Delft University Of Technology
Faculty of Electrical Engineering, Mathematics and Computer Science

MASTER THESIS
LITERATURE STUDY REPORT

Author:
KoONRAD KALISZKA 1531506

Supervisors:
C.Vuik
M.B. Van Gijzen

3
TUDelft

Delft University of Technology

Contents

1 Description of the problem 3
1.1 Introduction 3
1.2 Overview of thereport 4
1.3 Short description of problem 5)

1.3.1 Deformation Theory 5
1.3.2 Global iterative solution procedure 7

2 Finite Element Method 8
2.1 Introduction 8
2.2 Variational Equation o 8
2.3 Galerkin Equations 9

3 Conjugate Gradient Method 10
3.1 Introduction 10
3.2 Basic Iterative Methods, 10
3.3 Conjugate Gradient Method, 11
3.4 Preconditioned Conjugate Gradient Method 13
3.5 Numerical illustration. 15

4 Deflation 18
4.1 Introduction e 18
4.2 Deflation e e 18
4.3 Deflated CG and PCG Methods 20
4.4 Deflation Vectors e 21

4.4.1 Subdomain Deflation Vectors 21
4.4.2 Rigid Body Modes 22

5 Domain Decomposition Methods 23
5.1 Introduction 23
5.2 Schwarz Alternating Procedures 24
5.3 Schur Complement 27
5.4 Numerical lustration 31

5.4.1 Multiplicative Schwarz Method 33
5.4.2 Additive Schwarz Method 34

6 Research Goals 35
6.1 Introduction 35
6.2 Choice of the Method 35
6.3 Test Problems 36

6.3.1 First Simple Problem
6.3.2 Second Simple Problem
6.4 Conclusions and research questions

Bibliography

Chapter 1

Description of the problem

1.1 Introduction

Plaxis B.V. is a company specialized in finite element software intended for 2D
and 3D analysis of deformation, stability and groundwater flow in geotechnical en-
gineering. Geotechnical applications require advanced constitutive models for the
simulation of the non-linear and time-dependent behavior of soils. In addition, since
soil is a multi-phase material, special procedures are required to deal with hydro-
static and non-hydrostatic pore pressures in the soil.

Within the finite element formulation large linear systems have to be solved. At
this moment fast and robust iterative solvers are available for sequential computing.
Since more and more present day computers consists of more cores, Plaxis is working
on parallelization of these solvers. It is not so easy to parallelize the current solver
with the same amount of iterations. In this project other techniques are investigated
in order to develop robust and efficient parallel solvers. As a first approach domain
decomposition methods have to be studied. After a good DD method has been
selected the properties of this method is investigated for the problems originating
from geotechnical applications. A combination of this method with a second level
preconditioner is the next step in this investigation. Finally, instead of an arbitrary
data partitioning, the decomposition of the computational domain should be based
on the physical properties of the domain. This decomposition can be used to have
special preconditioners for certain subdomains and can also be used to develop a
good second level preconditioner.

1.2 Overview of the report

In this report we are going to present the theory which is will be needed to solve
the problem. We will also show some numerical experiments which were done dur-
ing the literature study period for better understanding the underlying aspects of
studied materials. In the end we will draw some preliminary conclusions and state
the future directions of the research.

We will start this report with a short description of the Plaxis software and the
systems which are solved by it. After that, we make a short introduction to the
Finite Element Method, which is done in the next chapter. After that, we are going
to describe the Conjugate Methods, one of ingredients of the approach chosen to
be the solution for our problem. This chapter is followed by a description of the
Deflation method and it’s combination with PCG. After that we present the idea
of the Domain Decomposition approach, through presentation of two basic methods
from this block of mathematics.

In the last chapter, we are going to show results of tests done on the data pro-
vided by Plaxis. Also this will be the place of some conclusions and setting goals
for the next period.

1.3 Short description of problem

As mentioned before, Plaxis B.V. is a company specialized in finite element soft-
ware intended for 2D and 3D analysis of deformation, stability and groundwater
flow in geotechnical engineering. The soil can consist of different layers and each
can have a different material model and/or different parameters within it specifica-
tion. In addition, there can be specified several structural elements, like sheet pile
wall or anchors which may be taken into account when simulating. When a problem
is created it is subdivided into a large number of finite elements and equilibrium is
solved in several steps and iterations. It is also worth to mention, that Each of these
nodes has the ability to move in the z,y and z directions. However some nodes are
fixed on the boundary and have limited to no freedom of movement. We use the term
degree of freedom as the unknowns in the linear system and they will correspond to
the direction of nodes in which they are able to move. For each direction one row
will be introduced in the matrix, so two or three adjacent rows can correspond to
the same node.

An important part of the calculation time, especially for larger 3D projects, is solv-
ing a linear system of equations. For large systems, direct solution techniques cannot
be used so iterative solution techniques are often used.
We will now present some basic equations and theory, which is used within the
Plaxis software. More information can be found in [5].

1.3.1 Deformation Theory
The formula for the static equilibrium can be written in the following way:
Lo +b=0 (1.1)

where 0 = [0, 0 0, 04y 0y O'Zx]T is the stress vector, b is the body forces vector
and L7 is the transpose of a differential operator defined as:

0 el 0
200 2 0 Z
=10 2 0 2 2 0 (1.2)

9 9 9
0 0 Oz 0 oy Oz

We will also use the the kinematic relation, which can be formulated as:
e=Lu (1.3)

where € is the stress vector. The link between Eq. (1.1) and (1.3) is formed by a
constitutive relation representing the material behaviour i.e., the relation between
the rates of stress and strain, which can be written as:

& = Meé, (1.4)

and where M is the matrix which represents the relations between rates of stress
and strain.

The combination of Eqgs. (1.1), (1.3) and (1.4) would lead to a second-order
partial differential equation in the displacements u. However, instead of a direct
combination, the equilibrium equation is reformulated in a weak form according to
Galerkin’s variation principle:

/5uT (L0 +b)dV =0 (1.5)

In this formulation du represents a kinematically admissible variation of displace-
ments. Applying Green’s theorem for partial integration to the first term in Eq
(1.5), we get:

/56TcrdV: /UudeV+/5uTtdS (1.6)

This introduces a boundary integral in which the boundary traction appears. The
three components of the boundary traction are assembled in the vector ¢. Eq. (1.6)
is referred to as the virtual work equation.

The development of the stress state o, can be seen as an incremental process:

o=+ Ao

Ao = /érdt

In this relation o° represents the actual state of stress which is unknown and o?~!
represents the previous state of stress which is known. The stress increment Ao is
the stress rate integrated over a small time increment.

