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ABSTRACT

Diffusive processes on curved surfaces are highly relevant for cellular processes and are increasingly used
to characterize the behavior of proteins in cell membranes. More specifically, neurotransmitter receptors
are present on the cell membranes of neurons (nerve cells) and are important for the signal transduction
at synapses, which are the specializations through which neurons communicate. The morphology of the
cell membrane at these synapses is nontrivial and this shape strongly affects the receptor lateral diffusion
process [1].

The typical shape of a single synapse and its impact on the diffusive process have been studied [1, 2]. An
open question however, is how this shape affects the crosstalk between multiple synapses connected to the
same dendrite. In other words, how does the release of receptors in one synapse influence the concentration
in neighboring synapses. To study this we set up two diffusion models that integrate the morphology of
multiple synapses.
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1
INTRODUCTION

Signals are transmitted within an animal body through the nervous system. The control of muscles, process-
ing sensory stimuli and regulating cognitive processes are all carried out by the nervous system. At the cellular
level, the nervous system consists of a special types of cells, called neurons. Neurons can transmit signals to
other neurons through specialized junctions, called synapses. For healthy functioning of the nervous system
it is important that the strength of these connections (synaptic strength) can be specifically controlled. Fail-
ure of these mechanisms are associated with neurological and neuropsychiatric disorders like schizophrenia,
Alzheimer disease, depression and autism [3, 4].

In chemical synapses the transmitting (presynaptic) neuron releases a chemical substance into the synapse,
which can bind to a surface receptor present on the cell membrane of the receiving (postsynaptic) cell. An
important factor in the synaptic strength is the amount of receptors present on the synaptic cell membrane
of the receiving cell. Therefore, controlling the number of receptors at synapses is essential in synaptic trans-
mission [5].

Surface receptors undergo lateral diffusion over the cell membrane. Therefore, receptors initially present at
one synapse, can end up in another synapse. This is an instance in which components from one synapse
influence the signal transmission in other synapses, a phenomenon that is called crosstalk. Crosstalk under-
mines the ability of the body to specifically control the strength of individual synapses.

The receiving part of the postsynaptic neuron is called a dendritic spine. Spines are protrusions of the mem-
brane of the postsynaptic cell. They have a typical shape consisting of a thin spine neck and a bulbous spine
head, as shown in Figure 2.3. The influence of this geometry on the lateral diffusion process of surface recep-
tors has been studied [1, 2].

The aim of this study is to investigate how this nontrivial morphology of dendritic spines influences crosstalk
between multiple synapses connected to the same neuron. To this end we set up two models that integrate
diffusion on curved surfaces. The first one is an atomistic, particle-based model in which diffusion is seen as
particles undergoing Brownian motion, the second one is a continuum-scale model.

In Chapter 2 we explain the biological framework in which dendritic spines are positioned. Our research
questions are also presented there. In Chapter 3 we explore existing models for synaptic receptor trafficking
and discuss their results. In Chapter 4 we formulate our two new models for receptor trafficking. Chapter 5
elaborates upon the design of test cases that are used to run simulations and in Chapter 6 results of these test
cases are presented. Finally, conclusions and a discussion can be found in Chapter 7.
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2
DENDRITIC SPINES AND THEIR ROLE IN THE

NERVOUS SYSTEM

2.1. THE NERVOUS SYSTEM

The nervous system is the organ system of the body that coordinates both conscious as well as unconscious
actions and transmits signals between different parts of the body. In most animal bodies the nervous system
consists of two main parts, the central nervous system (CNS) and the peripheral nervous system. The first
one consists of the brain and the spinal cord and the latter one connects the central nervous system to every
other part of the body.

At the cellular level the nervous system consists of a special type of cells, called neurons or nerve cells. Their
structure allows them to transmit signals fast and effectively to other cells. Internally, signals are sent in the
form of electrochemical waves along thin fibers of the cell itself. Between different cells these signals are
mainly transmitted through specialized junctions called synapses.

2.1.1. NEURONS

Neurons or nerve cells are the cells that constitute the nervous system. They are characterized by a specific
composition that allows them to transmit signals from and to every part of the body. Specialized type of
neurons are designed to perform a specific task and include:

• Sensory neurons are sensitive to input from outside the body like touch, sound, light, smell and other
types of external stimuli. After receiving such stimuli they transmit signals to the central nervous sys-
tem.

• Motor neurons are able to directly or indirectly control muscles or glands after receiving input from the
central nervous system.

• Interneurons connect neurons to other neurons and are mainly found in the central nervous system.

A typical schematic graphic of the structure of two interconnected neurons can be found in Figure 2.1. Neu-
rons are highly specialized in the processing and transmission of signals and this is reflected in their anatomy.
A typical neuron possesses a soma, multiple dendrites, an axon and an axon terminal.

• The soma is the cell body of the neuron. It contains the nucleus, where most of the cell’s genetic material
is located. The nucleus of a neuron is involved in processing signals and determining whether a signal
is to be transmitted or inhibited.

3



4 2. DENDRITIC SPINES AND THEIR ROLE IN THE NERVOUS SYSTEM

• Dendrites are thin structures that arise from the cell body and often branch multiple times forming
a typical dendritic tree. This collection of dendritic protrusions is where the majority of input to the
neuron occurs. They receive input from other neurons and propagate the signal to the cell body.

• An axon is a structure that arises from the cell body and carries nerve signals away from the soma to
other nerve cells or different parts of the nervous system. Whereas a nerve cell has multiple dendrites
it typically possesses only one axon. Compared to dendrites an axon can be very long and signals travel
the majority of their distance via axons.

• The axon terminal is formed when the axon undergoes extensive branching at its end. It contains
the synaptic terminals, where neurotransmitter chemicals are released to communicate with target
neurons.

Figure 2.1: Structure of two interconnected neurons. Image: shutterstock.

2.1.2. SYNAPSES

A synapse is a structure where the signal transmission between two neurons occurs. There are two funda-
mentally different types of synapses: chemical synapses and electrical synapes. In electrical synapses an
electronic signal is transmitted by special channels connected to the presynaptic membrane on the one side
and to the postsynaptic membrane on the other side.

In this research, we focus on chemical synapses. In chemical synapses the transmitting neuron releases a
chemical substance, called neurotransmitter, in the synapse which can bind to a corresponding cell surface
receptor on the receiving cell. This cell may then be excited, inhibited or otherwise modulated. Chemical
synapses can be subdivided again into two main categories: excitatory and inhibitory synapses. An excitatory
synapse is a type of synapse in which an action potential in the presynaptic neuron increases the probability
of an action potential occurring in the postsynaptic cell. This is in contrast to inhibitory synapses, which
have – as the name suggests – an inhibitory effect on the activation of the postsynaptic neuron. When exci-
tatory effects exceed those of inhibitory effects, the receiving neuron will fire an action potential and thereby
information is transferred between the involved neurons. Next, we will focus on excitatory synapses.

ANATOMY AND FUNCTION OF EXCITATORY SYNAPSES

Excitatory synapses have a fundamental role in information processing within the CNS. Knowing the typical
anatomy of synapses is crucial in understanding their function. In figure 2.2 a schematic overview of the
anatomy of an excitatory synapse is displayed. We discuss the components shown.

In the presynaptic specialization lies a cluster of synaptic vesicles containing neurotransmitter close to the
presynaptic cell membrane, which we call the active zone. Exocytosis of these vesicles releases neurotrans-
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mitter in the synaptic cleft. An elaborated review of the presynaptic specialization and the synaptic vesicle
cycle can be found in [6].

The essential postsynaptic components of an excitatory synapse are located on the dendritic spine, which
we discuss in more detail later on. A detailed review of the architecture of the postsynaptic specialization
of excitatory synapses can be found in [7]. Opposite the active zone, on the postsynaptic membrane lies its
counterpart, a protein dense regime called the postsynaptic density (PSD). The PSD contains scaffold pro-
teins, which are known to interact with neurotransmitter receptors, thus binding them to the PSD [8]. At the
PSD neurotransmitter receptors are highly concentrated. The presence of a PSD is characteristic for excita-
tory synapses, inhibitory synapses lack such a thickening in the postsynaptic cell membrane. The rest of the
postsynaptic membrane can be divided into perisynaptic (close to the synapse) and extrasynaptic (outside
the synapse) regions. The active zone and the PSD are separated by a gap called the synaptic cleft.

After its release in the synaptic cleft, neurotransmitter binds to and activates a receptor on the postsynaptic
membrane. For this reason it is important that enough receptors are present at the site of the PSD in an
excitatory synapse. There are many different types of neurotransmitters and corresponding to receptors.
Here, we focus mainly on the AMPA and NMDA receptors (AMPAR and NMDAR), because they mediate the
majority of rapid excitatory synaptic transmission in the central nervous system [9].

Figure 2.2: Anatomy of an excitatory synapse. CC BY-SA 3.0. Original in [10].

2.1.3. DENDRITIC SPINES

The dendrite of a neuron receives signals from other neurons. Most of the excitatory inputs are located on
dendritic spines. Spines are protrusions of the membrane of the postsynaptic cell, on which the PSD is lo-
cated. They consist of a spine head and a thin spine neck which connects them to the dendritic shaft (figure
2.3). A high correlation is found between the dimensions of spines and the size of the PSD [11, 12]. The
shape of spines can be described as “thin”, “filopodia”, “stubby” or “mushroom” (see Fig. 2.4). The dendritic
spine is a dynamic structure, whose shape, size and composition change during development and in re-
sponse to synaptic activity [13, 14]. Changes in their size and shape are connected with a change in synaptic
strength [15].

COMPARTMENTALIZATION

The relation between morphology and function is a central theme within biology. The way that the nontrivial
morphology of dendritic spines influence their function is not yet fully understood. Having structures like
spines containing synapses along the dendrite may have several advantages. Evidently, spines might assist in
signaling by physically forming a bridge from axon to dendrite [17]. However, not all synapses are constituted
by spines and dendrites can receive inputs directly on their shafts. It is therefore likely that spines are also
beneficial in another way. It has been widely suggested that they are associated with compartmentalization,
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Figure 2.3: STED image recorded from a living dendrite including spines. Source: [16].

enabling synapses to work as independent components [16]. “Mushroom” spines typically have a bulbous
head (spine head) and are connected with their corresponding dendrite through a thin spine neck. This mor-
phology has been hypothesized to confine electric signals within the spine head, thereby allowing spines to
serve as compartments by which electric signals in one synapse can be isolated from other parts of the neu-
ron [17]. Compartmentalization is essential for the ability of the body to specifically target certain signaling
pathways within the (central) nervous system.

2.2. SYNAPTIC PLASTICITY

Synaptic plasticity is the ability of synapses to strengthen and weaken over time, in response to a change in
their activity. If this strengthening and weakening persists, then long-lasting increase or decrease in synaptic
strength occurs, which is called long-term potentiation (LTP) and long-term depression (LTD) respectively.

Since memories are postulated as networks of neurons in the brain, altering synaptic strength is thought to
be one of the most important mechanisms that constitute memory and learning [18]. Synaptic plasticity
allows the body to strengthen and weaken certain networks and thereby influencing memories and learn-
ing processes. Synaptic transmission of signals and synaptic plasticity are crucial for proper functioning of
the central nervous system. Failure of these mechanisms are associated with many neurological and neu-
ropsychiatric disorders like schizophrenia, Alzheimer disease, depression and autism [3, 4]. Furthermore,
plasticity of synapses located in the brain (brain plasticity) is thought to play an important role in stroke re-
habilitation [19]. Therefore, it is of clinical importance to gain a better understanding of the mechanism that
influence synaptic plasticity.

The strength of synaptic transmission between neurons can be modified by various factors, like the density
of neurotransmitter receptors located on the postsynaptic neuron [20] and the quantity of neurotransmitters
released into the synapse [21]. If the amount of neurotransmitter released into the synapse exceeds a cer-
tain threshold in concentration that saturates the postsynaptic receptors, then the number of available and
properly functioning receptors will be the most important limiting factor [21, 22]. Controlling the number
of receptors at excitatory synapses is of fundamental importance in synaptic transmission [5]. It is there-
fore of great importance to understand the mechanisms behind receptor trafficking in dendrites and more
specifically in dendritic spines.

As mentioned in the previous section, changes in the size and shape of dendritic spines are connected with
a change in synaptic strength. Morphological changes that have been reported to accompany LTP include
growth of new dendritic spines, elongation of the spine neck, and enlargement of the spine head [15]. The
typical characteristics like a long neck and big head develop during LPT, as schematically shown in Figure 2.4.
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Figure 2.4: Dendritic spine morphologies as reported by [23]. Morphologies develop during long term potentiation as indicated. Figure
from [24].

2.2.1. RECEPTOR TRAFFICKING AT SYNAPSES

We know that the phenomena of synaptic plasticity depends strongly on the density of neurotransmitter
receptors at the PSD of the postsynaptic cell. Therefore it is interesting to investigate the factors that influence
this density. Three main mechanisms that drive the receptor traffic can be distinguished. They are shown in
Figure 2.5.

Figure 2.5: Schematic diagram of receptor trafficking mechanisms. Image: [25].

The first mechanism is endocytosis and exocytosis of receptors from intracellular vesicles. These are energy-
consuming processes in which receptors are transported from the cell membrane into the intracellular space
(endocytosis) or the other way around (exocytosis).

The second mechanism is anchoring of receptors at the PSD and has been the focus of numerous studies, for
example [8, 26]. The PSD partially consists of scaffold proteins, which are known to bind to the receptors. This
mechanism ensures trapping of receptors at the site of the PSD. Evidently, it is beneficial to ensure a higher
concentration of receptors at the PSD. This gives rise to another form of compartmentalization facilitated
by dendritic spines. Compartmentalization not only to isolate the spine from the rest of the dendrite for
electrical signals, but also to maintain a certain concentration of surface receptors, as suggested in [1].

The third mechanism controlling receptor trafficking at synapses is surface diffusion. In general, receptors
are not bound to the cell membrane, but can diffuse freely until being transported to the intracellular space
(endocytosis) or anchored at scaffold proteins (for example at the PSD) [27].

A factor influencing how these mechanisms work is the morphology of the dendritic spine on which the
synapse is located [15]. The morphology of a spine is nontrivial. The necessity of having this shape and
the function of spines are not well understood. Since it is widely accepted that changes of structure of the
brain are caused by changes of activity of the brain, research has focused on the implications of nontrivial
morphological structures [12–15, 28].
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2.2.2. EXPERIMENTAL TECHNIQUES TO INVESTIGATE RECEPTOR TRAFFICKING

Multiple experimental techniques are available to investigate the concentration and movement of surface
receptors. We will discuss two widely used ones: fluorescence recovery after photobleaching (FRAP) and
single particle tracking (SPT).

Fluorescence recovery after photobleaching (FRAP) is an experimental technique capable of quantifying lat-
eral diffusion in a thin film [29]. Part of this film is photobleached by a light pulse, after which the intensity is
monitored as the bleached part diffuses out and unbleached part diffuses in. Single particle tracking (SPT) is
an experimental technique in which motion of individual particles in a medium is observed [30]. In the case
of diffusive motion, the analysis SPT experiments can be used to provide a diffusion coefficient.

2.2.3. SYNAPTIC CROSSTALK

Crosstalk between synapses refers to instances in which components from one synapse influence the signal
transmission in other synapses. An example is when a summation of neurotransmitter released in a synapse
creates a spillover to other synapses and thereby creates extrasynaptic signaling [31, 32]. For specific signal-
ing, it is important that synapses can be strengthened and weakened individually in response to their specific
activity (synaptic plasticity). Synaptic crosstalk undermines the ability of the body to specifically control the
strength of individual synapses.

