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Abstract

Modeling electromagnetic fields in MRI involves two main challenges: the solution of the scattering problem
resulting from Maxwell’s equations has to be accurate and it has to be obtained within short computation
time. In this thesis a method that meets both requirements is searched for.
The method of moments with rooftop basis functions is used to discretize different formulations of the vol-
ume integral equation corresponding to Maxwell’s equations. A simple two-layer cylinder test case is used
to compare each solution with a derived analytical solution for scattering on a two-layer cylinder. Two types
of errors are analyzed. The good performance of a staggered grid with respect to a non-staggered grid shows
that the way of treating the mixed derivative terms is of great importance. The performance of a higher order
approximation scheme on a non-staggered grid is close to the performance of a second order approximation
scheme on a staggered grid. A contrast study shows that these two methods are particularly beneficial for
high contrasts and on low resolution.
The performance of the iterative solvers IDR(s) and GMRES is tested for each discretization method. IDR(4)
shows excellent performance in reducing the computation time that is obtained with GMRES. Finally, human
body simulations confirm the findings from the two-layer cylinder test case.

Keywords Electromagnetic scattering · High permittivity materials · Magnetic resonance modeling · Volume
integral equation · Galerkin’s method
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1
INTRODUCTION

Modeling electromagnetic fields has its application in many research areas. One of them is medical imaging,
in which the goal is to produce in vivo human images. The arrival of the MRI (Magnetic Resonance Imag-
ing) scanner and its concept in 1969 has led to a whole new world of possibilities. Low-field scanners with
strengths under 1 Tesla have transformed gradually into ultra high-field scanners with strengths reaching
over 12 Tesla in order to obtain high resolution images. However, the advancement of high-field scanners has
brought along technical challenges like heat production, field inhomogeneities and interference patterns.
In order to propose suitable solutions to these problems, mathematical models that provide insight in the
physics behind these problems are built.

The starting point of these mathematical models is Maxwell’s equations, a set of equations that describes the
propagation of electromagnetic fields in media. For decades, scientists have been developing and testing new
discretization schemes to solve Maxwell’s equations numerically. Each method results in different accuracy
and convergence behavior. [1], [2], [3],[4],[5], [6], [7]
The different methods can roughly be divided into two groups. The first group of methods chooses Maxwell’s
equations in partial differential form as a starting point. The finite-difference time-domain and the finite el-
ement method are examples of methods in this group. The second group rewrites Maxwell’s equations into
so-called volume integral equations, a type of integro-differential equations. The method of moments is an
example of this type. Even though methods in the latter group involve full matrices and are therefore compu-
tationally expensive, the method of moments is a popular method. The main reason for this preference is that
the Sommerfeld radiation condition does not have to be implemented via complicated boundary conditions.

It is not without good reason that new methods are still being proposed. Modeling electromagnetic fields
involves challenges that must be dealt with carefully.
The human body contains many different tissue types that all have their own permittivity values. Strong
differences in materials result in electromagnetic fields that are discontinuous in space. It is well known
that approximating discontinuous functions is not always straightforward. Maxwell’s equations tell us even
more about the discontinuous behavior: it is the normal component of the electric field that is discontinuous
across material interfaces. The continuity of the tangential component and the discontinuity of the normal
component raise the question whether there is an optimal discretization method that takes into account both
the discontinuous and the continuous behavior. Next to the boundary conditions of material interfaces, also
the boundary conditions of the domain have to be implemented such that an infinite domain is simulated.
Absorbing boundary conditions or perfectly matched layers are often used for this. [8]
In the case of MRI, the computational domain is the whole human body. Because of memory limitations it is
therefore necessary to obtain accurate solutions at low resolution. This requirement is also related to the final
challenge: in order to work towards mathematical models applicable in the clinical field, the computation
time has to be short, even for 3D simulations.

With the above challenges in mind, one method is chosen and investigated further in this thesis. In 1991, P.
Zwamborn proposed a method of moments solution using so-called ’rooftop’ basis functions. [7] This pro-
cedure resulted in a dicretization scheme in which the derivatives acting on the vector potential are approxi-
mated using finite difference schemes. Many people have thereafter integrated the finite difference approach

1



2 1. INTRODUCTION

in existing codes, which eventually led to multiple variants of P. Zwamborn’s ’rooftop’ method. [9], [10]
In order to limit the research field, all studied variants in this thesis have the rooftop functions as basis and
test functions. These functions live on a structured rectangular grid, which is beneficial for a short computa-
tion time. Efficient FFT algorithms can be used to evaluate matrix vector multiplications.
The variants studied in this thesis differ in the approximated unknowns. More specifically, the equation of in-
terest is formulated in terms of the electric field and in terms of the electric displacement. Each formulation
provides a different starting point for a discretization procedure. Finally, some of the variants use a staggered
grid, whereas other approaches use non-staggered grids.

1.1. PROBLEM FORMULATION, THE GOAL, AND THE WAY TO GET THERE
Even though various challenges in building a numerical model have been pointed out, there are two aspects
that deserve attention in this research. The first aspect, which is the main focus in this thesis, is the accuracy
of the studied discretization schemes. One of the models that is being studied in ongoing research turned out
to show strong inaccuracies in the neighborhood of material interfaces. These inaccuracies showed the dis-
crepancy between Maxwell’s boundary conditions for material interfaces and numerical results. The specific
absorption rate in the human body grows with the square of the magnitude of the electric field, and there-
fore these strong but very local inaccuracies might have severe effects in applications that use this numerical
scheme to design medical tools. Without further corrections, inaccuracies can falsely predict heat production
in the human body which will lead to change of measures. It is therefore desired to investigate the cause of
the inaccuracies and to find improvements where possible.

The second part that receives attention in this thesis is the computation time of the algorithms used. In
advanced tools inverse scattering problems can be solved by repeatedly solving forward problems in an itera-
tive way. For large objects like the human body, computation time becomes a limiting factor. Decreasing the
computation time of one forward problem is the first step in speeding up the final process. In literature the
generalized minimal residual (GMRES) method is a commonly used method and more recent methods have
not been studied yet for the MRI application. This offers an opening for new research.

To be concrete, the main goal of this research is twofold.

1. The numerical solution must be accurate on low resolution.

2. The numerical solution must be obtained within short computation time.

To meet the first requirement two different formulations of the volume integral equation are implemented.
The first formulation has the electric field as unknown and the second formulation has the electric displace-
ment as unknown. As a third model the latter formulation is implemented on a staggered grid. Finally, varia-
tions on those models are studied by implementing higher order difference schemes.
All methods will be tested for a simple test case so that the solutions can be compared with a derived analyti-
cal solution. The inaccuracies are localized for each method and the accuracies are mutually compared along
1D reference lines. Values for the global error as well as for the maximum error are studied as a function of
grid size. A contrast dependence study is performed to investigate how the accuracy of each method changes
for different contrast values and therefore different applications. Comparison between the different methods
should bring forward the most accurate candidate on low resolution for this particular test case. A smoothing
solution is proposed to decrease the strong and local inaccuracies and the effect is presented.

To meet the second requirement, the performance of the common GMRES method is compared with the
performance of the induced dimension reduction (IDR(s)) method. The convergence behavior is studied for
both methods and the computation time is studied as a function of the number of unknowns. Finally, the
number of iterations is studied as a function of relative permittivity for both methods. A conclusion on the
most efficient solver will be drawn based on these results.

To get more insight into human body simulations and to work towards 3D body simulations, a human body
model ’Duke’ is used to produce a realistic scattering object. The outcomes on the most accurate solution
and most efficient solver are verified by studying the performance of the staggered and the non-staggered
methods for 2D scattering on one slice of a 3D human body model.
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1.2. THESIS OUTLINE
The thesis outline is as follows:

Chapter 2: A Brief Overview of Magnetic Resonance Imaging and its Challenges
Chapter 2 gives a short explanation on the techniques used in MRI. This will help the reader to put the derived
mathematical formulations in the right context.

Chapter 3: The Electric and Magnetic Fields in MRI
Chapter 3 describes Maxwell’s equations with its corresponding boundary conditions and from these equa-
tions the volume integral form is derived. The relations between the electric field, the electric displacement
and the electric current are used to derive two variants on the original volume integral equation.

Chapter 4: The Analytical Solution of Scattering on a Two-Layer Conducting Cylinder
Chapter 4 provides the reader with the analytical solution of the scattering problem for a two-layer conduct-
ing infinitely long cylinder. The derivation can be found here as well.

Chapter 5: The Method of Moments
The general numerical discretization procedure is discussed in this chapter. Two types of weighting proce-
dures are outlined and one of them will be used for the actual models in this thesis.

Chapter 6: Models
The so-called EVIE model, DVIE model on a non-staggered grid and DVIE model on a staggered grid are de-
rived here. Ready to use discretized equations are presented for all three models. Variations on those models
are derived by constructing higher order central difference schemes.

Chapter 7: Iterative Solvers
The discretized system is solved using iterative schemes. A brief summary on the properties of two good can-
didates are discussed here. Good candidates are considered GMRES and IDR(s).

Chapter 8: Numerical Simulations and Results
Chapter 8 discusses the obtained numerical results in detail. The main focus is on the accuracy of the differ-
ent derived methods. Comparison is done by studying a two-layer cylinder test case for which an analytical
solution has been derived. A convergence study is done here as well to draw conclusions on the efficiency of
iterative solvers.

Chapter 9: Back to Reality
The numerical simulation is performed on one slice of a real human body model. The results will help draw-
ing conclusions in the next chapter.

Chapter 10: Conclusion
In this chapter the final conclusions will be drawn based on the results from Chapter 8 and Chapter 9.

Chapter 11: Discussion
Finally, the thesis ends with a critical look back on the work done. Recommendations for further research
should encourage the reader to continue the accuracy study in the future.

Throughout the report constants will be presented upright, vectors will be presented upright in bold, matrices
will be defined with capitals and scalar functions will be shown in italic script. A list of all the variables that
are used in this thesis together with their SI units can be found in Appendix A.





2
A BRIEF OVERVIEW OF MAGNETIC

RESONANCE IMAGING AND ITS CHALLENGES

Magnetic resonance imaging (MRI) is a popular technique that offers the opportunity to take a look inside
the human body. Unlike computed tomography (CT) MRI does not involve damaging X-rays and it is there-
fore often seen as a key to the future. It is also a complicated technique based on fundamental physics and
electromagnetism. This chapter will shortly explain the basic principle of MRI.

In the MRI-scanner a large coil produces a magnetic field (B0). The field lines of this induced magnetic field
are schematically shown in Figure 2.1. A large part of the human body contains hydrogen atoms, which all
act as small magnets. Under influence of the B0 field the net spin of the individual hydrogen spins aligns
along the B0 field lines. Once this stage has been reached, an RF (radio frequency) pulse is sent toward the
human body. This causes a large part of the spins to flip, usually with 90 degrees. In this stage, signal can
first be measured. Once the RF pulse is released, the hydrogen atoms start to relax toward their original state.
During this process the decrease in signal can be measured. A high signal corresponds with a large amount of
hydrogen atoms and a low signal with a small amount of hydrogen atoms. A gradient in the B0 field introduces
phase encoding and frequency encoding and in this way high and low signals can be linked to locations in the
human body. The amount of signal contains information about the tissue type and this information can be
translated into greyscale images via inverse Fourier transforms. The focus on different tissue types in these
images can be shifted by changing the time at which the signal is measured during the relaxation process.
This is the idea behind T1 weighted and T2 weighted images. [11]

Figure 2.1: Magnetic field lines in an MRI scan.

The overall aim in ongoing MRI research is to produce high quality images. One way to improve the quality is
by increasing the total amount of signal. By placing the patient in a stronger magnetic field the net spin of all

5



6 2. A BRIEF OVERVIEW OF MAGNETIC RESONANCE IMAGING AND ITS CHALLENGES

proton spins increases, which improves the signal-to-noise ratio. In theory this sounds nice and easy, but in
practice two important phenomena have to be taken into account.
First of all, the heat production in the human body grows proportional to the square of the magnitude of the
electric field. Unfortunately, heat production can be an uncomfortable and sometimes harmful side effect for
the patient. Safety guidelines fix the field intensity that is allowed in the human body and cannot be ignored.
Second, the wavelength of an electromagnetic wave is inversely proportional to the strength of the mag-
netic field. This means that increasing the field strength of an MRI-scan leads to wavelength reduction of the
electromagnetic waves. When these wave travels through the human body, the wavelength is even further
reduced. If the wavelength is small compared to the size of the human body, interference patterns will occur
that result in dark and blurry areas in reconstructed images. An example of this effect can be seen in Figure
2.2a, which shows a reconstructed image of the abdomen.

(a) Conventional abdominal imaging. (b) The effect of a dielectric pad.

Figure 2.2: Abdominal imaging with and without dielectric pad. [12]

To tackle the above described phenomenon the dielectric pad has been developed. A dielectric pad is a small
bag filled with a high permittivity material and it is positioned on the patient during an MRI-scan. The physics
behind the dielectric pad is not fully understood yet, but the pads have shown to improve field homogeneity
and contrast-to-noise ratio. [12],[13],[14] The effect can be seen in Figure 2.2b. However, the dielectric pad is
patient specific and requires a fast and accurate design procedure for each patient.
The design procedure is performed by numerical modeling, which is where mathematics is involved. The
pad is therefore a clear example in which modeling of the electromagnetic fields is essential. In the modeling
part the challenges discussed in the introduction are all present and need to be dealt with. But before any
modeling can be done the physics needs to be written down mathematically. This will be done in the next
chapter.



3
THE ELECTRIC AND MAGNETIC FIELDS IN

MRI

Electromagnetism has been studied by many physicists. James Clerk Maxwell, a physicist and mathemati-
cian, fully understood the physics and was able to transform experimental results into mathematical equa-
tions in the nineteenth century. His derived equations were called Maxwell’s equations and they describe
how electric and magnetic fields propagate and interact. They form the basis of classical electrodynamics
and are therefore important in understanding the fields in MRI.
Maxwell’s equations are discussed in Section 3.1 . The material boundary conditions that complement Maxwell’s
equations are derived in Section 3.2. They will be important when developing the models in Chapter 6. In
this study the focus is on the volume integral equation approach, so in Section 3.3 the volume integral for-
mulation is derived from Maxwell’s equations, along with its different variations. The derivation of the first
volume integral formulation can also be found in [15].

3.1. MAXWELL’S EQUATIONS
Maxwell’s equations are given by

−∇×H+ J+ ∂D

∂t
= −Jext (3.1)

∇×E+ ∂B

∂t
= −Kext. (3.2)

The variables Jext and Kext are the external sources and are therefore known. More specifically, the external
magnetic source is always zero. Both sources start to act at t = 0. The unknowns are related via the constitu-
tive relations,

D = εE (3.3)

B = µH (3.4)

J = σE, (3.5)

where σ is the conductivity of the material, ε is the permittivity and µ is the permeability. In this study only
nonmagnetic media will be considered, which means that µ=µ0 where µ0 is the permeability of vacuum.
The unknown fields are the electric field strength E and the magnetic field strength H. Both fields vanish
everywhere for t < 0. D and B are the electric displacement field and the magnetic flux density respectively.

To complete Maxwell’s equations, the compatibility relations are derived by taking the divergence of (3.1) and
(3.2). This yields

∇· J+ ∂

∂t
∇·D = −∇· Jext (3.6)

∂

∂t
∇·B = 0. (3.7)

7



8 3. THE ELECTRIC AND MAGNETIC FIELDS IN MRI

The total current is defined by Jtot = J+Jext and with ∇·D = ρ (3.6) becomes ∇·Jtot+ ∂ρ
∂t = 0, which means that

there is conservation of charge. From (3.7) it follows that ∇ ·B is constant in time and because of the initial
condition it follows that this constant is zero. Therefore,

∇·D = ρ

∇·B = 0.

In summary, Maxwell’s equations describe that magnetic fields can be created by a change in electric field or
by an electric current. A changing magnetic field creates an electric field. The strength of the electric field is
related to the distance away from the charge and the divergence of the magnetic flux density is always zero.

3.2. BOUNDARY CONDITIONS
Maxwell’s equations in partial differential form are only valid inside homogeneous or smoothly changing
media, because derivative terms appear in the formulation. Material boundary conditions can be derived,
[16], from Maxwell’s equations in integral form,˛

H ·dl =
Ï

J ·dS + ∂

∂t

Ï
D ·dS (3.8)

˛
E ·dl = − ∂

∂t

Ï
B ·dS (3.9)Ó

D ·dS =
Ñ

ρdV (3.10)Ó
B ·dS = 0, (3.11)

so that the behavior of the electromagnetic fields can also be described at material interfaces where the ma-
terial parameters are discontinuous in space.

TANGENTIAL COMPONENT OF H
Consider (3.8) on a rectangular region that is given in Figure 3.1a with r(s) a parametrization for the line l . As
the height of the rectangle ∆h drops to zero, the integral of the derivative term vanishes. In physical media
the conduction is finite and therefore also J. In that case the J term vanishes and˛

l
H ·dr = 0 ⇔

ˆ b

a
H1 · dr

ds
ds +
ˆ d

c
H2 · dr

ds
ds = 0.

If the width of the rectangle is chosen arbitrarily small, the magnetic fields are assumed to be constant in the
direct surroundings of the line l and therefore

H1 ·
[−1

0

]ˆ b

a
ds +H2 ·

[
1
0

]ˆ d

c
ds = 0 ⇔

(H1 −H2) ·
[

1
0

]
∆l = 0 ⇔

n× (H1 −H2) = 0.

This means that the tangential component of the magnetic field is continuous across the interface between
different media.

TANGENTIAL COMPONENT OF E
Consider (3.9) on a rectangular region that is given in Figure 3.1a. As the height of the rectangle ∆h drops to
zero, the integral of the derivative term again vanishes and

ˆ b

a
E1 · dr

ds
ds +
ˆ d

c
E2 · dr

ds
ds = 0.
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Also in this case the width can be chosen arbitrarily small, and therefore

E1 ·
[−1

0

]ˆ b

a
ds +E2 ·

[
1
0

]ˆ d

c
ds = 0 ⇔

n× (E1 −E2) = 0.

Also the tangential component of the electric field is continuous across the interface between different media.

