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Preface

In this report some models are described for a rotor spinning process for Twaron r©.
Twaron is a para-aramid polymer made by Teijin Twaron. Some problems to control
this process remain, which is why Teijin Twaron is interested in a mathematical model
of the process.
In 2004 a study week called ”Mathematics with Industry” took place. In this meeting
the problem described in Section 2 was presented to several persons who are active in
the mathematical world. This week was too short to answer all questions, so a brief
report was the final result [2]. After this week, one of the participants, Bas van ’t Hof,
wrote a more extensive report about one of the suggested approaches [4]. The problem
also became a master thesis project in cooperation with Teijin Twaron.
This report describes the interim research of this master project for the degree Master
of Science, done at Delft University of Science at the faculty Electrical Engineering,
Mathematics and Computer Science, at Delft Institute of Applied Mathematics.

The first section of this report starts with an introduction of Teijin and Teijin Twaron.
Next the problem is defined in Section 2. In Section 3 a derivation of a stationary model
with curvilinear coordinate s in a rotating coordinate system is given. This derivation
is a detailed version of the derivation given in [2].
In Section 4 a model for the instationary case in a fixed coordinate system is derived.
Instead of coordinate s, polar coordinates are introduced. This section is an extensive
version of the report of van ’t Hof [4]. Van ’t Hof did not mention boundary conditions
in his report, but they are included here.
Section 5 treats also the instationary case, but this time in a rotating coordinate system.
The part where the system of equations is derived, is a detailed discussion of van ’t Hof
[4]. The same applies to the first part of Section 6. In this section the stationary case
in a rotating coordinate system is derived. This is done by ignoring the time derivatives
in the system of equations from Section 5. In both sections the boundary conditions are
mentioned, in contrast to [4]. The last subsection of Section 6 compares the stationary
case in a rotating coordinate system with coordinate s and the case with polar coordi-
nates.
In Section 7 the system from Section 6 is made dimensionless. Also a symbol for one
of the components of the momentum equation is introduced. This symbol k plays an
important part in numerical analysis.
In Section 8 some numerical methods for differential equations are introduced. Also
some error definitions are given. Another way to solve differential equations is by using
perturbation theory. An introduction to this theory is given in Section 9.
In the final section, Section 10, of this report an overview of topics for further research
is given. A distinction is made between four subjects for further research: the model,
boundary conditions, solving the system and model extensions.



CONTENTS 4

Contents

1 Teijin and Teijin Twaron 6
1.1 The Teijin Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Teijin Twaron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Twaron, an aramid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Problem Definition 8

3 The stationary case with rotating s 9
3.1 The momentum balance . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Replacing Pythagoras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 The stationary system with rotating s . . . . . . . . . . . . . . . . . . . 12
3.4 Balances perpendicular to the tangent and the radius vector . . . . . . . 13
3.5 The case F − Φv ≡ 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.6 Solving the set of equations representing the stationary case in a rotating

coordinate system with zero viscosity . . . . . . . . . . . . . . . . . . . . 14

4 The instationary case with fixed r 16
4.1 Parametrization of the spinning line . . . . . . . . . . . . . . . . . . . . 16
4.2 Kinematic equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 General form of the conservation law in a moving spinning line . . . . . 18

4.3.1 Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3.2 Total amounts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3.3 Production and destruction . . . . . . . . . . . . . . . . . . . . . 20
4.3.4 The general conservation law . . . . . . . . . . . . . . . . . . . . 20

4.4 The conservation laws in a moving spinning line . . . . . . . . . . . . . . 21
4.4.1 The continuity equation . . . . . . . . . . . . . . . . . . . . . . . 21
4.4.2 The momentum equation . . . . . . . . . . . . . . . . . . . . . . 21

4.5 The instationary system in fixed r . . . . . . . . . . . . . . . . . . . . . 22
4.5.1 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.5.2 Initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 The instationary case with rotating r 25
5.1 The transformed mass flux and the transformed continuity equation . . 26
5.2 The transformed kinematic equation . . . . . . . . . . . . . . . . . . . . 26
5.3 The transformed momentum equation . . . . . . . . . . . . . . . . . . . 27
5.4 The instationary system in rotating r . . . . . . . . . . . . . . . . . . . 28

5.4.1 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.4.2 Initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 The stationary case with rotating r 31
6.1 Deriving the stationary system from the instationary case . . . . . . . . 31
6.2 The stationary system in rotating r . . . . . . . . . . . . . . . . . . . . . 32

6.2.1 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . 32



CONTENTS 5

6.3 Comparison of the two stationary cases in a rotating coordinate system 33
6.3.1 Viscous force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7 Reformulation of the stationary case with rotating r 37
7.1 Reducing the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.2 Dimensionless stationary case with rotating r . . . . . . . . . . . . . . . 40

7.2.1 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . 41

8 Numerical methods for differential equations 42
8.1 Numerical methods for initial value problems . . . . . . . . . . . . . . . 42

8.1.1 The Runge-Kutta formula . . . . . . . . . . . . . . . . . . . . . . 42
8.1.2 Euler’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8.1.3 Runge-Kutta order four . . . . . . . . . . . . . . . . . . . . . . . 43

8.2 Error definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.2.1 Local truncation error . . . . . . . . . . . . . . . . . . . . . . . . 43
8.2.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.2.3 Global error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8.3 The local truncation error for Euler’s method and Rung-Kutta order four 44
8.4 Numerical methods for boundary value problems . . . . . . . . . . . . . 45

8.4.1 Finite difference method . . . . . . . . . . . . . . . . . . . . . . . 45
8.4.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

8.5 Non-linear systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

9 Perturbation Theory 48
9.1 Regular perturbation method . . . . . . . . . . . . . . . . . . . . . . . . 48
9.2 Strained coordinate method . . . . . . . . . . . . . . . . . . . . . . . . . 49

10 Further research 52
10.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.3 Solving the systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.4 Model extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

References 54

A List of symbols 56



1 TEIJIN AND TEIJIN TWARON 6

1 Teijin and Teijin Twaron

1.1 The Teijin Group

Teijin Twaron is part of the Industrial Fibers Business Group of Teijin Limited. Teijin
is a global technology-driven company based in Osaka, Japan that operates in six main
business segments: fibers and textiles; films and plastics; pharmaceuticals and home
health care; machinery and engineering, wholesale and retail, and IT and new products.
World wide there are approximately 22,000 employees working for Teijin.

1.2 Teijin Twaron

Teijin Twaron is a part of the Teijin Group established in The Netherlands. Teijin
Twaron supplies customers throughout the world with para-aramid polymer, yarn, fiber
and pulp under the name Twaron r©. Twaron, the synthetic fiber made from aramid poly-
mer, can be found in a comprehensive range of products including protective clothing,
ballistic vests and helmets, tires and optical fiber cables. The company is a worldwide
leader in the field of aramid fibers. Teijin Twaron aims to become the leading and pre-
ferred aramid supplier. The company has a longterm vision, continuous work is done
on further improving existing products and developing new products.

Teijin Twaron has four establishments, three in The Netherlands: Arnhem, Delfzijl
and Emmen, and one in Germany: Wuppertal. All the departments in The Nether-
lands have a production site. The raw material is made in Delfzijl, the pulp and yarn
is produced in Emmen and in Arnhem the head office and the research division are
located and pulp is produced on this location. There are working approximately 1,100
employees for Teijin Twaron all over the world.

As part of the Teijin group, Teijin Twaron shares the corporate philosophy: ’Human
Chemistry - Human Solutions’. The term ’Human Chemistry’ means that Teijin Twaron
promises that it will develop chemical technologies that are friendly for both people and
the global environment. With ’Human Solutions’ the company says that it will make
optimal use of the technologies, products and services resulting from the first promise.

1.3 Twaron, an aramid

Twaron, made of an aramid polymer, is extremely strong and very lightweight. The
former owner, Akzo, developed Twaron in the early seventies. In 1976 the first pilot
plant for Twaron was built and by 1985 five factories where operational on two sites.
After a slow start, the market of para-aramid distinctly grows at the end of the nineties.
At the end of 2000 Twaron was taken over by the Teijin Group. Aramid fibers are a
type of nylon of which the molecular structure are comprised of linked benzene rings
and amide bonds. Aramid fibers differ greatly from conventional fibers in both their
properties and applications.
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Twaron fibers are made by a wet spinning process. The unique characteristics of Twaron
are derived from the ability of the aramid molecules to orient themselves along the line
of flow during the spinning process producing the fiber, forming straight strands that
resemble uncooked spaghetti.
There are two spinning processes. In the first one, the liquid polymer drops down from
an outlet and goes through several washing devices to become a yarn. The second spin-
ning process is called advanced or rotor spinning. The liquid polymer leaves a rotating
disc which is located inside a cylinder horizontally. The polymer hits the cylinder and
drains away with water that is falling down the cylinder wall. The end product of this
type of spinning will be worked up to get pulp.
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2 Problem Definition

At Teijin Twaron a rotor spinning process is used, to produce pulp. Some problems to
control this process remain, which is why Teijin Twaron is interested in a mathematical
model of the process. With the model, they hope to gain insight into the process.

Figure 1: The rotor spinner and a two-dimensional view

The rotor spinning machine consists of a rotor and a coagulator. The coagulator is a
cylinder with radius Rcoag and water along the inside wall. In this cylinder, a disc with
radius Rrot, the rotor, is rotating anti-clockwise with angular velocity ω. Between the
rotor and the coagulator there is an air gap. In this gap the extruded polymer moves
from an orifice in the rotor to the coagulator.

The purpose of the mathematical modeling is to describe the curve of the spinning
line in the air gap. So the spinning line is described from the point where it leaves
the rotor until it hits the coagulator. Initially we ignore the gravity, so the problem is
reduced to a two-dimensional problem.
We need boundary conditions to describe the curve of the spinning line correctly. These
conditions are not that obvious. That is why finding correct boundary conditions is an
other purpose of this research.

The radius of the rotor is 0.15 m and the radius of the coagulator is 0.30 m. The
angular velocity ω of the rotor is 262 rad/s what corresponds with 2500 rpm. The
polymer leaves the orifice with a velocity of 1.0 m/s.
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3 The stationary case with rotating s

This section starts with the derivation of a model for the rotor spinning process. This
part was derived during the week ”Mathematics with Industry” in 2004. In [2], this
derivation is written down briefly, here (through Section 3.3) it is more detailed.

We consider a stationary process in a rotating coordinate system. So we omit the
time-derivatives in this case. We will look at the movement of the polymer along the
trajectory of the polymer, the so called spinning line. Then, the dependent variables are
the position of the spinning line (x, y), the velocity v of the polymer along the spinning
line and the viscous force F . The arc-length s along the spinning line is the independent
variable.

The first equation the model has to satisfy follows from Pythagoras:(dx

ds

)2
+
(dy

ds

)2
= 1. (3.1)

Now we want to find the momentum balances. Therefore, we need the mass flux, which
is constant int his case:

Φ = ρAv, (3.2)

where ρ the mass density of the polymer and A the area of the cross-section of the
spinning line (see Appendix A for a list of symbols). To find the momentum balance,
we take a small part of the spinning line, [s, s + ∆s]. The forces acting on this part ∆s
are drawn in Figure 2. When we rotate all forces to the first quadrant we find the forces

Figure 2: The forces acting on ∆s.

and corresponding unit vectors as shown in Figure 3. Now we can derive the several
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Figure 3: The forces acting on ∆s.

forces. The centrifugal force Fcentr [1] is given by:

Fcentr = −mω × (ω × r) = ∆sρAω2

(
x
y

)
, (3.3)

and the Coriolis force Fcor [1], directed perpendicular on the spinning line, is given by:

Fcor = −2mω × v = 2∆sρAωv

( dy
ds

−dx
ds

)
, (3.4)

where × denotes the cross product, r =

 x
y
0

 and ω =

 0
0
ω

.

