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summary

The goal of this work is to evaluate the aptness of generative adversarial networks
(GAN ) for use as surrogate reduced order fluid models. In contrast to previously pub-
lished work, the focus is placed on analyzing the specific effect of adversarial training,
by comparing GAN outcomes with those from an identical generator network trained
directly on ground truth (using an L1 loss). A dataset of 10 000 simulated examples
of stationary flow through a 2D sudden expansion geometry containing a polygonal
obstacle was created, alongside two additional datasets for testing generalization. The
simulation data was interpolated to a regular image grid, and the neural networks
were trained to predict the velocity field based on an image encoding the geometry.
The gathered experimental data show clearly that adversarial training cannot reach
the same accuracy as direct training. This was found to be true on unseen examples
from the training distribution, as well as on geometries of unfamiliar type. On the
other hand, GAN outcomes tend to appear more realistic, and exhibit a lower continuity
residual. The qualitative differences were highlighted by considering bifurcation
scenarios which were purposefully included in the data set. When the bifurcation
parameter is at its critical value, two very different flow scenarios can occur essentially
randomly. In such cases, the GAN essentially predicts just one of the possible flow
outcomes, whereas the directly trained model outputs a superposition of both. This
exemplifies a fundamental difference in prediction behavior. It is shown that these
results can be well understood as a direct consequence of the different cost functions
used during training. Furthermore, it is demonstrated that by using a sum of both
types of loss functions (adversarial & L1), advantages of both models can be combined.
In other results, the data show that the discriminator output cannot provide a reliable
indication of the accuracy of a prediction, since no robust correlation between them
was found. Also, it was observed that the discriminator appeared to dominate the
adversarial game, and it was shown that improving this balance could lead to better
results. Moreover, an investigation into predicting pressure alongside the velocity field
was conducted. Results showed that adding an additional channel for pressure to
the network architecture can achieve this goal, but is not necessary, as calculating the
pressure field from the velocity output produces results of similar quality. In terms of
resources, GAN training required a relative increase in computational time by approx.
50 %. Additionally, GAN models were also found to take many more training steps to
reach convergence. Similarly, for a fixed number of steps, results showed that directly
trained models can benefit more from larger datasets. In conclusion, GAN models are
likely not the right choice for reduced order modeling in scientific contexts due to their
lower accuracy. However, they could hold potential for use in creating visual effects or
as an added regularizer during training.
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Introduction & Motivation

All models of the physical universe are necessarily simplifications. They contain
both implicit and explicit assumptions, which are never fulfilled exactly in reality,
resulting in behavior that deviates from that of the object or system they are trying
to mathematically mimic. These errors may be irrelevant, for example if they are
below the scale of measurement accuracy, or they may be grave, and knowing which
is the case is generally not trivial. Building models that work, by making the right
assumptions for the right problem and following the ensuing logic, has been the
pursuit of science over the last centuries, and with great success. Nevertheless, more
computationally efficient models are always in demand. Now, new machine learning
methods could hold promise to automate the process of model order reduction, as
they have successfully done with other tasks previously restricted to human action.
Model order reduction refers to techniques for finding models that are computationally
simple yet still accurately predict reality under certain limitations.

To illustrate this potential, consider the example of the so called “protein folding
problem”, i.e. the prediction of a protein’s three-dimensional structure from its amino
acid sequence. This is a task of enormous relevance for drug design, biotechnology
and other applications. The equations governing atoms and molecules are, of course,
known to a great degree of precision. Yet still, even after a decades long global
research effort, computational models had struggled to solve the problem for large
proteins, which are made of of hundreds of amino acids. The reason is that solving
the problem based on first principles! is prohibitively expensive in terms of necessary
computing power. Thus, scientists have had to resort to developing surrogate models,
either by simplifying physical laws or by directly inferring from experimental data of
known protein structures. But the problem turned out to be more difficult than most,
and progress was slow — until 2020, when the DeepMind’s AlphaFold 2 AI model
managed to achieve results described as “transformational”[5], handily outclassing
the previously leading models [56] (see Figure 1.1).

If this type of success can be repeated in other areas, deep learning could establish
itself as a useful additional tool for modeling. It would give scientists and engineers

li.e. by solving Schrédinger’s equation for all particles in all of the molecules of the protein, plus all
those in the vicinity such as surrounding water molecules etc.
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Figure 1.1: Performance of best 100 entries in 14" CASP protein folding challenge in 2020, relative to
the scoring of AlphaFold 2. AlphaFold 2 result highlighted in red. Data taken from CASP website [45].

the ability to automatically infer reduced order models for problems both well studied
and novel, directly from measurement or simulation data.

In this research project we explore the potential of a specific type of machine learning
model for use as a reduced order fluid model, to quickly predict outcomes where
normally computational fluid dynamics (CFD) simulations are necessary. Fast and
accurate fluid models are crucial for a plethora of technical and scientific applications
in fields like energy generation, transportation, geoscience and medicine. If successful,
such Al powered reduced order methods could be helpful wherever computational
efficiency is of utmost importance, such as in design space exploration or real-time
prediction.

The particular model type of interest is the so-called generative adversarial network
(GAN). These neural networks offer a completely different, indirect method of learning
from data, by training a generator model in an adversarial game where it competes
against another neural network acting as a ‘critic’. This adversarial training imparts
unique properties onto the generator and makes them an interesting object of study.

Although there have been previous studies published on using GANSs as reduced
order models, they did not clearly identify how the adversarial training specifically
affects the model’s performance, and whether it produces superior results compared
to regular training. Results from GAN models were either not compared to a baseline
neural network at all [10, 57, 25, 54], or the baseline model had a different architecture
from the GAN generator network [26], which makes it difficult to draw conclusions.
This thesis advances the research frontier in this respect by investigating how the results
obtained from GANSs differ from those produced by identical generator networks
trained directly on ground truth, and on how these differences can be explained. We
compare the two model types, as well as additional hybrid models, with standard
architecture on a wide range of metrics, including accuracy on test set, generalization
to other geometry types, and continuity residuals, among others. We also present
novel results in this context w.r.t. the correlation between discriminator output and
prediction accuracy, as well as on comparing different methods for predicting the
pressure field.



This thesis is structured into six chapters, the first being this introduction. The
second chapter provides an overview of the most relevant foundations for under-
standing this work, from outlining the fluid dynamics underlying the problem, to the
numerical methods required for producing the training data, up to the basics of the
machine learning methods used in the models. The third chapter gives an account
of the most pertinent works published in the literature regarding the use of neural
networks in general, and GANs in particular, for physical modeling. The following
fourth chapter delves into the specific methodology used for this study, describing the
process of generating the training and test data, as well as detailing the neural network
architectures used. After that, in the fifth chapter, the experimental data are presented
and analyzed with respect to a wide range of aspects. Finally, the last chapter draws
conclusions based on the results, and offers explanatory frameworks for understanding
them as a consequence of the different training methodologies.



Fundamentals

2.1. Modeling Incompressible Flow

Gases and liquids together make up a vast share of the matter on earth’s surface,
and as such, fluids have long been an important subject of study in physics. Today,
computational fluid dynamics (CFD) is a mature field, with many highly developed
numerical methods at the disposal of scientists and engineers. Some of the most impor-
tant applications include modeling flow around structures (aviation, transportation,
architecture), through turbomachinery (wind power, hydro power, jet engines), flow in
the earth system (meteorology, hydrology) as well as through biological systems (e.g.
the heart).

In this chapter, we present a brief outline of the mathematical theory of fluids
insofar as it is relevant for the content covered in this thesis. We restrict our discussion
of the topic to incompressible flow, which is sufficient for modeling liquids as well as
gaseous flow so long as flow velocity is small compared to sonic speed. Remarks on
the numerical treatment are given in Section 2.2.

2.1.1. Governing Equations

Fluids are generally modeled in the framework of continuum mechanics and described
by field quantities (velocity, density, temperature etc.) as a function of space and time.
To derive the equations that govern fluids, we simply apply well known conservation
principles such as conservation of mass, momentum and energy, and demand that
they hold for every part of the fluid. For instance, by assuming that no mass is created
or destroyed, we get

Ip

ST V- (pu) =0, (2.1)

where p is the mass density of the fluid, and u is the vector describing its velocity.
This is also known as the (mass) continuity equation. For an incompressible fluid, the
density along the path of a fluid element is constant. We express this as

Dp
;=0 (2.2)



2.1. Modeling Incompressible Flow 5

using the so called material derivative notation, which is nothing but the time derivative
in the Lagrangian reference frame!. In a fixed Eulerian frame, this operator translates

to

D 0
o= huy. (23)

Using this in eq. (2.2), we can substitute into eq. (2.1) to obtain
V-u=0, (2.4)

which implies that volume is conserved.

Next, we apply Newton’s second law (or, equivalently, the principle of conservation
of momentum) to an infinitesimal fluid element, which, in symbolic tensor notation,
yields

Du

Dt

Here, the left side corresponds to the inertial force of a fluid element, and the right

side to the forces acting upon it. We distinguish between forces arising due to stress

within the fluid, which are described by the (2" order) Cauchy stress tensor ¢, and

external, volumetric forces denoted by the vector f, such as gravity. Note here that the
divergence of a second order tensor is taken row-wise [33].

To close this system of equations, we need a way of relating the internal stresses to
the velocity, or more specifically (when taking into account the principle of relativity)
the velocity gradients. This relation cannot be easily derived from first principles of
classical mechanics, as it depends on the molecular properties of the specific fluid.
However, we may start by trying the simplest possible law and see how far it carries:
that stresses be a linear function of velocity gradients. As it turns out, this supposition,
tirst put forward by Newton, holds well for many of the most frequently studied liquids
(also known as Newtonian fluids), in particular water and air under normal conditions.
If we assume further that the incompressible fluid has isotropic properties, we arrive
at the following relation, written in index notation [43, chapter 6]:

=V.o+f. (2.5)

ou; Jdu;

where 1 is a material constant known as the viscosity (specifically the dynamic
viscosity), and 6;; is the Kronecker delta. Here, we have implicitly made use of the
fact that the stress tensor is symmetric, a condition that follows from the principle of
conservation of angular momentum.

Substituting eq. (2.3) and (2.6) into the momentum equation (2.5), and again making
use of the incompressibility constraint, we arrive at the desired momentum equation:

g—l; +(u-V)u= % (-Vp+puAu) +g, (2.7)

where we have additionally assumed that the fluid has uniform viscosity, and replaced
the general volumetric force with the gravitational acceleration g. Together with eq.

In the Lagrangian reference frame, the coordinate system is moving with the fluid parcel, whereas
the Eulerian frame uses a coordinate system fixed in space.
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(2.4), this constitutes a closed set of equations known as the Navier-Stokes equations
for incompressible, uniform fluids.

For this work, we furthermore assume stationary flow, i.e. no changes in velocity
over time (steady state). Moreover, we are exclusively modeling a uniform fluid filling
out the whole domain, which means that a uniform volumetric force like gravity has
no net effect. The Navier-Stokes equations then simplify to

V-u=0 (2.8a)
vAu-(u-V)u = %Vp, (2.8b)

where v = p/n is the so-called kinematic viscosity. This boundary value problem is
a second order, nonlinear system of partial differential equations (PDEs). The first
equation represents the condition of divergence free flow, and the second represents
the force equilibrium condition for every fluid element. Specifically, the first term
on the left hand side of (2.8b) represents the inertial forces acting on the fluid, while
the second terms represents the viscous forces, and the right hand side represents an
internal source of momentum in the form of the pressure gradient. Mathematically,
the pressure can be understood as a Lagrange multiplier enforcing the continuity
constraint (2.8a) in the variational formulation of the momentum equation [42].

2.1.2. Non-Dimensional Form
By reformulating the equation in terms of a natural length scale L and velocity scale U,
we can non-dimensionalize the left side of (2.8b):

~ ~ L -~
Au—Re(u-V)u= n—UVp. (2.9)

where the tilde (*) represents non-dimensional variables and

_uL
_1/

Re (2.10)
is the Reynolds number that describes the characteristic ratio of inertial to viscous
forces. Formulating a natural pressure scale is less obvious, but outside the Stokes
regime it is typically taken as pU? [27, page 53-54]. The full dimensionless system of
equations then becomes

u=0 (2.11a)
Re'Au— (u- V)u = V. (2.11b)

Therefore we can assume that the flow conditions analyzed here are well characterized
by the Reynolds number.

2.1.3. Turbulence Modeling

A particular challenge in computational modeling of fluids is posed by turbulent flow.
Turbulence refers to the fleeting chaotic structures that occur on small scales, down
to the microscopic (see Kolmogorov microscale [12]), in flows with high Reynolds
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numbers. Despite their size, they nevertheless can contribute significantly to transport
of quantities such as momentum through the fluid, and thereby affect the macroscopic
flow. However due to the small scales involved, correctly reproducing turbulence
in a direct numerical simulation (DNS) is computationally infeasible for almost any
practical problem due to the extremely fine spatial resolution that would be required.?
Instead, specialized turbulence models are added to the Navier-Stokes equations, with
the goal of modeling not the turbulence itself but its net effect on macroscopic flow.
Since the flow conditions considered are in the turbulent range (channel flow with
Re ~ 10%, see Section 4.1), we will rely on such a turbulence model for our simulations.

