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Introduction

The hydrogen atom is the most simplistic atom. Its typical isotope consists just of a single proton nucleus
and a single electron shell. Hydrogen is not only the most abundant element in the universe, but all other
elements are literally generated by nuclear fusion processes starting with hydrogen. Many other elements
have therefore similar electronic properties and hydrogenic atom models can be used to describe them.
Those models find amongst others applications in chemistry, solid state physics and plasma physics.

Each element has a distinct set of energy levels which determine its behaviour in chemical reactions.
The energy levels also correspond to emission lines in the spectrum of an element. The spectrum of hy-
drogen is partially visible and can be probed by making the gas glow in a discharge lamp and splitting the
emitted light with a prism into its spectral components. This is depicted in figure 1.

The energy levels of hydrogen are given by the eigenvalues of the Schrödinger equation. For the un-
confined hydrogen atom those eigenvalues can be computed analytically. A general formula to compute
those eigenvalues was even found in the advent of quantum mechanics. However, for the arbitrarily con-
fined atom, if at all, only analytic approximations exist.

This literature study is about the numerical approximation of the eigenvalues of a cubically confined
hydrogen atom. It consists of three parts. In part one a short introduction into the physical background
is given. Part two describes numerical methods used for discretising the differential equation and for
computing its eigenvalues. The last part is an evaluation of the aforementioned methods with regard to
their applicability to the confined hydrogen atom. Research questions are stated and a road map for the
forthcoming master project is laid out.

This work was commissioned by the Space Research and Technology Centre of the European Space Agency
(ESA-ESTEC) [esa12] and was facilitated by the Commission of the European Union under the Erasmus
Mundus COSSE programme [ec-12], [cos12].

Figure 1: Visible Spectrum of the Hydrogen Atom
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Literature Overview

In the history of quantum physics the confined hydrogen atom was the topic of many publications. The
first publications were by Michels and de Boer in 1937 [MdBB37] and Sommerfeld and Welker in 1938
[SW38] and focused on the determination of the ground state. Higher states and the splitting of degen-
erated energy levels was then described by Groot and Seldam in 1946 [dGtSCA46]. In 1976 Ley-Koy
and Runbinstein first considered the hydrogen atom confined in penetrable boundaries [LKR79]. These
works considered only the cylindrical confined hydrogen atom. It followed solutions in other coordinate
systems and domains, parabolic by Krähmer in 1998 [KSY98], cylindrical by Yurenyey in 2008 [Yur08] and
spheroidal by Cruz in 2009 [Cru09]. A cubic cavity with the atom located at off-centred positions was first
discussed by Kretov in 2009, [KVI09]. Most authors used analytic methods based on perturbation theory
and basis functions.

The Hydrogen atom was also topic of numerical computations after Schroeder’s original analytic solu-
tion. Application of finite difference methods reach furthest back, see Bolton 1956 [Bol56] and Kimball
1934 [KS34]. The finite element method was used by Levin and Shertzer in 1985 [Lev85]. A very impor-
tant development due to their high accuracy are the Lagrangian-mesh methods introduced by Baye and
Heenen in 1986 [BH86]. Less common techniques like shooting methods were also applied (Killingbeck
1987 [Kil77]). The most recent development is the use of Sparse Grid methods, (Garcke 2000 [Gar98]).
Excluding the sparse grid methods, most methods were only applied to the the radial Schrödinger equation.

So, although there are many publications about the hydrogenic Schrödinger equation, few actually tan-
gent the numerical solution in Cartesian coordinates. Note that many time dependent solutions were also
published, which are, however, not reviewed here as it is of no importance for this thesis.

Computing Energy Levels of the Confined Hydrogen Atom 7



Chapter 1

Physical Background

The purpose of this thesis is to compute energy levels of the confined hydrogen atom. The energy levels
are required for further computations in plasma physics, as described in section 1.2. The hydrogen atom
is modelled by the Schrödinger equation with Coulomb potential, the hydrogenic Schrödinger equation.
The numerical approximation of the solutions of the hydrogenic Schrödinger equation is the central part
of this thesis.

The hydrogenic Schrödinger equation itself is stated in section 1.3. The relation between computed values
and physical quantities is derived in section 1.4 . The model error of the hydrogenic Schrödinger equation
is discussed in 1.6.

1.1 Overview of Quantities Referred to throughout the Thesis

If not otherwise stated the symbols used in this thesis have the meaning as given in table 1.1. For simplicity
vectors are not highlighted in bold face or indicated by arrows. The symbols given in table 1.1 and used
throughout this chapter are to be interpreted as quantities commonly used in physics, e.g. h is Planck’s
constant, λ a wave length and E an energy levels. In later chapters symbols are to be interpreted as
quantities commonly used in mathematics, e.g. λ refers to an eigenvalue and h to the step width.

1.2 Motivation: The Divergence of the Partition Function for
the Unconfined Hydrogen Atom

Most of everyday scientific phenomena and engineering problems can be accurately described and solved
using classical physics. However, some particular fields of physics cannot be thoroughly understood solely
with classical methods, but require frequently the consideration of quantum mechanics. Such fields are
thermodynamics and solid state physics.

The partition function is used to describe essential properties of gases and plasmas such as free energy,
entropy and enthalpy (equation (1.1)). It forms a connection between quantum mechanics and its macro-
scopic effects,

Z =
∑

gie
−βEi , i = 1, 2, 3, .... (1.1)

The value Z of the partition function is determined by the value of the quantum states, e.g. energy levels
E, the Boltzmann factor β, and the degeneration factor g.

As the eigenvalues are raised to their exponential the partition function either converges with very few
terms to a finite value or approaches infinity.

So does the value of the partition function not converge to a finite value in case of the unconfined hydrogen
atom. As a finite value is essential to utilise the partition function in further calculations, the hydrogen
model has to be adapted.
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Quantity Symbol Dimension
Elementary Quantities
mass m kilogramme, kg scalar

time t second, s scalar
length x meter, m vector
Current I Ampere, A scalar
Voltage U Volt, V scalar
frequency f Hertz, one per second, 1/s scalar
Derived Quantities
Energy E kg ·m2/s2 scalar

momentum p = mv m2/s scalar
wave length λ = c/f 1/m scalar
velocity ẋ = ∂x

∂t = v m/s vector
wave number k 1/m scalar
angular frequency ω = 2π/f 1/s scalar

radius r =
√∑3

i=1 xi m scalar

Operators

spatial derivative in one dimension φ′ = dφ
dx

Laplacian operator ∆ =
∑3
i=1

∂2

∂2xi

Euclidean vector norm ||x||2 =
√
xTx

Constants
elementary charge e 1.602 · 10−19As scalar

Planck’s constant h 6.602 · 10−31As/V scalar
reduced Planck’s constant ~ = h/2π 1/2π · [h] scalar
Pi π 3.142 scalar
velocity of light in vacuum c 2.999 · 108m/s scalar
imaginary unit i =

√
−1 1 scalar

nanometre nm 1nm = 10−9m scalar
picometre pm 1pm = 10−12m scalar
Others
computational domain Ω

boundary of the computational domain Γ

Table 1.1: Overview of Physical Quantities and Constants up to four digits of accuracy

A possible solution is to assume that the hydrogen atom is confined, e.g. that the empty space around the
atom is limited by other atoms in a finite distance.

1.3 Formulation of the Boundary Value Problem

The boundary value problem (1.2) is referred to as the hydrogenic Schrödinger equation. It corresponds
to the time independent non-dimensional Schrödinger equation (1.29), if one ignores the reduced mass
correction (1.19). The eigenvalue E and eigenfunction ψ(χ) are its solutions. Both are real valued. The
eigenfunctions are furthermore square integrable. The solutions are restricted to the computational domain
Ω and depend on location of the nucleus χ0 within it,

Eψ(χ) = −
(

1

2
∆ +

1

ρ(χ)

)
ψ(χ) (1.2)

ρ = ||χ− χ0|| (1.3)

χ ∈ Ω. (1.4)

E = R (1.5)

ψ(χ) ∈ L2. (1.6)

In case of no confinement the domain Ω are the complete three natural space dimensions Ω = R3 and in
case of confinement it is an connected subspace of it. In particular the confinement to cuboids Ω ⊂ R3,
rectangles Ω ⊂ R2 and closed lines Ω ⊂ R1 is considered.

Computing Energy Levels of the Confined Hydrogen Atom 9



As the boundary Γ of the domain is assumed to consist of walls of infinite potential height, such that
the electron cannot penetrate it. Therefore the eigenfunction ψ(χ) vanishes at the boundary. This corre-
sponds to homogeneous Dirichlet boundary conditions (equation (1.7)),

ψ(χ) = 0 on Γ. (1.7)

The eigenfunctions of ψ(χ) are square integrable and remain bounded at the location of the nucleus χ0.
Therefore no additional boundary condition is required for the point χ0.

Note that some authors define different scaling constants and come up with the equation −(∆ + 2
ρ )ψ(χ) =

Ẽψ(χ) as hydrogenic Schrödinger equation. The eigenvalues Ẽ = 2E yield of course the same energy levels
E upon back-transformation into physical quantities.

1.4 Derivation of the Boundary Value Problem

The hydrogen atom can be modelled by the Schrödinger equation with a Coulomb potential. The energy
levels are found as the eigenvalues of this equation. The general Schrödinger equation is time dependent
(TDSE), but as the energy levels do not change as time elapses, it is beneficial to bring the equation into
a time independent form. This form is known as the time independent Schrödinger equation (TISE), a
second order elliptic partial differential equation which is derived in this section.