The viscous force Fvisc in the x direction can be denoted by

Fvisc =
(
F

dx

ds

)
s+∆s

−
(
F

dx

ds

)
s
. (3.5)

Using Taylor series gives(
F

dx

ds

)
s+∆s

−
(
F

dx

ds

)
s

=
(
F

dx

ds

)
s
+ ∆s

d
ds

(
F

dx

ds

)
s
−
(
F

dx

ds

)
s

(3.6)

= ∆s
d
ds

(
F

dx

ds

)
.

In the same way you can find the viscous force Fvisc in the y direction. Then the viscous
force satisfies:

Fvisc = ∆s
[ d

ds

(
F dx

ds

)
d
ds

(
F dy

ds

) ]. (3.7)
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In this equation for the viscous force F denotes the norm of the viscous force vector at
s. It is assumed that the polymer is Newtonian. From this assumption it follows that
the viscous force F satisfies:

F = ηA
dv

ds
, (3.8)

so
dv

ds
=

ρv

η

F

Φ
. (3.9)

3.1 The momentum balance

Now we can derive the momentum balances in the x and y direction for the steady state
process. The general momentum balance reads:

Iin − Iout + Fcentr + Fcor + Fvisc = 0. (3.10)

To write the momentum balance in the x and y direction, we need the tangential unit
vector eθ:

eθ = excosθ + eysinθ = ex
dx

ds
+ ey

dy

ds
. (3.11)

The entering momentum flux Iin and the leaving momentum flux Iout are given by:

Iin = ρAv2 |s, (3.12)

Iout = ρAv2 |s+∆s . (3.13)

These fluxes are both directed along the tangent eθ, so with Φ = ρAv = constant and
equation (3.11) follows:

Iin − Iout = ρAv2eθ |s −ρAv2eθ |s+∆s= Φveθ |s −Φveθ |s+∆s= (3.14)

−∆s
d
ds

(
Φveθ

)
= −∆sΦ

(
ex

d
ds

(
v
dx

ds

)
+ ey

d
ds

(
v
dy

ds

))
.

Summation of equation (3.14), (3.3), (3.4) and (3.7) results in the momentum balances
(3.10) in the x and y direction:

−Φ
d
ds

(
v
dx

ds

)
+ ρAω2x + 2ρAωv

dy

ds
+

d
ds

(
F

dx

ds

)
= 0, (3.15)

−Φ
d
ds

(
v
dy

ds

)
+ ρAω2y − 2ρAωv

dx

ds
+

d
ds

(
F

dy

ds

)
= 0. (3.16)

We can rewrite these equations by using the product rule of differentiation and Φ = ρAv.(
F − Φv

)d2x

ds2
= −Φω2

v
x− 2Φω

dy

ds
− dx

ds

d
ds

(
F − Φv

)
, (3.17)

(
F − Φv

)d2y

ds2
= −Φω2

v
y + 2Φω

dx

ds
− dy

ds

d
ds

(
F − Φv

)
. (3.18)

What will happen if F − Φv = 0 will be discussed later on.
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3.2 Replacing Pythagoras

Equation (3.1) results in a square root when you use it to find an expression for the
derivatives of x and y with respect to s. To avoid this, we can we can replace this
equation by a differential equation. Therefore, we have to take the inner product of the

vectorial momentum equations (3.17-3.18) and the vector
(

dx
ds , dy

ds

)T
:

(
F − Φv

)(d2x

ds2

dx

ds
+

d2y

ds2

dy

ds

)
= (3.19)

= −Φω2

v

(
x

dx

ds
+ y

dy

ds

)
−
((dx

ds

)2
+
(dy

ds

)2
)

d
ds

(
F − Φv

)
.

The derivative of equation (3.1) is zero. So substituting this derivative and equation
(3.1) gives:

dF

ds
= Φ

dv

ds
− Φω2

v

(
x

dx

ds
+ y

dy

ds

)
. (3.20)

Instead of equation (3.1), this equation does not results in a square root

3.3 The stationary system with rotating s

The set of equations for the stationary case in a rotating coordinate system with coor-
dinate s we have found is:(

F − Φv
)d2x

ds2
= −Φω2

v
x− 2Φω

dy

ds
− dx

ds

d
ds

(
F − Φv

)
, (3.21)

(
F − Φv

)d2y

ds2
= −Φω2

v
y + 2Φω

dx

ds
− dy

ds

d
ds

(
F − Φv

)
, (3.22)

dv

ds
=

ρv

η

F

Φ
, (3.23)

dF

ds
= Φ

dv

ds
− Φω2

v

(
x

dx

ds
+ y

dy

ds

)
, (3.24)

with Φ = ρAv constant. There are four equations and four unknowns: F , x, y and v.
The momentum equation in the x direction (3.21) and the momentum equation in the
y direction (3.22) are second order equations. The other equations are of first order.
Therefore, to solve the whole system six boundary or initial conditions are needed. Some
of the initial conditions of the system (3.21-3.24) are obvious:

x(0) = Rrot, y(0) = 0, v(0) = v0, F (0) = F0. (3.25)

The viscous force F0 is unknown and should follow from conditions imposed on the
spinning line at the coagulator. When the spinning line leaves the orifice perpendicular
to the rotor the initial conditions are:

dx

ds
= 1,

dy

ds
= 0, for s = 0. (3.26)
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Against all expectations, the spinning line seems to leave the orifice not perpendicular
to the rotor. This subject will be discussed later. Denote the arc length of the spinning
line at the coagulator by L. Then we need two boundary conditions:

x(L)2 + y(L)2 = R2
coag, v(L) = ve. (3.27)

A problem is that we do not know the length L when the spinning line hits the coagulator.

3.4 Balances perpendicular to the tangent and the radius vector

The balance perpendicular to the tangent and the balance perpendicular to the radius
vector are also useful. These balances will be used in Section 7.

The balance perpendicular to the tangent appears when equation (3.21) is multiplied
by dy

ds and added to equation (3.22) multiplied by −dx
ds :

(F − Φv)
(

d2x

ds2

dy

ds
− d2y

ds2

dx

ds

)
= −Φω2

v

(
x

dy

ds
− y

dx

ds

)
− 2Φω. (3.28)

Assume F − Φv = 0, then

x
dy

ds
− y

dx

ds
= −2v

ω
. (3.29)

In the same way, the balance perpendicular to the radius vector can be found. Multiply
equation (3.21) by y and equation (3.22) by −x, adding those two equations gives:

d
ds

(
(F − Φv)

(
y
dx

ds
− x

dy

ds

))
= −Φω

d
ds

(
y2 + x2

)
. (3.30)

Integration of this equation leads to(
(F − Φv)

(
y
dx

ds
− x

dy

ds

))
= −Φω

(
y2 + x2

)
+ C1, (3.31)

where C1 an integration constant.

3.5 The case F − Φv ≡ 0

When F − Φv ≡ 0, so F ≡ Φv, the set of equations (3.21-3.24) can be reduced to the
following system

0 = −ω

v
x− 2

dy

ds
(3.32)

0 = −ω

v
y + 2

dx

ds
(3.33)

dv

ds
=

ρ

η
v2 (3.34)
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x
dx

ds
+ y

dy

ds
= 0 (3.35)

If the first two equations (3.32-3.33) hold, the last one (3.35) automatically also holds,
so this one cancels. The velocity can be solved from equation (3.34), when we use the
initial condition v(0) = 1 the velocity corresponds with

v(s) =
1

1− ρ
ηs

(3.36)

When we substitute this in equation (3.32) and (3.33) the remaining system is

dx

ds
=

1
2
ωy +

1
2

ρω

η
sy (3.37)

dy

ds
= −1

2
ωx +

1
2

ρω

η
sx

x(0) = Rrot, y(0) = 0

Solving this gives a spinning line which is following the rotor exactly. So when F −Φv ≡
0, the spinning line will stick to the rotor.

3.6 Solving the set of equations representing the stationary case in a
rotating coordinate system with zero viscosity

If the viscosity is zero, the model reduces to the problem of bullets fired from a rotating
disc. After eliminating the viscous force, the system (3.21-3.24) becomes

d2x

ds2
=

1
v

(
ω2

v
x + 2ω

dy

ds
− dx

ds

dv

ds

)
, (3.38)

d2y

ds2
=

1
v

(
ω2

v
y − 2ω

dx

ds
− dy

ds

dv

ds

)
, (3.39)

dv

ds
=

ω2

v

(
x

dx

ds
+ y

dy

ds

)
. (3.40)

Equation (3.23) is disappeared because of eliminating viscous force F . Using v = ds
dt the

system can be written with respect to t instead of s. Then the system becomes

d2x

dt2
= ω2x + 2ω

dy

dt
, (3.41)

d2y

dt2
= ω2y − 2ω

dx

dt
, (3.42)

dv

dt
=

ω2

v

(
x

dx

dt
+ y

dy

dt

)
. (3.43)

The solution of this system is given by

x(t) = (Rrot + v0t) cos(ωt) + ωRrott sin(ωt), (3.44)
y(t) = − (Rrot + v0t) sin(ωt) + ωRrott cos(ωt), (3.45)

v(t) =
√

(v0 + ω2Rrott)
2 + (ωv0t)

2. (3.46)
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In the viscous case, realistic values for the physical parameters are:

ρ = 1700 kg/m3, η = 1200 Pa · s, v0 = 1 m/s, (3.47)

Rrot = 0.15 m, Rcoag = 0.3 m, A(0) = π/64 ∗ 10−6 m2 (3.48)
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4 The instationary case with fixed r

We know the differential equations, describing the rotor spinning process, for the insta-
tionary case in a rotating coordinate system with coordinate s, where s is the distance
along the spinning line from the rotor to a point on the spinning line. Instead of this
coordinate s we can use the radial distance r as a coordinate [4]. In the new coordinate,
the domain of the problem is known a priori, while in the coordinate system with s it
was not because the spinning line length L is unknown. A disadvantage of the choice
of coordinate r, is that spinning lines which curve back toward the rotor cannot be
represented, because the solution becomes multi-valued in terms of coordinate r. But
in the rotor spinning process this will not happen in practice. Again the vertical veloc-
ity is neglected, so the spinning line will be modeled as a one-dimensional curve in a
two-dimensional space. Section 4.1 until Section 4.4 is derived by Bas van ’t Hof [4], in
these sections the derivation is written down in more detail.

4.1 Parametrization of the spinning line

Figure 4: Parametrization of the spinning line.