One framework for modeling turbulence effects are the so-called Reynolds-averaged
Navier-Stokes equations (RANS). Reynolds-averaging refers to time-averaging the
equation such that the short-lived turbulent fluctuations to approximately equalize.
Applying this to (2.8) gives [11, section 10.3.5]

V-u=0 (2.12a)
pAu—pu-Viu=Vp+V-1, (2.12b)

where the overline () marks a time averaged variable. As one can see, the Reynolds-
averaging left the structure of the Navier-Stokes equations mostly unchanged, but a
new term V - T appeared in the momentum equation. The symmetric 2°¢ order tensor
T represents

T=-pu U, (2.13)

where ® denotes the outer product, and u’ is the instantaneous turbulent velocity
deviation from the mean, i.e. u’ = u — u. In analogy to the Cauchy stress tensor, 7 is
termed the Reynolds stress tensor.

The goal with this approach is to simulate only the averaged quantities. Thus,
in order to form a closed system of equations, a turbulence model is required that
prescribes the six unknowns in 7 as functions of the averaged flow quantities (“closure
problem”). Early experimental results lead to Boussinesq’s hypothesis that the net effect
of turbulence can be modeled as a localized increase in viscosity (“eddy viscosity”).
Based on this, the typical ansatz for the Reynolds stress tensor is:

dii;  dij\ 2
Tij = {t (a—f; + a—xj) ~ 3Poijk. (2.14)

The reason for this, at first glance slightly idiosyncratic, form is to conform with the
definition turbulent kinetic energy

k = % (uiui +ujul + uéué) , (2.15)
which is used in many turbulence models [11, page 399]. The Boussinesq hypothesis
therefore reduces the number of unknowns in 7 from six down to two turbulence
parameters: the eddy-viscosity p;, and k. Within this framework, many different
models have been developed to finally close this eddy viscosity model. The most basic
among them merely give an algebraic relation between the turbulence parameters

2Not to mention that simulating turbulence is not even possible with a stationary approach.
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and the time averaged flow fields u and p, but these are too simplistic to generalize
well. Instead, the most common turbulence models introduce additional transport
equations, allowing them to take into account convection and diffusion of turbulence.
One of the most common and well-validated models is the so-called k-& model, which
introduces the turbulence dissipation rate ¢ and two additional transport equations to
close the system. This is the turbulence model used for simulations in this project. For
more details on this specific model, see [17], and for a comprehensive treatise of the
theory of turbulence refer to [12].

2.2. Numerical Treatment

In order to derive any use out of the equations derived above, we need a method of
solving them for concrete parameters and boundary conditions. This is done using
numerical methods, by first discretizing the continuous problem to reduce it to finite
dimensionality, and subsequently solve it computationally. Most commonly used
discretization methods can categorized as either “finite difference”, “finite element” or
“finite volume”. In the following, we give a brief outline of the latter, which was used
for this project, as well as the algorithm used to solve the discretized problem.

2.2.1. Finite Volume Method

The finite volume method (FVM) is often favored for solving of PDEs with underlying
conservation laws, asitis inherently conservative (i.e. the PDE’s conservation properties
are upheld by the discretized system). At its core, FVM is a relatively straightforward
solution framework. The domain is discretized into small, typically polyhedral, cells or
control volumes (ergo the name), over each of which the PDE is integrated. Consider
the following generalized conservation law:

u
—+V-f(u)=0 2.16
V) 216)
with conserved variable 1 and a flux term f. After integration, we have
du;
Vi + [ V-£f(u)dV =0, (2.17)
dt C

where u; is the average of u on cell C; with volume V;. Note that here we have assumed
that the cells are fixed in time. Instead of solving for u itself, we are thus solving for
its average on the cell volumes. Next, we can transform the divergence term to fluxes
integrated across the cell boundaries S; using Gauss’s theorem:
Vi% + j{ n-f(u)dV =0, (2.18)
dt S;

with surface normal vector n pointing outside of the cell. The fluxes are central to
the method, and they are evaluated in a zero-sum way, i.e. the flux leaving one cell
through a shared boundary is the same as the one entering its neighbor. This way the
conservative property is ensured.

The challenge that remains is to formulate an expression describing the fluxes
through the boundary between two neighboring cells as a function of the average field
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quantities inside those cells. One way to do this is to treat it similar to a finite difference
problem by taking the average values as defined at the centers of each cell, and using
them to evaluate discrete derivatives. Other approaches have also been developed,
such as Godunov’s scheme [55] which employs the technique of characteristics. For a
more detailed treatise of the finite volume method, see [38].

2.2.2. Solver

The systems of equations posed by fluid problems, even stationary ones, are typically
solved using iterative methods. For our purposes we used the fractional step method
known as “Semi-Implicit Method for Pressure-Linked Equations” (SIMPLE), first
proposed in [44]. Fractional step refers to the fact that the field quantities u and p
are solved for in alternation. Specifically, in every time step at first the momentum
equation is solved using the pressure field of the previous step. Then, the new pressure
tield is computed by solving a pressure correction equation, and the result is used to
also update the velocity field. Finally, the remaining transport equations (in this case
from the turbulence model) are solved using the newly computed fields. For details,
refer to [17, Sections 6.4 & 6.5].

Although from an analytical perspective, the steady state problem is quite different
from the transient one, the numerical treatment is often not too dissimilar. The iterative
solving bears many similarities to time-stepping in a transient problem. For steady-state
solving, implicit update methods are typically used (as in SIMPLE), since they allow for
larger step sizes without loosing stability. In every iteration of the SIMPLE algorithm,
tirst the momentum equation is solved using the pressure field from the previous
iteration, in order to obtain an intermediate velocity field. Subsequently, correction
steps are applied to both pressure and velocity, in order to make the velocity field
conform to the continuity equation. For more details, refer to [11, section 7.2]. If an
explicit turbulence model is used, additional equations must be solved simultaneously
in order to obtain the Reynolds stress tensor, as discussed in Section 2.1.3.

2.3. Deep Learning

Enabled by the culmination of sustained exponential growth in computing power
over the last decades [52], the field of machine learning (ML) has made remarkable
progress over the last decade. The term refers to techniques of enabling computers to
solve problems, not by directly following a set of rules encoded by a programmer, but
by inferring those rules from observation, i.e. data. The vast majority of contemporary
artificial intelligence (Al) systems are based on some form of machine learning. Most
of these make use of the concept of hierarchical representation, using consecutive
layers of information processing units that build on each other to bootstrap more
powerful representations of real world data. This paradigm is the origin of the term
deep learning. [14, page 5]

In recent years, ground-breaking results have been achieved across fields such as
computer vision, speech and natural language processing & synthesis [1].

Beyond being a very active field of study itself, ML has also been successfully
applied to advance scientific frontiers in other areas of research. In particular, as
discussed in the introduction, ML has been explored as an alternative to conventional
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Figure 2.1: A graph visualizing the structure of a standard artificial neural network with three hidden
layers. Each node corresponds to a neuron and each arrow to a weight.

methods from computational science, a discipline referred to as scientific machine
learning (SciML). For a comprehensive overview of the field, see [2]. A survey of
published work on applying ML to PDE problems is given in Chapter 3.

Machine learning methods can be separated into two categories, supervised and
unsupervised learning. The key difference is that in supervised learning, each training
example has a label, and the goal is to map from unseen examples to the correct
label. With unsupervised learning on the other hand, data are unlabeled, and the
goal is generally to, in some form, learn the probability distribution underlying the
dataset. [14, page 105]. The focus of this work is on a specific type of machine learning
framework known as generative adversarial networks (GANs) which can combine
aspects of both paradigms (see Section 2.3.3).

2.3.1. Artificial Neural Networks

An artificial neuron network (ANN, hereafter also simply referred to as neural network,
NN) is a type of machine learning architecture designed in loose analogy to the
networks formed by biological neurons found in the brains of humans and animals.
As the name suggests, ANNs are made up of individual information processing units
called (artificial) neurons, which are arranged in connected layers. An example is
visualized in figure 2.1. The principal setting of supervised learning is to model the
relation underlying a set of observations and labels i.e. to find a way of relating a
feature to its proper label. We generally distinguish between regression tasks, where
the label is continuous (e.g. predicting the market value of a house), and classification
tasks, where it is discrete (e.g. recognizing a handwritten digit).

Artificial Neurons

A single neuron can be represented as a mapping from a number of inputs 4; to a single
output h known as its activation level. Specifically, this takes the form of a weighted
sum of all inputs, which is passed through a so-called activation function f : R - R
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after a fixed offset known as the bias has been added. We collect the inputs in a vector
a and the corresponding weights in a vector w. Together with the bias b we can thus

write
h=f(w-a+b). (2.19)

The weights and bias parameterize a hyperplane in the input space known as the
decision boundary, which is defined by w - a+ b = 0. A geometric interpretation of the
operation performed by a single neuron is that it computes the euclidean distance d of
the input point a to the decision boundary, scales it by the norm of the weight vector
and applies the activation function to the result, i.e.

h=fdw). (2.20)

Network Structure

As mentioned above, the neurons in an ANN are arranged in layers. These are typically
connected in a sequential order, such that information propagates uniformly from
input to output, although other variations exist such as the U-Net architecture used
in the models considered here (see Section 2.3.2 & Figure 4.4) or recurrent neural
networks (RNNs). Each layer defines an operation acting on the output of the previous.
Data is always fed into the network at the input layer, in analogy to, for instance,
sensory organs in biological cognition. Then it passes through a number of so-called
hidden layers, until it reaches the output layer where the response of the network is
read off. While the widths of input and output layers (1 and k respectively in Figure
2.1) are imposed by the problem setting, the number and size of hidden layers is a
design parameter. If we represent each layer (including the input) as a vector, then the
operation that a layer j performs on the output of the previous layer i can be written as

hi = F (w]- h ¢ b) , (2.21)

where h represents a vector containing all activations in that layer, W; is an matrix of
dimensions m; X m; (i.e. the sizes of layers i and j respectively), b is a vector containing
the biases and F is the element wise application of the activation function f. If W;
is a dense matrix, we say layer j is fully connected. The connectivity structure is an
important design parameter, and is explored further in Section 2.3.2.

Looking at the network as a whole, we simply have a parameterized function N
mapping from an input space X to an output space Y:

N: X->Y

y = N @), (2.22)
where w represents all weights and biases in the network, and y is the network’s
output. Typically, both input and output are taken as vectors in R. However, if the data
has a grid-like 2D or 3D structure it can make sense to reflect that in the mathematical
representation of the network. Note that size of input and output layers may be
drastically different; take for instance the task of classifying 256 x 256 pixel images on
the basis of whether or not they depict a cat. In this case, the network will have an
input layer with a size of approx. 65000, but only a single, binary output neuron.
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Training

A large neural network can easily have millions of trainable parameters, with the
biggest containing over 100 billion (for instance GPT3 language model, see [4]). The
goal is to choose their values in such a way that they represent the structures underlying
the training data and solve the task at hand. In the case of supervised learning, the
task is to approximate the unknown law between observations and labels. This law
could be a simple functional relation, y(x), but is typically instead modeled in the
more general framework of stochastics to account for randomness and noise, i.e. as
conditional distribution p(y|x).

We want to approach the problem empirically, i.e. have the ANN learn from
training examples. Our training set S consists of N features x € X and associated
labels y € Y, drawn from the probability distribution p(x,y). As described in eq. (2.22),
the ANN can generate an output y for each feature sample x. Initially, weights are
typically randomly initialized based on some heuristic. Obviously, such an untrained
network cannot be expected to solve a given task. In order to improve then, we first
need a measure of how good (or bad) the network is performing. This is provided by
the cost (or loss) function ¢ : Y X Y — R, which assigns a cost to every combination of
y and 7. The ultimate goal of the learning process is to minimize the expected cost C
given the underlying data distribution. The optimization problem is therefore

ma%n C= ma%n Eyxy) [y, ¥)]- (2.23)

However, in practice of course we do not know p(x, y) exactly (otherwise we would
already have solved the problem). Therefore we approximate C by the average training
error Ct on our training set

: .1
min Cr= min ZS: c(y,y)- (2.24)

This is not necessarily a good approximation, in fact it becomes essentially useless
in the case of overfitting (see [14, section 5.2]). To avoid this, sometimes additional
so-called regularization terms are added to the cost function (see [14, chapter 7]).

The optimization problem (2.24) is typically highly non-convex, and solutions are
by no means unique. In fact, just by permutation of neurons, a single fully connected
layer of size L multiplicatively contributes L! equivalent solutions. At any rate, using
direct methods for finding the optimum is infeasible due to size and complexity of the
problem. Instead, iterative gradient based methods are typically used. The simplest,
known as gradient descent, works by computing the derivative of the training error
with respect to every trainable parameter, and use that information to update them all
at once. This is equivalent to taking a step in the opposite direction of the gradient of
the training error (in parameter space). This guarantees that weights are updated in
the (locally) most optimal way. Using Einstein notation, we can formulate the update
for the ith weight as

dCt
dw;

Aw; = -1 (2.25)

_ (&%)
w0 ay]‘ 8(1)1'
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where wq are the current model parameters and n € R is a parameter scaling the
update step, also known as learning rate. The learning rate is typically adapted as
training progresses to allow for more fine-grain optimization closer to the optimum.