NORMAL COMPONENT OF Dc
Consider (3.10) on a cylinder with surface S that is shown in Figure 3.1b, with r(u, v) a parametrization for
the surface S . The third Maxwell equation can be rewritten by differentiating both sides of the equation with

respect to time and using the relation ∂ρ
∂t =−∇· Jtot:

∂

∂t

Ó
D ·dS = ∂

∂t

Ñ
ρdV ⇔Ó

Jtot ·dS + ∂

∂t

Ó
D ·dS = 0. (3.12)

Making the cylinder arbitrarily small in height, results in a vanishing integral over the curved surface and
therefore (3.12) becomes Ó

S

(
Jtot + ∂D

∂t

)
·dS = 0 ⇔Ó

S1

(
Jtot + ∂D

∂t

)
·
(
∂r

∂u
× ∂r

∂v

)
dudv +

Ó
S2

(
Jtot + ∂D

∂t

)
·
(
∂r

∂u
× ∂r

∂v

)
dudv = 0.

If also the diameter of the cylinder is made arbitrarily small, then

(
Jtot

1 + ∂D1

∂t

)
·
0

0
1

Ó
S1

dudv +
(

Jtot
2 + ∂D2

∂t

)
·
 0

0
−1

Ó
S2

dudv = 0 ⇔
((

Jtot
1 + ∂D1

∂t

)
−

(
Jtot

2 + ∂D2

∂t

))
·n = 0,

which means that the normal component of Jtot + ∂D
∂t is continuous across the interface between different

media.

NORMAL COMPONENT OF B
Considering (3.11) on a cylinder that is shown in Figure 3.1b and applying the same integration procedure as
above, a boundary condition can be derived for the magnetic flux density:

(B1 −B2) ·n = 0,

which means that the normal component of the magnetic flux density is continuous across the interface
between different media.

To summarize the findings, the boundary conditions corresponding to Maxwell’s equations are given by

n× (E1 −E2) = 0((
J1 + ∂D1

∂t

)
−

(
J2 + ∂D2

∂t

))
·n = 0

(B1 −B2) ·n = 0

n× (H1 −H2) = 0.



10 3. THE ELECTRIC AND MAGNETIC FIELDS IN MRI

∆ℎ

∆𝑙

Medium 1

Medium 2

𝑎𝑏

𝑐 𝑑𝑙

(a) Control area for deriving the tangential com-
ponents of H and E.

∆ℎ

Medium 1

Medium 2

∆ℎ

𝒮1

𝒮2

(b) Control volume for deriving the normal components of D
and B.

Figure 3.1

3.3. THE VOLUME INTEGRAL EQUATION
Maxwell’s equations can be written in a different form: the volume integral equation (VIE). The transforma-
tion will be done for the general 3D case, from which also the 2D case can be derived. In the final form of this
formulation both the unknowns E and H and their integrals are present, but the magnetic field H has been
eliminated from the equation for E, so that the equations for E can be solved separately from the equation for
H. To arrive at the volume integral formulation, consider first the Laplace transform of (3.1) and (3.2),

−∇× Ĥ+ηÊ = −Jext (3.13)

∇×E+ζĤ = −Kext. (3.14)

with the Laplace transform defined by

f̂ (x, s) =L { f (x, t )} =
ˆ ∞

0
f (x, t )e−st dt

and η=σ+ sε, ζ= sµ. The compatibility relations then transform into

∇·ηÊ = −∇· Ĵext

∇·ζĤ = −∇· K̂ext.

Now consider (3.13) and (3.14) for the medium vacuum. In that case, ε= ε0, µ= µ0 and σ= 0. This gives the
system

−∇× Ĥ+η0Ê = −Ĵext (3.15)

∇× Ê+ζ0Ĥ = −K̂ext, (3.16)

with η0 = sε0 and ζ0 = sµ0.

Next, a Fourier transform defined by

f̃ (k, s) =F { f (x, s)} =
ˆ

x∈R3
f (x, s)e i k·xdV ,

transforms (3.15) and (3.16) into

i k× H̃+η0Ẽ = −J̃ext (3.17)

−i k× Ẽ+ζ0H̃ = −K̃ext. (3.18)

Note that in the last system both the time derivatives and the spatial derivatives have been eliminated. This
makes it easier to find expressions for H̃ and Ẽ. (3.18) can be rewritten into

H̃ = 1

ζ0

(−K̃ext + ik× Ẽ
)

(3.19)
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after which H̃ can be eliminated from (3.17). This yields(
(kT k+γ2

0)I−kkT )
Ẽ = −ζ0J̃ext + ik× K̃ext (3.20)

where ζ0η0 =γ2
0. In order to find an expression for Ẽ in terms of J̃ext and K̃ext, (3.20) is rewritten with the help

of the compatibility relations. The compatibility relations for Maxwell’s equations in vacuum,

η0∇· Ê = −∇· Ĵext (3.21)

ζ0∇· Ĥ = −∇· K̂ext, (3.22)

can be transformed into frequency domain,

η0kT Ẽ = −kT J̃ext (3.23)

ζ0kT H̃ = −kT K̃ext, (3.24)

and (3.23) turns out useful in rewriting the left hand side of (3.20) as(
(kT k+γ2

0)I−kkT )
Ẽ = (kT k+γ2

0)Ẽ+ 1

η0
kkT J̃ext.

Now the new equation for Ẽ is given by

(kT k+γ2
0)Ẽ+ 1

η0
kkT J̃ext =−ζ0J̃ext + ik× K̃ext

from which Ẽ can be written as

Ẽ = 1

kT k+γ2
0

(
−(ζ0I+ 1

η0
kkT )J̃ext + ik× K̃ext

)
. (3.25)

Substitution of (3.25) in (3.19) gives

H̃ = 1

kT k+γ2
0

(
−

(
η0I+ 1

ζ0
kkT

)
K̃ext − ik× J̃ext

)
.

Now that expressions for Ẽ and H̃ have been found, the next step is to transform the expressions back into
space domain by applying the inverse Fourier transform. This is done by introducing the vector potentials Ã
and F̃:

Ã = g̃ J̃ext

F̃ = g̃ K̃ext,

where g̃ = 1
kT k+γ2

0
is the Green’s function of the Helmholtz equation. In terms of these new variables the set

of equations becomes

Ẽ = −
(
ζ0I+ 1

η0
kkT

)
Ã+ ik× F̃

H̃ = −
(
η0I+ 1

ζ0
kkT

)
F̃− ik× Ã

and in Laplace domain

Ê = −ζ0Â+ 1

η0
∇(∇· Â)−∇× F̂

Ĥ = −η0F̂+ 1

ζ0
∇(∇· F̂)+∇× Â

where

Â =
ˆ

x′∈R3
ĝ (x−x′, s)Ĵext(x′, s)dV ′

F̂ =
ˆ

x′∈R3
ĝ (x−x′, s)K̂ext(x′, s)dV ′
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by the convolution theorem.

The inverse Fourier transform of the Green’s function for the 3D configuration is

ĝ (x,ω) = e−ikb|x|

4π|x|
and for the 2D configuration the result is

ĝ (x,ω) =− i

4
H (2)

0 (kb|x|), [17],

where
k2

b =−γ2
0.

The derivation for the 2D case can be found in Appendix B, where the time convention s =ωi is used.

3.4. THE SCATTERING PROBLEM
So far it was assumed that the source is surrounded by vacuum. In many cases, including the MRI problem
where the human body is the object, this is not true and induced currents are produced. In order to take
induced currents into account, Maxwell’s equations are rewritten as

−∇×H+ε0
∂E

∂t
= −

(
Jind + Jext

)
∇×E+µ0

∂H

∂t
= −

(
Kind +Kext

)
,

where Jext and Kext are again the external sources and Jind and Kind are the scattering sources. With these new
right hand sides of Maxwell’s equations, it follows by substitution that the volume integral equations become

Ê(x, s) = −ζ0

ˆ
x′∈R3

ĝ (x−x′, s)
(
Ĵext(x′, s)+ Ĵind(x′, s)

)
dV ′+ 1

η0
∇

(
∇·
ˆ

x′∈R3
ĝ (x−x′, s)

(
Ĵext(x′, s)+ Ĵind(x′, s)

)
dV ′

)
−∇×

ˆ
x′∈R3

ĝ (x−x′, s)
(
K̂ext(x′, s)+ K̂ind(x′, s)

)
dV ′ (3.26)

Ĥ(x, s) = −η0

ˆ
x′∈R3

ĝ (x−x′, s)
(
K̂ext(x′, s)+ K̂ind(x′, s)

)
dV ′+ 1

ζ0
∇

(
∇·
ˆ

x′∈R3
ĝ (x−x′, s)

(
K̂ext(x′, s)+ K̂ind(x′, s)

)
dV ′

)
+∇×

ˆ
x′∈R3

ĝ (x−x′, s)
(
Ĵext(x′, s)+ Ĵind(x′, s)

)
(x′, s)dV ′. (3.27)

There is a relation between the total fields with an object present and the electromagnetic fields in vacuum
where no object is present. The difference between the two is the field radiated by the induced currents,
called the scattered field. This can be written as

Êsc = Ê− Êinc (3.28)

Ĥsc = Ĥ− Ĥinc, (3.29)

where Êinc and Ĥinc are the fields in vacuum (‘inc’ is short for incident, ‘sc’ is short for scattered) and are given
by

Êinc(x, s) = −ζ0

ˆ
x′∈R3

ĝ (x−x′, s)Ĵext(x′, s)dV ′+ 1

η0
∇

(
∇·
ˆ

x′∈R3
ĝ (x−x′, s)Ĵext(x′, s)dV ′

)
−∇×

ˆ
x′∈R3

ĝ (x−x′, s)K̂ext(x′, s)dV ′ (3.30)

Ĥinc(x, s) = −η0

ˆ
x′∈R3

ĝ (x−x′, s)K̂ext(x′, s)dV ′+ 1

ζ0
∇

(
∇·
ˆ

x′∈R3
ĝ (x−x′, s)K̂ext(x′, s)dV ′

)
+∇×

ˆ
x′∈R3

ĝ (x−x′, s)Ĵext(x′, s)dV ′ (3.31)
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𝐸𝑖𝑛𝑐 

𝐻𝑖𝑛𝑐 

𝐻𝑠𝑐  𝐸𝑠𝑐 

Figure 3.2: Scattering principle.

according to Maxwell’s equations. The scattering principle is schematically shown in Figure 3.2. It is im-
portant to note that the incident fields are known, because they are determined by the external sources in
vacuum. Subtracting (3.30) and (3.31) from (3.26) and (3.27) gives expressions for the scattered fields and
these can be substituted in (3.28) and (3.29) to find

Êinc(x, s) = Ê(x, s)+ζ0

ˆ
x′∈R3

ĝ (x−x′, s)Ĵind(x′, s)dV ′− 1

η0
∇

(
∇·
ˆ

x′∈R3
ĝ (x−x′, s)Ĵind(x′, s)dV ′

)
+∇×

ˆ
x′∈R3

ĝ (x−x′, s)K̂ind(x′, s)dV ′ (3.32)

Ĥinc(x, s) = Ĥ(x, s)+η0

ˆ
x′∈R3

ĝ (x−x′, s)K̂ind(x′, s)dV ′− 1

ξ0
∇

(
∇·
ˆ

x′∈R3
ĝ (x−x′, s)K̂ind(x′, s)dV ′

)
−∇×

ˆ
x′∈R3

ĝ (x−x′, s)Ĵind(x′, s)dV ′. (3.33)

Together (3.32) and (3.33) still contain four unknowns, which makes it impossible to solve for the fields Ê
and Ĥ. In order to eliminate the unknowns K̂ind and Ĵind the following relations for the scattering sources are
introduced:

Jind = J+ ∂

∂t
(D−ε0E) (3.34)

Kind = ∂

∂t
(B−µ0H), (3.35)

where J is the electric current density produced by freely moving charged particles. Furthermore, the consti-
tutive relations in Laplace domain,

D̂(x, s) = ε(x, s)Ê(x, s) (3.36)

B̂(x, s) = µ(x, s)Ĥ(x, s) (3.37)

Ĵ(x, s) = σ(x, s)Ê(x, s), (3.38)

turn out useful in finding expressions for Ĵind and K̂ind that depend on the unknowns Ê and Ĥ only. The result
is obtained via transforming (3.34) and (3.35) into Laplace domain and substituting (3.36) - (3.38) in the result.
This gives

Ĵind(x, s) = (σ(x, s)+ s(ε(x, s)−ε0(x, s))) Ê(x, s) = (
η(x, s)−η0(x, s)

)
Ê(x, s)

K̂ind(x, s) = s
(
µ(x, s)−µ0(x, s)

)
Ĥ(x, s) = (ζ(x, s)−ζ0(x, s))Ĥ(x, s).
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Finally,

Êinc(x, s) = Ê(x, s)+ζ0(s)η0(s)

ˆ
x′∈R3

ĝ (x−x′, s)χe(x′, s)Ê(x′, s)dV ′−∇
(
∇·
ˆ

x′∈R3
ĝ (x−x′, s)χe(x′, s)Ê(x′, s)dV ′

)
+ξ0(s)∇×

ˆ
x′∈R3

ĝ (x−x′, s)χm(x′, s)Ĥ(x′, s)dV ′ (3.39)

Ĥinc(x, s) = Ĥ(x, s)+η0(s)ζ0(s)

ˆ
x′∈R3

ĝ (x−x′, s)χm(x′, s)Ĥ(x′, s)dV ′−∇
(
∇·
ˆ

x′∈R3
ĝ (x−x′, s)χm(x′, s)Ĥ(x′, s)dV ′

)
−η0(s)∇×

ˆ
x′∈R3

ĝ (x−x′, s)χe (x′, s)Ê(x′, s)dV ′ (3.40)

where the contrast functions are defined by

χe(x, s) = η(x, s)

η0(s)
−1,

χm(x, s) = ζ(x, s)

ζ0(s)
−1.

In the human body the magnetic contrast χm is zero, so in this research (3.39) and (3.40) simplify to

Êinc(x, s) = Ê(x, s)+ζ0(s)η0(s)

ˆ
x′∈R3

ĝ (x−x′, s)χe (x′, s)Ê(x′, s)dV ′ (3.41)

−∇
(
∇·
ˆ

x′∈R3
ĝ (x−x′, s)χe(x′, s)Ê(x′, s)dV ′

)
Ĥinc(x, s) = Ĥ(x, s)−η0(s)∇×

ˆ
x′∈R3

ĝ (x−x′, s)χe(x′, s)Ê(x′, s)dV ′ (3.42)

and these last two equations form the basis of the volume integral approach.

3.4.1. DIFFERENT FORMULATIONS OF THE SCATTERING PROBLEM
In Section 3.4 (3.41) and (3.42) define two volume integral equations derived from Maxwell’s equations. In
this thesis only the volume integral equation for the electric field, or one of its variants, will be solved. Once
a solution for the electric field has been obtained, the magnetic field can be found via substitution of the
electric field in the volume integral equation for the magnetic field or in Maxwell’s equations.
It is possible to rewrite the volume integral equation into equations expressed in different unknowns with
the help of (3.36) - (3.38). In this research the volume integral equation for the magnetic field will not be
considered, because once the electric field is known, also the magnetic field can be found by substitution.
Four different formulations will be discussed here. In rewriting the formulations, the relations

D̂c = εc Ê = η

s
Ê = (

σ

s
+ε)Ê

and
Ĵc = η0χeÊ =σÊ+ sÊ(ε−ε0)

are introduced.

EVIE
The first formulation has already been derived in the beginning of this section, namely the EVIE (Electric
Volume Integral Equation) formulation:

Êinc = Ê− (
k2

b +∇∇·)S(χeÊ) (3.43)

where

S(J) =
ˆ
Ω

ĝ (x−x′, s)J(x′, s)dV ′

and k2
b =−ζ0η0. The other formulations are based on the EVIE formulation.
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DVIE
Substitution of the relation D̂c = εc Ê in (3.43) gives the DVIE (Electric Displacement Volume Integral Equa-
tion) formulation:

Êinc = 1

εc
D̂c − (k2

b +∇∇·)S(
χe

εc
D̂c). (3.44)

JVIE
Substitution of the relation Ĵc = η0χeÊ in (3.43) gives the JVIE (Electric Current Volume Integral Equation)
formulation:

Êinc = 1

η0χe
Ĵc − 1

η0

(
k2

b +∇∇·)S(Ĵc ).

In the last formulation a problem would occur if the contrast is zero, which is the case in the background
medium vacuum. Therefore the JVIE formulation is usually formulated as

η0χe Êinc = Ĵc −χe
(
k2

b +∇∇·)S(Ĵc ). (3.45)

For the above three formulations it has been shown in [18] that they are equivalent, that a unique solution ex-
ists and that the problems are well-posed in their corresponding function spaces. Although the three formu-
lations are very similar, they are different because of their mapping properties. In [19] and [20] it is explained
that in order to derive mathematically correct numerical schemes that guarantee convergence, the mapping
properties should be taken into account. In the schemes studied in this thesis the mapping properties have
not been taken into account, but earlier studies have shown that also in this case satisfactory accuracy can be
obtained for the MRI application.





4
THE ANALYTICAL SOLUTION OF

SCATTERING ON A TWO-LAYER

CONDUCTING CYLINDER

For some configurations it is possible to derive an analytical solution of the scattering problem. To be able to
analyze the accuracy of the developed numerical methods in Chapter 6, an expression for such an analytical
solution is derived in this chapter. Fundamentals of the derivation can be found in [21].

As configuration an infinitely long circular cylinder is chosen with the symmetry axis of the cylinder aligned
with the z-axis. The cylinder is composed of two different conducting materials. The outer layer with radius
a1 has a relative permittivity of εr1 and a conductivity of σ1 siemens per meter and the inner layer with ra-
dius a2 has a relative permittivity of εr2 and a conductivity of σ2 siemens per meter. Transverse electric (TE)
polarization is studied, which means that the magnetic field only has a z-component and the electric field
propagates in the x, y-plane. Figure 4.1 schematically shows the 3D view and the top view of a part of the
studied configuration.

𝑥

𝑦

𝜀1

𝜀2

𝜀0

𝑎1

𝑎2

𝑥

𝑦

𝑧

𝜎1

𝜎0

𝜎2

Figure 4.1: 3D and top view of a part of the infinitely long cylinder.
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4.1. MAXWELL’S EQUATIONS IN CYLINDRICAL COORDINATES
The analytical solution can be found after transforming Maxwell’s equations into cylindrical coordinates.
Component-wise, the result is given by

Eρ = 1

η

(
1

ρ

∂Hz

∂φ
− ∂Hφ

∂z

)
Eφ = 1

η

(
∂Hρ

∂z
− ∂Hz

∂ρ

)
Ez = 1

ρη

(
∂

∂ρ
(ρHρ)− ∂Hρ

∂φ

)
.

and

Hρ = 1

ζ0

(
1

ρ

∂Ez

∂φ
− ∂Eφ

∂z

)
Hφ = 1

ζ0

(
∂Eρ
∂z

− ∂Ez

∂ρ

)
Hz = 1

ρζ0

(
∂

∂ρ
(ρEρ)− ∂Eρ

∂φ

)
.