First we need a parameterization of the spinning line (See Figure 4). This is done
by means of φp

p(r, t) = r

(
cos(φp(r, t))
sin(φp(r, t))

)
. (4.1)

Here, r is the radial distance, so r =
√

p2
1 + p2

2. The velocity of the spinning line is
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parametrized by:

v(r, t) = V

(
cos(φv(r, t))
sin(φv(r, t))

)
. (4.2)

Here, V is the length of the vector, so V (r, t) =
√

v2
1(r, t) + v2

2(r, t). In this section the
angle φp is negative in all figures. A tangent vector to the spinning line is given by
the derivative ∂p

∂r . The spinning line direction φs is the argument of the spinning line
tangent vector (see [4], Section 4.2.1):

φs = arctan

(
sin(φp) + r cos(φp)

∂φp

∂r

cos(φp)− r sin(φp)
∂φp

∂r

)
. (4.3)

Rewriting equation (4.3) with simple addition and subtraction formulas leads to

∂φp

∂r
=
− tan(φp − φs)

r
. (4.4)

By definition, the unit tangent vector s along the spinning line is given by:

s =
1

‖∂p
∂r ‖

∂p
∂r

=
(

cos(φs)
sin(φs)

)
, (4.5)

and a unit normal vector m can be represented by

m = Js, (4.6)

because then m · s = 0. Here, J is the rotation operator denoted by J =
(

0 −1
1 0

)
.

In the model, we consider the flow velocity v(r, t) and the cross-section area of the spin-
ning line A(r, t). Then the dependent variables are v, A, φs and φp. The radial distance
r and the time are the independent variables.

4.2 Kinematic equation

The kinematic equation is the only equation in the system that is not a conservation
law. This equation leads to an expression for the time derivative of the angle φp. It
is derived from the fact that the spinning line moves with flow velocity v. The fluid
particle p(r, t) will be at p(r, t) + ∆tv(r, t) after a small time ∆t. So there must be a
coordinate r + ∆r (see Figure 5) such that

p(r + ∆r, t + ∆t) = p(r, t) + ∆tv(r, t). (4.7)

The new position of the particle after ∆t time is equal to the old position on time t plus
the covered way in time ∆t. Here ∆r is dependent of t. We can take the total derivative
of p, where p is denoted by p(R(t), t). Then the total derivative of p, the velocity v, is
denoted by:

Dp
Dt

=
Dp(R(t), t)

Dt
=

∂p
∂t

+
∂p
∂r

dR

dt
(4.8)
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Figure 5: The kinematic equation.

Because m and s are perpendicular we get the following kinematic equation, by using
(4.5):

m · v = m · ∂p
∂t

+ m · s‖∂p
∂r
‖dR

dt
= m · ∂p

∂t
. (4.9)

We know that r is constant (see Figure 5), so rewriting leads to:

m · v = m · ∂p
∂t

= m · r
(
− sin(φp)
cos(φp)

)
∂φp

∂t
= m · Jp

∂φp

∂t
. (4.10)

After using the addition and subtraction formulas it leads to

∂φp

∂t
=

m · v
m · Jp

=
sin(φv − φs)
cos(φp − φs)

V

r
. (4.11)

4.3 General form of the conservation law in a moving spinning line

We can construct a general form of a conservation law. The conservation law consists
of three parts, which add up to zero. These parts are the transport Q, the change of
the total amounts M and the local production/destruction Ψ in a small piece of the
spinning line.

∂M

∂t
= QR1 −QR2 + Ψ. (4.12)
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Figure 6: A small piece of the spinning line to construct the conservation law.

4.3.1 Transport

We take a cross-section A′, this cross-section is not perpendicular to the spinning line,
see Figure 6, so

A′ =
A

cos(φp − φs)
(4.13)

The normal direction to the cross-section A′ is given by the angle φp. We can determine
the transport Q through cross-section A′ by

Q = A′f ·
(

cos φp

sinφp

)
. (4.14)

f denotes a transport flux, f = f

(
cos φf

sin φf

)
. So

Q = A′f
(

cos φp

sinφp

)
= A′f cos(φp − φf ) =

cos(φp − φf )
cos(φp − φs)

Af. (4.15)

The netto transport into the spinning line section between r = R1 and r = R2 is now
given by

QR1 −QR2 = −
[
cos(φp − φf )
cos(φp − φs)

Af

]R2

R1

. (4.16)

4.3.2 Total amounts

The total amounts are calculated from a line integral along the spinning line. The local
density of a given quantity is written as d, given per unit volume. The total amount M
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of the given quantity in the spinning line segment between any two coordinates R1 and
R2 is now found by the line integral (see Figure 6):

M =
∫ R2

R1

Adds =
∫ R2

R1

Ad‖∂p
∂r
‖dr =

∫ R2

R1

Ad

cos(φp − φs)
dr. (4.17)

We have used that
ds = p(r + dr)− p(r) =

∂p
∂r

dr. (4.18)

So
ds = ‖∂p

∂r
‖dr. (4.19)

Notice that the ds from equation (4.18) and the ds for equation (4.19) are not the same.
With equation(4.4) we get:

‖∂p
∂r
‖ = ‖ ∂

∂r

(
r

(
cos φp

sinφp

))
‖ = ‖

(
cos φp

sinφp

)
+ r

(− sin(φp)
∂φp

∂r

cos(φp)
∂φp

∂r

)
‖ =

= ‖
(

cos φp

sinφp

)
+ r

(− sin(φp)1
r (− tan(φp − φs))

cos(φp)1
r (− tan(φp − φs))

)
‖ =

=
√

(cos φp + sinφp tan(φp − φs))
2 + (sinφp − cos φp tan(φp − φs))

2 =

=
√

tan2(φp − φs) + 1 =
1

cos(φp − φs)
. (4.20)

By introducing the coordinate r, we said the spinning line does not curve back towards
the rotor, so φp is not perpendicular to φs. Then φp−φs 6= π

2 and it is allowed to divide
by cos(φp − φs), as in equation (4.17).

4.3.3 Production and destruction

In the same way as the total amount M in equation (4.17) the production can be found:

Ψ =
∫ R2

R1

S

cos(φp − φs)
dr, (4.21)

where S denotes the production intensity.

4.3.4 The general conservation law

The general form of a conservation law can be found by combining the change of the
total amount, the transport and the production terms.

∂M

∂t
= QR1 −QR2 + Ψ. (4.22)

So

∂

∂t

∫ R2

R1

Ad

cos(φp − φs)
dr = −

[
cos(φp − φf )
cos(φp − φs)

Af

]R2

R1

+
∫ R2

R1

S

cos(φp − φs)
dr. (4.23)
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Because this must hold for every R1 and R2, we can rewrite this conservation law into

∂

∂t

(
Ad

cos(φp − φs)

)
+

∂

∂r

(
cos(φp − φf )
cos(φp − φs)

Af

)
=

S

cos(φp − φs)
. (4.24)

4.4 The conservation laws in a moving spinning line

In this section we will apply the general conservation law (4.24) to mass and to the x
and y-momentum. The local densities, given as d in (4.17) and the flux f are as follows:
Quantity Density (d) unit
mass ρ kg/m3

momentum ρv kg/sm2

kinetic energy 1
2ρ | v |2 J/m3

4.4.1 The continuity equation

The continuity equation is found by applying the conservation law to mass with
density d = ρ, flux f = ρv, so f = ρV and φf = φv and production S = 0 yields to:

∂

∂t

(
ρA

cos(φp − φs)

)
+

∂

∂r

(
cos(φp − φv)
cos(φp − φs)

ρAV

)
= 0. (4.25)

The mass transport term is known as Φ = cos(φp−φv)
cos(φp−φs)

ρAV . In this model the mass
transport flux is not constant in contrast to the model in Section 3.

4.4.2 The momentum equation

To find the momentum equation in the x and y direction, we apply the conservation law
to the x- and y-momentum.

We know, u =
(

1
0

)
v and v =

(
0
1

)
v.

So in the x direction the density is d = ρ

(
1
0

)
v,

the flux is f = ρ

(
1
0

)
· vvT − η

2

(
1
0

)(
∇v +∇vT

)
and the production S = 0.
The cosine of the angle difference is determined by

f cos(φp − φf ) = f
(

cos φp

sinφp

)
. (4.26)

Substitution of these terms in the general conservation law (4.24) results in a momentum
equation in the x and y direction.

∂

∂t

(
ρAu

cos(φp − φs)

)
+

∂

∂r

(
Φu− ηA

2 cos(φp − φs)

(
1
0

)(
∇v +∇vT

)(cos φp

sinφp

))
= 0.

(4.27)
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∂

∂t

(
ρAv

cos(φp − φs)

)
+

∂

∂r

(
Φv − ηA

2 cos(φp − φs)

(
0
1

)(
∇v +∇vT

)(cos φp

sinφp

))
= 0

(4.28)
Combination of these two equations gives the momentum equation in vector notation:

∂

∂t

(
ρAv

cos(φp − φs)

)
+

∂

∂r

(
Φv − ηA

2 cos(φp − φs)
(
∇v +∇vT

)(cos φp

sinφp

))
= 0. (4.29)

From the momentum balance for two halves of the spinning line (see [4], appendix A),
the viscosity operator is given by

(
∇v +∇vT

)(cos φp

sinφp

)
= 2

(
s · ∂v

∂r

)
s cos(φp − φs)2. (4.30)

The viscous force works only in the spinning line direction s, because the matrix-vector
product of the viscous tensor

(
∇v +∇vT

)
and an arbitrary vector is always parallel to

the spinning line.

4.5 The instationary system in fixed r

The set of equations for the instationary case in a fixed coordinate system with coordi-
nate r we have found is:

φs = arctan

(
sin(φp) + r cos(φp)

∂φp

∂r

cos(φp)− r sin(φp)
∂φp

∂r

)
or

∂φp

∂r
=
− tan(φp − φs)

r
, (4.31)

kinematic equation:
∂φp

∂t
=

sin(φv − φs)
cos(φp − φs)

V

r
, (4.32)

continuity equation:
∂

∂t

(
ρA

cos(φp − φs)

)
+

∂Φ
∂r

= 0, (4.33)

momentum equations:

∂

∂t

(
ρAv

cos(φp − φs)

)
+

∂

∂r

(
Φv − ηA cos(φp − φs)

(
s · ∂v

∂r

)
s
)

= 0. (4.34)

With

p = r

(
cos φp

sinφp

)
, v = V

(
cos φv

sinφv

)
, (4.35)

s =
(

cos φs

sinφs

)
, m =

(
− sinφs

cos φs

)
, (4.36)

and mass transport Φ:

Φ = ρAV
cos(φp − φv)
cos(φp − φs)

. (4.37)
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This term is not constant because cross-section A
cos(φp−φs)

is not perpendicular to the
spinning line.

There are five differential equations (4.31-4.34) and we have to deal with five unknowns:
φv, V , φs, φp and A.
The momentum equations are both second order, the other equations are all first order.
Equation 4.31 is a first derivatie with respect to r, the kinematic equation is a first order
derivative with respect to time and the continuity equation contains a first orer deriva-
tive with respect to time and one with respect to r. The momentem equation contains a
first order time derivative and a second order derivative with respect to time. We have
to deal with four time derivatives of first order, so we need four initial conditions. Six
boundary conditions follow from the two first order derivatives with respect to r and
the two second order derivatives with respect to r.

