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Chapter 1Des
ription of the problem
1.1 Introdu
tion

Plaxis B.V. is a 
ompany spe
ialized in �nite element software intended for 2Dand 3D analysis of deformation, stability and groundwater �ow in geote
hni
al en-gineering. Geote
hni
al appli
ations require advan
ed 
onstitutive models for thesimulation of the non-linear and time-dependent behavior of soils. In addition, sin
esoil is a multi-phase material, spe
ial pro
edures are required to deal with hydro-stati
 and non-hydrostati
 pore pressures in the soil.

Within the �nite element formulation large linear systems have to be solved. Atthis moment fast and robust iterative solvers are available for sequential 
omputing.Sin
e more and more present day 
omputers 
onsists of more 
ores, Plaxis is workingon parallelization of these solvers. It is not so easy to parallelize the 
urrent solverwith the same amount of iterations. In this proje
t other te
hniques are investigatedin order to develop robust and e�
ient parallel solvers. As a �rst approa
h domainde
omposition methods have to be studied. After a good DD method has beensele
ted the properties of this method is investigated for the problems originatingfrom geote
hni
al appli
ations. A 
ombination of this method with a se
ond levelpre
onditioner is the next step in this investigation. Finally, instead of an arbitrarydata partitioning, the de
omposition of the 
omputational domain should be basedon the physi
al properties of the domain. This de
omposition 
an be used to havespe
ial pre
onditioners for 
ertain subdomains and 
an also be used to develop agood se
ond level pre
onditioner. 3



1.2 Overview of the reportIn this report we are going to present the theory whi
h is will be needed to solvethe problem. We will also show some numeri
al experiments whi
h were done dur-ing the literature study period for better understanding the underlying aspe
ts ofstudied materials. In the end we will draw some preliminary 
on
lusions and statethe future dire
tions of the resear
h.We will start this report with a short des
ription of the Plaxis software and thesystems whi
h are solved by it. After that, we make a short introdu
tion to theFinite Element Method, whi
h is done in the next 
hapter. After that, we are goingto des
ribe the Conjugate Methods, one of ingredients of the approa
h 
hosen tobe the solution for our problem. This 
hapter is followed by a des
ription of theDe�ation method and it's 
ombination with PCG. After that we present the ideaof the Domain De
omposition approa
h, through presentation of two basi
 methodsfrom this blo
k of mathemati
s.In the last 
hapter, we are going to show results of tests done on the data pro-vided by Plaxis. Also this will be the pla
e of some 
on
lusions and setting goalsfor the next period.
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1.3 Short des
ription of problemAs mentioned before, Plaxis B.V. is a 
ompany spe
ialized in �nite element soft-ware intended for 2D and 3D analysis of deformation, stability and groundwater�ow in geote
hni
al engineering. The soil 
an 
onsist of di�erent layers and ea
h
an have a di�erent material model and/or di�erent parameters within it spe
i�
a-tion. In addition, there 
an be spe
i�ed several stru
tural elements, like sheet pilewall or an
hors whi
h may be taken into a

ount when simulating. When a problemis 
reated it is subdivided into a large number of �nite elements and equilibrium issolved in several steps and iterations. It is also worth to mention, that Ea
h of thesenodes has the ability to move in the x,y and z dire
tions. However some nodes are�xed on the boundary and have limited to no freedom of movement. We use the termdegree of freedom as the unknowns in the linear system and they will 
orrespond tothe dire
tion of nodes in whi
h they are able to move. For ea
h dire
tion one rowwill be introdu
ed in the matrix, so two or three adja
ent rows 
an 
orrespond tothe same node.An important part of the 
al
ulation time, espe
ially for larger 3D proje
ts, is solv-ing a linear system of equations. For large systems, dire
t solution te
hniques 
annotbe used so iterative solution te
hniques are often used.We will now present some basi
 equations and theory, whi
h is used within thePlaxis software. More information 
an be found in [5℄.1.3.1 Deformation TheoryThe formula for the stati
 equilibrium 
an be written in the following way:
LT σ + b = 0 (1.1)where σ = [σx σy σz σxy σyz σzx]

T is the stress ve
tor, b is the body for
es ve
torand LT is the transpose of a di�erential operator de�ned as:
LT =













∂
∂x

0 0 ∂
∂y

0 ∂
∂z

0 ∂
∂y

0 ∂
∂x

∂
∂z

0

0 0 ∂
∂z

0 ∂
∂y

∂
∂x













(1.2)We will also use the the kinemati
 relation, whi
h 
an be formulated as:
ǫ = Lu (1.3)where ǫ is the stress ve
tor. The link between Eq. (1.1) and (1.3) is formed by a
onstitutive relation representing the material behaviour i.e., the relation betweenthe rates of stress and strain, whi
h 
an be written as:

σ̇ = Mǫ̇, (1.4)and where M is the matrix whi
h represents the relations between rates of stressand strain. 5



The 
ombination of Eqs. (1.1), (1.3) and (1.4) would lead to a se
ond-orderpartial di�erential equation in the displa
ements u. However, instead of a dire
t
ombination, the equilibrium equation is reformulated in a weak form a

ording toGalerkin's variation prin
iple:
∫

δuT
(

LT σ + b
)

dV = 0 (1.5)In this formulation δu represents a kinemati
ally admissible variation of displa
e-ments. Applying Green's theorem for partial integration to the �rst term in Eq(1.5), we get:
∫

δǫT σdV =

∫

σuT bdV +

∫

δuT tdS (1.6)This introdu
es a boundary integral in whi
h the boundary tra
tion appears. Thethree 
omponents of the boundary tra
tion are assembled in the ve
tor t. Eq. (1.6)is referred to as the virtual work equation.The development of the stress state σ, 
an be seen as an in
remental pro
ess:
σi = σi−1 + ∆σ

∆σ =

∫

σ̇dt (1.7)In this relation σi represents the a
tual state of stress whi
h is unknown and σi−1represents the previous state of stress whi
h is known. The stress in
rement ∆σ isthe stress rate integrated over a small time in
rement.If Eq. (1.6) is 
onsidered for the a
tual state i, the unknown stresses σi 
an beeliminated using (1.7):
∫

δǫT ∆σdV =

∫

δuT bidV +

∫

δuT tidS −

∫

δǫT σi−1dV (1.8)The Eq. (1.8) is then solved with the use of Finite Element Method, whi
h will bedes
ribed further in this report and that is why we will omit the derivation asso
iatedwith it. Nevertheless, as the result we end up with the following equation:
∫

BδdV =

∫

NbidV +

∫

NT tidS −

∫

Bσi−1dV (1.9),where B is the strain interpolation matrix, whi
h 
ontains the spatial derivativesand of the interpolation fun
tions, and N is a matrix whi
h stores interpolationfun
tions of the displa
ement ve
tor, known also as the shape fun
tions.The above equation is the elaborated equilibrium 
ondition in dis
retised form.The �rst term on the right-hand side together with the se
ond term represent the
urrent external for
e ve
tor and the last term represents the internal rea
tion ve
-tor from the previous step. A di�eren
e between the external for
e ve
tor and theinternal rea
tion ve
tor should be balan
ed by a stress in
rement ∆σ.6



