see, that the main part of the multipliative Shwarz method is se-quential, so it annot diretly use the bene�ts of the multi-ore arhiteture andtherefore it is not a suitable hoie when making a parallel solver.In literature [10℄ we an �nd also another approah to SAP, whih is more parallel-oriented. This method, alled Additive Shwarz method (ASM), an be onsid-ered as a parallel version of the multipliative Shwarz method. Its main idea is tohange presented previous algorithm by ombining the omputation of in�uenes tothe solution from of eah subdomain into one iteration, instead of doing this in eahstep. For our our example with two domain, the iteration step an be written as:

un+1 = un +

([

A−1
Ω1

0
0 0

]

+

[

0 0
0 A−1

Ω2

])

(f − Aun) (5.5)If we make a substitution of Bi = Rt
iA

−1
Ωi

Ri, where Ri is the retangular restritionmatrix that returns the vetor of omponents de�ned in the interior of Ωi, then theabove equation will be of the following form,
un+1 = un + (B1 + B2)(f − Aun) (5.6)Having this equation, we an easily generalized ASM for s number of subdomains,by simply adding Bi(f − Aun) to the right-hand side. As the result of this, for adomain Ω =

⋃s
i=1 Ωi,we an write the algorithm for Additive Shwarz Method in afollowing form 25



Additive Shwarz MethodChoose u0, i = 0,WHILE no onvergene DO
ri = b − AunFOR i = 1, ...s DO

δi = BiriEND FOR
un+1 = un +

s
∑

i=1

δi

i = i + 1END WHILE (5.7)
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5.3 Shur ComplementLet's onsider a following problem:
Lu = f in Ω

u = g on ∂Ω (5.8)with the domain Ω partitioned onto s subdomains. After disretization of the prob-lem, we an label the nodes by subdomain in a spei� way, so the linear systemwill have a following struture:
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(5.9)where eah xi represents the subvetor of unknowns that are interior to subdomain
Ωi, and y represents the vetor of all interfae unknowns. It is useful to write thesystem in a more simple form, i.e.

A

[

x

y

]

=

[

f

g

] ,where A =

[

B E

F C

] (5.10)and where E represents the subbdomain to interfae oupling seen from the sub-domains, while F represents the interfae to subdomain oupling seen from theinterfae nodes. To illustrate this, let us onsider a domain split into only twosubdomains. Let's assume that the subdomains are of the same size and both aresquared. Then an illustrative mesh and orresponding oe�ient matrix A will looklike

Figure 5.2: An exemplary mesh for the problem desribed above.
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Figure 5.3: Matrix assoiated with the �nite di�erene mesh of the �gure 5.2Now, we an easily express x with the new terms. From the the �rst equation itfollows that
x = B−1(f − Ey) (5.11)If we now substitute this into the seond equation, we will obtain a redued system,
Sy = g − FB−1f (5.12)where the matrix S is alled the Shur omplement and is reated by the followingrule:
S = C − FB−1E (5.13)If we an form S and solve the assoiated linear system, then the interfaevariable y an be obtained. From this we an easily obtain the remaining variable x.Beause of the blok struture of B, we notie that the solution of the system redueto solving s separate systems. Beause the sets of the variables in eah of the systemare disjoint, we an solve them simultaneously in parallel. This approah is alledBlok Gaussian Elimination (BGE). The algorithm for it will be now presented:Blok Gaussian Elimination AlgorithmSOLVE BE ′ = E, Bf ′ = fCOMPUTE g = g − Ff ′, S = C − FE ′SOLVE Sy = g′COMPUTE x = f ′ − E ′y (5.14)

