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Chapter 1

Introduction

Contact mechanics is the theory that deals with the deformation of contacting objects. It
is an import research topic for many different industries, in particular for the rail industry.
Consider a train moving over a track. Multiple forces being exerted on the rails, with gravity
being the most important one. The forces will result in deformation of both the wheels and
the rails. It is important to understand this process, so that the rail industry can estimate
and prevent the possibility of rail deformation, estimate the wear and tear of the rails and
wheels, and even estimate the probability of train derailment. Contact mechanics gives us
the tools to understand this process.

As the name would suggest, the CONTACT software solves contact problems between two
objects. It has originally been developed by Prof.dr.ir Joost Kalker of the Delft University of
Technology. In 2000, VORtech has taken over the software. It is now being further developed
by Dr.ir. Edwin Vollebregt, who has been my supervisor for this Master project.

The software can be used for a variety of (homogeneous) contact problems and can be used
to compute deformations, determine the forces that are being exerted on the surface, and
determine in which areas of the contact surface slip will occur. CONTACT aims to be the
worlds fastest detailed contact model.

In this thesis report, the physics and mathematical theory behind dynamical contact problems,
i.e. time-dependent contact problems, is discussed. An algorithm capable of simulating the
deformation of a bridge and the wheels of a train that is moving over it will be developed.
The main goal is that this algorithm will be much less computationally expensive then the
usual finite element models. To achieve this, CONTACT plays a crucial role.
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Chapter 2

The research problem

The main research goal for the project is to understand how CONTACT can be used in
combination with time integration schemes for dynamical contact problems, in particular
those that occur in the rail industry. Specifically, the main research problem we will be
looking at involves a train moving over a bridge. How does the bridge and the train wheels
deform as the result of this and how can this deformation be computed efficiently?

Because of the complexity of problems involving contact dynamics, it is often too hard to solve
them in full detail. For instance, phenomena such as friction, slip, and adhesion can occur in
contact problems. These phenomena are hard to describe in full detail, so assumptions will
be made to simplify the problem. Throughout this thesis, as an example, we will ignore the
effects of friction.

We will start looking at very simple test problems and then solve these. Afterwards, the
complexity of these problem will be gradually increased. These test problems are simple
(often unrealistic) problems and are created solely to gain a better understanding of different
parts of the main problem.

The thesis can roughly be split in four different parts. Each part discusses a separate topic,
each of them being required to solve the main research problem. The research topic and goal
of each part will be outlined here.

2.1 Literature for dynamical contact problems

The first part, which consists of Chapters 3 to 5, contains necessary literature for dynamical
contact problems. In Chapter 3, we will describe the basics of linear elasticity theory. This is
used to derive a differential equation that describes the deformation of a single elastic object.
Chapter 4 is about contact mechanics, which describes the physics and boundary conditions
of two contacting objects. Both Hertz theory as well as CONTACT are used as contact model.
Time integration schemes for dynamical contact problems are discussed in Chapter 5. These
are used to solve multiple differential equations occurring in contact mechanics which will be
derived throughout the thesis.
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2.2 Deformation of an elastic half-space

The second part of this thesis is about local deformations and consists of Chapters 6 and
7. Here, we discuss the deformation of objects that can only deform locally as the result of
compression of the material.

A simple problem involving the deformation of an elastic half-space will be discussed. We
are interested in how this local deformation can be computed as function of time if an object
like a sphere is dropped on the surface. We will show in Chapter 6 how Hertz theory can
be used to derive a simple one dimensional differential equation for the rigid height of the
ball. Alternately, CONTACT can be used as replacement for Hertz theory. This is applicable
for more general situations and returns additional information which will be crucial for the
development of the eventual algorithm.

Additionally, in Chapter 6 we will solve the differential equation describing the falling sphere
by using the time integration schemes as discussed in Chapter 5. Since the differential equation
is simple, this test problem can easily be used to validate the numerical time integration
schemes and to get a basic idea of the pros and cons of each scheme. Specifically, we are
interested in the stability, accuracy and energy conservation of each numerical scheme. This
problem will also be used to gain more understanding on how to run CONTACT and how its
output can be used.

The problem becomes more complex when one is interested in the total deformation of the
half space as function of x and y. We will discuss two ways of computing this deformation.
The first one makes use of CONTACT which solves the quasi-static elasticity equations. The
advantage of this approach is that this deformation is easily computed. However, inertia is
completely ignored; hence the result is not completely realistic.

For a more accurate approximation, we will discretise the elasticity equations for the half-plane
and combine this with the correct boundary conditions and a good time integration scheme.
This will be thoroughly discussed in Chapter 7. This approach, however, is computationally
very expensive.

2.3 Global deformation of a bridge

In Chapter 8, the third part of this thesis, we will consider global deformations. Global
deformation represents the deformation of an object (in this case, a bridge) that occurs by
the displacement of the objects on a global scale. The main difference between an elastic
bridge and an elastic half-plane, is that a bridge is unsupported at the bottom. The bridge
will therefore deform globally, while a half-plane can only deform by compression the material.
Both phenomena have different properties and will hence be discussed separately.

The test problem we will discuss in this chapter is a bridge that deforms globally as a result of
a given pressure distribution that is being exerted on the bridge. Local deformation is ignored
for now. First, we will show how to compute the stationary solution. Next, time will be taken
into account; this will be used to solve a simple moving-load problem. The time-dependent
deformation of a bridge as the result of a given pressure distribution (representing a moving
train, for example) will then be solved.

The bridge will be modelled as a long thin beam. Its deformation will be approximated by
solving the 1D Euler-Bernoulli beam equation. We will mainly focus on a modal approach of
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doing so; the solution will be constructed by using so-called mode shapes. We will show how
these functions can be computed or approximated and how they can be used to approximate
the global deformation. A system of independent ordinary differential equations will be
derived and solved.

2 4 6 8 10 12 14 16 18
X (m)

Figure 2.1: Representation of a bridge that is deformed both globally as well as locally.

2.4 Full train-bridge simulation

The last part of thesis consists of Chapter 9 and 10. Here, we will combine the previously
discussed theory in order to perform a simulation of train-bridge contact.