4.5.1 Boundary conditions

Assume again that the spinning line is perpendicular to the rotor when it leaves the
orifice, and that the magnitude of the velocity V is 1 m/s at the orifice, so

V (Rrot, t) = 1 m/s. (4.38)

The angles φv, φs and φp are zero at the rotor:

φv(Rrot, t) = 0, φs(Rrot, t) = 0, φp(Rrot, t) = 0, (4.39)

and A is the area of the cross-section perpendicular to the spinning line. The radius of
the orifice is 125 µm, so at the orifice

A(Rrot, t) = π(125 ∗ 10−6)2 =
π

64 ∗ 10−6
. (4.40)

Those five boundary conditions are ’obvious’ in this perpendicular case, but the other
boundary condition is not that easy to find. You can try to find the magnitude of the
final velocity at the coagulator ve, then

V (Rcoag, t) = ve (4.41)

Another option is to require that, at the coagulator, the spinning line has a slope equal
to the slope of the coagulator at that point. Then one can derive (see Figure 7) that
φp − φs = π

2 , because φp ⊥ φs. Substituting this in equation (4.31) gives:

∂φp

∂r
(Rcoag, t) =

− tan
(

π
2

)
Rcoag

(4.42)

Now we obtain a problem because tan
(

π
2

)
= ∞. Another important thing to remember

is that it is possible that the spinning line curves backwards, before it hits the coagulator.
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Figure 7: The angles when the slope of the spinning line at the coagulator is equal to
the slope of the coagulator at that point.

4.5.2 Initial conditions

The four initial conditions we need are easier to find if one assume that the velocity V
and the cross-section area A are constant in the whole spinning line. Then the initial
conditions are:

φv(r, 0) = 0, V (r, 0) = 1 m/s, φp(r, 0) = 0, (4.43)

A(r, 0) = π(125 ∗ 10−6)2 =
π

64 ∗ 10−6
.
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5 The instationary case with rotating r

In this section we transform the equations of the fixed coordinate system to a rotating
coordinate system, in which the rotor is stationary and the coagulator rotates. First
we transform the variables φp, p, s and v such that we find new variables φ̃p, p̃, s̃ and
ṽ. The new variables are chosen such that the original variables can be derived easily
from them, and that a stationary solution may exist for the transformed variables. The
original derivation can be found in the article of van ’t Hof [4]. In Section 5.3 this
derivation is written down in detail.
We can write the original variables in terms of the rotated variables by:

p = Cp̃, s = Cs̃, m = Cm̃, (5.1)

where C a rotation matrix

C =
(

cos(ωt) − sin(ωt)
sin(ωt) cos(ωt)

)
. (5.2)

Because CTC = I it follows that

p̃ = CTp, s̃ = CT s, m̃ = CTm. (5.3)

We define the transformed angles by

φ̃p = φp − ωt, (5.4)

φ̃s = φs − ωt. (5.5)

Then

p̃ = CTp = r

(
cos(φp − ωt)
sin(φp − ωt)

)
= r

(
cos φ̃p

sin φ̃p

)
. (5.6)

s̃ = CT s =
(

cos(φs − ωt)
sin(φs − ωt)

)
=
(

cos φ̃s

sin φ̃s

)
. (5.7)

m̃ = CTm =
(
− sin(φs − ωt)
cos(φs − ωt)

)
=
(
− sin φ̃s

cos φ̃s

)
. (5.8)

The transformed velocity is given by the time derivative of the transformed parametriza-
tion of the spinning line p̃, so

ṽ =
∂p̃
∂t

=
dr

dt

(
cos φ̃p

sin φ̃p

)
+ r

(− sin φ̃p

cos φ̃p

)(
∂φp

∂t
− ω

)
. (5.9)

We know that

v =
∂p
∂t

=
dr

dt

(
cos φp

sinφp

)
+ r

(
− sinφp

cos φp

)
∂φp

∂t
, (5.10)
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then

CTv =
dr

dt

(
cos φ̃p

sin φ̃p

)
+ r

(− sin φ̃p

cos φ̃p

)
∂φp

∂t
. (5.11)

Now, we can express the transformed velocity in terms of the original velocity by

ṽ = CTv − ωJp̃. (5.12)

We can also express the velocity in the fixed coordinate system v in terms of the velocity
in the rotating coordinate system ṽ:

v = Cṽ + ωCJp̃. (5.13)

From the transformed velocity (5.12) it follows that

ṽ =
(

cos(φv − ωt)
sin(φv − ωt)

)
V − ωr

(− sin φ̃p

cos φ̃p

)
. (5.14)

For later use, this is rewritten as

ṽ =
(

cos φ̃v

sin φ̃v

)
Ṽ , (5.15)

where Ṽ the magnitude and φ̃v the direction of the velocity.

5.1 The transformed mass flux and the transformed continuity equa-
tion

Now we know the separate terms, we can find the equations we need. The mass flux is
given in transformed variables by

Φ = ρAṼ
cos(φ̃p − φ̃v)
cos(φ̃p − φ̃s)

, (5.16)

and the transformed continuity equation is given by

∂

∂t

(
ρA

cos(φ̃p − φ̃s)

)
+

∂Φ
∂r

= 0. (5.17)

5.2 The transformed kinematic equation

We know the time derivative of φp in terms of the transformed variables

∂φp

∂t
=

∂(φ̃p + ωt)
∂t

=
∂φ̃p

∂t
+ ω. (5.18)

We can rewrite the original equation (4.11):

∂φp

∂t
=

m · v
m · Jp

=
(Cṽ) · (Cm̃) + ω(CJp̃) · (Cm̃)

Cm̃ · JCp̃
=

sin(φ̃v − φ̃s)
cos(φ̃p − φ̃s)

Ṽ

r
+ ω. (5.19)
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Combining those two (5.18-5.19) gives the transformed kinematic equation

∂φ̃p

∂t
=

sin(φ̃v − φ̃s)
cos(φ̃p − φ̃s)

Ṽ

r
. (5.20)

5.3 The transformed momentum equation

The last equation we have to transform is the momentum equation. After applying the
product rule to the momentum equation (4.34) we find

ρA

cos(φs − φp)
∂v
∂t

+
(

∂

∂t

ρA

cos(φs − φp)
+

∂Φ
∂r

)
v+Φ

∂v
∂r

=
∂

∂r

(
ηA cos(φp − φs)

(
s · ∂v

∂r

)
s
)

.

(5.21)
Multiplying the whole equation with cos(φs − φp), dividing by ρA and using the conti-
nuity equation (4.33) leads to

∂v
∂t

+ V cos(φp − φv)
∂v
∂r

=
cos(φp − φs)

ρA

∂

∂r

(
ηA cos(φp − φs)

(
s · ∂v

∂r

)
s
)

. (5.22)

We can transform the terms separately, where is used that JJ = I

∂v
∂t

=
∂

∂t
(Cṽ + ωCJp̃) = C

(
∂ṽ
∂t

+ ωJ
∂p̃
∂t

)
+

∂C
∂t

(ṽ + ωJp̃) =

= C
∂ṽ
∂t

+ ωCJJp̃
∂φ̃p

∂t
+ ωCJ (ṽ + ωJp̃) =

= C

(
∂ṽ
∂t
− ωp̃

sin(φ̃v − φ̃s)
cos(φ̃p − φ̃s)

Ṽ

r
+ ωJṽ − ω2p̃

)
. (5.23)

We can find the radial derivative in the same way.

∂v
∂r

=
∂

∂r
(Cṽ + ωCJp̃) = C

(
∂ṽ
∂r

+ ωJ
∂p̃
∂r

)
= (5.24)

= C

(
∂ṽ
∂r

+
ω

cos(φ̃p − φ̃s)
Js̃

)
.

The advective term V cos(φp − φv) in transformed variables reads

V cos(φp − φv) =
v · p

r
= (C (ṽ + ωJp̃)) ·

(
Cp̃
r

)
=

= (ṽ + ωJp̃) ·
(

p̃
r

)
=

ṽ · p̃
r

= Ṽ cos(φ̃v − φ̃p). (5.25)

The left-hand side of the momentum equation (5.22) is therefore given by

∂v
∂t

+ Ṽ cos(φp − φv)
∂v
∂r

= C
(

∂ṽ
∂t

+ ωJṽ − ω2p̃ + Ṽ cos(φ̃p − φ̃v)
∂ṽ
∂r

)
+

+
Ṽ ω

cos(φ̃p − φ̃s)
C
(

cos(φ̃v − φ̃p)m̃− sin(φ̃v − φ̃s)
p̃
r

)
, (5.26)
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where use is made of m̃ = Js̃. We can expand the last term in brackets

cos(φ̃v − φ̃p)m̃− sin(φ̃v − φ̃s)
p̃
r

=
(
− sin φ̃v

cos φ̃v

)(
sin φ̃p sin φ̃s + cos φ̃s cos φ̃p

)
= (5.27)

=
Jṽ
Ṽ

cos(φ̃p − φ̃s).

So
Ṽ ω

cos(φ̃p − φ̃s)
C
(

cos(φ̃v − φ̃p)m̃− sin(φ̃v − φ̃s)
p̃
r

)
= CωJṽ. (5.28)

Therefore, the left-hand side of the momentum equation is given by

∂v
∂t

+ V cos(φp − φv)
∂v
∂r

= C
(

∂ṽ
∂t

+ 2ωJṽ − ω2p̃ + Ṽ cos(φ̃p − φ̃v)
∂ṽ
∂r

)
. (5.29)

The last thing we have to do is to transform the right-hand side of the momentum
equation. Because of equation (5.24) and the fact that m̃ = Js̃, it follow that:

∂v
∂r

· s =
(
C

∂ṽ
∂r

)
· (Cs̃) +

(
ω

cos(φ̃p − φ̃s)
Cm̃

)
· (Cs̃) =

=
∂ṽ
∂r

· s̃ +
ω

cos(φ̃p − φ̃s)
m̃ · s̃ =

∂ṽ
∂r

· s̃. (5.30)

Then

cos(φp − φs)
ρA

∂

∂r

(
ηA cos(φp − φs)

(
s · ∂v

∂r

)
s
)

= (5.31)

=
cos(φ̃p − φ̃s)

ρA

∂

∂r

(
ηA cos(φ̃p − φ̃s)

(
s̃ · ∂ṽ

∂r

)
Cs̃
)

.

Therefore, the transformed momentum equation is given by

∂

∂t

(
ρAṽ

cos(φ̃p − φ̃s)

)
+

∂

∂r

(
Φṽ − ηA cos(φ̃p − φ̃s)

(
s̃ · ∂ṽ

∂r

)
s̃
)

= (5.32)

=
ρAω(ωp̃− 2Jṽ)

cos(φ̃p − φ̃s)
.

In the right hand-side we can recognize the Coriolis force and the centrifugal force.
These forces appear because the coordinate system rotates.

5.4 The instationary system in rotating r

The set of equations for the instationary case in a rotating coordinate system with
coordinate r we have found is:

φ̃s = arctan

sin(φ̃p) + r cos(φ̃p)
∂φ̃p

∂r

cos(φ̃p)− r sin(φ̃p)
∂φ̃p

∂r

 or
∂φ̃p

∂r
=
− tan(φ̃p − φ̃s)

r
, (5.33)
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kinematic equation:
∂φ̃p

∂t
=

sin(φ̃v − φ̃s)
cos(φ̃p − φ̃s)

Ṽ

r
, (5.34)

continuity equation:
∂

∂t

(
ρA

cos(φ̃p − φ̃s)

)
+

∂Φ
∂r

= 0, (5.35)

momentum equation:

∂

∂t

(
ρAṽ

cos(φ̃p − φ̃s)

)
+

∂

∂r

(
Φṽ − ηA cos(φ̃p − φ̃s)

(
s̃ · ∂ṽ

∂r

)
s̃
)

= (5.36)

=
ρAω(ωp̃− 2Jṽ)

cos(φ̃p − φ̃s)
.