The fields are invariant in z-direction because the cylinder is assumed to have an infinitely long z-axis and
the incident field is chosen to be invariant in z-direction as well. Therefore, Maxwell’s equations in cylindrical
coordinates simplify to

Eρ = 1

ρη

∂Hz

∂φ

Eφ = −1

η

∂Hz

∂ρ

Ez = 1

ρη

(
∂

∂ρ
(ρHφ)− ∂Hρ

∂φ

)
and

Hρ = 1

ρζ0

∂Ez

∂φ

Hφ = − 1

ζ0

∂Ez

∂ρ

Hz = 1

ρζ0

(
∂

∂ρ
(ρEφ)− ∂Eρ

∂φ

)
.

In this set of equations, Ez , Hφ and Hρ have been decoupled from Hz ,Eφ and Eρ . If the electric field is invari-
ant in z-direction, then the corresponding waves are said to be H-polarized or TE-polarized. If the magnetic
field is invariant in z-direction, then the waves are said to be E-polarized or TH-polarized. In this thesis the
volume integral equation for the electric field, with the important ∇∇· operator, is the equation of interest.
Both polarization types can be studied with this equation, but for the H-polarized case 2D equations are suf-
ficient and the full effect of the ∇∇· operator can be taken into account. Therefore, H-polarization is studied
and the equations describing the scattering problem are

Eρ = 1

ρη

∂Hz

∂φ
(4.1)

Eφ = −1

η

∂Hz

∂ρ
(4.2)

Hz = 1

ρζ0

(
∂

∂ρ
(ρEφ)− ∂Eρ

∂φ

)
. (4.3)



4.2. THE GENERAL SOLUTION 19

4.2. THE GENERAL SOLUTION
The general solution of (4.1) - (4.3) can be found via separation of variables. The equation of interest is

ρ2 ∂
2Hz

∂ρ2 +ρ ∂Hz

∂ρ
+ ∂2Hz

∂φ2 +ρ2ζ0ηHz = 0, (4.4)

which can be found by substituting (4.1) and (4.2) in (4.3). Substitution of Hz (ρ,φ) = A(ρ)B(φ) in (4.4) gives
the two uncoupled second order differential equations

∂2B

∂φ2 +k2B = 0 (4.5)

and

ρ2 ∂
2 A

∂ρ2 +ρ ∂A

∂ρ
+ (ρ2ζ0η−k2)A = 0. (4.6)

The characteristic equation corresponding with (4.5) has roots ki and −ki, so the solution is given by B(φ) =
Bk e ikφ with Bk constant and k integer because of the 2π-periodicity condition for Hz . (4.6) requires the addi-
tional transformation ρ

√
ζ0η= z, so that

z2 ∂
2 A(z)

∂z2 + z
∂A(z)

∂z
+ (z2 −k2)A(z) = 0

can be recognized as Bessel’s differential equation with general solution

A(z) =Ck Jk (z)+Dk Yk (z) or A(z) = Ek H (1)
k (z)+Fk H (2)

k (z),

in which H (1)
k and H (2)

k are k-th integer order Hankel functions of the first and second kind respectively, and Jk

and Yk are k-th integer order Bessel functions of the first and second kind respectively. Finally, the principle
of superposition gives the general solution of Maxwell’s equations:

Hz (ρ,φ) =
∞∑

k=1
A(z)e ikφ. (4.7)

4.3. SCATTERING ON A TWO-LAYER CONDUCTING CIRCULAR CYLINDER
With (4.7) in mind the magnetic field in each layer of the cylinder (shown in Figure 4.1) can be expanded
according to the physical properties of propagation of the waves in each part of the cylinder. For this it is im-
portant to know that with the time convention s =ωi, Hankel functions of the first kind represent incoming
waves, Hankel functions of the second kind represent outgoing waves and Bessel functions represent stand-
ing waves. More information on wave representation can be found in [21] and [22].

As starting point a plane wave incident field traveling in the x-direction is chosen. It was explained in [22] that
plane waves can be expanded using Bessel functions. An object disturbs the incident wave by inducing an
additional outgoing wave. The scattered field is therefore written as a sum of Hankel functions of the second
kind. The standing wave in the first layer of the cylinder is disturbed by an additional outgoing wave resulting
from the scattering of the inner layer of the cylinder. Since Hankel functions and thus outgoing waves can
be represented in terms of Bessel functions of the first and second kind, the field inside the first layer of the
cylinder is expanded as a sum of Bessel functions of the first kind and Bessel functions of the second kind. The
field in the inner layer of the cylinder is again totally reflected in the origin, and therefore remains a standing
wave. Summarized,

H i
z = H0

∞∑
k=−∞

i−k Jk (β0ρ)e ikφ (4.8)

H s
z = H0

∞∑
k=−∞

ak H (2)
k (β0ρ)e ikφ (4.9)

H d
z = H0

∞∑
k=−∞

[
bk Jk (β1ρ)+ck Yk (β1ρ)

]
e ikφ (4.10)

H f
z = H0

∞∑
k=−∞

dk Jk (β2ρ)e ikφ, (4.11)
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where the sum of H i
z and H s

z is the total magnetic field outside the cylinder, H d
z is the magnetic field in

the outer layer of the cylinder and H f
z is the magnetic field in the inner layer of the cylinder. Furthermore,

H0 =−
√
ε0
µ0

is a chosen constant so that the electric incident field has amplitude 1. The wave numbers in the

different layers of the cylinder are defined as

β0 = kb = s
p−µ0ε0

β1 = s

√
−µ0ε0

(
εr1 +

σ1

sε0

)

β2 = s

√
−µ0ε0

(
εr2 +

σ2

sε0

)
.

Note that the magnetic field in the inner layer of the cylinder is only expanded with Bessel functions of the
first kind, because Bessel functions of the second kind have a singularity at the origin.

Substituting (4.8) in (4.1) and in (4.2) gives

E i
φ = −H0β0

η0

∞∑
k=−∞

i−k J ′k (β0ρ)e ikφ

E i
ρ = H0

η0ρ

∞∑
k=−∞

i−k Jk (β0ρ)e ikφik.

Substituting (4.9) in (4.1) and in (4.2) gives

E s
φ = −H0β0

η0

∞∑
k=−∞

ak H ′(2)
k (β0ρ)e ikφ

E s
ρ = H0

η0ρ

∞∑
k=−∞

ak H (2)
k (β0ρ)e ikφik.

Substituting (4.10) in (4.1) and in (4.2) gives

E d
φ = −H0β1

η1

∞∑
k=−∞

[
bk J ′k (β1ρ)+ck Y ′

k (β1ρ)
]

e ikφ

E d
ρ = H0

η1ρ

∞∑
k=−∞

[
bk Jk (β1ρ)+ck Yk (β1ρ)

]
e ikφik

and substituting (4.11) in (4.1) and in (4.2) gives

E f
φ

= −H0β2

η2

∞∑
k=−∞

dk J ′k (β2ρ)e ikφ

E f
ρ = H0

η2ρ

∞∑
k=−∞

dk Jk (β2ρ)e ikφik.

The unknown coefficients can be determined by enforcing the material boundary conditions. Since the con-
sidered configuration is a perfect cylinder in the x, y, z-plane aligned along the z-axis, the tangential compo-
nents correspond with the φ- and the z-component and therefore continuity in tangential components can
be obtained via requiring that

lim
ρ↓a1

(
H i

z (φ,ρ)+H s
z (φ,ρ)

)
= lim
ρ↑a1

H d
z (φ,ρ)

lim
ρ↓a2

H d
z (φ,ρ) = lim

ρ↑a2
H f

z (φ,ρ)

and

lim
ρ↓a1

(
E i
φ(φ,ρ)+E s

φ(φ,ρ)
)
= lim
ρ↑a1

E d
φ(φ,ρ)

lim
ρ↓a2

E d
φ(φ,ρ) = lim

ρ↑a2
E f
φ

(φ,ρ).
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These equations translate to

i−k Jk (β0a1)+ak H (2)
k (β0a1) = bk Jk (β1a1)+ck Yk (β1a1) (4.12)

bk Jk (β1a2)+ck Yk (β1a2) = dk Jk (β2a2) (4.13)

and

−β0

η0

(
i−k J ′k (β0a1)+ak H ′(2)

k (β0a1)
)

= −β1

η1

(
bk J ′k (β1a1)+ck Y ′

k (β1a1)
)

(4.14)

−β1

η1

(
bk J ′k (β1a2)+ck Y ′

k (β1a2)
) = −β2

η2
dk J ′k (β2a2), (4.15)

where the orthogonality property of the complex exponential function has been used. Together (4.12) - (4.15)
form the system

H (2)
k (β0a1) −Jk (β1a1) −Yk (β1a1) 0

0 Jk (β1a2) Yk (β1a2) −Jk (β2a2)

−β0
η0

H ′(2)
k (β0a1) β1

η1
J ′k (β1a1) β1

η1
Y ′

k (β1a1) 0

0 −β1
η1

J ′k (β1a2) −β1
η1

Y ′
k (β1a2) β2

η2
J ′k (β2a2)




ak

bk

ck

dk

=


−i−k Jk (β0a1)

0
β0
η0

i−k J ′k (β0a1)

0


from which ak ,bk ,ck and dk can be solved for each k ∈ Z.





5
THE METHOD OF MOMENTS

For the majority of the configurations it is not possible to derive an analytical solution. These cases require
numerical simulations to find solutions of the scattering problem. As was discussed earlier, different start-
ing points of Maxwell’s equations correspond with different numerical techniques. In Section 3.3 the volume
integral form was derived, which is the starting point for the method of moments. In high frequency fields
the method of moments is not applicable, because a high frequency means a small wavelength with respect
to the object and therefore impractically fine grids are unavoidable. For small frequencies, however, a small
number of grid nodes is sufficient to model the scattering problem. MRI is an application that works with
small frequencies (100 MHz - 300 MHz) and therefore the method of moments has become popular. The
preference for this method is explained by the fact that the Sommerfeld radiation condition is automatically
satisfied. This means that one does not have to deal with absorbing boundary conditions like in the finite
element method (FEM) or in the finite difference time domain (FDTD) method to obtain a unique solution.
The steps in the method of moments are similar to the ones in the finite element method. The first step is
deriving the weak form of the volume integral equation. Once the weak form is obtained, the discretization
procedure begins by approximating the unknown by a sum of basis functions multiplied with unknown co-
efficients. These coefficients are the ones that need to be solved from the final system. To be able to do so,
basis functions are chosen in such a way that they span the solution space and that the coefficients are easy to
obtain. Two choices of test functions are commonly used. One results in Galerkin’s method and the other one
in the point callocation method. Both of these methods will be described in this chapter and the first method
forms the basis for the final models derived in Chapter 6. From this point on, the method will be explained
for the 2D case because TE polarization is studied.

5.1. WEAK FORM
Remember that the volume integral equation can be compactly written as

Êinc = Ê− (
k2

b +∇∇·)S(χe Ê). (5.1)

In the 2D case (5.1) is a system of two coupled equations, where the electric field Ê is a two-dimensional
vectorial unknown. Therefore two weak forms are derived, one for each component. By doing this, both
the x-component and the y-component of the electric field can be expanded with (possibly) different basis
functions and different coefficients in the next step. In order to derive the weak forms, the system is written
in separate equations for the two components:

E inc
x = Ex −k2

bS(χe Ex )− ∂

∂x

(
∂

∂x
S(χe Ex )+ ∂

∂y
S(χe Ey )

)
(5.2)

E inc
y = Ey −k2

bS(χe Ey )− ∂

∂y

(
∂

∂x
S(χe Ex )+ ∂

∂y
S(χe Ey )

)
(5.3)

where

S(Jα) =
ˆ
Ω

ĝ (x−x′,ω)Jα(x′,ω)dV ′.
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Multiplication of (5.2) and (5.3) by test functions ηx and ηy respectively and integrating over the domain of
interestΩ, gives

ˆ
Ω

E inc
x ηx dΩ =

ˆ
Ω

Êxηx dΩ−k2
b

ˆ
Ω

S(χe Êx )ηx dΩ−
ˆ
Ω

∂

∂x

(∇·S(χe Ê)
)
ηx dΩ (5.4)

ˆ
Ω

E inc
y ηy dΩ =

ˆ
Ω

Êyηy dΩ−k2
b

ˆ
Ω

S(χe Êy )ηy dΩ−
ˆ
Ω

∂

∂y

(∇·S(χe Ê)
)
ηy dΩ. (5.5)

Partial integrating and using Green’s theorem, transforms the weak formulations (5.4) and (5.5) into

ˆ
Ω

E inc
x ηx dΩ =

ˆ
Ω

Exηx dΩ−k2
b

ˆ
Ω

S(χe Ex )ηx dΩ+
ˆ
Ω

∇·S(χe Ê)
∂

∂x
ηx dΩ−

ˆ
∂Ω

∇·S(χe Ê)ηx nx dΓ (5.6)
ˆ
Ω

E inc
y ηy dΩ =

ˆ
Ω

Eyηy dΩ−k2
b

ˆ
Ω

S(χe Ey )ηy dΩ+
ˆ
Ω

∇·S(χe Ê)
∂

∂y
ηy dΩ−

ˆ
∂Ω

∇·S(χe Ê)ηy ny dΓ,(5.7)

where nx and ny are the components of the normal vector on the boundary of the domain. Both weak for-
mulations can be used to discretize the system. The advantage of the second weak form is that one spatial
derivative now acts on the test function and is easy to calculate. Moreover, the first derivative of the Green’s
function contains a singularity that is weaker than the singularity of the second derivative of the Green’s func-
tion.

5.2. DISCRETIZATION

Now that the weak forms are known, the volume integral equation can be transformed into a discretized
system of equations. This can be done in several ways. The first possibility is approximating the unknowns
Ex and Ey by series

E n
x (x) =

n∑
j=1

e j ,xφ j ,x (x) and E n
y (x) =

n∑
j=1

e j ,yφ j ,y (x)

that converge to Ex and Ey as n →∞. The second possibility is to expand not only the unknown electric field,
but also the vector potential S(χeÊ) that operates on the unknown electric field. Additional substitutions

Sn
x (x) = Sn(χeEx )(x) =

n∑
j=1

s j ,xφ j ,x (x) and Sn
y (x) = Sn(χeEy )(x) =

n∑
j=1

s j ,yφ j ,y (x)

are carried out in this case. The incident field can be expanded in the same way.

The first possibility, substitution of E n
x and E n

y in (5.6) and (5.7) respectively, results in

n∑
j=1

e inc
j ,x

ˆ
Ω

φ j ,xηi ,x dΩ =
n∑

j=1
e j ,x

{ˆ
Ω

φ j ,xηi ,x dΩ−k2
b

ˆ
Ω

S(χeφ j ,x )ηi ,x dΩ

+
ˆ
Ω

∂

∂x
S(χeφ j ,x )

∂

∂x
ηi ,x dΩ−

ˆ
∂Ω

ηi ,x
∂

∂x
S(χeφ j ,x )nx dΓ

}
+

n∑
j=1

e j ,y

{ˆ
Ω

∂

∂y
S(χeφ j ,y )

∂

∂x
ηi ,x dΩ−

ˆ
∂Ω

ηi ,x
∂

∂y
S(χeφ j ,y )nx dΓ

}
i = 1, ..,n

n∑
j=1

e inc
j ,y

ˆ
Ω

φ j ,yηi ,y dΩ =
n∑

j=1
e j ,x

{ˆ
Ω

∂

∂x
S(χeφ j ,x )

∂

∂y
ηi ,y dΩ−

ˆ
∂Ω

ηi ,y
∂

∂x
S(χeφ j ,x )ny dΓ

}

+
n∑

j=1
e j ,y

{ˆ
Ω

φ j ,yηi ,y dΩ−k2
b

ˆ
Ω

S(χeφ j ,y )ηi ,y dΩ

+
ˆ
Ω

∂

∂y
S(χeφ j ,y )

∂

∂y
ηi ,y dΩ−

ˆ
∂Ω

ηi ,y
∂

∂y
S(χeφ j ,y )ny dΓ

}
i = 1, ..,n.
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The second possibility, substitution of E n
x , E n

y , Sn(χeEx ) and Sn(χeEy ) in (5.6) and (5.7) results in

n∑
j=1

e inc
j ,x

ˆ
Ω

φ j ,xηi ,x dΩ =
n∑

j=1
e j ,x

{ˆ
Ω

φ j ,xηi ,x dΩ

}

+
n∑

j=1
s j ,x

{
−k2

b

ˆ
Ω

φ j ,xηi ,x dΩ+
ˆ
Ω

∂

∂x
φ j ,x

∂

∂x
ηi ,x dΩ−

ˆ
∂Ω

ηi ,x
∂

∂x
φ j ,x nx dΓ

}

+
n∑

j=1
s j ,y

{ˆ
Ω

∂

∂y
φ j ,y

∂

∂x
ηi ,x dΩ−

ˆ
∂Ω

ηi ,x
∂

∂y
φ j ,y nx dΓ

}
i = 1, ..,n (5.8)

n∑
j=1

e inc
j ,y

ˆ
Ω

φ j ,yηi ,y dΩ =
n∑

j=1
e j ,y

{ˆ
Ω

φ j ,yηi ,y dΩ

}

+
n∑

j=1
s j ,x

{ˆ
Ω

∂

∂x
φ j ,x

∂

∂y
ηi ,y dΩ−

ˆ
∂Ω

ηi ,y
∂

∂x
φ j ,x ny dΓ

}
i = 1, ..,n

+
n∑

j=1
s j ,y

{
−k2

b

ˆ
Ω

φ j ,yηi ,y dΩ+
ˆ
Ω

∂

∂y
φ j ,y

∂

∂y
ηi ,y dΩ−

ˆ
∂Ω

ηi ,y
∂

∂y
φ j ,y ny dΓ

}
.(5.9)

The coefficients e j ,x and s j ,x are related, just like the coefficients e j ,y and s j ,y , via

n∑
j=1

s j ,αφ j ,α(x) = Sn(χeEα)(x) ≈
ˆ

x′
ĝ (x−x′)χe(x′)Eα(x′)dV ′ ≈

ˆ
x′

ĝ (x−x′)χe(x′)
n∑

j=1
e j ,αφ j ,α(x′)dV ′. (5.10)

In some approaches where both the electric field and the vector potential have been expanded, one can
make use of the fact that the vector potential is a convolution of the Green’s function and the product of
the contrast function and the electric field. The result of a convolution can be calculated with fast Fourier
transforms (FFT). The big advantage is that the Green’s function only has to be calculated in all the grid nodes
once instead of in all possible combinations of differences between two grid points, as one would expect.
This technique will be used later in Chapter 6.