The partitioning used for the BGE method was edge-based. It means, that agiven edge in the graph does not straddle two domains and if any two verties areoupled, they have to belong to the same subdomain. In the graph theory, this point28



of view is less ommon than the vertex-based partitioning, in whih a vertex is notshared by two subdomains (exept when subdomains overlap).We will all interfae edges all edges whih link verties that are not in the samesubdomain. Interfae verties will be those verties in a given subdomain, thatare adjaent to an interfae edge. Now due to the fat, that we split the domainaording to a new rule, we hange the ordering of the nodes. Now the interfaenodes are labeled as the last nodes in eah subdomain. To illustrate this, let usreall the example used to present edge-based partitioning and apply new rules toit. As the result we will reeive the following mesh and oe�ient matrix:

Figure 5.4: An exemplary mesh for the problem desribed above

Figure 5.5: Matrix assoiated with the �nite di�erene mesh of the �gure 5.4Let us onsider now the Shur omplement system obtained with the new num-bering of the nodes. The oe�ient matrix A now has a natural s-blok struture.For example, if s = 2, the matrix will be of the following form:
A =

[

A1 A12

A21 A2

]

. (5.15)
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Also for eah subdomain, the variables will be now have it's own loal struture,i.e.,
zi =

[

xi

yi

]where xi now denotes interior nodes, while yi denotes the interfae nodes assoiatedwith subdomain i. Now eah matrix Ai, will be alled loal matrix and it will havesimilar struture to matrix A from (4.9),
Ai =

[

B1 Ei

Fi Ci

]

. (5.16)as before, Bi represents the matrix assoiated with the internal nodes of subdomain i,
Ei and Fi represents the susbdomain to interfae oupling seen from the subdomainsand interfae to subdomain oupling seen from the interfae nodes respetively and
Ci will be the loal part of the interfae matrix C, whih represents the ouplingbetween loal interfae nodes. Matries Aij ontains zero sub-blok in the part thatats on the variable xj , therefore we an write that

Aij =

[

0
Cij

]It is worth to mention, that most of the Cij matries are zero, sine only those in-dies j of the subdomains that have oupling with subdomain i will yield a nonzero
Cij.If we now write the part of linear system that is loal to subdomain i, as

Bixi + Eiyi = fi

Fixi + Ciyi +
∑

j∈Ni
Cijyj = gi

. (5.17)The term Cijyj is the in�uene oming from the neighboring subdomain with num-ber j. Nj is a set of indexes of the subdomains whih are adjaent to subdomain j.If we assume that Bi are nonsingular, then we an apply the similar solution teh-nique, whih we used to develop the BGE. As the result of this, we reeive a systemof redued systems
Siyi +

∑

j∈Ni

Eijyj = gi − FiB
−1
i Ei (5.18)where Si is the "loal" Shur omplement, and is de�ned as

Si = Ci − FiB
−1
i Ei. (5.19)
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5.4 Numerial IllustrationThe presented numerial experiments in this setion illustrate how does the theoryfrom this paragraph ats in pratie. Both presented methods, namely Shur Com-plement Method and Shwarz have been tested on the standard test equation, i.e.on the Poisson equation
−∆u = f, (5.20)on the domain Ω, whih was hosen to be of a retangular shape, and with Dirihletboundary ondition. However due to the fat, that we are going to work with theShwarz method in the future, we restrit ourself only to present results only forthis method.The domain Ω after disretization has a n × 2n + 1 size. We deided to split itinto two subdomains Ω1 and Ω2 along the vertial middle, with a overlap at it.Below we an see a graphial illustration of this proess, when n = 4.

Figure 5.6: Domain Ω split into two subdomains, Ω1 and Ω2.We deided to enumerate the nodes along the olumns, i.e. the node at (i, j) positionwill be onsider to be i + (j − 1)n-th node in the ordering.
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Now we are going to see how does the Shwarz alternating proess do works forthis problem. We will hek both standard variants of SAP, i.e. Shwarz Additiveand Shwarz Multipliative Method. We will not only present only how does theonvergene rate for eah of the methods looks like, we will also look into the e�etof the overlap region's size. We will do this simply by adding a next olumn to eahof the subdomain. We will say. Below we an see a example of adding two olumnsto the subdomains after disretization, for n = 4.