The relation between stress in
rements and strain in
rements is usually non-linear.As a result, strain in
rements 
an generally not be 
al
ulated dire
tly, and globaliterative pro
edures are required to satisfy the equilibrium 
ondition (2.13) for allmaterial points.1.3.2 Global iterative solution pro
edureThe formula for the global iterative solution pro
edure has the following form:
Ki∆vi = f i

ex − f i−1
in (1.10)where K is the sti�ness matrix, ∆v is the in
remental displa
ement ve
tor, fex is theexternal for
e ve
tor and fin is the internal rea
tion ve
tor. The supers
ript i refersto the step number. However, be
ause the relation between stress in
rements andstrain in
rements is generally non-linear, the sti�ness matrix 
annot be formulatedexa
tly beforehand. That is why the global iteration pro
ess 
an be written as:

Kjδvj = f i
ex − f

j−1
in (1.11)where the supers
ript j refers to the iteration number, δv is a ve
tor 
ontainingsubin
remental displa
ements, whi
h 
ontribute to the displa
ement in
rement ofstep i:

∆vi =

n
∑

j=1

δvj (1.12)where n is the number of iterations within step i. The sti�ness matrix K, representsthe material behavior in an approximated manner. The more a

urate the sti�nessmatrix is, the fever iterations are required to obtain equilibrium within a 
ertaintoleran
e.In a its simplest form, K represents a linear-elasti
 response. In this 
ase, thesti�ness matrix 
an be formulated as:
K =

∫

BT DeBdW (1.13)where De is the elasti
 material matrix a

ording to Hooke's law and B is the straininterpolation matrix.
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Chapter 2Finite Element Method
2.1 Introdu
tionWhen dealing with partial di�erential equations, we need to have a tool whi
h willallow us to solve them or at least to get an approximation of the solution. In this
hapter we will present a famous method 
alled Finite Element Method, whi
h let us
reate an approximation of the PDE we are dealing with, whi
h preserves 
omplexgeometries and is quite easy to understand. FEM method is used all over the worldin thousands of appli
ation.We will illustrate the Finite Element method with the solution of a Poissonequation with Diri
hlet boundary 
ondition, where Ω is a bounded open domain in
R

2 and Γ is its boundary.
−∆u = f (2.1)2.2 Variational EquationTo solve this problem approximately, we will need to extra
t a system of algebrai
equations whi
h will yield the solution. To do that, we will use a 
ommon approa
h,namely the weak formulation of the problem. Denote:

a(u, u) =

∫

Ω

< ∇u|∇u > dx

(f, v) =

∫

Ω

fv dxIt is easy to show, that a is bilinear. Now, from Green's formula we get:
a(u, v) = −(∆u, v) = (∇u,∇v)Hen
e, now we 
an reformulate the problem into following oneFind u ∈ V su
h that ∀v ∈ V : a(u, v) = (f, v) (2.2)where V ⊂ L2 is the subspa
e of all fun
tions whose derivatives up to �rst order arein L2 and whi
h have zeros on Γ. The resulting spa
e is 
alled H1

0 (Ω). The above
ondition is 
alled a Variational Equation.8



2.3 Galerkin EquationsLet Ωh denote an approximation of the domain Ω by the union of the m triangles
Ki, whi
h 
ome from the triangulation of Ω. Now, we 
an repla
e the spa
e V witha �nite dimensional spa
e Vh, whi
h is de�ned as the spa
e of all fun
tions whi
hare pie
ewise linear and 
ontinuous on the polygonal region Ωh, and whi
h vanishon the boundary Γ. To be more pre
ise:

Vh = {φ : φ|Ωh
- 
ontinuous, φIΓh

= 0, φ|Kj
- linear for all j} (2.3)If xj , where j ∈ {1, ...,n} are the nodes of the triangulation, then a fun
tion φj in

Vh, 
an be a
tually asso
iated with ea
h of them, so that it satis�es the following
ondition:
φj(xi) =

{

1, if xi = xj

0, if xi 6= xj
. (2.4)The above 
ondition makes φi, i = 1, ..., n de�ned uniquely. Also the φi's form a basisof the spa
e Vh, so ea
h fun
tion now 
an be represented as a linear 
ombination ofthem:

∀u ∈ Vh : u(x) =

n
∑

i=1

ξiφi(x) (2.5)If we now re
all the variational equation, and write it for the Vh spa
e, then we willget: Find u ∈ Vh su
h that ∀v ∈ Vh : a(u, v) = (f, v) (2.6)by the linearity of a with respe
t to v, one 
an impose the 
ondition a(u, φi) = (f, φi),for i = 1, ..., n. But from (2.5), we know that u 
an be represented as the linear
ombination of the basis fun
tion. If we 
ombine those two fa
ts, we will get:
n
∑

i=1

αijξj = βj , for all i = 1, ...n. (2.7)where αij = a(φi, φj) and βi = (f, φi).The above equation allows us to formulate a linear system:
Ax = b (2.8)with A = [αij ]n×n and b = [β1 ... βn]TThe matri
es generated by this method have some ni
e properties. The mostimportant are the fa
ts, that A is Symmetri
 Positive De�nite and sparse. Knowingthis, we may now use one of the CG variants for solving these linear systems.
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Chapter 3Conjugate Gradient Method
3.1 Introdu
tionOne of our main problems is to solve a linear system:

Ax = b, (3.1)where A ∈ R
n×n is 
alled a 
oe�
ient matrix, b ∈ R

n a right-hand side ve
tor, andwhere n ∈ N. Keeping in mind the fa
t, that we are dealing with matri
es from thedis
retization, we will assume that A is symmetri
 and semi-positive de�nite.There are many ways to solve this problem. In this 
hapter we will fo
us on awell-known iterative method, 
alled Conjugate Gradient or, in short-hand notationCG, developed by E. Stiefel and by M.R Hestenes[3℄, whi
h allows us to 
ompute thesolution of the above mentioned system of equations. The su

ess of this algorithmlies in it's simpli
ity. However, to des
ribe the Conjugate Gradient method pre
isely,we have to know exa
tly what is a basi
 iterative method.3.2 Basi
 Iterative MethodsBasi
 iterative solution methods are used to generate a sequen
e (xi, i = 0, 1, ...)whi
h may be �nite or not, 
onsisting of the approximations of the exa
t solution
x. The 
ompute this sequen
e, the following re
ursive formula is used,

xi+1 = xi + M−1(b − Axi) (3.2)We 
an substitute ri = b − Axi, to whi
h we will from now on refer as the i-thresidual, whi
h is used to measure the di�eren
e of the i-th approximation and theexa
t solution and rewrite the above equation on
e again in a more pleasant way,
xi+1 = xi + M−1ri (3.3)If we now write the �rst steps of this iteration pro
ess,

10



x0 = x0,

x1 = x0 + M−1r0,

x2 = x1 + M−1r1 = x0 + M−1r0 + M−1(b − Ax0 − AM−1r0)