The behaviour of the hydrogen atom is described by the time dependent Schrödinger equation (1.8) [Sch26],

i~
∂

∂t
Ψ(t, x) = ĤΨ(t, x). (1.8)

Where the wave function Ψ(x, t) determines the probability distribution of the electron’s current location
and the Hamiltonian operator Ĥ denotes the total energy of the system, e.g. the sum of the potential and
the kinetic energy,

Ĥ = Ekin + Epot. (1.9)

As the Schrödinger equation is not relativistic, space and and time can be separated from each other,

Ψ(t, x) = φ(t)ψ(x) (1.10)

ih
1

φ(t)

∂φ(t)

∂t
=

1

ψ(x)
Ĥψ(x). (1.11)

Assuming furthermore conservation of energy, e.g. that the Hamiltonian does not change over time, both
sides of the equation remain constant. This constant is the energy level E,

E =
1

ψ(x)
Ĥψ(x). (1.12)

For the potential energy the notation Epot = V (r) with radius r = ||x|| is further on used,

Eψ(x) = (Ekin + V (r))ψ(x). (1.13)

For an external observer both the proton and the electron encircle the centre of mass and hence contribute
together to the energy contained in the system. Therefore the kinetic energy is given by formula (1.20),

Ekin =
1

2
mpẋ

2
p +

1

2
meẋ

2
e. (1.14)

To determine the kinetic energy it is sufficient to consider only the distance x between the electron and
proton instead of the absolute positions xp and xe,

x = xp − xe (1.15)

(1.16)
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If one also chooses the centre of mass xc as origin of the coordinate system,

xc(mp +me) = mpxp +mexe (1.17)

0 = mpxp +mexe, (1.18)

then the expression of the kinetic energy simplifies to one term

Ekin =
1

2
mp

(
meẋ

mp +me

)2

+
1

2
me

(
mpẋ

mp +me

)2

=
1

2

mpme

mp +me
ẋ2.

Where the constant mr is called the reduced mass,

mr =
mpme

mp +me
, (1.19)

a common quantity in the solution of two body systems. Note that mr ≈ me as the mass of the electron
is much smaller as the mass of the proton,

Ekin =
1

2
mrẋ

2 =
1

2
mrv

2. (1.20)

Substitution of equation (1.20) into equation (1.13) yields

Eψ(x) =

(
mrv

2

2
+ V (r)

)
ψ(x)

=

(
p2

2mr
+ V (r)

)
ψ(x). (1.21)

In quantum physics the momentum p can be interpreted as an operator acting on the wave-function [vN31],

p = − i~∇. (1.22)

The squared momentum can subsequently be replaced by the scaled Laplacian operator ∆ =
∑
∂2/∂x2

i ,

Eψ(x) =

(
(−i~∇)2

2mr
+ V (r)

)
ψ(x) (1.23)

=

(−~2

2mr
∆ + V (r)

)
ψ(x). (1.24)

The potential energy Epot = V is given by the Coulomb potential,

i~
∂

∂t
ψ(x) =

(−~2

2mr
∆ +

−e2

r4πε0

)
ψ(x). (1.25)

To ease further computations the equation is transformed into a non-dimensional form. The Hartree energy
EH and the Bohr radius a0 are introduced. And the variables of energy and space are then replace by
their respective non-dimensional forms E = EEH , x = a0χ, r = a0ρ, ∆x = 1

a20
∆χ,

a0 =
4πε0~2

mee2
(1.26)

EH =
mee

4

(4πε0~)2
=

1

a2
0

h2

m2
e

(1.27)

EEHψ(χ) =

(
1

a2
0

−~2

2mr
− e2

ρa04πε0

)
ψ(χ) (1.28)

E 1

a2
0

h2meψ(χ) =

(
−1

2

me

mr

1

a2
0

~2

me
− ~2

ρa2
0me

)
ψ(χ)

−Eψ(χ) =

(
1

2

me

mr
∆ +

1

ρ

)
ψ(χ). (1.29)

This represents the boundary value problem as introduced in section 1.3.

Computing Energy Levels of the Confined Hydrogen Atom 11



1.5 Singular Potentials

Depending on the author the term singular potential is more or less strictly interpreted and used for
functions which are singular at one point and finite elsewhere. Following three different definitions exist
[And76].

1. The first class includes potentials who’s integral remains finite,

lim
ε→0

∫ a

ε

V (x)dx <∞. (1.30)

2. The second class contains potentials which do not satisfy the requirements for class one, but who’s
singularity tends slower to infinity than x tends to zero. This applies to the Coulomb potential and
hence to the hydrogenic Schrödinger equation. The solutions to the Schrödinger equation with such
a potential are still bound,

lim
ε→0

∫ a

ε

xV (x)dx <∞. (1.31)

3. The third class of potentials are these who’s singularities tend faster to infinity than x tends to
zero. Some authors only regard these potentials as singular, as here the solutions to the Schrödinger
equation themselves are unbound,

lim
ε→0

∫ a

ε

xV (x)dx =∞. (1.32)

1.6 Physical Limitations of the Mathematical Model

The Schrödinger equation is a simplified model of the real hydrogen atom and neglects several physical
effects. The true energy levels differ therefore slightly from those computed with the Schrödinger equation.
However, for the unconfined hydrogen atom this error is lower than 0.01%. Hence even if the eigenvalues
are found exactly or are approximated with arbitrary precision, their physical significance does not exceed
a few digits. The deviation of the energy levels are referred to as fine structure and is mainly due to

• the relativistic corrections to the kinetic energy,

• the spin-orbit interaction,

• the Darwin term

• and the Lamb shift.

Relativistic effects can be accounted for by using the Dirac equation instead of the Schrödinger equation.
For a more detailed explanation of relativistic quantum mechanics, see [Dom11].

1.7 General Solution Properties

The Schrödinger equation consists of a symmetric Hamiltonian. Therefore the eigenvalues are real. How-
ever, the eigenvalues are not necessarily unique depending on the symmetry of the system. The eigenvalues
of the hydrogen atom correspond to the energy levels and are interpreted as follows. When a hydrogen ion
catches and binds an electron a photon is emitted. The electron is bound to one of the energy levels and
the wavelength of the photon, e.g. the amount of released energy is determined by the energy level.

The squared eigenfunctions correspond to the probability P to find an electron at a given point inside
the domain. Therefore the eigenfunction is normed such that the area beneath the probability function is
one,

∫

Ω

Ψ∗(x)Ψ(x)dx = 1. (1.33)

For illustration the probability function of the unconfined hydrogen atom is usually integrated over the
sphere,

P (r) = 4π (rR(r))
∗

(rR(r)). (1.34)
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Karl Kästner, TU Delft

1.8 Solution of the Unconfined Hydrogen Atom

The Schrödinger atom of the unconfined hydrogen atom has an analytic solution. As the Coulomb potential
is spherically symmetric, a transformation to spherical coordinates allows a separation of variables. The
Schrödinger equation in spherical coordinates is given by equation (1.35),

1

2

(
1

r2

∂

∂r

(
r2 ∂

∂r
Ψ

)
+

1

r2 sinφ

∂

∂φ

(
sinφ

∂

∂φ
Ψ

)
+

1

r2 sin2 φ

(
∂2

∂θ2
Ψ

))
+

1

r
Ψ = −EΨ. (1.35)

The separation of variables leads to one radial and two angular equations. It is sufficient to consider only
the radial equation (1.37) for determining the energy levels,

Ψ = R(r)Φ(φ)Θ(θ) (1.36)

1

2

∂

∂r

(
r2 ∂

∂r
R

)
+ rR = − Er2R. (1.37)

To simplify the radial equation further, one does a substitution and solves for the radial probability instead
for the radial wave-function,

y = rR (1.38)

1

2

∂

∂r

(
r2 ∂

∂r

(
1

r
y

))
+ y = − Ery (1.39)

1

2

∂

∂r
(−y + ry′) + y = − Ery (1.40)

1

2
ry′′ + y = − Ery (1.41)

1

2
y′′ +

1

r
y = − Ey. (1.42)

With the boundary conditions as stated below. The additional boundary condition at zero is deduced from
the assumed square integrability of the solution,

y(0) = 0 (1.43)

lim
r→∞

y(r) = 0. (1.44)

Equation (1.42) determines the eigenvalues of the unconfined hydrogen atom. It is an ordinary differential
equation, but has the same structure of the unseparated Schrödinger equation (1.29). Its analytic solu-
tions come in the form of Laguerre polynomials and spherical harmonics. The radial equation can easily
be solved by the finite difference method, as the singularity is on the boundary and the derivatives are
defined everywhere inside the domain.

For the ground state, the radial wave function is given by

R1(r) =
1√
πa3

0

e−r/a0 . (1.45)

It is also depicted in figure 1.1. The wave function of higher energy levels reach further, but asymptotically
all energy levels decay exponentially towards infinity. As in case of the ground state, wave functions of
higher energy levels may not be differentiable at the nucleus, depending on the corresponding spherical
harmonic.

1.9 Influence of the Confinement on the Solution

The cubically confined hydrogen atom is best understood if one considers it as the transition between two
separate problems, namely that of the particle in the box and that of the unconfined hydrogen atom.

Unconfined Hydrogen Atom The unconfined hydrogen atom is the limit case of the confined hydrogen
atom, if one considers the box of the confinement to be infinitely large. The energy levels of the free
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Figure 1.2: Energy levels of the unconfined hydrogen atom and of a particle in a box

hydrogen atom follow a rational series given by equation (1.46) and are depicted in figure 1.2. Here Ry is
the Rydberg constant and equals the energy of the hydrogen ground state,

E = −Ry 1

n2
, n = 1, 2, 3, ... (1.46)

Ry = hc
mee

4

8ε20h
3c
≈ 13.605eV.

The wave function takes the form of general Laguerre polynomials for the radial and spherical harmonics
for the angular component. It decays exponentially with increasing distance from the nucleus (figure 1.1).
A plot of the wave-function shows that the derivative at the location of the nucleus does not exist. This
implies numerical complications discussed later.

Particle in a Box Here one considers only the electron confined in a box without a proton and the
Schrödinger equation does not contain a potential. In this case the energy levels follow the series (1.47)
which is also depicted in figure 1.2. The wave functions take the form of elementary sines,

E =
n2

L2

h2

8me
. (1.47)

Implications for the Confined Hydrogen Atom The solution of the unconfined hydrogen atom and
the particle in the box problem are obviously antagonistic. The energy levels of the unconfined hydrogen
atom are negative and bound, as they converge to zero. The energy levels of the particle in the box are
positive and approach infinity. The eigenvalue spectrum of a confined hydrogen atom is indefinite and
resemble a combination of both spectra, with a limited number of negative eigenvalues being similar to
those of the unconfined hydrogen atom and an infinite number of eigenvalues approaching asymptotically
those of the particle in the box.