A limitation of gradient descent is, that it is by no means guaranteed to converge to
a global optimum. Instead, it will often get stuck in a local minimum, which exactly
depending on the random initialization. For relatively shallow minima, this can be
overcome (literally) by adding “momentum” terms to the descent kinetics (see [14,
section 8.3]), but the core issue remains. Nevertheless, gradient descent has been
proven in practice to be a very successful workhorse of neural network optimization.
On this issue, the authors remark in [14, page 153]:

In the past, the application of gradient descent to non-convex optimization
problems was regarded as foolhardy or unprincipled. Today, we know
that the machine learning models [...] work very well when trained with
gradient descent. The optimization algorithm may not be guaranteed to
arrive at even a local minimum in a reasonable amount of time, but it often
finds a very low value of the cost function quickly enough to be useful.

Part of the reason why the method performs well in practice despite the limitations
is down to the fact that we are not actually interested in finding global or even local
minima of (2.24), as this solution would most likely not correspond to a good solution
of the original problem (2.23) due to overfitting (see again [14, section 5.2]).

Fortunately, the gradient can be evaluated relatively easily using the back-propagation
algorithm (or, more generally, automatic differentiation), at roughly the same com-
putational complexity as evaluating the network’s output in the first place. So far
we have discussed the case of using the whole dataset for each weight update, a
procedure known as batch gradient descent. Instead, one may also only use a subset

“mini-batch”) or even just a single sample, known as stochastic gradient descent
(SGD).

As alluded to above, using the gradient as the direction of the update is only
optimal for an infinitesimal step size. In practice of course, we do not want to choose 7
too small in order to keep the number of iterations to an acceptable level. However,
this introduces higher order errors that can lead to a very suboptimal optimization
path. The magnitude of these higher order terms essentially depends on the product of
activations across the layers. Therefore it is desirable that activations are generally small
in magnitude. This is achieved elegantly by the so-called batch normalization method.
It ensures that across a batch (or mini-batch), the distribution of each activation has
zero mean and unit standard deviation [21].

While initially sigmoid functions were a popular choice of activation function in
the field of machine learning, so-called rectified linear unit functions have become the
standard for modern deep networks [14, page 174]. This is because they avoid the
problem of “stretching out” the loss landscape w.r.t. parameters in shallow layers?,
while retaining a non-linearity. The general formula for the rectified linear unit is

f(z) =max(z,az), a € [0,1], (2.26)

Swhich is caused by the vanishing gradient of sigmoid functions for inputs of large magnitude
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which is a modification of the original rectified linear unit with a = 0 (ReLU, [40]). If
0 < a < 1, itis also referred to as leaky ReLU [60].

For more information on optimization techniques in neural networks, refer to [14,
chapter 8]

2.3.2. Convolutional Networks

Much of the data encountered in real world problems has tensorial structure, such
images or time series. A common way to reflect this in the structure of an ANN is
through use of convolutional layers, which imparts useful priors onto the model that
can greatly improve performance and lower the computational cost of training.

Convolutional Layers

Digital image or signal processing often employs discrete convolutions for feature
detection. Here, the feature is encoded in a small filter kernel or stencil, which is
shifted across the image or signal (in the following we focus on application to images).
At each location, the data in the kernel range is multiplied by the corresponding kernel
elements and summed up. The resulting grid of values is called a feature map, as it
indicates the presence of the feature in the original image. A simple example is edge
detection.

Fully
connected Convolutional

Figure 2.2: Comparison between fully connected and convolutional layer. Same colors indicate shared
weights; the fully connected layer has 25 independent weights, while the convolutional layer has only 3.

The same idea is used in convolutional layers, except now the features to search
for are determined as part of the learning process. In the regular ANN framework,
this corresponds to a sparsely connected layer (each neuron is connected only to its
neighborhood), where additionally weights are shared between all neurons in the layer.
The number of parameters therefore only depends on kernel size, not on the number of
nodes in the layer. This drastically reduces the parameter space, as shown in Figure 2.2.
However, we typically apply not just one but many kernels to a single layer, and thus
we get multiple feature maps as output, which are also known as channels. For the case
of a 2D image, we can therefore represent a convolutional layer as a 3D block, where
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each sublayer in the block represents a different feature map. If another convolutional
layer follows, it will act on the whole block, i.e. each kernel will have not just a width
and height, but also a depth equal to that of the previous block. If we represent feature
maps as vectors, we can write the operation performed by a convolutional layer as a
sum of matrix vector multiplications:

Yi = Z C,']'X]', (2.27)
j

where {x;};=1..1 are the I input channels, {y;};=1.j are the ] output channels and {Cij}
are the weight matrices defining the convolution. Each C;; has the same sparsely
diagonal structure, where each row of a matrix contains the same kernel elements but
shifted. Not by coincidence, this structure is very similar to that of matrices resulting
from finite element discretizations of PDE problems (here the kernel corresponds to
the stencil). If C;; is a square matrix, then the input and output feature maps are
of the same size, corresponding to the kernel being evaluated at every point of the
input grid. Often however, the kernel is only evaluated at larger regularly spaced
intervals, a method known as striding. This corresponds to removing rows from C;;,
and effectively downsamples the input. For the image example, a stride of two in both
directions reduces the rows in C;; and thereby the length of y; by a factor of four (the
square of the stride). Moreover, there are different strategies for dealing with the points
on the boundary, where the kernel extends beyond the input data (e.g. padding the
data with zeros). For more details, see [7]. Another operation that is often combined
with convolutions is so-called pooling. In a pooling operation, each pixel in the feature
map is replaced with the average (mean pooling) or maximum (max pooling) of the
values in its neighborhood. For a more in-depth treatise on convolutional layers and
their use, refer to [14, Chapter 15].

Convolutional Architecture

Neural networks that make use of convolutional layers are called convolutional neural
networks (CNNs). A common feature of CNN architecture is the repeated use of down-
sampling convolutional layers, combined with a simultaneous increase in number of
channels. The idea here is that each layer can assemble higher level features based
on the information in the channels of the previous layer. The striding also causes the
receptive field to increase from layer to layer, allowing deeper layer to detect features
much larger than its kernel size. The receptive field of a kernel is made up by all pixels
in the input image which influence a given pixel in the feature map.

Consider again the example of classifying images based on whether or not they
depict a cat. The first layers might detect basic features such as edges and circles, while
later layers can use this information to detect more complex features such as a snout or
tail, and finally a whole cat.

For tasks where both input and output have tensorial structure, CNNs commonly
use a bottleneck architecture, similar to an autoencoder, as visualized in Figure 2.3. It
consists of an encoding pipeline, which “featureizes” data, a bottleneck combining the
high level features in latent space, and a decoder that synthesizes the output using
transpose convolutions, also known as up-convolutions (and sometimes misleadingly
referred to as deconvolutions). Transpose convolutions are convolutions where striding
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. #channels

Figure 2.3: Convolutional bottleneck architecture (schematically). Visualization based on [22].

is applied at the output instead of the input. The name stems from the fact that if the
weight matrix in (2.27) defines a down-convolution, then an up-convolution is defined
by its transpose (see also [7]).

Some architectures, such as the “U-Net” introduced by Ronneberger, Fischer, and
Brox in [51] also introduce direct, so-called skip connections between down-convolution
and up-convolution layers on the same level. This can help if input and output share
a lot of low-level structure. In particular this is true of predicting a flow field from
geometry (the boundaries are visible in both input and output), wherefore this type of
architecture is used for the models tested in this study. It also bears resemblance to the
multigrid method from scientific computing, as explored in [32].

2.3.3. Generative Adversarial Networks
As deep learning was already achieving impressive results for discriminative problems
(regression & classification), the field initially struggled to repeat the same for generative
tasks. An important step in this regard was the introduction of the framework of
adversarial networks in 2014 by Goodfellow et al. [15]. Since then, research on GANSs,
both theoretical and practical, has grown to a sizable field within machine learning,
and across a wide range of generative tasks GANs have achieved state-of-the-art results.
These include synthesis of hyperrealistic human faces [28, thispersondoesnotexist.
com], text-to-image translation [19], image-to-image translation [24, 61] as well as
multimodal combinations of these [20], among many others.

Nevertheless, it need not be withheld that alternative models for generative
tasks have also been developed and show some promise, most notably variational
autoencoders [29], flow-based models [50] and diffusion models [6].
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Motivation and Concepts

Before any neural network can be trained, one has to lay out the “grading scheme” that
is the cost function. For some types of problems, such as classification, the choice is
typically straightforward. Take again the task of detecting whether an image contains a
cat. Given a set of labeled training data, we penalize incorrect guesses by the network,
taking into account its level of confidence with the cross-entropy cost function. An
arguably much more difficult task, however, is to generate realistic images of cats. The
key difference is that defining a cost function that properly accounts for the target
distribution (i.e. what exactly does it mean for something to “look like a cat”) is
difficult.

GAN s are designed to solve this problem in an elegant way. Instead of having to
hand-craft the cost function that assesses the performance of the generator, it becomes
part of the training process. This is done by training a second ANN, known as the
discriminator, to classify images based on whether they are from the training set or
merely a creation of the generating network. Generator and discriminator are trained
together in an adversarial zero sum game, where the former is trained to ‘fool” the
latter, while the latter is trained to expose the ‘forgeries’ of the former.

Generative Problems

The canonical generative setting in which GANs are applied is finding a useful mapping
from a latent space input z to the probability distribution p(x) underlying the training
data. This is a purely unsupervised task. A classical example is generating novel
images of ostensibly human faces. However, GANs can also easily be extended to work
with conditional distributions p(x|c) with conditional ¢ (then also known as cGAN),
which is a semi-supervised setting. For the example of facial generation, ¢ could be as
simple as an integer value representing age, or as complex as a picture of a face whose
appearance is to be artificially aged or youthened.

Conditional generative problems fall on a spectrum. On the one side there are
settings where we are actively interested in sampling the data distribution through the
latent space, such as when building a facial generator. On the other side, we have more
translative problems, which may or may not be strictly deterministic, but for which we
are typically only interested in getting a single, high-quality result. Examples would
be image upscaling [34] or generating a city map from satellite imagery [24]. In such
cases, the latent input is superfluous and may be omitted.

For this study, we trained GAN models to perform a mapping from an image
encoding geometry to one showing the resulting flow field. This task falls into the
categorize of translative problems. That being said, there is stochasticity introduced
by the numerical solution, which in some particular cases (bifurcation) can be very
significant (see Section 4.1).

Foundations and Training

As described above, training a GAN can be understood as a game where the two
‘players’ (generating and discriminating ANNSs) are competing against each other.
The generator G defines a mapping from the latent space to the space of training
samples, given a conditional. The discriminator on the other hand takes in a sample,
together with the corresponding conditional, and outputs a value corresponding to its
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Figure 2.4: Chart schematically illustrating the information flow through a conditional GAN.

confidence in the input being ‘real’, i.e. from the training set as opposed to created
from the generator. Figure 2.4 illustrates the flow of information through the combined
network. Mathematically, we have

G(z,c; wg) (2.28a)
D(x,c; wp) € [0,1], (2.28b)

where w¢ and wp are the trainable parameters parameterizing the generator and dis-
criminator respectively. The adversarial minimax game can be cast as the optimization
problem

arg mén max V(G, D), (2.29)

of the objective function V' given by
V(G, D) = Epx,q) [log D(x, )| +Ep(s,c) [log (1 — D (G(z, 0)))] - (2.30)

Here cross entropy was used as a measure of discriminator error. For the generator
then, the cost function is C = V, whereas for the discriminator we have C = -V.
Using these cost functions, the model can be optimized by updating generator and
discriminator in alternation. For such an algorithm, it was shown in the original paper
[15] that given enough model capacity and training, G will eventually learn to perfectly
mimic the underlying data distribution, i.e

p (G(z, 0)lc) p(2) = p(x|c) (2.31)

At that point, an optimal discriminator will reach maximum uncertainty, i.e. D(x, ¢) =
0.5. This corresponds to a global optimum of (2.29), and a Nash equilibrium* of the

*A Nash equilibrium is a concept from game theory, where no player has something to gain from
changing their behavior.
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two-player game.

GAN Architectures & Challenges

While GAN s are conceptually compelling, they have proven to be notoriously unstable
during training. The learning progress of generator and discriminator should be well
balanced in order to avoid one of the networks dominating the other, which can lead to
very slow convergence overall. Another common undesirable effect is known as mode
collapse, a phenomenon where the generator becomes stuck in a state of producing
only a very narrow range of outputs [8].

In particular, there were initial difficulties making the GAN concept work with
convolutional architectures. One of the earliest successful attempts at doing so used a
very specific family of architectures, named by the authors deep convolutional GAN
(DCGAN) [46]. After extensive exploration, the authors identified three architecture
features that helped improve training stability, which have been influential in the
further development of GAN architectures:

* Replace all pooling operations with strided convolutions.
* Remove fully connected layers.
¢ Use batch normalization.