= x0 + 2M−1r0 − M−1AM−1r0... (3.4)we 
an 
on
lude that
xi ∈ x0 + span{M−1r0, M

−1A(M−1r0), ..., (M
−1A)i−1(M−1r0)} (3.5)The subspa
e whi
h o

urs in the last formula is a
tually a spe
ial 
ase of aKrylov-spa
e, whi
h is de�ned as Ki(A, r0) = span{r0, Ar0, ..., A

i−1r0}. From thiswe 
on
lude that for ea
h basi
 iterative method the following is ful�lled
xi ∈ x0 + Ki(M−1A; M−1Ar0) (3.6)These methods are also 
alled Krylov(-subspa
e) methods. We see that thereare two problems whi
h arise from the formula of the basi
 iterative method. Giventhe matrix M−1(whi
h also 
alled a "pre
onditioner") the �rst problem is to �nda suitable basis for Ki(:, :) su
h that the iterative method has a fast 
onvergen
erate with a reasonable a

ura
y and e�
ien
y with respe
t to memory storage and
omputational time. Se
ond, is a
tually �nding the xi.3.3 Conjugate Gradient MethodThe present se
tion will be devoted to a des
ription of the Conjugate GradientMethod, whi
h nowadays is probably the best known and mostly used iterativemethod for solving SPD linear systems.To explain how the CG method works, let us de�ne �rst what an A-inner produ
tand what an A-norm is.De�nition 3.1. The A-inner produ
t is de�ned by

< x|y >A= xT AyDe�nition 3.2. The A-semi-norm is de�ned by
||x||A =

√

< x|x >AWhenever A is Positive De�ne, we may talk of an A-norm.
11



The underlying idea of CG is very simple. The sequen
e (xj , j = 0, 1, 2, ...)should have the following property:
||x − xj ||A = min

y∈Kj(A;r0)
||x − y||A, for all j. (3.7)We are sure about the existen
e of the minimum only if A is SPD. However due toour knowledge about the matri
es 
oming from the dis
retization of PDE's we donot have to worry about this.Noti
e that

||x − x1||
2
A = (x − α0r0)

T A(x − α0r0) = xT Ax − 2α0r
T
0 Ax + α2

0r
T
0 Ar0 (3.8)Whi
h 
an be 
onsidered as a parabola of the variable α0. Hen
e the minimum isa
hieved for α0 =

rT
0 Ax

rT
0

Ar0
=

rT
0 b

rT
0

Ar0
.In the steepest des
ent method, ea
h next iteration step is determined by theformula
xk+1 = xk + αkpk, (3.9)where pk is the dire
tion of minimum sear
h fun
tion for the energy of the system.If we multiply the above equation by A and subtra
t b from it, we will get

Axk+1 − b = Axk − b + αkApkBut this nothing else but
rk+1 = rk − αkApk. (3.10)If we now assume, that p and pk are 
onjugate, then from

< p|rk+1 >=< p, |rk > +αk < p, Apk > (3.11)we see, that if < p|rk >= 0, then also < p|rk+1 >= 0. This the main 
ondition ofthe CG method, that for ea
h j = 0, 1, ..., k we have that < pj|rk+1 >= 0. If we nowde�ne
p0 = −r0,

rT
0 Ax

rT
0 Ar0

=
< rk|pk >

< pk|pk >
and pk+1 = −rk + βkpk for k = 0, 1, 2, ... (3.12)where βk indu
e that pk+1 and pk will be 
onjugate, then we are done. The onlything whi
h is left to do, is to �nd βk. To do that, let us noti
e that

< pk+1|pk >A=< −rk+1 + βkpk|pk >A= − < rk+1|pk >A +βk < pk|pk >A= 0when βk =
<rk+1|pk>

<pk|pk>A
.Knowing all those fa
ts, we 
an write a pseudo-
ode of the Conjugate Gradientalgorithm. However, in most of the literature, for example [9℄, the 
oe�
ients αk and

βk, are 
omputed in a slightly di�erent way. The pseudo-
ode whi
h is presented isusing the ones whi
h are used more often. Later we will refer to the new 
oe�
ientsas "O�
ial Approa
h" and "Proof Approa
h" to the ones whi
h where de�ned duringthe derivation of the CG Method. 12



Conjugate Gradient AlgorithmChoose x0, set i = 0, r0 = b − Ax0.WHILE rk 6 =0 DO
i := i + 1IF i = 0 DO

p1 = r0ELSE
βi =

rT
i−1ri−1

rT
i−2ri−2

pi = ri−1 + βipi−1ENDIF
αi =

rT
i−1ri−1

pT
i Api

xi = xi−1 + αipi

ri = ri−1 − αiApiEND WHILE (3.13)It is very important to noti
e, that to use CG we need only to remember four ve
torsand one matrix whi
h makes it attra
tive in the usage of memory spa
e.From [6℄, we now that the 
onvergen
e rate of the CG-method 
an be easilyestimated using the following theorem:Theorem 3.3. Let A and x be the 
oe�
ient matrix and the solution of (1.1), andlet (xi, i = 0, 1, 2...) be the sequen
e generated by the CG method. Then, elements ofthe sequen
e satisfy the following inequality:
||x − xi||A ≤ 2

(

√

κ(A) − 1
√

κ(A) + 1

)i

||x − x0||A, (3.14)where κ(A) is the 
ondition number of A in the 2 - norm.We 
learly see, that the 
onvergen
e depends on the 
ondition number of A,hen
e we 
an 
on
lude that the 
loser κ(A) is to 1, the faster we approa
h thesolution of the (3.1). Therefore it is desired to have a matrix with as low as possible
ondition number. This leads us to a modi�
ation of the CG, 
alled Pre
onditionedConjugate Gradient Method.3.4 Pre
onditioned Conjugate Gradient MethodThe idea whi
h helps us to es
ape the barrier 
reated by Theorem 3.3 and improvethe e�
ien
y and robustness of CG is to transform the original linear system (3.1)into one whi
h has the same solution, but is easier to solve with CG.Let us 
onsider the following problem:
A∗x∗ = b∗, (3.15)13



where A∗ = P−1AP−T , x∗ = P−Tx and b∗ = P−1b, where P is a non-singular matrix.The SPD matrix M de�ned by M = PP T is 
alled the pre
onditioner. We 
an nowuse the original CG algorithm to solve our new system. The result is the algorithmfor the Pre
onditioned Conjugate Gradient method, or in short-hand notation PCG-method. However, the presented pseudo-
ode will be rewritten in su
h a way, thatwe will only use quantities without the ∗ sign o

urs.Pre
onditioned Conjugate Gradient AlgorithmChoose x0, set i = 0, r0 = b − Ax0.WHILE ri 6 =0 DO
zi = M−1ri

i := i + 1IF i = 0 DO
p1 = z0ELSE
βi =

rT
i−1zi−1

rT
i−2zi−2

pi = zi−1 + βipi−1ENDIF
αi =

rT
i−1zi−1

pT
i Api

xi = xi−1 + αipi

ri = ri−1 − αiApiEND WHILE (3.16)From Theorem (1.1), whi
h determines the 
onvergen
e rate, we see, that in PCG,
κ(P−1AP−t) will be the 
oe�
ient telling us about the speed. That's why thesu

ess will be depending on a good 
hoi
e of the matrix P.There are two extreme 
hoi
es, whi
h show the range of PCG. If P = I, wewill go ba
k to the original CG-method, whereas if we 
hoose PP T = A, we will
onverge to the solution in one iteration. There are many possibilities of 
hoosingthe pre
onditioner. However, we should keep in mind, that the more 
omplex ourpre
onditioner will be, the more time we will spend on 
onstru
tion and appli
ationin the program. That's while in this report we will present only two easy pre
odi-tioners, to show the possible 
hoi
es.If we, take as M , the diagonal of matrix A, we will be dealing with the most stan-dard pre
onditioner, 
alled Ja
obi-pre
onditioner, due to the origins in the Ja
obi-method. The reason to 
hoose this matrix is the fa
t, that it is easy to 
onstru
t,the matrix multipli
ation is very fast, be
ause of the big number of zero elements.At last, but not least diag(A∗) = 1, whi
h results in saving n multipli
ations in thematrix ve
tor produ
t.
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The other proposition for the matrix M is to take a pre
ondtioner of the followingform:
M =