1.9.1 Position of the Nucleus Inside the Confining Box

The spherical confined hydrogen atom with centred nucleus can also be solved by separation of variables.
However, the energy levels given as roots of the confluent hypergeometric function are not rational numbers
anymore [SW38, p. 57], [SPM, p. 127]. If the nucleus is shifted off-centre, its distance to the boundary
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varies depending on the direction. Thus the radial part cannot be separated from the angular parts. In
this case it is simpler to consider the problem in Cartesian coordinates, which, however, do not allow a
separation of variables.

1.9.2 Shape of the Confining Box

The behaviour of an confined hydrogen atom does not depend solely on the size of the box, but also
on its form. For various reasons different shapes have been considered, spherically and parabolic shapes
as the hydrogenic Schrödinger equation is separable in the respective coordinate systems, or cylindrical,
triangular or rectangular shapes, as they best represent manufactured quantum structures.

In this thesis a rectangular domain is considered and further shapes are not investigated. Note that
the qualitative results with different domains are expected to be similar.

1.9.3 Size of the Confining Box

The wave functions of the hydrogen atom decay exponentially. So does the radial wave function of the
ground state R1 (equation (1.45)) already falls below 10−15 parts of its maximum at a distance of about
35 Bohr radii. Therefore a box with a side length of only 70 Bohr radii becomes quasi infinitely large. The
wave functions of the n-th energy level require moderately larger boxes, as they range in relation to the
ground state n-times further.

Reversely one expects a completely different behaviour of the confined hydrogen atom compared to the
unconfined atom once the box radius drops below one Bohr radius. For comparison: One Bohr radius
(53pm) is the mean distance between the electron and the proton of the unconfined hydrogen atom and
the the bond length of the hydrogen molecule is about two Bohr radii.

1.10 Confinement to Lower Dimensions

The spectrum of an confined hydrogen atom differs from that of an unconfined atom. So limits a con-
finement in all three dimensions the number of negative energy levels and makes the partition function
converge. Of particular interest are the limit cases where the atom is confined some axes to an infinitesimal
region whilst it remains unconfined in the remaining axes, viz. an atom constraint to a lower dimensional
space. Such systems are described by hydrogen atoms constrained in their movement by strong magnetic
or laser fields. Quasi lower dimensional solid state devices have also been manufactured. However, the
behaviour of those devices is influenced by other adverse physical effects such as permeability of the mate-
rial or penetrable boundaries. In these cases one usually does not consider atoms but electron-hole pairs,
which are referred to as excitons.

1.10.1 Two Dimensions

If an atom resides in a quantum well, e.g. if its wave functions are constrained to two dimensions, its
ground state energy is four times as large as that of the unconfined atom [Bry84]. Some authors replace
the Coulomb potential by a logarithmic potential in the two dimensional Schrödinger equation. However,
this is not considered here, as only the movement of the degrees of freedom of the atom, but not the forces
are constrained to two dimensions.

1.10.2 One Dimension

The one dimensional hydrogen atom was extensively discussed by theorists with contradicting views.
Loudon published the first comprehensive paper about this topic and claimed the existence of an infinite
ground state and a double degeneracy of the remaining states, both conclusions are disputed until today
[Lou59], [GC97]. In general the authors consent that the Balmer series of the three dimensional hydrogen
atom is part of the spectrum of the one dimensional hydrogen atom as well.

One must keep in mind that truly one dimensional systems do not exist, but resemble limit cases where
the atom is constrained to a long thin cylinder. Physical systems with this properties are quantum wires,
nano-tubes or hydrogen atoms in strong laser field. Such systems indeed appear to have a ground state
which is even much more amplified than that of the two dimensional system [Spa04].
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No final conclusion about the one dimensional hydrogen atom shall be drawn here, as it only a side
issue in this thesis and would require a much more extensive study of literature or even research to be
resolved. However, the dissent about the findings of Loudon are of importance for this thesis as the findings
are based on a weakened potential.

It should further be noted that the one proton nucleus itself is not infinitesimal small, but has a fi-
nite radius, called the charge radius. Albeit this radius is much smaller than the perturbation to achieve
numerical stability it shows that any prediction about the wave function very close to the nucleus based
on the Schrödinger equation are futile, as they are beyond the physical capability of the model, see also
section 1.6.

1.10.3 Quasi Zero-Dimensions

A particle tightly constrained in all dimensions becomes a quantum dot. Here the ground state energy
becomes also more and more amplified the smaller the confining box becomes. The high binding energy
of an electron confined to a region close to the nucleus can be illustrated with an analogy to celestial
mechanics, where by Kepler’s third law, the velocity of planets orbiting close to the central star is larger
compared to those orbiting further away.
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Chapter 2

Discretisation of the Schrödinger
Equation

As the the hydrogenic Schrödinger equation is not separable in Cartesian coordinates, only analytic ap-
proximations exist. A numerical approximation is therefore preferable. The numerical method should be
chosen such that it is convergent and the result physically plausible.

The properties of the Hamiltonian resembling the hydrogenic Schrödinger equation are carried over to
the discretised system. Hence the matrices will be real and symmetric, its eigenvalues and eigenvectors
real and orthogonal. Finite difference and finite element discretisations furthermore yield sparse and usu-
ally banded discretisation methods. This gives rise to eigensolver for large symmetric systems as discussed
in chapter 5.

2.1 Notation used throughout the Numerical Analysis Parts

If not otherwise declared the symbols used in the numerical analysis parts have the meaning explained in
table 2.1

Symbol Meaning
a capital letter, e.g. A a matrix
ai the ith-column of a matrix A
aij the jth-element of the ith-column of the matrix A
a minor Latin letter, e.g. x a vector
xi the ith-element of the vector x
minor Greek letter α a scalar
λ exact eigenvalue
v exact eigenvector
θ eigenvalue of the projected system, approximated eigenvalue (Ritz value)
s eigenvector of the projected system
z approximated eigenvector (Ritz vector)
Q an orthogonal matrix
T a tridiagonal matrix
D a diagonal matrix
|α| = {α if α ≤ 0,−α if α < 0} absolute value

κ(A) = maxi=1..n|λi|
minj=1..n|λj | matrix condition number

AT : aij ← aji transpose, exchanges columns with rows
A∗ : aij ← a∗ji conjugate transpose, changes columns with rows

and negates imaginary parts

Table 2.1: Meaning of symbols frequently used in the numerical analysis parts
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2.2 Finite Difference Discretisation

In this section the finite difference discretisation of the Schrödinger equation will be developed. The finite
difference method (FDM) is a numerical method to approximate the solution of differential equations. The
approximation is computed for a set of points inside the domain which are usually arranged in form of a
structured grid. In case of convergence, the accuracy of the approximation increases with the number of grid
points. At each grid point the differential equation is discretised and approximated by a finite difference
equation of the point itself and its imminent neighbours. The set of equations is usually represented in
matrix form.

2.2.1 Basic Concepts of Finite Difference Approximations

To discretise a PDE with the finite difference method a set of points inside the computational domain
is chosen (Ωh ⊂ Ω). The derivatives at each of those grid points are approximated by the a difference
scheme, like equation (2.11). An approximation with n points leads to n-independent equations which
are combined into a matrix. The second derivative (Laplacian operator) with constant step width can be
approximated in one dimension by the matrix

L =
1

h2




2 −1
−1 2 ...

... ... −1
−1 2


 . (2.1)

The Schrödigner equation (1.2) discretisation consists of a matrix which is the sum of the Laplacian
operator L and a diagonal matrix specifying the potential V ,

A =
1

2
L+ V. (2.2)

The eigenvalues of this discretisation matrix are the approximated energy levels,

Aψ = λψ. (2.3)

The matrix A is sparse, eq. it has only few non-zero entries. This allows to find even the eigenvalues of
very large matrices with the algorithms introduced in chapter 5.

2.2.2 Definition of the Derivative

In general the derivative f ′(x) = d
dxf(x) of a function f(x) is given by equation (2.4) if the limits exists

and are equal. The conditions for the derivative to exist are usually satisfied if the function is sufficiently
smooth, e.g. if there are no peaks or high frequency oscillations,

f ′(x)+ = lim
h→0,h>0

f(x+ h)− f(x)

h
(2.4)

f ′(x)− = lim
h→0,h>0

f(x)− f(x− h)

h
(2.5)

f ′(x)− = f ′(x)+. (2.6)

The nth-derivative of the function can be determined by recursively forming the derivative,

dn

dxn
f =

dn−1

dxn−1

(
d

dx
f

)
. (2.7)

2.2.3 Taylor’s Theorem

Let the function f be at least k-times continuously differentiable in the neighbourhood of x0, then f has
a series expansion in the neighbourhood of x0 in the form of equation (2.8),

f(x) = lim
x→x0

k∑

i=0

1

i!
(x− x0)

(
dk

dxk
f(x0)

)
. (2.8)

18
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2.2.4 Derivation of Finite Difference Schemes

A finite difference approximation of the nth-derivative are derived by using the first n terms of the Taylor
series expansion (2.9). Note that according to the Taylor theorem this requires the first n derivatives of
the function to exist,

f(x0 + h) ≈
n∑

i=0

hi

i!
f i(x0). (2.9)

The Taylor series expansion gives rise to a system of equations. For second order accurate approximation
the system becomes (2.10) and the resulting convolution kernel of the second derivative is (2.11),

[
−1 1/2
1 1/2

] [
f ′(x)/h
f ′′(x)/h2

]
=

[
1 −1 0
0 −1 1

]

f(x− h)
f(x)

f(x+ h)




︸ ︷︷ ︸
F

(2.10)

f ′′2 (x) ≈ 1

h2

[
1 −2 1

]
F. (2.11)