After both the expansion procedures the resulting equations can generally be written as a system of size 2n×
2n, and of the form [

Aa Ab

Ac Ad

][
ea

eb

]
=

[
fa

fb

]
(5.11)

where the elements of the subvectors ea and eb are defined by

ea
j = e j ,x j = 1, ..,n

eb
j = e j ,y j = 1, ..,n

and the elements of the subvectors fa and fb by

f a
i = ´

Ωφ j ,xηi ,x dΩ i = 1, ..,n

f b
i = ´

Ωφ j ,yηi ,y dΩ i = 1, ..,n.

The elements of the submatrices Aa, Ab, Ac and Ad depend on the choice of basis and test functions.

5.3. CHOICE OF TEST FUNCTIONS
In order to continue the discretization procedure test functions need to be chosen. There are numerous possi-
bilities to choose the test functions. When constructing them, it is useful to keep in mind the type of function
that needs to be approximated. A continuous function can be approximated with continuous or discontinu-
ous test functions. A discontinuous function, however, is in general better approximated with discontinuous
test functions. Overall, two choices of test functions are popular and result in different techniques: the point
callocation method and Galerkin’s method. Below both of the methods will be demonstrated.
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5.3.1. GALERKIN’S METHOD
In Galerkin’s method the test functions are chosen to be the same as the basis functions, so ηx = φi ,x and
ηy =φi ,y for i = 1, ..,n. The resulting equations

n∑
j=1

e inc
j ,x

ˆ
Ω

φ j ,xηi ,x dΩ =
n∑

j=1
e j ,x

{ˆ
Ω

φ j ,xφi ,x dΩ−k2
b

ˆ
Ω

S(χeφ j ,x )φi ,x dΩ+
ˆ
Ω

∂

∂x
S(χeφ j ,x )

∂

∂x
φi ,x dΩ

−
ˆ
∂Ω

∂

∂x
S(χeφ j ,x )φi ,x nx dΓ

}
+

n∑
j=1

e j ,y

{ˆ
Ω

∂

∂y
S(χeφ j ,y )

∂

∂x
φi ,x dΩ−

ˆ
∂Ω

∂

∂y
S(χeφ j ,y )φi ,x nx dΓ

}
, i = 1, ..,n

n∑
j=1

e inc
j ,y

ˆ
Ω

φ j ,yηi ,y dΩ =
n∑

j=1
e j ,y

{ˆ
Ω

φ j ,yφi ,y dΩ−k2
b

ˆ
Ω

S(χeφ j ,y )φi ,y dΩ+
ˆ
Ω

∂

∂y
S(χeφ j ,y )

∂

∂y
φi ,y dΩ

−
ˆ
∂Ω

∂

∂y
S(χeφ j ,y )φi ,y ny dΓ

}
+

n∑
j=1

e j ,x

{ˆ
Ω

∂

∂x
S(χeφ j ,x )

∂

∂y
φi ,y dΩ−

ˆ
∂Ω

∂

∂x
S(χeφ j ,x )φi ,y ny dΓ

}
, i = 1, ..,n.

define the system in which the submatrices Aa, Ab, Ac and Ad in (5.11) are defined by

Aa
i j =

´
Ωφ j ,xφi ,x dΩ−k2

b

´
Ω S(χeφ j ,x )φi ,x dΩ+´Ω ∂

∂x S(χeφ j ,x ) ∂
∂xφi ,x dΩ−´∂Ω ∂

∂x S(χeφ j ,x )φi ,x nx dΓ i , j = 1, ..,n

Ab
i j =

´
Ω

∂
∂y S(χeφ j ,y ) ∂

∂xφi ,x dΩ−´∂Ω ∂
∂y S(χeφ j ,y )φi ,x nx dΓ i , j = 1, ..,n

Ac
i j =

´
Ω

∂
∂x S(χeφ j ,x ) ∂

∂yφi ,y dΩ−´∂Ω ∂
∂x S(χeφ j ,x )φi ,y ny dΓ i , j = 1, ..,n

Ad
i j =

´
Ωφ j ,yφi ,y dΩ−k2

b

´
Ω S(χeφ j ,y )φi ,y dΩ+´Ω ∂

∂y S(χeφ j ,y ) ∂
∂yφi ,y dΩ−´∂Ω ∂

∂y S(χeφ j ,y )φi ,y ny dΓ i , j = 1, ..,n.

5.3.2. POINT CALLOCATION METHOD
In the point callocation method the test functions are chosen to be the Dirac delta functions, ηx,i = δ(x − xi )
for i = 1, ..,n. This means that the weak form that was used in Galerkin’s method would give problems here,
because the derivative of the Dirac delta function would appear in the formulation. Therefore (5.4) and (5.5)
are used to demonstrate the point callocation method. In this case the equations

e inc
i ,x =

n∑
j=1

e j ,x

{
φ j ,x (xi )−k2

bS(χeφ j ,x )(xi )− ∂

∂x

∂

∂x
S(χeφ j ,x )(xi )

}

−
n∑

j=1
e j ,y

{
∂

∂x

∂

∂y
S(χeφ j ,y )(xi )

}
i = 1, ..,n

e inc
i ,y =

n∑
j=1

e j ,y

{
φ j ,y (xi )−k2

bS(χeφ j ,y )(xi )− ∂

∂y

∂

∂y
S(χeφ j ,y )(xi )

}

−
n∑

j=1
e j ,x

{
∂

∂y

∂

∂x
S(χeφ j ,x )(xi )

}
i = 1, ..,n

define the system in which the submatrices Aa, Ab, Ac and Ad in (5.11) are defined by

Aa
i j = φ j ,x (xi )−k2

bS(χeφ j ,x )(xi )− ∂
∂x

∂
∂x S(χeφ j ,x )(xi ) i , j = 1, ..,n

Ab
i j = − ∂

∂x
∂
∂y S(χeφ j ,y )(xi ) i , j = 1, ..,n

Ac
i j = − ∂

∂y
∂
∂x S(χeφ j ,x )(xi ) i , j = 1, ..,n

Ad
i j = φ j ,y (xi )−k2

bS(χeφ j ,y )(xi )− ∂
∂y

∂
∂y S(χeφ j ,y )(xi ) i , j = 1, ..,n.

The choice of test functions makes the integral over the domain of the test functions disappear. This is com-
putationally more efficient than Galerkin’s method, where the integration over the domain of the test function
often results in matrices that connect neighboring elements. However, a drawback of the point callocation
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method is that the test function does not take into account the boundary conditions that were described in
Section 3.2, whereas in Galerkin’s method it is possible to choose the test and basis functions so that they do
take into account the boundary conditions. For this reason, and to be able to compare with existing schemes,
Galerkin’s method will be chosen as discretization method in the rest of this thesis.

5.4. CHOICE OF BASIS FUNCTIONS
Ideally the basis functions are chosen such that they have the same continuity behavior as the unknown
function that they represent. This implies that the basis functions are smooth enough to satisfy the differen-
tial operators in the weak formulation. There are, however, more factors that have to be taken into account.
The basis functions live on a certain mesh, and the combination of the mesh and the basis function affects
the computation time of the scattering problem. Moreover, it is desirable that the resulting integrals in the
method of moments are relatively easy to evaluate.
A frequently used combination is the combination of piecewise linear basis functions and a triangular mesh
with grid nodes located at the three vertices of each triangle. This option can be extended to 3D with a tetra-
hedral mesh instead of a triangular mesh. Other possibilities are piecewise constant basis functions on square
cells or cubic voxels and vertices located at cell or voxel centers. More advanced functions are the so-called
Schaubert-Wilton-Glisson (SWG) basis functions. [23]





6
MODEL

In the previous chapter the steps in the method of moments were discussed. Within these steps there is a lot
of freedom in finalizing an optimal method for solving the scattering problem. First of all, a mesh needs to be
chosen. Second, test functions and basis functions need to be defined. In this chapter one type of basis and
test functions is chosen and two types of meshes are studied. These choices result in three different models,

• EVIE model on a non-staggered grid

• DVIE model on a non-staggered grid

• DVIE model on a staggered grid,

that will be derived in this chapter. At the end of this chapter variations on those models are derived by
adjusting the numerical scheme for the mixed derivative terms in (5.4) and (5.5).

6.1. MESH
Two different mesh types are studied. The first mesh has square-shaped cells with grid nodes located in the
cell centers. The second mesh also uses square-shaped cells, but the grid nodes correspond with a staggered
grid and are located on the cell boundaries. In this case the x-directional grid nodes and the y-directional grid
nodes have been shifted from each other. The result of this shift in grid nodes is found in the terms where
the x-component and the y-component of the basis and test functions interact. The size of both meshes
is defined by the number of cells in x-direction (M) and the number of cells in y-direction (N). In order
to be able to approximate the derivatives at the boundaries of the domain, the mesh is extended with one
surrounding row of cells so that the final grid has size (M+2)× (N+2).

The introduction of a staggered grid involves some additional actions compared with the non-staggered grid.
First of all, the incident field has to be approximated on the staggered grid instead of on the non-staggered
grid. Second, in order to evaluate the vector potential, the contrast has to be transformed from the non-
staggered grid to the staggered grid. This is done via interpolation:

χx
em,n

≈
χe

m+ 1
2 ,n

+χe
m− 1

2 ,n

2
and χ

y
em,n

≈
χe

m,n+ 1
2
+χe

m,n− 1
2

2
.

Furthermore, in order to transform the approximated electric displacement current from the staggered grid
back to the non-staggered grid, the same interpolation rule is used for the electric displacement:

Dx
cm,n

≈
Dc

m+ 1
2 ,n

+Dc
m− 1

2 ,n

2
and D y

cm,n
≈

Dc
m,n+ 1

2
+Dc

m,n− 1
2

2
.

After this, the electric fields are derived from the electric displacement currents by dividing by the complex
permittivity. One could also choose to first derive the electric fields on the staggered grid by dividing the elec-
tric displacement on the staggered grid by the complex permittivity on the staggered grid, and subsequently

29
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transforming the result back to the non-staggered grid. The reason why the first option is preferred is ex-
plained by the fact that the electric displacement is approximated with continuous functions in the direction
of interpolation, whereas the electric field satisfies the reverse boundary conditions and is supposed to be
continuous over material interfaces in the opposite direction.

6.2. ROOFTOP BASIS AND TEST FUNCTIONS
Galerkin’s discretization technique is used, which means that the test functions are chosen the same as the
basis functions. Basis functions φm,n and test functions φp,q will be defined on each node.
It is important to note that in (5.8) a first derivative with respect to the x-direction acts on the x-directional
basis function and on the x-directional test function. A first derivative with respect to the y-direction acts
on the y-directional basis function and on the y-directional test function. The same holds for (5.9). For this
reason, the basis functions for the x-component should be piecewise differentiable with respect to x and the
basis functions for the y-component should be piecewise differentiable with respect to y . Basis functions
that satisfy this condition are

φx
m,n(x) = Λm(x)Πn(y)

for the x component and

φ
y
m,n(x) = Πn(x)Λm(y)

for the y component, where

Λm(x) =
{

1− 1
∆x |x −xm | |x −xm | ≤∆x

0 |x −xm | >∆x

and

Πn(y) =


1 yn− 1

2
< y < yn+ 1

2
1
2 y = yn− 1

2

∨
y = yn+ 1

2

0 y > yn− 1
2

∨
y > yn+ 1

2

.

Furthermore, in order to eliminate the integral over the boundary of the domain, it is preferable to position
the basis functions in such a way that the test functions for the internal nodes vanish on the boundary of the
domain. However, to be able to fully eliminate the boundary integral the integrand of the boundary integral
should also vanish on the boundary for the boundary nodes. The divergence of the vector potential S does not
satisfy a homogeneous Dirichlet boundary condition in general and therefore in theory there is a contribution
of the boundary nodes. However, in previous work and therefore also in this work, the contribution of the
boundary term is neglected. It should be noted that the implicitly used Dirichlet boundary condition for the
divergence of the vector potential will introduce errors on the boundaries of the domain. Also, boundary
conditions for the fields and fluxes are needed to properly perform the weighting procedure for all nodes.
Homogeneous Dirichlet boundary conditions are chosen for the electric field Ê and for the complex electric
displacement D̂c .

Figure 6.1a schematically shows the behavior of the basis function corresponding to node m,n. Figure 6.1b
schematically shows the behavior of the basis function corresponding to node m,n for a staggered grid. The
y-directional basis function is shown with as blue nodes the y-directional grid nodes.
This particular choice of basis functions takes into account the material boundary conditions in the following
way. The y-nodes are located on edges of cells on which the normal vector points in y-direction. A continuous
basis function is used in y-direction to approximate the y-component of the field, so the normal component
of the electric displacement is approximated with continuous functions. The x-nodes are located on edges of
cells on which the tangential component points in y-direction as well. A discontinuous basis function is used
in x-direction to approximate the y-component of the field, so the tangential component is approximated
with discontinuous functions.
For the x-directional field the normal components on cell boundaries point in x-direction, and in x-direction
a continuous function is used to approximate the x-component. The tangential component in x-direction is
measured in the y-nodes, which are approximated with a discontinuous function.
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(a) Rooftop basis function corresponding to node m,n on a
non-staggered grid.

(b) Rooftop basis function corresponding to node m,n on a
staggered grid.

Figure 6.1: Basis functions on a staggered and on a non-staggered grid.

6.3. THE EVIE MODEL
The EVIE model solves

Êinc = Ê− (
k2

b +∇∇·)S(χe Ê) (6.1)

via expanding the fields and the vector potential as

Eα ≈ ∑M
m=1

∑N
n=1 eαm,nφ

α
m,n ,

Sα ≈ ∑M
m=1

∑N
n=1 sαm,nφ

α
m,n ,

E inc
α ≈ ∑M

m=1
∑N

n=1 e inc,α
m,n φαm,n .

Next to expanding the electric field and the vector potential, also the electric incident field is expanded. In
case of a simple incident field and simple test functions one could also choose for analytically calculating the
weighting on the incident field without expanding it. However, the incident field usually is a smooth function
on which the weighting procedure would not have much effect, so either option works.

X-COMPONENT

Substitution of the basis functions and the test functions in the weak form for the x-component, gives

M∑
m=1

N∑
n=1

ex
m,n

{ˆ
Ω

Λm(x)Πn(y)Λp (x)Πq (y)dΩ

}
−

M∑
m=1

N∑
n=1

sx
m,n

{ˆ
Ω

k2
bΛm(x)Πn(y)Λp (x)Πq (y)dΩ−

ˆ
Ω

∂

∂x

[
Λm(x)Πn(y)

] ∂

∂x

[
Λp (x)Πq (y)

]
dΩ

}
+

M∑
m=1

N∑
n=1

s y
m,n

{ˆ
Ω

∂

∂y

[
Πm(x)Λn(y)

] ∂

∂x

[
Λp (x)Πq (y)

]
dΩ

}
=

M∑
m=1

N∑
n=1

e inc,x
m,n

{ˆ
Ω

Λm(x)Πn(y)Λp (x)Πq (y)dΩ

}
(6.2)

for p = 1, ..,M and q = 1, ..,N with M the number of nodes in x-direction and N the number of nodes in y-
direction. Each of the integrals can be evaluated making use of the fact that all integrands can be written as a
product of functions of x and functions of y .

ˆ
Ω

Λm(x)Πn(y)Λp (x)Πq (y)dΩ =
ˆ

x
Λm(x)Λp (x)dx

ˆ
y
Πn(y)Πq (y)dy

= δn,q∆y

ˆ
x
Λm(x)Λp (x)dx

= 1

6
δn,q∆x∆y

(
δm,p−1 +4δm,p +δm,p+1

)
(6.3)



32 6. MODEL

ˆ
Ω

k2
bΛm(x)Πn(y)Λp (x)Πq (y)dΩ = 1

6
k2

bδn,q∆x∆y
(
δm,p−1 +4δm,p +δm,p+1

)
(6.4)

ˆ
Ω

∂

∂y

[
Πm(x)Λn(y)

] ∂

∂x

[
Λp (x)Πq (y)

]
dΩ =

ˆ
x

[
∂

∂x
Λp (x)

]
Πm(x)dx

ˆ
y

[
∂

∂y
Λn(y)

]
Πq (y)dy

= −1

2

(
δm,p+1 −δm,p−1

) 1

2

(
δn,q+1 −δn,q−1

)
(6.5)

ˆ
Ω

∂

∂x

[
Λm(x)Πn(y)

] ∂

∂x

[
Λp (x)Πq (y)

]
dΩ =

ˆ
x

∂

∂x
Λm(x)

∂

∂x
Λp (x)dx

ˆ
y
Πn(y)Πq (y)dΩ

= −δn,q
1

∆x
∆y

(
δm,p−1 −2δp,m +δm,p+1

)
(6.6)

Substitution of (6.3), (6.4), (6.5) and (6.6) in (6.2) and deviding by ∆x∆y finally gives

1

6

(
ex

p−1,q +4ex
p,q +ex

p+1,q

)
− 1

6
k2

b

(
sx

p−1,q +4sx
p,q + sx

p+1,q

)
− 1

∆x2

(
sx

p−1,q −2sx
p,q + sx

p+1,q

)
− 1

4∆x∆y

(
s y

p+1,q+1 − s y
p−1,q+1 − s y

p+1,q−1 + s y
p−1,q−1

)
= 1

6

(
e inc,x

p−1,q +4e inc,x
p,q +e inc,x

p+1,q

)
(6.7)

for p = 1, ..,M and q = 1, ..,N.

