Computing Energy Levels of the Confined Hydrogen Atom

Karl Kästner

02/03/2012

Supervisors: Martin van Gijzen (TU-Delft) Domenico Giordano (ESA)

Outline

- Thesis Proposal
- The Hydrogen Atom
- The Time Invariant Schrödinger Equation
- Why are we here?
- Efficiency Run time of the Arpack Eigensolver
- Accuracy Discretisations Error with Uniform Grids
- What can be improved?
- Improving Accuracy Variable Grids and Adapted Meshed
- Improving Accuracy Discretisation Error with Variable Grids
- Energy Levels of the Unconfined Atom
- The Confined Hydrogen Atom
- Energy Levels of the Confined Two Dimensional Hydrogen Atom
- Thesis Prospect

Thesis Proposal

- studying the physical system
 - statistical mechanics
 - time invariant Schrödinger equation (TISE)
 - confined hydrogen atom
- studying eigenvalue methods for large sparse systems
 - Lanczos and Jacobi-Davidson methods
- discretising the TISE
- implementing an eigenvalue algorithm
- computing the eigenvalues of the confined hydrogen atom

The Hydrogen Atom

- most simple atom
- single proton and single electron
- model for more complex atoms
- application in
 - chemistry
 - solid state physics
 - plasma physics
- Energy Levels
 - correspond to emission lines
 - set of discrete wave length
 - set of emission lines is called spectrum

The Time Invariant Schrödinger Equation

- energy levels correspond to eigenvalues of the TISE
- formulated by Schrödigner in 1926

$$\frac{1}{2}\Delta\psi(x) + \frac{1}{||x||}\psi(x) = \lambda\psi(x) \tag{1}$$

- time invariant
- non-relativistic
- singular potential
- elliptic boundary value problem with Dirichlet boundary conditions

Find numerical answers to physical questions

- accurate
- efficient

Efficiency - Run time of the Arpack Eigensolver

Accuracy - Discretisations Error with Uniform Grids

What can be improved?

Run timeDiscretisation Error $t \approx c_t n^d$ (2) $e \approx c_e \frac{1}{n^p}$ (3)

Smarter Discretisation (h, r and p-adaptivity)

- variable grid and adaptive meshes
- sparse grid
- Richardson extrapolation
- higher order discretisation
- spectral methods

Smarter Solvers

- faster algorithm
- faster implementation of exisisting algorithms (SIMD,SMP,GPU)

Improving Accuracy - Variable Grids and Adapted Meshed

Discretisation error estimates

$$e_{FDM} = C_{FDM} h^2 \Psi^{(vi)} + O(h^4) \qquad ||e_{FEM}|| \le C_{FEM} h^2 ||\Psi''|| \quad (4)$$

- Eigenfunctions of the hydrogen atom decay exponetially
- So do the derivatives
- Refine mesh close to nucleus to improve accuracy

$$R_{1} = \frac{1}{\sqrt{\pi}} exp(-\rho)$$
(5)

$$R_{1} = R_{1}'' = R_{1}^{(iv)}$$
(6)

$$\tilde{x}_{i} \leftarrow \alpha_{1}(exp(\alpha_{2}x) - 1)$$
(7)

Improving Accuracy - Discretisation Error with Variable Grids

Energy Levels of the Unconfined Atom

Formula

$$E = \frac{-2}{(2(n+1)+d-3)^2}$$
(8)

Energy Levels (E) and Degeneracy (g)

3D		2D		1D	
E	g	E	g	E	g
-0.5000	1	-2.0000	1	-Inf	1
-0.1250	4	-0.2222	3	-0.5000	2
-0.0556	9	-0.0800	5	-0.1250	2
-0.0312	16	-0.0408	7	-0.0556	2
-0.0200	25	-0.0247	9	-0.0312	2

The Confined Hydrogen Atom

Extension of hydrogen wave functions

State	r _{Pmax}	$r_{10^{-15}}$
100	1.00	34
200	5.23	73
300	13.07	125

- wafe functions of higher energy levels reach further
- confinement influences higher energy levels more severely
- negative bound states become positive unbound states

Energy Levels of the Confined Two Dimensional Hydrogen Atom

Number of negative bound states (m)

Partition Function

$$Z = \sum exp(-\beta\lambda) \tag{9}$$

Value of the partition function at T=1000K

Lo	1	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0
log ₁₀ Z	-Inf	-539	-278	-85	60	171	258	325	379	421	455
Z shows sudden transition from divergence to convergence											

Thesis Prospect

- Improving accuracy of the dicretisation
 - adaptive FDM / FEM
 - investigation of convergence in case of confinement
- Eigenvalue Solvers
 - choosing an appropriate solver
 - testing existing implementations
 - implementing a solver on a GPU/SMP system
- Answering Physical research questions
 - size of cavity
 - location of nucleus
 - aspect ratio of the cavity
 - elliptic vs rectangular cavities
 - limit cases towards 2D and 1D
 - relation to unconfined and spherically confined H-atom
 - influence on the partition function