Since receptors can diffuse across the cell membrane, they can also be a cause of synaptic crosstalk. An im-
portant question is how an exocytic event in one synapse affects the amount of receptors in neighboring
synapses. In other words, if receptors are released in one spine, we would like to know what kind of impli-
cations this has on the concentration of receptors in neighboring spines. We would like to investigate the
influence of the morphology of dendritic spines on this synaptic crosstalk. A model concerning this question
does not exist yet. The morphology of spines is thought to cause compartmentalization enabling excitatory
synapses to function as individual components and we would like to explore to what extent this occurs.

2.3. RESEARCH QUESTIONS

After this introduction to dendritic spines and their role in the nervous system, we can formulate our research
question:

How does the morphology of dendritic spines influence the synaptic crosstalk?

The subquestions belonging to this main research question are:

How should the morphology of dendritic spines be defined?

What constitutes a good comparison between shapes?

What is a measure for the amount of synaptic crosstalk caused by receptor diffusion?

A model considering more than one synapse (multisynapse models) that integrates the nontrivial three-
dimensional morphology that typifies dendritic spines currently does not exist. Therefore the influence of
the shape of spines on their mutual interaction is not yet addressed.



3
EXISTING MODELS FOR SYNAPTIC

RECEPTOR TRAFFICKING

In this chapter we explore existing models for synaptic receptor trafficking. We distinguish single synapse
and multisynapse models and we make a subdivision based on how these models deal with the geometry of
synapses. Furthermore, we give an overview of the methods used and discuss their results.

3.1. SINGLE SYNAPSE MODELS

As the name suggests single synapse models model the synaptic receptor trafficking considering one synapse.
They typically investigate the mean first passage time (MFPT) from the top of the synapse to the dendrite
and the residence time of receptors at the postsynaptic density. A variety of models exist here we discuss a
selection of them.

3.1.1. HOLCMAN AND SCHUSS, 2011

Holcman and Schuss [33] took the nontrivial geometry into account and defined a domain of computation
that incorporated the relatively large head and narrow neck. They use analytic methods to compute the mean
first passage time from spinelike structures. More specifically, they study the residence time of a Brownian
particle from the spine head to an absorbing boundary at the end of the spine neck. These particles move
either on a two-dimensional (flat) or inside a three-dimensional domain. The two- and three-dimensional
composite domains Ω considered consist of a head, Ω1, connected through a small interface ∂Ωi to a nar-
row cylindrical neck Ω2 as shown in figure 3.1. The two-dimensional domain is a cross section of the three-
dimensional domain. The boundary of Ω is reflecting, except the far end of domain Ω2. Furthermore they
distinguish between a bottleneck connected by a smooth funnel to the neck and a sharp connection between
head and neck as in figure 3.1.

Holcman and Schuss compute the MFPT as proposed in [34] and consider a Brownian motion x(t ). The
expected lifetime of x(t ) in Ω, given x(0) = x ∈Ω, is the MFPT v(x) of x(t ) from x to ∂Ωa and the solution of
the mixed boundary value problem 

∆v(x) = − 1

D
for x ∈Ω

v(x) = 0 for x ∈ ∂Ωa

∂v(x)

∂n
= 0 for x ∈ ∂Ωr ,

(3.1)

9
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Figure 3.1: (a) The composite domain consist as used by [33]. The entire boundary is reflecting (∂Ωr , in red), except for a small absorbing
part ∂Ωa . (b) A cross section of a smooth and sharp connection.

where D denotes the diffusion constant, ∂Ωr denotes the reflecting boundary and ∂v(x)
∂n is the directional

derivative taken in the direction normal to the boundary at point x . If the size of the absorbing part ∂Ωa is
sufficiently smaller than the reflecting part ∂Ωr , it can be shown that the MFPT is to leading order indepen-
dent of x ∈Ω.

Both the MFPT from the head to the interface connecting the head and the neck,τx→∂Ωi and the MFPT from
this interface to the absorbing boundary, τ∂Ωi→∂Ωa are computed. The MFPT from the head to the absorbing
boundary can then be represented as

τx→∂Ωa = τx→∂Ωi +τ∂Ωi→∂Ωa ,

where the term τ∂Ωi→∂Ωa equals τx→∂Ωa averaged over ∂Ωi , with trajectories moving into Ω1 ending in an
absorbing boundary at ∂Ωi . See [34] for further details on this computation.

The presented results include the relation between neck radius and neck length and MFPT. The geometry
of the connection (smooth or sharp) affects this relationship significantly and to a larger extent in the two-
dimensional than in the three-dimensional case.

DISCUSSION

The method that Holcman and Schuss present is elegant and allows an analytical representation for calcu-
lation of the MFPT. The derivation of this representation, however, is based on heavy assumptions on the
geometry. For example, for diffusion on the surface of the three-dimensional domain the head is assumed
to be spherical. This model considers only MFPT from the head of the spine to the exit of the spine (to the
dendrite) and cannot be used for trapping at the PSD by assuming an absorbing boundary there, because
of assumptions on the geometry. For more complex geometries numerical methods have to be used. There-
withal the model considers a system of one synapse and therefore cannot be used or has to be heavily adjusted
to investigate the synaptic crosstalk between multiple synapses.

3.1.2. KUSTERS ET AL., 2013

Kusters et al. [1, 2] incorporated curved geometries in their work as well. They combined random walk sim-
ulations with calculations of mean first passage times to study the diffusive time scales and escape rates for
different geometrical properties of the domain of computation. They consider lateral diffusion on an axisym-
metric curved surface. The domain consist of a bulbous head and a funnel-like neck and is parameterized
as
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S(u,θ) =
 x(u,θ)

y(u,θ)
z(u,θ)

=
 R sinu cosθ

R sinu sinθ
h − R cosu

Au

 , u ∈ [umi n ,π], θ ∈ [0,2π],

where umi n is defined as

umi n := arg
u

{
h − R cosu

Au
= 0

}
.

R is the maximal radial distance of the surface, h a measure for the height of the funnel, and A a shape
parameter which is large for systems with a narrow neck and small for systems with a wider neck. T. For R = 1
and h = 4 the influence of A is shown in figure 3.2.

Figure 3.2: Influence of A on shape as parametrized by [1].

The in-plane Brownian motion of the particles on a curved surface is simulated using a method extensively
discussed in [35]. Briefly, the random walk is produced as trajectories of fixed length steps in random direc-
tions on a curved geometry with in-plane coordinates u and θ. On a curved surface both selecting a random
direction and traveling a fixed distance require some attention. A random directional unit vector −→w is of unit
length when we subject it to the constraint guu(wu)2+gθθ(wθ)2 = 1, where gi j are entries of the metric. Note
that for axisymmetrical surfaces gi j = 0 when i 6= j , i , j ∈ {u,θ}.

Next, a geodesic curve, r (s), in the direction of −→w is approximated, parametrized by the arc length s, using a
second order approximation of the tangential plane

r (s +ds) ≈ r (s)+ dr (s)

ds
ds + 1

2

d2r (s)

ds2 ds2. (3.2)

The first derivative is simply the unit tangent vector −→w and the second derivative is obtained by solving the
geodesic equation

d2r i

ds2 =−Γi
kl

dr l

ds

dr k

ds
, (3.3)

with Γi
kl the Christoffel symbols of the surface and r i the i th component of r . If a step size λ is used, this

method results in a shift in coordinates for every iteration given by
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∆u = wuλ− 1

2
Γu

uu(wu)2λ2 −Γu
uθwu wθλ2 − 1

2
Γu
θθ(wθ)2λ2,

∆θ = wθλ− 1

2
Γθuu(wu)2λ2 −Γθuθwu wθλ2 − 1

2
Γθθθ(wθ)2λ2.

(3.4)

This method leads to trajectories that are locally Brownian to second order in curvature. An extensive discus-
sion of this method in general can be found in [35] and an application to this problem can be found in [2].

Kusters et al. also calculate the MFPT. They do so using almost the same mixed boundary value problem
as [33]. A small modification is made however, Eq. (3.1) is substituted by

∇2
g W =− 1

D
, (3.5)

where D is the diffusion constant, W is the MFPT and ∇2
g is the Laplace-Beltrami operator, which can be

calculated using the metric g and Christoffel symbols. More on the metric of a surface and Christoffel symbols
can be found in Section 4.1.2 and Appendix B. The more general Laplace-Beltrami operator is used to account
for the curvature of the domain. With this substitution the calculation of the MFPT is equivalent for both
methods.

They find a general power law dependence for both the equilibrium time scale of a population of particles
and a single-particle characteristic time of escape time. The equilibrium time τeq depends on neck radius
and neck length by the general relations

τeq = (neck radius)−α, α> 0

τeq = (neck length)β, β> 0.

α and β are some positive constants and their exact value depends on the specific geometry.

DISCUSSION

The random walk method used by Kusters et al. [1, 2] is very flexible in terms of types of geometries it can
be used with. As long as the metric and Christoffel symbols of the surface are available this method can
be applied. In order to compute the metric and Christoffel symbols, it should be possible to calculate or
(numerically) approximate first and second derivatives of the parametrization of the surface. Therefore, we
require sufficiently smooth surfaces in order to apply this method.

Analytical calculation of the MFPT using Eq. (3.5) can be used to compare stochastic simulation results to.
Therefore it can be used as a benchmark for the simulation results. The model presented by Kusters et al. [1, 2]
focuses on one spine only. Hence, interactions between spines cannot be studied. The model is, however,
suitable to be extended to a multisynapse model.

3.2. MULTISYNAPSE MODELS ON SIMPLE TWO-DIMENSIONAL GEOMETRIES

The multisynapse models that exist model dendrites as simple shapes, like flat or cylindrical surfaces. Synapses
are modeled as components coinciding with the surface of the dendrite. The nontrivial shape of spines is re-
flected in different diffusive properties on these components, but is not explicitly taken into account. Here,
we discuss some of these models.
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3.2.1. CZÖNDÖR ET AL., 2012

Czöndör et al., [25], propose a model that uses random walk simulation on a flat surface. The model takes the
three major mechanisms of receptor trafficking into account: surface diffusion, anchoring at the postsynaptic
density, and endo/exocytic recycling of receptors. They define a flat working space, we callΩ, of length L and
width w with rebound conditions on each side. Postsynaptic spines are modeled as square obstacles with
lower diffusion constant and each synapse contains a square PSD which allows trapping. Also exocytic and
endocytic events were introduced.

Surface diffusion was modeled by updating the positions x(t ) and y(t ) of a particle each time step by incre-
menting them by

p
2D∆t Zx and

p
2D∆t Zy respectively, were Zx and Zy are realizations of a standard normal

distribution. This comes down to a simple application of the Euler-Maruyama method to the stochastic dif-
ferential equation

dX t =
p

2D dW t ,

where W t is a Wiener process. This represents two-dimensional diffusion of a single particle with constant
diffusion coefficient D and without convection. The mean squared displacement for each time step and each
particle is therefore E

[||X t+∆t −X t ||2
]= 4D∆t . The corresponding diffusion equation is the two-dimensional

diffusion equation with constant diffusion coefficient D and no convection

∂c(r , t )

∂t
−D∆c(r , t ) = 0, r ∈Ω.

If a receptor reached a postsynaptic area, it was set to diffuse with a lower diffusion coefficient. The simula-
tion method remains otherwise the same. Whenever a receptor reached a PSD area, binding to the PSD was
modeled by a random variable with a Bernoulli distribution with success probability proportional to the time
step ∆t and a certain predefined rate kon . During binding the receptor was set to diffuse with an even lower
diffusion coefficient. Detachment was modeled using a random variable with Bernoulli distribution with
success probability proportional to the time step, but with a possible different rate, ko f f , than for binding.

To mimic exocytic events, new trajectories were initiated. Here, the number of receptors, exocytic site, timing
and frequency of an exocytosis were specified.

To simulate endocytic events square endocytic zones (EZs) were introduced. The event of absorption is there-
after modeled in the same way as anchoring at the PSD, by a random variable with a Bernoulli distribution
with success probability proportional to the time step and a certain predefined rate kendo .

Czöndör et al. present results of their simulation in which they consider the influence of (extra)synaptic
endo/exocytic events on the receptor concentration in surrounding synapse(s). Furthermore, the outputs
of the simulation are directly comparable to single particle tracking (SPT) and fluorescence recovery after
photobleaching (FRAP) experiments and can therefore be easily benchmarked.

DISCUSSION

The work of Czöndör et al. in [25] incorporates the three major mechanisms influencing synaptic receptor
trafficking. It is very useful that their results are directly comparable to SPT and FRAP data.

They model synapses as flat surfaces which is not the typical shape of spines belonging to excitatory synapses.
However, the way trapping is modeled here can be integrated in a model that incorporates the typical three-
dimensional shape. The model allows for integration of multiple synapses, however, they do not regard
synaptic crosstalk.

In an equilibrium situation, Czöndör finds higher concentrations in the postsynaptic area. The explanation is
sought in the lower diffusion coefficient at this area. We want to review this. Take a two-dimensional diffusion
problem with a location dependent diffusion coefficient D(r ),
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∂c(r , t )

∂t
=∇ [D(r )∇c(r , t )] , for (r , t ) ∈ (Ω,R+),

with boundary conditions,

f r ac∂c(r , t )∂n = 0 for r ∈ ∂Ω

and initial condition,

c(r ,0) = c0(r ) for r ∈Ω.

We see that c(r , t ) :=
∫
Ω c0(r )dΩ∫

ΩdΩ
is an equilibrium solution for this system. Because of uniqueness, it must be

the unique solution to this system. Czöndör, however, finds a non-constant (and noncontinuous) equilibrium
solution. This is because the continuum mechanics counterpart of the stochastic process that is simulated,
is not the diffusion equation, but the Fokker-Planck equation,

∂c(r , t )

∂t
=∇2 [D(r )c(r , t )] .

A extensive analysis of stochastic differential equations and diffusion processes can be found in [36]. This is
an illustration of how easily a different diffusion process is implemented when using an ad hoc manner to
simulate stochastic differential equations.

3.2.2. BRESSLOFF ET AL., 2008

Bressloff et al. [37] proposed a model in which they model a dendrite as a two-dimensional cylindrical sur-
face with small, partially absorbing holes, which represent the transverse intersections of the spines with the
dendrite. In [37], they present an extension of their work in [38] where a model of receptor trafficking at a
single dendritic spine is treated.

They formulate a diffusion-trapping model on a cylinder with length L and radius l . They neglect the ex-
trinsic curvature of the membrane because protein receptors and spine necks are much smaller than the
circumference of the cylinder. Therefore, they represent their surface as a long rectangular domainΩ0,

Ω0 = {(x, y) : 0 < x < L, |y | <πl }.

Here, x is the coordinate in the direction of the axis of the cylinder and y is the coordinate in the radial
direction of the cylinder. At x = 0 they impose a nonzero flux boundary condition, which represent a constant
inflow of of new receptors. On the other end, at x = L, they impose a no-flux boundary condition, modeling a
reflecting boundary. On y =±πl they impose periodic boundary conditions,

c(t , (x, y +2kπl )) = c(t , (x, y)), k ∈Z.