Y-COMPONENT
Substitution of the basis functions and the test functions in the weak form for the y-component, gives

M∑
m=1

N∑
n=1

e y
m,n

{ˆ
Ω

Πm(x)Λn(y)Πp (x)Λq (y)dΩ

}
−

M∑
m=1

N∑
n=1

s y
m,n

{ˆ
Ω

k2
bΠm(x)Λn(y)Πp (x)Λq (y)dΩ−

ˆ
Ω

∂

∂y

[
Πm(x)Λn(y)

] ∂

∂y

[
Πp (x)Λq (y)

]
dΩ

}
+

M∑
m=1

N∑
n=1

sx
m,n

{ˆ
Ω

∂

∂x

[
Λm(x)Πn(y)

] ∂

∂y

[
Πp (x)Λq (y)

]
dΩ

}
=

M∑
m=1

N∑
n=1

e inc,y
m,n

{ˆ
Ω

Πm(x)Λn(y)Πp (x)Λq (y)dΩ

}
(6.8)

for p = 1, ..,M and q = 1, ..,N with M the number of nodes in x-direction and N the number of nodes in y-
direction. The integrals can be calculated in the same way as for the x-component. The results are given
by

ˆ
Ω

Πm(x)Λn(y)Πp (x)Λq (y)dΩ = 1

6
δm,p∆x∆y

(
δn,q−1 +4δn,q +δn,q+1

)
(6.9)

ˆ
Ω

k2
bΠm(x)Λn(y)Πp (x)Λq (y)dΩ = 1

6
k2

bδm,p∆x∆y
(
δn,q−1 +4δn,q +δn,q+1

)
(6.10)

ˆ
Ω

∂

∂x

[
Λm(x)Πn(y)

] ∂

∂y

[
Πp (x)Λq (y)

]
dΩ = −1

2

(
δm,p+1 −δm,p−1

) 1

2

(
δn,q+1 −δn,q−1

)
(6.11)

ˆ
Ω

∂

∂y

[
Πm(x)Λn(y)

] ∂

∂y

[
Πp (x)Λq (y)

]
dΩ = −δm,p∆x

1

∆y

(
δn,q−1 −2δn,q +δn,q+1

)
. (6.12)

Substitution of (6.9), (6.10), (6.11) and (6.12) in (6.8) and deviding by ∆x∆y gives

1

6

(
e y

p,q−1 +4e y
p,q +e y

p,q+1

)
− 1

6
k2

b

(
s y

p,q−1 +4s y
p,q + s y

p,q+1

)
− 1

∆y2

(
s y

p,q−1 −2s y
p,q + s y

p,q+1

)
− 1

4∆x∆y

(
sx

p+1,q+1 − sx
p−1,q+1 − sx

p+1,q−1 + sx
p−1,q−1

)
= 1

6

(
e inc,y

p,q−1 +4e inc,y
p,q +e inc,y

p,q+1

)
(6.13)



6.3. THE EVIE MODEL 33

for p = 1, ..,M and q = 1, ..,N.

Next, (6.7) and (6.13) can be written as a system like (5.11), but of reduced size because the expressions only
depend on the number of test functions and not on the number of the basis functions. In this model the
complete system can be calculated quickly by defining central difference matrices. The result is

BNE x RT
N −k2

bBNSx RT
N −Lxx Sx RT

N −Lx S y Ly = BNE inc,x RT
N

RME y B T
M −k2

bRMS y B T
M −RMS y LT

y y −Lx Sx Ly = RME inc,y B T
M

where

B (M×M+2)
M = 1

6


1 4 1

. . .
. . .

. . . 0

0
. . .

. . .
. . .

1 4 1

 and B (N×N+2)
N = 1

6


1 4 1

. . .
. . .

. . . 0

0
. . .

. . .
. . .

1 4 1

 .

The finite difference matrices are written as

L(M×M+2)
xx = 1

∆x2


1 −2 1

. . .
. . .

. . . 0

0
. . .

. . .
. . .

1 −2 1

 and L(N×N+2)
y y = 1

∆y2


1 −2 1

. . .
. . .

. . . 0

0
. . .

. . .
. . .

1 −2 1

 ,

L(M×M+2)
x = 1

2∆x


−1 0 1

. . .
. . .

. . . 0

0
. . .

. . .
. . .

−1 0 1

 and L(N×N+2)
y = 1

2∆y


−1 0 1

. . .
. . .

. . . 0

0
. . .

. . .
. . .

−1 0 1

 .

Finally, the matrices

R(M×M+2)
M =


0 1 0
...

. . . 0
...

... 0
. . .

...
0 1 0

 and R(N×N+2)
N =


0 1 0
...

. . . 0
...

... 0
. . .

...
0 1 0


strip the first and the last row or column of matrices respectively.

The matrices Sx and S y are constructed in a couple of steps. First note that (6.1) consists of three layered
equations:

• Êinc = Ê− (
k2

b +∇∇·)S(Ĵ)

• S(Ĵ) = ´x′ ĝ (x−x′)Ĵdx′

• Ĵ =χeÊ.

In the first equation Ê, Êinc and S(Ĵ) are all expanded in rooftop basis functions. In the second equation,
S(Ĵ) and Ĵ are both expanded in pulse times pulse basis functions so that the vector potential is eventually
approximated following the midpoint rule. In the third equation, Ĵ and Ê are also both expanded in pulse
times pulse basis functions. After applying the weighting procedure to Ĵ = χeÊ , the coefficients jαmn can be
determined and used to find the coefficients sαmn .

S(Jα)(x) =
ˆ

x′
ĝ (x−x′)Jα(x′)dx′ (6.14)

=
ˆ

x′
ĝ (x−x′)

M∑
m=1

N∑
n=1

jm,nΠm(x ′)Πn(y ′)dx′

=
M∑

m=1

N∑
n=1

jm,n ĝ (x−xm,n)∆x∆y
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and

ˆ
Ω

∑
k

∑
l

sklΠk (x)Πl (y)Πp (x)Πq (y)dΩ =
ˆ
Ω

∑
m

∑
n

jαm,n ĝ (x−xm,n)∆x∆yΠp (x)Πq (y)dΩ⇔
∑
k

∑
l

sk,lδk,pδl q∆x∆y = ∑
m

∑
n

jαm,n∆x∆y

ˆ
Ω

ĝ (x−xm,n)Πp (x)Πq (y)dΩ⇒

sp,q ≈ ∑
m

∑
n

jαm,n ĝ (xp,q −xm,n)∆x∆y. (6.15)

Furthermore, the weighting procedure applied to Ĵ =χeÊ determines the coefficients jαm,n . It follows that

ˆ
Ω

∑
m

∑
n

jαm,nΠm(x)Πn(y)Πp (x)Πq (y)dΩ =
ˆ
Ω

χe
∑
m

∑
n

eαm,nΠm(x)Πn(y)Πp (x)Πq (y)dΩ⇔

jαp,q∆x∆y = ∑
m

∑
n

eαm,n

ˆ
Ω

χeΠm(x)Πn(y)Πp (x)Πq (y)dΩ⇒

jαp,q ≈ χep,q eαp,q (6.16)

where in the last step the contrast function is assumed to be constant within each voxel.

Substituting (6.16) in (6.15) gives the final expression for the coefficients of the matrices Sx and S y . The
first possibility is to compute each coefficient seperately by evaluating (6.15) for each node p, q . The second
possibility is to recognise a convolution in (6.14) and compute the result with fast fourier transforms (FFT).
In practise the second option will always be used, because it reduces the computation time considerably.

6.4. THE DVIE MODEL
The DVIE model solves

Êinc = 1

εc
D̂c − (k2

b +∇∇·)S(
χe

εc
D̂c) (6.17)

via expanding the fields and the vector potential as

Dc,α ≈ ε0
∑M

m=1
∑N

n=1 dα
m,nφ

α
m,n ,

Sα ≈ ∑M
m=1

∑N
n=1 sαm,nφ

α
m,n ,

E inc
α ≈ ∑M

m=1
∑N

n=1 e inc,α
m,n φαm,n .

X-COMPONENT

Substitution of the basis functions and the test functions in the weak form for the x-component, gives

M∑
m=1

N∑
n=1

d x
m,n

{ˆ
Ω

ε0

εc (x, y)
Λm(x)Πn(y)Λp (x)Πq (y)dΩ

}
−

M∑
m=1

N∑
n=1

sx
m,n

{ˆ
Ω

k2
bΛm(x)Πn(y)Λp (x)Πq (y)dΩ−

ˆ
Ω

∂

∂x

[
Λm(x)Πn(y)

] ∂

∂x

[
Λp (x)Πq (y)

]
dΩ

}
+

M∑
m=1

N∑
n=1

s y
m,n

{ˆ
Ω

∂

∂y

[
Πm(x)Λn(y)

] ∂

∂x

[
Λp (x)Πq (y)

]
dΩ

}
=

M∑
m=1

N∑
n=1

e inc,x
m,n

{ˆ
Ω

Λm(x)Πn(y)Λp (x)Πq (y)dΩ

}
(6.18)

for p = 1, ..,M and q = 1, ..,N.

Following the same procedure as in the derivation of the EVIE discretized model, the volume integrals in
(6.18) can be calculated analytically. Only the first integral gives a difference in the final discretized equation:
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ˆ
Ω

ε0

εc (x, y)
Λm(x)Πn(y)Λp (x)Πq (y)dΩ= ε0

ˆ
x
Λm(x)Λp (x)

ˆ
y

1

εc (x, y)
Πn(y)Πq (y)dydx

= δn,q∆yε0

ˆ
x

1

εc (x, yq )
Λm(x)Λp (x)dx

= 1

12
δn,q∆x∆yε0

(
δm,p−1

(
1

εc,m,n
+ 1

εc,m+1,n

)
+ 1

2
δm,p

(
1

εc,m−1,n
+ 14

εc,m,n
+ 1

εc,m+1,n

)
+δm,p+1

(
1

εc,m−1,n
+ 1

εc,m,n

))
.

With this result the discretized equation for the x−component becomes

1

12
ε0

((
1

εc,p−1,q
+ 1

εc,p,q

)
d x

p−1,q + 1

2

(
1

εc,p−1,q
+ 14

εc,p,q
+ 1

εc,p+1,q

)
d x

p,q +
(

1

εc,p,q
+ 1

εc,p+1,q

)
d x

p+1,q

)
−

1

6
k2

b

(
sx

p−1,q +4sx
p,q + sx

p+1,q

)
− 1

∆x2

(
sx

p−1,q −2sx
p,q + sx

p+1,q

)
− 1

4∆x∆y

(
s y

p+1,q+1 − s y
p−1,q+1 − s y

p+1,q−1 + s y
p−1,q−1

)
=

1

6

(
e inc,x

p−1,q +4e inc,x
p,q +e inc,x

p+1,q

)
for p = 1, ..,M and q = 1, ..,N. The coefficients for the vectorpotentials sαm,n are now related to the unknown
coefficients dα

m,n in a different way from how the coefficients sαm,n are related to the unknown coefficients
eαm,n . The result will be given at the end of this section.

Y-COMPONENT
Substitution of the basis functions and the test functions in the weak form for the y-component, gives

M∑
m=1

N∑
n=1

d y
m,n

{ˆ
Ω

ε0

εc (x, y)
Πm(x)Λn(y)Πp (x)Λq (y)dΩ

}
−

M∑
m=1

N∑
n=1

s y
m,n

{ˆ
Ω

k2
bΠm(x)Λn(y)Πp (x)Λq (y)dΩ−

ˆ
Ω

∂

∂y

[
Πm(x)Λn(y)

] ∂

∂y

[
Πp (x)Λq (y)

]
dΩ

}
+

M∑
m=1

N∑
n=1

sx
m,n

{ˆ
Ω

∂

∂x

[
Λm(x)Πn(y)

] ∂

∂y

[
Πp (x)Λq (y)

]
dΩ

}
=

M∑
m=1

N∑
n=1

e inc,y
m,n

{ˆ
Ω

Πm(x)Λn(y)Πp (x)Λq (y)dΩ

}
(6.19)

for p = 1, ..,M and q = 1, ..,N.

The first integral in (6.19) is calculated as

ˆ
Ω

ε0

εc (x, y)
Πm(x)Λn(y)Πp (x)Λq (y)dΩ=

1

12
δm,p∆x∆yε0

(
δn,q−1

(
1

εc,m,n
+ 1

εc,m,n+1

)
+ 1

2
δn,q

(
1

εc,m,n−1
+ 14

εc,m,n
+ 1

εc,m,n+1

)
+δn,q+1

(
1

εc,m,n−1
+ 1

εc,m,n

))
for p = 1, ..,M and q = 1, ..,N. Therefore the final expression for the discretized equation is

1

12
ε0

((
1

εc,p,q−1
+ 1

εc,p,q

)
d y

p,q−1 +
1

2

(
1

εc,p,q−1
+ 14

εc,p,q
+ 1

εc,p,q+1

)
d y

p,q +
(

1

εc,p,q
+ 1

εc,p,q+1

)
d y

p,q+1

)
−

1

6
k2

b

(
s y

p,q−1 +4s y
p,q + s y

p,q+1

)
− 1

∆y2

(
s y

p,q−1 −2s y
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)
for p = 1, ..,M and q = 1, ..,N.

The coefficients of the vectorpotential are related to the flux coefficients via

sαp,q =
M∑

m=1

N∑
n=1

dα
m,n

χe,m,n

εc,m,n
ĝ (x−xm,n)∆x∆y.
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6.5. THE DVIE MODEL ON A STAGGERED GRID
The DVIE method on a staggered grid involves one grid for the x-component and one grid for the y-component.
In the grid for the x-component the number of grid nodes in x-direction is increased by one, and in the grid
for the y-component the number of grid nodes in y-direction is increased by one. This leads to the expan-
sions

Dc,x ≈ ε0
∑M+1

m=1
∑N

n=1 d x
m,nφ

x
m,n ,

Sx ≈ ∑M+1
m=1

∑N
n=1 sx

m,nφ
x
m,n ,

E inc
x ≈ ∑M+1

m=1
∑N

n=1 e inc,x
m,n φx

m,n

and

Dc,y ≈ ε0
∑M

m=1
∑N+1

n=1 d y
m,nφ

y
m,n ,

Sy ≈ ∑M
m=1

∑N+1
n=1 s y

m,nφ
y
m,n ,

E inc
y ≈ ∑M

m=1
∑N+1

n=1 e inc,y
m,n φ

y
m,n .

The DVIE formulation on the staggered grid shown in Figure 6.1b requires a couple of changes compared to
the DVIE formulation on a non-staggered grid. The basis fuction covers two entire cells now, which means
that the weighting procedure results in a weighting with only two permittivity values instead of three.
Therefore evaluation of the first integral in (6.18) results in

ˆ
Ω

ε0

εc (x, y)
Λm(x)Πn(y)Λp (x)Πq (y)dΩ= 1

6
δn,q∆x∆yε0

(
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+2δm,p

(
1
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+ 1

εc,m,n

)
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1
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)
for the x-component for p = 1, ..,M+1 and q = 1, ..,N and in

ˆ
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)
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1
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)
for the y-component for p = 1, ..,M and q = 1, ..,N+1. Also the expression corresponding with the integral
that contains mixed derivatives changes now, because the grid nodes for the y-directional basis functions are
shifted from the grid nodes for the x-directional basis functions. Therefore,

ˆ
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∂
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Πm(x)yΛn(y)y] ∂
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for the x-component for p = 1, ..,M+1 and q = 1, ..,N and
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)
for the y-component for p = 1, ..,M and q = 1, ..,N+1.

The final discretized equation for the x-component therefore becomes
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)
for p = 1, ..,M+1 and q = 1, ..,N and the final discretized equation for the y-component becomes
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1
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for p = 1, ..,M and q = 1, ..,N+1.

The coefficients are again related via

sx
p,q =

M+1∑
m=1

N∑
n=1

d x
m,n

χe,m,n

εc,m,n
ĝ (x−xm,n)∆x∆y

and
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m=1
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d y
m,n

χe,m,n

εc,m,n
ĝ (x−xm,n)∆x∆y.

Figure 6.2 clarifies the main difference between the DVIE method and the DVIE method on a staggered grid.
The green encircled nodes are the nodes that are used in the approximation of the mixed derivative in the
green filled node. The approximation of the mixed derivative on a non-staggered grid uses nodes that are
positioned further away than in the staggered case.

(a) Non-staggered grid. (b) Staggered grid.

Figure 6.2: The green encircled nodes are used in the second order approximation of the mixed derivative term in the green filled node.

6.6. HIGHER ORDER DIFFERENCE SCHEMES
The two considered equations (5.2) and (5.3) are coupled via the mixed derivative terms and therefore the
mixed derivative terms have a big effect on the scattering pattern: it is responsible for scattering in multiple
directions. Even though the above derived schemes are a nice result of the rooftop expansion and weighting
procedure, it might be interesting to study different discretization schemes for the mixed derivative terms.
The schemes that have been constructed are second order central difference schemes. In this section fourth
order central different schemes are derived for staggered as well as for non-staggered grids. Since higher order
difference schemes require more grid nodes, extra boundary conditions are needed for grid nodes located on
the boundary domain. In order to circumvent extra boundary conditions the original second order difference
scheme is applied for nodes located on the boundary.
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6.6.1. FOURTH ORDER CENTRAL DIFFERENCE SCHEME FOR A NON-STAGGERED GRID
The fourth order central difference scheme for a non-staggered grid can be derived by repeatedly applying a
fourth order central difference scheme on the first derivatives, as in
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Completing the above procedure gives an expression for the y-directional mixed derivative,
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and for the x-directional mixed derivative,
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6.6.2. FOURTH ORDER CENTRAL DIFFERENCE SCHEME FOR A STAGGERED GRID
The fourth order central difference scheme for a staggered grid can be derived by repeatedly applying a fourth
order central difference scheme on the first derivatives, with
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On a staggered grid, this transforms to an expression for the y-directional mixed derivative,
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and an expression for the x-directional mixed derivative,
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Figure 6.3 shows the nodes that are used in the fourth order approximation of the mixed derivative terms for
the staggered and the non-staggered grids.
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(a) Non-staggered grid.

(b) Staggered grid.

Figure 6.3: The green encircled nodes are used in the fourth order approximation of the mixed derivative term in the green filled node.





7
ITERATIVE SOLVERS

The discretized systems derived in Chapter 6 can be solved with several numerical solution methods. The
choice of solver depends among other characteristics on the structure of the system matrix and the problem
size. Smaller systems are usually solved with a direct solution method like LU decomposition or Cholesky
decomposition. For larger systems iterative solution methods are much more efficient. Iterative schemes can
also be used in combination with fast Fourier transform (FFT) methods to accelerate matrix-vector product
evaluations. Moreover, iterative methods can be terminated after any tolerance value, which gives the user
the opportunity to choose the accuracy of the obtained solution.

Two groups of iterative methods are the basic iterative methods (BIM’s) and Krylov subspace methods. Basic
iterative methods form the basis of the more advanced Krylov subspace methods. Krylov subspace methods
solve the system Ax = b and are based on the idea that the iterated solution xi is an element of K i (A;r0),
where

K i (A;r0) = span
{

r0, Ar0, ..., Ai−1r0
}

.