Moreover, the authors found the ReLU activation function to yield the best results in
the hidden layers of the generator, while for the discriminator leaky ReLU was found
to work best.

Some further suggestions for improvement were presented in [53], including
modifications to the cost functions and methods to help the discriminator identify
unwanted modal collapse.



Related Work

3.1. Machine Learning in Scientific Computing

The use of neural networks in finding approximate solutions to problems with an
underlying PDE is an emerging field at the intersection of machine learning and
scientific computing. Research activity in this area can be roughly split into the
following three groups, although hybrids and variations exist.

The first group encompasses techniques that use machine learning to improve upon
classical numerical methods. Published work on this includes areas such as RNN
assisted solution upscaling for multigrid schemes [37], learning based preconditioning
for domain decomposition methods [18] and use of neural networks for obtaining
closure terms in turbulence modeling [3].

The second contains methods that seek to approximate the PDE solution directly in
the parametrized function space given by the neural network, as already proposed by
Lagaris et al. in 1997 [31]. In other words, the ANN itself serves as the discretization,
in the sense of reducing the original problem to finite dimensionality. Perhaps the
purest implementation of this approach are the physics-informed neural networks
(PINNSs) as introduced by Raissi et al [47, 48]. In this framework, the solution u(x) is
directly approximated by the neural network N(x; w).

The work presented here belongs to a third group of using neural networks as
reduced order surrogate models. Instead of training a network to solve a specific
problem as in the previous group, here we train a network in order to obtain a model
which can then be applied to solve a whole range of problems (e.g. with different
geometries, boundary conditions etc.). These neural network models operate on
existing discretizations. They are typically trained to map from a raster image of the
domain, together with information about boundary / initial conditions and possibly
other parameters, onto one or multiple images showing the predicted solution fields.
Due to the regular grid-like structure of inputs and outputs, these methods typically
rely on a convolutional architecture. Examples include using neural networks to build
reduced models for steady state flow [16, 9].

As is always the case with reduced order models, we want to sacrifice some
generality of our model for easier evaluation. The motivation for using ANNSs in
constructing the surrogate model is to be able to infer the essential relations in the
relevant problem range directly from data. To draw an analogy, the learning process

20
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could be akin to how humans can build up a physical intuition without ever studying
physics. It could also reduce the need for hand-crafted domain specific reduced order
models built using assumptions based on expert knowledge, which are commonplace
in some domains.

Increased computational efficiency is always desirable, but for many applications it
is crucial. For instance it can help with design space exploration, where it can enable
scanning a large number of configurations for optimality, or even providing design
teedback to an engineer in real-time.

3.2. GANs as Surrogate Models for PDEs

Since the GAN framework was first proposed in 2014 [15], numerous studies have
looked at applying it to modeling problems. They typically fall into the third group as
described above, i.e. they are surrogate models operating on existing discretizations.

One of the earliest attempts was by Farimani et al. in 2017 [10]. The authors trained
GAN:s to solve 2D boundary value problems, specifically Laplace’s equation and the
incompressible steady-state Navier-Stokes equations, see eq. (2.8). The generator was
tasked with mapping from an image encoding the domain and boundary conditions,
which is supplied as conditional input, to an output image showing the respective
solution field. The generator loss function was a combination of the discriminator
loss and an L1 loss with respect to the ground truth. For the case of Navier-Stokes,
there are three output channels, one for each of the variables (velocity components u,v
and pressure p). The discriminator operates not on the whole image, but on smaller
patches (patchGAN, see section 4.2). The authors were able to obtain high accuracy on
a test set with a relative mean absolute error (MAE) of less than 1%, and claimed that
the neural network model outperforms state-of-the-art finite difference solvers in terms
of prediction speed by an order of magnitude. The authors did not investigate how
much the adversarial part of the loss function actually improved results compared to a
direct L1 ground-truth based training.

Multiple studies have since applied GAN models to solve fluid problems in
particular. In a 2020 paper, the authors used a GAN for predicting time series of
convective flow with energy transport in a 2D square domain from initial and boundary
conditions [25]. The method was found to provide fast and accurate solutions for the
analyzed test cases. In another recent publication from 2021, the authors applied a
GAN setup to model stationary flow through a more complex 3D domain of dispersed
spherical obstacles, a relevant setting for modeling certain multiphase flow [57]. The
authors found the GAN based result to outperform an older reduced order model that
was developed specifically for this application, but did not comment on the relative
computational effort.

Others have implemented GAN models for predicting stress in solids on a 2D
domain with complex geometry [26]. In their 2021 publication, the authors supply
separate images encoding domain geometry, loads and boundary conditions as input
and extract a single output image of the domain showing von Mises stress. The
architecture was largely based on the same model as used in for this study (pix2pix,
see Section 4.2). The authors found the GAN to consistently outperform a previous
purpose built baseline CNN model. However, since the two models used different
generator architectures it remained unclear to what degree the adversarial training
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was actually responsible for the improvement.

While all the work mentioned so far relies on purely data-driven approaches, other
authors have investigated the effects of incorporating physics constraints into the
training process. In one 2019 publication, a GAN was trained to predict how a given
flow field around a cylinder would have evolved after a certain time step into the future
[35]. The authors compared four variants: GANs as well as regular CNNs, one of each
trained with and without a physics based loss contribution (conservation of mass and
momentum). While all versions offered some success for prediction in unseen flow
regimes, the GAN trained without physics based loss was found most successful at
predicting recursively multiple time steps into the future.

There have already been more application-related studies published using GANs
for fluid modeling as well. An architecture firm used a GAN implementation (pix2pix,
similar to what was used here, see Section 4.2) to predict wind speeds in urban settings
based on a building height map, as published in a conference paper in 2020 [54]. Again
they trained the generator both on the discriminator and on the ground truth loss.
Generalization performance was mixed, but the authors did not benchmark it against
a comparable NN or reduced order model.

In conclusion, while there have been a number of publications giving a “proof-
of-concept’ for using GANSs in physical modeling, high-quality studies focused on
comparing with an equivalent neural network model that is trained directly on ground
truth are still missing as of yet.



Methodology

As laid out in the introduction, the goal of this work is to investigate and compare the
potential for training GANSs as reduced order models for predicting fluid flow. For this
purpose, a popular GAN model was adapted from literature, and trained to map from
an image of 2D geometry to images showing the resultant 2D flow field. The training
and test data were generated by means of a standard numerical simulation. In this
chapter, we briefly describe the specific methodology for generating this data, as well
give an overview of the neural network architecture used for the project.

4.1. Flowfield Generation

The first step in creating any such training set is to design an algorithm that automatically
generates a desired number of different problem geometries from a certain distribution.
For this study, we trained on a set of geometries containing a 2D channel flow through
a sudden expansion. Additionally, the larger section is partially blocked by an
obstacle. A sketch of an exemplary problem domain is shown in Figure 4.1. The
outer perimeter is parameterized by just two quantities, the lower and upper shoulder
lengths S1, S». These are randomly chosen by drawing two values {v1, v2} from the
uniform distribution U(0, D) where v; < vy, and setting S = v1 and S, = D — vy,
Together with the fixed parameters D = 1m, L = 3m, | = 0.5m, this fully constrains
the perimeter. For the velocity we impose a Dirichlet boundary condition at the inlet
(u = Uey) and walls (u = 0), as well as a homogeneous Neumann condition at the
outlet (dyu = 0). As inlet speed we choose U = 3 ms~!. The kinematic viscosity
was set to v = 107 m?s™L. If we take U as the characteristic velocity and D as the
characteristic length, then the Reynolds number evaluates to Re = 10°. Since the critical
Reynolds number for pipes is on the order of 2 x 10%, we can safely assume turbulent
flow. For calculating the pressure from the simulation data, we use a density value of
p = 1000 kgm™. These values roughly correspond to the properties of liquid water at
room temperature.

The sudden expansion scenario was initially chosen due to the interesting bifurcation
behavior it exhibits within the Reynolds regime considered here. This behavior
was documented experimentally in [39], and it was reproduced successfully in the
simulation. Specifically, as the incoming flow leaves the small inlet channel, it will
attach to the upper or lower wall of the large channel, depending on whichever is closer
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Figure 4.1: Illustration of an exemplary domain showing the relevant geometrical parameters. The
annotations around the obstacle indicate how a vertex p; is placed relative to the designated center ¢
based on a randomly chosen distance #; and an angle «;. The different boundary types are color coded
as inlet (blue), outlet (red) and wall (black).

to the inlet. This is particularly instructive for understanding the different behavior of
GAN models compared to conventionally trained ones, as will be discussed in detail
in Section 5.2.

Inside the large channel, a single star-shaped polygonal obstacle is placed. To
determine the shape, first a center point and the number of vertices are randomly chosen.
Then, the coordinates of each vertex are (randomly) selected in polar coordinates (with
origin at the center point), and the boundary is drawn between them in clockwise
direction. In order to avoid problems later during the meshing process caused by
overly thin domain regions, vertices are moved onto the wall boundary if they are too
close to it. Moreover, fully closed off “domain islands” between obstacle and walls are
prevented by removing all vertices between two vertices on the boundary. In order
to avoid excessively high flow velocities, the distance between the highest and lowest
points of each obstacle is capped at 1 — d. For more details on how the obstacles are
generated, see Algorithm 1 on page 27, describing the process in pseudocode. A total
number of 10 000 samples were generated this way.

For testing the generalization capabilities of the trained models, two additional test
sets were created. These differ from the training set by the type of obstacle present. The
first, termed the “double” set, contains 100 samples with not one but two polygonal
obstacles placed in the channel. For technical reasons to do with the meshing process,
the obstacles were not permitted to be in contact with one another or the walls. The
second test set again only includes a single obstacle in each sample, but of a shape
that is distinctly different from the distribution in the training set. Each obstacle O is
defined by a condition of the following type:

0= {(x,y) | ax®>+b (y + cxz)2 < T} ) 4.1)

The obstacle coordinates are then randomly rotated and shifted to obtain a varied
dataset. The parameters are taken from the following distributions: a ~ U(30, 60),
b ~U(10,100), ¢ ~ U(0,10), T ~ N(2.5,2), where the latter is kept to the interval
[1,8]. The origin point is chosen identically to the center point in of the polygonal
obstacles in the training set (see Algorithm 1 on page 27). We will refer to this as the
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Figure 4.2: Example of flow speed data on computational grid (top) and after interpolation to a regular
image grid (bottom). Both images have the same scale and their x-coordinates line up. The
computational grid is made up of 4949 cells for this geometry, while the image grid contains 21760 .
Magnify for proper display.

“curved” set. For examples of each of the three sets, refer to Figure 4.3.

Next, each case had to be spatially discretized by dividing the domain into a
computational mesh. This mesh must be fit for use with the specific method for PDE
discretization, in this case a finite volume scheme. For this purpose we used the free
open source software gmsh [13] to create an unstructured quasi-2D mesh of triangular
prisms. How fine the mesh ought to be at a given location in order to obtain accurate
result is generally related to how large the gradients of field quantities are expected
to be at that location. In particular this means that near walls, a very fine meshing is
typically required to properly simulate the boundary layer. As a consequence, this
requirement leads to a large increase in the total number of cells in the mesh, which
amounts to a drastic increase of computational effort. To avoid this, methods have
been developed to model the effect of the boundary layer instead of simulating it; these
models are known as wall functions. Given that the focus of this research is on the
training of GANs on fluid data, rather than obtaining the absolute best simulation
accuracy, the much greater computational cost of simulating the boundary layer did
not appear justified in this case. For this reason, we decided to use a wall function
for modeling boundary layers, and therefore only applied a minor refinement to the
wall mesh. The gmsh size parameter was chosen as 2 cm at walls as opposed to 5cm
elsewhere within the domain. This way, the number of cells was kept to around
5000 — 10000, depending on the geometry.

For solving the RANS equations presented in Section 2.1, we used the popular
free open source toolbox OpenFOAM [59]. It includes a vast range of tools and
solvers for continuum mechanics problems, with a focus on CFD. Specifically, we
used the simpleFOAM solver [41]. As per its name, it implements the quasi-transient
fractional step method by the name of SIMPLE, summarized in Section 2.2.2. The
settings for solvers and schemes were based roughly on the OpenFOAM tutorial case
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Figure 4.3: Random selection of samples from the three datasets generated for the project. In each
column, the image on the left shows the geometry input, while the one the right visualizes the
simulated velocity field. This is done through a color scale representing the velocity magnitude, as well
as a vector plot displaying the flow direction.

“backwardFacingStep2D” (see the repository [49] for the relevant files). The content
of the most import configuration files are included in Appendix A. As discussed in
Section 2.1.3, we used the k-¢ turbulence model. Occasionally, a simulation would
diverge. In order to reduce the frequency of this occurrence, small relaxation factors of
0.5 were used.