Figure 5.7: Domain Ω split into two subdomains, Ω1 and Ω2, with extended overlap ofsize 2.We will say, that a subdomain has a extended overlap of size k, if it will onsist ofthe base subdomain nodes and k additional olumns.
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5.4.1 Multipliative Shwarz MethodFirst, we will look at the MSM method. We present how does the onvergenebehavior hanges by inrement of the overlapping region of two subdomains.
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Figure 5.8: Contour plot of the log10 (i-th residuum) for MSMThe �gure above shows us an essential information about the MultipliativeShwarz Method. We see, that depending on the size of the overlap of two subdo-mains, we get faster or slover onvergene of the method. We an notie, that thewe are dealing here with a logarithmi dependeny, between the size of overlap andnumber of iteration needed to ahieve a ertain error size.

33



5.4.2 Additive Shwarz MethodNow, we will present the result of the same experiment done for ASM.
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Figure 5.9: Contour plot of the log10 (i-th residuum) for ASMAs it was expeted, we get a similar result as in MSM. Also here we have a log-arithmi dependeny between the number of iterations needed to ahieve wantederror size and the size of overlap. However we may notie a slight slowdown of theonvergene rate, whih was expeted, beause ASM unlike MSM is omputing theorretion from eah subdomain without any updates from neighboring subdomains.This is a drawbak, however we an easily negleted it, beause of the fat, that theorretions an be omputed simultaneously, whih an speeds up the whole pro-esses in the sense of spent time.We stop at this moment further investigation of the Shwarz method, due to thefat, that it is tested on a trivial problem. We will go deeper in the next hapter,when we will be working with test problems, provided by Plaxis.
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Chapter 6Researh Goals
6.1 IntrodutionKnowing all of the things whih were presented so far in this report, we are at themoment, when we an atually start to work with �nding a good parallel-friendlysolver for linear systems whih are generated by Plaxis software. However, to do that,we need to have some test problems, on whih we will make numerial experiments.Also we need to say, what is atually our initial guess for the method, whih we willto solve systems. And in the end, we should also de�ne, what will be our next stepin proess of �nding the solution to the problem.6.2 Choie of the MethodIn the very beginning of this projet we have hosen, that a Domain Deompositionapproah will be the starting point for solving the problem, due to the fat of the re-sults noted in this �eld of mathematis. Nowadays, domain deomposition methodsare getting more popular, beause the underlying idea gives plenty of possibilitiesto parallelize the solution proess, whih is a wanted property when solving bigsystems.From the big family of methods of this branh of mathematis, we have hosen touse one of the Shwarz Alternating Proesses approahes, i.e the Additive ShwarzMethod (ASM) as our solver. First reason for it was the fat, that the ode anbe easily onverted into a parallel program. Seondly, there were already a try touse Shur Complement approah, however the results where not as good as it wasexpeted. Also there are examples of many suessful implementation of this methodin real life problems, whih only enouraged us to take ASM as our framebox forthe solution of the linear systems.Now when we have hosen ASM, to be our main ore of the solver, we are goingto upgrade it, by inorporating onto it two methods, whih were presented in thisreport, i.e. Preonditioned Conjugate Gradient Method, for the solution of the linearsystems of the subdomains, and the De�ation method to improve the spread of theinformation oming from a subdomain to other. This all ombined together is goingto be our tool in solving the linear systems.The hoie of the subdomains on whih we will perform the ASM is going tobe done not by a arbitrary ut of the oe�ient matrix, but instead by adding theelements from the FEM proess. In this way, we will have a possibility to inorporate35