Each spine neck is modeled as a circular intersection with radius ε, Ω j , where j labels the j th spine. The
surface of the cylinder excluding these small discs is denoted by Ωε = Ω0\∪N

j=1 Ω j . Because of the small

area of each spine, they assume the receptor concentration within each spine to be spatially homogeneous
and equal to c̃ j for spine j . The dendritic surface receptor concentration evolves according to the diffusion
equation
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∂c

∂t
= D∇2c.

On the boundary of eachΩ j , ∂Ω j , they impose the mixed boundary condition

ε∂nc(r , t ) =− ω j

2πD

(
c(r , t )− c̃ j

)
, r ∈ ∂Ω j , j = 1, . . . , N ,

where ∂nc is the outward normal derivative to Ωε. The physical interpretation is that the flux of receptors
between a specific spine and the dendrite depends on the difference in concentration between either side of
the boundary with ω j as effective hopping rate. A pair of differential equations determines the value of c̃ j

over time. These equations are not discussed here, but an extensive review of the full method can be read in
[37]. The initial condition that concludes this model is

c(r ,0) = δ(r − r 0), for some r 0 ∈Ωε.

An analysis of this model is done by constructing the steady-state solution using singular perturbation tech-
niques. These results are compared with numerical solutions of the full model and with a reduced one-
dimensional model.

They show that for long, thin dendrites the variation of the receptor concentration around the circumference
of the dendrite is negligible so that the dendrite can be modeled a simpler one-dimensional cable. They
remark that the difference between the one and two-dimensional can become significant in the case of short
dendrites with few spines. Further, they note that an important extension of their work would be to consider
a much more detailed model of receptor trafficking within each spine.

DISCUSSION

The paper of Bressloff et al., [37], is the most mathematical work considered. They give an extensive analysis
of their model and verify their results.

This work does not investigate how (the shape of) spines influence their own concentration or the concentra-
tion in neighboring spines. Moreover, they assume a constant inflow of receptors at one side of the domain
and do not explore the effect of the precise location of exocytosis.

3.2.3. OTHER MULTISYNAPSE MODELS

More multisynapse models do exist, but we will not give an extensive review of these.

Holman and Triller (2006), [39], propose a two-dimensional model in which they account for binding to scaf-
folding molecules in the PSD and the presence of obstacles to diffusion. They derive Markovian equation
and analyze steady-state solutions. They argue that when the fluxes involve a sufficiently large number of
receptors, the dynamics of the receptors can be modeled using standard differential equations of chemical
reactions and a system of differential equations is proposed and analyzed. Furthermore they suggest a way
to use the model to interpret FRAP data.

Earnshaw and Bressloff propose a model in [40] that is similar to their work in [37], discussed in section 3.2.2,
but also integrates binding of receptors to scaffold molecules in the PSD.
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3.3. MULTISYNAPSE MODELS INTEGRATING THREE-DIMENSIONAL MORPHOLO-
GIES

Multisynapse models integrating three-dimensional morphologies do not exist yet. Furthermore, a model as-
sessing the synaptic crosstalk between dendritic spines is lacking. In order to answer our research questions,
we created such models. In Chapter 4 we present them.



4
TWO MULTISYNAPSE MODELS INTEGRATING

THREE-DIMENSIONAL MORPHOLOGIES

In order to answer the research questions posed in Section 2.3, we use two different models of diffusion. The
first one is an atomistic, particle-based approach in which diffusion is seen as distinct particles undergoing
Brownian motion, the second one is a continuum mechanics approach in which we start from Fick’s laws
and their mathematical implications. Of course, these two are heavily related: in a environment where a
enormous number of individual particles undergo diffusion, randomness gets undetectable if we measure
the concentration of these particles. Simulating an enormous amount of particles and keeping track of the
concentration of these particles should therefore produce the same result.

These two notions of diffusion underlie the two models we developed. The first model regards diffusion
as a collection of individual particles undergoing Brownian motion. In other words, the behavior of single
particles is prescribed as a stochastic process and the state of the total system is the collection of the state of
all individual particles. We will call this model the stochastic particle-based model. The second model is based
on an application of Fick’s laws, a system of partial differential equation. These laws model (pure) diffusion
as the movement of a substance from regions of higher concentration to regions of lower concentration. This
model does not simulate individual particles, but merely the concentration of particles. We will call this
model the concentration-based model, also known as a continuum-scale model.

The reason we use two models to model essentially the same thing is two fold. First of all, the stochastic
particle-based model gives us insight into the statistics that are inextricably linked to a diffusion process.
First and second moments of first passage times are important statistics we would like to calculate and these
(stochastic) quantities are determined more easily in the framework of a model with stochastic nature. On the
other hand, simulating a stochastic process on a curved surface is hard [35, 41]. Methods based on projecting
a stochastic process on a flat surface onto a curved surface have to be handled with care, because approxima-
tion errors pile up quickly, whereby such techniques almost certainly represent a different diffusion process
than was intended [35]. We have seen an example of such a miss match between intended and simulated pro-
cess in Section 3.2.1. Because of this, we would like to benchmark it against one that does not use stochastic
processes, but a numerical solution to partial differential equations instead. Furthermore, when interested in
concentrations, a particle-based model needs a lot of particles to simulate concentrations with a reasonably
low influence of randomness. Therefore a concentration-based model will be less computational intensive
in such cases.

Before getting into the details of these methods, we discuss the components of the models which are the same
for both. This is primarily the geometry of the domain we regard and the way we would like to deal with the
notions of receptor trapping and endo-/exocytosis.

17
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4.1. GEOMETRY OF THE DOMAIN

In general, we consider a domain that consists of a dendrite and n dendritic spines distributed along the
dendrite. The dendrite is modeled as a cylinder of length l and radius Rd . Since protein receptors are much
smaller than the circumference of the cylinder, we neglect the extrinsic curvature of the membrane. There-
fore, as shown in Figure 4.1, the surface of the dendrite is represented as a rectangular domainΩ0,

Ω0 := {
(x, y) | 0 < x < l , |y | <π ·Rd

}
.

The boundary of this domain is denoted with Γ. The cylindrical property is preserved by imposing periodic
boundary conditions on y = ±π ·Rd . On this cylindrical surface dendritic spines are located. Each spine
intersects the surface, such that the intersection is a closed disc Ωbase

j of radius Rexi t
j around the coordinate

r j = (x j , y j ). Its boundary is called ∂Ω j ,

Ωbase
j :=

{
r = (x, y) ∈Ωdendr i te

∣∣∣ |r − r j | ≤ Rexi t
j

}
,

∂Ω j :=
{

r = (x, y) ∈Ωdendr i te

∣∣∣ |r − r j | = Rexi t
j

}
.

Furthermore, the surface of the cylinderΩ0, excluding the discsΩ j is denoted byΩdendr i te , so that

Ωdendr i te =Ω0 \
n⋃

j=1
Ωbase

j .

x

y

y =−π ·Rd

Ωdendr i te

x = l

Γ
y =π ·Rd

x = 0

Ωbase
j∂Ω j

(x j , y j )

Figure 4.1: Top view of domain of computation.

The domain of computation is an union of the domainΩdendr i te and the dendritic spinesΩ j . The dendritic
spines are modeled as out-of-plane protrusions of this surface. The morphology of these spines will be dis-
cussed in the next section.

4.1.1. MORPHOLOGY OF DENDRITIC SPINES

The dendritic spines are modeled as out-of-plane protrusions of the surface Ωdendr i te . They intersect the
dendritic surface, such that the domain of intersection isΩbase

j . Since it is not yet completely understood how

dendritic spines develop into their specific shape, there is no one clear answer to the question how we should
define their geometry. In order the investigate the effect of the characteristic shape of dendritic spines on the
diffusion process of receptors, we would like to have a definition that incorporates these characteristics. The
unpublished work of Miermans, Kusters & Storm [42] does that.

They use a Canham-Helfrich model to model the shape of membrane protrusions. This model is based on a
minimum energy principle. At equilibrium, the free energy of the shape is minimized. Canham [43] proposed
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that the behavior of membranes is governed by minimizing the bending energy. Helfrich [44] built on this
model and gave a more precise formulation.

Here, we give a brief explanation of the method of Miermans [42]. At t = 0 they define a flat membrane and
fix a circle with radius 1 on it, in Figure 4.2 denoted by Γ. The surface area A of the membrane enclosed by
this circle is in this state A0 = π. Then an iterative method is used to determine the shape of the membrane
in subsequent time steps. Every time step the surface area A is incremented while its boundary, Γ stays fixed
in plane. By minimizing the free bending energy the shape of the membrane is computed. This results in
an out-of-plane deformation of the part of the domain that is within these boundaries (the blue domain in
Figure 4.2). Boundary conditions are imposed on Γ to ensure smoothness of the membrane and to keep the
boundary Γ at its fixed location. The solution on each time step is obtained solving a constrained minimiza-
tion problem using Lagrange multipliers.

A0

Γ

line of intersection

Figure 4.2: Top view of working space of Miermans et al. The blue disk, enclosed by Γ, is incrementally swollen every iteration, which
results in an out-of-plane deformation (not shown here). The red line indicates the place where the intersections shown later are located.

The result of the described method are protrusions of the membrane as shown in Figure 4.3. It can be seen
that as the surface swells, characteristic features like a thin neck and large head form. The downside is that
we do not see long necks with this method, incorporating long necks can be an extension in future research.

(a) A= 1.500 ·A0. (b) A= 3.000 ·A0. (c) A= 5.000 ·A0.

Figure 4.3: Intersection of shapes for selected values of the surface area A as a multiple of the original surface area A0. Intersection is
taken at the location of red dashed line in Figure 4.2. Results produced by [42].
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The total domain of computation is the union of the cylindrical dendrite Ωdendr i te , the dendritic spines Ω j

and the borders between spines and dendrite ∂Ω j and is denoted byΩ,

Ω=Ωdendr i te ∪
n⋃

j=1

{
Ω j ∪∂Ω j

}
.

Surface receptors undergo a diffusion process defined on this domainΩ.

4.1.2. FORMALIZATION OF THE DOMAIN

We use a global parametrization S(α,β) for the surface,

S(α,β) :=
 x(α,β)

y(α,β)
z(α,β

 ,

with the associated metric

gαβ :=
(
Sα ·Sα Sα ·Sβ
Sβ ·Sα Sβ ·Sβ

)
, (4.1)

where Si are partial derivatives of S(α,β). From this we can calculate the Christoffel symbols Γk
i j as

Γk
i j =

∑
m=α,β

1

2
g km

(
∂gmi

∂ j
+ ∂gm j

∂i
− ∂gi j

∂m

)
, i , j ,k =α,β,

where gi j are entries of the of the metric gαβ and g i j entries of the matrix inverse to the metric gαβ from
Eq. (4.1).

A complete derivation of the parametrization of the surface can be found in Appendix B.

4.1.3. BOUNDARIES

The domain as defined in the previous section and shown in Figure 4.1 has multiple boundaries with associ-
ated boundary conditions. There are three boundaries we distinguish:

• The boundaries at x = 0 and x = l ;
• The boundaries at y =±π ·Rd ;
• The optional boundary at the site of a PSD.

The first type, the boundaries at x = 0 and x = l are the ends of the cylinder, but do not model the ends of the
dendrite. The dendrite runs to the cell body on one side and continues on the other side until it reaches its
end. Therefore, in practice, receptors can leave and enter our domain through these boundaries. Neverthe-
less, we choose full reflection at these boundaries. The reason we do this is twofold. The processes we study
inside our domain of computation are similar to the processes that take place on the dendrite just outside
these boundaries (so at x < 0 and x > l ), therefore we can assume that as many receptors enter and leave
through either of these boundaries and for simplicity we can model this behavior as reflection. The second
ratification is that, as will be explained in Chapter 5, we have a preference for a closed system, in which mass
is conserved. Reflective boundary conditions ensure that. Periodic boundary conditions would also ensure
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mass conservation, but are unsuitable, because they couple left and right boundary, for which there is no
physical basis.

As mentioned we choose periodic boundary conditions for the boundaries at y =±π ·Rd . Since our domain
represents a cylinder, this is a natural choice.

In some test cases a boundary is defined at the site of the boundary of the PSD. In other words, the PSD will
not be part of the domain of computation in these cases. If so, these boundaries are completely absorbing
boundaries. The optional boundaries at the site of a PSD need a bit more explanation. We will elaborate on
this, when discussing the designed models.

4.1.4. MECHANISMS OF RECEPTOR TRAFFICKING

In Section 2.2.1 we have discussed the three major mechanisms with which receptor traffic is regulated. Both
our models integrate three major components of receptor trafficking: surface diffusion, anchoring at the
postsynaptic density and exocytosis.

ANCHORING AT THE PSD

The mechanism a nerve cell employs to anchor receptors to the postsynaptic density is modeled in two ways.
Firstly, by including the binding and unbinding process taking place at the PSD, schematically shown in
Fig 4.4a. In this case the receptors are allowed to undergo reversible binding at the site of the PSD. Although
the PSD contains different domains with possibly different binding characteristics, these interactions were
simplified and comprehended in a binding rate, kon , and a dissociation rate, ko f f , thus adopting the same
approach as Czöndör et al. [25]. The values of these binding rates were chosen according to the study of [25]
and have unit [s−1]. In modeling the PSD we do not account for a possible saturation of scaffold molecules in
the PSD. This means that the rates kon and ko f f are time and concentration independent.

The second manner in which we account for the presence of the PSD is to model its boundary as an absorb-
ing boundary. A schematic diagram of this version of the model is given in Fig. 4.4b. The motivation behind
this approach is that the time a receptor (typically AMPA and NMDA receptors) spends at the surface of the
cell membrane before undergoing endocytosis is limited [45]. The receptors can diffuse freely for a limited
time until being transported to the intracellular space, where they are disintegrated or transported for exo-
cytosis elsewhere. Since this lifetime is limited and the number of synapses in which a receptor can reside is
constrained, the first PSD it encounters after exocytosis is the most relevant one.

(a) Trapping at the PSD. The parameters concerning trapping
are kon and ko f f .

(b) Absorption at the boundary of the PSD.

Figure 4.4: Schematic diagram of the model including surface diffusion and trapping (left) or absorption (right) at the boundary of the
PSD. Original in [25].

EXOCYTIC AND ENDOCYTIC EVENTS

Exocytic events occur at the beginning of a simulation in our models. They are regarded as initial conditions.
For the stochastic particle-based model this means trajectories of individual particles are initiated at the lo-
cation of exocytosis. For the concentration-based model this means that at the beginning of the simulation
the concentration is elevated on the location of exocytosis. Two locations for exocytosis are distinguished:
spinal exocytosis and dendritic exocytosis. This resembles actual processes in neurons. The release of recep-
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tors from the intracellular space to the cell membrane are both observed on the dendritic surface, as well as
in spine heads [46].

We do not introduce exocytic events during a simulation, although it would be possible in both models. In
the particle-based model trajectories would have to be initiated during the course of a simulation, in the
concentration-based model, exocytic events could be seen as a time-dependent source term. Since we are not
investigating the influence of different frequencies or locations of exocytosis in one simulation, this feature is
left out. If needed in the future, this would be relatively easily to implement.

We do not designate locations for endocytosis. We are interested in the effect of the shape of dendritic sur-
face on the diffusion process of receptors after exocytosis, before the receptor is transported back into the
intracellular space.

4.1.5. PARAMETERS

Both models use a number of parameters. Model parameters and their origin are given in Table 4.1. The
diffusion coefficient D is a function of the temperature, the viscosity of the medium and the geometrical
properties of the diffusing particles. Here, we choose the value of D corresponding to estimated values from
experiments in [25].