If a train wheel exerts a force on the bridge, the bridge will deform as a whole (i.e. globally).
In reality, however, the bridge will also behave similarly to the half-plane; a ‘gap’ will appear
around the contact area that contains a part of the wheel. A visual (unrealistic) representation
can be seen in Figure 2.1.

In this last part of thesis we will focus on the interaction between the global and local
deformation. Our goal will be develop an algorithm to solve the main problem for this
project, i.e. how to compute the total deformation of a bridge accurately (without being too
computationally expensive) for a train moving over it. This combines the theory of global
and local deformations and CONTACT plays a central role in this algorithm.

In Chapter 9 we will discuss the interaction between the global and local deformation of
the bridge. The total deformation will be modelled as the sum of the global and the local
deformation. The problem that occurs here is that the global and local deformation are the
result of two separate problems which are not independent of each other. We will propose and
test algorithms for slightly simplified models. For instance, we will first solve the stationary
problem.

20
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Chapter 10 combines all the previously discussed theory in order to perform a full train-
bridge simulation. This involves the implementation of the integration schemes and the
iterative solver. We will counter several stability problems. To solve this, we will propose an
improvement of the iterative solver which will both increase stability as well as the convergence
rate without a big increase in the total amount of required computational power.



Chapter 3

Introduction to linear elasticity
theory

Contact mechanics is the study that deals with the physics of two contacting bodies. It
involves the computation of the pressure, contact forces, and deformation in either static or
dynamic problems. The bodies might have different elastic properties which can result in a
different distribution for the pressure and a different deformation of the objects.

Before getting into the contact between two different objects, we will consider a single object
being deformed. This deformation is described by elasticity theory. In this chapter, we will
focus on the dynamic deformation of a single general three dimensional elastic object. The
Cartesian coordinate system is used and a vector u can be denoted both as u = (ug, uy, u)
as well as u = (u1, uz, us). Einstein convention is used frequently.

3.1 The elasticity components

In elasticity theory, there are three different important elasticity components: the displace-
ments, the strain, as well as the stress. We will first describe each of these components
separately and then get into the relations between each component in order to derive a dif-
ferential equation for the dynamic deformation of an object.

3.1.1 Displacements

The displacement is the variable in elasticity theory we are generally interested in. Often,
one is interested in determining the change of shape of an object such as a bridge or wheel.
The displacement describes the change of shape of an elastic body as function of the time.

Consider an undeformed object in rest and focus one particle in this object. Now consider a
force at the boundary of the object pushing in any direction. This can cause the object to be
stretched or compressed. In particular, the particle we have chosen can move in any direction.
This translation of the particle is called the displacement. If this displacement is zero, that
means there is no deformation at this particle. There are three displacement variables, one
for each direction: u,, uy, and u,.
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3.1.2 Strain

Strain represents the stretching (or compressing) of an object. Once again, focus on one
particle in this object in its undeformed state. Take another particle close to this one. If
the body is deformed, then the distance between the two particles can change. Strain is
dimensionless quantity and represents the relative change of the position of points in the
body.

There are two different kinds of strain, namely the longitudinal strains €4, €y, and €., as
well as the shearing strains €uy, €4z, Eya, Eys, €22, and finally €,,. The longitudinal strains
correspond to the relative change of the position of points in the body in the corresponding
direction. If a homogeneous bar of 1m width is uniformly stretched to 1.5m, then the strain
Egg = % The shear strains (often notated by ) represent the change of angle between
two points as their distance tends to zero. These shear strains are always symmetric, so for

example Ypy = Vyz-

The strain tensor € is a matrix that contains the nine strain components. Due to the symmetry
of the shear strains, the matrix is symmetric. It is defined by

Exx VYry oz
e={me ey Ve (3.1)
Yzx Y2y Ezz

3.1.3 Stress

Stress is the physical quantity that represents the force per unit area that is being exerted on
a particle in a body. The unit of stress is Nm™2. If there is stress, it means that the material
is under tension or compression. Like strain, there are nine stress components, which we
denote by o;; for 1 <,5 < 3 (or ogy, etc). The components 04z, 0yy, and o, are the normal
stresses, the others being the shear stresses (often denoted as 7). Similarly for the strain, the
shear stresses are symmetric; this is a result of the conservation of angular momentum. We
can define a stress tensor o as

Oz Tay Taz
o= | Tys Oyy Ty: (3.2)

Tzx Tzy Ozz

Using this tensor we also define the so-called traction vector r at the boundary of the domain
by

r=on (3.3)

where n is the normal vector pointing out of the domain. This traction vector represents the
pressure being exerted at the boundary and will be used for the boundary conditions.
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3.2 Relation between the elasticity components

3.2.1 Strain-displacement relations

By definition of the strains, the longitudinal strains are simply the spatial derivative of the
displacement in the same direction. The strain components are therefore connected to the
displacements by the following equations

~ Oug

Ouy

Eyy = 87y

- ou,,

zZz — 82:

_ Ouy  Ouy (34)

Yoy = ay + %
~ Oug  Ou,
Yoz = e + O
_ Ouy  Oug
W= T s

We now redefine the strain components in smart way such that system (8.38) can be written
in a more compact way. We define

cw  ifi=j
Cij = ey (3.5)
! {é%’j ifi#j

So that (8.38) can be rewritten as

1 /0u; Ou; .
¢ij = 3 <8mj + 83;) forall1<i4,7<3 (3.6)

or even shorter

- <j§ . (j}‘i)j (37)
du

where I 18 the Jacobian matrix of u.

3.2.2 Stress-strain relations

The stress is easily computed, but it is usually the strain we are interested in. We will
therefore look at the relation between the stress and the strain. We assume throughout the
whole article that all materials are isotropic, that is, the material has no preferred direction;
regardless of the direction in which the force is applied, a force will always give the same
displacements relative to its direction.
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S\I‘E'd ________ Plastic Region )
ress | -
Elastic D‘\o
Limit ~—_|
Limit of [
Proportionality | Ultimate

Tensile Breaking
Strength Stress

Stress / MPa

Strain / %

Figure 3.1: The relation between strain and stress. Source: [3].