If more points are incorporated into the expansion and higher derivatives exist, then the order of accuracy
increases. The system of a fourth order accurate approximation is given by (2.12) and the resulting
convolution kernel of the second derivative is (2.13),




−2 4/2 −8/6 16/24
−1 1/2 −1/6 1/24
1 1/2 1/6 1/24
2 4/2 8/6 16/24







f ′(x)/h
f ′′(x)/h2

f ′′′(x)/h3

f iv(x)/h4


 =




1 0 −1 0 0
0 1 −1 0 0
0 0 −1 1 0
0 0 −1 0 1







f(x− 2h)
f(x− h)
f(x)

f(x+ h)
f(x+ 2h)




︸ ︷︷ ︸
F

(2.12)

f ′′4 (x) =
1

12h2

[
−1 16 −30 16 −1

]
F (2.13)

f iv4 (x) =
1

12h4

[
−1 −4 6 −4 1

]
F. (2.14)

The residual of the finite difference solution to the analytic solution fn∗ can be estimated by comparing
approximations consisting of differently many terms from the Taylor expansion,

f ′′2 (x)− f ′′∗ (x) ≈ f ′′2 (x)− f ′′4 (x) =
1

12h2

[
−1 −4 6 −4 1

]
(2.15)

= 12h2f iv4 (x). (2.16)

So the approximation f ′′2 is second order accurate, as the residual is proportional to h2, abbreviated with
the short hand notation O(h2). This implies that the accuracy of the approximation f ′′2 increases four
times if one uses twice as many grid points.

2.2.5 Boundary Conditions

As the hydrogen atom is confined, Dirichlet boundary condition conditions are assumed where the wave
function is zero at the boundary of the domain. This requires no changes of the matrix.

2.2.6 Richardson Extrapolation

The special behaviour of the finite difference approximation to be proportional to higher order derivatives
allows to extrapolate solutions with a higher order of accuracy from two solutions on differently spaced
grids [Ric11]. Assume that the error of the finite difference approximation is of the form

f∗(x) = fh(x) + a(x)h2 + b(x)h4 +O(h6). (2.17)

Then, by doing another approximation with a different step-width of ch again an equation system can
be set up. If one eliminates the highest residual term a(x) this yields an approximation to the analytic
solution f∗(x) with an higher order of accuracy,

[
1 −h2

1 −c2h2

] [
f∗(x)
b(x)

]
=

[
1 0 h4

0 1 c4h4

]


fh(x)
fch(x)
a(x)


 (2.18)
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f∗(x) =
fch(x)− c2fh(x)

1− c2 − h4b(x)
c2 − c4
1− c2 (2.19)

f∗(x) =
4fch(x)− fh(x)

3
− 1

4
h4b(x), c = 1/2. (2.20)

This can be recursively continued to eliminate yet more higher order terms from the residual. The coeffi-
cients of up to 10th order accuracy are given in table 2.2.6

f_h f_h/2 f_h/4 f_h/8 f_h/16 Residual

-1/3, 4/3, 0, 0, 0, -1/4 h^4

1/45, -4/9, 64/45, 0, 0, 1/64 h^6

-1/2835, 4/135, -64/135, 4096/2835, 0, -1/4096 h^8

1/722925, -4/8505, 64/2025, -4096/8505, 1048576/722925, 1/1048576 h^10

Table 2.2: Coefficients of extrapolation and largest remaining residual term of the Richardson extrapola-
tion.

2.2.7 Higher Order Finite Differences

Higher order difference methods can also be constructed by matrix exponentials, which is simpler as the
construction based on the solution of linear systems as described in the previous section. The second order
accurate finite difference approximations of the 2-nth derivative are given by

D2n
2 =

(
D2

2

)n
. (2.21)

Where D2
2 = L is the second order accurate Laplacian operator (see equation (2.1)).

A higher order accurate approximation to the second derivative is then obtained by combining the several
second order accurate approximations of higher derivatives,

D2
2k =

K∑

k=1

1

c2k
(−1h2)k−1D2k

2 (2.22)

=

K∑

k=1

1

c2k
(−1h2)k−1(D2

2)k (2.23)

Where the coefficients are given by the error terms of the finite difference method (cf. (2.16)),

c2k =

(
2n+ 1

n

)
(n+ 1)2 (2.24)

= 1, 12, 90, 560, 3150, ... (2.25)

The kernels of higher order difference matrices can be found as convolutions of the second order kernel
instead of computing the matrix powers explicitly,

K2k+2 = (K2k ∗K2)[i] =

2k+1∑

j=0

K2[i] ∗K2k[j − i+ 1], i = 1, 2, ..., 2k + 2, (2.26)

if one considers the kernels to be padded with zeros at the ends. For a correct approximation of the ho-
mogeneous Dirichlet boundary the first terms of the sum have to be dropped. Note that the homogeneous
Dirichlet boundary conditions are implicitly retained in the matrix powers.

Matrix powers can also be used to set up difference matrices of higher derivatives on non-uniform grids.
However, the error of the finite difference approximation on a non-uniform grid is not anymore the multiple
of higher order derivatives and higher order accurate differences on non-uniform grids can therefore not be
set up in this way.
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2.2.8 Finite Differences in Higher Dimensions

Total derivatives in higher dimensions are formed as the sum of partial derivatives of each dimension. So
are the derivative matrices in higher dimension the sum of partial derivative matrices (equation (2.27)),

∆ =

n∑

i=0

∂2

∂ρ2
i

. (2.27)

A partial derivative matrix is the Kronecker product of a one dimensional derivative matrix and further
identity matrices. The Laplacian can be set up as described in algorithm 2.1.

Algorithm 2.1 Matrix Combination in Higher dimensions

1 A = Ax
2 I = Ix
3 f o r i = y, z
4 A = kron(A, Ii) + kron(I, Ai)
5 I = kron(I, Ii)

The potential term does not contain any derivative and hence yields a diagonal matrix in real space.
However, the potential contains a distance term which in Cartesian coordinates equals ρ = ||xc − x|| for a
nucleus located at xc. The potential matrix is set up in three steps by first computing the distances in each
dimension V 2

x , V
2
y , V

2
z followed by the combining the matrices as in algorithm 2.1 into V 2 and completed

by taking the square root of the elements.

If the nucleus is located such that the domain is symmetric then the energy levels degenerate. This
means that some eigenvalues occur multiple times. For the hydrogen atom in free space the energy levels
are n2 degenerated. Non-unique eigenvalues may complicate the eigenvalue computation. One can avoid
duplicate eigenvalues by slightly perturbing the location of the nucleus. This is justified, as long as the
perturbation is smaller than the model error.

2.2.9 Influence of Smoothness on the Accuracy of Finite Difference Approxi-
mations

A function which is not sufficiently smooth cannot be accurately approximated by finite differences. This
applies to highly oscillating functions and to functions with discontinuous derivatives where equation (2.6)
does not hold. A quantitative criteria to determine whether a function is sufficiently smooth is found by
investigating the basic oscillatory function

f(x) = eikx. (2.28)

Where the first two analytic derivatives f ′∗ and f ′′∗ are given by

f ′∗(x) = ikeikx (2.29)

f ′′∗ (x) = − k2eikx. (2.30)

The finite difference approximations f ′h and f ′′h of the derivative differ from the analytic solution,

f ′h(x) =
eik(x+h) − eik(x−h)

2h
(2.31)

=
1

h
sinh(ikh)eikx (2.32)

=
i

h
sin(kh)eikx (2.33)

f ′′h (x) =
eik(x−h) − 2eikx + e−ik(x+h)

h2
(2.34)

=
2

h2
(1− cosh(ikh))eikx (2.35)

=
2

h2
(1− cos(kh))eikx (2.36)
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The relations (2.33) and (2.36) show that the approximations are more exact for small step widths h and
low frequency components k. The approximation is furthermore only valid as long as the argument of the
trigonometric functions hk is smaller than π. This is also known as Nyquist-Shannon sampling theorem
[Sha49].

Ergo, a second order finite difference approximation of the first derivative of a function with highest
frequency component k = 2ω is only valid iff the step width h satisfies:

h <
π

k
=

1

2ω
. (2.37)

The second order finite difference approximation of the second derivative requires a step width of

h <
π

2k
=

1

ω
. (2.38)

The quality of approximation with respect to frequency and step width is depicted in figure 2.2.9.

This analysis can be repeated for higher order accurate approximations. Higher order accurate approxi-
mations require in general a smaller step width for the same frequency.
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Figure 2.1: Quality of the second order accurate finite difference approximation to the function eikx for
different step widths h and frequencies k, left: first derivative, right: second derivative.

2.2.10 Smoothness of the Eigenfunctions of the Schrödinger Equation

The frequency components of the Schrödinger Equation are obtained transforming its solution into Fourier
space. For the ground state (1.45) along the x-axis this yields with χ = a0x

ψ̂(k) =

∫ ∞

−∞

1√
πa3

0

e−|χ|e−2πikxdχ (2.39)

=
1√
πa3

0

(∫ 0

−∞
e−χ(2πik−1)dχ+

∫ ∞

0

e−χ(2πik+1)dχ

)
(2.40)

=
1√
πa3

0

( −1

2πik − 1
+

1

2πik + 1

)
(2.41)

=
1√
πa3

0

2

4π2k2 + 1
+ 0 i. (2.42)

The Fourier coefficients (2.42) decay slowly compared to the coefficients of analytic functions, which decay
exponentially. The solution contains therefore high frequency components and according to equation (2.36)
this implies that a small step width is required before convergence of the finite difference method sets in.

Based on the Fourier transform of the ground state one can also reason that the solutions of the Schrödinger
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equation become smoother with increasing dimensions, as the Fourier coefficients decay faster due to the
relation

e−
√
x2+y2+z2 ≤ e−

√
x2+y2 ≤ e−

√
x2
. (2.43)

This implies that conversion sets in earlier in higher dimensions.