Category Parameter Notation Value Dimension Source

Dimensions of geometry Dendrite width w 2.5 µm This study.
Dendrite length L 5 µm This study.
Exit radius spine Rexi t 1 µm [47]
Spine spacing a 2.5 µm [48]
Radius of PSD RPSD 0.2 µm [47]

Positions Exocytic location (x0, y0, z0) varying, see text. µm [46]
Numbers Number of receptors Npar t 104 – 106 - This study.
Times Time step ∆t 2.5 ·10−4 s This study.

Duration of simulations Tend varying, see text. s This study.
Diffusion coefficients Diffusion coefficient D 0.1 µm2/s [49] *

Kinetic rates Receptor binding rate kon 20 s−1 [25]
Receptor dissociation rate ko f f 1 s−1 [25]

Table 4.1: Model parameters for simulations.

4.2. MODEL I: STOCHASTIC PARTICLE-BASED MODEL

In this section we present the stochastic particle-based model that we designed and implemented. We repre-
sent particles as non-interacting point particles. They do not interact with each other, meaning they can pass
each other freely and even – theoretically – be at the same position at the same time. Of course, this is physi-
cally incorrect. Receptors have nonneglectable dimensions and interact with other receptors as well as other
proteins present in the cell membrane. However, since we are interested merely in the effect of the curvature
of the surface on the diffusion process of neurotransmitter receptors, we neglect these interactions.

The particles are subjected to random movement that can be described using a stochastic differential equa-
tion, Brownian motion. The aim of this method is simulating the in-plane Brownian motion of particles on
a curved surface. This results in a random walk simulation of which the details will be made clear in this
section.

4.2.1. STOCHASTIC PROCESSES ON CURVED SURFACES

Our domain of computation, Ω can be seen as a two-dimensional Riemannian manifold B equipped with a
Riemannian metric g . This metric defines a volume measure on B, which we denote with dVolg . If a diffusion
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process defined on the manifold B is defined by an elliptic operator and the process conserves the integral of
the diffusion quantity with respect to dVolg , then the adjoint operator of L, L∗ is the generator of a stochastic
process corresponding to the diffusion process intended. A review of the basics underlying the construction
of diffusion on manifolds can be found in [41].

4.2.2. SIMULATING STOCHASTIC PROCESSES ON CURVED SURFACES

Simulating a diffusion process on a curved surface is not trivial. Diffusion processes on manifolds are often
established by projecting a stochastic process on a flat space onto the surface. Solutions can than be obtained
by considering the flow of diffeomorphisms on the surface [36]. But for irregular surfaces such analytic tech-
niques are too complex to constitute a realistic solution. Christensen [35] states that in such cases extreme
care has to be taken, because otherwise a different diffusion operator is represented from what was initially
intended.

Christensen proposes an approach to simulations of diffusive processes in general, which can also be applied
to diffusion on general manfolds. He introduces a Monte Carlo type method with simulates the paths of
single particles. We give a brief summary of the principles on which this method is based and an insight in
our implementation. We focus on an application of this method to diffusion with an constant (and isotropic)
diffusion tensor.

The method of [35] is based on the observation that every Monte Carlo update scheme moving a particle from
r 0 to r in a time interval ∆t prescribes a certain transition rate and that a correct numerical method matches
the first and second moments of this transition rate to the ones of the original diffusion equation.

The method of Christensen starts of with an equation describing the development of a particles probability
distribution P over a surface B ∈R3, with constant and scalar diffusion tensor D

∂P

∂t
= D∇2

g P.

Here, ∇2
g is the Laplace-Beltrami operator associated with the metric g . The Laplace-Beltrami operator can

be expressed in the coordinates associated with the manifold B

∇2
g P = 1√|det g |

2∑
i , j=1

∂i

(√
|det g |g i j∂ j P

)
, i , j = 1,2, (4.2)

where gi j are entries of the of the metric g and g i j entries of the matrix inverse to the metric g .

An update routine is constructed, involving two spatial and two temporal components specified in Table 4.2.
f (ξ) and l together represent the radial jump distribution in the physical space and h(ζ) and τ represent the
distribution of waiting times between successive jumps.

Component Description
ξ dimensionless radial jump length
f (ξ) dimensionless radial distribution
l > 0 typical jump length
ζ dimensionless temporal jump length
h(ζ) > 0 dimensionless temporal distribution
τ> 0 time scale

Table 4.2: Components representing jump distribution in physical space and waiting times between jumps of method proposed by
Christensen [35].

The moments of f (ξ) and h(ζ) are denoted by ξm and ζm respectively. Furthermore, the dimensionless

(scalar) diffusion tensor b = Dζτ/ξ2l 2 is introduced. Now, we provide the update mechanism that imple-
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ments the simulation of a moving particle from a starting position (r , t ) to (r +∆r , t+∆t ) in an n-dimensional
environment. The procedure is given in Alg. 1.

Algorithm 1 Algorithm as presented by [35].

Initialization: Calculate b = Dζτ/ξ2l 2.
1: Draw a dimensionless waiting time ζ from distribution h and set ∆t = ζτ/(2n).
2: Choose a test step ∆r :

a. Choose a unit vector w from a uniform distribution over all directions.
b. Choose a dimensionless, radial jump length ξ from distribution f .
c. Calculate ∆r by moving a length |pbw |ξl along a geodesic in the direction of w .

3: Update (r , t ) −→ (r +∆r , t +∆t ).

Analytic solutions of a geodesic are not generally found. However, if the jump length is small enough, good
approximations can be easily obtained using a Taylor expansion.

4.2.3. SIMPLIFICATIONS AND IMPLEMENTATION

Simplifications to the scheme of [35] are possible. Christensen recommends to use fixed steps in space and
time, because any couple of distributions f and h will do if l is small enough. We adopt this recommendation
and fix a spacial step sizeλ. Furthermore, since we consider diffusion on a surface we fix the dimension n = 2.
Alg. 1 then reduces to Alg. 2.

Algorithm 2 Algorithm as presented by [35], adapted to a fixed spacial step size λ.

Initialization:
Fix a spacial step size λ> 0.
Set ∆t =λ2/4D .

1: Choose a test step ∆r :
a. Choose a unit vector w from a uniform distribution over all directions.
b. Calculate ∆r by moving a length λ along a geodesic in the direction of w .

2: Update (r , t ) −→ (r +∆r , t +∆t ).

A geodesic curve parametrized by arch length s can be approximated in the same way [2] did, as given in
Eq. (3.2). The Taylor expansion used is

r (s +ds) = r (s)+ dr (s)

ds
ds + 1

2

d2r (s)

ds2 ds2 +O(ds3). (4.3)

If the spatial step size λ is small enough, leaving out the O(ds3)-term in Eq. (4.3) constitutes a good approx-
imation. The second order terms can be calculated as in Eq. (3.3). The resulting updating scheme for the
positions is then given by Equation (3.4).

4.2.4. MODELING ANCHORING AT THE PSD

Binding and unbinding at the PSD are comprehended in the two rates kon and ko f f . These rates are measures
for how big the probability is that in a certain time interval ∆t the probability of binding and unbinding
is. Additionally, this probability should be proportional to the size of this time interval. These notions are
incorporated in the following implementation.

Whenever a receptor reaches a PSD area, binding to the PSD is modeled by a random variable with a Bernoulli
distribution with success probability equal to the product of the time step∆t and the binding rate kon . While
a receptor is bound to the PSD, it remains static and does not move. Detachment is modeled using a random
variable with Bernoulli distribution with success probability equal to the product of the time step and the
dissociation rate, ko f f .
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4.2.5. INTRODUCING AN EXOCYTIC EVENT

An exocytic event occurs at the beginning of a simulation only, it serves as an initial condition. For the
stochastic particle-based model this means that trajectories of receptors are initiated at the location of ex-
ocytosis. We can decide per individual receptor where its trajectory starts, we are not bound to grid points or
finite dimensional spaces in which a solution has to be sought. This makes this method a very flexible one.

In our simulation we release all receptors at once, at time zero. If required, our model allows for multiple
exocytic events during the lifetime of a simulation as well as a continues release of receptors over some time
interval. The location of exocytosis can differ per event and per receptor. There is a lot of flexibility, which
makes this method such a powerful tool. The location of such events in our simulation will differ per experi-
ment, since we would like to consider both the effect of spinal as well as dendritic exocytosis. Naturally, when
presenting results, the details of the setup are given.

4.2.6. BOUNDARY CONDITIONS

An additional advantage of this implementation is that boundary conditions like reflection, absorption or a
mixture of the two are easily implemented. Since the paths of single particles are simulated we can apply the
boundary conditions per individual particle. If a particle encounters a reflecting boundary, geometrical rules
of reflection can be applied. If a particle encounters an absorbing boundary, it is removed from the system.

Special care has to be taken when a particle reaches a transition between domains, typically when it reaches
the boundary of a spine while diffusing over the dendrite or vice versa. Diffusion on the different domains
Ω0 (dendrite) and Ω j (spines) are handled separately, since the metric corresponding to the spine surface
is more complicated than the metric of the dendritic surface, which is a flat surface. However, for particles
reaching the intersection between the two (∂Ω j ) a methodology for transition has to be developed. Details
can be found in Appendix D.

4.3. MODEL II: CONCENTRATION-BASED MODEL

In this section we present our other, concentration-based model. As will come apparent later, this model will
help us answer some of the research questions easier than the first model. Whereas the particle-based model
is ideal for measuring first passage times and its statistics, this model needs to simulate a big number of
particles if we would like to have information on concentrations at different locations and times. The reason
is that due to stochastic variations concentration levels will fluctuate and randomness only gets negligible
when a lot of particles is used or – in the case of an equilibrium – the mean is taken over a large number
of time steps after reaching equilibrium. With a large number of particles this model gets computationally
cumbersome and an alternative is appreciated. Furthermore, we would like to benchmark our first model to
this one, thus validating it.

This model is based on a system of partial differential equations that model the diffusion process. The un-
known quantity is the concentration of surface receptors within the domain of computation. Because we
are dealing with a non-trivial geometry, our system cannot be solved analytically and we will need numer-
ical methods to solve it. We choose for the application of a finite element method (FEM) and discuss how
simulations are set up. Additionally the way the notions of trapping and exocytosis are dealt with will be
explained.

The weak formulation and discretization used for the FEM scheme can be found in Appendix 6. The im-
plementation and execution of the FEM-scheme is handled by Nutils, an open source Python programming
library for finite element applications. More information on Nutils can be found on nutils.org. The software
package can be downloaded on GitHub: github.com/nutils.

http://www.nutils.org/
https://github.com/nutils/nutils
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4.3.1. GOVERNING EQUATIONS

On the domain of computation Ω surface receptors are allowed to diffuse freely. Let C (r , t ) denote the
concentration of surface receptors within the domain of computation. The receptor surface concentration
evolves according to the diffusion equation

∂C

∂t
= D∇2C , (r , t ) ∈Ω×R+,

where D is the diffusion coefficient and ∇2 denotes the Laplace-Beltrami operator. This operator is consistent
with the Laplace-Beltrami operator of Eq. (4.2). It is a generalized version of the Laplace operator and operates
on functions defined on surfaces in Euclidean space or – more generally – on Riemannian manifolds.

4.3.2. MODELING ANCHORING AT THE PSD

Within this model we deal with the notion of trapping by modeling a binding process at the postsynaptic
density. In order to incorporate binding, we define two new quantities: the concentration of free surface
receptors, CF (r , t ), and the concentration of bound surface receptors, CB (r , t ).

At the site of a PSD, free surface receptors can change into bound surface receptors, thereby losing their
diffusive properties. The rate with which this happens is proportional to the concentration of free surface
receptors and the binding rate, kon . This process serves as a positive source term for function of the concen-
tration of bound particles and as negative source term (well) for the concentration of free particles. The other
way around, at the site of a PSD, bound receptors can change into free surface receptors, regaining diffusive
properties. This process is proportional to the concentration of bound surface receptors and the dissociation
rate, ko f f .

These processes can be summarized in the following system of partial differential equations


∂CF

∂t
= D∇2CF − KonCF +Ko f f CB ,

∂CB

∂t
= KonCF −Ko f f CB .

(4.4)

The binding and dissociation rates are only valid in the region of the PSD and thus become functions of
position, that are defined as:

Kon(r ) =
{

kon

0
r ∈ PSD,
otherwise.

Ko f f (r ) =
{

ko f f

0
r ∈ PSD,
otherwise.

(4.5)

4.3.3. INTRODUCING AN EXOCYTIC EVENT

Again, exocytosis occurs at the beginning of a simulation and is therefore implemented as an initial condi-
tion. There are some differences with model I however. For the stochastic particle-based model their is no
objection in releasing all particles in exactly the same place. This could be seen as an initial condition that
takes on the form of a Dirac delta function that is zero everywhere except for the location of exocytosis. The
drawback for such an initial condition is that it is very hard to implement in a finite element framework, since
the measure of such a location of exocytosis is zero and the function value at this point does not exist. We
overcome these challenges by defining a surface, rather than a point, of exocytosis. This surface is typically
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a closed, simply connected subspace Aexo of our domain of computation, located either on the dendrite or
one a spine. The initial condition is then prescribed as follows:

CF (r ,0) =
{

c0

0
r ∈ Aexo ,
otherwise,

CB (r ,0) = 0 everywhere.

(4.6)

c0 is the initial concentration of unbound particles at the region of exocytosis Aexo . Also this definition creates
implementational difficulties, since the function for CF (r ,0) is discontinuous. The way this is dealt with can
be found in Appendix C.3.

4.3.4. BOUNDARY CONDITIONS

We would like to model the boundaries as determined in Section 4.1.3. To preserve the cylindrical topology
of the dendritic shaft, we impose periodic boundary in the y-direction,

C (x, y, t ) =C (x, y +2πkRd , t ), ∀k ∈Z. (4.7)

To model reflection at the ends at x = 0 and x = l we impose homogeneous Neumann boundary conditions,

∂C

∂x
(0, y, t ) = ∂C

∂x
(l , y, t ) = 0. (4.8)

As mentioned, for this model we will only use the variant in which the PSD is modeled as a location where
receptors can bind and unbind. Since the interaction between free and bound receptors are modeled by
Eq. (4.4), no boundary condition at the interface between PSD and rest of the spine is required.

4.3.5. SIMULATING THE DIFFUSION EQUATION ON A CURVED SURFACE

To numerically solve the system of partial differential equations of Eq. (4.4) with initial conditions given in
Eq. (4.6) and boundary conditions in Eqs. (4.7, 4.8), we use a finite element method and a implicit time inte-
gration scheme. The details can be found in Appendix C.

4.4. SIMILARITIES AND DIFFERENCES BETWEEN MODEL I AND II

Both models possess their own characteristics. Here we briefly summarize and bundle their similarities and
differences.

In the stochastic, particle-based model we are – as the name suggests – able to track the trajectories of indi-
vidual particles. This allows us to obtain a lot of information out of the system. First passage times are easily
computed and by the means of Monte Carlo type methods many statistics can be derived from simulations.
Another advantage of this scheme is its flexibility. Complicated boundary conditions are easily implemented,
by applying geometric rules. Because the method is not bounded by discretizations in place, new trajectories
can be initiated and existing ones can be terminated on any location at any time step.