Given the relatively high Reynolds range and the random geometry generation, it
was not guaranteed that problems would be well-posed as steady-state. This would
manifest as oscillation rather than convergence during solving. If convergence did
not occur after 3000 steps, the result as well as the geometry was scrapped and the
generation process was started over. Solving a case took approx. between 3 and 15
seconds on an Intel Core i7-6700K CPU at 4.00 GHz, depending mostly on how quickly
it converged. After a solution was obtained on the computational mesh, it had to be
interpolated to an image, i.e. a regular grid. For that purpose, the sampling utility
of OpenFOAM (see [36] for details) was used, specifically the “cellPoint” sampling
method. Here, each cell is decomposed into tetrahedrons, whose vertices coincide
with the cell center as well as three cell vertices. Then, each vertex is assigned a value.
That of the center vertex is given by the cell’s value, and the others are taken as a
convex combination using the center value as well as the neighboring cell values. Then,
the value at any point in the volume can be calculated by linear interpolation on the
respective tetrahedron. In order to focus on the relevant fluid mechanics and avoid an
overly large aspect ratio, we restricted sampling to the first 3 m in horizontal direction.
The sampling was done with a resolution of 256 X 85. This might seem overly large,
given that it results in a number of pixels that is larger than the number of cells in the
simulation. However, it must be considered that in contrast to the computational mesh,
the image grid is not specifically adapted to the geometry. The resolution was therefore
chosen to greatly reduce the issue of ‘jagged edges’, and improve the overall quality of
the geometry representation on the image grid. Figure 4.2 shows an exemplary result
on the computational grid alongside the interpolated result on the image grid.
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Algorithm 1 Procedure for generating a star-shaped obstacle in pseudocode. New
obstacles are generated until one is found that meets all criteria. {cy, ¢, }: coordinates
of center point; {r, a}: vertex polar coordinates relative to center; s: scaling parameter;
X: list of vertex x-coordinates; Y list of vertex y-coordinates. All operations on lists
are performed element-wise. Units in m.

admissible < 0
while admissible = 0 do
draw ¢, from U(1,3)
draw ¢y from N(u, o)
if ¢, ¢ [0.05,0.95] then
skip to next iteration
end if
draw N from U,(3,9)
draw list & of N elements from U(0, 27), sort ascending
draw list 7 of N elements from U(0.1, 0.6)
draw scaling s from 24(0.5,1.5)
draw coin-flip ¢ from U,(0, 1)
if c =1 then
s«—1/s
end if
X —cy+s-rcos(a), Y «cy+s-rsin(a)
if any element of X ¢ [0.6,3] then
skip to next iteration
end if
po < list of indices where Y < 0.05, Y[po] <0
p1 < list of indices where Y > 0.95, Y[p1] <1
if length(pg)> O then
i < max(po) - min(po)
delete elements from X and Y with indices € [po + 1, po + 1)
end if
if length(p1)> 0 then
i < max(p1) — min(p1)
delete elements from X and Y with indices € [p1 + 1, p1 + i)
end if
if 1 — (maxY —minY) < d then
skip to next iteration
end if
update polar angles: o « atan2(Y/X)
sort a in ascending order, apply same sorting to X and Y.
define polygon by connecting vertices defined by {X, Y} in the given order
if center point not contained in polygon then
skip to next iteration
end if
if mod (ali] — a[j], ) < 10 deg for any adjacent vertices i, j then
skip to next iteration
end if
admissible « 1
end while
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4.2. Machine Learning Implementation

The artificial neural networks were implemented using the free open source machine
learning library TensorFlow [58] in version 2.9. It offers efficient low level tensor
computation, differentiable computing and parallelization capabilities.

As a template for building a GAN fluid model, we used the image-to-image
translation model pix2pix, first presented in [24]. This GAN model was developed
as a general purpose tool, and has been successfully applied across a large variety of
tasks. These include semantic segmentation, image inpainting, conversion of sketches
or schematics to photos, greyscale to color image conversion, conversion of aerial
photographs to street maps, and day to night scene conversion, among many others.
The code was made freely available online, and has since enjoyed great popularity in
the ML community. The model was adapted to this application, but otherwise largely
unchanged In the following we give a summary of the most important architectural
features and characteristics of the model that we used for all of the experiments
presented in the next chapter (except where modifications are specifically mentioned).

In the pix2pix model, the generator is trained not only on the feedback provided
by the discriminator, but also directly on a ground truth loss. In our model this is
optional, with the total objective function being

V(G,D) = Epiye [/\GAN (log D(x, ¢) +log (1 - D (G(c), ¢))) + AL1]IG(e) — xIlx ] 4.2)

where cis the input image, x is the ground truth and the overline denotes the arithmetic
mean taken of the point-wise L1 norm. The parameters Acan, AL1 are hyperparameters
allowing us the change the relative weight of the discriminator feedback versus the
ground truth error measured in the L1 metric. The loss functions for a single input are
therefore

Lgen = /\GAN 108 D(X, C) + ALt ”G(C) - X||1 (433.)
Laisc = Agan (log D(x, ¢) +1og (1 — D (G(c), ¢))) . (4.3b)

Initially, we focused on comparing a ‘pure’ GAN model trained using Agan =
1, AL1 = 0 with a model trained only directly on ground truth, i.e. Agan =0,Ar1 = 1.
The motivation given by the authors for including the ground truth loss term is that it
had been shown previously that training based on ground loss alone is already well
suited for capturing the deterministic, large-scale features of many image translation
tasks. The adversarial training on the other hand can help the generator fill in high-
fidelity detail and produce results which appear more realistic. In Section 5.9, we
also analyze results from training hybrid models trained on both parts of the objective
function.

An important difference of the pix2pix model compared to other GAN models is
that there is no latent space, with the authors stating that their initial testing showed
the generator would learn to simply ignore it. Moreover, since we are not interested in
stochasticity for the sake of it, we omit the dropout feature,! which the pix2pix authors
used to introduce randomness into the prediction. Therefore, the output of our model
is completely deterministic.

With dropout, a certain random percentage of neuron are removed from the network at each
evaluation.
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Figure 4.4: Baseline GAN architecture. Boxes indicate layers networks, and arrows symbolize
connections between them. Visualization based on [22].

As stated, the architecture of our models is largely identical to that of pix2pix,
which in turn implements many of the recommendations from earlier papers discussed
in Section 2.3.3. See Figure 4.4 for a detailed sketch of the exact architecture used. In
general, both generator and discriminator are purely convolutional without any fully
connected layers. Both down- and up-sampling operations are 2-stride convolutions
with a 4 x 4 kernel size. The effect of increasing kernel size in the discriminator was also
tested, see Section 5.11 for the results. No bias is used except for at the output layers.
All layers, except for input and output, are batch normalized, and all except for output
layers use rectified linear activation functions. Specifically, the down-convolutions have
leaky ReLU functions with a = 0.3, while the up-convolutions are simply ReLU. The
total number of trained parameters is 48.6 million for the generator and 2.77 million
for the discriminator.

The generator has a U-Net type bottleneck architecture with skip connections at
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every level, i.e. each decoding layer operates on the channels of the previous decoder
layer as well as those of the encoder layer of the corresponding level (see [51]). There
are seven layers each in both encoder and decoder, and cropping is applied between
layers as necessary to ensure the symmetry required for the skip connections. The
number of channels is increased closer to the bottleneck. Overall, the generator maps
from a 256 x 85 binary encoding of the geometry to an output tensor with dimensions
256 x 85 x 2, with one channel for each velocity component. The bottleneck layer has
a dimension of 2 X 1 x 512. After the last layer, the output is multiplied point wise
with the input, i.e. any value corresponding to a location outside the domain is set to
zero. This comes without loss of general applicability, as the domain is always known
a priori, and it is done in order to not unnecessarily complicate the loss landscape
during optimization.

The discriminator has three down-convolutional layers, followed up by two un-
strided convolutional layers. The effect of increasing the number of down-convolutional
layers was also evaluated, see Section 5.11. It maps from an input tensor with dimen-
sions 256 X 85 X 3, where one channel contains the geometry and the others contain
the velocity components, to an output tensor of size 30 x 9 with a range of (0,1). With
this architecture, not every value of the input tensor affects every value of the output.
Instead, each output pixel has a receptive field consisting of a 70 X 70 x 3 batch of the
input (or smaller due to cropping if we are considering an output pixel close to the
boundary). The patches of neighboring output pixels are highly overlapping, and
their size depends on the exact architecture (see [23] for a script on how to calculate
it provided by one of the pix2pix authors). Thus the image is not discriminated as
a whole, but instead individual patches of the image are classified on a real-fake
spectrum. The authors of pix2pix termed this discriminator architecture PatchGAN,
and it implies that the discriminator cannot identify patterns larger than this patch
size. Moreover, since the operation performed is the exact same for all patches, the
PatchGAN can be understood as a type of texture or style loss.

At the start of training, all weights (i.e. kernels) are randomly initialized to a normal
distribution with zero mean and a standard deviation of ¢ = 0.01. The models were
trained on the main data set described above, where 10% of the 10000 sample was held
back as a test set. Since no major hyperparameter optimization was done, no validation
set was used. Training was done in mini-batches of size 32 using the adaptive gradient
based optimization algorithm Adam [30] with a learning rate of 10~ and initial decay
rate parameters of 1 = 0.5, = 0.999 for both generator and discriminator. See
Section 5.10 for experimental data on the effect of modifying the learning rates.

Computing a prediction took about 0.17 s on an Intel Core i7-6700K CPU at 4.00 GHz
(excluding TensorFlow overhead), which is between one and two orders of magnitude
faster than the simulation on the same chip (and this does not even take into account
potentially improved parallelizability). On the other hand, there is certainly still
potential for speeding up the simulation at the cost of reduced accuracy.

4.3. Live-Prediction Tool

As part of this research project, a small program was developed for demonstration
and experimentation purposes. Written in Python, it allows the user to draw any
polygonal obstacle into the channel geometry, as well as modify the size and position
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Figure 4.5: Screenshot showing the user interface of the live-prediction tool with three ML models for
comparison and vector plots enabled.

of the inlet. When confirmed, the program will (almost instantly) show the flow speed
predictions of a number (two or three) of previously selected neural network models
(e.g. an adversarially trained model and one trained with an L1 loss) on separate panels.
At the same time, an OpenFOAM simulation is started in the background. As the
iterative solving progresses, the latest, and eventually final, simulation result is shown
in another panel. Moreover, in another column the error of each of the predictions with
respect to ground truth is plotted, and the average L2 error (see Section 5.1) is printed.
All plots in the same column (showing flow speed and error fields respectively) share
the same color scale, and a vector plot overlay can be added optionally. A screenshot
of the software is shown in Figure 4.5.

The program gives an impressive demonstration of how much faster the reduced
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order neural network prediction can be evaluated compared to the simulation. In this
way, it can be seen as a proof-of-concept for the utilization of such machine learning
based surrogate models in design space exploration or real-time prediction. At the
same time, the ability to freely draw shapes allows the user to easily push the models
up to and beyond their limits, and develop an improved intuition for how they behave
when confronted with unfamiliar types of geometries, which in turn can be helpful
during research.



Experimental Results

The main part of the research for in this thesis concerned training GAN models on
the fluid simulation dataset, and comparing the results among themselves as well as
to regular CNN models trained directly on ground truth. This chapter presents the
result of these experiments, split into in multiple parts. The first section presents initial
findings and serves as a baseline and reference point for further analysis in later sections.
Next, in Section 5.2, the most important qualitative patterns of difference between the
two model types are discussed. Subsequent sections extend the comparison in breadth
and depth by analyzing generalization performance (Section 5.3), residuals of the
continuity equation (Section 5.4), prediction artifacts (Section 5.5), the discriminator
output (Section 5.6), the prediction of pressure (Section 5.7) and how the amount of
available training data affects the model’s performance (5.8). The final sections evaluate
the performance of additional trained models differing in their loss functions (Section
5.9), their learning rate (Section 5.10) and architectures (Section 5.11).

5.1. Performance Baseline

Without a doubt, the most import metric for assessing how well a trained neural
network performs as a reduced order fluid model is to compare the resulting prediction
on the unseen test samples with the ground truth (i.e. simulation result) on a point-
by-point basis. Arguably the most sensible way of doing this is to take the difference
between the two velocity vector fields, and compute the average vector length on it, i.e.
measuring the average difference in the L2 norm. We refer to this as the L2 error.

To start, we compare the L2 error performance of adversarially trained models with
those trained directly on ground truth. Specifically, we set Agan = 1, A11 = 0 and vice
versa respectively in their cost functions (see Eq. 4.3). We trained five identical models
(differing only by their random parameter initialization) of each type on the training
set of 9000 samples. The rationale for training multiple models of identical structure is
to get a sense of how sensitive the outcome is to the initialization. Training for 1000
steps took on average 181 s for the pure L1 model and 274 s for the GAN model (51 %
longer) on a NVIDIA GeForce GTX 1080 Ti graphics chip. Most models were trained
for 50 000 steps, which at a batch size of 32 corresponds to roughly 178 epochs (i.e. the
model will have encountered each sample around 178 times during training). To test

33
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Figure 5.1: Evolution of test set L2 error during training for five identical pure GAN models and five
pure L1 models.

how even more training affects outcomes, one model of each type was trained for a
total of 200 000 steps, i.e. more than 711 epochs.