With

p̃ = r

(
cos φ̃p

sin φ̃p

)
, ṽ = Ṽ

(
cos φ̃v

sin φ̃v

)
, (5.37)

s̃ =
(

cos φ̃s

sin φ̃s

)
, m̃ =

(
− sin φ̃s

cos φ̃s

)
, (5.38)

and not constant mass transport term Φ:

Φ = ρAṼ
cos(φ̃p − φ̃v)
cos(φ̃p − φ̃s)

. (5.39)

Just as in Section 4.5 the momentum equations are both second order and all the other
equations are of first order. Equation (5.33) is first order with respect to r, the kine-
matic equation is a first order derivative with respect to time and the continuity equation
contains a first orer derivative with respect to time and one with respect to r. The mo-
mentem equation contains a first order time derivative and a second order derivative
with respect to r. So we need six boundary conditions and four initial conditions to
solve the system of four differential equations (5.33-5.36) with unknowns φ̃v, Ṽ , φ̃s, φ̃p

and A.

5.4.1 Boundary conditions

Again we assume that the spinning line is perpendicular to the rotor, when it leaves the
orifice. Just as in the previous sections the magnitude of the velocity Ṽ is 1 m/s, so

Ṽ (Rrot, t) = 1 m/s. (5.40)

Because the spinning line leaves the rotor horizontal, the angles φ̃v, φ̃s and φ̃p are all
zero:

φ̃v(Rrot, t) = 0, φ̃s(Rrot, t) = 0, φ̃p(Rrot, t) = 0. (5.41)
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The Area of the spinning line A is perpendicular to the spinning line, the radius of the
orifice is 125 µm so

A(Rrot, t) = π(125 ∗ 10−6)2 =
π

64 ∗ 10−6
(5.42)

In the same way as in Section 4, the final boundary condition is not that obvious to
find. You can try to find the magnitude of the final velocity at the coagulator ve, then

V (Rcoag, t) = ve (5.43)

Just as in Section 4, at the coagulator we can find φ̃p − φ̃s = π
2 , so another boundary

condition follows from equation (5.33):

∂φ̃p

∂r
(Rcoag, t) =

− tan
(

π
2

)
Rcoag

(5.44)

Again we obtain a problem because tan
(

π
2

)
= ∞.

5.4.2 Initial conditions

The four initial conditions we need are easier to find. Assume that the velocity V and the
cross-section area A are constant in the whole spinning line. Then the initial conditions
are:

φ̃v(r, 0) = 0, Ṽ (r, 0) = 1 m/s, φ̃p(r, 0) = 0, (5.45)

A(r, 0) = π(125 ∗ 10−6)2 =
π

64 ∗ 10−6
.
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6 The stationary case with rotating r

In this section we will consider the instationary case in a rotating coordinate system
with coordinate r, ignoring the time derivative. Then we get the stationary case.
Section 6.1, is a detailed version of [4].

6.1 Deriving the stationary system from the instationary case

First we consider the kinematic equation (5.34). Ignoring the time derivative gives

φ̃v = φ̃s. (6.1)

This means that the velocity vector is parallel to the spinning line. So

ṽ = Ṽ s̃, (6.2)

where Ṽ the magnitude of the velocity. Substituting equation (6.1) in the mass transport
term Φ (5.39) gives

Φ = ρAṼ . (6.3)

Ignoring the time derivative in the continuity equation (5.35) says ∂Φ
∂r = 0, so the mass

transport term is constant. Omitting the time derivative in the momentum equation
(5.36) gives

d
dr

(
Φṽ − ηA cos(φ̃p − φ̃s)

(
s̃ · dṽ

dr

)
s̃
)

=
ρAω(ωp̃− 2Jṽ)

cos(φ̃p − φ̃s)
. (6.4)

Substituting ṽ = Ṽ s̃ gives

d
dr

(
ΦṼ s̃− ηA cos(φ̃p − φ̃s)

(
s̃ · dṼ s̃

dr

)
s̃

)
=

ρAω(ωp̃− 2Jṽ)
cos(φ̃p − φ̃s)

. (6.5)

Rewriting this leads to

d
dr

(
ΦṼ s̃− ηA cos(φ̃p − φ̃s)

dṼ

dr
s̃

)
=

ρAω(ωp̃− 2Jṽ)
cos(φ̃p − φ̃s)

, (6.6)

where we have used that s̃ · s̃ = 1 and s̃ · ds̃
dr = 0. This last assumption can be made

clear when we take

s̃ =
(

cos φ̃s

sin φ̃s

)
=
(
s̃1(r)
s̃2(r)

)
.

Then it follows that s̃1
2 + s̃2

2 = 1. Taking the derivative leads to

2s̃1
ds̃1

dr
+ 2s̃2

ds̃2

dr
= 0.

Because
s̃ · ds̃

dr
= s̃1

ds̃1

dr
+ s̃2

ds̃2

dr
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it follows that s̃ · ds̃
dr = 0. The momentum equation, after using A = Φ

ρṼ
, is now given by

d
dr

(
Φ

(
Ṽ − η cos(φ̃p − φ̃s)

ρṼ

dṼ

dr

)
s̃

)
=

ωΦ
cos(φ̃p − φ̃s)

(
ω

Ṽ
p̃− 2m̃

)
. (6.7)

6.2 The stationary system in rotating r

We assume that φ̃v and A can be calculated when the system is solved, because of
equation (6.1) and (6.3). Then the set of equations for the stationary case in a rotating
coordinate system with coordinate r we have found is:

φ̃s = arctan

sin(φ̃p) + r cos(φ̃p)
dφ̃p

dr

cos(φ̃p)− r sin(φ̃p)
dφ̃p

dr

 or
dφ̃p

dr
=
− tan(φ̃p − φ̃s)

r
, (6.8)

momentum equations:

d
dr

(
Φ

(
Ṽ − η cos(φ̃p − φ̃s)

ρṼ

dṼ

dr

)
s̃

)
=

ωΦ
cos(φ̃p − φ̃s)

(
ω

Ṽ
p̃− 2m̃

)
. (6.9)

With

p̃ = r

(
cos φ̃p

sin φ̃p

)
, (6.10)

s̃ =
(

cos φ̃s

sin φ̃s

)
, m̃ =

(
− sin φ̃s

cos φ̃s

)
, (6.11)

Φ = ρAṼ . (6.12)

Here, the mass transport term Φ is constant.
We have three equations and three unknowns Ṽ , φ̃s and φ̃p. The momentum equations
are both second order, the other equation is of first order. Therefore we need five
boundary conditions to solve the system.

6.2.1 Boundary conditions

Assume that the spinning line is perpendicular to the rotor, when it leaves the orifice.
Again the magnitude of the velocity Ṽ is 1 m/s, so

Ṽ (Rrot) = 1 m/s. (6.13)

From equation (6.1) we know that φ̃s = φ̃v and the spinning line leaves the rotor
horizontal:

φ̃p(Rrot) = 0, φ̃s(Rrot) = 0. (6.14)
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As seen before (Section 4), at the coagulator we can find φ̃p − φ̃s = π
2 , so a boundary

condition follows from equation (6.8):

∂φ̃p

∂r
(Rcoag) =

− tan
(

π
2

)
Rcoag

(6.15)

Again we obtain a problem because tan
(

π
2

)
= ∞. You can try to find the magnitude of

the final velocity at the coagulator ve, then

Ṽ (Rcoag) = ve (6.16)

6.3 Comparison of the two stationary cases in a rotating coordinate
system

From Section 3, we know the system in the stationary case with rotating coordinate
system in s (3.21-3.24). We can introduce φ̃p and φ̃s as shown in Figure 8.

Figure 8: The angles φ̃p and φ̃s.

Introducing polar coordinates gives:

x = r cos(−φ̃p) = r cos φ̃p, (6.17)

y = −r sin(−φ̃p) = r sin φ̃p. (6.18)

So with polar coordinates the derivatives with respect to s become:

dx

ds
=

dr

ds
cos φ̃p − r

dφ̃p

ds
sin φ̃p, (6.19)

dy

ds
=

dr

ds
sin φ̃p + r

dφ̃p

ds
cos φ̃p. (6.20)
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From Figure 8 you can find:

dx

ds
= cos(−φ̃s) = cos φ̃s, (6.21)

dy

ds
= − sin(−φ̃s) = sin φ̃s. (6.22)

Combining these two sets of equations leads to

dr

ds
cos φ̃p − r

dφ̃p

ds
sin φ̃p = cos φ̃s, (6.23)

dr

ds
sin φ̃p + r

dφ̃p

ds
cos φ̃p = sin φ̃s. (6.24)

Multiplying equation (6.23) by sin φ̃s and add this to equation (6.24) multiplied by
− cos φ̃s leads to

−r
dφ̃p

ds
=

dr

ds
tan(φ̃p − φ̃s). (6.25)

Multiplying by ds
dr and using dφ̃p

ds
ds
dr = dφ̃p

dr gives

dφ̃p

dr
= −tan(φ̃p − φ̃s)

r
(6.26)

This equation is exactly the same as equation (6.8). We found this equation from the
relationship between the derivatives (6.21-6.22) and polar coordinates. Therefore, equa-
tions (3.21-3.24) together have to result in the momentum equation (6.9) from Section
6.2.

Equation (3.24) is derived from Pythagoras (3.1), multiplying this equation by
(

ds
dr

)2
leads to (

ds

dr

)2

=
(

dx

dr

)2

+
(

dy

dr

)2

. (6.27)

With polar coordinates we can find the derivate of x and y with respect to r:

dx

dr
= cos φ̃p − r

dφ̃p

dr
sin φ̃p, (6.28)

dy

dr
= sin φ̃p + r

dφ̃p

dr
cos φ̃p. (6.29)

Substituting this in equation (6.27) leads to

ds

dr
=

1
cos(φ̃p − φ̃s)

(6.30)

The momentum balances in the x and y direction (3.21-3.22) can be rewritten, we found
equation (3.15) and (3.16):

−Φ
d

ds

(
v
dx

ds

)
+ ρAω2x + 2ρAωv

dy

ds
+

d

ds

(
F

dx

ds

)
= 0,
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−Φ
d
ds

(
v
dy

ds

)
+ ρAω2y − 2ρAωv

dx

ds
+

d
ds

(
F

dy

ds

)
= 0.

Rewriting this, using Φ = ρAv and assume the polymer to be Newtonian F = ηΦ
ρv

dv
ds

(3.23), leads to
d
ds

(
Φ
(

η

ρv

dv

ds
− v

)
dx

ds

)
= ωΦ

(
−ω

v
x− 2

dy

ds

)
(6.31)

d
ds

(
Φ
(

η

ρv

dv

ds
− v

)
dy

ds

)
= ωΦ

(
−ω

v
y + 2

dx

ds

)
(6.32)

Those momentum balances in the x and y direction can be written in vector form in the
same way as the momentum balance (6.9):

d
ds

(
Φ
(

η

ρv

dv

ds
− v

)(dx
ds
dy
ds

))
= ωΦ

(
−ω

v

(
x

y

)
+ 2
(−dy

ds
dx
ds

))
. (6.33)

Multiplying by −1 gives

d
ds

(
Φ
(

v − η

ρv

dv

ds

)(dx
ds
dy
ds

))
= ωΦ

(
ω

v

(
x

y

)
− 2
(−dy

ds
dx
ds

))
. (6.34)

We can rewrite equation (6.34) in terms of d
dr , φ̃p and φ̃s by using the fact d

ds = d
dr

dr
ds and

substituting the polar coordinates (6.17-6.18), the derivatives of x and y with respect
to s (6.21-6.22) and equation (6.30) leads to

d
dr

(
Φ
(

v − η

ρv
cos(φ̃p − φ̃s)

dv

dr

)(
cos φ̃s

sin φ̃s

))
=

ωΦ
cos(φ̃p − φ̃s)

(
ω

v

(
r cos φ̃p

r sin φ̃p

)
− 2
(
− sin φ̃s

cos φ̃s

))
.