If Eq. (1.6) is considered for the actual state i, the unknown stresses o’ can be
eliminated using (1.7):

(1.7)

/ S’ AodV = / Sulb'dV + / sult'dS — / Sel otV (1.8)

The Eq. (1.8) is then solved with the use of Finite Element Method, which will be
described further in this report and that is why we will omit the derivation associated
with it. Nevertheless, as the result we end up with the following equation:

/ BédV = / Nb'dV + / NTHdS — / Bo'tdV (1.9)

,where B is the strain interpolation matrix, which contains the spatial derivatives
and of the interpolation functions, and N is a matrix which stores interpolation
functions of the displacement vector, known also as the shape functions.

The above equation is the elaborated equilibrium condition in discretised form.
The first term on the right-hand side together with the second term represent the
current external force vector and the last term represents the internal reaction vec-
tor from the previous step. A difference between the external force vector and the
internal reaction vector should be balanced by a stress increment Ao.

The relation between stress increments and strain increments is usually non-linear.
As a result, strain increments can generally not be calculated directly, and global
iterative procedures are required to satisfy the equilibrium condition (2.13) for all
material points.

1.3.2 Global iterative solution procedure

The formula for the global iterative solution procedure has the following form:

K'Av' = fi — fi-t (1.10)
where K is the stiffness matrix, Awv is the incremental displacement vector, f., is the
external force vector and f;, is the internal reaction vector. The superscript ¢ refers
to the step number. However, because the relation between stress increments and
strain increments is generally non-linear, the stiffness matrix cannot be formulated
exactly beforehand. That is why the global iteration process can be written as:

KIS0T = fi, — i (1.11)

where the superscript j refers to the iteration number, dv is a vector containing
subincremental displacements, which contribute to the displacement increment of
step ©:

Avt =) 60 (1.12)
j=1

where n is the number of iterations within step 7. The stiffness matrix K, represents
the material behavior in an approximated manner. The more accurate the stiffness
matrix is, the fever iterations are required to obtain equilibrium within a certain
tolerance.

In a its simplest form, K represents a linear-elastic response. In this case, the
stiffness matrix can be formulated as:

K= /BTDeBdW (1.13)

where D€ is the elastic material matrix according to Hooke’s law and B is the strain
interpolation matrix.

Chapter 2

Finite Element Method

2.1 Introduction

When dealing with partial differential equations, we need to have a tool which will
allow us to solve them or at least to get an approximation of the solution. In this
chapter we will present a famous method called Finite Element Method, which let us
create an approximation of the PDE we are dealing with, which preserves complex
geometries and is quite easy to understand. FEM method is used all over the world
in thousands of application.

We will illustrate the Finite Element method with the solution of a Poisson
equation with Dirichlet boundary condition, where € is a bounded open domain in
R? and T is its boundary.

—Au=f (2.1)

2.2 Variational Equation

To solve this problem approximately, we will need to extract a system of algebraic
equations which will yield the solution. To do that, we will use a common approach,
namely the weak formulation of the problem. Denote:

a(u,u) = / < Vu|Vu > dx

Q
()= [foda
Q
It is easy to show, that a is bilinear. Now, from Green’s formula we get:
a(u,v) = —(Au,v) = (Vu, Vv)
Hence, now we can reformulate the problem into following one
Find w € V' such that VYo eV : a(u,v) = (f,v) (2.2)

where V' C L is the subspace of all functions whose derivatives up to first order are
in L, and which have zeros on T'. The resulting space is called HJ(2). The above
condition is called a Variational Equation.

2.3 Galerkin Equations

Let €2, denote an approximation of the domain 2 by the union of the m triangles
K;, which come from the triangulation of 2. Now, we can replace the space V with
a finite dimensional space V},, which is defined as the space of all functions which
are piecewise linear and continuous on the polygonal region €2}, and which vanish
on the boundary I'. To be more precise:

Vi =19 : ¢jq, - continuous, ¢, =0, @k, - linear for all j} (2.3)

If x;, where j € {1, ...,n} are the nodes of the triangulation, then a function ¢; in
Vi, can be actually associated with each of them, so that it satisfies the following

condition:
1, if T; = Tj

The above condition makes ¢;,7 = 1, ..., n defined uniquely. Also the ¢;’s form a basis
of the space V}, so each function now can be represented as a linear combination of
them:

YueVy: wulx)= Z@qﬁl(:c) (2.5)

If we now recall the variational equation, and write it for the V}, space, then we will
get:

Find u € V,, such that Yo eV, : a(u,v) = (f,v) (2.6)

by the linearity of a with respect to v, one can impose the condition a(u, ¢;) = (f, ¢;),
for i = 1,...,n. But from (2.5), we know that u can be represented as the linear
combination of the basis function. If we combine those two facts, we will get:

> ayé =, foralli=1,.n. (2.7)
i=1

where o;; = a(¢;, ¢;) and 5; = (f, ¢;).
The above equation allows us to formulate a linear system:

Az =b (2:8)
with A = [a;j]nxn and b= [B; ... B,)7

The matrices generated by this method have some nice properties. The most
important are the facts, that A is Symmetric Positive Definite and sparse. Knowing
this, we may now use one of the CG variants for solving these linear systems.

Chapter 3

Conjugate Gradient Method

3.1 Introduction
One of our main problems is to solve a linear system:
Az =, (3.1)

where A € R™" is called a coefficient matrix, b € R™ a right-hand side vector, and
where n € N. Keeping in mind the fact, that we are dealing with matrices from the
discretization, we will assume that A is symmetric and semi-positive definite.

There are many ways to solve this problem. In this chapter we will focus on a
well-known iterative method, called Conjugate Gradient or, in short-hand notation
CG, developed by E. Stiefel and by M.R, Hestenes|3|, which allows us to compute the
solution of the above mentioned system of equations. The success of this algorithm
lies in it’s simplicity. However, to describe the Conjugate Gradient method precisely,
we have to know exactly what is a basic iterative method.

3.2 Basic Iterative Methods

Basic iterative solution methods are used to generate a sequence (x;,i = 0,1,...)
which may be finite or not, consisting of the approximations of the exact solution
x. The compute this sequence, the following recursive formula is used,

Tiy1 = Xy + M_l(b - Al‘l) (32)

We can substitute r; = b — Ax;, to which we will from now on refer as the i-th
residual, which is used to measure the difference of the i-th approximation and the
exact solution and rewrite the above equation once again in a more pleasant way,

Tiy1 = Ty + M_lTZ‘ (33)

If we now write the first steps of this iteration process,

10

To = Xo,

ry =z + M g,

To=ay+ M vy =204+ M trg+ M b — Axg — AM ')
=x0+2M 1rg — M~TAM 'rg

(3.4)
we can conclude that
x; € g + span{M trg, MTPAM try), .., (MTTA) Y M)} (3.5)

The subspace which occurs in the last formula is actually a special case of a
Krylov-space, which is defined as K*(A,ry) = span{rg, Arg, ..., A""lry}. From this
we conclude that for each basic iterative method the following is fulfilled

T; € To + KZ(MilA, MilATo) (36)

These methods are also called Krylov(-subspace) methods. We see that there
are two problems which arise from the formula of the basic iterative method. Given
the matrix M ~!(which also called a "preconditioner") the first problem is to find
a suitable basis for K(:,:) such that the iterative method has a fast convergence
rate with a reasonable accuracy and efficiency with respect to memory storage and
computational time. Second, is actually finding the x;.