The solutions to the Schrödinger equation are not only none smooth, but the derivative of the wave-
function are undefined at the location of the nucleus. Therefore the grid has to be set up in a distinctive
way to assure convergence. In two and higher dimensions the grid should be set up such that

• the nucleus is not located directly on a grid point,

• the grid spaces are fine close to the location of the nucleus.

In one dimension this approach breaks down as one would still differentiate over the location of the nucleus,
even if it is not directly located on a grid point. An exception is the radial equation, where the discontinuity
is located at the boundary and not inside the computational domain.

2.2.11 Non-Uniform Grids

A common layout of a finite difference quotient has constant spaces in-between the grid points. For
homogeneous Dirichlet boundary conditions in one dimension there are n grid points inside the domain
and two boundary points, where the eigenfunctions are zero. There are therefore n + 1 steps inside the
domain Ω and hence the step width is calculated as in equation (2.45),

Ω = [−L,L] (2.44)

h =
2L

n+ 1
. (2.45)

Sometimes a grid with a step size varying inside the domain may be desirable, to resolve parts of the
domain with higher accuracy while keeping the overall number of grid points small.

This is the case for the hydrogenic Schrödinger equation. Recall that wave functions and their deriva-
tives of the unconfined hydrogen atom are large close to the nucleus and decay exponentially towards
infinity (equation (1.45)). Therefore the discretisation error is large close to the nucleus as well (equation
(2.16)) and a grid with many grid points close to the nucleus reduces the discretisation error.

Predetermined Setup of a Variable Grid A relocation scheme for the grid points can be set up
by realising that, for a constant step size h the error varies proportional to the fourth derivative of the
solution:

err(ri) = c1h
2ψvi(ri) = c1h

2e−ri (2.46)

Which implies that the error remains constant if the step width h is chosen to be proportional to the
inverse of the fourth derivative of the solution,

h(ri) = c2e
ri/2. (2.47)

As the location of a grid point is equal to the sum of grid spaces between the origin and the grid point,
this leads to a relocation scheme for the grid points of a constant grid

rv(r) = α1 (eα2r − 1) . (2.48)

A varying grid in higher dimension can be set up by relocating the grid points according to equation (2.48)
for each coordinate axis by choosing the distance to the nucleus as parameter r.

Adaptive Grid For a confined atom the solution differs from those of the unconfined atom and a
predetermined grid based on the unconfined wave functions is therefore not anymore optimal. In this case
it is preferable to refine the mesh locally according to algorithm 2.2.
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Algorithm 2.2 Adaptive FDM Refinement

1. compute fourth derivative of the solution as ψiv(x) = L2ψ(x)

2. estimate local error as errloc = 1
12h

2ψ(x)

3. interpolate error into element centres

4. find maximum absolute error errmax

5. mark elements with large error contribution |errloc| > 1
4 |errmax|

6. add the midpoints of the marked elements to the grid

Difference Scheme The matrix kernel for a variable grid can also be recovered by setting up a system
of equations, (2.2.11),

[
(xi+1 − xi) 1/2(xi+1 − xi)2

(xi−1 − xi) 1/2(xi−1 − xi)2

] [
f ′(xi)
f ′′(xi)

]
=

[
0 −1 1
1 −1 0

]

f(xi−1)
f(xi)
f(xi+1)


 . (2.49)

f ′′2 (xi) =

[
2

(xi − xi−1)(xi+1 − xi−1)
,

2

(xi − xi+1)(xi − xi−1)
,

2

(xi+1 − xi)(xi+1 − xi−1)

]
F. (2.50)

As the coefficients of the difference matrices are not any more integers divided by a constant factor, it
is especially important to avoid cancellation errors while setting up the difference matrices on a variable
grid.

Preserving Symmetry A discretisation matrix based on a grid with varying step-size is asymmetric.
However, the asymmetric eigenvalue problem can be transformed into a symmetric generalised eigenvalue
problem by a similarity transform (equation (2.51) and section 3.12),

DTD−1 = T̃ (2.51)

Tx = λx (2.52)

Dx = y (2.53)

DTD−1y = DD−1y (2.54)

T̃ y = λy. (2.55)

2.2.12 Finite Difference Solution of the Radial Schrödinger Equation

In the radial Schrödinger equation (1.37) the the Coulomb singularity is located on the boundary of the
computational domain. Therefore a solution by the finite difference method is possible. Figure 2.2.12
shows the convergence of the finite difference approximation to the radial Schrödinger equation for the
unconfined atom. As the solution is not smooth enough close to the Coulomb singularity, it cannot be
sufficiently sampled by a uniform grid with few grid points. Therefore convergence for a uniform grid does
not set in until the grid becomes very fine. However, if one uses a variable grid, such that the region
close to the Coulomb singularity is sufficiently sampled even with few grid points, then convergence sets
in immediately and the discretisation error is much lower.
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Figure 2.2: Finite difference approximation to the radial Schrödinger equation for the domain Ω =
[0, 400] a0, the graphs show the discretisation error of the first eigenvalue compared to the analytic solution.
Left: predetermined uniform and varying grid, right: adaptive grid.
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Chapter 3

Revision of Matrix Properties and
Decompositions

Some fundamental matrix properties and decomposition are repeated first before some of the Hermitian
eigenvalue methods are applied to the given physical problem. The interested reader may refer to a classic
compendium such as [Gol96] for a more extensive coverage of this topic.

3.1 Symmetry

A matrix A is called Hermitian if it is equal to its conjugate transpose. If A is real, the conjugate transpose
is simply the transpose and the matrix is called symmetric. Hermitian matrices expose certain favourable
properties in regard to their decompositions,

A = A∗, A ∈ C (3.1)

A = AT , A ∈ R. (3.2)

3.2 Orthogonality

A matrix U is called unitary, if its conjugate transpose is equal to its inverse. If real unitary matrix Q is
more commonly referred to as orthogonal or orthonormal,

U∗U = I, U∗ = U−1, U ∈ C (3.3)

QTQ = I,QT = Q−1, Q ∈ R. (3.4)

3.3 Similarity

The matrices A and B are similar, if there exists an invertible matrix of same rank P , such that

AP = PB. (3.5)

Similar matrices have the same eigenvalues. If A and B are Hermitian, then P is unitary.

3.4 Projectors

Any projector P is an idempotent matrix:

P 2 = P. (3.6)

The complementary projector is given by

Pc = I − P. (3.7)

26



Karl Kästner, TU Delft

A projector which is also a symmetric matrix is an orthogonal projector, but it is usually not an orthogonal
matrix,

PT = P. (3.8)

For each vector x there exists a projector P , such that

Px = x (3.9)

Pcx = 0. (3.10)

This projector is given by the outer product of x:

P = xxT (3.11)

Pc = I − xxT . (3.12)

3.5 Orthogonal Transformation

An orthogonal transformation is a transformation with an linear operator T , which preserves angles between
vectors and lengths of vectors (equation (3.13). The most common orthogonal transformations are rotations
and mirroring,

vTw = (Tv)T (Tw). (3.13)

3.6 Cholesky Decomposition

The Cholesky decomposition is a factorisation of a matrix A into the product of an upper tridiagonal L
matrix and its conjugate transpose. It is one of the two possible interpretations of a matrix square root.
The Cholesky factorisation only exists if the matrix A is positive definite,

LTL = A. (3.14)

3.7 Eigenvalue Decomposition

Each matrix A acts on a distinct set of vectors, its eigenvectors v, as if it were a scalar. The corresponding
scalars are referred to as the eigenvalues λ and a pair of an eigenvector and its eigenvalue is referred to as
an eigenpair. An eigenvector is not unique as it is only unanimously defined up to an arbitrary coefficient,

Av = λv. (3.15)

The eigenvalue decomposition of A is defined as

A = V ΛV −1. (3.16)

Where Λ is a diagonal matrix consisting of the eigenvalues λ of A and V is the matrix consisting of the
eigenvectors corresponding to the eigenvalues in Λ.

If A is Hermitian, then V is orthogonal and Λ is real.

3.8 Generalised Eigenvalue Decomposition

A generalised eigenproblem is of the form

Ax = λBx. (3.17)

Such problems arise in many physical applications such as mass spring systems which discretisation yields
a mass and a stiffness matrix. The finite element discretisation of the Schrödinger equation also yields a
generalised Hermitian eigenvalue problem.
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Note that equation (3.17) can usually be transformed into a standard eigenvalue problem by inverting
B,

B−1Ax = λx. (3.18)

However if A and B are Hermitian, the symmetry is usually lost and B−1A is not Hermitian. If B is positive
definite a Cholesky decomposition is preferable instead which keeps the eigenvalue problem Hermitian,

LTL = B (3.19)

L−1ALy = λy (3.20)

x = Ly. (3.21)

However, the Cholesky factor L is dense, as long as the matrix B is not close to being diagonal. Therefore
specialised solvers for generalised eigenvalue problems exists which exploit symmetry as well as sparsity of
the matrices A and B.

3.9 Determinant

The determinant is defined as the product of the eigenvalues λ of the matrix A,

det(A) =

n∏

i=1

λi. (3.22)

3.10 Hessenberg Decomposition

The Hessenberg decomposition is defined as

AQ = QH. (3.23)

Where the matrix H is upper triangular with one additional non-zero sub-diagonal and the matrix Q is
orthogonal. Note that A and H are similar and hence have the same eigenvalues.

If A is Hermitian then H is tridiagonal symmetric and real,

AQ = QT,A = A∗. (3.24)

3.11 QR-Decomposition

The QR-decomposition is defined as

A = QR. (3.25)

Where the matrix Q is orthogonal and the matrix R upper triangular.

If A is tridiagonal so is R.

3.12 Similarity Transform into a Symmetric Matrix

Factors of asymmetric tridiagonal matrices are in general not tridiagonal anymore. This increases the com-
putational effort and the round off error in some algorithms which build on repeated matrix factorisations.
However, under certain circumstances it is possible to transform an asymmetric tridiagonal matrix T into
a symmetric tridiagonal matrix T̃ with help of a diagonal matrix D.