(6.35)

Repeating equation (6.9) gives

d
dr

(
Φ

(
Ṽ − η

ρṼ
cos(φ̃p − φ̃s)

dṼ

dr

)
s̃

)
=

ωΦ
cos(φ̃p − φ̃s)

(
ω

Ṽ
p̃− 2m̃

)
, (6.36)

with

p̃ = r

(
cos φ̃p

sin φ̃p

)
, s̃ =

(
cos φ̃s

sin φ̃s

)
, m̃ =

(
− sin φ̃s

cos φ̃s

)
.

and Ṽ the magnitude of the velocity. Now you can see that both systems of equations
are the same.
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6.3.1 Viscous force

In equation (6.34) the dependent variables are x, y and v, in equation (6.36) φ̃p, φ̃s and
Ṽ are dependent variables.

In both equations you can recognize the viscous force, the Coriolis force and the cen-
trifugal force.
In equation (6.34), in the left-hand side you can recognize the term Φv − F . In the

other equation the term on that place you can find is Φ
(
Ṽ − η cos(φ̃p−φ̃s)

ρṼ
dṼ
dr

)
. Using

dṼ
dr = dṼ

ds
ds
dr and equation (6.30) it is easy to see that Φv−F and Φ

(
Ṽ − η cos(φ̃p−φ̃s)

ρṼ
dṼ
dr

)
describe the same thing.
Later on, in Section 7 the term Φ

(
Ṽ − η cos(φ̃p−φ̃s)

ρṼ
dṼ
dr

)
s̃ from equation (6.36) is called

k. The magnitude of this vector is called k, so k = ks̃. It follows that F − Φv = −k.
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7 Reformulation of the stationary case with rotating r

It is obvious to start with a stationary model for continuation research. In this section
we choose the stationary case in a rotating coordinate system, with coordinate r from
Section 6. Here we rewrite the system of equations in a more convenient form, and make
it dimensionless, just as done in [4]. There are introduced symbols k and k to denote
certain terms. The scalar k will perform an important role when the system is solved
numerically.
The set of equations we have found in Section 6 is

φ̃s = arctan

sin(φ̃p) + r cos(φ̃p)
∂φ̃p

∂r

cos(φ̃p)− r sin(φ̃p)
∂φ̃p

∂r

 or
∂φ̃p

∂r
=
− tan(φ̃p − φ̃s)

r
, (7.1)

d
dr

(
Φ

(
Ṽ − η cos(φ̃p − φ̃s)

ρṼ

dṼ

dr

)
s̃

)
=

ωΦ
cos(φ̃p − φ̃s)

(
ω

Ṽ
p̃− 2m̃

)
, (7.2)

with constant mass transport
Φ = ρAṼ . (7.3)

The momentum equation can be written as a system of first order equations, as follows:

k ≡ ΦṼ s̃− ηΦ cos(φ̃p − φ̃s)
ρṼ

dṼ

dr
s̃, (7.4)

dk
dr

=
ω2Φ

Ṽ cos(φ̃p − φ̃s)
p̃− 2ωΦ

cos(φ̃p − φ̃s)
m̃. (7.5)

Here k is a vector equal to the integral of the right hand side of equation (7.2), it is
also equal to the momentum transport in the transformed equations. It follows from
equation (7.4) that k and s̃ are parallel. Therefore k = ks̃.
The derivative of the scalar k is found using the product rule and combining the result
with equation (7.5), then

dk
dr

= s̃
dk

dr
+ k

ds̃
dr

=
ω2Φ

Ṽ cos(φ̃p − φ̃s)
p̃− 2ωΦ

cos(φ̃p − φ̃s)
m̃. (7.6)

Because s̃ · s̃ = 1, m̃ · s̃ = 0, p̃ · s̃ = r cos(φ̃p − φ̃s) and s̃ · ds̃
dr = 0 we can derive an

expression for dk
dr :

dk

dr
=

ω2Φ
Ṽ cos(φ̃p − φ̃s)

p̃ · s̃ =
ω2Φr

Ṽ
. (7.7)

In the same way we can derive an expression for ds̃
dr , by taking the scalar product of

equation (7.6) and the vector m̃. Because m̃ · m̃ = 1 and m̃ · s̃ = 0 it follows that

k
ds̃
dr
· m̃ =

ω2Φ
Ṽ cos(φ̃p − φ̃s)

p̃ · m̃− 2ωΦ
cos(φ̃p − φ̃s)

. (7.8)
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Next we want to know the derivatives of the angles φ̃p and φ̃s. Writing out the scalar
product in equation (7.8) and dividing by k leads to the derivative of φ̃s:

dφ̃s

dr
=

ds̃
dr
· m̃ =

ω2Φ
kṼ cos(φ̃p − φ̃s)

sin(φ̃p − φ̃s)−
2ωΦ

cos(φ̃p − φ̃s)
(7.9)

=
ω2Φ
kṼ

tan(φ̃p − φ̃s)−
2ωΦ

cos(φ̃p − φ̃s)
.

The derivative of φ̃p is known from equation (7.1) which simply states that the curve p̃
points in the direction s̃,

dφ̃p

dr
=

1
r

(
− sinφp

cos φp

)
· dp̃

dr
= −1

r
tan(φ̃p − φ̃s). (7.10)

Define β = φ̃p− φ̃s, then the system of equations written in terms of the angle difference
β, velocity Ṽ and momentum transport k becomes:

dβ

dr
=

2ωΦ
k cos β

−
(

1
r

+
ω2rΦ
kṼ

)
tanβ, (7.11)

dk

dr
=

ω2rΦ
Ṽ

, (7.12)

dṼ

dr
=

ρṼ

η cos β

(
Ṽ − k

Φ

)
. (7.13)

After the system has been solved, the spinning line position can be calculated from
equation (7.10).

7.1 Reducing the system

The system may be further reduced by considering kr sin(β). Taking the derivative of
this function with respect to r and substitution of equation (7.11) and (7.12) leads to a
simple equation for β:

d
dr

(kr sin β) = k sinβ + r
dk

dr
sinβ + kr

dβ

dr
cos β = 2ωΦr. (7.14)

Integrating this equation leads to

kr sin β = ωΦ(r2 − Cβ), (7.15)

where Cβ the integration constant.
This equation can also be found from the balance perpendicular to the tangent (3.31)
from Section 3.4: (

(F − Φv)
(

y
dx

ds
− x

dy

ds

))
= −Φω

(
y2 + x2

)
+ C1,
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and polar coordinates introduced in Section 6.3:

y
dx

ds
− x

dy

ds
= r sin(φ̃p − φ̃s) = r sinβ.

With F − Φv = −k follows

kr sinβ = ωΦ(r2 − C1) = ωΦ(r2 − Cβ). (7.16)

When the momentum transport k is negative near the rotor and positive near the coagu-
lator there is a radius r at which k = 0, this point is called rk=0. This point is introduced
because you know at this point an extra condition: equation (7.19). However, then the
position rk=0 is unknown. Then, using the shooting method, the model can be solved
more easily.
At rk=0 the left-hand-side of equation (7.15) is zero

0 = ωΦ(r2
k=0 − Cβ), (7.17)

so Cβ = r2
k=0. Then the angle difference β is given by

sinβ =
ωΦ
kr

(
r2 − r2

k=0

)
(7.18)

At the point rk=0 the numerator and the denominator are both zero in this equation.
Taking the limit gives with L’Hospital’s rule:

sinβ =
ωΦ2rk=0

rk=0
dk
dr |k=0

=
2Ṽk=0

rk=0ω
. (7.19)

At the point rk=0 we know two things, k = 0 and sin β = 2Ṽk=0
rk=0ω . However, we do not

know the value of r corresponding with the point where k = 0.

Equation (7.19) can also be derived from the balance perpendicular to the tangent,
assuming F − Φv = 0 (3.29):

x
dy

ds
− y

dx

ds
= −2v

ω
.

and polar coordinates:

x
dy

ds
− y

dx

ds
= −r sin(φ̃p − φ̃s) = −r sinβ.

Then with v = Ṽ :

sinβ =
2Ṽk=0

ωrk=0
. (7.20)

Now, the equations for Ṽ and k are given by

dk

dr
=

ω2rΦ
Ṽ

, (7.21)
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dṼ

dr
=

rkρṼ

η
√

r2k2 − ω2Φ2
(
r2 − r2

k=0

)2
(

Ṽ − k

Φ

)
. (7.22)

After solving this system, the spinning line shape can be calculated from the angle φ̃p.
This angle is found by solving

sin β =
ωΦ
(
r2 − r2

k=0

)
rk

, (7.23)

dφ̃p

dr
= −1

r
tanβ, (7.24)

where β = φ̃p − φ̃s.

The spinning line position angle φ̃rot at the rotor is needed to calculate the spinning line
shape, using equation (7.23-7.24). Substituting r = Lr̂, k = Kk̂ and Ṽ = U ˆ̃V gives us
the scaled equations:

ˆ̃V
r̂

dk̂

dr̂
=

ω2L2Φ
UK

, (7.25)

1

r̂k̂ ˆ̃V

d ˆ̃V
dr̂

=
L2Kρ

η
√

L2r̂2K2k̂2 − ω2Φ2
(
L2r̂2 − r2

k=0

)2
(

U ˆ̃V − Kk̂

Φ

)
. (7.26)

Using the scaling

K̂ = ΦRrotω, Û = Rrotω, L̂ = Rrot, r̂k=0 =
rk=0

Rrot
, η = µρR2

rotω.

gives us the dimensionless set of equations.

7.2 Dimensionless stationary case with rotating r

The dimensionless system becomes:

dk̂

dr̂
=

r̂

ˆ̃V
, (7.27)

d ˆ̃V
dr̂

=
1
µ

r̂k̂ ˆ̃V
(

ˆ̃V − k̂
)

√
r̂2k̂2 −

(
r̂2 − r̂2

k=0

)2 . (7.28)

The shape of the spinning line may be calculated from

sinβ =
r̂2 − r̂2

k=0

r̂k̂
, (7.29)

dφ̃p

dr̂
= −1

r̂
tanβ. (7.30)
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Notice that there is a singularity when r̂ = r̂k=0 in equation (7.28). So this equation
satisfies only for 1 < r̂ < r̂k=0 and r̂k=0 < r̂ < R̂coag. Because of continuity this is not a
problem. But in this point, rk=0, there are, next to continuity, two conditions to satisfy:
k = 0 and equation (7.19).

We have four equations (7.27-7.30) and four unknown variables ˆ̃V , k̂, φ̃p and β. From

these equations, only equation (7.29) is not a differential equation. k̂, ˆ̃V and φ̃p occur
all in first order term. So we need three boundary conditions. And we need also the
value rk=0 to solve the system.

If there is no point r̂k=0 such that R̂rot ≤ r̂k=0 ≤ R̂coag you need four boundary condi-
tions.