3.3 Conjugate Gradient Method

The present section will be devoted to a description of the Conjugate Gradient
Method, which nowadays is probably the best known and mostly used iterative
method for solving SPD linear systems.

To explain how the CG method works, let us define first what an A-inner product
and what an A-norm is.

Definition 3.1. The A-inner product is defined by
< xly >a= 2" Ay

Definition 3.2. The A-semi-norm is defined by

lzl]la = V< 2z >,

Whenever A is Positive Define, we may talk of an A-norm.

11

The underlying idea of CG is very simple. The sequence (z;,j = 0,1,2,...)
should have the following property:

r—2illa= min T — , for all j. 3.7
lr=mlla= _min e gl for all (5.7
We are sure about the existence of the minimum only if A is SPD. However due to
our knowledge about the matrices coming from the discretization of PDE’s we do
not have to worry about this.

Notice that

|z — 21|34 = (2 — aoro) T A(z — agro) = 27 Az — 2aqrd Az + airl Arg (3.8)
Which can be considered as a parabola of the variable ag. Hence the minimum is

T T
ry Az _ _"o b
roTAro rgAro :

achieved for oy =

In the steepest descent method, each next iteration step is determined by the
formula

Tpy1 = Tk + QgPk, (3.9)

where py, is the direction of minimum search function for the energy of the system.
If we multiply the above equation by A and subtract b from it, we will get

Az — b= Az, — b+ apApy
But this nothing else but
Tre1 = Th — QpADE. (3.10)
If we now assume, that p and p, are conjugate, then from
< p|rks1 >=<p,|rr >+ < p, Apg > (3.11)

we see, that if < p|ry, >= 0, then also < p|rgy; >= 0. This the main condition of
the CG method, that for each j = 0,1, ..., k we have that < p;|ry4; >= 0. If we now
define

T%Al‘ _ < Tk|pk >
TgATO < Pk |pk >

Py = —To, and prr1 = —1 + Oepr for k=0,1,2,... (3.12)
where (5 induce that py.; and p; will be conjugate, then we are done. The only
thing which is left to do, is to find §;. To do that, let us notice that

< Prt1|Pre >a=< —Trs1 + Bibelpr >a= — < Tks1|pe >4 +0k < prlpr >4=10

<Tpy1|pr>

when ﬁk - <prlpr>a”

Knowing all those facts, we can write a pseudo-code of the Conjugate Gradient
algorithm. However, in most of the literature, for example [9], the coefficients oy, and
Ok, are computed in a slightly different way. The pseudo-code which is presented is
using the ones which are used more often. Later we will refer to the new coefficients
as "Official Approach" and "Proof Approach" to the ones which where defined during
the derivation of the CG Method.

12

Conjugate Gradient Algorithm

Choose xg, set i = 0,79 = b — Axyg.
WHILE r, ~0 DO
1:=1+1
IF i =0 DO
p1="To
ELSE
Bi =

T
Ti_1Ti-1

TiT—QT i—2
pi = ric1+ Bipic1
ENDIF
rlario
i Ap;
T = Ti—1 + Q5p;

o; =

ri =Tri-1 — @ Ap;
END WHILE (3.13)

It is very important to notice, that to use CG we need only to remember four vectors
and one matrix which makes it attractive in the usage of memory space.

From [6], we now that the convergence rate of the CG-method can be easily
estimated using the following theorem:

Theorem 3.3. Let A and x be the coefficient matriz and the solution of (1.1), and
let (z;,i = 0,1,2...) be the sequence generated by the CG method. Then, elements of
the sequence satisfy the following inequality:

o — |4 < 2 (%) e — ol (3.14)

where k(A) is the condition number of A in the 2 - norm.

We clearly see, that the convergence depends on the condition number of A,
hence we can conclude that the closer k(A) is to 1, the faster we approach the
solution of the (3.1). Therefore it is desired to have a matrix with as low as possible
condition number. This leads us to a modification of the CG, called Preconditioned
Conjugate Gradient Method.

3.4 Preconditioned Conjugate Gradient Method

The idea which helps us to escape the barrier created by Theorem 3.3 and improve
the efficiency and robustness of CG is to transform the original linear system (3.1)
into one which has the same solution, but is easier to solve with CG.

Let us consider the following problem:

A*zt = b, (3.15)

13

where A* = P7'AP~T 2* = P~Tg and b* = P~'b, where P is a non-singular matrix.
The SPD matrix M defined by M = PPT is called the preconditioner. We can now
use the original CG algorithm to solve our new system. The result is the algorithm
for the Preconditioned Conjugate Gradient method, or in short-hand notation PCG-
method. However, the presented pseudo-code will be rewritten in such a way, that
we will only use quantities without the * sign occurs.

Preconditioned Conjugate Gradient Algorithm

Choose xg, set i = 0,79 = b — Axy.
WHILE r; ~0 DO
2= Mr;
t:=1+1
IF i =0 DO
P1 = %0
ELSE

Bi = v

pi = zi1+ Bipic1
ENDIF
7’¢T—1Zz‘71
i Api

Ty = Ti—1 + up;

T
T 1%i—1

Q; =

T =Ti1 — Ap;

END WHILE (3.16)

From Theorem (1.1), which determines the convergence rate, we see, that in PCG,
k(P7LAP™!) will be the coefficient telling us about the speed. That’s why the
success will be depending on a good choice of the matrix P.

There are two extreme choices, which show the range of PCG. If P = I, we
will go back to the original CG-method, whereas if we choose PPT = A, we will
converge to the solution in one iteration. There are many possibilities of choosing
the preconditioner. However, we should keep in mind, that the more complex our
preconditioner will be, the more time we will spend on construction and application
in the program. That’s while in this report we will present only two easy precodi-
tioners, to show the possible choices.

If we, take as M, the diagonal of matrix A, we will be dealing with the most stan-
dard preconditioner, called Jacobi-preconditioner, due to the origins in the Jacobi-
method. The reason to choose this matrix is the fact, that it is easy to construct,
the matrix multiplication is very fast, because of the big number of zero elements.
At last, but not least diag(A*) = 1, which results in saving n multiplications in the
matrix vector product.

14

The other proposition for the matrix M is to take a precondtioner of the following
form:
1 1 1

M= m<;D+L)<£D)1<;D+L)T (3.17)

where D and L are the diagonal and the ower triangular of A respectively.

This preconditioner is called SSOR, and its name due to the connection with SSOR-
method. The optimal value of the parameter w, like the parameter in the SOR
method, will reduce the number of iterations to a lower order. Although in prac-
tice, the spectral information needed to get the optimal w is quite expensive in the
computational sense.