However, when we would like to assess concentrations of particles at a certain location or time, we need to
simulate a lot of particles or average over some time steps so that randomness gets undetectable or con-
fidence intervals get reasonably small. Neglecting the initiation and postprocessing – computation time is
proportional to the number of particles, making this model uninviting to simulate concentrations.
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Another benefit of the concentration-based model is that it simulates concentration by nature. When we are
interested in concentrations, this method is less computationally intensive. When using a implicit method for
time integration, this scheme generally handles larger time steps. This model is less flexible, because initial
conditions and intermediate solutions have to be sought in the space spanned by the basis functions. This
makes it harder to simulate the analog of the release or capture of individual particle(s). Boundary conditions
are less easily applied, because they have to be incorporated in the FEM-framework and cannot be applied
ad hoc, as in the particle-based model. Furthermore, a different system of partial differential equations has
to be solved in order to calculate mean first passage times, which essentially doubles the computation time if
this quantity needs to be derived as well. Other moments of first passage times, like the standard deviation,
cannot generally be obtained.



5
DESIGN OF TEST CASES

Is this chapter we present the test cases that were used to help answer the research questions described in
Chapter 2. The results of the implementation of these test cases are discussed in Chapter 6. All test cases
have a similar design. A dendrite of certain length and radius is introduced with two spines attached to it.
This setup allows us to explore the influence of the morphology of the spines on the diffusion process.

5.1. DOMAIN OF COMPUTATION

The geometry of the test cases is schematically shown in Figure 5.1. We define a working space of length l
and width w = 2π ·Rd , where Rd denotes the radius of the dendrite. This area is populated by two circular
geometries modeling the entry of two spines. The centers of these circles are spaced at a distance of a in the
x-direction and the radius is denoted by Rexi t .

O
x

y

w

l

spine 1 spine 2

Rexi t Rexi t

a

exocytosis

Figure 5.1: Top view of geometry of test cases.

For the morphology of the spines we use the results of [42], as discussed in Section 4.1.1. We use three different
morphologies, corresponding to a surface area of A = 1.5, 3.0 and 5.0.

5.1.1. WHAT CONSTITUTES A GOOD COMPARISON BETWEEN SHAPES?

The used spines can be found in Figure 5.2. By construction the size of these three shapes (corresponding to
A = 1.5, 3.0 and 5.0) differ significantly. This difference complicates the mutual comparison. Take into mind
two spines with the same shape but different size, differing from each other by scaling with a certain factor.

29
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On average, a particle being released on the dendrite (dendritic exocytosis) will take more time to travel to
the top of the bigger spine than to the top of the smaller spine. This is, however, not due to a difference in
shape, but a difference in size. This demonstrates the difficulty in comparing the influence of the shape on the
diffusion process when the size of the spines differ heavily. The question will then always rise: is a measured
difference a consequence of shape or of size?

Figure 5.2: Shapes of used spines. A indicates the factor the surface area of the spine has swollen compared to the flat state.

It is clear that we have to compensate for this size difference. A natural way to do this is to assign a scaling
factor to each spine to make them comparable. There are multiple ways to define this scaling factor. Straight-
forward options include:

(i) Equalizing the shortest distance from the dendrite (the plane at the z = 0 level);

(ii) Equalizing the out-of-plane surface area.

There is no obvious choice in how to scale the spines. We explain and motivate the choice we made, but the
reader should be aware that alternative approaches could also be suitable and might lead to different results.

We choose to rescale the spines in the following way. For each spine a circle is defined on the dendrite with
as center the point where the axis of the spine intersects the dendrite and fixed radius. After normalization
we fix this radius to 1. We take the surface area of a spine defined by swelling parameter A = 1.5 as reference
area. Then we scale the other spines down in such a way that the surface area enclosed by the defined circle
and the boundary of the postsynaptic density equals the reference area. For clarity, these surfaces are shown
in Figure 5.3.

The chosen method is motivated by the following two arguments:

• The circles on the dendrite corresponding to each spine (blue circles in Fig. 5.3) all have the same di-
mensions. Therefore the probability of a particle reaching such a circle is equivalent for all spines if we
ignore boundary effects of the domain and draw from the uniform distribution to determine a starting
position of this particle on the dendrite;

• After reaching one of these circles the available surface area between this circle and the postsynaptic
density (of which the boundary is depicted with blue circles in Fig. 5.3) is equal for each spine shapes.

From now one we will refer to the surface area of the surfaces between the red and green circle in Fig. 5.3 as
the reference surface area, Ar e f .
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Figure 5.3: Spines after rescaling. The green surfaces have equal surface area.

5.2. THE POSTSYNAPTIC DENSITY

As discussed in Chapter 4, the ongoing binding process at the postsynaptic density is modeled in two ways.
The first way is to mimic the binding and unbinding process at the site of the PSD (model I and II), the second
way is to treat the boundary of the PSD as an absorbing boundary (model I only).

5.3. EXOCYTOSIS

We would like to assess the influence of shape of a surface on the thereon ongoing diffusion process, but more
specifically we would like to determine the differences of spinal and dendritic exocytosis. In order to do this,
we designate locations for both types.

5.3.1. DENDRITIC EXOCYTOSIS

In case of dendritic exocytosis, the most straightforward location is on the dendrite, in the middle between the
two spines as indicated in Fig. 5.1. For the particle based model we will release all particles at the same point,
exactly in the middle at (x, y) = (l/2,0). For the concentration-based model, we define a disk of exocytosis,
Aexo , with centre at (x, y) = (l /2,0).

5.3.2. SPINAL EXOCYTOSIS

In case of spinal exocytosis it is harder to designate a location of exocytosis. We choose to position the location
of exocytosis at the height on a spine at which there 10% of the reference surface area, Ar e f , between this
position and the boundary of the PSD (blue in Fig. 5.3) and 90% of Ar e f between the location of exocytosis
and the red circles located on the dendrite as shown in Figure 5.3. This is clarified further in Fig. 5.4.
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(a) A = 1.5. (b) A = 3.0. (c) A = 5.0.

Figure 5.4: The green surface has a surface area of 10% of Ar e f and the blue surface has a surface area of 90% of Ar e f . The red circle
indicates the height of exocytosis and the grey surface represents the PSD.

5.4. CROSSTALK

One of our research questions states:

What is a measure for the amount of synaptic crosstalk caused by receptor diffusion?

As explained in Section 2.2.3 crosstalk is caused by a spillover of neurotransmitter from one synapse into
another synapse (see [32]) or by the lateral diffusion of receptors from a spine to neighboring spines. We
focus on the latter one. As opposed to the first version of crosstalk, the second one is not yet quantitatively
assessed in literature. This also means that no definition of a measure of synaptic crosstalk caused by receptor
diffusion has been given yet. Therefore we define our own procedure to assess the amount of crosstalk, which
we base on the following insights:

• The lifetime of the receptors we are regarding (typically AMPA and NMDA receptors) does not allow
them to visit a great number of synapses [45]. The receptors can diffuse freely for a limited time until
being transported to the intracellular space, where they are disintegrated or transported for exocytosis
elsewhere;

• We know from experiments that receptors are exocytosed in stimulated spines and adjacent dendrites
[46].

The first insight leads to the following assumption: since the lifetime of a receptor is limited and the number
of synapses in which a receptor can reside is constrained, the first PSD it encounters after exocytosis is the
most relevant one. Combining this with the experimental result that the release of receptors is targeted on
specific spines, we give our definition of a receptor that causes crosstalk in Definition 1.

Definition 1. A receptor that causes crosstalk is a receptor which, after being exocytosed in a specific spine,
reaches the PSD of another spine before it reaches the PSD of the spine it was released in.

Now we can define a measure of crosstalk of a certain system or simulation. It is given in Definition 2.

Definition 2. The amount of crosstalk in a certain system is defined by expressing the number of receptors
that cause crosstalk by Definition 1 as a percentage of the total number of receptors exocytosed in a specific
spine.

The procedure we developed to measure crosstalk can be used with the stochastic particle-based model. In
this case we treat the boundaries of the PSDs as absorbing boundaries, since we are only interested in the first
PSD a receptor reaches. An exocytic event is created in one of the spines, by initiating trajectories of particles
their, we track these particles until they reach the boundary of a PSD. Once it does, it is recorded which PSD
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boundary it reached and how long it took to get their. This data will form the basis of the results considering
crosstalk.

A flow chart depicting the algorithm can be found in Appendix D.





6
RESULTS

In this chapter we present the results obtained after implementation and running simulations of the particle-
based as well as the concentration-based model. We know that exocytosis occurs on the dendrite surface as
well as in spines heads [46]. We would like to know what the effect of different locations of exocytosis is on
the receptor concentration in spines in the times following this exocytosis. Furthermore, we are interested in
what role the morphology of spines play, considering both types of exocytosis.

We subdivide the results in correspondence with these two locations of exocytosis. First we present results
of simulations starting from dendritic exocytosis, followed by results of simulations starting with spinal exo-
cytosis. Results from both models are presented in similar simulation setups. An extensive discussion of all
outcomes and corresponding conclusions is documented in Chapter 7.

6.1. DENDRITIC EXOCYTOSIS

In this section we present the results of the simulations that were initiated by dendritic exocytosis. We are
interested in how the shape of spines alters the temporal evolution of receptor concentration in neighboring
spines after dendritic exocytosis.

In these simulations we use the geometry as shown in Fig. 5.1. The precise parameters can be found in Ta-
ble 6.1. The initial condition represents an exocytic event on the dendrite, in the middle between two spines,
i.e. with (x0, y0, z0) = (2.5,0,0). For the particle-based model all particles trajectories are initiated at this co-
ordinate. For the concentration-based model a circular region with this coordinate as its centre is defined, in
which an increased concentration is defined at the moment of exocytosis. This leads to a situation in which
at the time of exocytosis the available surface on both sides from the location of exocytosis is equal. This is
clarified in Figure 6.1.

We start with presenting results from simulations in which the postsynaptic density is modeled as an absorb-
ing boundary. This is an simplified version of the model, in which particles that reach the PSD are not longer
taken into account for the remainder of the simulation. In reality, however, particles reaching the postsynap-
tic density can bind to scaffold proteins present in the PSD. In an extension of the model, we incorporate this
binding and dissociation process. The results of this version are also discussed.

6.1.1. ABSORPTION AT THE POSTSYNAPTIC DENSITY

Next, we consider the version of the model in which particles reaching the boundary of any PSD are taken out
of the system, hence treating this boundary as an absorbing boundary. Since in this version it is possible for
particles to leave the system and there is no source term involved, the equilibrium state of this version will be

35
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Figure 6.1: In the case of dendritic exocytosis the available surface on both sides of the location of exocytosis is equal. The blue and
green colored surfaces have equal surface area. The red triangle indicates the location of exocytosis.

Category Parameter Notation Value Dimension

Dimensions of geometry Dendrite width w 2.5 µm
Dendrite length L 5 µm
Exit radius spine Rexi t 1 µm
Spine spacing a 2.5 µm
Radius of PSD RPSD 0.2 µm

Positions Exocytic location (x0, y0, z0) varying, see text. µm
Numbers Number of receptors Npar t 104 or 106 -
Times Time step ∆t 2.5 ·10−4 s

Duration of simulations Tend 300 s
Diffusion coefficients Diffusion coefficient D 0.1 µm2/s
Kinetic rates Receptor binding rate kon 20 s−1

Receptor dissociation rate ko f f 1 s−1

Table 6.1: Model parameters for simulations.

an empty system – the trivial solution. This implementation is used to keep track of which PSD each particles
encounters first and how long they need to do so. With this information we can calculate an estimate for the
mean first passage time (MFPT) and thereby study how different compositions of geometry influence this
statistic. This feature is unique to the particle-based model and therefore this version is only implemented in
that model.

In a system of two spines with dendritic exocytosis, we have a conditional mean first passage time for the
boundary of the PSD of the left spine and another conditional mean first passage time for the boundary of
the PSD of the right spine. We present a formal definition of these conditional first passage times.

Definition 3. Let X t be the stochastic process, which represents the diffusion of a single particle. Let E1 ⊂Ω
be a subset of our domain of computationΩ. Then the first passage time τE1 is the random variable defined
by

τE1 := inf{t > 0|X t ∈ E1} .

Let E2 ⊂Ω another subset of Ω satisfying E1 ∩E2 =;. The conditional first passage time τ
(
E1|E c

2

)
is the first
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passage time to E1, given no earlier visit to E2. These conditional first passage times have been studied in [50].

The conditional mean first passage time for the postsynaptic density of the left spine is defined as

µ
le f t
F PT = E

[
τ
(

PSDle f t
∣∣ PSDC

r i g ht

) ]
.

µ
r i g ht
F PT is defined similarly. Clearly, these statistics depend upon the location of exocytosis and the chosen

composition of spines. We will use these statistics as an indication of how long it takes on average for a
receptor to reach a certain postsynaptic density, given that that is the first postsynaptic density it encounters.

We can calculate estimates for this statistic using a Monte Carlo type approach. After simulating the exocytic
event, simulations were run until all particles left the system through either the absorbing boundary in the
left or right spine. Each particle serves as a realization in the Monte Carlo method. Per realization the exit
location (the absorbing boundary in either of the spines) and the exit time are recorded. From the results of
this simulation sample mean and sample standard deviations can be calculated, including there respective
confidence intervals. The overall MFPT is denoted by µF PT and its (unbiased) estimator, the sample mean
with µ̂F PT . The standard deviation of the MFPT is denoted withσF PT and its (unbiased) estimator, the sample
standard deviation, with σ̂F PT . A similar and intuitive notation is used for the conditional mean first passage
times, as given in Table 6.2.

µ
le f t
F PT ,µr i g ht

F PT MFPT of particles exiting from left or right spine;

µ̂
le f t
F PT , µ̂r i g ht

F PT corresponding sample mean;

σ
l e f t
F PT ,σr i g ht

F PT standard deviation of MFPT of particles exiting from left or right spine;

σ̂
l e f t
F PT , σ̂r i g ht

F PT corresponding sample standard deviation.

Table 6.2: Notation for used mean first passage time, its standard deviation and their corresponding estimators.

Simulations start with dendritic exocytosis and boundaries of the PSDs are treated as absorbing boundaries.
Furthermore, parameters are as in Table 6.1, with the number of particles equal to 106. The reason for this
higher number is that we are performing a Monte Carlo type simulation and an higher number of realizations
will narrow our confidence intervals.

Two equally shaped spines. We begin with looking look at the results of experiments in which the left and
right spine have the same shape as schematically shown in Figure 6.2.

Except from the statistics from Table 6.2, we can use the experimentally obtained first passage times to cal-
culate an empirical probability density function (EPDF) for the mean first passage time. A plot of the EPDFs
for these simulations can be found in Figure 6.3. In Fig. 6.3a the axis are linearly scaled and in Fig. 6.3b the
y-axis has a logarithmic scale.

Since in these test cases the left and right spine have identical shapes and we simulate an exocytosis on the
dendrite in the middle between them, we know that

µ
le f t
F PT ∼µr i g ht

F PT ,

where ∼ indicates that the statistical distributions of the two variables are the same. An estimate for the
conditional mean first passage time and its standard deviation are given in Table 6.3. We also present 95%
confidence intervals.
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Figure 6.2: Schematic diagram of dendritic exocytosis with two spines having matching shape. The red triangle indicates the location of
exocytosis.

(a) (b)

Figure 6.3: EPDFs of simulations with dendritic exocytosis, where left and right spine have same shape.

Shape parameter µ̂l/r
F PT [s] 95% C.I. σ̂l/r

F PT [s] [95% C.I.]