7.2.1 Boundary conditions

Boundary conditions are needed for k̂, ˆ̃V and φ̃p and to determine r̂k=0. When we
assume that the spinning line leaves the orifice perpendicular to the rotor, we know
from Section 6 that

φ̃p(Rrot) = 0, φ̃s(Rrot) = 0, Ṽ (Rrot) = 1 m/s. (7.31)

From this section we know that R̂rot = 1, then

φ̃p(1) = 0, φ̃s(1) = 0. (7.32)

Ṽ is scaled by Û ˆ̃V with Û = Rrotω, so

ˆ̃V (1) =
Ṽ (1)
Rrotω

=
1

0.3 ∗ 262
=

1
78.6

(7.33)

The boundary conditions we have found are:

φ̃p(1) = 0, β(1) = φ̃p(1)− φ̃s(1) = 0, ˆ̃V (1) =
1

78.6
. (7.34)

Now we know a boundary condition for φ̃p, β and ˆ̃V , but still we do not know a condition
for k̂ The dimensionless viscosity coefficient µ has value µ = 0.1197.



8 NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS 42

8 Numerical methods for differential equations

8.1 Numerical methods for initial value problems

The problem in the s coordinate from Section 3 is only dependent of s. In that case
single-step methods can be used to solve the problem numerically, if the problem is an
initial value problem. The problem from Section 3 is a problem with both initial and
boundary conditions. The most practical single-step methods are higher order Runge-
Kutta methods. A well known method is the Euler method, although this method
is seldom used in practice. The Euler forward method is a first order Runge-Kutta
process. The fourth order Runge-Kutta process is often used, however lower or higher
order processes are also possible.
Almost every numerical method is designed for first order differential equations. So a
higher order differential equation has to be rewritten to a system of first order differential
equations.
In this section we will use equidistant stepsize h for simplicity. All the calculations can
also be made with non-equidistant stepsize hn.

8.1.1 The Runge-Kutta formula

Generally, the explicit Runge-Kutta formula can be written as

uj+1 = uj + h
s∑

i=1

biki, (8.1)

where

k1 = f(xj , uj),

ki = f

(
xj + cih, uj + h

i−1∑
n=1

ainkn

)
, i = 2, 3, ..., s. (8.2)

Here bi, ci and ain are the Runge-Kutta parameters, and s is the number of stages.
This Runge-Kutta formula is called explicit because the ki depend only on previous kn,
n = 1, 2, ...i− 1.

8.1.2 Euler’s method

Consider an initial value problem:

y′ = f(t, y), y(0) = y0. (8.3)

The time is divided in intervals h, tj = jh, j = 0, 1, ..., n. In this section the exact
solution will be denoted by yj = y(tj) and the numerical approximation of this exact
solution will be denoted by uj . For this problem, Euler’s method, a first order Runge-
Kutta method, is defined by

uj+1 − uj

h
= f(tj , uj), u0 = y0. (8.4)
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Rewriting this leads to
uj+1 = uj + hf(tj , uj). (8.5)

Every single step method can be written in the form

uj+1 = uj + Φ(tj , tj+1, uj , uj + 1, h) (8.6)

If Φ does not depend on uj+1, the method is called explicit, otherwise you have to deal
with an implicit method. Euler’s method is an explicit method. In this case, Euler
Forward is used. Another possibility is Euler Backward. In that case equation (8.4) can
be replaced by

uj − uj−1

h
= f(tj , uj). (8.7)

8.1.3 Runge-Kutta order four

A common used numerical method is the Runge-Kutta order four. Consider again the
initial value problem

y′ = f(t, y), y(t0) = y0. (8.8)

This problem can be solved by using the fourth order Runge-Kutta method. Define step
size h, then tj = jh and take uj the numerical approximation of the exact solution y(tj),
j = 0, 1, ..., n. Then a Runge-Kutta order four method is given by

k1 = hf(tj , uj) (8.9)

k2 = hf(tj+ 1
2
, uj +

1
2
k1)

k3 = hf(tj+ 1
2
, uj +

1
2
k2)

k4 = hf(tj+1, uj + k3)

uj+1 = uj +
1
6

(k1 + 2k2 + 2k3 + k4)

8.2 Error definitions

8.2.1 Local truncation error

Definition 8.1 The local truncation error of a single-step method is given by

ej+1 =
yj+1 − yj

h
− Φ(yj+1, yj , tj+1, tj , h). (8.10)

Assuming that the method was exact at the previous step size, the local truncation error
ej represents the accuracy of the method at step j. The local truncation error depends
on the step size, the particular step in the approximation and the differential equation.

Definition 8.2 A single-step method with local truncation error ej at step j is called
consistent with the differential equation it approximates if

lim
h→0

(
max

0≤j≤n
|ej |
)

= 0 (8.11)
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8.2.2 Stability

An initial value problem is said to be stable if a small change in the initial conditions does
not result in big changes in the final solution. Assume an initial condition containing
an error ε0. The disturbed solution ỹ satisfies

ỹ′ = f(t, y′), ỹ(0) = y0 + ε0. (8.12)

Then define ε(t) = ỹ(t)− y(t).

Definition 8.3 The initial value problem is called stable if

lim
t→∞

|ε(t)| < ∞. (8.13)

Definition 8.4 The initial value problem is absolutely stable if

lim
t→∞

|ε(t)| = 0. (8.14)

8.2.3 Global error

Definition 8.5 The global error of the numerical solution is defined by

Ej = yj − uj . (8.15)

So the global error represents the difference between the overall true solution and the
overall numerical approximated solution.

Definition 8.6 A numerical process is called convergent if

lim
h→0

(
max

0≤j≤n
|Ej |

)
= 0 (8.16)

From a practical point of view, convergence implies that if the step size reduces, the
global error will be reduced too. If a numerical scheme is stable and consistent, then
the numerical solution converges to the exact solution. In that case, the global error is
of the same order as the local truncation error. (See [7] for a proof)

8.3 The local truncation error for Euler’s method and Rung-Kutta
order four

Assume again the initial value problem

y′ = f(t, y), y(t0) = y0. (8.17)

Then the local truncation error for Euler’s method is given by

ej+1 =
yj+1 − yj

h
− f(yj , tj). (8.18)
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Expanding yj+1 into Taylor series and substituting this in (8.18) gives ej+1 = O(h). So
the local truncation error for Euler’s method for this initial value problem is of order
one.
The Runge-Kutta order four method from Section 8.1.3, has local truncation error O(h4)
and the arithmetic cost is four evaluations per step. In the second order Runge-Kutta
methods the local truncation errors are O(h2), and the cost is two functional evaluations
per step. When you take a higher stage Runge-Kutta method, the order is no longer of
the same size as the stage. For example, a ninth stage Runge-Kutta method is of order
seven. A fourth order Runge-Kutta method with step size h gives more accuracy than a
second order Runge-Kutta method with step size 1

2h, because the fourth order method
requires twice as many evaluations per step.

8.4 Numerical methods for boundary value problems

8.4.1 Finite difference method

Consider the boundary-value problem

−y′′ + p(x)y′ + q(x)y = f(x), 0 < x < 1, y(0) = 0, y(1) = 0. (8.19)

You can use difference formula to find a system of equations, which you can solve.
Therefore you have to divide the interval [0, 1] into n pieces of size h. The derivatives
y′ and y′′ can be approximated by the centered-difference formula, so the differential
equation can be approximated by:

−uj+1 − 2uj + uj−1

h2
+pj

uj+1 − uj−1

2h
+qjuj = fj , 1 ≤ j ≤ n− 1, u0 = 0, un = 0

(8.20)
To find the approximated solution of the boundary-value problem (8.19) you have to
solve the system

Au = f . (8.21)

Here A is a matrix of the form:

A =


2
h2 + q1 − 1

h2 + p1

2h 0 . . . . . . . . .
− 1

h2 − p2

2h
2
h2 + q2 − 1

h2 + p2

2h 0 . . . . . .

0
. . . . . . . . .

 , (8.22)

and u =

 u1
...

un−1

 and f =

 f1
...

fn−1

.

We have seen a problem with Dirichlet boundary conditions. When you have to deal
with Neumann boundary conditions, you need to introduce a virtual point, because you
need u−1 or un+1 Not always centered-difference formulas give acceptable answers. This
varies for different problems. Another possibility is to use upwind differences.
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8.4.2 Definitions

In this subsection some terms are introduced which we need to analyse a finite difference
scheme.

Definition 8.7 The condition number K of matrix A is defined by

K(A) = ‖A‖‖A−1‖ (8.23)

A matrix is well-conditioned if K(A) is close to 1. If K(A) >> 1, the matrix is ill-
conditioned.

Definition 8.8 The truncation error of the finite difference scheme Au = f is given by

ej = (Ay − f)j , j = 1, ..., n− 1, (8.24)

with yj the exact solution.

Definition 8.9 The scheme is called consistent if

lim
h→0

‖ej‖ = 0. (8.25)

with in limit j such that jh constant. Another notation sais a numerical method is
consistent if

Φ(x, y, 0) = f(x, y). (8.26)

When a finite difference scheme is stable, the system has an unambiguous solution.

Definition 8.10 A finite difference scheme is said to be stable if there exists a constant
M , independent of step size h, such that

‖A−1‖ ≤ M, h → 0. (8.27)

Definition 8.11 A finite difference scheme is convergent if the global error yj − uj

satisfies
lim
h→0

‖yj − uj‖ = 0. (8.28)

8.5 Non-linear systems

For a non-linear initial value problem, you can use Euler’s method. Because the system
of equations is not linear, an iterative process, like Newton’s method or quasi-Newton,
is required to solve it.
A non-linear boundary value problem can be discretized with finite difference methods,
after that you need an iterative process to solve the discretized system. For instance
you can use Picard iteration or Newton’s method.



8 NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS 47

Example 8.1 Assume the non-linear boundary value problem

y′′ = f(x, y, y′), y(a) = α, y(b) = β, a ≤ x ≤ b. (8.29)

Discretizing with finite difference and rewriting gives:

−ui+1 + 2ui − wi−1 + h2f

(
xi, ui,

ui+1 − ui−1

2h

)
= 0, (8.30)

u0 = α, un + 1 = β, i = 0, ..., n + 1,

where h = b−a
n+1 .

Then you can solve this system, which has the form F(x) = 0, for example by using
Newton’s method.

Definition 8.12 Newton’s method is defined by:

x(p) = x(p−1) − J
(
x(p−1)

)−1
F(x(p−1)), (8.31)

where J(x) the Jacobian of F, so

J(x) =


∂f1

∂x1
x . . . ∂f1

∂xn
x

...
∂fn

∂xn
x . . . ∂f1

∂xn
x

 .
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9 Perturbation Theory

In the eighteenth century perturbation theory came up. It has it roots in physics. In that
time, the most important application of perturbation theory was in celestial mechanics.
The equations describing the motions of celestial bodies consist of a part containing the
mutual attraction of the earth and the sun and a part with small perturbation terms.
Those new equations were difficult to study, but started off the development of pertur-
bation theory. Poincaré was the first to discuss this subject systematically.

9.1 Regular perturbation method

In the mathematical model, the small perturbation term is due to a small parameter ε.
First we will consider a simple example, a harmonic oscillation. In the first case, the
effect of friction has been neglected. After that, we will introduce a friction term which
will be small. The equation without friction reads:

d2x

dt2
+ x = 0. (9.1)

Take into account the effect of friction gives

d2x

dt2
+ 2ε

dx

dt
+ x = 0. (9.2)

εdx
dt is called the ’friction term’ or ’damping term’ and this particular simple form of

the friction term has been based on certain assumptions concerning the mechanics of
friction. [6].
Equation (9.1) is called the ’unperturbed problem’ and equation (9.2) the ’perturbed
problem’, where 0 ≤ ε � 1. If you put ε = 0 in the perturbed problem you get the
unperturbed problem.