3.5 Numerical illustration

In this section, we will present some numerical experiments, which were done to show
how CG and PCG work in practice. For that, we chose a SPD matrix, on which
we will perform methods presented in this chapter, namely we will deal here with
the CG with "proof coefficients", CG with "Official coefficients", PCG with Jacobi
preconditioner "Proof coefficients", PCG with Jacobi preconditioner and "Official
coefficients", PCG with SSOR preconditioner "Proof coefficients", PCG with SSOR
preconditioner and "Official coefficients", PCG with Jacobi and SSOR. precondi-
tioner and "Official coefficients". For SSOR we took w = 0.5 and for SSOR with
Jacobi we took w = 1.9.

Below we can find the matrix which was used for testing.

(10 —4 1 T
—4 11 -4 1 0
1 -4 11 -4 1
A=
1 —4 11 —4 1
0 1 —4 11 —4
1 —4 10]

with n = 40, and vector b = [1 23 4. . . 40]7. On the next page we can see the
plot of the iteration step versus the log of error.

15

O T T T T T T T
Proof Approach

2k Official Approach i
Proof Approach with PreJor
Official Approach with PreJor

—4r ' Proof Approach with PreSSOR
Official Approach with PreSSOR
e -6F : : 1 — — Proof Approach with PreJ&SSOR |
3 3 3] Official Approach with PreJ&SSOR
§ gk : : |
s
L mLOb N
3

S
O =12 N

_14 s

\
_16 N
-18 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80

Iteration step

Figure 3.1: Plot of logio(i-th residuum) for system Ax=b

From the presented data, we clearly see that the Conjugate Gradient Methods
works perfectly for the given system, which was expected, because matrix A a sym-
metric strongly diagonally dominant which implies that is SPD and which allows us
to expect convergence.

The reason for the fast convergence of all methods is the conditional number of
matrix A, which is quite low. To be precise, it is equal to 4.988502495710613.

However, if we now change the system, and instead of the presented one, we will
test these CG variants for the system, which we get from a discreatization of a
problem created in Plaxis software, namely Second Simple Problem (Which is de-
scribed in the last chapter of this report), we will get a different behavior of the
iteration processes. On the next page we will present the figure which will show us
the convergence of the CG methods.

16

Loglo(i—th residuum)

Proof Approach ' i
iy Official Approach 'M -

Proof Approach with PreJor
Official Approach with PreJor
Proof Approach with PreSSOR
Official Approach with PreSSOR

R e

-10 L L L L L L L
0 100 200 300 400 500 600 700 800

Plot of Iogm(i—th residuum) for system Ax=b

Figure 3.2: Plot of logio(i-th residuum) for Second Simple Problem

We see, that in this case we can notice a big difference between the methods.

For example, normal CG does not even get close to the solution during the whole
iteration.
If we now look at the conditional number of the system, we will see the reason
for those results, because cond(A) = 3.042123456938706 * 10%, while cond(A’) =
1.122208310761762 % 10%, where A’ is the preconditioned coefficient matrix by PreS-
SOR. This example shows us, that the use of Preconditioned Conjugate Gradient
method is a right choice for nontrivial linear systems.

17

Chapter 4

Deflation

4.1 Introduction

In the previous chapter we consider the CG-method for solving linear systems with a
matrix A which is SPD. We also present a way to improve it’s convergence rate which
depends mainly on the condition number of the coefficient matrix, by introducing a
transformation of the original linear system into a new one with a smaller condition
number. This approach was called preconditioning. We also presented some of the
classical preconditioners. In this chapter we will show another way of preconditioning
called deflation.

4.2 Deflation

Definition 4.1. Let A be an SPD coefficient matriz from (1.1). Suppose that Z €
R™F with full rank, and k > n —d is given and d is the number of zero eigenvalues
of A. Then the deflation matriz P € R™*" is defined as follows:

P:=1—-AQ (4.1)
where:
o Q:=ZE"'Z" is called the correction matriz.
o £ :=7TAZ is called Galerkin matriz.

Z is often called "deflation-subspace matrix" whose k£ columns are the "deflation
vectors" or "projection vectors". Right now, they do not need to be specified.
However, they will be chosen in such a way, that matrix £ will be nonsingular|9].

We will now go back to our original linear problem, and solve it using the fol-
lowing decomposition of the solution vector.

r=(I—-Po+ Pz (4.2)
notice, that

I-P=1—(I-AQ)=AQ (4.3)
APT = A(1 — AQ)T = A(I — QA) = A — AQA = (I — AQ)A = PA (4.4)

18

ET = (ZTAZY = ZTATZ = Z7TAZ = E (4.5)
QN =(ZE 'z = ZE 7T = ZE7' 7T = Q

Let us now go back to (2.2)

v=(—-Pa+ Py

r=Qb+ Pz
Az = AQb+ AP T«
b= AQb+ PAx
(I — AQ)b = PAx
Pb= PAx (4.7)

It is crucial to notice, that the solution of (4.7) does not have to be a solution of
the original linear system(1.1), because PA is singular. That’s why, we will denote
the solution of (4.7) as & to distinguish from x. We may now formulate a deflated
system of our original problem as:

PAZ = Pb, (4.8)

and solve it using CG. However we need still to connect the solutions of (3.1) and
(4.7), otherwise the whole procedure would not have any reason to exist. The
following Lemma [9]will provide the needed link:

Lemma 4.2. Let P be the deflation matrix and @) be the correction matriz of the
(1.1) under the assumption that Z satisfies the requirements of Definition (2.1) and
b is the right hand-side of (1.1). Suppose that x be the solution of (3.1) and T be
the solution of (4.8). Then, the following formula holds

r=Qb+ P'z (4.9)
Proof. Notice that if we decompose = as
r=x+y,
where y € R(Z) C N(PA), then
Pz = PPy + PTy = Pz, (4.10)
because P'y = O,,. This property have arisen from the fact that
P27 =(1-QAZ=272—-QAZ=27—7= Oy (4.11)
Hence, now it is easy to see that:
r=(1-P)lz+Px=Qb+ Pz
O

It can be shown, that PA is SPSD, hence it can be interpreted as the new
coefficient matrix of the linear system (4.8).

19

4.3 Deflated CG and PCG Methods

We can now write the pseudo-code of the deflated CG method:

Deflated Conjugate Gradient Algorithm

Choose Ty, set i = 0,79 = P(b— AZy).
WHILE 7 A0 DO
1:=1+1
IF : =0 DO
p1=To

ELSE

ﬁi = f;r_zfi72

i = Tic1 + Bipia
ENDIF

LT

@i pzTP Ap;

Tp = Ti—1 + agp;

,T —
Ti_1Ti-1

T =Ti-1 —a;PAp;
END WHILE
Lorginal = Qb + PT{Z‘last (412)

We see that the algorithm is barely touched, the are only little differences between
it and the original CG algorithm. We can also make a preconditioning of the system
by using an SPD precondtioner M ~!,and then apply onto it Deflated CG method.
As the result we get Deflated Preconditioned CG Method, for which present the
pseudo-code on the next page.