A = 1.5 27.603 ±0.050 25.459 [25.423,25.494]
A = 3.0 47.292 ±0.086 44.110 [44.049,44,172]
A = 5.0 59.990 ±0.111 56.446 [56.368,56.524]

Table 6.3: Sample mean and sample standard deviation of conditional mean first passage times for dendritic exocytosis of 106 particles
in the middle between two spines with identical shape. The intervals given are 95% confidence intervals.

From Table 6.3 and Figure 6.3 we conclude that after exocytosis on the dendrite the time a receptor needs to
reach a postsynaptic density increases significantly when the shape parameter A increases. In other words,
after exocytosis on the dendrite a receptor reaches a PSD of a stubby spine faster than a mushroom shaped
spine.

Two differently shaped spines. A logical next step is to quantitatively assess how these statistics change
when the morphology of the left and right shape differ from each other and what portion of the receptors
reach the postsynaptic density of the left and right spine in that case. We run experiments with dendritic
exocytosis and two spines, with different morphology, as schematically shown in Figure 6.4.
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Figure 6.4: Schematic diagram of dendritic exocytosis with two spines having different shape. The red triangle indicates the location of
exocytosis.

hhhhhhhhhhhhhhhhhhh

Cond. MFPT for:
A = 1.5 A = 3.0 A = 5.0

In combination with: µ̂cond
F PT [s] 95% C.I. µ̂cond

F PT [s] 95% C.I. µ̂cond
F PT [s] 95% C.I.

A = 1.5 27.603 ±0.050 38.330 ±0.105 43.457 ±0.125

A = 3.0 34.050 ±0.085 47.292 ±0.086 54.044 ±0.145

A = 5.0 37.569 ±0.092 52.255 ±0.132 59.990 ±0.111

Table 6.4: Sample mean of conditional mean first passage times for dendritic exocytosis of 106 particles in the middle between two
spines with different shape. The intervals given are 95% confidence intervals.

XXXXXXXXXX

σ̂cond
F PT :

A = 1.5 A = 3.0 A = 5.0

Comb. w.: σ̂cond
F PT [s] [95% C.I.] σ̂cond

F PT [s] [95% C.I.] σ̂cond
F PT [s] [95% C.I.]

A = 1.5 25.459 [25.423,25.494] 34.551 [34.476,34.625] 39.069 [38.981,39.158]

A = 3.0 33.108 [33.048,33.168] 44.110 [44.049,44,172] 50.076 [49.974,50.179]

A = 5.0 37.209 [37.143,37.274] 49.541 [49.448,49.634] 56.446 [56.368,56.524]

Table 6.5: Sample standard deviation of conditional mean first passage times for dendritic exocytosis of 106 particles in the middle
between two spines with different shape. The intervals given are 95% confidence intervals.

An estimate for the conditional mean first passage time and its standard deviation are given in Tables 6.4 and 6.5.
We also present 95% confidence intervals.

From Table 6.4 we conclude that the conditional mean first passage times of a PSD of a certain spine changes
in a particular way when the two spines in the system do not have equal shape. In a system of two differently
shaped spines the conditional mean first passage time of the spine corresponding to a smaller value of shape
parameter A is still lower than the spine corresponding to a higher value of A, but the differences have become
smaller. To easily observe this, we have included the values for µcond

F PT when left and right spine are equally
shaped in Tab. 6.4. This result is visualized in Figure 6.5.
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Figure 6.5: Conditional mean first passage times. The conditional mean first passage times correspond to the values of A listed at the
top of the graph. The values listed at the bottom of the graph represent the value of A with which the initial spine was combined. This is

explained by the schematic diagrams of the different experiments below the plot.

From Table 6.4, we can draw an interesting conclusion. In the case of dendritic exocytosis, the conditional
mean first passage time from the location of exocytosis to the boundary of a specific PSD does not only de-
pend on the morphology of the associated spine, but also on the morphology of its neighboring spines. More-
over, this effect is significant, as can be seen from Figure 6.5.

A similar observation can be done while considering the standard deviation of the mean first passage times
as presented in Tab. 6.5.

6.1.2. TRAPPING AT THE POSTSYNAPTIC DENSITY

As discussed in Section 4.1.4, the PSD is modeled in two ways. First we consider the version of the model in
which trapping at the PSD is incorporated. In this version particles cannot leave the system and therefore the
model has a non trivial equilibrium solution. Since neurotransmitter receptors have a limited lifetime, time
scales involved in reaching an equilibrium situation are particularly relevant. Therefore we consider both
equilibrium state as well as the behavior of the system towards this equilibrium.

In the particle based model, we release a number of 104 particles at t = 0. Even though the number of par-
ticles is high, for the particle-based model every simulation of 104 particles will be different due to random
fluctuations. It is important to assess the proportions of these fluctuations. We run 10 simulations, with each
a release of 104 particles on the dendrite, it the middle between two spines. One spine has shape parame-
ter A = 1.5 and the other shape parameter A = 5.0. We calculate the concentration in the PSD and take the
mean of these 10 simulations. We also calculate 95% confidence intervals for our simulations. The result
can be found in Figure 6.6. From here on, we will present the mean of these 10 simulations, unless indicated
otherwise.

Simulations start with dendritic exocytosis and the PSDs are treated as regions at which a binding an dissoci-
ation process takes place. Parameters are as in Table 6.1, with Npar t = 104 and Tend = 300s. To get an insight
in how the simulation is performed, we have included movie A1 for the particle-based model and movie A3
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(a) Concentration of free particles in PSD. A = 1.5. (b) Concentration of free particles in PSD. A = 5.0.

Figure 6.6: Concentration of particles in the postsynaptic density over time after dendritic exocytosis in the middle between two spines,
one with shape parameter A = 1.5 (a), and one with shape parameter A = 5.0 (b).

for the concentration-based model, see Appendix A.

To analyze the results, we begin with investigating the typical time scales it takes to reach equilibrium. To do
this, the concentration of particles in the postsynaptic density of both spines is recorded over time. Since in
this version of our model trapping and dissociation at the PSD is possible, both the concentration of bound
and free particles is computed. We have normalized the concentration of particles by dividing by the uniform
concentration cuni f or m , which is for model I defined as

cuni f or m = Total number of particles in system

Total available surface area
= Npar t

Atot al
. (6.1)

For model II, cuni f or m is defined as

cuni f or m = Total amount of receptors in system

Total available surface area
=

∫
ΩC (r , t )dΩ∫

ΩdΩ
. (6.2)

This way of normalization (6.1) implies that an homogeneous concentration everywhere on the domain
would be indicated with a normalized concentration of one everywhere.

The normalized concentration at the PSD of both spines over time is plotted for different compositions of
geometries in Figure 6.7. Reults for both models are shown. We show results for a composition of two spines
with shape parameter A = 1.5, for free (Fig. 6.7a) and bound (Fig. 6.7b) particles at the PSD. In Fig. 6.7c and
6.7d the concentration for free particles at the PSD is plotted for a combination of a geometry characterized
by A = 1.5 for spine 1 and A = 3.0 and A = 5.0 for spine 2 respectively. From these plots we make a few
observations:

• For larger A, the time needed to reach equilibrium gets larger as well;
• For larger A the concentration towards equilibrium is lower than for smaller A;
• The geometry does not influence the equilibrium concentration itself, merely the timescales in con-

centration towards this equilibrium.

In Figure 6.7 we see an overshoot in the concentration at the PSD of spine with shape parameter A = 1.5. It is
detected easily in Figs. 6.7c and 6.7d, but is also present in the other figures. The overshoot is more prominent
in the results of the concentration-based model. We expect this overshoot to happen for shapes that resemble
the flat state, since it would also occur when releasing a certain concentration on a flat surface and measuring
the concentration at a certain location in that neighborhood over time.
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(a) Concentration of free particles in PSD. The geometry of
the two spines is identical (A = 1.5). The red and grey dashed

line coincide, causing the red dashed line to be invisible.

(b) Concentration of bound particles in PSD. The geometry of
the two spines is identical (A = 1.5). The red and grey dashed

line coincide, causing the red dashed line to be invisible.

(c) Concentration of free particles in PSD. The geometry of
spine 1 is characterized by A = 1.5 and the geometry of spine

2 is characterized by A = 3.0.

(d) Concentration of free particles in PSD. The geometry of
spine 1 is characterized by A = 1.5 and the geometry of spine

2 is characterized by A = 5.0.

Figure 6.7: Concentration of particles in the postsynaptic density over time after dendritic exocytosis in the middle between two spines.
For Figure (a) and (b) the two spines have identical geometry (both A = 1.5). In (a) the concentration of free particles is displayed and
in (b) the concentration of bound particles is displayed. For (c) and (d) the concentration of free particles is given and the geometry for
spine 1 is characterized by A = 1.5 and the geometry for spine 2 is characterized by A = 3.0 and A = 5.0 respectively. The black dash-dot

line represents the uniform concentration as computed by Eq. (6.1).

Correspondence of the two models. Although the two models intend to simulate the same diffusion pro-
cess, their origin and the way they are established differ significantly. From Figure 6.7 we see a strong corre-
spondence between the stochastic particle-based model and the concentration based model, but also some
differences. The first thing we would like to point out, is that the slope of the concentrations at the begin-
ning of the simulations coincide excellently. This is a good indication that both models indeed represent the
same diffusion process. We also see, however, that the overshoot is not represented in the results in the same
way. This overshoot is more prominent in the results of the concentration-based model. We cannot explain
this difference, but the explanation most likely has to be sought in the subtle differences between the imple-
mentation of model I and II of the binding and unbinding process at the PSD. Overall, the correspondence
is a good indication that both models are able to model the initialization phase acceptably well. Moreover,
the time scales in concentration are quantitatively equal for the results of both models. A a comprehensive
comparison of both models can be found in Section 7.2.2.

The models allow for computing the concentration not only in the PSD of both spines, but also in other
areas of the domain of computation. We would like to investigate the concentration along the shaft of the
dendrites. Therefore we plot the concentration as a function of surface area from the top of each spine for
different points in time. In other words, for fixed moments in time, we measure the concentration of receptors
along the shaft, see Figure 6.8. From this figure, it can be seen that we measure the concentration along the
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shaft from the top until the base ring. For spines corresponding to a value of A that is larger than 1.5 this
means that a part of this area is located on the dendrite.

Figure 6.8: We measure the concentration along the shaft as a function of surface area from the top of each spine until the base ring
(black). For some spines this means that part of this region lies on the dendrite (striped red line).

In Figure 6.9 the concentration along the shaft is plotted for four time instances after exocytosis. The results
are obtained using the particle-based model. We use a domain with two spines corresponding to A = 1.5
(stubby) and A = 5.0 (mushroom). In these plots the uniform concentration as defined by Eq. (6.1) is indicated
with a black dash-dot line in each plot. As mentioned, for the spine corresponding to A = 5.0 a large portion
of the surface area in which we measure the concentration is located outside the spine, on the dendrite. For
clarity, the location of the neck of this spine is indicated in the figures.

Figure 6.9: Concentration along the shafts of two spines after dendritic exocytosis for four time instances. The elapsed time after exocy-
tosis is indicated above each plot. The uniform concentration is indicated with the black dash-dot line. The location of the neck of the

spine corresponding to A = 5.0 is indicated with a grey vertical line.
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We focus on the part of both spines that is out of the z = 0 plane, hence not on the dendrite. The surface area
of spine 2 that is out of plane amounts to approximately 1.97µm2, also indicated in the plots of Fig. 6.9. We can
see that in this region the concentration along the shaft inside the dendrite is higher in the stubby spine (A =
1.5) than in the mushroom spine (A = 5). We conclude that after dendritic exocytosis the timescale involved in
equilibration of the concentration of receptors is larger for mushroom-shaped spines as compared to stubby
spines.

The concentration-based model is run with the same configuration of spines (A = 1.5 and A = 5.0). In Fig-
ure 6.10 surface plots of the domain are shown and the concentration is indicated using different colors as
indicated by the colorbar. We have plotted both the concentration of bound as well as free particles for the
same time instances as used for Fig. 6.9. Note that a logarithmic scale is used for the colorbar for the free
particles (CF ) and that scales are different for bound and free particles.

We can see from the surface plot of the concentration of free particles (Fig. 6.10a, 10s and 30s) that the con-
centration in the mushroom shaped spine increases on a longer time scale than concentration in the stubby
spine.

From these results we conclude that stubby spines are favored in the case of dendritic exocytosis. In the
initialization phase, before reaching equilibrium, the concentration of particles in the spine shaft and at the
PSD of stubby spines is higher than for mushroom spines. However, after dendritic exocytosis, concentration
rapidly rises in all neighboring spines. In the next section we investigate the effect of spinal exocytosis.
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(a) Concentration of free particles, CF . (b) Concentration of bound particles, CB .

Figure 6.10: Concentration of free and bound particles as simulated by the concentration-based model for different time instance.
Simulation was initiated with dendritic exocytosis, as can been seen in the top left figure.
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6.2. SPINAL EXOCYTOSIS

In this section we present the results of simulations in which the location of exocytosis is changed to a location
one of the two spines. The geometry and the setup stays otherwise the same and parameters can again be
found in Table 6.1.

We choose the height of the exocytosis in such a way that 10% of the reference surface area, Ar e f (indicated
in green in Fig. 5.3), is between the location of exocytosis and the boundary of the PSD (blue in Fig. 5.3) and
90% of this reference surface area is between the location of exocytosis and the base circle (red in Fig. 5.3).
This is clarified in Figure 6.11. Note that the exact location of exocytosis is shape dependent. An exocytosis
on this height is simulated by releasing particles uniformly distributed along the ring that is on this height,
indicated in red in Fig. 6.11.

(a) A = 1.5. (b) A = 3.0. (c) A = 5.0.

Figure 6.11: The green surface has a surface area of 10% of Ar e f and the blue surface has a surface area of 90% of Ar e f . The red circle
indicates the height of exocytosis and the grey surface represents the PSD.

We start with results from the version of the model in which the boundary of the PSD is modeled as an ab-
sorbing boundary, followed by the extension in which the binding and unbinding process at the PSD is taken
into account.

6.2.1. ABSORPTION AT THE POSTSYNAPTIC DENSITY

We consider the setup of the model in which we have spinal exocytosis, where particles reaching the boundary
of any PSD are taken out of the system. As explained in Section 6.1.1, this setup can be used to calculate
(conditional) mean first passage times. Moreover, we use this setup to answer our research question:

How does the morphology of dendritic spines influence the synaptic crosstalk?

We defined a measure for the amount of crosstalk in Definitions 1 and 2. The amount of crosstalk will depend
on what shapes of spines are present in the system and in which the exocytosis occurs. After setting up a
simulation and initiating an exocytosis in one spine, we record what portion of the 106 trajectories of the
exocytosed receptors terminate in the PSD of the other spine. The obtained percentages can be found in
Table 6.6. We will normalize these percentages by dividing by the reference situation in which both spines
have shape parameter A = 1.5. In this case the amount of crosstalk is 8.98%. These normalized values for
crosstalk can be found in Table 6.7.