The most central finding from this analysis is that the L1 trained models, without
exception, perform much better on this accuracy metric. After 50 000 steps the average
L2 error of the ground truth trained models is 57 % smaller than that of the GAN
models, and between the models trained for 200 000 steps the difference is still 48 %.
The data also show that the model spread due to the random initialization is initially
quite large for both model types, but decreases quickly for the L1 type, becoming
negligible after about 25 000 steps. For the GAN models on the other hand, the spread
remains significant, with an estimated standard deviation of the mean L2 error on the
test set of 0.02 after 50 000 steps. Moreover, the L1 models’ performance also quickly
levels off at around 30 000, whereas the GAN model continues to improve throughout
the entire evaluated range of steps. This is not surprising, as training convergence in
GAN models is a more complicated process subject to the evolving dynamic between
generator and discriminator. Nevertheless, looking at the observed trend it appears
unlikely that the GAN model would eventually reach the performance of the L1 trained
model given more training.

For a more detailed analysis, we compare the distribution of L2 errors on the 1000
test samples rather than just looking at the mean. Figure 5.2 visualizes the distributions
of both models trained for 200000 training steps in a histogram. One can see that the
two error distributions share similarities, with a steep rise and a long tail. However,
the GAN model’s distribution is significantly stretched towards larger values. The
median L2 errors are 0.214 and 0.104 for GAN and L1 respectively, with the former
outperforming the latter in 8.4 % of cases.
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Figure 5.2: Histogram visualizing the distribution of L2 errors on the test set for both models after
200000 steps. The dashed and solid lines in red and blue show median and mean for L1 and GAN
trained models, respectively.

5.2. Characteristic Patterns

In order to form a theory to explain the statistical results shown in the previous section,
we need to take a closer look at the individual model predictions. In the following we
will present illustrative examples that help us identify and describe the most important
systematic qualitative differences between predictions generated by the two types of
models.

As mentioned in Section 4.1, flow through a sudden expansion tends to attach
to whichever wall is closer to the inlet (at least in this Reynolds regime). In case
the inlet is roughly centered however, the flow condition can be characterized as an
unstable equilibrium and the outcome is essentially random. By analyzing how the
two different types of ML models handle such a bifurcation, we can demonstrate
important differences between them.

Figure 5.3 shows the prediction outcomes of the two model types on two such
bifurcation geometries. In both, the inlet is approx. centered, but the flow attaches to
the upper wall in one, and to the lower wall in the other example. In both cases, the
GAN model predicts almost exactly the same result. In fact, further tests showed that
whenever the outlet is approx. centered, the GAN will predict flow attachment to the
same side. The L1 model on the other hand produces predictions in both cases that look
akin to a superposition of the two possible bifurcation outcomes. This difference in
behavior is rooted in the different training methodologies, and in order to understand
it we need to consider how the different cost functions would act under this type of
scenario.

If the dataset is large enough, we can expect to encounter a roughly equal number of
both bifurcation outcomes during training. In such a case there is no unique optimum
in terms of L1 loss, in fact every convex combination of the two solutions will, in terms
of expected value, be assigned an equal loss. This type of combination is exactly what
we see in the L1 prediction of Figure 5.3. In contrast, a GAN-generator would most
likely incur a large cost if it produced such a superposition, since it is an unphysical
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Figure 5.3: Flow speed simulation & prediction for two bifurcation examples. Models were trained for
50000 steps.
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Figure 5.4: Flow speed simulation & prediction for two geometries specifically designed to show the
effect that blocking back-flow has on flow attachment. The models were trained for 200 000 steps.

flow condition that never occurs in the training data and could therefore easily be
detected as artificial by a well-trained discriminator. Loosely speaking, the generator
learns to force clear-cut decisions in the face of uncertainty, even if, as in the example
presented in the figure, it is a wrong decision. On the other hand, the discriminator
does not penalize that the GAN always predicts attachment to the same side when
in doubt (even though this is not truthful to the original distribution), since each
prediction taken by itself appears realistic.

For the next example, we consider another aspect of the wall attachment phe-
nomenon. The effect is caused by eddies that form naturally besides the main flow and
impinge back on it. The eddy is stronger on whichever side more space is available,
giving rise to a net force towards the closer of the two walls. However, by the deliberate
placement of an obstacle, we can interfere with the phenomenon. Specifically, if we
place an obstacle touching the wall opposite of where the flow would normally attach,
the eddy back-flow is blocked and the flow attachment mechanism is disturbed. An
example of this effect is shown in Figure 5.4: when there is space between the obstacle
and the opposite wall, attachment occurs as normal. However, when the obstacle
is extended such that it touches the wall, flow attachment is shifted significantly
downstream.

As displayed in the figure, if the obstacle is not touching the wall, both models
produce very similar predictions, which are moreover very close to ground truth. For
the case where the obstacle is extended up to the wall however, significant differences
between the two predictions are observed: the GAN prediction is hardly different
compared to the previous case. On the other hand, the L1 model apparently learned an
better internal representation of this phenomenon, and produces an output that more
closely resembles ground truth. Here again we can also observe that the L1 model
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Figure 5.5: Flow speed simulation & prediction for a representative sample from the test dataset. The
second row of images plot the L2 error of the predictions. The models were trained for 200 000 steps.

represents uncertainty by superposition, as evidenced by the widening of the flow. The
uncertainty in this case stems not from intrinsic stochasticity as with the bifurcation
example, but from the fact that the exact formation of this blocked back-flow scenario
is not trivial to predict, and there were only few relevant samples in the training
set. Overall, the GAN produces a flow field that appears much more realistic to an
uninitiated observer, but is much further from the ground truth in terms of L2 error.
This is an important pattern seen throughout the dataset.

Thus far in this section we have analyzed geometries that were specifically designed
to highlight differences between the two model types. However, to understand why
the GAN model on average performs so much worse on the test set, it is helpful to
look at an “average’ example from the test set. An appropriate definition of average in
this case is the median of the distribution of the difference in L2 error between the two
models. Ground truth and predictions for that particular sample are shown in Figure
5.5. To a casual observer, all three velocity fields appear very similar. However, looking
at the L2 error plot it becomes clear that indeed the L1 prediction outperforms the
GAN model by a wide margin. This is representative of most samples in the test set;
both models produce results that look plausible on first glance, but the L1 outcome is
simply much closer to ground truth. In some sense, this behavior is not too surprising.
After all, the adversarially trained generator fundamentally is only trained to produce
outputs that ‘look right’ to the discriminator, rather than actually being close to ground
truth. This is likely the reason that the GAN outcomes ultimately fall short in terms of
accuracy compared to the L1 trained model in most metrics.

5.3. Generalization Performance

In the first section of this chapter it is established that the GAN model was not able
to reach the performance of the L1 model when tested on unseen samples from the
training distribution. However for building a reduced order model, this is not the only
relevant criterion, we are also concerned with how the model performs on completely
different types of geometries that are not drawn from the training distribution. This is
because we cannot necessarily expect that every type of problem to which our model
is later applied would have been well represented within the training data set. To
test this ability of the model to generalize to new problem settings, we have created
two generalization data sets as described in Section 4.1. It would be conceivable that
despite being less exact in its predictions on the test set, the adversarially trained model
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has built up more robust internal representations of the flow physics that help it on
these more challenging problems. However, this is not what the data show. See Table
5.1 for a comparison of the most important characteristics of the L2 error distributions.

Table 5.1: Characteristic quantities of the L2 error distributions on the test data sets. Models were
trained for 200 000 steps.

dataset quantity L1 GAN

mean / ms~ ! | 0.137 0.263

test median / ms™! | 0.104 0.214
share won / % | 91.6 8.4

mean / ms~! | 0.298 0.438

“curved” median / ms™! | 0.277 0.405
sharewon / % | 859 14.1

mean / ms~ ! | 0.368 0.495

“double” median / ms™! | 0.345 0.488
sharewon / % | 90.0 10.0

As expected, both models perform much worse on these datasets compared to the
previously considered test set. Nevertheless, in many samples from the “curved” set,
both models still manage to produce a decent prediction such as in the example shown
in Figure 5.6. In comparison however, the GAN model predictions are on average
again much less accurate on this set.
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Figure 5.6: Flow speed simulation & prediction of a sample from the “curved” data set. The second row
of images plot the L2 error of the predictions. The models were trained for 200 000 steps.
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Figure 5.7: Flow speed simulation & prediction of a sample from the “double” data set. The second row
of images plot the L2 error of the predictions. The models were trained for 200 000 steps.
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Next we take a closer look at how well the models can predict flow if a second
obstacle is added to the problem. In cases where only one obstacle is significantly
interfering with the main flow or the obstacles effectively act as one (e.g. because one
obstacle is shielding the other), predictions are usually fairly accurate, qualitatively
speaking. Thus we can conclude that the models are robust enough not to be completely
useless in case of a second obstacle, as long as the resulting flow dynamics are not too
different from that of the single obstacle case. If however the main flow is channeled
through a gap between the two obstacles, both models fail for the most part to provide
reasonable predictions. That being, said, the L1 trained model does handle such cases
significantly better than the GAN model. The latter appears to completely ignore
smaller gaps between obstacles, whereas the former often correctly predicts a certain
amount of flow through the gap, if with a magnitude that is much too small. A good
example of this is shown in Figure 5.7.

5.4. Continuity Residuals

Beyond looking at the error to ground truth, another relevant performance metric in
the context of solving differential equations is the residual. This term refers to the
difference between the two sides of the equation at each point of the approximated
solution. Here we will restrict ourselves to the residual of the continuity equation
(2.12a), since evaluating the RANS momentum equation (2.12b) is much more involved.
To calculate the continuity residual, we need to evaluate the divergence of the velocity
tield. We compute the necessary derivatives by a central difference scheme. Thus we
get
Uitl,j = Ui-1,j  Wi,j+1 — Wi-1,j-1
2 o
where R is the residual, v and w are the two velocity components, the grid coordinates
are {i,j} and h is the grid spacing. Given that the height of the domain is 1m and
there are 85 grid points in vertical direction, we have that 1 = 1/84m. In order to
avoid boundary effects, we only consider grid points that do not directly neighbor a
boundary point.

When applying this formula directly to the simulated training examples, we noticed
that in areas of strong gradients, large high frequency residuals appeared. These
are not a direct result of the simulation, but artifacts introduced by interpolating to
the coarse image grid. In order to exclude this effect as best as possible, we apply a
smoothing operation by filtering five times with a 3 x 3
enquoteotebox blur kernel. This way the average residual on the training samples
was reduced by a factor of approx. 4, which helps to identify the real, as in physically
meaningful, residuals in the predictions.

The distribution resulting from applying this procedure on the test set predictions
of both model types is visualized in Figure 5.8. On this metric, the GAN model
performs significantly better than the model trained in ground truth, which produces
on average a mean residual approx. 70 % greater. This again can be traced back to
the properties of the different training methodologies. As noted in Section 4.2, the
discriminator feedback can be understood as a kind of learned texture loss. For the
discriminator, learning the exact mapping between a geometry and a flow field is hard,
but learning the typical ‘texture” of training images (which is one that has a small
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Histogram of average continuity residual on test set after 50000 steps
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Figure 5.8: Histogram visualizing the distribution of the smoothed continuity residual on the test set
predictions of both models after 50 000 steps. The dotted lines show the mean values of the
corresponding distributions.
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Figure 5.9: Flow speed simulation & prediction of a sample from the test set. The second row of images
plot the smoothed continuity residual. The models were trained for 200 000 steps.

continuity residual) is much easier. This is abetted by the particular discriminator
architecture (“PatchGAN"), but would likely hold also for other types of discriminators.

A good example of the L1 model predicting an “unphysical” flow field with a large
residual is shown in Figure 5.9. In the L1 residual plot, sharp vertical line artifacts
are visible, which are only blurred by the smoothing operation. These are a common
tfeature of L1 generated predictions though their prominence varies from sample to
sample.

The question that naturally arises from this observation is whether using adversarial
loss is strictly necessary to achieve this residuals performance, or whether adding a
specific residuals loss term to the L1 cost function can achieve the same. In this case,
the total generator loss would be

Lgen = /\L1||G(C) - X||1 + Aresid”R”l/ (5.2)

where ||R]||; is the average residual magnitude. The distribution from a model trained
this way with parameters A1 = Ayesig = 1 is shown alongside the previously discussed
in Figure 5.8. It shows that adding such a physics-based loss is indeed suitable for
reducing the residual, although in this experiment the effect fell short of the level
achieved by the GAN by about 9 %. It should be noted here that the addition of the
continuity loss did not have a significant effect on the L2 error distribution.
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5.5. Prediction Artifacts

While the GAN model tended to produce results that appear more convincing at first
glance, there are some cases where the model fails gravely and outputs an anomalous
artifact. This behavior was observed with each of the five identical models trained
for 50 000 steps, but only on few samples, usually less than 1 % of the test set. On the
contrary, none of the L1 trained models suffered from the issue. Often, the specific
pattern that appeared was almost identical between multiple faulty samples produced
by the same model. Moreover, each pattern appears to be related to a specific geometric
configuration. However, these conditions were different for each of the patterns and
model, and there were no samples on which multiple models produced artifacts.
Figure 5.10 displays some of the observed examples.

test geometry prediction model A test geometry prediction model B
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Figure 5.10: Examples of the artifacts occasionally produced by GAN models after 50 000 steps of
training. The models (A and B) are identical GAN models differing only by their random initialization.
The geometries are taken from the test set.