20

Deflated Preconditioned Conjugate Gradient Algorithm

Choose Zg, set i = 0,79 = P(b— AZy).
WHILE 7 A0 DO
t:=1+1
IF : =1 DO
yo = M7
P1 =1%o
ELSE
Yi1 =M
77Z‘T_1yi—1
sz_zyz‘f2
Pi = Yi—1 + Bipic1
ENDIF
TaTio
p@'TPApz‘

T =T+ q;p;

b =

T =Ti-1 —a;PAp;
END WHILE
Lorginal = Qb + PT{Z‘last (413)

4.4 Deflation Vectors

The choice of the deflation vectors is a very important part of the whole process of
deflation methods. In literature [9|we can find several proposition for the candidates
to use. The most known strategies for construction of those vectors are:

e Approximated Eigenvector Deflation Vectors
e Recycling Deflation Vectors

e Subdomain Deflation Vectors

e Multigrid and Multilevel Deflation Vectors

e Rigid Body Modes

It is worth to mention, that right know we do not have a universal strategy for
constructing the deflation vectors, which gives the best result for every problem.
In this chapter we will restrict ourself to present only two strategies, namely Sub-
domain Deflation and Rigid Body Modes.

4.4.1 Subdomain Deflation Vectors

In this variant of deflation, we choose the deflation vectors in the following way:
Let ¢ >1and j € {1,..., q}. We divide the computational domain €2 into ¢

21

subdomains €2;, by the following rules:

Let’s also denote €2, and 2, for the discretized domain and subdomains respec-
tively. After that we can introduce the deflation vector z; associated with the j-th
subdomain as follows:

. O, x; € Qu\ 2,
z(i) = { ! e Q:\ hi (4.15)
After this step, we define Z = [z; 25 . . . z,]. This finish the construction.

This method is strongly related to approaches known as Domain Decomposition
Methods.

4.4.2 Rigid Body Modes

In the recent research in the field of deflation, we can find another approach for
choosing the deflation vectors. In [13], we may find an introduction to the Rigid
Body Modes used as the engine for the deflation vectors. The main idea is to set for
the i-th deflation vector the i-th vector of the null space of A, which is a submatrix
created from the elements from the FEM discreatisation, which are composing the
aggregate subdomains.

22

Chapter 5

Domain Decomposition Methods

5.1 Introduction

With the rapid growth of high speed computing, we get a powerful tool to our hand.
Multi-core processors gives us a possibility to solve very big computation problems in
a much faster way than the traditional sequential ones, using the advantages which
come from the architecture of the machine used to compute. Among techniques
which are based on the parallelization of the computation process, domain decom-
position methods are undoubtedly the best known and perhaps the most promising
for the problem studied by Plaxis. These methods combine ideas from Partial Dif-
ferential Equations, linear algebra, mathematical analysis and some part of graph
theory. In this chapter we will focus on the decomposition methods, which are based
on the general concepts of graph partitioning.

Definition 5.1. We will call a method a Domain Decomposition method, if its main
idea will be based on the principle of divide and conquer applied on the domain of
the problem.

Figure 5.1: An example of domain decomposition

23

Let us consider the following problem. We want to solve the Laplace Equation
on domain (2 partitioned as shown in the figure above. Domain Decomposition
methods attempt to solve the problem on the entire domain

0= U 9 (5.1)

from the problem solution on the subdomain §2;. There are several reasons why
this approach can be advantageous. First of all, the subdomains may have a sim-
pler geometry then). Also sometimes the problem may have a natural split into
smaller regions, in which we can have different equations that describe the model.
However maybe the most important reason to use Domain Decomposition Methods
is the fact, that they are the best choice for the solution of a problem, if we want
to parallelize the computational process. Last, but not least, they allow us to deal
with the lack of memory, by splitting the domain into parts which will fit into our
computers.

There are several methods in the Domain Decomposition family. This report presents
only some of them.

5.2 Schwarz Alternating Procedures

The earliest known domain decomposition method is the alternating method of H.
Schwarz dating back to 1870. It consisted of three parts: alternating between two
overlapping domains, solving the Dirichlet problem on one domain at each iteration
and taking boundary conditions based on the most recent solution obtained from
the other domain.

Let’s consider a domain €2 as shown in Figure 5.1 with two overlapping subdomains
2, and §25 on which we want to solve a PDE of the following form:

Lu=f, inQ
{ u=g, on 0} ° (5:2)

Let 0f2 denote the boundary of €2 and the artificial boundaries, I';, are the part of
the boundary of €2; that is interior to 2, and s is the number of subdomains. Schwarz
Alternating Procedure (SAP) for s subdomain problem will be of the following form:

24

Schwarz Alternating Procedure

Choose uy
WHILE no convergence DO
FOR i=1,..s DO
Solve Lu = f in ; with v = w;; in T';;
Update u values on I';;, Vj
END FOR
END WHILE (5.3)

In our case, s = 2.

In many applications, it is possible to use a matching grid in the overlap region
to avoid the duplication of the unknowns on the overlap. The matching version of
the alternating method is known as the multiplicative Schwarz method (MSM).
Writing the linear system for the discretized problem as Au = f, we can write the
iteration in two fractional steps:

A—l
w2 = [521 8 } (f — Au™)
unJrl _ un+1/2 + [0 0 :| (f . Aun+1/2) (5 4)
- 0 A '

where Ag, stays for the discrete form of the operator L restricted to €.

We can easily see, that the main part of the multiplicative Schwarz method is se-
quential, so it cannot directly use the benefits of the multi-core architecture and
therefore it is not a suitable choice when making a parallel solver.

In literature [10] we can find also another approach to SAP, which is more parallel-
oriented. This method, called Additive Schwarz method (ASM), can be consid-
ered as a parallel version of the multiplicative Schwarz method. Its main idea is to
change presented previous algorithm by combining the computation of influences to
the solution from of each subdomain into one iteration, instead of doing this in each
step. For our our example with two domain, the iteration step can be written as:

u"+1:u"+([A§11 8}+[8 A%;D(f—Au") (5.5)

If we make a substitution of B; = R’Z?AgilRi, where R; is the rectangular restriction
matrix that returns the vector of components defined in the interior of §2;, then the
above equation will be of the following form,

u"™ = u" 4 (By 4 By)(f — Au™) (5.6)

Having this equation, we can easily generalized ASM for s number of subdomains,
by simply adding B;(f — Au™) to the right-hand side. As the result of this, for a
domain Q = |J;_, ©;,we can write the algorithm for Additive Schwarz Method in a
following form

25

Additive Schwarz Method

Choose ug, i =0,
WHILE no convergence DO
r; =b— Au"
FOR i=1,..s DO
0; = Bir;
END FOR

S
uv =, + E ;
i—1

t=1+1
END WHILE

26

(5.7)

5.3 Schur Complement
Let’s consider a following problem:

Lu = fin Q
u = g on 0f) (5.8)

with the domain €2 partitioned onto s subdomains. After discretization of the prob-
lem, we can label the nodes by subdomain in a specific way, so the linear system
will have a following structure:

By Ey I f1
By Ey I f2
: = (5.9)
E; T fs
P F ... F, C Y g

where each x; represents the subvector of unknowns that are interior to subdomain
Q;, and y represents the vector of all interface unknowns. It is useful to write the
system in a more simple form, i.e.