For example, finite difference discretisations on a variable grid yield asymmetric matrices which can be
transformed to become symmetric. In this case it is also possible to derive the matrices D and T̃ directly
without actually performing the factorisation. See [TSCH90],

DTD−1 = T̃ (3.26)

d1 = 1 (3.27)

di+1 = di
√
bi+1/ci+1 (3.28)

bi/ci > 0 (3.29)
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[
d1

d2

] [
a1 b2
c2 a2

] [
d1

d2

]−1

=

[
a1 b̃2
b̃2 a2

]
. (3.30)

3.13 Orthogonalising a Set of Vectors - The Modified Gram-
Schmidt Process

The Gram-Schmidt algorithm orthogonalises a vector x with respect to an existing set of orthonormal
basis vectors Q. Orthogonalisation can be achieved by an orthogonal projection (equation (3.31)),

x = (I −QQT )x. (3.31)

An improved version which reduces round off errors is listed in algorithm 3.1.

Algorithm 3.1 Modified Gram-Schmidt Algorithm

1 f o r idx =1:n

2 x = x− (QT:,idxx)Q:,idx;

3 end % f o r idx
4 repeat i f | | x | | << 1
5 x = x / | | x | | ;
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Chapter 4

Basic Eigenvalue Algorithms

The eigenvalue problem can be formulated as finding the zeros of an n-degree polynomial, where n is the
rank of the matrix A,

(A− λI)x = 0. (4.1)

The Abel-Ruffini theorem states that there exists no closed form solution in the general case if the polyno-
mial is of order five or larger. Hence it is in general impossible to find the exact eigenvalues of a matrix in
a finite number of steps and it is necessary to apply an iterative method to approximate the eigenvalues.

4.1 Power Iteration

The power iterations is the most basic method for computing eigenvalues. It is slowly convergent and only
yields the largest eigenvalue. It is stated here as most advanced eigenvalue algorithms can be retraced to
a form of power iteration.

Assume that the matrix A a has a unique real eigenvalue whose absolute value is larger than the ab-
solute values of the other eigenvalues,

|λ1| > |λ2| ≥ |λ3| ≥ ... ≥ |λn|. (4.2)

For simplicity, but not necessity, consider the matrix A also to be symmetric. Then one realises that the
powers of the matrix A converge of the powers of the eigenpair of λ1,

Akx0 = V ΛkV Tx0 = λk1v1v
T
1 x0 + λk2v2v

T
2 x0 + ...+ λknvnv

T
n x0. (4.3)

The idea of the power method, given by algorithm 4.1 is to indirectly compute the matrix powers by
iteratively forming a matrix vector product.

Algorithm 4.1 Power Iteration

1 x0 = random vecto r
2 f o r k = 0 , 1 , 2 , . . .
3 xk+1 = Axk
4 λk+1 = ||xk+1||2
5 xk+1 = 1

λk+1
xk+1

4.2 Inverse Iteration

The inverse iteration is a variant of the power method, which allows to find eigenvalues and eigenvectors
close to a value called shift µ. This method can be used to find eigenvectors for known eigenvalues and
converges quicker than the power method at the cost of the solution of a linear system at each iteration,
see algorithm 4.2. The shift µ can be updated during the iteration with the vector norm σ for faster
convergence.
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Algorithm 4.2 Inverse Iteration

1 x0 = random vecto r
2 f o r k = 0 , 1 , 2 , . . .
3 (A− µI)xk+1 = xk
4 σk+1 = ||xk+1||
5 xk+1 = 1

σk+1
xk+1

4.3 QR-Algorithm

The QR-Algorithm is such an iterative method to compute the eigenvalue decomposition of the matrix A
[Fra61]. The inner loop of the QR-algorithm with shift µ is given by algorithm 4.3.

Algorithm 4.3 QR-Algorithm

1 whi l e an,n−1 > ε
2 QR = (Ak − µI)
3 Ak+1 = RQ+ µI

4 Q̃k = Q̃kQk ( op t i ona l )
5 end

If A is Hermitian then the off diagonal entries in Ak converge always to zero and Ak approaches the diagonal
matrix of eigenvalues Λ 1. Q̃k converges simultaneously to the matrix of eigenvectors V . However, it is
not required to compute this matrix explicitly,

Ak+1 = QTkAkQk (4.4)

= QTk ...Q
T
1 A1Q1...Qk (4.5)

= Q̃TkA1Q̃k (4.6)

V ΛV T ≈ Q̃TA1Q̃. (4.7)

The lowest right element of Ak converges most rapidly. This permits to deflate the matrix by its last
row and column each time an eigenvalue has converged. The iteration is then continued with the deflated
matrix Ãk. If the the lowest right element of the matrix Ak is chosen as shift, then this element converges
cubically to an eigenvalue of A if A is Hermitian,

Ak =

(
Ãk 0
0 λ

)
. (4.8)

A QR-decomposition can be computed using the modified Gram-Schmidt algorithm in O(n3) steps. How-
ever in the QR-algorithm the explicit computation of Q can be avoided and if A is tridiagonal, then a
single QR-iteration step can be computed in O(n) steps.

The QR-Algorithm is numerically stable, in a sense that round off errors do not considerably accumu-
late during the iterations and compromise the computed eigenvalues.

4.3.1 Relation with the Power Iteration and Inverse Iteration

The QR-algorithm can be interpreted as a combination of the power iteration and inverse iteration [Par73].
If no shift is applied then the iteration (equation (4.6)) may be rewritten as follows:

Q̃k−1Ak = A1Q̃k−1 (4.9)

Q̃k−1QkRk = A1Q̃k−1 (4.10)

Q̃kRk = A1Q̃k−1. (4.11)

1For asymmetric matrices the matrix Ak converges to the Schur-factor of A, if A does not have multiple or complex
eigenvalues.

Computing Energy Levels of the Confined Hydrogen Atom 31



By multiplying equation (4.11) with the first unit vector and considering that the R matrix is upper
triangular one realises that the left part of (4.12) is just the power iteration,

Q̃k = A1Q̃k−1R
−1
k (4.12)

Q̃ke1 = A1Q̃k−1R
−1
k e1 (4.13)

q̃
(k)
1 =

1

r
(k)
1,1

A1q̃1
(k−1). (4.14)

If equation (4.11) is inverted and transposed before the multiplication with the first unit vector e1, the
inverse power method becomes apparent if the matrix A is symmetric,

R−1
k Q̃−1

k = Q̃−1
k−1A

−1
1 (4.15)

Q̃kR
−T
k = Ã−T1 Q̃k−1 (4.16)

AT1 Q̃kR
−T
k e1 = Ã−T1 Q̃k−1e1 (4.17)

1

r
(k)
1,1

AT q̃
(k)
1 = q̃

(k−1)
1 . (4.18)

Hence the topmost element a11 of Ak converges to the dominant eigenvalue λ1 and the first column q̃1 of
(̃Q) converges to the corresponding eigenvector v1 of λ1 if the convergence criteria of the power method
are met,

lim
k→∞

Q̃TkAQ̃ke1 = lim
k→∞

q̃
T (k)
1 r

(k)
1,1e1 q̃

(k)
1 (4.19)

= vT1 λ1v1e1 = λ1e1. (4.20)

During the QR iteration all the elements on the main diagonal of the R matrix converge simultaneously.
It resembles de facto a nested power iteration. Note that above only the convergence of the first element
of the R matrix was shown. However, in practise the last element of the R matrix converges first and the
the deflation is carried out as shown in equation (4.8).

4.4 Eigenvalues by Bisection

If only few eigenvalues are required the bisection algorithm offers an alternative to the QR-algorithm.
The bisection algorithm finds a single eigenvalue in an selected interval in n log(ε) time. Recall that the
determinant of a matrix is equal to the product of its eigenvalues (equation (4.21)) and that the eigenvalues
of a matrix can be shifted by subtracting a multiple of the identity matrix (equation (4.22)),

det(A) =
∏

λ (4.21)

(A− µI)x = λ− µ. (4.22)

The upper principal minors of the matrix A form furthermore a Sturm sequence. This means that the
number of sign changes of the determinants of the principal minors is equal to the number of negative
eigenvalues. As determining the determinant of a tridiagonal matrix requires only O(n) steps, one can
find eigenvalues by shifting the spectrum in an interval which is successively halved in each step. A start
interval can be determined by Gershgorin’s circle theorem.
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Algorithm 4.4 Bisection Algorithm

1 whi l e ( abs (λl − λu ) > t o l ∗( abs (λl ) + abs (λu ) ) && abs (λl ) + abs (λu ) > t o l )
2 % i n t e r v a l midpoint
3 λc = 1/2 (λl + λu ) ;
4 n s = 0 ;
5 p 2 = 0 ;
6 p 1 = 1 ;
7 % count s i gn changes in upper determinant
8 f o r idx =1:n
9 p = (Aii − λc)p1 − (Aii+1)2p2

10 i f (p·1≤ 0)
11 n s = n s + 1
12 end
13 p 2 = p 1
14 p 1 = p
15 end
16 % s e l e c t h a l f with s i gn change
17 i f ( n s > n−k )
18 λu = λc
19 e l s e
20 λl = λc
21 end
22 end
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Chapter 5

Eigenvalue Algorithms for Large
Sparse Matrices

Even if a matrix where sparse the QR-algorithm becomes inapplicable once the matrix is to large. Ex-
ceptions are matrices with very small bandwidths. Two general methods are analysed in the following
section which allow the computation of eigenvalues for large sparse matrices. The first approach uses the
Lanczos algorithm to factorise the matrix into tridiagonal form before computing the eigenvalues. The
second approach uses a correction method in form of the Jacobi-Davidson algorithm which directly finds
the eigenpairs. Especially the well established Lanczos method is extensively covered in the literature
[Saa11], [Par87], [CW02], [Gol96] and [BDJ+00], [Vor].