For many ductile materials, the relation between stress and strain starts out to be linear
until a certain strain ¢ (also called the limit of proportionality) is reached, see also Figure
3.1. If the strain is larger than this value, the object can start to deform plastically (i.e. the
deformation will become permanent) or even break down. Throughout this paper, we assume
that the strains do not surpass the limit of proportionality. This assumption that the ratio
between the stress and the strain is linear, is the principle of linear elasticity theory.

According to Hooke’s law, we have the relation [2]

Ozz = Meqgz + eyy +e.2) +2Gey,
Oyy = Meza + eyy +e.2) +2Gey,
022 = Megz + €yy +e..) +2Ge.,

Oy = Geégy

Oxz = Gewz

oyz = Gey,

where A is Lamé’s first parameter, and G the shear modulus. This system of equations can
also be written as

05 = )\ekkéi]‘ + 2G6¢j for 1 < 1,5 <3 (39)

where Einstein’s convention is used (to sum over k, in this case), and § being Kronecker’s
delta function. Equivalently, this is the same as

o= ATr(e)I +2Ge (3.10)
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3.3 Other elastic properties

Other elastic moduli are the bulk modulus, Young’s modulus, Poisson’s ratio, and the P-wave
modulus. For homogeneous isotropic materials, these variables are dependent of each other.
Each variable can be computed if any two of the moduli is known. Usually, we use the Young’s
modulus, also known as the modulus of elasticity, which is denoted by E. Furthermore, we
use the Poisson’s ratio v.

A material like steel requires more stress to be exerted to deform a certain distance compared
with rubber. The modulus of elasticity of steel (2 - 10%Pa) is much larger than for rubber
(approximately 5 - 10*Pa). It is defined as

_ G(3)+2G)
B= o (3.11)

When a material is compressed in one direction, it usually not only deforms in this direction
but also expands in the other two directions perpendicular to the direction of compression.
This is called the Poisson effect. This effect depends on the so called Poisson ratio of the
material. This dimensionless quantity is denoted by v and is equal to

A
ke (3.12)

3.4 The linear elasticity equations

Using the relations between stress and displacement as well as the relations between stress
and strain, the linear elasticity equations can be derived. This set of equations is based on
the equations of motion. According to Newton’s equation of motion, the force in a particular
direction at each particle is equal to the mass (or in this case, the density p of the material
around the particle) multiplied by the acceleration of the particle in the same direction. It
can be shown that the corresponding equations of motions are [2]

002 . 002y n 004, R 82u,
O oy 0z = P

0oy Oo 00y 0%u,

a; + aZy + 8;’ +F,=p at;’ (3.13)
00,4 . 00 .y i Jo ., L P 82u,

ox oy 0z P

Here, F,, F,, and F, are body forces. Gravity is an example of a body force in the z direction.

The partial derivatives %GTJ in (3.13) can be seen as the internal forces caused by the stresses
z,

in the object.

Equation (3.13) can be simplified to

L F=p—ry (3.14)

or by using tensor notation
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9%u

(3.15)

where (V-0); = % (as a regular matrix product, but with the derivatives in front).
J

It is possible to eliminate ¢ from (3.13) and derive a differential equation using only the
displacement variables. To do so, substitute (8.38) in (3.8). Next, substitute the resulting
expressions for ¢ in (3.13). This results in the alternative equations of motion

d (Bu, Ou, Ou.  Pu,
GAU-F()\—FG)&U((Q):C—Fay—FaZ)"' x—patz

0 (Ou, Ouy  Ou, 82uy

9 Tly — 1
GAU+(/\+G)ay<ax+ay+az)+EJ Pp (3.16)

0 (Ou, Ou, Ou, 0%u,
GAw+()\+G)az<ax +8—yy+ 82>+sz 52

or alternatively

0%u; 0%u; 0?u;
: A+ G L+ Fy=p—st for1<i<3 3.17
O3 O+ )(‘3xixj * e ore=ts (8.17)

G

or in vector notation as

0%u

GAu+()\+G)V(V~u)+F:pW

(3.18)

3.5 The boundary value problem

Although (3.16) seems easier to use than (3.13) since we eliminated the use of the stress
variable, it is less practical. In contact mechanics, boundary conditions for the elasticity
equations are crucial. There are two main boundary conditions, conditions for the traction
and conditions for the displacement at the surface. Both can be used at the same time for
different boundaries.

Traction boundary conditions should be applied on a boundary if a known force is acting on
the surface. For example, if a constant pressure pg is being exerted on a boundary I'y, then
the corresponding boundary condition should be —pg =r =0 -n on I';.

It is also possible to specify the displacement at a boundary. If a boundary I's, for example, is
attached to a solid wall, the displacement should be zero. This corresponds to the boundary
condition u =0 on I's.

Finally, the initial values should be specified. Since equation (3.16) is of second order with
respect to the time variable, both initial displacements u as well as the velocity for the
displacements u should be specified. Usually, we suppose that the object is in rest at t = 0,
which corresponds to u = 1 = 0 as the initial conditions.

In Chapter 7, we will create a finite difference discretisation of the elasticity equations. For-
mulation (3.13) is used, since we will describe boundary conditions for the traction.



Chapter 4

The basics of contact mechanics
and Hertz theory

In the previous chapter, the deformation of a single object has been discussed. The elasticity
equations (3.13) describe the change of shape of the object under stress. For systems with
multiple bodies, however, the situation is more complex. Two bodies can interact with each
other and cause deformation. Although the elasticity equations (3.13) are still relevant for
all bodies, the boundary conditions are not typically known in advance. Contact mechanics
involves the computation of the pressure distribution at the boundary of two touching objects.
It can also involve friction and similar phenomenons, but we will usually neglect this.