A{‘;}:{g},wherefl:[ﬁg} (5.10)

and where E represents the subbdomain to interface coupling seen from the sub-
domains, while F' represents the interface to subdomain coupling seen from the
interface nodes. To illustrate this, let us consider a domain split into only two
subdomains. Let’s assume that the subdomains are of the same size and both are
squared. Then an illustrative mesh and corresponding coefficient matrix A will look
like

Figure 5.2: An exemplary mesh for the problem described above.

27

Figure 5.3: Matrix associated with the finite difference mesh of the figure 5.2

Now, we can easily express with the new terms. From the the first equation it
follows that

v =B Y(f - Ey) (5.11)
If we now substitute this into the second equation, we will obtain a reduced system,
Sy=qg—FB'f (5.12)

where the matrix S is called the Schur complement and is created by the following
rule:

S=C—-FB'E (5.13)

If we can form S and solve the associated linear system, then the interface
variable y can be obtained. From this we can easily obtain the remaining variable x.
Because of the block structure of B, we notice that the solution of the system reduce
to solving s separate systems. Because the sets of the variables in each of the system
are disjoint, we can solve them simultaneously in parallel. This approach is called
Block Gaussian Elimination (BGE). The algorithm for it will be now presented:

Block Gaussian Elimination Algorithm

SOLVE BE = E, Bf —f

COMPUTE g=g—Ff, S=C—FE

SOLVE Sy=¢

COMPUTE «=f — E'y (5.14)

The partitioning used for the BGE method was edge-based. It means, that a
given edge in the graph does not straddle two domains and if any two vertices are
coupled, they have to belong to the same subdomain. In the graph theory, this point

28

of view is less common than the vertex-based partitioning, in which a vertex is not
shared by two subdomains (except when subdomains overlap).

We will call interface edges all edges which link vertices that are not in the same
subdomain. Interface vertices will be those vertices in a given subdomain, that
are adjacent to an interface edge. Now due to the fact, that we split the domain
according to a new rule, we change the ordering of the nodes. Now the interface
nodes are labeled as the last nodes in each subdomain. To illustrate this, let us
recall the example used to present edge-based partitioning and apply new rules to
it. As the result we will receive the following mesh and coefficient matrix:

Ry
3

i3
s)

ey =y i
10 1L 12 28}

\
-
5
o
A
o
()
1
iy
ey
foy)
=]
'

ey
6o)

Figure 5.4: An exemplary mesh for the problem described above

Figure 5.5: Matrix associated with the finite difference mesh of the figure 5.4

Let us consider now the Schur complement system obtained with the new num-
bering of the nodes. The coefficient matrix A now has a natural s-block structure.
For example, if s = 2, the matrix will be of the following form:

Al A12
A= . 5.15
{Am AJ (5:15)

29

Also for each subdomain, the variables will be now have it’s own local structure,

le.,
Z; =
Yi

where x; now denotes interior nodes, while y; denotes the interface nodes associated
with subdomain 7. Now each matrix A;, will be called local matrix and it will have
similar structure to matrix A from (4.9),

B, F;
A; = { Fl c } (5.16)

as before, B; represents the matrix associated with the internal nodes of subdomain 7,
E; and F; represents the susbdomain to interface coupling seen from the subdomains
and interface to subdomain coupling seen from the interface nodes respectively and
C; will be the local part of the interface matrix C', which represents the coupling
between local interface nodes. Matrices A;; contains zero sub-block in the part that
acts on the variable z;, therefore we can write that

0
w2,

It is worth to mention, that most of the C;; matrices are zero, since only those in-
dices j of the subdomains that have coupling with subdomain ¢ will yield a nonzero
Cij.-

If we now write the part of linear system that is local to subdomain ¢, as

Bix; + Eiy; = fi

. 5.17
Fixi -+ Clyl + ZjeNi Cl-jyj = G ()

The term Cj;y; is the influence coming from the neighboring subdomain with num-
ber j. Nj; is a set of indexes of the subdomains which are adjacent to subdomain j.
If we assume that B; are nonsingular, then we can apply the similar solution tech-
nique, which we used to develop the BGE. As the result of this, we receive a system
of reduced systems

Swi+ Y Eijy; = g:— KB 'E; (5.18)

JEN;
where S; is the "local" Schur complement, and is defined as

S; = C; — F,B;'E;. (5.19)

30

5.4 Numerical Illustration

The presented numerical experiments in this section illustrate how does the theory
from this paragraph acts in practice. Both presented methods, namely Schur Com-
plement Method and Schwarz have been tested on the standard test equation, i.e.
on the Poisson equation

—Au = f, (5.20)

on the domain €2, which was chosen to be of a rectangular shape, and with Dirichlet
boundary condition. However due to the fact, that we are going to work with the
Schwarz method in the future, we restrict ourself only to present results only for
this method.

The domain) after discretization has a n x 2n + 1 size. We decided to split it
into two subdomains €2; and 2, along the vertical middle, with a overlap at it.
Below we can see a graphical illustration of this process, when n = 4.

=
=

Figure 5.6: Domain € split into two subdomains, £ and Q.

We decided to enumerate the nodes along the columns, i.e. the node at (4, j) position
will be consider to be i + (7 — 1)n-th node in the ordering.

31

Now we are going to see how does the Schwarz alternating process do works for
this problem. We will check both standard variants of SAP, i.e. Schwarz Additive
and Schwarz Multiplicative Method. We will not only present only how does the
convergence rate for each of the methods looks like, we will also look into the effect
of the overlap region’s size. We will do this simply by adding a next column to each
of the subdomain. We will say. Below we can see a example of adding two columns
to the subdomains after discretization, for n = 4.

Figure 5.7: Domain 2 split into two subdomains, €; and s, with extended overlap of
size 2.

We will say, that a subdomain has a extended overlap of size k, if it will consist of
the base subdomain nodes and & additional columns.

32

5.4.1 Multiplicative Schwarz Method

First, we will look at the MSM method. We present how does the convergence
behavior changes by increment of the overlapping region of two subdomains.