1

2 − ω
(
1

ω
D + L)(

1

ω
D)−1(

1

ω
D + L)T (3.17)where D and L are the diagonal and the ower triangular of A respe
tively.This pre
onditioner is 
alled SSOR, and its name due to the 
onne
tion with SSOR-method. The optimal value of the parameter ω, like the parameter in the SORmethod, will redu
e the number of iterations to a lower order. Although in pra
-ti
e, the spe
tral information needed to get the optimal ω is quite expensive in the
omputational sense.3.5 Numeri
al illustrationIn this se
tion, we will present some numeri
al experiments, whi
h were done to showhow CG and PCG work in pra
ti
e. For that, we 
hose a SPD matrix, on whi
hwe will perform methods presented in this 
hapter, namely we will deal here withthe CG with "proof 
oe�
ients", CG with "O�
ial 
oe�
ients", PCG with Ja
obipre
onditioner "Proof 
oe�
ients", PCG with Ja
obi pre
onditioner and "O�
ial
oe�
ients", PCG with SSOR pre
onditioner "Proof 
oe�
ients", PCG with SSORpre
onditioner and "O�
ial 
oe�
ients", PCG with Ja
obi and SSOR pre
ondi-tioner and "O�
ial 
oe�
ients". For SSOR we took ω = 0.5 and for SSOR withJa
obi we took ω = 1.9.Below we 
an �nd the matrix whi
h was used for testing.

A =



























10 −4 1
−4 11 −4 1 0
1 −4 11 −4 1. . . . . . . . . . . . . . .. . . . . . . . . . . . . . .

1 −4 11 −4 1
0 1 −4 11 −4

1 −4 10

























with n = 40, and ve
tor b = [1 2 3 4 . . . 40]T . On the next page we 
an see theplot of the iteration step versus the log of error.
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Figure 3.1: Plot of log10(i-th residuum) for system Ax=bFrom the presented data, we 
learly see that the Conjugate Gradient Methodsworks perfe
tly for the given system, whi
h was expe
ted, be
ause matrix A a sym-metri
 strongly diagonally dominant whi
h implies that is SPD and whi
h allows usto expe
t 
onvergen
e.The reason for the fast 
onvergen
e of all methods is the 
onditional number ofmatrix A, whi
h is quite low. To be pre
ise, it is equal to 4.988502495710613.However, if we now 
hange the system, and instead of the presented one, we willtest these CG variants for the system, whi
h we get from a dis
reatization of aproblem 
reated in Plaxis software, namely Se
ond Simple Problem (Whi
h is de-s
ribed in the last 
hapter of this report), we will get a di�erent behavior of theiteration pro
esses. On the next page we will present the �gure whi
h will show usthe 
onvergen
e of the CG methods.
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Figure 3.2: Plot of log10(i-th residuum) for Se
ond Simple ProblemWe see, that in this 
ase we 
an noti
e a big di�eren
e between the methods.For example, normal CG does not even get 
lose to the solution during the wholeiteration.If we now look at the 
onditional number of the system, we will see the reasonfor those results, be
ause cond(A) = 3.042123456938706 ∗ 108, while cond(A′) =
1.122208310761762∗ 106, where A′ is the pre
onditioned 
oe�
ient matrix by PreS-SOR. This example shows us, that the use of Pre
onditioned Conjugate Gradientmethod is a right 
hoi
e for nontrivial linear systems.
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Chapter 4De�ation
4.1 Introdu
tionIn the previous 
hapter we 
onsider the CG-method for solving linear systems with amatrix A whi
h is SPD. We also present a way to improve it's 
onvergen
e rate whi
hdepends mainly on the 
ondition number of the 
oe�
ient matrix, by introdu
ing atransformation of the original linear system into a new one with a smaller 
onditionnumber. This approa
h was 
alled pre
onditioning. We also presented some of the
lassi
al pre
onditioners. In this 
hapter we will show another way of pre
onditioning
alled de�ation.4.2 De�ationDe�nition 4.1. Let A be an SPD 
oe�
ient matrix from (1.1). Suppose that Z ∈
R

n×k, with full rank, and k ≥ n− d is given and d is the number of zero eigenvaluesof A. Then the de�ation matrix P ∈ R
n×n is de�ned as follows:

P := I − AQ (4.1)where:
• Q := ZE−1ZT is 
alled the 
orre
tion matrix.
• E := ZT AZ is 
alled Galerkin matrix.
Z is often 
alled "de�ation-subspa
e matrix" whose k 
olumns are the "de�ationve
tors" or "proje
tion ve
tors". Right now, they do not need to be spe
i�ed.However, they will be 
hosen in su
h a way, that matrix E will be nonsingular[9℄.We will now go ba
k to our original linear problem, and solve it using the fol-lowing de
omposition of the solution ve
tor.

x = (I − P T )x + P Tx (4.2)noti
e, that
I − P = I − (I − AQ) = AQ (4.3)
AP T = A(I − AQ)T = A(I − QA) = A − AQA = (I − AQ)A = PA (4.4)18



ET = (ZT AZ)T = ZT AT Z = ZT AZ = E (4.5)
QT = (ZE−1ZT )T = ZE−T ZT = ZE−1ZT = Q (4.6)Let us now go ba
k to (2.2)

x = (I − P T )x + P T x

x = Qb + P Tx

Ax = AQb + AP Tx

b = AQb + PAx

(I − AQ)b = PAx

Pb = PAx (4.7)It is 
ru
ial to noti
e, that the solution of (4.7) does not have to be a solution ofthe original linear system(1.1), be
ause PA is singular. That's why, we will denotethe solution of (4.7) as x̄ to distinguish from x. We may now formulate a de�atedsystem of our original problem as:
PAx̄ = Pb, (4.8)and solve it using CG. However we need still to 
onne
t the solutions of (3.1) and(4.7), otherwise the whole pro
edure would not have any reason to exist. Thefollowing Lemma [9℄will provide the needed link:Lemma 4.2. Let P be the de�ation matrix and Q be the 
orre
tion matrix of the(1.1) under the assumption that Z satis�es the requirements of De�nition (2.1) and

b is the right hand-side of (1.1). Suppose that x be the solution of (3.1) and x̄ bethe solution of (4.8). Then, the following formula holds
x = Qb + P T x̄ (4.9)Proof. Noti
e that if we de
ompose x̄ as

x̄ = x + y,where y ∈ R(Z) ⊂ N (PA), then
P T x̄ = P Tx + P Ty = P Tx, (4.10)be
ause P ty = On. This property have arisen from the fa
t that

P T Z = (I − QA)Z = Z − QAZ = Z − Z = On×k (4.11)Hen
e, now it is easy to see that:
x = (1 − P )Tx + P Tx = Qb + P T x̄.It 
an be shown, that PA is SPSD, hen
e it 
an be interpreted as the new
oe�
ient matrix of the linear system (4.8).19