Fortunately after continuing training until 200000 steps, these artifacts all but
disappeared, with only a single, faint case identified among the 1000 test samples.

5.6. Discriminator Output

Thus far we have only looked at the performance of the generator, however, of course
a GAN is made up of not one but two neural networks. In order to study the
behavior of the trained discriminator, we can compare the output it produces on real
(simulated) and forged (generated) flow fields of the training set. By taking the average
of the 30 X 9 output, we obtain a probability € (0, 1) indicating the discriminator’s
belief that the particular input is from the training distribution (i.e. a simulation
result). The histogram in Figure 5.11 shows that the discriminator indeed performs
very well at discriminating the generated samples from the simulated ones. Barring
just two samples out of 1000 , the two sets could be perfectly separated based on
the discriminator output by choosing the appropriate threshold value. This is an
indication that the discriminator dominates the generator, and the model could likely
benefit from improved balance during training. This is investigated further in Section
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Figure 5.11: Histogram visualizing the distribution of mean discriminator output on real (simulated)
and forged (generated) images from the test set. The filled bars correspond to the five identical GAN
models trained for 50 000 steps, each plotted half-transparent to show how they overlap. The contoured
bars show results after 200 000 steps.
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Figure 5.12: Scatter plot showing L2 error plotted over mean discriminator output for every sample
from the different data sets. The model was trained for 200 000 steps.

5.10. It is also surprising that the discriminator assigns such low belief to both groups
especially after 200 000 training steps. After all the binary cross-entropy loss function
would assign much lower cost if the whole distribution was just shifted to the center of
the interval.

An interesting question arising from this analysis is whether there is a correlation
between the spread of belief outputs of generated samples and their L2 error. If this
was the case, the discriminator would provide us useful additional information on the
probable quality of a generated sample, which something that a regular CNN cannot
do.

If we calculate the Pearson correlation coefficient between the two quantities
averaged over the five identical GAN models after 50 000 steps of training, we obtain
values of —0.040, —0.032 and —0.384 for test set, “curved” set & “double” set respectively.
The first two values are negligibly small, but there appears to be a significant negative
correlation on the two-obstacle dataset. This translates a to higher belief corresponding
to a lower L2 error on average, which is the type of relationship one might intuitively
expect.

Next, let us focus on the GAN trained for 200000 steps. we see the correlations
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change from -0.079, —0.131, —0.416 after 50000 steps to —0.058, 0.028, 0.491 after
200000. Thus, surprisingly the correlation of the two-obstacle set switched sign over
the course of further training. At first glance, the fact that there could be a positive
correlation at all might appear very surprising, as one might expect that the cases
where the discriminator assigns a greater belief to the generated flow field being a
simulation result would be those which more closely resemble the training distribution,
and therefore have a smaller L2 error. However, after more careful consideration the
opposite appears just as plausible: cases where the generated sample successfully ‘fools’
the discriminator could be indicative of a type of input for which the discriminator is
particularly ‘gullible’. Thus, for samples of such type the generator has had less of an
incentive to improve, leading to a higher L2 error. Perhaps a balance between these
two effects is the reason for the absence of a strong correlation in both of the single
obstacle datasets.

5.7. Predicting Pressure

Thus far we have focused exclusively on predicting flow velocities from geometry.
However, as discussed in Section 2.1 there is of course another unknown field quantity
in fluid problems, the pressure p. However this is not as negligent as it might at first
glance appear, for the simple reason that the pressure may be derived from the velocity
tield using the governing Navier-Stokes equations. Specifically, we can evaluate the
left side of the momentum equation (2.8b) to obtain the pressure gradient, which is
the only information about the pressure field holding any physical meaning in an
incompressible setting. However, as noted we are using a RANS approach for the
simulation, wherefore this method of obtaining the pressure field comes at the cost of
an error due to neglecting Reynolds stress (which the neural network does not predict).
If solving for pressure is important, it might thus be worth considering to extend the
ML problem by adding a channel for pressure to generator output and discriminator
input respectively (as well as to the L1 loss function). The rest of the architecture is
left unchanged, resulting in the total number of trained parameters in each model
remaining roughly the same (increase of less than 1 per mil). In the following we will
compare these calculated and predicted pressure fields, to conclude whether there is a
significant benefit to the latter approach.

To evaluate the momentum equation, we again discretize the derivatives using a
central difference, however this time the expression is slightly more involved. We get

lvp :1 Vit1,j + 0i-1,j + Vij+1 +0ij-1 — 4_01,,],
p W2 \wis1,j + Wio1,j + Wi j41 + Wj jo1 — 4w; j
_i Ui,j(vi+1,j - 7)1‘_1,]') + wi,j(vi,]'+1 _ vi,j—l)
20 \0ij(Wis1,j = Wi-1,j) + Wi j (Wi j1 = Wi j-1)

(5.3)

For obtaining the gradient of an existing pressure field, the calculation is, of course,
much simpler:
1 ( piv1j—pio1
Vp=— | P 5.4
P=on (Pi,j+1 — Pi-1,j-1 64
Again, we avoid boundary effects by setting all points either on our in direct neighbor-
hood to the boundary to zero. To evaluate the accuracy of a gradient field, we compare



5.8. Training Data Utilization 44

1001 calculated 1001 calculated
801 predicted 301 predicted
60 60 1
40 40 1
201 201
0 ; - - 0 ; ' -
0 2 4 6 8 0 2 4 6 8
pressure gradient L2 error / mPa/m pressure gradient L2 error / mPa/m
(a) GAN (b) L1

Figure 5.13: Histograms of the average L2 error of the gradient pressure field w.r.t. the simulation data
on the test set. The plots compare the results of calculating pressure from the velocity field prediction
versus training the network to explicitly output a pressure prediction. All models were trained for
50000 steps.

it to that obtained from the simulated pressure field. Here again we measure in the
euclidean norm, i.e. the L2 error, and average over the whole domain.

The error distribution obtained this way on the test set is shown in Figure 5.13, for
both model types. The data clearly show that the difference in accuracy gained from
including the pressure in the training is minimal. Moreover we see that the L1 model
again performs better in this metric, which is unsurprising given given the results
from Section 5.1.

While there appears to be little benefit of including pressure in the training, it
should be noted that it did not appear to have any significant downsides, either in
terms of accuracy in predicting velocity or in terms of computational effort. Therefore
we can conclude that both methods of calculating pressure are equally as viable. This
also shows that the error made due to neglecting the Reynolds stress is small.

5.8. Training Data Utilization

Another relevant question to inform a judgment on which type of model is superior for
this application is, which can learn better from a limited number of training examples.
Besides interest in the comparison, this is also crucial information if one set out to
train this type of reduced order model for an end-user application. For this purpose,
we trained baseline GAN and L1 models on datasets with the following numbers of
samples: {250,500, 1000, 3000, 6000,9000}. The results are plotted in Figure 5.14.

The models were trained for 50 000 steps. The results show that for a small dataset,
the difference in the average test set L2 error is relatively small. However, the GAN
already plateaus after 6000 steps, while the L1 trained model continues to benefit from
an increased training set size. The fact that this convergence behavior is opposite
of that seen in Figure 5.1 in Section 5.1 is most likely no coincidence: we can safely
assume that the number of training steps needed until the learning curve plateaus
increases with the size of the training set (in other words, the larger the training set the
more and the longer can be learned from it). Since it takes more steps to reach this
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Figure 5.14: Plot showing L2 error performance on test set as a function of the number of samples in the
training set. Models trained for 50 000 steps.

Table 5.2: Performance statistics (L2 error and mean continuity residual) on the three data sets for five
models with different weighting in the objective function. All models trained for 50 000 steps. Boldface
values correspond to best performance in each metric (column).

L2 error continuity residual
AGaN Arg | test  “curved” “double” | test “curved” “double”
1 0 [0.33 0.52 0.53 0.13 0.15 0.23
1 1 |0.22 0.37 0.51 0.12 0.13 0.20
1 10 | 0.16 0.30 0.41 0.12 0.14 0.23
1 100 | 0.14 0.28 0.39 0.13 0.14 0.22
0 1 0.14 0.30 0.37 0.22 0.24 0.46

convergence with adversarial training, the GAN model should be expected to benefit
less from increasing the number of training samples if the number of training steps is
kept constant, which is exactly what the data show.

5.9. Combined Training

Up to this point we have only compared models that were either trained only adver-
sarially or exclusively on ground truth. However as noted in Section 4.2, the pix2pix
framework allows for training with a combination of both types of losses. In this
section, we will examine the performance of three models trained in this manner
with parameters A1 € {1,10,100} respectively, while Agan is kept constant at 1. The
particular choice of these parameters was informed by checking the average loss during
training the previously discussed GAN & L1 models, the former of which was about
one order of magnitude larger than the latter.

Table 5.2 shows the average L2 error and continuity residual for the three hybrid as
well as the two baseline models. The data show that indeed, this combined training
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Figure 5.15: Flow speed predictions of different models on a test set sample. The models differ by the
weighting of terms in their objective function. All models were trained for 50 000 steps. See Figure 5.9
for geometry & simulation result.

regime can, to some degree, combine the advantages of both model types. In particular
the models trained with Ap; = 10 and A1 = 100 produce L2 errors similar to the pure
L1 model while retaining the low continuity residual of the pure GAN model.

A qualitative look at edge case examples confirms the hypothesis that the weighted
combination of the different loss terms can be used to in some sense ‘interpolate’
between the models. Figure 5.15 shows the outputs of all five models on a difficult
geometry from the test set, the same as plotted in Figure 5.9. It is difficult because it is
unclear whether or not the small obstacle at the upper wall is enough to prevent flow
attachment by blocking the back-flow. There is a clear trend recognizable in the series,
with samples towards the left (lower A1) having an increasingly confident and smooth
appearance that does not take into account potentially blocked back-flow, similar to
the behavior shown in Figure 5.4. Furthermore it appears, that the greater the relative
weight of the L1 loss, the stronger the model takes into account the possibility of a lack
of wall attachment.

5.10. Modified Learning Rates

The data discussed in Section 5.6 indicated an imbalance in the two-player game that
is the GAN training. In all analyzed cases, the data showed that the discriminator was
able to clearly distinguish between trained and generated. As discussed in Section
2.3.3, such an imbalance usually leads to sub-optimal results due to slow training
convergence. One potential remedy is increasing the learning rate of the generator
relative to that of the discriminator. To test this approach, three additional experiments
were performed, with generator learning rates twice, four times or eight times greater
than that of the discriminator. Table 5.3 compares between these three as well as the
baseline by listing the most important performance metrics on the three test datasets.

For most of the data, there is no clear trend discernible, making it difficult to draw
strong conclusions. For example, as expected, the 2x model and the 8x model both
significantly outcompete the baseline in terms of L2 error on all three data sets, with



5.10. Modified Learning Rates 47

Table 5.3: Performance comparison between GAN models trained with different generator learning
rates, measured relative to the discriminator learning rate. Metrics include: L2 error, mean continuity
residuals, Pearson correlation between discriminator output and L2 error as well as share of samples

that could not be correctly classified based on discriminator output. Best results in each category
marked in boldface. For correlation, the largest value in terms of magnitude is taken as ‘best’. For belief
overlap, the largest value is taken as best, since it is closer to equilibrium. The models were trained for

50000 steps.

relatlye generator 1 2 4 8

learning rate

test set 0.332 0.241 0.448 0.221
L2 error / ms™'  “curved” set 0.521 0407 0530 0.394

“double” set 0.531 0503 0.549 0.495

test set 0.128 0.117 0.172 0.119
residuals / s~} “curved” set 0.148 0.131 0.172 0.134

“double” set 0.225 0.193 0.209 0.194

test set -0.079 0.181 -0.452 0.040
correlation “curved” set -0.131 -0.046 -0.053 -0.114

“double” set -0.416 -0.552 -0.422 -0.595
belief test set 0.00 12.1 6.10 9.80
overlap / % “curved” set 070 40.5 203 18.5

“double” set 0.00 0.80 0.90 1.30

8% producing the best results. However unexpectedly the 4x model actually performs
worse. Nevertheless, it is a remarkable result, with the 8x model improving the test set
result by 33 % (for comparison, the L1 result was 58 % smaller compared to the baseline,
see Section 5.1). Looking at the residual data, we see a similar pattern, with the 2x
and 8x models outperforming the baseline, but the 4x performing significantly worse
than baseline, at least on the two larger datasets. The data on correlation between
the L2 error and the discriminator output holds even more peculiar results. On the
two-obstacle set all models exhibit a strong negative correlation, but on the test set
only the 4x model does. On the “curved” set in turn, the same model shows almost no
correlation, much less than the baseline.