From Table 6.7 we conclude that the amount of crosstalk decreases when spines with an higher shape param-
eter A are in the system. In other words, the more a spine becomes mushroom-shaped, the less crosstalk we
observe. A remarkable result is that the amount of crosstalk also decreases when a stubby spine is replaced by
a mushroom shaped spine when this is not the spine in which exocytosis occurred. This is a good indication
that spine morphology at least partially governs spine compartmentalization in two directions. Firstly, after
a spinal exocytosis in a mushroom-shaped spine, the elevated concentration will be maintained longer. Sec-
ondly, after dendritic exocytosis, the concentration in mushroom-shaped spines will be relatively lower in the
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hhhhhhhhhhhhhhhhOther spine

Spine of exocytosis
A = 1.5 A = 3.0 A = 5.0

A = 1.5 8.98% 7.48% 6.76%
A = 3.0 8.43% 7.22% 6.62%
A = 5.0 7.53% 6.61% 6.05%

Table 6.6: Amount of crosstalk for several combinations of spines.

hhhhhhhhhhhhhhhhOther spine

Spine of exocytosis
A = 1.5 A = 3.0 A = 5.0

A = 1.5 1.00 0.83 0.75
A = 3.0 0.94 0.80 0.74
A = 5.0 0.84 0.74 0.67

Table 6.7: Normalized amount of crosstalk for several combinations of spines. Normalized by dividing by amount of crosstalk in refer-
ence situation.

initialization phase. The typical mushroom shape of spines enables the spine head to function as a separate
component from the rest of the dendrite in the process of lateral diffusion of membrane receptors.

To take a closer look at the influence of shape, in our case determined by shape parameter A, we focus at
the marked cells of Table 6.7. These are the cells that correspond to experiments in which both spines have
equal shape. To get more data points, we also ran this simulation for other values of A. The result is plotted
in Figure 6.12.

Figure 6.12: Crosstalk as a function of shape parameter in a system in which both spines have equal shape. Data is normalized by
dividing values by crosstalk of reference situation. Red line is exponential shape, however range of data is not big enough to properly

assess the quality of this fit.

6.2.2. TRAPPING AT THE POSTSYNAPTIC DENSITY

We look at the extension of our models in which the postsynaptic density is modeled as a location at which
binding and dissociation of receptors occurs.

For analyzing the results we used the normalization procedure as described in Section 6.1.2 using Eqs. (6.1) and (6.2).

Since we are looking at spinal exocytosis now, we have to specify both which spines are used in the system
and in which spine the exocytosis takes place. Simulating all possible combinations gives us a database of 9
simulation results, as indicated in Table 6.8. Here, we discuss the simulations indicated in grey in Table 6.8.

Simulations start with spinal exocytosis and boundaries PSDs are treated as regions where a binding and
dissociation process takes place. To get an insight in the type of simulations we perform, we have included
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hhhhhhhhhhhhhhhhSpine of exocytosis

Other spine
A = 1.5 A = 3.0 A = 1.5

A = 1.5
A = 3.0
A = 5.0

Table 6.8: Table of possible simulation combination for spinal exocytosis. The number of possible combinations is nine in our setting.

movie A2a and A2b, see Appendix A.

In the particle based model a number of 104 particles is released at t = 0. The total simulated time is Tend =
300s. The normalized concentration at the PSD for both spines is plotted in Figure 6.13. In Fig. 6.13a and 6.13b
the results are shown for two spines with shape parameter A = 1.5. The concentration of free and bound par-
ticles are plotted respectively. We see that an equilibrium is reached after approximately 150 seconds.

In Fig. 6.13c and 6.13d the concentration of free particles at the PSD is plotted for two spines with shape
parameter A = 3.0 and two spines with shape parameter A = 5.0 respectively. The time to reach equilibrium
increases as A increases. For A = 3.0 the time it takes to reach equilibrium is approximately 220 seconds
and for A = 5.0 approximately 270 seconds. Comparing these plots to the plots of Figure 6.7, we make a few
observations:

• In the case of spinal exocytosis, the time needed to reach equilibrium is larger than in the case of den-
dritic exocytosis;

• Also in the case of spinal exocytosis, the time needed to reach equilibrium is larger for larger values of
A.
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(a) Concentration of free particles in PSD. The geometry of
the two spines is identical (A = 1.5).

(b) Concentration of bound particles in PSD. The geometry of
the two spines is identical (A = 1.5).

(c) Concentration of bound particles in PSD. The geometry of
the two spines is identical (A = 3.0).

(d) Concentration of bound particles in PSD. The geometry of
the two spines is identical (A = 5.0).

Figure 6.13: Concentration of particles in the postsynaptic density over time after spinal exocytosis in one of the two spines. For all
figures the left and right spine have identical shape. For Figure (a) and (b) the two spines have geometry corresponding to A = 1.5.
In (a) the concentration of free particles is displayed and in (b) the concentration of bound particles is displayed. In (c) and (d) the
concentration of free particles in the PSD for two spines with geometry A = 3.0 and A = 5.0 is plotted respectively. The black dash-dot

line represents the uniform concentration as computed by Eq. (6.1).





7
CONCLUSIONS AND DISCUSSION

7.1. CONCLUSIONS

In this research we designed two models to assess the influence of spine morphology on a lateral diffusion
process defined on its surface. With the aid of these models we tried to get insight to what extent spine
morphology affects interspinal crosstalk.

Spine morphology is variable and has been classified into different types, based on their appearance: stubby,
filopodia, thin and mushroom-shaped [23]. In order to investigate the impact of these typical shapes on the
diffusion process, its associated time-scales and crosstalk, we had to capture these geometries in a (mathe-
matical) framework. We did this using the results of [42]. We will discuss this choice in the next section.

By use of the particle-based model, we have shown that as the morphology of spines propagates toward a
mushroom shape, the level of crosstalk decreases. This result is obtained both when exocytosis occurs in this
mushrooms-shaped spine as well as when it occurs in an other, neighboring, spine (see Chapter 6, Table 6.7
and Figure 6.12). This invigorates the assumption of spine morphology not only governing electrical compar-
mentalization as discussed in Section 2.1.3 and in [17], but also compartmentalizes the diffusion of surface
receptors, as suggested in Section 2.2.1.

Analysis of simulations run with both models shows that dendritic exocytosis increases the receptor con-
centration in all neighboring spines, but is most beneficial for stubby-shaped spines. In case of dendritic
exocytosis, before reaching an equilibrium, receptor concentration is significantly higher in stubby-shaped
spines, than in more mushroom-shaped spines (see Chapter 6, Figures 6.7, 6.9 and 6.10). Furthermore, the
MFPT for receptors to reach a PSD is notably lower in the case of a system with merely stubby spines than in
a system with mushroom-shaped spines (Figure 6.3 and Table 6.3). This result carries over to a system with
spines of different shape: also in a domain composed of various shaped spines, the MFPT for receptors to
reach a stubby spine is lower, although the differences between shapes decrease (Table 6.4 and Figure 6.5).
So, the conditional MFPT from the location of exocytosis to the boundary of a specific PSD does not only
depend on the morphology of the associated spine, but also on the morphology of neighboring spines.

Concerning the methodologies used, for both models we solve a diffusion problem on a curved surface. This
causes different challenges. We need the Laplace-Beltrami operator to account not only for spatial changes in
the solution, but also for spatial changes in the geometry. For the particle-based model we took the curvature
of the surface into account by calculating a second order approximation. For the concentration-based model
we have to take derivatives of our geometry. The set up of our models differ significantly, but they should
model the same diffusion process.

We conclude that both models produce qualitatively comparable results regarding concentration of particles
as shown in Figure 6.7. By nature, the stochastic particle-based model shows stochastic fluctuation when
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presenting concentration results on specific locations and times. These fluctuations become undetectable
when averaging over a large number of particles or time steps, but the consequence of such solutions is com-
promising on computational aspects such as computation time and memory usage. The results produced
by the concentration-based model appear as a good estimate for the mean of the stochastic particle-based
model and can be used as such, without the need of increasing the number of particles or averaging over time
steps. At the beginning of the initialization phase, we see that the slopes of the concentrations coincide. This
is a good indication that both models indeed represent the same diffusion process. We also see, however, that
the overshoot is not represented in the results in the same way. We cannot explain this difference, but the ex-
planation most likely has to be sought in the subtle differences between the implementation of model I and II
of the binding and unbinding process at the PSD. Overall, the correspondence is a good indication that both
models are able to model the initialization phase acceptably well. Moreover, the time scales in concentration
are quantitatively comparable for the results of both models. We conclude that both models can be used in-
terchangeably for our application, leaving the choice to the user based on specific needs and considerations.
We will elaborate upon these considerations in the next section.

The analysis presented in this research provides a general framework to investigate the effects of spine mor-
phology on the surface diffusion of receptors within the cell membrane. In the case of spiny dendrites, it
allows us to take into account multiple spines with various shapes. This is important from a biological mod-
eling perspective, since both the location of spines as well as their shape are diverse.

7.2. DISCUSSION AND RECOMMENDATIONS

7.2.1. CHOSEN MORPHOLOGY FOR DENDRITIC SPINES

In this section we will zoom in on assumptions we made and present their implications. Some of these im-
plications result in recommendations for future research and we will also present them here.

Capturing the typical features of spine morphology could be improved upon. The geometries we choose
have the drawback that the thin and filopodia spines cannot be well represented, as can been seen from
Figure 4.3. The cause is that these shapes are not able to display the characteristic neck specific to thin and
filopodia spines. It would be interesting to consider shapes that do incorporate these distinctive long necks,
so that also the influence of neck length and width on interspinal crosstalk can be investigated. Miermans
et al. developed a model that incorporates this feature concurrently with the development of this work [51].
Since the models we propose put little restrictions on the spinal shapes, these results can be used for future
research.

A more ad hoc method to incorporate the spine neck is to take a closer look at the shapes we already use.
During the formation of these shapes there is a moment in which a neck, although it is a short one, is formed.
The stages before this point can be used as a model for stubby spines, stages after can be used as a model
for mushroom-shaped spines and this point itself can be used as a model for filopodia-shaped spines. These
three stages are shown in Figure 7.1.

At the moment a neck is formed, these shapes have a vertical part ( ds
dx = 0 in 2D, ds

dx = ds
dy = 0 in 3D). This

neck can be extended to form the typical long neck, characteristic to thin and filopodia shaped spines. This
is illustrated in Figure 7.2.

Another extension is to change the orientation of the spine relative to the dendritic surface. Currently, the
longitudinal axis of the spine is perpendicular to the dendritic surface. However, in reality this is not always
the case. A model with the possibility to change the angle between the longitudinal axis of the spine and
the dendritic surface could help in assessing what the influence is of this angle on the diffusion process and
corresponding characteristics like time to equilibrium and (conditional) mean first passage times.
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(a) Model for stubby spine. (b) Model for filopodia spine. (c) Model for mushroom spine.

Figure 7.1: Intersection of three shapes. (a) Shape before neck formation. (b) Shape at neck formation. (c) Shape after neck formation.
Results produced by [42].

(a) Filopodia spine. (b) Mushroom spine.

Figure 7.2: Suggestion of procedure to create characteristic spine neck. This procedure could be used to also extend models for filopodia
and thin spines.

7.2.2. COMPARISON OF BOTH MODELS

In Section 4.4 we discussed the design differences between our particle-based and concentration-based model.
Here we give a brief recapitulation and add the difference in performance between the models. The advan-
tages and disadvantages of both models can be found in Table 7.1. Many of them are discussed earlier and
we elaborate upon the enumerated ones here.

1. Single particle tracking (SPT) is an experimental technique in which motion of individual particles in a
medium is observed [30]. Since the particle-based model simulates trajectories of individual particles,
the results of this model are highly suitable to be compared to SPT data.

2. When simulating diffusion in a Euclidean space likeR2 orR3, the choice of the step sizeλdoes not cause
problems in general, as long as it is chosen in proportion to the time step as suggested in Algorithm 2.
This is due to the fact that spatial steps within one iteration are (straight) lines. In our case, however, we
want to move a distanceλ along a geodesic curve on a two dimensional manifold, which is not generally
straight. This is performed by taking a second order approximation of the surface. This induces a
length scale at every point of this surface in which this approximation is valid. If λ exceeds this scale
our method becomes insensitive to features of the manifold which are smaller than this scale. This
imposes a restriction in our choice of λ and therefore in our choice of time step. Making λ location
dependent could be beneficial for places where the two dimensional manifold resembles a plane, but
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Model I

+ Extraction of statistics such as mean first passage time and crosstalk.

+ Flexibility in domain composition, implementation of boundary conditions, and initation of tra-
jectories.

+ Similarity to experimental techniques such as single particle tracking (SPT). 1

- Presence of stochastic fluctuations when interested in concentration profiles.

- Computational intensity rises with number of particles.

- Restriction size of time step due to curvature of the surface. 2

Model II

+ Suitable when interested in concentration profiles.

+ Choice of time step only depending on numerical method, not on curvature of surface. 3

+ Similarity to experimental techniques such as fluorescence recovery after photobleaching (FRAP). 4

- Extraction of statistics such as mean first passage time means solving another system, hence dra-
matically increasing computation time.

5

- Less flexibility in domain composition, exotic boundary conditions and introducing single parti-
cles.

Table 7.1: Advantages and disadvantages of both models. All numbered considerations are elaborated upon in this section.

this is implementational cumbersome, because elapsed time would have to be tracked for individual
particles.

3. In the case of the concentration-based model, we do not have such restrictions on the time step. A
sharper curvature is dealt with by refining the grid at such places. Of course, refining a grid implies
having more basis functions and therefore the system that has to be solved every iteration will increase
in dimension. This is at the expense of computational time per iteration, but does not immediately
impose a restriction on the step size.

Using an implicit time integration method does not restrict the time step in order to get stability. How-
ever, the time step should be proportional to the size of our elements in order to get acceptable accu-
racy. Still, the time step used in the concentration-based model (∆t = 0.5s) is significantly larger than
the chosen time step in the particle-based model (∆t = 0.00025s).

4. Fluorescence recovery after photobleaching (FRAP) is an experimental technique capable of quantify-
ing lateral diffusion in a thin film [29]. Part of this film is photobleached by a light pulse, after which the
intensity is monitored as the bleached part diffuses out and unbleached part diffuses in. By introduc-
ing a new variable of concentration of photobleached particles CF R AP , the results of the concentration-
based model are highly suitable to be compared to FRAP data.

5. Statistics such as the mean first passage time or the level of crosstalk cannot easily be obtained from the
results of model II. Although the mean first passage time can generally be obtained by solving a relative
time independent system [36], for our definition of crosstalk no analog exist in the framework of partial
differential equations. Additionally, defining and calculating standard deviations is complicated. It
is unclear of such an analog can be derived, but if possible, the solution would have to be sought in
the application stochastic differential calculus. As for now, this model is unsuitable to calculate such
statistics.
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The choice between these two models will have to be made based on specific needs. When interested in
concentration primarily, the concentration-based model should be preferred, because the particle-based
model will have to simulate many particles to damp stochastic fluctuations, increasing computation time
and memory usage. The computation time for the particle-based model with 104 particles, with Tend = 300s
is approximately 25 hours. The computation time for the concentration-based model with ≈ 250 elements
(after refining grid) is approximately 2 hours. When the objective is to assess the level of crosstalk or other
statistics, the particle-based model is a better suited model, which also provides a lot of flexibility.

7.2.3. COMPARISON TO EXPERIMENTAL DATA

An open question is still to what extent our models correspond to experimental data. Especially SPT is a
good candidate to analyze whether the discussed models are a suitable way to address interspinal crosstalk.
The techniques we propose integrate lateral diffusion on curved surfaces and anchoring at the PSD, but in
the case of receptor diffusion on a cell membrane, more processes are involved. The Cell Biology research
division of the Biology Department of the Faculty of Science at Utrecht University is making great progress in
making such analysis possible and data should be available soon.