4.3 De�ated CG and PCG MethodsWe 
an now write the pseudo-
ode of the de�ated CG method:De�ated Conjugate Gradient AlgorithmChoose x̄0, set i = 0, r̄0 = P (b − Ax̄0).WHILE r̄k 6 =0 DO
i := i + 1IF i = 0 DO

p1 = r̄0ELSE
βi =

r̄T
i−1r̄i−1

r̄T
i−2r̄i−2

pi = r̄i−1 + βipi−1ENDIF
αi =

r̄T
i−1r̄i−1

pT
i PApi

x̄i = x̄i−1 + αipi

r̄i = r̄i−1 − αiPApiEND WHILE
xorginal = Qb + P T x̄last (4.12)We see that the algorithm is barely tou
hed, the are only little di�eren
es betweenit and the original CG algorithm. We 
an also make a pre
onditioning of the systemby using an SPD pre
ondtioner M−1,and then apply onto it De�ated CG method.As the result we get De�ated Pre
onditioned CG Method, for whi
h present thepseudo-
ode on the next page.
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De�ated Pre
onditioned Conjugate Gradient AlgorithmChoose x̄0, set i = 0, r̄0 = P (b − Ax̄0).WHILE r̄k 6 =0 DO
i := i + 1IF i = 1 DO

y0 = M−1r̄0

p1 = y0ELSE
yi−1 = M−1r̄i−1

βi =
r̄T
i−1yi−1

r̄T
i−2yi−2

pi = yi−1 + βipi−1ENDIF
αi =

r̄T
i−1r̄i−1

pT
i PApi

x̄i = x̄i−1 + αipi

r̄i = r̄i−1 − αiPApiEND WHILE
xorginal = Qb + P T x̄last (4.13)4.4 De�ation Ve
torsThe 
hoi
e of the de�ation ve
tors is a very important part of the whole pro
ess ofde�ation methods. In literature [9℄we 
an �nd several proposition for the 
andidatesto use. The most known strategies for 
onstru
tion of those ve
tors are:

• Approximated Eigenve
tor De�ation Ve
tors
• Re
y
ling De�ation Ve
tors
• Subdomain De�ation Ve
tors
• Multigrid and Multilevel De�ation Ve
tors
• Rigid Body ModesIt is worth to mention, that right know we do not have a universal strategy for
onstru
ting the de�ation ve
tors, whi
h gives the best result for every problem.In this 
hapter we will restri
t ourself to present only two strategies, namely Sub-domain De�ation and Rigid Body Modes.4.4.1 Subdomain De�ation Ve
torsIn this variant of de�ation, we 
hoose the de�ation ve
tors in the following way:Let q > 1 and j ∈ {1 , . . . , q}. We divide the 
omputational domain Ω into q21



subdomains Ωj , by the following rules:
Ω̄ = ∪q

j=1Ω̄j ∧ ∀i6=j Ωi ∩ Ωj = Ø (4.14)Let's also denote Ωh and Ωhj
, for the dis
retized domain and subdomains respe
-tively. After that we 
an introdu
e the de�ation ve
tor zj asso
iated with the j-thsubdomain as follows:

zj(i) =

{

0, xi ∈ Ωh\Ωhj

1, xi ∈ Ωhj

. (4.15)After this step, we de�ne Z = [z1 z2 . . . zq]. This �nish the 
onstru
tion.This method is strongly related to approa
hes known as Domain De
ompositionMethods.4.4.2 Rigid Body ModesIn the re
ent resear
h in the �eld of de�ation, we 
an �nd another approa
h for
hoosing the de�ation ve
tors. In [13℄, we may �nd an introdu
tion to the RigidBody Modes used as the engine for the de�ation ve
tors. The main idea is to set forthe i-th de�ation ve
tor the i-th ve
tor of the null spa
e of As, whi
h is a submatrix
reated from the elements from the FEM dis
reatisation, whi
h are 
omposing theaggregate subdomains.

22



Chapter 5Domain De
omposition Methods
5.1 Introdu
tionWith the rapid growth of high speed 
omputing, we get a powerful tool to our hand.Multi-
ore pro
essors gives us a possibility to solve very big 
omputation problems ina mu
h faster way than the traditional sequential ones, using the advantages whi
h
ome from the ar
hite
ture of the ma
hine used to 
ompute. Among te
hniqueswhi
h are based on the parallelization of the 
omputation pro
ess, domain de
om-position methods are undoubtedly the best known and perhaps the most promisingfor the problem studied by Plaxis. These methods 
ombine ideas from Partial Dif-ferential Equations, linear algebra, mathemati
al analysis and some part of graphtheory. In this 
hapter we will fo
us on the de
omposition methods, whi
h are basedon the general 
on
epts of graph partitioning.De�nition 5.1. We will 
all a method a Domain De
omposition method, if its mainidea will be based on the prin
iple of divide and 
onquer applied on the domain ofthe problem.

Figure 5.1: An example of domain de
omposition23



Let us 
onsider the following problem. We want to solve the Lapla
e Equationon domain Ω partitioned as shown in the �gure above. Domain De
ompositionmethods attempt to solve the problem on the entire domain
Ω =

s
⋃

i=1

Ωi (5.1)from the problem solution on the subdomain Ωi. There are several reasons whythis approa
h 
an be advantageous. First of all, the subdomains may have a sim-pler geometry then Ω. Also sometimes the problem may have a natural split intosmaller regions, in whi
h we 
an have di�erent equations that des
ribe the model.However maybe the most important reason to use Domain De
omposition Methodsis the fa
t, that they are the best 
hoi
e for the solution of a problem, if we wantto parallelize the 
omputational pro
ess. Last, but not least, they allow us to dealwith the la
k of memory, by splitting the domain into parts whi
h will �t into our
omputers.There are several methods in the Domain De
omposition family. This report presentsonly some of them.
5.2 S
hwarz Alternating Pro
eduresThe earliest known domain de
omposition method is the alternating method of H.S
hwarz dating ba
k to 1870. It 
onsisted of three parts: alternating between twooverlapping domains, solving the Diri
hlet problem on one domain at ea
h iterationand taking boundary 
onditions based on the most re
ent solution obtained fromthe other domain.Let's 
onsider a domain Ω as shown in Figure 5.1 with two overlapping subdomains
Ω1 and Ω2 on whi
h we want to solve a PDE of the following form:

{

Lu = f, in Ω
u = g, on ∂Ω

. (5.2)Let ∂Ω denote the boundary of Ω and the arti�
ial boundaries, Γi, are the part ofthe boundary of Ωi that is interior to Ω, and s is the number of subdomains. S
hwarzAlternating Pro
edure (SAP) for s subdomain problem will be of the following form:

24



S
hwarz Alternating Pro
edureChoose u0WHILE no 
onvergen
e DOFOR i = 1, ...s DOSolve Lu = f in Ωi with u = uij in ΓijUpdate u values on Γij, ∀jEND FOREND WHILE (5.3)In our 
ase, s = 2.In many appli
ations, it is possible to use a mat
hing grid in the overlap regionto avoid the dupli
ation of the unknowns on the overlap. The mat
hing version ofthe alternating method is known as themultipli
ative S
hwarz method (MSM).Writing the linear system for the dis
retized problem as Au = f , we 
an write theiteration in two fra
tional steps:
un+1/2 = un +

[

A−1
Ω1

0
0 0

]

(f − Aun)

un+1 = un+1/2 +

[

0 0
0 A−1

Ω2

]