5.1 Projection Methods

Projection methods approximate a matrix by its projection onto an orthogonal subspace. Orthogonal
projection methods find wide application in the solution of linear systems and eigenvalue computation.
The projection is chosen such that the original problem is much easier to solve with the projected matrix
and that the solution approximated with the projected matrix is close to the proper solution of the original
problem.

The eigenvalues of a matrix A are computed by constructing the projection matrix Q at first, then by
finding the eigenvalues of the projected matrix QTAQ and finally by projecting the eigenvalues s of the
projected system back to get approximate eigenvalues z,

Ax = λx (5.1)

QTAQs = λs (5.2)

z = Qs. (5.3)

An intriguing property of the orthogonal projection methods is that the residual of the approximated
solution r is orthogonal to the projection space,

r = AQs− λQs (5.4)

QT r = 0. (5.5)

The eigenvalues and eigenvectors of the projected system are referred to as Ritz values and Ritz vectors
respectively.

5.2 Lanczos Iteration

The Lanczos iteration is a method to compute the Hessenberg decomposition of a Hermitian matrix [Lan50].
Such a decomposition precedes the QR-algorithm, as the iterations on the tridiagonal Hessian are much
less costly, as shown in the previous chapter. Furthermore an incomplete decomposition can be computed
such that the rank of T is much lower than the rank of A. A complete Lanczos factorisation takes O(n2)
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operations, if A is a banded sparse matrix with few nonzero diagonals. The computed Hessenberg matrix
T computed by algorithm 5.1 takes the form given in equation (5.6),

T =




a1 b2
b2 a2 b3

b3 ... ...
... am−1 bm

bm am



. (5.6)

Algorithm 5.1 Lanczos-Algorithm

1 q0 = 0̄
2 q1 = a r b i t r a r y nonzero vec to r (1 )
3 q1 = q1/||q1||
4 b1 = 0
5
6 f o r i = 1..m
7 qi+1 = Aqi − biqi−1

8 ai = qTi+1qi
9 qi+1 = qi+1 − aiqi

10 bi+1 = ||qi+1||
11 qi+1 = qi+1/b
12 end
13 % compute approximate e i g e n v a l u e s by b i s e c t i o n
14 % s o r t out spur i ous e i g e n v a l u e s
15 % approximated e i g e n v e c t o r s by i n v e r s e i t e r a t i o n

5.2.1 The Lanczos-Iteration as Eigenvalue Method

The eigenvalues θ of T equal the eigenvalues λ of A upon complete factorisation with exact arithmetic as
both matrices are similar. The same holds for the Ritz vectors z and eigenvectors v. If the factorisation is
computed with finite precision or incomplete , i.e. only performed until step k, then the factorisation has
an residual r(k) (equation (5.8)),

AQk −QkTk = r(k)eTk (5.7)

= βk+1qk+1e
T
k (5.8)

Tk = SkΘkS
T
k (5.9)

Zk = QkSk. (5.10)

Implementations of the Lanczos algorithm vary depending on when the eigenvalues are calculated. Parlett
[Par87] recommends to calculate the eigenvalues after each iteration. However, this becomes expensive if
many iterations are required to achieve convergence. Hence Cullum [CW02] recommends almost a complete
factorisation before the eigenvalues are calculated.

5.2.2 Convergence Estimation

The residual r(k) of the factorisation also leads to an residual r
(k)
i of the approximate eigenvectors z

(k)
i

(equation (5.14)),

AQk = QkTk + r(k)eTk (5.11)

AQk = QkSkΘkS
T
k + r(k)eTk (5.12)

(A− θ(k)
i I)Qks

(k)
i = βk+1qk+1e

T
k s

(k)
i (5.13)

(A− θ(k)
i )z

(k)
i = r

(k)
i . (5.14)

The residual norm of the Ritz vectors ||r(k)
i || is therefore determined only by the last coefficient βk+1 and

the last element of the respective eigenvector s
(k)
i of the matrix Tk (equation (5.15)). The error of the
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approximate eigenvalue can be estimated by the residual norm and the distance γi to the closest eigenvalue
(equation (5.16)). Hence only the eigenvalues of the tridiagonal system, but not the Ritz-vectors themselves
are required to estimate the convergence,

||r(k)
i || = βk+1si,k (5.15)

|θ(k)
i − λi| ≈ (βk+1si,k)2/γi (5.16)

γi = mini 6=j |θ(k)
i − θ

(k)
j |. (5.17)

The Lanczos method usually requires many iterations m before the eigenvalues converge. Sometimes the
number of iterations exceeds the matrix rank n, [CW81]. The eigenvalues in the required range are found
by bisection, due to the large size of the projected system. The respective eigenvectors can be computed
by inverse iteration afterwards.

5.2.3 Invariant Subspaces

If the matrix A contains at least one eigenvalues multiple times, i.e. if its spectrum is degenerated, then
after some iterations the Lanczos has explored a complete invariant subspace. As a consequence the
eigenvalues of the subspace are not only approximations but the exact eigenvalues of A as their residual
βsij is zero up to rounding errors. However, the iteration cannot continue and some modifications are
required to find the remaining eigenvalues. There are three possibilities:

• Restarting the Lanczos iteration with a start vector orthogonal to the converged eigenvectors. How-
ever, this requires the storage of the complete subspace.

• Using a block-version of the Lanczos algorithm starting with a set of orthogonal vectors. However,
this produces a banded matrix with more than three diagonals and requires to deflate the block once
a residual becomes zero.

• Discretising the PDE, such that it is not degenerated and hence does not contain multiple eigenvalues.

Even if the matrix does not contain invariant subspaces, a similar behaviour is observed once the eigenvalues
of T start to converge.

5.2.4 Loss of Orthogonality and Spurious Eigenvalues

As the Lanczos algorithm is only based on a three term recurrence, orthogonality of the basis vectors Q is
soon lost in finite precision arithmetic,

Err = QTQ− I. (5.18)

As a consequence the matrices A and T are not anymore similar and have a different set of eigenvalues.
However, the eigenvalues sets are not completely different, but

• The matrix T contains spurious eigenvalues. A spurious eigenvalue is an eigenvalue of the tridiagonal
matrix T which is not an eigenvalue of the original matrix A. Spurious eigenvalues usually occur
directly after one of the eigenvalues of T has converged to an eigenvalue of A. Thereafter the spurious
eigenvalue converges to a copy of one of the already converged eigenvalues.

• The eigenvalues of A are still eigenvalues of the matrix T . To obtain all eigenvalues of A it is necessary
to continue the iterations, such that the rank of T exceeds the rank of A.

Several methods have been developed to overcome the shortcomings of the Lanczos method and to compute
the correct eigenvalues. There are basically two ideas, the first idea is to restore the orthogonality [PS79]
and the second idea is to identify and remove spurious eigenvalues from the result, see [Pai80].

5.2.5 Partial Reorthogonalisation

A possible remedy is to keep track of the loss of orthogonality by a recurrence formula and to reorthogonalise
the last two basis vectors against the complete basis [Sim84],

max
ij

(QTQ− I) >
√
εκ(A). (5.19)
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Although the partial reorthogonalisation is less expensive than a complete reorthogonalisation, it may
become infeasible for large subspaces. It can be shown that the eigenvalues of the partially reorthogonalised
matrix are as accurate as if they were computed with full orthognonalisation, as long as equation (5.19) is
satisfied.

5.2.6 Filtering Spurious Eigenvalues

Paige [Pai80] showed that all the eigenvalues of A will eventually be contained in T , if the iteration is
continued long enough. Note that this could yield a matrix T which is larger than A.

Spurious and truly multiple eigenvalues could be distinguished by testing the orthogonality of the ap-
proximate eigenvectors. The true multiplicity of the eigenvalue is equal to the number of approximate
eigenvectors who’s inner product is close to zero,

vTi vj = (Qsj)
TQsi, i 6= j. (5.20)

However, this method can not be applied in practise as it requires to store the complete basis Q.

Cullum [CW81] described how one may sort out the spurious eigenvalues by comparing the eigenvalues of
T to the eigenvalues of the matrix T without first row and column T2.

• Keep a single copy of θi as converged eigenvalue, if is multiple eigenvalue of T .

• Keep θi as approximation if it is a single eigenvalue of T and not an eigenvalue of T2.

• Discard θi as spurious if it is single eigenvalue of T and also eigenvalue of T2.

5.2.7 Lanczos Iteration for Generalised Eigenvalue Problems

The Lanczos method is adapted for generalised eigenproblems by forming the basis Q such that it is
orthogonal with respect to its generalised inner product with B,

Ax = λBx (5.21)

AQ = BQT (5.22)

QTBQ = I. (5.23)

Algorithm 5.2 is the Lanczos iteration adapted for the generalised eigenvalue problem. The most obvious
difference is the solution of a linear system at every iteration step. This can of course be formed with with
an iterative solver such as the conjugate gradient or minimum residual method [PS75]. Note that in the
actual implementation the matrix vector products of BQ are not explicitly formed but kept in an auxiliary
matrix.