A
ILLUSTRATING MOVIES

Here we give a short description of the short movies we present. The movies can be downloaded from
github.com/TamaraKloek/spineMorphology.

Movie A1. Simulation of particle-based model. Dendritic exocytosis, trapping at PSD is incorporated.

Movie A2a. Simultion of particle-based model. Spinal exocytosis in a spine with shape parameter A = 1.5,
trapping at PSD is incorporated.

I

https://github.com/tamarakloek/spineMorphology


II A. ILLUSTRATING MOVIES

Movie A2b. Simultion of particle-based model. Spinal exocytosis in a spine with shape parameter A = 5.0,
trapping at PSD is incorporated.

Movie A3. Simultion of concentration-based model. Dendritic exocytosis, trapping at PSD is incorporated.



B
PARAMETRIZATION OF THE SURFACE Ω

For the domainΩ we have a global parametrization, S(α,β), with (α,β) ∈Ω0. When located on the dendrite,
i.e. r (α,β) ∈Ωdendr i te , we have,

S(α,β) =
 α

β

0

 , (α,β) ∈Ωdendr i te . (B.1)

The surfaces of the dendritic spines, Ω j , are modeled as axisymmetric. It is a surface of revolution around a

vector in the direction of the z-axis. Let (α̂, β̂) be the coordinate on the surfaceΩ0 where this vector intersects
Ω0. The generatix of the surface of revolution is a curve in the r, z-plane, parameterized by u. This gives the
spine its own local parameterization,

−→r (u,θ) =
 α̂

β̂

0

+
 r (u)cos(θ)

r (u)sin(θ)
z(u)

 ,

where r (u) and z(u) given functions and (θ,u) ∈ ([0,2π], [0,umax ]) ,

(B.2)

with the following associated metric:

guθ :=
(

r u · r u r u · r θ
r θ · r u r u · r u

)
=

(
z ′(u)2 + r ′(u)2 0

0 r (u)2

)
.

From this we can derive the following non-zero Christoffel symbols:

Γu
uu = r ′(u)r ′′(u)+z ′(u)z ′′(u)

r ′(u)2+z ′(u)2 ,

Γu
θθ

= − r (u)r ′(u)
r ′(u)2+z ′(u)2 ,

Γθuθ = r (u)r ′(u)
r (u)2 .

We consider diffusion on this surface of revolution, with constant diffusion coefficient D , which can be de-
scribed by the following differential equation:

∂c

∂t
= D∇2

g c,

III
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where c(z, t ) denotes the concentration of certain particles and where ∇2
g denotes the Laplace-Beltrami op-

erator. The Laplace-Beltrami operator can be calculated from the metric and Christoffel symbols,

∇2
g = g j k ∂2

∂xk∂x j − g j kΓl
k j

∂
∂xl

= g uu ∂2

∂u2 − g uuΓu
uu

∂
∂u + g θθ ∂2

∂θ2 − g θθΓu
θθ

∂
∂u ,

where gi j are entries of the of the metric and g i j entries of the matrix inverse to the metric.

The last needed ingredient is a transformation from the global coordinates on the base of the dendrite (α,β) ∈
Ωbase

j , to the local coordinates (u,θ). This transformation is defined as

u =
√

(α−α̂)2+(
β−β̂)2

Rexi t
j

umax ,

θ = arctan
(
β−β̂
α−α̂

)
.

The complete global parametrization of the surfaceΩ is then as Eq. (B.1) for (α,β) ∈Ωdendr i te and as (B.2) for
|(α,β)− r j | < Rexi t

j .



C
DETAILS ON THE FEM SCHEME

The implementation and execution of the FEM-scheme is handled by Nutils, an open source Python pro-
gramming library for finite element applications. More information on Nutils can be found on nutils.org.
The software package can be downloaded on GitHub: github.com/nutils.

Nutils requires a weak form to be provided by the user and we present details on the derivation of that weak
form. Furthermore, we elaborate upon some implementational details regarding exocytosis and PSD.

C.1. WEAK FORMULATION

The system of partial differential equations we consider is given in Eq. (4.4):


∂CF

∂t
= D∇2

g CF − KonCF +Ko f f CB ,

∂CB

∂t
= KonCF −Ko f f CB ,

where Kon and Ko f f are defined as in Eq. (4.5) and ∇2
g denotes the Laplace-Beltrami operator associated with

the metric g as defined in Section 4.1.2 and Appendix B. Initial conditions are as in Eq. (4.6):

CF (r ,0) =
{

c0

0
r ∈ Aexo ,
otherwise,

CB (r ,0) = 0 everywhere.

We call the boundary Γ and boundary conditions are as in Eqs. (4.7), (4.8):

C (x, y, t ) =C (x, y +2πRd , t ), ∀y,

∂C

∂x
(0, y, t ) = ∂C

∂x
(l , y, t ) = 0.

We derive the weak formulation for the first equation of (4.4), the derivation for the second is similar. Multiply
the equation with a test functionϕ ∈ H 1(Ω) = {

f ∈ L2(Ω) | f has a weak derivative
}

(first Sobolev space), that
satisfies the boundary conditions (4.7, 4.8), and integrate over our curved domainΩ:

V
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∫
Ω

∂CF

∂t
ϕdΩ= D

∫
Ω
∇2

g CFϕdΩ−
∫
Ω

KonCFϕdΩ+
∫
Ω

Ko f f CBϕdΩ.

By partial differentiation and Gauss’s theorem (divergence theorem), we have

∫
Ω

∂CF

∂t
ϕdΩ = D

∫
Ω
∇g

[
ϕ∇g C

]
dΩ−D

∫
Ω
〈∇gϕ,∇g C〉g dΩ−

∫
Ω

KonCFϕdΩ+
∫
Ω

Ko f f CBϕdΩ

= D
∫
Γ
〈ϕ∇g C , n̂〉g dΓ−D

∫
Ω
〈∇gϕ,∇g C〉g dΩ−

∫
Ω

KonCFϕdΩ+
∫
Ω

Ko f f CBϕdΩ

= D
∫
Γ
ϕ
∂C

∂n̂
dΓ−D

∫
Ω
〈∇gϕ,∇g C〉g dΩ−

∫
Ω

KonCFϕdΩ+
∫
Ω

Ko f f CBϕdΩ,

where n̂ denotes the vector normal to Γ of unit length.

Let us have a closer look at the integral in the first term,
∫
Γϕ

∂C
∂n̂ dΓ. Γ is the boundary of our domain shown in

Figure 4.1. This boundary consists of the boundaries at x = 0, x = l , y =−πRd and y = πRd , which we call the
east, west, south and north boundary respectively. We get

∫
Γ
ϕ
∂C

∂n̂
dΓ =

∫
Γnor th

ϕ
∂C

∂n̂
dΓ+

∫
Γeast

ϕ
∂C

∂n̂
dΓ+

∫
Γsouth

ϕ
∂C

∂n̂
dΓ+

∫
Γwest

ϕ
∂C

∂n̂
dΓ

=
∫
Γnor th

ϕ
∂C

∂y
dΓ+

∫
Γeast

ϕ
∂C

∂x
dΓ−

∫
Γsouth

ϕ
∂C

∂y
dΓ−

∫
Γwest

ϕ
∂C

∂x
dΓ.

(C.1)

By the boundary condition of Equation (4.8), the integrals for the left and right boundary vanish. By the
boundary condition of Eq. (4.7) we have

ϕ
∂C

∂y

∣∣∣∣
Γnor th

= ϕ
∂C

∂y

∣∣∣∣
Γsouth

.

Therefore, all terms of Eq. (C.1) either vanish or cancel each other out and we find

∫
Γ
ϕ
∂C

∂n̂
dΓ= 0,

leading to the weak form,

∫
Ω

∂CF

∂t
ϕdΩ=−D

∫
Ω
〈∇gϕ,∇g C〉g dΩ−

∫
Ω

KonCFϕdΩ+
∫
Ω

Ko f f CBϕdΩ. (C.2)

C.2. DISCRETIZATION

The concentration of free particles is approximated by CF ≈ C̃F = ∑N
j=1 C̃ j

F (t )ϕ j (r ) and the concentration of

bound particles by CB ≈ C̃B =∑
j C̃ j

B (t )ϕ j (r ). Here, the collection {ϕ1, . . . ,ϕN }, is a set of linearly independent
basis functions. We use B-splines of degree p. These splines are extensively discussed in [52]. Furthermore,
we introduce a discretization in time and use the following approximation for ∂CF

∂t at time t = m∆t ,

∂CF

∂t
≈ ∂C̃F

∂t

∣∣∣∣
m
≈ C̃F

∣∣
m+1 − C̃F

∣∣
m

∆t
.
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In Eq. (C.2) we set ϕ≡ϕi . This results in the following implicit relation,

∫
Ω

C̃F
∣∣
m+1 − C̃F

∣∣
m

∆t
ϕi dΩ= −D

∑
j

C̃ j
F

∣∣∣
m+1

·
∫
Ω
〈∇gϕi ,∇gϕ j 〉g dΩ

+∑
j

C̃ j
B

∣∣∣
m+1

·
∫
Ω

Ko f f ϕiϕ j dΩ

−∑
j

C̃ j
F

∣∣∣
m+1

·
∫
Ω

Konϕiϕ j dΩ.

Which leads to

∑
j

(
C̃ j

F

∣∣∣
m+1

− C̃ j
F

∣∣∣
m

)
∆t

∫
Ω
ϕiϕ j dΩ= −D

∑
j

C̃ j
F

∣∣∣
m+1

·
∫
Ω
〈∇gϕi ,∇gϕ j 〉g dΩ

+∑
j

C̃ j
B

∣∣∣
m+1

·
∫
Ω

Ko f f ϕiϕ j dΩ

−∑
j

C̃ j
F

∣∣∣
m+1

·
∫
Ω

Konϕiϕ j dΩ.

(C.3)

We define the following notation.

• Let [C̃F ] denote the vector containing the coefficients C̃ j
F ;

• Let M the mass-matrix of which the entries mi j are defined by
∫
Ωϕiϕ j dΩ;

• Let Kon the matrix of which the entries are defined by
∫
ΩKonϕiϕ j dΩ;

• Let Ko f f the matrix of which the entries are defined by
∫
ΩKo f f ϕiϕ j dΩ;

• Let L be the matrix of which the entries are defined by
∫
Ω 〈∇gϕi ,∇gϕ j 〉g dΩ.

Then we can reformulate Eq. (C.3) as

M
[C̃F ]m+1 − [C̃F ]m

∆t
=−DL[C̃F ]m+1 +Ko f f [C̃B ]m+1 −Kon[C̃F ]m+1.

Rearranging terms leads to

(M +∆t · (DL+Kon)) [C̃F ]m+1 −∆t ·Ko f f [C̃B ]m+1 = M [C̃F ]m . (C.4)

Similarly, we find the discrete counterpart of the second equation of (4.4),

(
M +∆t ·Ko f f

)
[C̃B ]m+1 −∆t ·Kon[C̃F ]m+1 = M [C̃B ]m . (C.5)

If we combine Eq. (C.4) and Eq. (C.5), we obtain the following linear system,

[
M +∆t · (DL+Kon) −∆t ·Ko f f

−∆t ·Kon M +∆t ·Ko f f

][
C̃F

C̃B

]
m+1

=
[

M ;
; M

][
C̃F

C̃B

]
m

.
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C.3. IMPLEMENTATION OF EXOCYTOSIS AND PSD

The functions Kon and Ko f f as in Equation (4.5) and the function CF (r ,0) as in Equation (4.6) are discontinu-
ous functions defined on the the domain of computation. Because projection of discontinuous functions on
the space spanned by the basis functions {ϕ1, . . . ,ϕN } might lead to oscillations, we choose to approximate
the discontinuities of these functions using the sigmoid function hyperbolic tangent (tanh). This way, we
create a smooth version of these functions, eliminating discontinuities.

The initial condition is implemented by projecting the smooth version of CF (r ,0) onto the space spanned by
the basis vectors ϕi .



D
DETAILS ON IMPLEMENTATION OF

PARTICLE-BASED MODEL

Here we discuss some details concerning the implementation of the particle-based model. Because our do-
main is a composition of dendrite and spines, in the implementation of this model we use a domain de-
composition for the different components. First we briefly discuss how this is handled. Second, we give a
schematic representation of our algorithm.

D.1. DOMAIN DECOMPOSITION

Our domain Ω is a composition of the dendrite, Ωdendr i te , the spines Ω j and the boundaries between these
two ∂Ω j , as defined in Equation 4.1.1. These domains have their own local parametrization and metric, as
defined in Appendix B. We apply a domain decomposition in which we decompose the domain Ω again in
the dendrite and individual spines.

Every iteration we determine which particles are in what domain and then we apply the diffusion per domain
separately. This way we get around transforming every iteration from global to local parametrizations and
vice versa, which saves arithmetic operations. Particles are set to diffuse inside a domain until it reaches a
boundary between domains. For simplicity, when a boundary is reached, we place the particle on the bound-
ary and set it to diffuse in the other domain than where it came from. For example, when a particle diffuses
over the dendrite (Ωdendr i te ) and reaches the boundary ∂Ω j with spine j (Ω j ), it is set on the boundary ∂Ω j

and next iteration will diffuse overΩ j .

D.2. SCHEMATIC REPRESENTATION OF THE ALGORITHM

In Figure D.1 the algorithm used for the particle-based model is schematically shown. Input are the param-
eters as defined in Table 4.1 and the surface, which is parametrized as explained in Appendix B. The imple-
mentation of this model was done in Matlab.

IX



X D. DETAILS ON IMPLEMENTATION OF PARTICLE-BASED MODEL

Parameters:
• Enter simulation parameters,
λ, Npar t .

• Enter model parameters,

D,kon ,ko f f ,
{

(α0
i ,β0

i ), i = 1, . . . , Npar t

}
;

• Enter geometry parameters,
Rd , l , A, a,RPSD ;

Initialization:

• ∆t =λ2/(4D);
• For i = 1, . . . , Npar t ,

set (αi ,βi , f r eei ) = (α0
i ,β0

i ,Tr ue).

IF: f r eei

IF: AND
{√

(αi − α̂ j )2 + (βi − β̂ j )2 > Rexi t
j , ∀ j

}

Generate ui U (0,2π) distribution

∆αi :=λcos(ui )
∆βi :=λsin(ui )

(αi ,βi ) := (αi +∆αi ,βi +∆βi )
t := t +∆t

Generate ri
t := t + ∆t

U (0,1) distribution

IF: ri < ko f f ∆t

Apply covariant transformation to
local coordinates: (αi ,βi ) → (θi , si )

Generate ui

Evaluate metric gθs and Christof-

fel symbols Γθ
θθ

,Γθss ,Γs
θs

at (θi , si ).

wθ := cos(ui )/
p

gθθ
w s := sin(ui )/

p
gss

∆θi := wθλ

− 1
2 Γ

θ
θθ

(wθ )2λ2 − 1
2 Γ

θ
ss (w s )2λ2

∆si := w sλ−Γs
θs

wθw sλ2

Apply contravariant trans-
formation to global coordi-

nates: (∆θi ,∆si ) → (∆αi ,∆βi )

(αi ,βi ) := (αi +∆αi ,βi +∆βi )
t := t +∆t

Generate ri

IF: ri < kon∆t

U (0,1) distribution

While t < Tend , do:

Diffusion at dendrite

Diffusion at spine

Trapping at PSD

True

False

True

False

False True

False

True

Figure D.1: Flow chart depicting algorithm used in model I.
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