The Hertz model, developed in 1880, is the first contact model which describes contact me-
chanics accurately. This theory describes the contact between two elastic spheres or between a
sphere and a half-space. The pressure at the boundary as well as the contact force is described
in these situations. In this model creep is neglected, i.e. there is no friction between the two
objects. If two objects have different elastic properties, then friction occurs which makes this
assumption less realistic. Using the Hertz equations the displacements of the materials can
be computed. Although the Hertz model does not describe reality perfectly, is still being used
as of today.

It took a long time (until the 1960s) till research showed that the Hertz model wasn’t com-
pletely accurate. This resulted in the development of new contact models. In 1970 the JKR
model (named by its inventors Johnson, Kendall, and Roberts) was developed. This new
model is an improvement of the Hertz model and also takes adhesion into account; materials
that are close to each other experience van der Waals forces to each other. This attrac-
tion property is being used in the JKR model. The MD (Maugis-Dugdale) model is another
improvement of the contact model and also includes the effect of plastic deformation.

The CONTACT software is capable of computing the pressure distributions and elastic dis-
placements between two objects with general smooth geometries. It is also capable of taking
rolling or sliding into account. The contact area and regions with adhesion or slip can be
identified for many different problems.

Throughout the paper, we only consider the results of CONTACT and Hertz theory when
applicable. In this chapter, we will focus on stationary contact problems, i.e. we will look
at the equilibrium situation when two objects are being pressed upon each other using Hertz
theory. For this equilibrium situation, the contact force and pressure distribution at the

13
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contact area will be derived as function of the penetration. If friction is neglected, the same
contact force and pressure distribution can be used for time-dependent contact problems.

4.1 Deformation of an elastic half space under stress

First, we look at the situation where there is only one body. We assume that this body is an
elastic half space (i.e it can be represented by {(z,y, 2) : 2 < 0} in the static situation without
external forces). Now imagine a force F., pushing downwards at the origin. The equilibrium
solution satisfies the stationary elasticity equations with no external forces

O
90 fori=1,2,3 (4.1)

(927j
The force F, is described by a boundary condition for the traction at the top of the half space.
Furthermore, since the half plane is infinity large, we have u(z,y,z) — 0 as 22 +y*+ 2% — o0
for our other boundary conditions. Then, according to [1], the displacement caused by this
force is:

1+v[zz (1-2v)z
L= rz_ P, 42
“ 2nE | r3 r(r+ z) ] (42)
1+v[yz (1-—2v)y
_ vz _ P, 4.3
YT onE | r(r+2) (43)
S l+v[21-v) 22

where r? = 22 + y? + 22

So for the surface elements, i.e. points (x,y,2) € R? such that z = 0, we in particular have

1+v)1-2v)z

1+v)1-2v)y
Yy 2nEr? i (4.6)
(1-2v%)
L= F, 4.7
Y TEr (4.7)

Note that since z = 0 we also have r? = 22 + y?. Equation (4.5) and (4.6) are the similar,
as we would expect from the symmetry of the problem. From these equations, it appears
that the larger the distance from the origin, the smaller the displacement. We assumed that
no friction occurs in the problem, so that only the z-component of the displacement (i.e.
equation (4.7) is of importance.

If there are multiple forces of varying magnitude and position, then the resulting displacement
is the sum of the individual solutions. Usually, a force is not exerted on a single point but
on a certain area A. In this case we are interested in the pressure p, i.e. the force per square
unit, that is being exerted on the surface. We assume that the pressure is continuous. Then,
using equation (4.7), the z-displacement at a point (z,y) on the surface is given by
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u, = / /A 1;E1/2 : %dudv = mi;* / /A = iggf)@ _ y)2dudv (4.8)

E
E* =

T 1—p2

where

(4.9)

A crucial part of Hertz theory tells how the pressure is distributed around the contact area.
Let a be the radius of the contact area. Then p is assumed to be of the form

2\ 1/2
1- = for |r| <a
pr) =P\ 7 @ = (4.10)
0 for |r| > a

The pressure is maximal at the center of the sphere and is 0 outside the contact area. The
total force is by definition equal to

N 1 r2\ %2 2
F= / p(r)2mrdr = 27pg | =a? (1 - 2) = —nmpoa’ (4.11)
0 3 a o 3
As derived in [4], if we substitute (4.10) into (4.8), we arrive at the displacement

= 0 (942 _42) (4.12)

4.2 Contact between a rigid sphere and an elastic surface

Imagine the contact between a rigid sphere of radius R and an elastic half space. The height
of the sphere surface is

2 2
dey) = R— VR -2 —2 ;]-;/ (4.13)

or similarly z(r) = %. Let § be the approach between the sphere and the surface. The
approach is a scalar and is defined as the minimum vertical distance between the undeformed
bodies. If the approach is positive, there is no contact yet between the two bodies. The

approach is negative if and only if penetration between the two bodies occurs.

The vertical displacement at some point (z,y) is approximately

2
uZ:cS—(R—\/RQ—ﬂ)Rzé—;—R (4.14)

where 12 = 22 + 32, Equation (4.14) needs to be of the form (4.12). For this to be true, we
must have

__ Tpoa
T 9F*

(4.15)
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and furthermore

1 TPo WpoR
. = = 4.1
9R _ 1E*a “= g (4.16)

A direct consequence is that the contact radius satisfies

a’* = R6 (4.17)

and we also can retrieve an explicit formula for pg:

2E*a 2FE* 2E* |6
= = VRS = - 4.1
po TR TR R T R (4.18)

And finally by substituting equations (4.17) and (4.18) into (4.11) we arrive at the relation
between the contact force F' and the approach §.

2 2 2E* [§ 4
F==Z= 2_Z2 \/7 d— —F*RY/253/2 i1
Tpod 37r T RR 3 R (4.19)

Similarly, by substituting (4.18) into (4.10) we arrive at the explicit pressure distribution

oy = 2 % (1 _ f)w (4.20)

s a

4.3 Contact between two curved surfaces

Hertz theory can also be applied in the more general problem with two bodies with curved
surfaces.