(f − Aun+1/2) (5.4)where AΩi
stays for the dis
rete form of the operator L restri
ted to Ωi.We 
an easily see, that the main part of the multipli
ative S
hwarz method is se-quential, so it 
annot dire
tly use the bene�ts of the multi-
ore ar
hite
ture andtherefore it is not a suitable 
hoi
e when making a parallel solver.In literature [10℄ we 
an �nd also another approa
h to SAP, whi
h is more parallel-oriented. This method, 
alled Additive S
hwarz method (ASM), 
an be 
onsid-ered as a parallel version of the multipli
ative S
hwarz method. Its main idea is to
hange presented previous algorithm by 
ombining the 
omputation of in�uen
es tothe solution from of ea
h subdomain into one iteration, instead of doing this in ea
hstep. For our our example with two domain, the iteration step 
an be written as:

un+1 = un +

([

A−1
Ω1

0
0 0

]

+

[

0 0
0 A−1

Ω2

])

(f − Aun) (5.5)If we make a substitution of Bi = Rt
iA

−1
Ωi

Ri, where Ri is the re
tangular restri
tionmatrix that returns the ve
tor of 
omponents de�ned in the interior of Ωi, then theabove equation will be of the following form,
un+1 = un + (B1 + B2)(f − Aun) (5.6)Having this equation, we 
an easily generalized ASM for s number of subdomains,by simply adding Bi(f − Aun) to the right-hand side. As the result of this, for adomain Ω =

⋃s
i=1 Ωi,we 
an write the algorithm for Additive S
hwarz Method in afollowing form 25



Additive S
hwarz MethodChoose u0, i = 0,WHILE no 
onvergen
e DO
ri = b − AunFOR i = 1, ...s DO

δi = BiriEND FOR
un+1 = un +

s
∑

i=1

δi

i = i + 1END WHILE (5.7)
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5.3 S
hur ComplementLet's 
onsider a following problem:
Lu = f in Ω

u = g on ∂Ω (5.8)with the domain Ω partitioned onto s subdomains. After dis
retization of the prob-lem, we 
an label the nodes by subdomain in a spe
i�
 way, so the linear systemwill have a following stru
ture:














B1 E1

B2 E2. . . ...
Es

F1 F2 . . . Fs C





























x1

x2...
xs

y















=















f1

f2...
fs

g















(5.9)where ea
h xi represents the subve
tor of unknowns that are interior to subdomain
Ωi, and y represents the ve
tor of all interfa
e unknowns. It is useful to write thesystem in a more simple form, i.e.

A

[

x

y

]

=

[

f

g

] ,where A =

[

B E

F C

] (5.10)and where E represents the subbdomain to interfa
e 
oupling seen from the sub-domains, while F represents the interfa
e to subdomain 
oupling seen from theinterfa
e nodes. To illustrate this, let us 
onsider a domain split into only twosubdomains. Let's assume that the subdomains are of the same size and both aresquared. Then an illustrative mesh and 
orresponding 
oe�
ient matrix A will looklike

Figure 5.2: An exemplary mesh for the problem des
ribed above.
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Figure 5.3: Matrix asso
iated with the �nite di�eren
e mesh of the �gure 5.2Now, we 
an easily express x with the new terms. From the the �rst equation itfollows that
x = B−1(f − Ey) (5.11)If we now substitute this into the se
ond equation, we will obtain a redu
ed system,
Sy = g − FB−1f (5.12)where the matrix S is 
alled the S
hur 
omplement and is 
reated by the followingrule:
S = C − FB−1E (5.13)If we 
an form S and solve the asso
iated linear system, then the interfa
evariable y 
an be obtained. From this we 
an easily obtain the remaining variable x.Be
ause of the blo
k stru
ture of B, we noti
e that the solution of the system redu
eto solving s separate systems. Be
ause the sets of the variables in ea
h of the systemare disjoint, we 
an solve them simultaneously in parallel. This approa
h is 
alledBlo
k Gaussian Elimination (BGE). The algorithm for it will be now presented:Blo
k Gaussian Elimination AlgorithmSOLVE BE ′ = E, Bf ′ = fCOMPUTE g = g − Ff ′, S = C − FE ′SOLVE Sy = g′COMPUTE x = f ′ − E ′y (5.14)

The partitioning used for the BGE method was edge-based. It means, that agiven edge in the graph does not straddle two domains and if any two verti
es are
oupled, they have to belong to the same subdomain. In the graph theory, this point28



of view is less 
ommon than the vertex-based partitioning, in whi
h a vertex is notshared by two subdomains (ex
ept when subdomains overlap).We will 
all interfa
e edges all edges whi
h link verti
es that are not in the samesubdomain. Interfa
e verti
es will be those verti
es in a given subdomain, thatare adja
ent to an interfa
e edge. Now due to the fa
t, that we split the domaina

ording to a new rule, we 
hange the ordering of the nodes. Now the interfa
enodes are labeled as the last nodes in ea
h subdomain. To illustrate this, let usre
all the example used to present edge-based partitioning and apply new rules toit. As the result we will re
eive the following mesh and 
oe�
ient matrix:

Figure 5.4: An exemplary mesh for the problem des
ribed above

Figure 5.5: Matrix asso
iated with the �nite di�eren
e mesh of the �gure 5.4Let us 
onsider now the S
hur 
omplement system obtained with the new num-bering of the nodes. The 
oe�
ient matrix A now has a natural s-blo
k stru
ture.For example, if s = 2, the matrix will be of the following form:
A =

[

A1 A12

A21 A2

]

. (5.15)
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Also for ea
h subdomain, the variables will be now have it's own lo
al stru
ture,i.e.,
zi =

[

xi

yi

]where xi now denotes interior nodes, while yi denotes the interfa
e nodes asso
iatedwith subdomain i. Now ea
h matrix Ai, will be 
alled lo
al matrix and it will havesimilar stru
ture to matrix A from (4.9),
Ai =

[

B1 Ei

Fi Ci

]

. (5.16)as before, Bi represents the matrix asso
iated with the internal nodes of subdomain i,
Ei and Fi represents the susbdomain to interfa
e 
oupling seen from the subdomainsand interfa
e to subdomain 
oupling seen from the interfa
e nodes respe
tively and
Ci will be the lo
al part of the interfa
e matrix C, whi
h represents the 
ouplingbetween lo
al interfa
e nodes. Matri
es Aij 
ontains zero sub-blo
k in the part thata
ts on the variable xj , therefore we 
an write that

Aij =

[

0
Cij

]It is worth to mention, that most of the Cij matri
es are zero, sin
e only those in-di
es j of the subdomains that have 
oupling with subdomain i will yield a nonzero
Cij.If we now write the part of linear system that is lo
al to subdomain i, as

Bixi + Eiyi = fi

Fixi + Ciyi +
∑

j∈Ni
Cijyj = gi

. (5.17)The term Cijyj is the in�uen
e 
oming from the neighboring subdomain with num-ber j. Nj is a set of indexes of the subdomains whi
h are adja
ent to subdomain j.If we assume that Bi are nonsingular, then we 
an apply the similar solution te
h-nique, whi
h we used to develop the BGE. As the result of this, we re
eive a systemof redu
ed systems
Siyi +

∑

j∈Ni

Eijyj = gi − FiB
−1
i Ei (5.18)where Si is the "lo
al" S
hur 
omplement, and is de�ned as

Si = Ci − FiB
−1
i Ei. (5.19)
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5.4 Numeri
al IllustrationThe presented numeri
al experiments in this se
tion illustrate how does the theoryfrom this paragraph a
ts in pra
ti
e. Both presented methods, namely S
hur Com-plement Method and S
hwarz have been tested on the standard test equation, i.e.on the Poisson equation
−∆u = f, (5.20)on the domain Ω, whi
h was 
hosen to be of a re
tangular shape, and with Diri
hletboundary 
ondition. However due to the fa
t, that we are going to work with theS
hwarz method in the future, we restri
t ourself only to present results only forthis method.The domain Ω after dis
retization has a n × 2n + 1 size. We de
ided to split itinto two subdomains Ω1 and Ω2 along the verti
al middle, with a overlap at it.Below we 
an see a graphi
al illustration of this pro
ess, when n = 4.