Algorithm 5.2 Generalised Lanczos Algorithm

1 f o r i = 1..m
2 qi+1 = Avi ;
3 Bqi+1 = qi+1 ;
4 qi+1 = qi+1 − biqi−1

5 ai = qTi+1Bqi
6 qi+1 = qi+1 − aiqi
7 bi+1 =

√
qTi+1Bqi+1

8 % i f (b < eps) stop
9 qi+1 = qi+1/b

10 % compute approximated e i g e n v a l u e s
11 % T = SΘS
12 % t e s t f o r convergence
13 % r = |βsi,j |/||Qsi||
14 % i f ( ||r|| < tol )
15 % break
16 % end
17 end
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5.2.8 Approximate the Solution of Linear Systems

Some of the algorithms for large sparse matrices introduced in this chapter require the solution of a
symmetric linear system at each iteration (equation (5.24)),

Ax = b. (5.24)

It is reasonable to approximate the solution instead to solve them directly. The most elementary solver for
symmetric linear system is the conjugate gradient (CG) method. However it is not applicable to indefinite
systems. An equation solver applicable for indefinite systems is the minimum residual method (MINRES).
The key of this method is the factorisation of the matrix A into a tridiagonal matrix T and an orthogonal
basis Q (equation (5.26)). This can be achieved by the Lanczos method. The factorised system is easily
solved as T is tridiagonal (equation (5.28)),

AQk = QkTk + βk+1qk+1 (5.25)

= Qk+1T̃k (5.26)

QTkAQky = b (5.27)

T̃k = b. (5.28)

The residual norm can be estimated with the help of an orthogonal transformation by the matrix Dk+1Q
T
k+1

(equation (5.33)). Where D is the diagonal matrix of the residuals. Note that by choice y(1) = 0 and
hence β1 = ||b||, q1 = 1/β1b,

Dk+1 = diag(||β1||, ..., ||βk+1||) (5.29)

rk = ||AkQky − b|| (5.30)

= ||Qk+1T̃k − b|| (5.31)

= ||Dk+1Q
T
k+1Qk+1T̃k −DQTk+1b|| (5.32)

= ||Dk+1T̃k − β1e1||. (5.33)

5.2.9 Numerical Experiment

The convergence of eigenvalues approximated by the Lanczos method depend strongly on the distribution
of the eigenvalues, see figure 5.1. For the two dimensional Laplacian convergence sets in almost immediately
and a new eigenvalue is found on average at every other iteration. However, in case of the one dimensional
Laplacian none of the eigenvalues converges until the matrix is completely factorised, see figure 5.1.
The Lanczos routine is tested on a Laplacian operator for the one dimensional domain 1x250 and the two
dimensional domain 10x25. The eigenvalues are compared to the analytic solutions and are accepted as
converged if the error |λi − θi| is less than the square root of the machine precision ε. The start vector
consists of random elements.
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Figure 5.1: Convergence of eigenvalues approximated with the Lanczos method. Acceptance tolerance√
ε ≈ 10−7, see equation (5.16).
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5.3 The Jacobi-Davidson Method

The Jacobi-Davidson method is best understood if one considers the Davidson method first.

5.3.1 The Davidson Method

Other than the Lanczos-Iteration, the Davidson method computes approximate eigenvectors v and eigen-
values θ directly without factorising the matrix A [Dav75]. It does so by constructing an orthogonal
basis constituting of successive corrections to an initial vector (equation (5.35)). The correction step is a
simplified inverse iteration step where the matrix A is approximated by its diagonal D. Therefore the com-
putational costs per iteration are just of order O(n). However, the algorithm converges only for matrices
with dominant diagonal and usually requires a restart after some iteration to keep the basis at a tractable
size. The core algorithm consists of three steps: calculating the residual (equation (5.34)), correcting the
current approximation (equation (5.35)) and orthogonalising the new search vector against the existing
search space (equation (5.36)). The complete algorithm is listed as algorithm 5.3,

r(k) = (A− θkI)vk (5.34)

(D − θkI)vk+1 = − r(k) (5.35)

vk+1 = (I − VkV Tk )vk+1. (5.36)

Algorithm 5.3 Davidson Algorithm

1 % guess i n i t i a l s earch space
2 V:,1 = rand ( ) ;
3 V = V/ | |V | | ;
4 k = 1 ;
5 whi l e (1 )
6 % expand pro j e c t ed system
7 AV:,k = AV:,k

8 H1:k,k = V T:,kAV

9 Hk,1:k = HT
1:k,k

10 % BV and G are only updated in case o f GHEP
11 BV:,k = BV:,k

12 G1:k,k = V:,kBV
13 Gk,1:k = G1:k,k

14 % f i n d approximate e i g enva lue
15 [ y θ ] = e i g s (H1:k,1:k , G1:k,1:k , 1 , ’LA’ ) ;
16 % approximated e i g e n v e c t o r
17 x = V y ;
18 % r e s i d u a l (r = Ax− θBx)
19 r = AV y − θBV y
20 % check f o r convergence
21 i f ( | | r | | < a b s t o l )
22 re turn ;
23 end
24 % expand search space
25 V:,k+1 = minres (D − \ theta I , r ) ;
26 % o r t h o g o n a l i s e by modi f i ed Gram−Schmidt
27 V:,k+1 = mgs(V:,1:k , V:,k+1 , k ) ;
28 k = k+1;
29 end % whi le 1
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5.3.2 Jacobi-Davidson Algorithm

The Jacobi-Davidson [SV00] method combines the Davidson method with an idea from Jacobi, which is
to search for corrections only in an space orthogonal to the current vector,

A(x+ δx) = λ(x+ δx) (5.37)

xT δx = 0. (5.38)

This space is determined by the projector,

P = I − xkxTk . (5.39)

Thus the Jacobi-Davidson algorithm is identical to the Davidson method beside the correction step, which
solves

(I − xTx)(Ax− θI)(I − xTx)xk+1 = −r (5.40)

xk+1 = XXTxk+1. (5.41)

The correction equation is singular and has to be solved approximately. If the correction equation is solved
exactly, the method converges cubically.

5.3.3 The Jacobi-Davidson Method for the Generalised Eigenvalue Problem

The extension of the Jacobi-Davidson method to generalised Hermitian eigenvalue problem requires three
major changes. Firstly, the basis V is orthogonalised with respect to the generalised inner product with
B,

V TBV = I. (5.42)

The matrix B is furthermore incorporated into the calculation of the residual,

r = Au− θBu. (5.43)

And thirdly the correction equation changes as follows:

−r = (I −QTZ)(A− θB)(I − ZTQ)t (5.44)

Q = Au = AV s1 (5.45)

Z = Bu = BV s1. (5.46)

Again the matrix-matrix products AV and BV are stored in auxiliary memory to avoid unnecessary
recalculation.
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Chapter 6

Available Software

As finding eigenvalues and eigenvectors is a standard task with many applications a variety of implemen-
tations exist.

6.1 LAPACK

The Linear Algebra PACKage, short LAPACK is a well established software suite. It provides basic
eigenvalue routines such as the QR algorithm. However, it does not include specialist solvers for large
sparse eigenproblems. LAPACK is released under the BSD license and is accessible in several ways

• original documentation and software from netlib [UoTUoCL], the latest stable release as of November
2011 is 3.4.0

• in most Linux distributions as precompiled package optimised for current processors, for example in
Debian 6.0.4 (Squeeze) the package groups liblapack* and libatlas*

• in Matlab/Octave integrated and accessible via the command eig

There exist furthermore offshoots which offer support for SMP, GPU or quad precision computing.

6.2 ARPACK

The ARnoldi PACKage, short ARPACK provides solvers for large sparse eigensystems. It implements the
restarted Arnoldi and Lanczos methods. It does not perform any matrix operations directly, but requires
respective routines to be provided elsewise. ARPACK was originally released by the Rice University
[LDC97], but is not maintained anymore. An up to date version named Arpack New Generation (arpack-
ng) is provided by an open source initiative [Led11]. arpack is like LAPACK a standard package in most
Linux distributions and is integrated in Matlab/Octave integrated as the command eigs.

6.3 Lanczos Algorithms for Large Symmetric Eigenvalue Com-
putations

The book by Cullum covering extensively Eigenvalue computations with the Lanczos method [CW02] is
accompanied by a second volume consisting of source code listings. The second volume and the source can
also be downloaded at netlib [CW].

6.4 Jacobi-Davidson Implementation

Gerard L.G. Sleijpen provides a Matlab implementation of the Jacobi-Davidson method for the standard
[Slea] and generalised eigenvalue problem [Sleb].
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Chapter 7

Conclusion

7.1 Research Questions and Objectives

Following topics are planned to become part of the final thesis.

• Discretisation

– Can the PDE be consistently discretised with the finite element method?

– Comparing the results obtained with the consistent finite element method and the finite differ-
ence method with fixed singularity

• Numerical Analysis

– Investigating and comparing the capability of both the Lanczos and Jacobi-Davidson method
and selecting the more suitable algorithm

– Determining the number of required grid points for computing the eigenvalues with sufficient
accuracy

• Implementation

– Implementing the final algorithm on an SMP or GPU system

– Optional: Implementing on both systems and comparing the performance

• Physics

– Using the application to compute the eigenvalues of the cubically confined hydrogen atom at
least in two dimension, with respect to the

∗ size of the cavity,

∗ aspect ratio of the cavity, including the limit case towards one dimension,

∗ location of the hydrogen atom inside the cavity.

– Comparing of the results to the unconfined and spherically confined hydrogen atom

– Optional: Computing the hydrogen atom in three dimensions and comparing to the energy
levels in two dimension

– How does value of the partition function change depending on the well size and the location of
the atom inside the well?

7.2 Conclusion and Prospect

In this study numerical methods for the hydrogenic Schrödinger equation were analysed. It was shown
that the separation of variables in spherical coordinates is possible for the equation of the unconfined atom.
This allows the analytical or the numerical computation of the energy levels. However, if the atom is con-
fined and shifted to an arbitrary position inside the cavity, a separation of variables becomes impossible.
In this case a Cartesian coordinate system is preferred.
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There exists no analytic solution to the unseparated equation and therefore an approximation is required.
The solutions have furthermore a discontinuous derivative at the location of the nucleus due to the singular
potential. If the variables are not separated then this point is located inside the domain. In two and higher
dimensions a convergent finite difference scheme can be set up by using a variable grid. At the moment the
variable grid is not optimal as it is set up heuristically. This could be improved by implementing adaptive
grid refinement by using a posteriori information of computed solutions.

A finite element discretisation is proposed, as it offers a higher versatility for adaptive grids, and its
convergence requirements respective smoothness of the solution are weaker than those of the finite differ-
ence method. Higher order approximations are not favoured, as the solutions are not smooth enough close
to the nucleus.

Numerical methods for large sparse eigensystems are well developed. Both the Lanczos and Jacobi-
Davidson method are suitable algorithms. Several established implementations of these algorithms are
freely available. The algorithms and their existing implementations have to be closer analysed in the
oncoming study to determine whether existing software should be used or yet another implementation on
a recent GPU/SMP architecture is favourable.
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Appendix
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