Suppose the curvature of both surfaces is R; and Ra, respectively. It appears that (see [4])
equations (4.17) - (4.19) remain true, as long as the radius R is chosen such that

1 1 1
= — — 4.21
R & R (4.21)

4.4 Contact between elastic bodies

A simple adjustment can be made to apply the previous theory to the case with two curved
surfaces where both bodies are elastic. Suppose the bodies have an elasticity modulus F; and
FEs5, and Poisson’s modulus vy and vy, respectively. Then if we define

1 _1—V12 1—v3
E*  E E,

(4.22)

instead of equation (4.9), then the same formulas remain correct. Note that the approach §
here is distance between the two bodies if the deformation of both bodies is neglected.
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4.5 Using CONTACT to compute p and F

According to Hertz theory, the pressure p and contact force F' are described by equations
(4.19) and (4.20). However, these equations are only valid for spherical objects.

CONTACT, however, is capable of working with bodies with more complex geometries. Using
an input file, this geometry can be described which is then used by CONTACT for the internal
computations. The user can either supply the penetration, or the so called undeformed
distance as well as the contact force. The choice of the approach depends on the contact
problem.

CONTACT can be used to solve many kinds of contact problems. It is able to identify the
size and shape of the contact area and compute pressure distributions in this contact area as
well as elastic displacements of the bodies. For the problems researched in this report, we
generally assume that no friction occurs. CONTACT, however, can take friction into account
and is able to compute tangential shear stresses. Furthermore, the regions with adhesion and
with slip can be identified using CONTACT.

Additionally, CONTACT also computes the elastic displacement of the elements at the bound-
ary. These displacements correspond to the stationary situation, i.e. they are the result of
solving the stationary elasticity equations (4.1).

4.5.1 The penetration and undeformed distance

The penetration is defined as the distance between two undeformed objects. It can be mea-
sured at any point (z,y) and is denoted by d(z,y). It can be written as

6(z,y) = z1(z,y) — z2(2,y) (4.23)
where z; and zy are the height of the bottom and upper object, respectively.

In some situations, the rigid height of an object is not yet known. For these problems. we
define the undeformed distance h(x,y) as the geometric distance between the two bodies in
its undeformed state. In this definition, however, it doesn’t matter from which height the
objects are measured. Unlike the penetration, the undeformed distance is hence defined up
to a constant. Usually, this constant is chosen such that

0 = min, ,eoh(z,y) (4.24)

If this definition is used, the difference between the penetration and the undeformed distance
is equal to a constant, which is the approach.

6(z,y) = h(z,y) — 0 (4.25)

The undeformed distance is useful in situations where the approach is not known. It represents
the geometry of two objects which is in particular of importance for determining the contact
area and the distribution of the pressure.

A 1-D example can be shown in Figure 4.1. This figure shows the shape of two arbitrary
objects in their undeformed state at a certain point in time. Here, the approach is approx-
imately 6 ~ 0.2mm. The red line represents the penetration. The undeformed distance can
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also be represented by the red line. Even after translating this in the y-direction, the red line
remains a valid representation for the undeformed distance.

5 T T T T T
Upper object
Bottom object
4 ~ Penetration H

Figure 4.1: The penetration between two objects

4.5.2 Using CONTACT

CONTACT is capable of computing the pressure distribution in the contact area, the normal
force as well as the elastic displacements at the surface near the contact area in two different
ways. In both situations, the undeformed distance should be supplied to CONTACT. CON-
TACT can use this to determine the shape of the interacting bodies. Furthermore, either the
normal force or the approach should be supplied. The two options are possible in different
situations.

Consider the stationary problem of a sphere resting on an elastic half space. The contact
force is simply equal to the force the gravity exerts on the sphere, i.e. F,, = mg, where m is
the mass of the sphere.

In this situation, one is interested in computing the approach. This is not known beforehand.
The contact force, however, is known, since we are looking at a stationary problem. If this
contact force is supplied, then CONTACT is capable of computing the initial contact point,
the pressure distribution around it as well as well as the static displacement of the surface
elements near the contact area.
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CONTACT requires the undeformed distance to be specified for a rectangular grid. This grid
is divided by m, x m, elements. The horizontal distance between the elements is Az and
the vertical distance is Ay. These variables can be chosen by the user. A smaller Az or Ay
will result in an improved accuracy, but this is more resource expensive for CONTACT. It
is important that the user makes sure that this rectangular grid contains the whole contact
area. CONTACT returns the pressure and static displacements in the same grid points as
the user supplies.

This approach is useful for stationary problems where the contact force is known beforehand.
This is not the case for time-dependent problems, since the normal force does not have to
be equal to the gravitational force. For time-dependent problems, however, the approach
is known at each time step. If the approach is supplied, then CONTACT is capable of
determining the contact force, the pressure as well as the static displacements of the boundary
elements.

For these kind of problems, the approach and the undeformed distance, and thus the penetra-
tion, are both known at each time step. The contact force F;,, however, is not. CONTACT
can therefore be used to compute the normal force F,, and the pressure as a function of the
approach 9.

4.5.3 Example input file

To run CONTACT, an input file needs to be created. This input file contains information
such as the elasticity parameters, size and mesh width of the grid, lots of CONTACT param-
eters representing the type of contact problem, as well as the undeformed distance combined
with the contact force or the penetration. After running CONTACT using this input file as
parameter, several output files are created. Most importantly, these output file contain the
contact force, as well as the elastic translation and pressure at each grid point.

As an example, suppose that we are interested in the usual Hertz problem. Consider a rigid
sphere of radius R = 0.10m. The sphere penetrates an elastic half space with Young’s modulus
E =1.5-108, and Poisson’s ratio v = 0.5 for a total of 5mm. The following input file can be
used.