Figure 5.6: Domain Ω split into two subdomains, Ω1 and Ω2.We de
ided to enumerate the nodes along the 
olumns, i.e. the node at (i, j) positionwill be 
onsider to be i + (j − 1)n-th node in the ordering.
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Now we are going to see how does the S
hwarz alternating pro
ess do works forthis problem. We will 
he
k both standard variants of SAP, i.e. S
hwarz Additiveand S
hwarz Multipli
ative Method. We will not only present only how does the
onvergen
e rate for ea
h of the methods looks like, we will also look into the e�e
tof the overlap region's size. We will do this simply by adding a next 
olumn to ea
hof the subdomain. We will say. Below we 
an see a example of adding two 
olumnsto the subdomains after dis
retization, for n = 4.

Figure 5.7: Domain Ω split into two subdomains, Ω1 and Ω2, with extended overlap ofsize 2.We will say, that a subdomain has a extended overlap of size k, if it will 
onsist ofthe base subdomain nodes and k additional 
olumns.
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5.4.1 Multipli
ative S
hwarz MethodFirst, we will look at the MSM method. We present how does the 
onvergen
ebehavior 
hanges by in
rement of the overlapping region of two subdomains.
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Figure 5.8: Contour plot of the log10 (i-th residuum) for MSMThe �gure above shows us an essential information about the Multipli
ativeS
hwarz Method. We see, that depending on the size of the overlap of two subdo-mains, we get faster or slover 
onvergen
e of the method. We 
an noti
e, that thewe are dealing here with a logarithmi
 dependen
y, between the size of overlap andnumber of iteration needed to a
hieve a 
ertain error size.
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5.4.2 Additive S
hwarz MethodNow, we will present the result of the same experiment done for ASM.
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Figure 5.9: Contour plot of the log10 (i-th residuum) for ASMAs it was expe
ted, we get a similar result as in MSM. Also here we have a log-arithmi
 dependen
y between the number of iterations needed to a
hieve wantederror size and the size of overlap. However we may noti
e a slight slowdown of the
onvergen
e rate, whi
h was expe
ted, be
ause ASM unlike MSM is 
omputing the
orre
tion from ea
h subdomain without any updates from neighboring subdomains.This is a drawba
k, however we 
an easily negle
ted it, be
ause of the fa
t, that the
orre
tions 
an be 
omputed simultaneously, whi
h 
an speeds up the whole pro-
esses in the sense of spent time.We stop at this moment further investigation of the S
hwarz method, due to thefa
t, that it is tested on a trivial problem. We will go deeper in the next 
hapter,when we will be working with test problems, provided by Plaxis.
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Chapter 6Resear
h Goals
6.1 Introdu
tionKnowing all of the things whi
h were presented so far in this report, we are at themoment, when we 
an a
tually start to work with �nding a good parallel-friendlysolver for linear systems whi
h are generated by Plaxis software. However, to do that,we need to have some test problems, on whi
h we will make numeri
al experiments.Also we need to say, what is a
tually our initial guess for the method, whi
h we willto solve systems. And in the end, we should also de�ne, what will be our next stepin pro
ess of �nding the solution to the problem.6.2 Choi
e of the MethodIn the very beginning of this proje
t we have 
hosen, that a Domain De
ompositionapproa
h will be the starting point for solving the problem, due to the fa
t of the re-sults noted in this �eld of mathemati
s. Nowadays, domain de
omposition methodsare getting more popular, be
ause the underlying idea gives plenty of possibilitiesto parallelize the solution pro
ess, whi
h is a wanted property when solving bigsystems.From the big family of methods of this bran
h of mathemati
s, we have 
hosen touse one of the S
hwarz Alternating Pro
esses approa
hes, i.e the Additive S
hwarzMethod (ASM) as our solver. First reason for it was the fa
t, that the 
ode 
anbe easily 
onverted into a parallel program. Se
ondly, there were already a try touse S
hur Complement approa
h, however the results where not as good as it wasexpe
ted. Also there are examples of many su

essful implementation of this methodin real life problems, whi
h only en
ouraged us to take ASM as our framebox forthe solution of the linear systems.Now when we have 
hosen ASM, to be our main 
ore of the solver, we are goingto upgrade it, by in
orporating onto it two methods, whi
h were presented in thisreport, i.e. Pre
onditioned Conjugate Gradient Method, for the solution of the linearsystems of the subdomains, and the De�ation method to improve the spread of theinformation 
oming from a subdomain to other. This all 
ombined together is goingto be our tool in solving the linear systems.The 
hoi
e of the subdomains on whi
h we will perform the ASM is going tobe done not by a arbitrary 
ut of the 
oe�
ient matrix, but instead by adding theelements from the FEM pro
ess. In this way, we will have a possibility to in
orporate35



a intelligent partition of the domain, whi
h will preserve the physi
al stru
ture of theproblem. We will see it in the following examples, whi
h are going to be presentedin this 
hapter.6.3 Test ProblemsIn this se
tion we will des
ribe test problems, whi
h were used as a starting pointin �nding the best solver for the linear system.
6.3.1 First Simple ProblemFor the beginning of numeri
al experiments and tests, we have 
hosen to deal witha simple problem of volume displa
ement in a four layer 
ube, with a weight loadsituated on the top. Ea
h layer has a di�erent sti�ness whi
h implies jumps inthe values of the 
oe�
ient matrix, 
orresponding to the nodes from di�erent lay-ers. The Finite Element dis
retization of the problem 
onsist of 8 elements, 2 forea
h layer, and 61 nodes. This gives us in the end 76 degrees of freedom, due tothe fa
t, that ea
h node has it limitation of movement. We end up with a systemof 77 degrees of freedom. Below we 
an see a illustration representing given problem.