For systems with a Hermitian and positive definite (HPD) system matrix A the conjugate gradient method is
the method of choice. This Krylov subspace method has two attractive properties:

1.
∥∥x−xi

∥∥
A is minimal

2. the algorithm is based on short recurrences.

There is no Krylov subspace method for general matrices that has both properties. Therefore, if the corre-
sponding matrix is Hermitian and positive definite, then there is no reason to choose for more advanced
methods constructed for non-Hermitian matrices. Bi-CG, Bi-CGSTAB, GMRES and IDR(s) are examples of
methods for general matrices. In this chapter it will be shown that the scattering operator is indeed non-
Hermitian and therefore the conjugate gradient method can not be used. Next, GMRES and IDR(s) will be
introduced briefly as solvers for systems with non-HPD matrices.

7.1. A NON-HERMITIAN OPERATOR
An operator A is Hermitian if it satisfies

< u,A v >=<A u,v > ∀u,v ∈Cn , (7.1)

with the inner product for two-dimensional vectorial functions defined as

< u,v >=
ˆ

< u(x),v(x) > dx =
ˆ

ux (x)vx (x)+uy (x)vy (x)dx.

In this case the operator A is defined as A u = u− (k2
b +∇∇·)S(χe u) with u ∈C2.
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With the above definition of the inner product, the left-hand side of (7.1) gives

< u,A v > =
ˆ
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while the right-hand side of (7.1) gives
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ˆ
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))
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Since the equality has to hold for all vectors in C2, it suffices to give one combination of vectors for which the

equality does not hold. Now choose u =
[

x
0

]
and v =

[
0
1

]
for x, y ∈Ω. Then

< u,A v > =
ˆ

−x
∂

∂x

∂

∂y
Sy (χe )dx,

and

<A u,v > =
ˆ

− ∂

∂y

∂

∂x
Sx (χe x)dx.

But
´

x ∂
∂x

∂
∂y S̄y (χe )dx 6= ´ ∂

∂y
∂
∂x Sx (χe x)dx, which proves that the operator A is not Hermitian and a Krylov

method for general matrices has to be chosen to solve the system.

7.2. GMRES
The generalized minimal residual method (GMRES) is a well-known iteration method for systems where the
conjugate gradient method can not be applied. The corresponding algorithm consists of two main steps. In
the first step Arnoldi’s method is used to construct an orthogonal basis for the Krylov subspace method. In
the second step the solution is approximated such that the residual is minimized over the Krylov subspace,
i.e.

||ri ||2 = ||b− Axi ||2 = minz∈K i (A;r0)||r0 − Az||2, (7.2)

where the first residual is calculated by r0 = b− Ax0 and x0 a chosen starting vector. This means that the
residual in iteration i is orthogonal to AK i (A;r0). The Arnoldi process produces a Hessenberg matrix Hi

that represents the projection of matrix Ai on the orthogonal basis with corresponding matrix Vi . The first

column of Vi is given by the vector v1 = r0

‖r0‖ . The choice z =Vi y transforms (7.2) into

||ri ||2 = miny∈Rn ||r0 − AVi y||2 = miny∈Rn ||βv1 − AVi y||2,

where β= ∥∥r0
∥∥. The relation

AVi =Vi+1Hi

gives a least squares problem

||ri ||2 = miny∈Rn ||Vi+1(βe1 −Hi y)||2 = miny∈Rn ||βe1 −Hi y||2 (7.3)

that is equivalent with (7.2). In each iteration the solution is approximated with xi = x0 +Vi yi . [24]

GMRES has optimal convergence properties because it minimizes the residual in least-squares sense. The
method converges in at most n iterations, where n is the size of the system matrix. GMRES is a stable method
with superlinear convergence in many cases. However, GMRES is also an example of a method with long
recurrences, which means that the work per iteration and memory requirements increase with the iteration
number. More specifically, the computation time is O (ni 2) after i iterations. A solution to this problem is
to restart GMRES after a certain number of iterations with the last approximate solution as a starting vector.
Drawbacks of this approach are that optimality and superlinear convergence are lost.
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7.3. IDR(s)
The Induced Dimension Reduction method (IDR(s)) is a relatively new method that can also be used to solve
large nonsymmetric or non-Hermitian systems. The idea behind the method is based on the IDR theorem of
which a generalized version has been published in [25]:

Theorem 1. Let A be any matrix in Cn×n , let v0 be any nonzero vector in Cn , and let G0 be the full Krylov space
K n(A,v0). Let S denote any (proper) subspace of Cn such that S and G0 do not share a nontrivial invariant
subspace of A, and define the sequence G j , j = 1,2, ..., as

G j = (I −ω j A)(G j−1 ∩S ),

where the ω j ’s are nonzero scalars. Then the following hold:
i) G j ⊂G j−1∀ j > 0.
ii) G j = {0} for some j ≤ n.

In the IDR(s) algorithm the residuals ri are forced to be elements of the nested subspaces Gi . These subspaces
are deceasing in dimension, which means that there is a residual rm that is an element of Gm = {0}. Once this
residual is obtained, the algorithm stops. This happens in at most n

s (s +1) matrix vector products. [26] For
s = 1 the method converges in at most 2n iterations, as opposed to n iterations for GMRES.
When using IDR(s) it is good to have some knowledge of the role of s in the algorithm. From n

s (s +1) = n + n
s

it can be seen that an increase in s decreases the number of iterations. An increase in s also involves more
memory storage and therefore it is not efficient to choose s too large. In practice values like 4 or 8 usually give
good results. [26]
The computation time is O (ni ), where i is again the iteration number. This is a useful property of the IDR(s)
method, because it means that although IDR(s) does not minimize the residual and therefore lacks optimal
convergence, for larger systems the computation time obtained with IDR(s) may win from the computation
time obtained with GMRES, that is O (ni 2).

7.4. PRECONDITIONING
In order to accelerate convergence, both sides of the equation Ax = b can be multiplied with a preconditioner
M . By doing this, a new system with system matrix M−1 A arises. By choosing the precondioner wisely, the
spectrum of the new system matrix can become much more favorable (clustered around 1) which in turn
results in faster convergence. Ideally the matrix M would be equal to A, but the computation of A−1 is very
expensive for systems that are being solved iteratively. A preconditioner equal to the identity matrix would
result in a fast computation of M−1 A, but then the spectrum of the system matrix does not improve. In
practice the preconditioner is a compromise between the two.
In this thesis the equation that needs to be solved is expressed in operator form, which makes it more difficult
to use existing preconditioners that are constructed via linear algebra techniques. However, in Chapter 8 it
will become clear that the effect of preconditioning will be limited for the methods discussed in this research.





8
NUMERICAL SIMULATIONS AND RESULTS

With the models presented in Chapter 6 and the iterative solvers discussed in Chapter 7 numerical simula-
tions can be performed. The first part of this chapter will elaborate on the accuracy of the derived methods.
The second part will investigate the efficiency of two iterative solvers. The results shown in this chapter have
been obtained using MATLAB’s GMRES implementation, unless stated otherwise. All iterative methods have
been chosen to terminate when the relative residual drops below the tolerance of 1 ·10−8.

Table 8.1 gives an overview of the parameters used in the MATLAB codes. The permittivity and conductivity
values are chosen such that the outer layer of the two-layer cylinder consists of fat tissue and the inner layer
consists of muscle tissue. The frequency is chosen such that it is close to the frequency of 128 MHz that is
used in MRI scans with a magnetic field strength of 3T. The same test case has been studied in [7] and [2].
The values in Table 8.1 are used for all simulations, except for the simulations performed in Section 8.1.2 and
Section 8.2.2 where contrast dependence is studied.

The number of grid nodes that is required for obtaining a solution with reasonable accuracy is motivated
by the wavelength. The wavelength in vacuum is given by λ0 = 2π

kb
and with kb =√−η0ζ0 as in Table 8.1 this

formula gives λ0 = 3 meters. Once an electromagnetic wave travels inside an object, the wave number is given
by k =√−ηζ0 which results in a wavelength of λ= 2π

Re(k) . This means that for the two-layer cylinder test case
(εr2 = 72 and σ2 = 0.9 S/m) the wavelength shrinks from λ0 = 3 meters in vacuum to λ = 0.27 meter inside
the inner layer of the object. In order to obtain an accurate solution, it is advised to use at least 15 grid nodes
per wave length. In the two-layer cylinder test case the computational domain is chosen to have a width and
a length of 0.3 meters, which is almost the same as the shortest wavelength. Therefore, the domain could in
theory be discretized with 15 cells in each direction. However, to be on the safe side the domain is discretized
with at least the double amount of cells in each direction.
For the test cases in Section 8.1.2 the material parameters are chosen to have a maximum value of εr = 80

Symbol Value Symbol Value

c0 299792458 µ0 4π ·10−7 ≈ 1.2566 ·10−6

f 100 ·106 µr0 1
ω 2π f ≈ 6.2832 ·108 µr1 1

kb
√−η0ζ0 ≈ 2.0958 µr2 1

ε0
1

c2
0µ0

≈ 8.8542 ·10−12 σ0 0

εr0 1 σ1 0.048
εr1 7.5 σ2 0.9

εr2 72 H0 −
√
ε0
µ0

≈−0.0027

a1 0.15 a2 0.079

Table 8.1: Simulation parameters.
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and σ= 0 S/m. The corresponding shortest wavelength for these material parameters is given by 0.34 meter,
so also in this case a 30×30 grid should be sufficient to numerically solve the volume integral equation. In
order to demonstrate the difference between the different discretization schemes, however, a 50×50 grid is
used instead of a 30×30 grid.

8.1. ACCURACY OF THE SOLUTION
In Chapter 6 two different discretizations of the volume integral formulation have been derived. The cor-
responding models are called the EVIE model and the DVIE model. Both have been derived on a uniform
non-staggered grid and the DVIE model has also been derived on a staggered grid.
The accuracy of the three methods will be compared using the analytical solution as benchmark. The ana-
lytical solution is a series representation and therefore MATLAB requires termination after a fixed number of
terms. The first terms are dominant, which motivates that it is sufficient to sum 21 (zero order, ten positive
ordered and ten negative ordered) terms.
After the accuracy of each method has been studied, a method to improve the accuracy is investigated for the
most accurate discretization resulting from Section 8.1.1.

8.1.1. COMPARISON OF ACCURACY
Figures 8.1a and 8.1b show the x- and the y-component of the electric field for the three derived methods.
In all methods the domain has been divided into 30 cells in each direction. Figures 8.2a and 8.2b show the
spatial errors for both components. Two observations can be made here. First, the biggest errors are located
on the boundaries of the cylinder layers. Second, the DVIE method on a staggered grid shows the smallest
errors for the internal fields (i.e. fields inside the cylinder layers, away from the boundaries). As the grid
becomes finer, the bigger errors become more and more local and the internal fields converge to the same
fields. Figure 8.3 confirms the local behavior of the error for finer grids.
It is good news that the internal fields of all methods converge to the analytical internal fields. However,
regarding memory and time limitations it is necessary that even with coarser grids accurate solutions can be
obtained, and it turns out not all methods are capable of doing that. Figure 8.1b illustrates the problem. Both
in the EVIE results and in the DVIE results the red areas would predict more heat production than realistic.
Also in Figure 8.1a the EVIE and the DVIE methods result in a larger red area than the analytical solution
predicts. These false heat predictions can have severe consequences. The question is: what is causing the
inaccuracies in the obtained solutions?

Two types of inaccuracies are considered. The first type is the strong inaccuracy on the boundaries of the
cylinder layers and the second type is the inaccuracy in the internal fields. Inaccuracies of the latter type
decrease as the grid becomes finer, whereas inaccuracies of the first type do not. The strongly local behavior
of the inaccuracies of the first type, shown in Figure 8.4a, gives rise to the idea that they are an effect of the so-
called ’staircasing’, in which curved boundaries are approximated with rectangular cells. [27] To investigate
this idea further, the same methods are studied on a square-shaped object instead of on a circular object.

Figure 8.5 shows the x- and the y-component of the electric field for the derived methods on a square-shaped
two-layer cylinder. It is important to note that the corners of the squares scatter, as they should. [28] Intu-
itively, it seems therefore not surprising that the corners of each square cell that is located on the object
boundary introduce errors in the case of a curved object boundary. More interesting is Figure 8.4b, which
shows the x-component of the electric field along the y-axis for the different methods. The tangential com-
ponent of the electric field does not show any discontinuous behavior anymore in the absence of a curved
boundary. This confirms the idea that the large peaks found in Figure 8.4a are caused by staircasing.

Even though there is no analytical solution to compare with, the comparison of the different methods pro-
vides useful information regarding the cause of the inaccuracies in the internal fields. From Figure 8.6a it
can be seen that also in the case of a rectangular shaped object the EVIE and the DVIE method on a 30×30
grid differ considerably from the DVIE method on a 30×30 staggered grid, which is assumed to perform best
for internal fields. The main difference between the staggered and the non-staggered methods is the way of
treating the mixed derivative terms in (5.2) and (5.3). On a non-staggered grid the second order central differ-
ence scheme results in an approximation with grid nodes that are positioned further away from the grid node
in which the mixed derivative is being approximated. How would other finite difference schemes perform
here?
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A fourth order central difference scheme for the mixed derivative has been integrated in the EVIE method.
The green line in Figure 8.6b shows that the performance of this higher order scheme is almost as good as the
performance of the DVIE method on a staggered grid. On the other hand, a fourth order central difference
scheme for the DVIE method on a staggered grid decreases the accuracy.
Also for the cylinder configuration the fourth order central difference scheme for the EVIE method improves
the accuracy in comparison to the accuracy obtained with the original EVIE method. The performance of
the higher order scheme for the DVIE method on a staggered grid is again worse than the performance of the
original DVIE method on a staggered grid. The total fields are shown in Figures 8.7a and 8.7b together with
their errors in Figures 8.8a and 8.8b. The reason why higher order schemes can deteriorate the accuracy may
be found in the fact that higher order schemes require the function to be multiply differentiable. In case of
a circular object domain, grid nodes along the object boundary have neighbors with zero contrast both in x-
and in y- direction, whereas in case of a rectangular object domain, grid nodes along the object boundary
have neighbors with zero contrast only in one direction. This may explain the fact that the EVIE method with
a fourth order mixed derivative scheme performs worse on a cylinder than on a square in comparison to the
DVIE method on a staggered grid.
The above results prove that the treatment of the mixed derivative has a significant influence on the accuracy
of the studied methods. They also suggest that the DVIE method on a staggered grid performs best for curved
objects. An error study will be performed to provide a conclusive answer.

In order to derive a global error value for each of the methods, `1-norms are computed next to maximum
norms. Corrections are made for the number of grid nodes, so that the norms are finally defined as

∥∥Ex −Ex,analytical
∥∥

1 =
∑M,N

m,n=1

∣∣∣Exm,n −Ex,analyticalm,n

∣∣∣
MN

and ∥∥Ex −Ex,analytical
∥∥
∞ = maxm,n

{∣∣∣Exm,n −Ex,analyticalm,n

∣∣∣} ,

where M is the number of cells in x-direction and N is the number of cells in y-direction. In order to exclude
the contribution of the errors due to the wrong boundary conditions, only the errors in the internal fields are
considered by setting the error outside the object equal to zero.
The convergence behavior of the errors for each of the methods can be found in Figure 8.9. For all methods
the norm-1 errors decrease as the grid becomes finer, which shows that the internal fields converge to the
analytical solution. The non-decreasing behavior of the maximum errors can be explained by the fact that
the increase in the number of cells will not change the presence of corners in each square cell. It can even
be explained that the maximum errors increase, since scattering patterns around corners can be measured
more accurately with smaller cells.
Figure 8.10a shows the same norm-1 errors on loglog scale. All error curves follow the h trend line quite well,
which indicates that the accuracy for the internal fields is of order h. Scattering on a square-shaped cylinder
gives the results in Figure 8.10b, where the numerical results have been compared with a high resolution so-
lution on a 640×640 grid. There is not much difference between the methods in this case, which can possibly
be explained by the fact that the solutions are not affected by staircasing. A higher resolution benchmark
solution should be obtained and more grids need to be examined in order to give a conclusive answer, but
also in case of scattering on a square-shaped cylinder the accuracy seems to be of order h. The observation
that the accuracy of both the circular domain and the square-shaped domain are of order h shows that the
staircasing error has negligible effect on the accuracy of the numerical scheme.
As expected, the DVIE method on a staggered grid results in the smallest norm-1 error as well as in the small-
est maximum error for all studied grid sizes and it therefore is the most accurate candidate.

8.1.2. THE EFFECT OF THE CONTRAST ON THE ACCURACY
So far the solution has only been studied for one particular test case. The operator A in A u = f, however, is
highly dependent on the permittivity and conductivity values of the studied object. It is therefore expected
that the accuracy of the methods also depends on the contrast values. In order to investigate how the accuracy
is affected by the contrast, a fixed grid of 50×50 cells has been used. A one-layer cylinder without conduction
is chosen, so that the permittivity of the cylinder is the only changing factor. The analytical solution for a
one-layer cylinder is easily derived from the analytical solution for a two-layer cylinder by choosing the inner
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circle radius equal to the outer circle radius. The domain is extended with 0.05 meter in x- and in y-direction.
This gives a better global view on the scattering pattern.

Figure 8.11 shows the performance of each method for different permittivity values. Especially for relative
permittivity values over 20 the DVIE method on a staggered grid follows the analytical solution much better
than the DVIE method and the EVIE method. For a relative permittivity of 4, which corresponds with the
material plastic, there is hardly any difference between the studied methods. Relative permittivities smaller
than 1 do not exist in nature and will therefore not be considered. These results suggest that especially in
applications with high permittivity materials it is important to choose the discretization method wisely and
the DVIE method on a staggered grid is the best candidate among the studied schemes for all permittivities.

8.1.3. ERROR REDUCTION
The results from Section 8.1.1 and Section 8.1.2 showed that the DVIE method on a staggered grid produces
the most accurate solution for all permittivity values. However, the approximated solution still contains large
inaccuracies for the two-layer cylinder test case and one should be careful with neglecting the remaining
strong localized jumps. In this section a smoothing method is proposed to remove the jumps. The test case
for this problem is again the two-layer cylinder.

The smoothing process is performed by applying a built-in averaging MATLAB filter to the complex relative
permittivity matrix. The size of the filter is fixed for all grid sizes and chosen to be a 4×4 matrix, so that the
smoothed complex permittivity is defined as

ε̃cm,n = ∑
R(m,n)

1

16
εcp,q

where R(m,n) is a voxelized square with center m,n and containing sixteen nodes p, q . The smoothed com-
plex permittivity defines the contrast by

χe = η−η0

η0
= ε̃c − ε̃0

ε0
.