3 module % result element 1, Contact patch 1
% Next case 1
200020 P—-B—T—N—-F-S PVTIME, BOUND , TANG , NORM , FORCE , STRESS
022020 L-D—-C—M—-Z—E FRCLAW, DISCNS, INFLCF, MATER , RZNORM, EXRHS
002111 G—I-A—O—W—-R GAUSEI, IESTIM, MATFIL, OUTPUT, FLOW , RETURN
200 30 30 1 1.0E—04 MAXGS , MAXIN , MAXNR , MAXOUT, EPS
0.000 0.000 0.000 0.000 FUN, FUX, FUY, CPHI
% Note: N=1 means FUN == FN, F=0 means FUX == CKSI, FUY == CETA
0.3000 0.3000 FSTAT, FKIN
0.5000 0.5000 5.0000E+07 1.0000E+20 SIGMA 1,2, GG 1,2
1 IPOTCN
11 11 —0.028 —0.03 0.0050 0.0050 MX,MY XL,YL,DX,DY
9 1 IBASE, IPLAN
% PENETRATION, (1)—(2): SPECIFIED PER ELEMENT

1.4586E—03 2.6352E—04 —6.5563E—04 —1.3068E—03 —1.6954E—03
—1.8246E—03 —1.6954E—03 —1.3068E—03 —6.5563E—04 2.6352E—04
1.4586E—03
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2.6352E—04 —9.1663E—04 —1.8246E—03 —2.4679E—03 —2.8519E—03
—2.9796E—03 —2.8519E—-03 —2.4679E—03 —1.8246E—03 —9.1663E—04
2.6352E—-04

—6.5563E—04 —1.8246E—03 —2.7241E—-03 —3.3616E—03 —3.7421E—-03
—3.8686E—03 —3.7421E—03 —3.3616E—03 —2.7241E—03 —1.8246E—03
—6.5563E—04

—1.3068E—03 —2.4679E—03 —3.3616E—03 —3.9949E—03 —4.3730E—03
—4.4987E—03 —4.3730E—03 —3.9949E—03 —3.3616E—03 —2.4679E—03
—1.3068E—-03

—1.6954E—03 —2.8519E—03 —3.7421E—03 —4.3730E—03 —4.7497E—03
—4.8749E—03 —4.7497E—03 —4.3730E—03 —3.7421E—-03 —2.8519E—-03
—1.6954E—-03

—1.8246E—03 —2.9796E—03 —3.8686E—03 —4.4987E—03 —4.8749E—03
—5.0000E—03 —4.8749E—03 —4.4987E—03 —3.8686E—03 —2.9796E—03
—1.8246E—03

—1.6954E—03 —2.8519E—03 —3.7421E—03 —4.3730E—03 —4.7497E—03
—4.8749E—03 —4.7497E—03 —4.3730E—-03 —3.7421E—03 —2.8519E—-03
—1.6954E—-03

—1.3068E—03 —2.4679E—03 —3.3616E—03 —3.9949E—03 —4.3730E—03
—4.4987E—03 —4.3730E—03 —3.9949E—-03 —3.3616E—03 —2.4679E—03
—1.3068E—03

—6.5563E—04 —1.8246E—03 —2.7241E—-03 —3.3616E—03 —3.7421E—-03
—3.8686E—03 —3.7421E—03 —3.3616E—03 —2.7241E—03 —1.8246E—03
—6.5563E—04

2.6352E—04 —9.1663E—04 —1.8246E—03 —2.4679E—03 —2.8519E—03
—2.9796E—03 —2.8519E—03 —2.4679E—03 —1.8246E—03 —9.1663E—-04
2.6352E—-04

1.4586E—03 2.6352E—04 —6.5563E—04 —1.3068E—03 —1.6954E—03
—1.8246E—03 —1.6954E—03 —1.3068E—03 —6.5563E—04 2.6352E—04
1.4586E—03
% UNRESTRICTED PLANFORM
0 module

For more information about all the input parameters, one could consult the CONTACT user
guide [5]. In our case, we used N = 0. This parameter specifies whether the normal force or
the approach is prescribed. We used N = 0 and prescribed the approach 6 = 0.005m.

It is worth noting that CONTACT requires both objects to be non-rigid. To circumvent this,
we model the rigid sphere as an elastic sphere with a very large Young’s modulus £ > 102°.
In this way, the sphere behaves like a rigid object.
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4.6 Comparison between Hertz theory and CONTACT

Given the approach for the Hertz problem, the contact force can be computed using Hertz
theory and is given by equation (6.1). The pressure distribution around the contact area is
given by (4.10). Alternatively, the same can be computed by using CONTACT. Given the
maximum approach § measured from the lowest point of the sphere, the penetration between
the surface and the sphere at any given point (z,y) is

S(z,y) =VR?—a2—y2 -0  fora®+y® < R? (4.26)

This penetration can then be supplied to CONTACT, similarly to the example input file as
given before. The contact force can then be compared with the result of the Hertz problem,
see Figure 4.2. Clearly, the contact force computed using CONTACT corresponds to the
Hertz solution. As the penetration increases, however, the results become slightly off. This
is because the penetration supplied to CONTACT was computed for a mesh. CONTACT
interpolates this penetration for internal points. As the mesh becomes finer, this interpolation
becomes better, and the result becomes more accurate.
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Figure 4.2: Comparison of the contact force computed using Hertz theory and CONTACT.
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Chapter 5

Numerical methods for
dynamical contact problems

5.1 Newton’s equations of motion for contact problems

For contact dynamics, Newton’s equations of motion play an important role. Consider the
following example (which will be more thoroughly discussed in Chapter 6). Consider a small
object with mass m that penetrates an elastic surface. The height of the object can be
represented by z(t). One is interested in determining this height.

If the object penetrates the surface, the surface will indent slightly. A contact force F),
upwards will then be exerted by the surface as discussed in Chapter 4. This force, however,
becomes larger as more penetration occurs and is hence a function of the height of the object.
The resulting force therefore is F(z) = F,(2) — Fy;. By Newton’s second law of motion, this
resulting force is proportional to the acceleration of the object, i.e.

d?z

(5.1)

Newton’s equations of motion are crucial for dynamic contact problems. In general, the corre-
sponding equations of motion for linear structural dynamic problems in multiple dimensions
have the form

M3+ Cx + Kx = F(t) (5.2)

where M represents the mass matrix, C' the stiffness, and K the damping matrix. F' is the
vector of external forces which depends on the time variable.

In many contact problems, however, the equation of motion is non-linear. The contact force
itself is generally non-linear, as we have discussed in Chapter 4. For spherical contact on an
elastic-half plane, we have seen that contact force F), is proportional to %2 as long as § > 0.