Figure 6.1: First Simple Problem RepresentationThe 
oe�
ient matrix of this problem has 2499 non-zeros elements.
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We 
hoose to 
ut the domain into 2 parts, namely the upper one, whi
h will 
onsistof two �rst layers from the top, and the se
ond one, 
onsisting of the three layers,taken from the bottom. The reason for that was, that we wanted to preserve similarsizes of two subdomains.Let us �rst apply ASM to this problem with the subdomains de�ned as above,to see how does it rea
t. As the result of this operation, we get a plot whi
h showsus the rate of 
onvergen
e of ASM method. We 
an 
learly see from the plot below,that we are dealing here with a linear 
onvergen
e behavior, whi
h was expe
tedbe
ause ASM is a Basi
 Iterative Method.
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Figure 6.2: First Simple Problem 
onvergen
e behavior for ASMNow, we are going to put the PCG method into use for this problem. For thepre
onditioner we have taken ASM 
omponents, whi
h were used in the previousexperiment. As the result of this, we get a mu
h faster 
onvergen
e, then in theprevious approa
h, what 
an be seen on the next page.
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Figure 6.3: First Simple Problem 
onvergen
e behavior for PCGSo far we have been looking into the behavior of 
onvergen
e rate, when thesubdomains are 
hosen via FEM elements. This de
omposition of the domain im-plies, that the subdomains have an overlapping regions. It would be good also, toinvestigate the situation, when the subdomains are without it. For this purpose,we de
ided to 
reate the subdomains algebrai
ally, by simply spliting the 
oe�
ientmatrix into two squared matri
es along the diagonal, and negle
t everything else.With this we get two 
an 
reate a pre
onditioner and apply PCG to 
ompute thesolution of the system. Below we 
an �nd an illustration of the error distributionfor ea
h of the possible split for this problem.
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Figure 6.4: First Simple Problem distribution of error in PCG
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The paraboli
 shape of the plot is quite logi
al. The bigger (smaller) is the fa
torof the split, the bigger one of the subdomains is getting to be, ergo is starting to bemore similar to the whole domain, so the pre
onditioning part of it is more a

urate.But more interesting are several dents, whi
h o

ur in it. We 
an easily noti
e, thattheir positions are not random. They are 
orrelated with the distribution of nodesin the elements from FEM.6.3.2 Se
ond Simple ProblemAfter dealing with the previous problem, there appeared natural need to extend it,to make it more 
omplex. That is why we have 
hosen to make experiments on thesame problem, but with a denser grid of nodes. The following pi
ture present thenew mesh whi
h was used for generation of the system.

Figure 6.5: Se
ond Simple Problem RepresentationNow, the Finite Element dis
retization of the problem 
onsist of 80 elements, 20for ea
h of the layer, and 367 nodes. We end up with system of over 705 degrees offreedom. We see, that the size of the problem is now almost 10 times bigger. Thenumber of non zeros element in the 
oe�
ient matrix is 50483.For this problem, we now de�ne slightly di�erent subdomains, i.e, we take forthe �rst subdomain two �rst layers from the top, and for the se
ond one, we taketwo instead of three, from the bottom. With su
h partition of the domain, we gettwo linear systems of a similar number of degrees of freedom.On this stru
ture, we apply now DPCG pro
edure. We de
ided to use Subdomainde�ation ve
tors for it. On the next page we may see the 
onvergen
e of this methodfor this problem.
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Figure 6.6: Se
ond Simple Problem 
onvergen
e behavior for PCG with 2 subdomainsWe 
an 
learly see, that for this problem the 
hosen method works perfe
tly. Weget a error of size 10−4 in 11 iterations, what 
an be 
onsidered as a really smallnumber if we take into 
onsideration the size of the problem.Till now, we have only 
onsidered de
omposition into two subdomains. There arisea natural question, namely what will happen if we 
hange the number of the blo
ksin whi
h we split the domain. Let us now split the problem in four, instead of twosubdomains, where ea
h layer will be 
onsidered as a subdomain generator and ap-ply our PCG method onto it.
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Figure 6.7: Se
ond Simple Problem 
onvergen
e behavior for PCG with 4 subdomains
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The new de
omposition makes the 
onvergen
e rate slower in the sense of theiteration needed to get to the desired solution. However, we will investigate the timewhi
h was used spent for the 
omputing the solution with the error size 10( − 6),and we will 
onsider that the 
omputation of the blo
k is done parallel by two pro-
essors, then the variant with four subdomains took around 0.13 se
ond to get theresult, while the variant with two spent 0.16 in average. We may see, that we wereable to speed up the solution of the problem.This result was a sparkle to 
he
k if we would split the problem into eight subdo-mains, we would also noti
e a speed up. For that, we split the domain, by simplytaking ea
h element layer and make it from it a subdomain used into pre
ondtioningthe system.
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Figure 6.8: Se
ond Simple Problem 
onvergen
e behavior for PCG with 8 subdomainsThe iteration number needed to get a des
ent error of the solution, is getting togrow with ea
h in
rement of the number of subbdomains. We see that when having8 subdomains, we need almost 200 iterations steps. This aspe
t transit into theamount of time spent for 
omputing the solution. If we would 
onsidered, that theparts in the program where we were dealing with the subdomains would be done bytwo pro
essors, then it would take almost 0.22 of se
ond. We say almost, be
ause
omparing to the previous de
omposition we noti
e a large jump.We end up the experiments with the Se
ond Simple Problem with a similar analysisdone for the First Simple Problem, namely we would like to see how looks 
onver-gen
e rate, when we have non overlapping subdomains generated algebrai
ally. Likebefore, we split the 
oe�
ient matrix into two squared matri
es along the diagonaland used them to 
reate a pre
ondtioner used then in PCG.
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Figure 6.9: Se
ond Simple Problem distribution of error in PCGWhen simulating this, we de
ided that instead of inverting matri
es used for thepro
onditioning, we will apply Cholesky In
omplete Fa
torization, to speed up thesimulation. From the pi
ture above we 
an 
learly see, that the we 
an not 
ut the
oe�
ient matrix by random. On
e again we noti
e some pla
es, whi
h are moredesired to use for the partition, then it's neighbors. However even more interesting isthe fa
t, that when spliting at the 352 position, whi
h tends to be the middle of the
oe�
ient matrix, we have almost the best 
onvergen
e behavior. It is interesting,that the position 354 is the beginning of the �rst element of the 3th layer from theproblem. Also at postions 254 and 598 we noti
e a mu
h faster 
onvergen
e. Thosenodes are a
tually the last nodes from the 1st and 3th later. So we 
learly see, thatthe idea to de
ompose the problem with the in
orporating underlying physi
s has apositive a�e
t on the 
onvergen
e behavior of the �nding the solution.
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6.4 Con
lusions and resear
h questionsFrom the test problems, whi
h were presented in this 
hapter, we 
an 
learly seethat the approa
h whi
h we have 
hosen to use in �nding solutions for the linearsystems is tend to be the the right one. We have seen that splitting 
annot by doneby simply 
utting into two parts, be
ause we may �nd that the stru
ture of theproblem 
an 
reate some obsta
les leading into a slower 
onvergen
e. We have alsoseen, that in
orporating elements from the dis
retization in the pro
ess of genera-tion subdomains is a powerful tool in the a

eleration of the speed of solution pro
ess.However, we 
annot forget that the ratio of number of subdomains and iterationsteps plays also an important role in the pro
ess of �nding the solution. In the se
-ond example, when we investigated this issue, we have noti
ed that we should alsolook at the amount of time used to solve the system. We should not only analysethe number of iteration steps, whi
h 
an be misleading, be
ause overall our goal isto de
rease time spent on 
omputation. This is our main resear
h question at thismoment, whi
h is now strongly investigated.We should also noti
e, that for now, we did not introdu
e any data whi
h wassolved by a method whi
h uses De�ation approa
h. The reason for this is, that theresults at the moment of writing this report where far of being satisfying. Neverthe-less, there were done some numeri
al experiments, whi
h have pointed the dire
tionfor solving this issue, whi
h is namely the Rigid Body Modes approa
h as the 
hoi
eof De�ation ve
tors.
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