The last bracket includes a measure quantifying how well the discriminator can
distinguish between simulated and generated samples. For this purpose, we divide the
interval [0, 1] into 100 equal sized bins just like for plotting a histogram, and calculate
the number of overlapping samples between the distributions. I.e., if there are ten
samples from one distribution and three from the other in the same bin, it counts
as three towards the total overlap count. We refer to this quantity as belief overlap
and a larger value should correspond to an improved balance between generator and
discriminator. As expected, we see that in each case, the increased generator learning
rate results in elevated numbers of overlapping samples, however again there is no
clear trend beyond that observation.
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Table 5.4: Performance comparison between GAN models with modified discriminator architectures,
including: L2 error, mean continuity residuals, Pearson correlation between discriminator output and
L2 error as well as share of samples that could not be correctly classified based on discriminator output.
Best results in each category marked in boldface. For correlation, the largest value in terms of
magnitude is taken as ‘best’. For belief overlap, the largest value is taken as best, since it is closer to
equilibrium. The models were trained for 200 000 steps.

dataset | baseline 2x kernel size +2 layers
test 0.263 0.325 0.251
L2 error / ms~! “curved” | 0.438 0.408 0.381
“double” | 0.495 0.531 0.507
test 0.110 0.190 0.145
residuals / s “curved” | 0.130 0.184 0.161
“double” | 0.185 0.214 0.225
test -0.058 -0.311 -0.005
correlation “curved” 0.028 0.046 -0.028
“double” | 0.491 -0.437 -0.265
belief test 0.2 100.0 58.2
overlap / % “curved” 1.1 100.0 82.4
“double” 0.7 10.0 5.3

5.11. Modified Discriminator

While a large parameter study is left for future work, we did test the effects of modifying
two important parameter in the discriminator architecture. The first is the kernel size
for the convolutional operations, which was increased from 4 X 4 to 8 X 8, increasing
the total number of trained parameters approximately fourfold. The second is the
number of down-convolutional layers, which was increased from three to five. Here
the pattern of doubling the number of channels at every layer is continued, i.e. the last
hidden layer has 2048 channels. This comes with a dramatic increase in the number
of trained parameters by a factor of approx. 16, resulting in a total of 44.7 million,
which is similar to the generator’s 48.6 million. Moreover, it increases the theoretical
receptive field to 286 x 286, wherefore each value in the output array of dimensions
6 X 1 is causally linked to each pixel in the input data.

Similar to the previous section, the most important performance statistics are listed
in Table 5.4. For this comparison, the models were trained for 200000 steps, on the
rationale that additional layers might slow down convergence. Again, the results
are rather ambiguous. The deeper discriminator (additional layers) appears to result
in slightly more accuracy on the single obstacle datasets, especially the “curved”
set. The discriminator with larger kernels on the other hand results in significantly
worse accuracy on the test set. Both modified discriminators lead to larger continuity
residuals compared to the baseline on all sets. Interestingly, both modifications also
lead to larger ambiguity in the discriminator output, as the data on overlap samples
show (see previous section on how these are calculated). This is surprising as in theory,
it would indicate a worse relative performance of the discriminator, despite the large
increase in model size. Moreover, from a theoretical perspective one might expect the
larger belief overlap to correspond with improved accuracy, since at equilibrium (i.e.
the optimum) the discriminator would show complete ambiguity. However, this is
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not borne out by the data, especially for the discriminator with increased kernel size.
The data also do not show a clear pattern in terms of correlation between L2 error and
discriminator belief. Therefore we cannot conclude that the tested modifications to the
discriminator architecture provide a clear improvement.



Conclusions

GAN models, as the name implies, were originally invented to tackle so-called
generative problems. The goal with this type of problem is generally to train the
neural network to match a target distribution.As explained in Section 2.3.3, generative
problems are difficult to solve with regular neural networks, because formulating
a suitable cost function for measuring performance is highly non-trivial. The GAN
framework overcomes this problem by essentially optimizing this cost function as part
of the training. which is realized by training an observer (discriminator) alongside the
generator. This explains their particular strength at generative task. Given that the
entire proposition of GANs is a change in cost function, whether or not adversarial
training can be expected to provide superior results thus ultimately depends on what
concept of error is used. GAN training is focused on producing outputs with a ‘realistic’
appearance (in the sense of the training set), rather than the best possible accuracy. In
other words, adversarial training teaches the generator to produce outputs that ‘look
right” to an observer familiar with the dataset.

Indeed, this is exactly what our experimental data shows. In terms of accuracy to
the ground truth velocity field (in an L2 sense), none of the GAN models reached the
performance of an equivalent generator trained directly on ground truth (using an
L1 loss). This is true on unseen data from the training distribution, as well as on two
additional data sets designed to test generalization to unfamiliar types of geometries
(see Sections 5.1, 5.3). The average L2 error rate of the GAN model was typically
between 30 % and 100 % larger than that of the equivalent L1 trained model (depending
on the specific comparison), only producing a superior result on about 10 % of the
samples. Qualitatively speaking, the L1 model appeared much more successful at
reproducing the finer details of flow mechanics, such as exactly where flow around an
obstacle detaches.

On the other hand, the data also show that the velocity fields produced by GAN
generators exhibit significantly lower average continuity residuals, by approx. 40 —50%,
compared to L1 trained models (see 5.4). This again is exactly the type of distribution-
matching behavior expected from GANs. After all, if the residuals would be large the
discriminator could easily learn to identify generated samples based on it. In order
to test whether a similar result can be achieved without adversarial training, we also
experimented with adding a cost term specifically penalizing the continuity residual
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(i.e. a physics-based loss) to the L1 training, which helped improve the residual almost
to the level achieved by the GAN model.

Different to typical generative problems, in flow problems there is normally only
a single unique solution. However, the training set for this study was specifically
designed to include cases where the opposite holds, i.e. there is more than one
possible solution for a single geometry. These scenarios are of particular interest for
the comparison, because they illustrate the differences between adversarial and regular
training much more clearly. Specifically, we analyzed a flow bifurcation, where the
tlow would randomly attach to the upper or lower part of the domain. As expected,
the GAN essentially “picked a side’, whereas the L1 trained model produced a sort of
superposition of the two possible outcomes (see Section 5.2). In such cases, none of the
two outcomes is obviously superior; it completely depends on how performance is
measured. The L1 trained prediction could be considered worse since it is unphysical
and would never occur in the data set. On the other hand however, it represents
the uncertainty between the two possibilities, which could be very useful in many
applications.

Overall, the L1 trained model was also shown to be more attentive to subtle flow
dynamical effects, such as an obstacle blocking back-flow leading to a change in flow
attachment (see again Section 5.2). Another problem with the GAN models was that
the generator would occasionally produce a large artifact, as detailed in Section 5.5.
However, the issue occurred infrequently (< 1% of samples) and disappeared almost
entirely given more training. Nevertheless it is an interesting observation that warrants
further study.

Beyond comparing the two different types of models, we also investigated combining
them by training on a sum of both cost functions. The results show that this strategy
can be used to successfully interpolate between the types, both in terms of qualitative
outcomes as well as statistical performance (see Section 5.9). In this way, it is to some
degree possible to combine both model’s advantages (in particular: low L2 error and
low residual).

An analysis of the discriminator output showed, that in almost every case it allowed
for a correct classification of a sample as simulated or generated (see Section 5.6).
The fact that the generator appeared unable to “fool” the discriminator hinted at
an imbalance in the adversarial training, with a dominating discriminator. Based
on this result, we tested increasing the learning rate of the generator for improved
balance. This did indeed produce some better performing models, although the results
were ambiguous without a clear trend discernible (see Section 5.10). Moreover, we
investigated whether the discriminator can be used to quantify the uncertainty of the
prediction. To test this, we calculated the statistical correlation between L2 error and
discriminator output. However, the results did not show a clear trend, with sometimes
positive, sometimes negative, and most of the time no significant correlation (see
Section 5.6, 5.9).

While most of the work was focused on predicting the velocity field, we also looked
into predicting pressure as well. Based on the collected experimental data, we were
able to conclude that despite the coarse image grid resolution, it is sufficient to only
predict the velocity field and use that to calculate the pressure field by virtue of the
Navier-Stokes momentum equation (neglecting Reynolds stress). Directly predicting
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pressure is also feasible without much extra effort, but only showed a negligible
improvement (see sections 5.7).

Another important experimental observation is, that it generally took much more
training steps for GAN models to reach convergence during training. This can be
attributed to the more complicated training process involving the evolving dynamics
between generator and discriminator (see Section 5.1). Similarly, with GANs the data
show a larger spread in model outcomes due to the randomly initialized parameters.
Moreover, for a fixed number of training steps, the L1 trained model was able to benefit
more from increasing the size of the training set (see Section 5.8).

In summary, model outcomes are consistent with how they were trained, or more
specifically, they excel at precisely what the cost function they were trained on measures.
Whether or not a GAN is the right choice for building a reduced order ML fluid model
ultimately depends on how success is to be measured. For example, if one is interested
in creating visual effects for film, then a GAN model is a promising candidate. If
instead the application is scientific in nature, then most likely the lower average error
of an L1 trained model will be desirable. Combined training can also be a good option,
with results showing that adding a small GAN contribution to an L1 cost function
can act as a sort of regularization, increasing apparent realism significantly without
compromising on accuracy. However, the increase in computational time of more
than 50 % in our tests must also be taken into account, especially given that there
are alternatives with potentially similar effects such as adding physics-based loss as
regularization.

In light of these results, the choice of using GANs in some earlier published work
on NN-based fluid flow prediction, such as in [54] for predicting pedestrian level wind
speeds in urban design, could be due for reconsideration. Moreover, it suggests that
the improvement seen by the authors of [26] when using a GAN over their baseline
model was not due to the effect of adversarial training, but rather to using a different
generator architecture.

In terms of further work, the scope of this thesis did not include a large optimization
study to find the best hyperparameter choices, which would certainly be a relevant
object of study. As the data presented in Section 5.10 show, the balance between
discriminator and generator could be of particular interest for further investigation.
However, the tests that were conducted on modified discriminator architectures show
that increasing model capacity does not necessarily improve results, and that results
are often not consistent with theoretical expectations (see Section 5.11). It could also
be interesting to further investigate the behavior of GANs during hybrid training for
use as a type of regularization.

Looking ahead, moving from proof of concept towards application will require a
number of important changes and extension to the models considered here. For many
types of applications, the addition of information on boundary conditions as input
to the model (such as in [26]) would be crucial for making the model more generally
applicable. This also enables and necessitates the expansion of the training set to
include a much more varied set of flow examples (here it will be helpful to consider
the data on training performance as a function of dataset size shown in Section 5.8).
This should also inevitably instill the proper invariances inherent to the underlying
equations (translational, rotational etc.) into the network’s representations. In order
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to enable the model to also work in different Reynolds regimes, adding inputs for
flow-relevant global parameters, such as scale and viscosity, could be an interesting
option for further study. Other modifications could include increasing resolution or a
extending the model to work with 3D-problems.

In order properly evaluate the true utility of the types of machine learning models
we considered as reduced order fluid models, further research is required. For this, it
will be necessary to compare outcomes and computational effort as fairly as possible
with existing, conventional reduced order models.
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OpenFOAM settings

Schemes (fvSchemes-file)

e e e o F e Gt =¥ e - *\

========= |

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / 0 peration | Website: https://openfoam.org

\\ / A nd | Version: 9
\\/ M anipulation |

A o oo o */
FoamFile
{
format ascii;
class dictionary;
location "system";
object fvSchemes;
ks
V72 L L L L N T L L L A A R
ddtSchemes
{
default steadyState;
3
gradSchemes
{
default Gauss linear;
ks
divSchemes
{
default none;
div(phi,U) bounded Gauss linearUpwind grad(U);
div(phi,bk) bounded Gauss limitedLinear 1;
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div(phi,epsilon) bounded Gauss limitedLinear 1;
div(phi,omega) bounded Gauss limitedLinear 1;
div(phi,v2) bounded Gauss limitedLinear 1;
div((nuEff*dev2(T(grad(U))))) Gauss linear;
div(nonlinearStress) Gauss linear;

}

laplacianSchemes

{

default Gauss linear corrected;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default corrected;

}

wallDist
{

method meshWave;

}



Solvers (fvSolution-file)

e e F e Gt =¥ e o *\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / 0 peration | Website: https://openfoam.org
\\ / A nd | Version:

\\/ M anipulation |
e </
FoamFile
{
format ascii;
class dictionary;
location "system";
object fvSolution;
ks
/ / E O S S S S - S - S - S S - S S - S S S S - S S - S T S - S N S S S S - S - / /

solvers

{

p

{

solver GAMG;
tolerance le-07;
relTol 0.1;
smoother GaussSeidel;
3

"(Ulk|epsilon|omega|f|v2)"

{

solver smoothSolver;
smoother symGaussSeidel;
tolerance le-06;
relTol 0.1;

}

ks

SIMPLE

{

nNonOrthogonalCorrectors 0;
consistent yes;
residualControl

{

p le-2;

U 2e-4;

"(k|epsilon|omegal|f|v2)" 2e-3;



62

relaxationFactors
{
equations

{

U 0
n Pl ®

}

B I I T I S I A T P R A P P PR S I A P SR S M M P SRR A P PR SRR P P SR A P SR SO M P SRR RO R PR SR SO R K SRR
e e A L T e AR Ak T 1o i e A T T i A i T e i A A Tl i i A Al T o g A R R e A e T 1o i A A Tl T i e Al T e i A e T T i A Tl T i i Al Tl Tt A A T L R Bk Ak T 1
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