The effect of the averaging filter can be seen in Figure 8.12, where the electric fields are computed with and
without filter on an 80×80 grid. The fields near the permittivity interfaces have become smooth and Figure
8.13 confirms that the averaging filter eliminates the jumps.
Although the smoothing procedure shows good performance regarding the local large peaks, two undesirable
effects show up. First of all, coarser grids do not suffice in the smoothed case anymore as the global fields
differ too much from the analytical solution for coarse grids. Figure 8.14 shows the effect of different filter
sizes on the global fields and on the local peaks, from which it becomes clear that smaller filter sizes do not
perform satisfactory. Second, from Figure 8.15 it can be seen that also for fine grids the norm-1 error is bigger
when smoothing. Only for very fine grids (> 1000×1000) the smoothed method is expected to have better
accuracy than the non-smoothed method. One should balance the computation time and the accuracy of
the solution to decide whether or not to apply the averaging filter.

8.2. EFFICIENCY OF THE ITERATIVE SOLVER
After the accuracy of all methods has been studied, it is interesting to make an assertion about the method
with the shortest computation time. Ideally, the method that results in the most accurate solution is obtained
with the shortest computation time, but in practice there is no guarantee for this. If the most accurate so-
lution does not result in the shortest computation time, then it is worthwhile to find efficient ways to speed
up the process. This can be done by choosing different solvers for example. Here IDR(s) will be studied as
alternative. Details on the IDR(s) implementation have been described in [29].
First, the performance of IDR(s) will be compared with the performance of GMRES by studying the computa-
tion times and the number of iterations required for convergence. This is done for all discretizations. Next, in
order to determine how the computation times of the solvers change for different objects and therefore dif-
ferent contrast values, a contrast study is performed in Section 8.2.2. Since in this stage it is unknown which
discretization results in the shortest computation time, s is set to the default value 4 in this part. After this,
the discretization that results in the most accurate solution ánd is obtained fast is used to find the optimal
value for s. Simulations have been performed on a HP ZBook 14 Mobile Workstation using CPU only.
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8.2.1. COMPARISON OF IDR(4) AND GMRES
Figure 8.16 shows the convergence behavior obtained with the iterative solvers GMRES and IDR(4) for all
methods. The first result that attracts attention is that the convergence of the DVIE method is faster than
the convergence of the EVIE method, while both methods use a non-staggered grid and second order finite
difference schemes. Apparently, the devision by εc in (3.44) acts as a natural preconditioner. The staggered
grid partly cancels out the effect of the natural preconditioner, but still obtains faster convergence than the
EVIE method. DVIE staggered with a higher order central difference scheme needs a lot more iterations and
is therefore least suitable.
In general, for all methods the convergence behavior corresponding to IDR(4) is similar to the convergence
behavior corresponding to GMRES. IDR(4) needs more iterations until convergence, but the IDR(s) graph
will move towards the GMRES graph as s increases. The fact that already for s = 4 the IDR(s) convergence
trend is not much different from the GMRES convergence trend seems promising, since for small s IDR(s)
is computationally cheap per iteration. A convergence study will elaborate on the efficiency of IDR(4) with
respect to GMRES for different grid sizes and for different contrast values.

Table 8.3 gives an overview of the convergence history for GMRES as well as for IDR(4). For all discretizations
and for all grid sizes IDR(4) proofs to be beneficial in reducing the computation time of the scattering prob-
lem. The last column shows that the improvement factor F , which is the factor between the computation
times obtained with GMRES and IDR(4), can reach values up to over 16. For coarser grids, IDR(4) applied
to the DVIE and the DVIE method on a staggered grid shows major improvement. For finer grids, the im-
provement factors for DVIE and DVIE staggered are of the same order as the improvement factor for the EVIE
method, but the EVIE method still results in larger computation times for all grids. Therefore DVIE and DVIE
staggered seem to be the most efficient methods for the scattering problem.
IDR(4) performed on the EVIE method with a higher order difference scheme decreases the computation
time, but the improvement factors are not as good as the improvement factors corresponding with the other
formulations. Although they seem to increase where other improvement factors decrease, potential gain can
only be expected for unrealistically fine grids. The improvement factors for IDR(4) performed on DVIE stag-
gered with higher order differences turn out to be relatively high, but the corresponding computation times as
well as the required number of iterations drastically increase for finer grids. For this reason, results obtained
with the DVIE method on a staggered grid with higher order central differences will be left out in further anal-
ysis.
Overall, the improvement factors are very high for all discretization schemes. A possible explanation for this
could be the use of fast Fourier transforms to evaluate matrix-vector products, so that in the end the overhead
of the iterative schemes makes the difference.
The most surprising observation from Table 8.3 is that the number of iterations until convergence for the first
four discretizations increases very slowly or does not increase at all. For most finite element problems the
number of iterations increases with the number of unknowns, which is why preconditioning techniques are
applied. One main difference between finite element systems and method of moment systems is the contri-
bution of the integral term in the latter system. This integral term connects each grid node with all other grid
nodes in the contrast domain, while in finite element systems each grid node is only connected with a small
number of grid nodes. The coupling with the entire domain (and therefore the increased amount of informa-
tion in each iteration) could be an explanation for the slow increase in iteration numbers. The fact that the
number of iterations seems hardly dependent of the grid size also indicates that the effect of preconditioning
will be limited. The integral term seemed a drawback in the beginning because of its computational costs,
but it might actually be an advantage for iterative solvers.
Figure 8.17 summarizes the findings from Table 8.3. It illustrates that the computation time corresponding
with IDR(4) grows linearly, where the computation time corresponding with GMRES grows faster. This shows
that especially for larger systems it is beneficial to use IDR(s) to solve the scattering problem instead of GM-
RES.

8.2.2. THE EFFECT OF THE CONTRAST ON THE CONVERGENCE BEHAVIOR
Earlier studies brought forward that the contrast does not only affect the accuracy of the solution as explained
in Section 8.1.2, but it also affects the convergence behavior of the iterative method. [4] This is not surprising,
since the convergence of an iterative method depends on the properties of the operator A in A u = f. Hence,
the choice of the most efficient solver may change for different materials. Scattering on the same one-layer
homogeneous cylinder as in Section 8.1.2 is studied to find the effect of permittivity values on the number of
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iterations until convergence.

Figure 8.18 shows the number of iterations as a function of relative permittivity, both for GMRES and IDR(4).
A relative permittivity of εr = 1 corresponds with the permittivity in vacuum, which means that in this case
the incoming wave is not affected by the object and the total field is equal to the incident field. Numerical
schemes will converge fastest to the desired tolerance for this simplified equation. Some iterations are still
needed, partly because the default initial MATLAB guess is equal to the zero vector. For larger relative permit-
tivities the convergence behavior of GMRES is slightly less affected by the change in contrast compared with
IDR(4), but the difference is so small that it should not be a reason to choose for GMRES over IDR(s). None of
the discretization methods distinguishes itself by a remarkably small increase in number of iterations. How-
ever, DVIE on a staggered grid wins from DVIE on a non-staggered grid for relative permittivities above 50.
This can be explained by the fact that for low contrast the scattered field has a lower intensity, which results
in a smaller error when approximating the derivative of a discontinuous function than for high contrast.

8.2.3. THE CHOICE OF THE PARAMETER s IN IDR(s)
The default value s = 4 usually gives good results, but until other values are studied it is unclear what the
optimal value for s is. In Section 8.1.1 the DVIE method on a staggered grid came forward as the most accu-
rate solution on low resolution. The results in Section 8.2.1 and Section 8.2.2 showed that the DVIE method
and the DVIE method on a staggered grid both result in a short computation time with respect to the other
discretizations. The DVIE method on a staggered grid meets both the requirements of providing an accurate
solution and obtaining it fast, and therefore this discretization will be used to perform a study on the choice
of s in IDR(s). For this study three different grid sizes are studied to investigate whether the choice of s is
independent of the number of unknowns. The chosen grids have dimensions 30×30, 80×80 and 200×200.
Also for this part the two-layer cylinder test case with fat-muscle structure is used.

Table 8.2 shows the computation time per grid for different values of s. The blue cells highlight the values for
s that correspond with the shortest computation times. For the 30×30 grid and the 80×80 grid the optimal
value for s is eight, whereas for the 200× 200 grid and the 800× 800 grid the optimal value for s is seven.
For coarse grids the differences in computation times are very small which makes it difficult to draw a well-
grounded conclusion on the optimal value for s. However, the values for s on finer grids do indicate that it is
safe to say that for small as well as for reasonably large systems corresponding with the scattering problem
the value s = 7 gives a shorter computation time than most other values for s. This is why it is advised to use
s = 7 when solving the scattering problem with IDR(s) in combination with the method of moments rooftop
procedure.

30×30 grid 80×80 grid 200×200 grid 800×800 grid

s Time (s) s Time (s) s Time (s) s Time (s)

1 0.5549 1 2.1514 1 15.6920 1 365.5334
4 0.4682 4 1.8960 4 12.0853 4 264.1190
6 0.4737 6 1.9066 6 11.4244 6 263.6863
7 0.4619 7 1.8344 7 11.2148 7 256.4527
8 0.4529 8 1.7562 8 11.3874 8 269.2184
9 0.4796 9 1.8654 9 11.5593 9 302.6396
10 0.4740 10 1.9637 10 12.0675 10 295.7552
12 0.4905 12 1.9741 12 12.3798 12 288.8659

Table 8.2: Computation times for different grids and different values for s.
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GMRES IDR(4)
Grid # Iterations Time [s] Time/iteration [s] # Iterations Time [s] Time/iteration [s] F

30×30 147 4.9228 0.0334 197 0.3155 0.0016 15.6
60×60 156 9.3871 0.0602 201 1.1129 0.0055 8.4
120×120 158 21.7316 0.1375 204 3.2255 0.0158 6.78
240×240 155 85.2705 0.5501 198 17.5570 0.0887 4.9
480×480 153 488.2831 3.1914 217 104.5597 0.4818 4.7

(a) Iterations for DVIE staggered.

GMRES IDR(4)
Grid # Iterations Time [s] Time/iteration [s] # Iterations Time [s] Time/iteration [s] F

30×30 97 2.9593 0.0305 120 0.1805 0.0015 16.4
60×60 129 7.7442 0.0600 159 1.3083 0.0082 5.9
120×120 149 19.9902 0.1342 164 2.7245 0.0166 7.3
240×240 157 85.2475 0.5430 179 14.5188 0.0811 5.9
480×480 157 505.0779 3.2171 192 97.1587 0.5060 5.2

(b) Iterations for DVIE.

GMRES IDR(4)
Grid # Iterations Time [s] Time/iteration [s] # Iterations Time [s] Time/iteration [s] F

30×30 198 3.0578 0.0154 254 0.4883 0.0019 6.3
60×60 221 9.1985 0.0416 295 2.3579 0.0080 3.9
120×120 227 25.1534 0.1108 293 5.8537 0.0200 4.3
240×240 226 129.4374 0.5727 294 31.5180 0.1072 4.1
480×480 223 827.6930 3.7116 295 166.5502 0.5646 5.0

(c) Iterations for EVIE.

GMRES IDR(4)
Grid # Iterations Time [s] Time/iteration [s] # Iterations Time [s] Time/iteration [s] F

30×30 204 1.5560 0.0076 270 0.9746 0.0036 1.6
60×60 235 8.1297 0.0346 320 4.5508 0.0142 1.8
120×120 236 27.6812 0.1173 300 14.3996 0.0480 1.9
240×240 232 145.1201 0.6255 321 71.9152 0.2240 2.0
480×480 227 960.5907 4.2317 263 306.0926 1.1639 3.1

(d) Iterations for EVIE with HOD.

GMRES IDR(4)
Grid # Iterations Time [s] Time/iteration [s] # Iterations Time [s] Time/iteration [s] F

30×30 479 15.7654 0.0329 709 2.2209 0.0031 7.1
60×60 820 95.4705 0.1164 1000 11.9696 0.0120 8.0
120×120 1121 758.4675 0.4320 1568 65.6008 0.0418 11.6
240×240 1270 6599.2 5.1962 1792 373.4804 0.2084 17.7
480×480 O.o.m. O.o.m. O.o.m. 1864 1985.6 1.0652 -

(e) Iterations for DVIE staggered with HOD.

Table 8.3: Number of iterations until convergence for different numerical schemes. O.o.m. = out of memory.
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Figure 8.1: The magnitude of the electric field calculated with the different methods on a 30×30 grid.
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(b) The absolute error [V/m] for the y-component.

Figure 8.2: The magnitude of the electric field calculated with the different methods on a 30×30 grid.



54 8. NUMERICAL SIMULATIONS AND RESULTS

0 10 20 30 40 50 60 70 80
0

0.005

0.01

0.015

0.02

0.025

0.03

x−axis

|E
x| [

V
/m

]

DVIE staggered: error along the x−axis

Figure 8.3: The absolute error on a 80×80 grid for Ex along the x-axis on an 80×80 grid.
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Figure 8.4: The magnitude of Ex along the y-axis calculated on a 80×80 grid for different geometries.
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Figure 8.5: Ex [V/m] and Ey [V/m] for scattering on a square-shaped cylinder, calculated with the different methods on a 30×30 grid.
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(d) Scattering on a circular cylinder.

Figure 8.6: The magnitude of the x-component of the electric field along the y-axis calculated with the different methods on a 30×30
grid .
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Figure 8.7: Scattering on a circular cylinder, calculated with the different methods on a 30×30 grid .
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(a) The absolute error [V/m] for the x-component.
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Figure 8.8: The absolute error calculated with the different methods on a 30×30 grid .
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Figure 8.9: The norm-1 errors and maximum errors [V/m] as a function of grid size.
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(a) Scattering on a circular cylinder.

(b) Scattering on a square-shaped cylinder.

Figure 8.10: The norm-1 errors [V/m] as a function of grid size for different geometries.
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(a) εr = 1, σ= 0
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(b) εr = 4, σ= 0
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(c) εr = 10, σ= 0
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(d) εr = 20, σ= 0
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(e) εr = 30, σ= 0
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(f) εr = 80, σ= 0

Figure 8.11: Scattering on a single layer cylinder on a 50×50 grid.
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(a) The magnitude of Ex [V/m] and Ey [V/m] for scattering on a circular cylinder.

(b) The magnitude of Ex [V/m] and Ey [V/m] for scattering on a circular cylinder with smoothed contrast.

Figure 8.12: Scattering on a circular cylinder calculated with DVIE staggered on an 80×80 grid.
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(a) Scattering on a circular cylinder.
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(b) Scattering on a circular cylinder with smoothed contrast.

Figure 8.13: The magnitude of Ex along the y-axis calculated with DVIE staggered on an 80×80 grid .
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(a) 2×2 filter
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(b) 2×2 filter

(c) 3×3 filter
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(d) 3×3 filter

(e) 4×4 filter
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Figure 8.14: The effect of smoothing with DVIE staggered on an 80×80 grid.
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Figure 8.15: The effect of smoothing for the DVIE method on a staggered grid.
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Figure 8.17: The computation time as a function of the number of unknowns for the different solvers.
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Figure 8.18: Contrast dependence for the different solvers.





9
BACK TO REALITY

The previous part of this research focused on a simple benchmark problem to study the accuracy of different
methods. From this, two types of errors came forward in Chapter 8. Since the actual goal is to accurately
model the human body with dielectric pads, which is an even stronger inhomogeneous medium with relative
permittivities that can reach values over 300, it is interesting to study the effect of the errors on human body
simulations. This chapter will take a closer look at this effect.

The many different organs and tissue types make the human body a strongly inhomogeneous medium. The
electromagnetic properties of the tissue types have been studied years ago and are stored in a family of body
models. Figure 9.1 shows the permittivity and conductivity values for one slice of the male ’Duke’ body model
on high resolution (332×332 grid). The relative permittivity values in this slice vary between 0 and 90 and
the conductivity values between 0 S/m and 1.3 S/m, which is enough to expect erroneous behavior. But how
bad are these errors in practice? In this stadium it is difficult to simulate entirely realistic situations, because
MRI involves scattering in three dimensions and therefore 3D mathematical models. To take the first step
toward reality, a pad with a relative permittivity value of 100 and conductivity of 0.4 S/m has been placed on
the breast of the body model ‘Duke’. In this way the effect of high permittivity materials on the accuracy of
the derived methods can be studied.
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Figure 9.1: Material properties of the human body with a dielectric pad placed on the breast.

Clearly, there is no way to find an expression for the analytical solution of scattering on a human body model.
Therefore high resolution (332× 332) images have been provided in Figure 9.2a and Figure 9.2b to give the
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reader a good idea of how the fields are supposed to propagate. Results have been obtained with the DVIE
method on a staggered grid with a plane wave propagating in the x-direction (downward) incident on the
body. IDR(7) has been used as iterative solver as Chapter 8 advises.
It should be noted that, although a realistic frequency of 100 MHz has been used in the simulations, the
incident field in the simulations is not realistic since in a real MRI scan the incident field arrives from multiple
angles. However, for the purpose of this chapter it is sufficient to study a plane wave that is approaching from
one angle.

9.1. ACCURACY
Along the boundaries of tissue types a dotted pattern can be recognized that looks like the scattering pattern
on the boundary of cylinder layers in Chapter 8. It has been discussed that these types of errors remain very
local (around three cells), and seem therefore not very alarming. The other types of errors, which have an
effect on the internal fields in media, are demonstrated in Figures 9.2c-9.2f. Where the DVIE method on a low
resolution staggered grid follows the high resolution result quite well, the DVIE method on a low resolution
non-staggered grid does not provide reliable results. Similar results can be expected with the EVIE method
on a non-staggered grid, because the EVIE and the DVIE method on non-staggered grids showed inaccurate
results for the two-layer cylinder test case. The inaccurate behavior of the non-staggered discretizations on
low resolution can lead to wrongly predicted specific absorption rates, and this again brings forward that
extreme caution should be taken when choosing a discretization scheme.

In Chapter 8 a smoothing procedure has been proposed to eliminate the local jumps in the two-layer cylin-
der test case. This smoothing procedure can be used to improve the overall view of the scattering patterns
in human body simulations. Figures 9.3e and 9.3f show the results after smoothing the contrast with a 2×2
filter. Figures 9.3c and 9.3d show the same fields as in Figures 9.2c and 9.2d, but the encircled areas addition-
ally show the areas that have improved most. The main advantage of the smoothing procedure is that the
smoothed figures are less noisy, but also some detail is lost. The loss of detail intensifies for larger filter sizes.