1-4
o
L]
S
(]
>
(@]
o 1-6
<
<
hat
o
&
1) 1-8

5 10 15 20 25 30 35 40
Iteration step

Figure 5.8: Contour plot of the logyg (i-th residuum) for MSM

The figure above shows us an essential information about the Multiplicative
Schwarz Method. We see, that depending on the size of the overlap of two subdo-
mains, we get faster or slover convergence of the method. We can notice, that the
we are dealing here with a logarithmic dependency, between the size of overlap and
number of iteration needed to achieve a certain error size.

33

5.4.2 Additive Schwarz Method

Now, we will present the result of the same experiment done for ASM.

Size of the overlap

5 10 15 20 25 30 35 40
Iteration step

Figure 5.9: Contour plot of the logig (i-th residuum) for ASM

As it was expected, we get a similar result as in MSM. Also here we have a log-
arithmic dependency between the number of iterations needed to achieve wanted
error size and the size of overlap. However we may notice a slight slowdown of the
convergence rate, which was expected, because ASM unlike MSM is computing the
correction from each subdomain without any updates from neighboring subdomains.
This is a drawback, however we can easily neglected it, because of the fact, that the
corrections can be computed simultaneously, which can speeds up the whole pro-
cesses in the sense of spent time.

We stop at this moment further investigation of the Schwarz method, due to the

fact, that it is tested on a trivial problem. We will go deeper in the next chapter,
when we will be working with test problems, provided by Plaxis.

34

Chapter 6

Research Goals

6.1 Introduction

Knowing all of the things which were presented so far in this report, we are at the
moment, when we can actually start to work with finding a good parallel-friendly
solver for linear systems which are generated by Plaxis software. However, to do that,
we need to have some test problems, on which we will make numerical experiments.
Also we need to say, what is actually our initial guess for the method, which we will
to solve systems. And in the end, we should also define, what will be our next step
in process of finding the solution to the problem.

6.2 Choice of the Method

In the very beginning of this project we have chosen, that a Domain Decomposition
approach will be the starting point for solving the problem, due to the fact of the re-
sults noted in this field of mathematics. Nowadays, domain decomposition methods
are getting more popular, because the underlying idea gives plenty of possibilities
to parallelize the solution process, which is a wanted property when solving big
systems.

From the big family of methods of this branch of mathematics, we have chosen to
use one of the Schwarz Alternating Processes approaches, i.e the Additive Schwarz
Method (ASM) as our solver. First reason for it was the fact, that the code can
be easily converted into a parallel program. Secondly, there were already a try to
use Schur Complement approach, however the results where not as good as it was
expected. Also there are examples of many successful implementation of this method
in real life problems, which only encouraged us to take ASM as our framebox for
the solution of the linear systems.

Now when we have chosen ASM, to be our main core of the solver, we are going
to upgrade it, by incorporating onto it two methods, which were presented in this
report, i.e. Preconditioned Conjugate Gradient Method, for the solution of the linear
systems of the subdomains, and the Deflation method to improve the spread of the
information coming from a subdomain to other. This all combined together is going
to be our tool in solving the linear systems.

The choice of the subdomains on which we will perform the ASM is going to
be done not by a arbitrary cut of the coefficient matrix, but instead by adding the
elements from the FEM process. In this way, we will have a possibility to incorporate

35

a intelligent partition of the domain, which will preserve the physical structure of the
problem. We will see it in the following examples, which are going to be presented
in this chapter.

6.3 Test Problems

In this section we will describe test problems, which were used as a starting point
in finding the best solver for the linear system.

6.3.1 First Simple Problem

For the beginning of numerical experiments and tests, we have chosen to deal with
a simple problem of volume displacement in a four layer cube, with a weight load
situated on the top. FEach layer has a different stiffness which implies jumps in
the values of the coefficient matrix, corresponding to the nodes from different lay-
ers. The Finite Element discretization of the problem consist of 8 elements, 2 for
each layer, and 61 nodes. This gives us in the end 76 degrees of freedom, due to
the fact, that each node has it limitation of movement. We end up with a system
of 77 degrees of freedom. Below we can see a illustration representing given problem.

Figure 6.1: First Simple Problem Representation

The coefficient matrix of this problem has 2499 non-zeros elements.

36

We choose to cut the domain into 2 parts, namely the upper one, which will consist
of two first layers from the top, and the second one, consisting of the three layers,
taken from the bottom. The reason for that was, that we wanted to preserve similar
sizes of two subdomains.

Let us first apply ASM to this problem with the subdomains defined as above,
to see how does it react. As the result of this operation, we get a plot which shows
us the rate of convergence of ASM method. We can clearly see from the plot below,
that we are dealing here with a linear convergence behavior, which was expected
because ASM is a Basic Iterative Method.

Loglo(j-th residuum)

-12

0 10 20 30 40 50 60 70 80
Iteration count

Figure 6.2: First Simple Problem convergence behavior for ASM

Now, we are going to put the PCG method into use for this problem. For the
preconditioner we have taken ASM components, which were used in the previous
experiment. As the result of this, we get a much faster convergence, then in the
previous approach, what can be seen on the next page.

37

Loglo(j-th residuum)

30 40 50 60 70 80
Iteration count

Figure 6.3: First Simple Problem convergence behavior for PCG

So far we have been looking into the behavior of convergence rate, when the
subdomains are chosen via FEM elements. This decomposition of the domain im-
plies, that the subdomains have an overlapping regions. It would be good also, to
investigate the situation, when the subdomains are without it. For this purpose,
we decided to create the subdomains algebraically, by simply spliting the coefficient
matrix into two squared matrices along the diagonal, and neglect everything else.
With this we get two can create a preconditioner and apply PCG to compute the
solution of the system. Below we can find an illustration of the error distribution
for each of the possible split for this problem.

80
2
70|
R 0
60|
H-2
< 50H] e
I T
£
2 ||
B - -4
E o
2] :
s !
° T
@
% | | -6
30H] .
H
o -8
20 -
10 -10
0 1
0 10 20 30 40 50 60 70 80
Iteration c it

Figure 6.4: First Simple Problem distribution of error in PCG

38

The parabolic shape of the plot is quite logical. The bigger (smaller) is the factor
of the split, the bigger one of the subdomains is getting to be, ergo is starting to be
more similar to the whole domain, so the preconditioning part of it is more accurate.
But more interesting are several dents, which occur in it. We can easily notice, that
their positions are not random. They are correlated with the distribution of nodes
in the elements from FEM.

6.3.2 Second Simple Problem

After dealing with the previous problem, there appeared natural need to extend it,
to make it more complex. That is why we have chosen to make experiments on the
same problem, but with a denser grid of nodes. The following picture present the
new mesh which was used for generation of the system.

Figure 6.5: Second Simple Problem Representation

Now, the Finite Element discretization of the problem consist of 80 elements, 20
for each of the layer, and 367 nodes. We end up with system of over 705 degrees of
freedom. We see, that the size of the problem is now almost 10 times bigger. The
number of non zeros element in the coefficient matrix is 50483.