To solve a perturbed problem, physicists developed an approach for calculating the
quantities in the form of an expansion into powers of ε. Consider the vector function
f : R × Rn × R → Rn. The function f(t, x; ε) is continuous in the variables t ∈ R and
x ∈ D ⊂ Rn and ε is a small parameter. The function f has to be expanded with respect
to a small parameter ε. The most naive procedure to construct an approximation for f
is to assume that it is possible to expand f in an asymptotic expression:

f(t, x; ε) = f0(t, x)+εf1(t, x)+ε2f2(t, x)+...+εnfn(t, x)+... =
N∑

n=0

εnfn(x, t)+RN (x, t; ε),

(9.3)
with coefficients f1, f2, ... which depend on t and x, εn are called order functions and
RN (x, t; ε) is the error. If it is possible to estimate the error, then the method for ob-
taining the asymptotic expression for f is called the ’regular perturbation method’.
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Example 9.1 Consider again an oscillator with friction:

d2x

dt2
+ 2ε

dx

dt
+ x = 0, (9.4)

with initial values x(0) = a and dx
dt (0) = 0. Then we can expand x in:

x(t) = x0(t) + εx1(t) + ε2x2(t) + ε3... (9.5)

Substituting this in the original equation (9.4) gives a big expression in terms of ε,
collecting the terms with equal powers of ε leads to

d2x0

dt2
+ x0 = 0 (9.6)

d2xn

dt2
+ xn = −2

dxn−1

dt
, n = 1, 2, ...

From the initial values, which do not depend on ε, follows

x0(0) = a,
dx0

dt
(0) = 0 (9.7)

xn(0) = 0,
dxn

dt
(0) = 0, n = 1, 2, ...

Then you can find the solutions of the equations:

x0(t) = a cos t (9.8)
x1(t) = a sin t− at cos t, etc.

Substituting this in the expansion of x (equation (9.5)) gives us the formal expansion

x(t) = a cos t + ε(a sin t− at cos t) + ε2... (9.9)

This expansion corresponds with an oscillation with increasing amplitude. When you
substitute t = 1/ε into the formal expansion, you can see that the second term is no
longer O(ε), when t = O(1/ε2) the second term blows up. Terms of those type are
called ’secular terms’. Because it is not possible to give a regular asymptotic expansion
uniformly valid in the whole time interval, the initial value problem (9.4) is called a
’singular perturbation problem’.
The naive regular perturbation method is only applicable for finite time intervals, so we
need another method to construct asymptotic approximations uniformly valid in ’large’
time intervals, e.g. O(1/ε) or even for all values of t ≥ 0.

9.2 Strained coordinate method

The method used in the previous section is only valid for finite time intervals. To get
asymptotic approximations uniformly valid in ’large’ time intervals, we need another
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method to solve the problem. It is possible to modify the regular perturbation method
by using a stretched time coordinate.

t = (1 + εω1 + ε2ω2 + ...)τ (9.10)

Then you can determine the constants ωi such that the solution of the perturbed prob-
lem does no longer contain secular terms. So you can obtain an asymptotic expansion
valid for time intervals of O(1/ε). This method is called the Poincaré-Lindstedt method.

Another method is introduced by Lighthill, this method is useful for perturbation prob-
lems for which the reduced differential equation with ε = 0 contains a singularity, e.g.
(t + εu)du

dt + q(t)u = r(t), t ≥ 0. In that procedure the stretched coordinate is given
by

t = τ + εf1(τ) + ε2f2(τ) + ... (9.11)

Here, the stretching functions fi are chosen in such a way that an asymptotic expansion
of the solution of the perturbation problem becomes possible.
Here we will explain the method of the strained coordinate with an example.

Example 9.2 Consider the initial value problem describing a nonlinear spring:

d2x

dt2
+ x + εx3 = 0, t ≥ 0 (9.12)

x(0) = α,
dx

dt
(0) = 0

Then we can find, by using the regular perturbation theory,

x(t) = cos t + ε

(
−3

8
t sin t +

1
32

(cos 3t− cos t)
)

+ O(ε2) (9.13)

The second term is a secular term, so this solution has only a meaning whenever t is
bounded. Now we substitute the stretched time coordinate t = (1+ εω1 + ε2ω2 + ...)τ and
find the initial value problem for x as a function of τ :

1
(1 + εω1 + ε2ω2 + ...)2

d2x

dτ2
+ x + εx3 = 0, τ ≥ 0 (9.14)

x(0) = α,
dx

dτ
(0) = 0

Whenever 1 + εω1 + ε2ω2 + ... is asymptotically convergent, we can apply the regular
perturbation method. So expand x(τ) by

x(τ) = x0(τ) + εx1(τ) + ε2x2(τ) + ... (9.15)

Substituting this expansion into equation (9.14) and taking equal powers of ε leads to

d2x0

dτ2
+ x0 = 0, x0(0) = α,

dx0

dτ
(0) = 0 (9.16)

d2x1

dτ2
+ x1 = −x3

0 − 2ω1x0, x1(0) = α,
dx1

dτ
(0) = 0

. . . . . . . . .
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The solution of the first equation of this set of linear initial value problems is

x0(τ) = α cos τ (9.17)

Then the initial value problem for x1(τ) becomes

d2x1

dτ2
+x1 = −x3

0−2ω1x0 = −α3 cos3 τ−2ω1α cos τ = −α

(
3
4
α2 + 2ω1

)
cos τ−α3

4
cos 3τ

(9.18)
To eliminate the secular term in x1(τ), we have to take ω1 = −3

8α2. Then the solution
of the second differential equation of the set becomes

x1(τ) =
α3

32
(cos 3τ − cos τ) (9.19)

In this way you can solve the set of differential equations as far as you like. Up to the
second order we have

x(τ) = α cos τ + ε
α2

32
(cos 3τ − cos τ) + O(ε2) (9.20)

uniformly valid in any finite τ interval 0 ≤ τ ≤ τ0 with τ0 independent of ε, with (when
you calculate ω2 in the same way as ω1) τ =

(
1− 3

8α2ε + 57
256α4ε2 + ...

)−1
t

Except a method for finite time intervals, as seen in Section 9.1, now we know also a
method valid in ’large’ time intervals.
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10 Further research

10.1 The model

Initially, we have to compare the several models with the s and the r coordinate. The
easiest way to start is to compare the stationary case with rotating coordinate system
in s (Section 3) and r (Section 6) as done in Section 6.3. What boundary conditions are
needed, and which description is more accurate?

In the problem description with the r coordinate (see Section 4), we assumed that
the spinning line could not curve backwards to the rotor. Is that a correct assumption?

In Section 6.3 we compared F − Φv and k: −k = F − Φv. In Section 3.5 we saw
that if F − Φv ≡ 0, the spinning line will stick to the rotor. What happens if at some
point F − Φv = 0 or k = 0?

In the dimensionless stationary case in coordinate r, rk=0 is introduced (Section 7),
what does this point mean? Can you measure this point in practice?
Can you explain this point in a mathematical way, does it agree with a boundary layer?
How does this point looks like in the case with coordinate s?

10.2 Boundary conditions

An important part of the problem is to find correct boundary conditions. It seems
to be logical that the spinning line leaves the rotor perpendicular, but it appears to
be not that obvious. Research about how the spinning line leaves the rotor is needed
to find the correct boundary condition. This research can be done by looking to the
spinning process with a camera with very much pictures per second, for example 50, 000.

What is the value of F0, the initial value for the viscous force, in the stationary case
with rotating coordinate s, treated in Section 3. Or what is the initial value of k.

When you describe the problem as an initial boundary value problem, instead of an
initial value problem, what are the boundary conditions on the coagulator? A problem
is that we do not know the length of the spinning line, when it hits the coagulator
(Section 3). What are the physical conditions on the coagulator.

10.3 Solving the systems

When boundary conditions are found, solve the several problems numerically. How does
the solution look like? Do the various problems give comparable results?
Probably, another way to solve the problems is by using perturbation theory. Are the
answers the same as by solving the systems numerically?
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10.4 Model extension

A problem description is always a simplification of the real world. If the spinning line
cools down very fast, there is a rapid change in viscosity. Then the model can be up-
graded by introducing heat equations. To find out if the temperature of the spinning
line changes fast one can use a heat camera.

Another point of attention is air friction. In the literature they never speak about
such thin cylinders as the spinning line, with that high velocity. Perhaps, this can in-
fluence the path of the spinning line very much.

The water on the coagulator has a vertical velocity, so in the z-direction, is this a
problem when you look only in the x,y-plane? Maybe it is not realistic to neglect the
z-direction, and you need to introduce gravity.

We assumed the polymer to be Newtonian, in general polymers are not Newtonian.
How does this assumption affect the model?
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A List of symbols

Rrot m radius of the rotor.
Rcoag m radius of the coagulator.
Φ kg/s mass flux through the spinning line.
A m2 cross-section area of the spinning line, perpendicular to

the spinning line.
ρ kg/m3 mass density of the polymer.
v m/s velocity of the fluid in the spinning line.
s m coordinate s.
Fcentr kgm/s2(=N) centrifugal force.
Fcor kgm/s2 Coriolis force.
Fvisc kgm/s2 viscous force.
m kg mass.
ω rad/s angular velocity of the rotor.
F kgm/s2 norm of the viscous force vector at s.
ε stress (elongation per unit length).
E N/m2 Young’s modulus.
eθ tangent unit vector.
er radius unit vector.
en normal unit vector.
ex unit vector in the x direction.
ey unit vector in the y direction.
θ slope angle of the tangent tot the spinning line.
φ polar angle of a point of the spinning line.
Iin kgm/s2 entering momentum flux.
Iout kgm/s2 leaving momentum flux.

p m position of the spinning line.
φp angular coordinate of the spinning line position.
t s time.
r m radial coordinate of the spinning line.
v m/s velocity of the fluid in the spinning line.
φv angular coordinate of the flow velocity.
V m/s fluid flow speed in the spinning line.
s unit tangent vector to the spinning line.
φs angular coordinate of the direction of the spinning line.
m unit normal vector.
J rotation operator.
A′ m2 cross-section through the spinning line, not perpendicular

to the spinning line.
Q differs by situation transport
f differs by situation transport flux.
S differs by situation production intensity.
Ψ differs by situation production term in the conservation law.
η Pa s viscosity coefficient.
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φ̃p transformed angular coordinate of the spinning line
position.

φ̃s transformed angular coordinate of the direction of the
spinning line.

φ̃v transformed angular coordinate of the flow velocity.
p̃ m transformed position of the spinning line.
ṽ m/s transformed velocity of the fluid in the spinning line.
s̃ transformed unit tangent vector to the spinning line.
C rotation matrix.
Ṽ m/s fluid flow speed in the spinning line.
m̃ transformed unit normal vector.

k kgm/s2 momentum transport in the transformed equations.
k kgm/s2 scalar such that k = ks̃.
β angle difference φ̃p − φ̃s.
Cβ integration constant.
L 1/m scaling factor for length.
r̂ dimensionless radius coordinate of the spinning line.
K s2/kgm scaling factor for momentum transport.
k̂ dimensionless momentum transport in the transformed

equations.
U s/m scaling factor for velocity.
ˆ̃V dimensionless transformed velocity.
rk=0 m radius coordinate of the spinning line where the momentum

transport is zero.
µ dimensionless viscosity parameter.
r̂k=0 dimensionless radius coordinate where the momentum

transport is zero.