9.2. COMPUTATION TIME
Chapter 8 already showed that IDR(s) reduces the computation time considerably and that the shortest com-
putation times can be expected with s = 7 for the DVIE method on a staggered grid.
In order to calculate the low resolution solution in Figure 9.2a and Figure 9.2b with IDR(7), MATLAB takes
1.19 seconds on a HP ZBook 14 Mobile Workstation. This computation time is so small that extensions to 3D
simulations for low resolutions are unlikely to cause troubles. Low resolution images can be used to predict
the location of high intensity fields.
If the goal is not to predict the location of high intensity fields but to analyze the fields in more detail, then
finer grids are needed. In order to calculate the high resolution solution in Figure 9.2c and Figure 9.2d with
IDR(7), MATLAB takes 99 seconds. However, in practice grids somewhere in between already predict the solu-
tion sufficiently accurate. Extensions to 3D simulations for high resolution images is a bigger challenge than
for low resolution images, but with the help of GPU clusters and efficient programming techniques there is a
good chance of keeping the computation time within bounds.

In the end, both the smoothed and the non-smoothed figures can be used to analyze the electric fields in the
human body and the iterative solver IDR(s) produces the results within a reasonable amount of time. The
most important lesson that should be learned from the human body simulations is that straightforward non-
staggered grids do not perform satisfactory in combination with the rooftop weighting procedure for medical
simulations. A staggered grid has a very good effect on the accuracy of the solutions and performs well even
on low resolution.



9.2. COMPUTATION TIME 69

(a) |Ex | [V/m] with DVIE staggered on a 332×332 grid. (b) |Ey | [V/m] with DVIE staggered on a 332×332 grid.

(c) |Ex | [V/m] with DVIE staggered on a 42×42 grid. (d) Ey [V/m] with DVIE staggered on a 42×42 grid.

(e) |Ex | [V/m] with DVIE on a 42×42 grid. (f) |Ey | [V/m] with DVIE on a 42×42 grid.

Figure 9.2: Scattering on one slice of the human body model ‘Duke’.



70 9. BACK TO REALITY

(a) |Ex | [V/m] with DVIE staggered on a 332×332 grid. (b) |Ey | [V/m] with DVIE staggered on a 332×332 grid.

(c) |Ex | [V/m] with DVIE staggered on a 42×42 grid. (d) |Ey | [V/m] with DVIE staggered on a 42×42 grid.

(e) |Ex | [V/m] with DVIE staggered on a 42 × 42 grid with
smoothed contrast.

(f) |Ey | [V/m] with DVIE staggered on a 42 × 42 grid with
smoothed contrast.

Figure 9.3: Comparison between the smoothed and the original fields.



10
CONCLUSION

The aim of this research was to find an accurate solution of Maxwell’s equations that is obtained within short
computation time. To this end different discretization schemes have been compared and higher order differ-
ence schemes have been implemented to find possible improvements on the existing schemes. A smoothing
procedure has been proposed for eliminating strongly local large jumps and finally, the findings have been
verified by testing on a human body model ’Duke’.
In order to shorten the computation time of the scattering problem, the more recent method IDR(s) has been
compared with the more commonly known method GMRES.

Two types of errors have been found while studying the accuracy of different discretization schemes. Errors
of the first type have a strongly local behavior for fine grids and they do not vanish in the limit. That these
local large peaks are completely gone in the case of scattering on a square-shaped object seems to indicate
that errors of the first type are caused by staircasing.
Errors of the second type are visible in the internal fields as well and decrease with the space between grid
nodes. These errors vanish eventually and it turned out that the speed with which this happens depends
largely on the approximation scheme for the mixed derivative term.
All studied methods suffer from both types of errors, but in varying degrees. The staggered grid is very ef-
ficient in reducing the errors of the second type. It also shows smaller peaks on the inner boundary layer
of the cylinder. For these two reasons the DVIE method on a staggered grid is concluded to result in the
most accurate solution, especially for coarser grids. A contrast dependence study also showed that for larger
permittivity values the staggered method is much more accurate than the non-staggered methods. Human
body simulations confirm that the DVIE method on a staggered grid performs very well, while non-staggered
methods involve false heat production on low resolution.

A 4×4 averaging filter has shown to eliminate the strongly local large jumps in the cylinder test case. Larger
filters have the capability of eliminating stronger jumps, and choosing the averaging filter too small results in
a partly vanished jump. Although the smoothing procedure is effective in reducing the staircasing error, it also
affects the internal fields for coarse grids. One should decide per application whether either the staircasing
error should be reduced or the best overall accuracy should be obtained. In any case, real body simulations
do not require a smoothing procedure because the local behavior of the errors makes sure that false heat
production is kept to a minimum. A 2×2 averaging filter can be applied to provide less noisy images.

The iterative method IDR(s) shows excellent performance in reducing the computation time of the scattering
problem for all studied grid sizes. The number of iterations turns out to be hardly dependent on the grid size,
which might be an advantageous result of the volume integral approach. The DVIE method and the DVIE
method on a staggered grid show similar convergence behavior and result in the shortest computation times.
Most gain with respect to the other discretizations is to be made for fine grids. Fine grids are unavoidable
in MRI applications and therefore either the DVIE method or the DVIE method on a staggered grid would be
recommended purely based on the computation times. A study on the choice of s shows that the shortest
computation times are obtained with s = 7 and this value is therefore advised for further research that stud-
ies the rooftop expansion procedure on a staggered grid. IDR(s) brings extensions to fast 3D human body
simulations one step closer.
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Combining the above findings, the DVIE method on a staggered grid is the only method that meets both the
requirement of obtaining an accurate solution on low resolution and of obtaining the solution fast. These
findings can be taken into account in the development of medical tools and may offer insights for further
research. Suggestions for improvement will be proposed in the final chapter.
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DISCUSSION

During this research, insight has been obtained into the method of moments with the rooftop basis functions
in particular. This method is used in multiple applications and although it has advantages over other dis-
cretization methods, questions regarding several steps in the procedure arose in this study.
The first step that should be argued is the neglection of the boundary integral appearing in the weak form.
The neglection of the boundary terms is motivated by the fact that the basis functions in normal direction
are chosen equal to zero on the boundary of the domain. However, in this reasoning the basis function cor-
responding to the node located on the boundary is ignored, which is only allowed in case of homogeneous
Dirichlet boundary conditions for the divergence of the vector potential. The divergence of the vector po-
tential does not satisfy homogeneous Dirichlet boundary conditions, so new methods might consider taking
into account boundary terms with correct boundary conditions. Boundary conditions are also needed for
applying the weighting procedure consistently. Currently, homogeneous Dirichlet boundary conditions are
wrongly applied for the electric field and the electric displacement.
A second point of attention is the transformation of the electric fields on a staggered grid back to the fields
on a non-staggered grid. This is done by interpolation, while interpolation with discontinuous functions is
unreliable. It might be worthwhile to use the material boundary conditions in deriving suitable interpolation
rules for the electric field. The same can be done for transforming the contrast from non-staggered grid to
staggered grid.

Next to these critical remarks, suggestions for future work will be given below.

• The accuracy of the methods has been studied by comparing the numerical results with an analytical
solution. This analytical solution is a series representation and in order to implement the expression
numerically, the infinite sum has to be terminated after a chosen number of terms. The accuracy of the
analytical solution increases with the number of terms, but in practice numerical errors are introduced
by solving close to singular systems for the coefficients. Improvements will probably be possible here
after finding clever expressions for the coefficients. This will be left for future work.

• In this project only 2D equations have been studied after assuming that the fields are invariant in z-
direction. In reality, the human body does not have the perfect shape of a cylinder and variations in
z-direction will occur. Further research should compare the accuracies of different methods in 3D to
find out whether also in this case the DVIE method on a staggered grid performs much better than the
non-staggered methods.

• As mentioned earlier, Galerkin convergence is guaranteed only if the test functions are chosen in the
dual space of the operator range. In order to construct mathematically correct models in which Galerkin
convergence is guaranteed, it is an option to switch to the JVIE formulation whose operator maps from
[L2(R3)]3 7→ [L2(R3)]3. It is unknown what the effect of the different operator spaces on the accuracy of
the obtained solutions is in practice and therefore it would be useful to investigate this further. How-
ever, care should be taken in treating the JVIE formulation, since direct partial integration results in a
derivative on the discontinuous contrast function.
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• The method of moments with rooftop basis functions on a rectangular grid has the advantage of an
easy to construct system matrix. Moreover, FFT algorithms are used to efficiently compute matrix-
vector products. Best results are expected when working with boundary conforming elements to avoid
staircasing. Due to time limitations this is no applicable method for MRI, but a compromise between
the rectangular grid and the boundary conforming elements might be feasible. For further research a
structured triangular grid with grid nodes as vertices is proposed. A comparison between this method
and the studied methods in this thesis will provide inside in the effect of the position of grid nodes at
vertices or at cell centers.

• Finally, part of this research focused on the local large peaks on material interfaces. Results of scattering
on a square shaped object strongly suggest that these errors are caused by staircasing. Human body
simulations indicate that the effect of staircasing errors is not alarming. However, if one would prefer
to avoid these errors, boundary conforming elements could be chosen with the cost of computation
time.

There will always be many ways of modeling electromagnetic fields and one should balance the benefits with
the costs when choosing a suitable procedure. Modeling electromagnetic fields clearly remains a challenging
task with much work left for future research. The above suggestions offer directions in which the quality of
models and their outcomes can possibly be improved.



A
LIST OF USED VARIABLES AND THEIR SI

UNITS

Symbol SI units Quantity

H A/m Magnetic field intensity
J A/m2 Electric current density
D C/m2 Electric displacement
E V/m Electric field
B T Magnetic field
Jext A/m2 External electric current density
Kext V/m2 External magnetic current density
Jind A/m2 Induced electric current density
Kind V/m2 Induced magnetic current density
Jtot A/m2 Total electric current density
Hinc A/m Magnetic incident field
Einc V/m Electric incident field
H A/m Magnetic scattered field
E V/m Electric scattered field
f Hz Frequency
ω rad/s Angular Frequency
kb 1/m Wave number
χe 1 Electric susceptibility
χm 1 Magnetic Susceptibility
ε F/m Permittivity
µ H/m Permeability
σ S/m Conductivity
ε0 F/m Permittivity in vacuum
µ0 H/m Permeability in vacuum
t s Time
ρ C/m3 Volume charge density / radius
c0 m/s speed of light / wave speed in vacuum
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B
INVERSE FOURIER TRANSFORM OF THE

GREEN’S FUNCTION

First the identity

k2
b =

(√
−η0ζ0

)2 =
(
i
√
η0ζ0

)2 =−η0ζ0 =−γ2
0

is introduced. The Green’s function therefore translates in ω-domain to

g̃ = 1

kT k−k2
b

and in two dimensions,

ĝ (x,ω) = 1

(2π)2

ˆ
k∈R2

1

kT k−k2
b

e−ik·xdV

= 1

(2π)2

ˆ
k∈R2

1

k2
1 +k2

2 −k2
b

e−ik1x1−ik2x2 dV

Γ=
√

k2
b−k2

1= 1

(2π)2

ˆ
k1∈R

e−ik1x1

ˆ
k2∈R

1

k2
2 −Γ2

e−ik2x2 dk2dk1.

Since the function in the inner integral has two simple poles, the residue theorem gives
ˆ

C

1

z2 −Γ2 e−izx2 dz = 2πi Res( f ,Γ) = πi

Γ
e−iΓ|x2|,

where C is the closed curve along the semicircle with radius R in the upper half plane and f (z) = 1
z2−Γ2 e−izx2 .

The integral along the curved path βr = Re it drops to zero when R →∞, since∣∣∣∣∣
ˆ
βr

1

z2 −Γ2 e−izx2 dz

∣∣∣∣∣=
∣∣∣∣∣
ˆ
βr

Ri

+R2e2it −Γ2
e i(t−Re it x2)dt

∣∣∣∣∣≤
ˆ
βr

|Ri|∣∣R2e2it −Γ2
∣∣ ∣∣∣e i(t−Re it x2)

∣∣∣dt ≤
ˆ
βr

1∣∣∣Re2it − Γ2

R

∣∣∣dt .

Therefore ˆ
k2∈R

1

k2
2 −Γ2

e−ik2x2 dk2 = πi

Γ
e−iΓ|x2|

and

ĝ (x,ω) = i

4π

ˆ
k1∈R

e−ik1x1−iΓ|x2|

Γ
dk1

= i

4π

ˆ
k1∈R

e
−ik1x1+

√
k2

b−k2
1 |x2|√

k2
b −k2

1

dk1. (B.1)
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78 B. INVERSE FOURIER TRANSFORM OF THE GREEN’S FUNCTION

In (B.1) a Hankel function of the second kind can be recognized. [30] states

ĝ (x,ω) =− i

4
H (2)

0 (kb|x|).



C
WEAKENING OF THE GREEN’S FUNCTION

The function

ĝ (x,ω) =− i

4
H (2)

0 (kb|x|)
has a singularity at x = 0.

Recall that the Green’s function satisfies

∇2 ĝ (x,ω)+k2
b ĝ (x,ω) =−δ(x).

In order to avoid the singularity in the Green’s function, the whole function is approximated by a ’weakened’
Green’s function, that satisfies

∇2 ĝ w(x,ω)+k2
b ĝ w(x,ω) =− f (x) (C.1)

with

f (x) =
{ 1
πa2 if x ∈D
0 if x 6∈D

andD a circular domain with radius a = 1
2 min{∆x,∆y}. In this wayD is contained in one cell and the function

f (x) approaches the Dirac delta function as a ↓ 0.

The solution of (C.1) is given by

ĝ w(x,ω) =
ˆ

x′∈R2
ĝ (x−x′,ω) f (x′)dV ′

= 1

πa2

ˆ
x′∈D

ĝ (x−x′,ω)dV ′

In order to actually compute ĝ w the problem is split in two cases: x 6∈D and x ∈D. In both cases the integral

ĝ w(x,ω) = − i

4πa2

ˆ
x′∈D

H (2)
0 (kb|x−x′|)dV ′ (C.2)

has to be evaluated.

The Hankel function inside the integral can be written as an infinite sum, using the addition theorem for the
Hankel function H (2)

0 which can be found in [22]. With φ the angle between x and x′ and Jk the k-th order
Bessel function of the first kind, the result is given by

H (2)
0 (kb|x−x′|) =

{∑∞
k=−∞ Jk (kb|x|)H (2)

k (kb|x′|)e ikφ, |x| ≤ |x′|∑∞
k=−∞ Jk (kb|x′|)H (2)

k (kb|x|)e ikφ, |x′| ≤ |x| . (C.3)

In the first case, where x 6∈D, it holds that |x| > |x′| for all x′ ∈D and therefore

ĝ w(x,ω) = − i

4πa2

ˆ
x′∈D

∞∑
k=−∞

Jk (kb|x′|)H (2)
k (kb|x|)e ikφdV ′. (C.4)
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80 C. WEAKENING OF THE GREEN’S FUNCTION

Transforming (C.4) into polar coordinates, gives

ĝ w(x,ω) = − i

4πa2

ˆ 2π

0

ˆ a

0

∞∑
k=−∞

Jk (kbr )H (2)
k (kb |x|)e i kφr dr dφ

= −
∞∑

k=−∞

i

4πa2 H (2)
k (kb|x|)

ˆ 2π

0
e ikφdφ

ˆ a

0
Jk (kbr )r dr

= − i

2a2 H (2)
0 (kb|x|)

ˆ a

0
J0(kbr )r dr

= − i

2a2 H (2)
0 (kb|x|)

1

k2
b

ˆ kba

0
z J0(z)dz

= − i

2a2 H (2)
0 (kb|x|)

1

k2
b

ˆ kba

0

d

dz
(z J1(z))d z

= − i

2akb
H (2)

0 (kb|x|)J1(kba).

In the second case, where x ∈ D, only ĝ w(0, s) is of interest for the discretization procedure. To obtain this
value, |x| = ε < a is fixed after which the limit ε ↓ 0 is taken. The integration region is split in two parts: the
circular disc Dε with radius ε and the rest of D, denoted by D\Dε. In the point x = 0 (C.2) now becomes

ĝ w (0,ω) = − i

4πa2 lim
ε↓0

[ˆ
x′∈Dε

H (2)
0 (kb|x−x′|)dV ′+

ˆ
x′∈D\Dε

H (2)
0 (kb|x−x′|)dV ′

]
. (C.5)

For the second integral in (C.5) it holds that |x| < |x′| and (C.3) tells thatˆ
x′∈D\Dε

H (2)
0 (kb|x−x′|)dV ′ =

ˆ
x′∈D\Dε

∞∑
k=−∞

Jk (kbε)H (2)
k (kb|x′|)e ikφdV ′

=
∞∑

k=−∞
Jk (kbε)

ˆ 2π

0
e ikφdφ

ˆ a

ε

H (2)
k (kbr )r dr

= J0(kbε)
2π

k2
b

ˆ kba

kbε

H (2)
0 (z)zdz

= J0(kbε)
2π

kb

(
H (2)

1 (kba)a−H (2)
1 (kbε)ε

)
. (C.6)

For the first integral in (C.5) it holds that |x| > |x′| and (C.3) tells thatˆ
x′∈Dε

H (2)
0 (kb|x−x′|)dV ′ =

ˆ
x′∈Dε

∞∑
k=−∞

Jk (kb|x′|)H (2)
k (kb|x|)e ikφdV ′

=
∞∑

k=−∞
H (2)

k (kbε)

ˆ 2π

0
e ikφdφ

ˆ ε

0
Jk (kbr )r dr

= 2πH (2)
0 (kbε)

ˆ ε

0
J0(kbr )r dr

= 2πε

kb
H (2)

0 (kbε)J1(kbε). (C.7)

Substitution of (C.6) and (C.7) in (C.5) and taking the limit gives

ĝ w(0,ω) = − i

4πa2 lim
ε↓0

[
2πε

kb
H (2)

0 (kbε)J1(kbε)+ J0(kbε)
2π

kb

(
H (2)

1 (kba)a−H (2)
1 (kbε)ε

)]
= − i

2kba

(
H (2)

1 (kba)− 2i

πkba

)
.

The weakened Green’s function is therefore given by

ĝ w(x,ω) =
{− i

2akb
H (2)

0 (kb|x|)J1(kba) if x 6∈D
− i

2kba

(
H (2)

1 (kba)− 2i
πkba

)
if x = 0

and this function can be used to approximate the Green’s function in all grid points.
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