For this problem, we now define slightly different subdomains, i.e, we take for
the first subdomain two first layers from the top, and for the second one, we take
two instead of three, from the bottom. With such partition of the domain, we get
two linear systems of a similar number of degrees of freedom.

On this structure, we apply now DPCG procedure. We decided to use Subdomain
deflation vectors for it. On the next page we may see the convergence of this method
for this problem.

39

Logm(j—th residuum)

-10 i i i i i i i
0 100 200 300 400 500 600 700 800
Iteration count

Figure 6.6: Second Simple Problem convergence behavior for PCG with 2 subdomains

We can clearly see, that for this problem the chosen method works perfectly. We

get a error of size 107* in 11 iterations, what can be considered as a really small
number if we take into consideration the size of the problem.
Till now, we have only considered decomposition into two subdomains. There arise
a natural question, namely what will happen if we change the number of the blocks
in which we split the domain. Let us now split the problem in four, instead of two
subdomains, where each layer will be considered as a subdomain generator and ap-
ply our PCG method onto it.

Loglo(j—th residuum)

~10 i i i i i i i
0 100 200 300 400 500 600 700 800
Iteration count

Figure 6.7: Second Simple Problem convergence behavior for PCG with 4 subdomains

40

The new decomposition makes the convergence rate slower in the sense of the

iteration needed to get to the desired solution. However, we will investigate the time
which was used spent for the computing the solution with the error size 10(— 6),
and we will consider that the computation of the block is done parallel by two pro-
cessors, then the variant with four subdomains took around 0.13 second to get the
result, while the variant with two spent 0.16 in average. We may see, that we were
able to speed up the solution of the problem.
This result was a sparkle to check if we would split the problem into eight subdo-
mains, we would also notice a speed up. For that, we split the domain, by simply
taking each element layer and make it from it a subdomain used into precondtioning
the system.

Loglo(j—th residuum)

-10 i i i i i i i
0 100 200 300 400 500 600 700 800
Iteration count

Figure 6.8: Second Simple Problem convergence behavior for PCG with 8 subdomains

The iteration number needed to get a descent error of the solution, is getting to
grow with each increment of the number of subbdomains. We see that when having
8 subdomains, we need almost 200 iterations steps. This aspect transit into the
amount of time spent for computing the solution. If we would considered, that the
parts in the program where we were dealing with the subdomains would be done by
two processors, then it would take almost 0.22 of second. We say almost, because
comparing to the previous decomposition we notice a large jump.

We end up the experiments with the Second Simple Problem with a similar analysis
done for the First Simple Problem, namely we would like to see how looks conver-
gence rate, when we have non overlapping subdomains generated algebraically. Like
before, we split the coefficient matrix into two squared matrices along the diagonal
and used them to create a precondtioner used then in PCG.

41

Size of first subdomain

20 40 60 80 100 120 140 160 180 200
Iteration count

Figure 6.9: Second Simple Problem distribution of error in PCG

When simulating this, we decided that instead of inverting matrices used for the
proconditioning, we will apply Cholesky Incomplete Factorization, to speed up the
simulation. From the picture above we can clearly see, that the we can not cut the
coefficient matrix by random. Once again we notice some places, which are more
desired to use for the partition, then it’s neighbors. However even more interesting is
the fact, that when spliting at the 352 position, which tends to be the middle of the
coefficient matrix, we have almost the best convergence behavior. It is interesting,
that the position 354 is the beginning of the first element of the 3th layer from the
problem. Also at postions 254 and 598 we notice a much faster convergence. Those
nodes are actually the last nodes from the 1st and 3th later. So we clearly see, that
the idea to decompose the problem with the incorporating underlying physics has a
positive affect on the convergence behavior of the finding the solution.

42

6.4 Conclusions and research questions

From the test problems, which were presented in this chapter, we can clearly see
that the approach which we have chosen to use in finding solutions for the linear
systems is tend to be the the right one. We have seen that splitting cannot by done
by simply cutting into two parts, because we may find that the structure of the
problem can create some obstacles leading into a slower convergence. We have also
seen, that incorporating elements from the discretization in the process of genera-
tion subdomains is a powerful tool in the acceleration of the speed of solution process.

However, we cannot forget that the ratio of number of subdomains and iteration
steps plays also an important role in the process of finding the solution. In the sec-
ond example, when we investigated this issue, we have noticed that we should also
look at the amount of time used to solve the system. We should not only analyse
the number of iteration steps, which can be misleading, because overall our goal is
to decrease time spent on computation. This is our main research question at this
moment, which is now strongly investigated.

We should also notice, that for now, we did not introduce any data which was
solved by a method which uses Deflation approach. The reason for this is, that the
results at the moment of writing this report where far of being satisfying. Neverthe-
less, there were done some numerical experiments, which have pointed the direction
for solving this issue, which is namely the Rigid Body Modes approach as the choice
of Deflation vectors.

43

Bibliography

[1] P. Bjorstad, B. Smith, W. Gropp, Domain Decomposition. Cambridge University
Press: Cambridge, 1996.

[2] A. Cegielski (Editor), Numerical Aspects in Applied Mathematics. ZP UZm
Zielona Gra, Poland, 2005.

[3] M. R. Hestenes,E. Stiefel, Methods of Conjugate Gradients for Solving Linear
Systems. Journal of Research of the National Bureau of Standards Vol 49, No 6.

[4] J. van Kan, A. Segal, F. Vermolen, Numerical Methods in Scientific Computing
VSSD, Delft, The Netherlands, 2005.

[5] Plaxis B.V., Plazis 3D Foundation: Scientific Manual version 2, Delft, The
Netherlands

[6] Y. Saad, Iterative Methods for Sparse Linear Systems. STAM, Philadelphia, PA,
USA, 2000. Second edition.

[7] A. Segal, C. Vuik, Computional Fluid Dynamics II. Delft, The Netherlands,
2006.

[8] K.H. Tan, Local Coupling in Domain Decomposition. Utrecht, The Netherlands,
1995.

[9] J.M. Tang, Two-Level Preconditioned Conjugate Gradien Methods with Applica-
tions to Bubbly Flow Problems. Delft, The Netherlands, 2008.

[10] A. Toselli, O. Widlund, Domain Decomposition Methods - Algorithms and The-
ory Springer-Verlag Berlin Heidelberg, 2005.

[11] J. Willie, Internship report, Vortech Computing, Delft, The Netherlands, 2008.

[12] E. Vollebregt, De incomplete Cholesky preconditioner en de parallellisatie van
Plazis3D via OpenMP, Memo EV/M08.029, version 1.1, VORtech, Juni 2008.

[13] T.B Jnsthvel, M.B. van Gijzen, C.Vuik, C. Kasbergen, A. Scarpas,
Preconditioned Conjugate Gradient Method Enhanced by Deflation of Rigid Body
Modes Applied to Composite Materials, CMES, vol.47, no.2, pp.97-118, 2009

44