The most general form of the Newton’s equation of motion is

M(x)% + P(x,%x) = F(t) (5.3)

23
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with M and P being any function.

5.2 Forward / Backward Euler

To solve differential equation (5.3), integration schemes are required. For simplicity and
completeness, we will start with the well known Forward and Backward Euler integration
schemes. These schemes allow to integrate first order ordinary differential equations with
respect to time. To apply this, we first transform equation (5.3) to a (twice as large) system
of first order differential equations. We introduce y = x so that

= (5.4)
y=M"x)(F(1) - Pxy))
or shortened as z = g(t,z) for z = (x,y)7.

The Forward Euler scheme is the simplest explicit time integration scheme. It is of order
O(At) accurate and is described by

Zi+1 = Zf + Atg(tk, Zk;) (55)

The Backward Euler scheme is the simplest implicit time integration scheme, also of order
O(At) accurate, and is described by

Zpy1 = Zg + Alg(thg1, Zig1) (5.6)

Often, because g can be a complex non-linear function, it is not possible to write zx41 as a
simple function if ;1 and z,. Instead, one needs to apply an iterative scheme to approximate
this solution. Picard iteration is the easiest one to apply. One can set zg_H = 7 as a good
initial guess and repeatedly compute

Z?cill =z + Atg(tgr1, zi+1) (5.7)

iteratively until ||z§:jr11 — zi 41l < e for a certain error margin. Alternatively, one can apply a

faster converging iterative method like Newton-Raphson or the secant method.

5.3 Runge Kutta / Radau methods

The Runge-Kutta methods are generalizations of the Forward/Backward Euler methods.
These methods are used to integrate the same first order ordinary differential equation with
respect to time, but with a higher order accuracy.

All Runge-Kutta methods have the form

Zi+1 = Zf + At Z bik; (58)
=1



5.3. RUNGE KUTTA / RADAU METHODS 25

where

k; = g(ty + Atz + ALY a;k;) (5.9)
j=1

The components of the matrix A (with components a;;) and vectors ¢ and b are often com-
pactly written by using a Butcher tableau. Each Runge-Kutta/Radau scheme can be de-
scribed by one.

The Butcher tableau corresponding to Runge-Kutta methods are strictly lower triangular
matrix. As a result, computing k; does not require the use of k; for j > ¢. Hence the method
is explicit. As an example, for the widely used RK4 method, for example, we have the tableau

€1 | G11 G2 ... Qip 0l 0 0 0 0
C2 | @21 az2 ... a2 1/2/1/2 0 0 0
S = 1/2] 0 12 0 0 (5.10)
Cp an1 an2 cee Qpn 1 0 0 1 0
o by ... b [1/6 1/3 1/3 1/6

Using (5.8) and (5.9), this corresponds to the fully explicit scheme of order O(At*):

kl = Atg(tk, Zk)

1 1
ko = Atg(ty + s Atz + ki)

2 2
1 1
k3 = Atg(tk— —|— 5At7Zk —+ §k2)

k4 = Atg(tk + At, Zj + kg)

Zi+1 = Zk + %k1 + %kz + %kg + ék4
The Runge-Kutta methods can be used to achieve a high order accuracy at the cost of more
function evaluations. Using a Runge-Kutta method of n stages (i.e. the Butcher tableau has
size n x n), an accuracy of O(At™) can be achieved. The disadvantage of these schemes is that
the corresponding region of stability is small; this is especially a problem for stiff differential
equations which we will often consider.

The matrix A, representing the Butcher tableau of the integration scheme, does not have to
be a strictly lower triangular matrix. If this is not the case, then the corresponding integration
scheme is implicit. The Radau methods are fully implicit Runge-Kutta schemes and can be
seen as generalisations of Backward Euler. As described in [6], the default Radau5 method
is given by the Butcher tableau

o1 1=V6 o —1+V6

9 18 18
5_V61 1 TVe 1 3G
5 10 |9 45 360 45 360
5,V6|1 U 436 1116 1)
_bH 10 |

[ SRR B

9 9 3 9 36
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Since the Radau methods are implicit, an iterative scheme should be used to determine
the solutions zF*!'. Additionally, each iteration requires the evaluation of multiple function
evaluations, which can therefore be very costly. The main advantage is that all Radau methods
are A-stable, and can hence be used for stiff problems. Additionally, the accuracy of the Radau
methods is O(At?"~1), where n is the number of stages.

5.4 The Verlet method

The Verlet method [7] is an explicit integration scheme can be used to integrate the second
order differential equation of the form % = g(x). The method is of order O(At) accurate and
is given by

X1 = Xg + VQAt + g(Xo), and

(At)?
2 (5.12)

X1 = 2%k — Xp_1 + (A1) g(x) for k>1

where xg and vq are the position and speed at time ¢ = ty. An interesting property of the
Verlet method is that it is much more energy conserving compared with other explicit methods
with a similar order of convergence such as Forward Euler. Although the method is explicit
and we do not keep track of the velocity components, the Verlet scheme keeps track of the
total amount of energy. This is explained in [8] and is in particular due to the symplecticity
and time-reversibility of the Verlet scheme. We will also show this behaviour numerically in
Chapter 6. The method, however, it is not always applicable for the most general case (5.3),
for example when there is air resistance, so that g is also a function of x.

5.5 Leapfrog integration

Leapfrog integration is similar to the Verlet method. It is an explicit scheme usable for differ-
ential equations of the form %X = g(x). Similarly to the Verlet method, Leapfrog integration
is very energy conserving since the method is symplectic and time-reversible. It is, however,
of O(At?) accurate, yet the number of function evaluations per time step remains the same
as for Verlet or Forward Euler.

The leapfrog method keeps track of both the displacement and velocity components. A unique
property of the Leapfrog method is that the displacement and velocity components "leapfrog’
over each other. That is, the velocity components are described exactly half way between two
consecutive displacement components. It is defined by

Xgp+1 = Xk + Atka/g

(5.13)

Vigs/2 = V12 + Atg(Xpi1)
for k > 1. Here, v represent the velocity components. Note that (5.13) is not self-starting,
since the component vy/5 is not known. This term can, however, be approximated using a
self-starting scheme such as Forward Euler.