a intelligent partition of the domain, whih will preserve the physial struture of theproblem. We will see it in the following examples, whih are going to be presentedin this hapter.6.3 Test ProblemsIn this setion we will desribe test problems, whih were used as a starting pointin �nding the best solver for the linear system.
6.3.1 First Simple ProblemFor the beginning of numerial experiments and tests, we have hosen to deal witha simple problem of volume displaement in a four layer ube, with a weight loadsituated on the top. Eah layer has a di�erent sti�ness whih implies jumps inthe values of the oe�ient matrix, orresponding to the nodes from di�erent lay-ers. The Finite Element disretization of the problem onsist of 8 elements, 2 foreah layer, and 61 nodes. This gives us in the end 76 degrees of freedom, due tothe fat, that eah node has it limitation of movement. We end up with a systemof 77 degrees of freedom. Below we an see a illustration representing given problem.

Figure 6.1: First Simple Problem RepresentationThe oe�ient matrix of this problem has 2499 non-zeros elements.
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We hoose to ut the domain into 2 parts, namely the upper one, whih will onsistof two �rst layers from the top, and the seond one, onsisting of the three layers,taken from the bottom. The reason for that was, that we wanted to preserve similarsizes of two subdomains.Let us �rst apply ASM to this problem with the subdomains de�ned as above,to see how does it reat. As the result of this operation, we get a plot whih showsus the rate of onvergene of ASM method. We an learly see from the plot below,that we are dealing here with a linear onvergene behavior, whih was expetedbeause ASM is a Basi Iterative Method.
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Figure 6.2: First Simple Problem onvergene behavior for ASMNow, we are going to put the PCG method into use for this problem. For thepreonditioner we have taken ASM omponents, whih were used in the previousexperiment. As the result of this, we get a muh faster onvergene, then in theprevious approah, what an be seen on the next page.
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Figure 6.3: First Simple Problem onvergene behavior for PCGSo far we have been looking into the behavior of onvergene rate, when thesubdomains are hosen via FEM elements. This deomposition of the domain im-plies, that the subdomains have an overlapping regions. It would be good also, toinvestigate the situation, when the subdomains are without it. For this purpose,we deided to reate the subdomains algebraially, by simply spliting the oe�ientmatrix into two squared matries along the diagonal, and neglet everything else.With this we get two an reate a preonditioner and apply PCG to ompute thesolution of the system. Below we an �nd an illustration of the error distributionfor eah of the possible split for this problem.
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Figure 6.4: First Simple Problem distribution of error in PCG
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The paraboli shape of the plot is quite logial. The bigger (smaller) is the fatorof the split, the bigger one of the subdomains is getting to be, ergo is starting to bemore similar to the whole domain, so the preonditioning part of it is more aurate.But more interesting are several dents, whih our in it. We an easily notie, thattheir positions are not random. They are orrelated with the distribution of nodesin the elements from FEM.6.3.2 Seond Simple ProblemAfter dealing with the previous problem, there appeared natural need to extend it,to make it more omplex. That is why we have hosen to make experiments on thesame problem, but with a denser grid of nodes. The following piture present thenew mesh whih was used for generation of the system.

Figure 6.5: Seond Simple Problem RepresentationNow, the Finite Element disretization of the problem onsist of 80 elements, 20for eah of the layer, and 367 nodes. We end up with system of over 705 degrees offreedom. We see, that the size of the problem is now almost 10 times bigger. Thenumber of non zeros element in the oe�ient matrix is 50483.For this problem, we now de�ne slightly di�erent subdomains, i.e, we take forthe �rst subdomain two �rst layers from the top, and for the seond one, we taketwo instead of three, from the bottom. With suh partition of the domain, we gettwo linear systems of a similar number of degrees of freedom.On this struture, we apply now DPCG proedure. We deided to use Subdomainde�ation vetors for it. On the next page we may see the onvergene of this methodfor this problem.
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Figure 6.6: Seond Simple Problem onvergene behavior for PCG with 2 subdomainsWe an learly see, that for this problem the hosen method works perfetly. Weget a error of size 10−4 in 11 iterations, what an be onsidered as a really smallnumber if we take into onsideration the size of the problem.Till now, we have only onsidered deomposition into two subdomains. There arisea natural question, namely what will happen if we hange the number of the bloksin whih we split the domain. Let us now split the problem in four, instead of twosubdomains, where eah layer will be onsidered as a subdomain generator and ap-ply our PCG method onto it.
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Figure 6.7: Seond Simple Problem onvergene behavior for PCG with 4 subdomains
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The new deomposition makes the onvergene rate slower in the sense of theiteration needed to get to the desired solution. However, we will investigate the timewhih was used spent for the omputing the solution with the error size 10( − 6),and we will onsider that the omputation of the blok is done parallel by two pro-essors, then the variant with four subdomains took around 0.13 seond to get theresult, while the variant with two spent 0.16 in average. We may see, that we wereable to speed up the solution of the problem.This result was a sparkle to hek if we would split the problem into eight subdo-mains, we would also notie a speed up. For that, we split the domain, by simplytaking eah element layer and make it from it a subdomain used into preondtioningthe system.
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Figure 6.8: Seond Simple Problem onvergene behavior for PCG with 8 subdomainsThe iteration number needed to get a desent error of the solution, is getting togrow with eah inrement of the number of subbdomains. We see that when having8 subdomains, we need almost 200 iterations steps. This aspet transit into theamount of time spent for omputing the solution. If we would onsidered, that theparts in the program where we were dealing with the subdomains would be done bytwo proessors, then it would take almost 0.22 of seond. We say almost, beauseomparing to the previous deomposition we notie a large jump.We end up the experiments with the Seond Simple Problem with a similar analysisdone for the First Simple Problem, namely we would like to see how looks onver-gene rate, when we have non overlapping subdomains generated algebraially. Likebefore, we split the oe�ient matrix into two squared matries along the diagonaland used them to reate a preondtioner used then in PCG.
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Figure 6.9: Seond Simple Problem distribution of error in PCGWhen simulating this, we deided that instead of inverting matries used for theproonditioning, we will apply Cholesky Inomplete Fatorization, to speed up thesimulation. From the piture above we an learly see, that the we an not ut theoe�ient matrix by random. One again we notie some plaes, whih are moredesired to use for the partition, then it's neighbors. However even more interesting isthe fat, that when spliting at the 352 position, whih tends to be the middle of theoe�ient matrix, we have almost the best onvergene behavior. It is interesting,that the position 354 is the beginning of the �rst element of the 3th layer from theproblem. Also at postions 254 and 598 we notie a muh faster onvergene. Thosenodes are atually the last nodes from the 1st and 3th later. So we learly see, thatthe idea to deompose the problem with the inorporating underlying physis has apositive a�et on the onvergene behavior of the �nding the solution.
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6.4 Conlusions and researh questionsFrom the test problems, whih were presented in this hapter, we an learly seethat the approah whih we have hosen to use in �nding solutions for the linearsystems is tend to be the the right one. We have seen that splitting annot by doneby simply utting into two parts, beause we may �nd that the struture of theproblem an reate some obstales leading into a slower onvergene. We have alsoseen, that inorporating elements from the disretization in the proess of genera-tion subdomains is a powerful tool in the aeleration of the speed of solution proess.However, we annot forget that the ratio of number of subdomains and iterationsteps plays also an important role in the proess of �nding the solution. In the se-ond example, when we investigated this issue, we have notied that we should alsolook at the amount of time used to solve the system. We should not only analysethe number of iteration steps, whih an be misleading, beause overall our goal isto derease time spent on omputation. This is our main researh question at thismoment, whih is now strongly investigated.We should also notie, that for now, we did not introdue any data whih wassolved by a method whih uses De�ation approah. The reason for this is, that theresults at the moment of writing this report where far of being satisfying. Neverthe-less, there were done some numerial experiments, whih have pointed the diretionfor solving this issue, whih is namely the Rigid Body Modes approah as the hoieof De�ation vetors.
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