A disadvantage of the Leapfrog method is that the time step At must remain constant. This
is required [9] to maintain stability.
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5.6 Newmark’s method

The advantage of the Verlet and Leapfrog method is that the methods are energy conserving.
However, both schemes are explicit. This is a problem since explicit methods are unstable
for very stiff problems.

Newmark’s method [10] (also known as the Newmark-beta method) is a popular integration
scheme for problems in structural dynamics. The method is useful because it not only does
it preserve energy, it is also implicit; hence the method has better stability properties than
Verlet or Leapfrog.

2
Xp41 = Xg + Atvy + %((1 — 2P)ay. + 20a)41) (5.14)

Vit1 = Vi + At((1 — v)ag +yag+1)

Here vi41 and a1 are approximations of the velocity x and acceleration X at time 41,
respectively. The acceleration ay; is derived from the equations of motion (5.3) by

M (xp41)ap+1 + P(Xpt1, Vir1) = F(te) (5.15)

Both parameters v and /8 are required to be in [0,1]. The method is implicit, unless both
~v and (3 are zero. If v = 1/2, then the method is of second order accuracy and there is no
numerical damping. If, however, v # 1/2, then the method is only of order O(At). The
parameter § defines how the acceleration is interpolated. Usually one takes § = 1/4, so
that the acceleration is averaged between timestep t; and tx41. Another possibility is setting
B = 1/6, which assumes that the acceleration is linear in [t, tg41]-

5.7 The HHT method

The disadvantage of the Newmark-beta method is that numerical damping can only be in-
troduced by lowering the order of accuracy. With this in mind, the HHT method (named
after its inventors Hilber, Hughes, and Taylor), also known as the a-method, was constructed.
The HHT method [11] is an extension of the Newmark method. An extra parameter « is
introduced. The equations (5.14) remain the same, however, instead of the discrete Newton’s
equation of motion (5.15) the HHT method is slightly different:

M(xk+1)ak+1 -+ (1 — Q)P(Xk+17vk+1) + OzP(Xk,Vk) = F((l — Oé)tk_;,_l + Oétk) (516)

If & = 0, then the term aP(xy,vy) drops out of (5.17) and the right-hand side will be equal
to F(tr+1), so that we are left with Newmark’s method. The parameters can be modified
so that numerical damping can occur. If v and § are chosen such that v = (1 + 2«)/2 and
B = (1 + «)?/4, then the method is second order accurate.
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5.8 The generalized-a method

The generalized-a method [12] is again a generalisation of the HHT method. Once again the
equations (5.14) remain the same, but now instead of the parameter « we have two parameters
apr and ap. The corresponding equation of motion is:

(1 — an) M (Xpt1) k41 + aar M (X)) ax+
(1 - ap)P(xk+1,Vit1) + apP(xg, vy) = F((1 — ap)tpgrr + apty) (5.17)

If aps = 0, then this is the HHT method with parameter « = ap. This method gives an
extra degree of freedom. Parameters v and 8 are usually chosen as v = 1/2 — ay + ap and
ﬁ = (1 — Qg —|—ap)2/4.

5.9 Adams methods

Most schemes in the previous sections are similar in the fact that each is a single-step scheme;
that is, to compute a component at time step k+1 we only need to know the components at the
previous time step k. Multi-step schemes make use of earlier components that have already
been computed at iteration k — 1 and before. This information can be used to have a better
approximation of the acceleration. This is especially useful for stiff differential equations
where energy conservation is of importance.

Adams methods [13] are multistep integration schemes. They are capable of solving the
differential equation x = f(x,¢); hence a transformation as in Section 5.2 should be made to
transform to a system of first order differential equations. The solution at the next time step
is approximated by using a polynomial of order n.

A general multi-step scheme of n steps has the form

Z Qi X+ = At Z bif(xk+i’ tk+i) (518)
=0 =0

Usually, we assume that a,, = 1 by simply scaling this equation. Hence, after time step
k+n —1 we can set

n

n—1
Xipn = At > bf (Xppirteri) — Y GiXpyi (5.19)
i=0 i=0

There are different families of Adams methods. The Adams-Bashforth methods are explicit
methods; they require that a,_1 = —1 and a; = 0 for ¢ % n — 1. The coeflicients b; define
the integration scheme. For Adams-Bashforth methods it is required that b, = 0 since the
methods are explicit. The Adams-Moulton methods are implicit Adams method and do not
have a restriction on b,,.
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5.10 Backward differentiation formulas

The Backward differentiation formulas [14] are another family of implicit multistep integration
schemes. They can also be described as in (5.19). Compared with the Adams-Moulton
methods, however, the coefficients b; for i = 0 to n — 1 are required to be zero. Hence, the
expression contains only a single function evaluation. On the other hand, the coefficients a;
for i = 0 to n — 1 are not required to be zero; these are chosen to achieve the highest order
of accuracy.

30
BDF1
BDF2
BDF3
20+ BDF4
BDF5
BDF6
BDF7
10+
£ 0
10} J
20+
_30 1 1 1 1 1 1 1 1 1 ]
-15 -10 -5 0 5 10 15 20 25 30 35 40

Re

Figure 5.1: The stability region for different backward differentiation formulas. Note that
stability is achieved outside these circles, similarly to the stability of the Backward Euler
(BDF1) method.

As an example, for n = 1 we have the usual Backward Euler scheme. For n = 2, we have the
components ap = 5,a; = —% and B = 2.

When using Backward differentiation formulas, a very important thing to realise is the sta-
bility of the method. See Figure 5.1 for the stability region of the first 6 Backward difference
formulas. The first two methods are A-stable, but as the order of the Backward differen-
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tial formula increases, the method becomes more and more unstable. The order of the used
Backward differentiation formulas should therefore be chosen carefully in order to preserve
stability while keeping the numerical scheme accurate. Backward difference formula of order
O(At™) for n > 7 are of no use, since the contour of the stability region crosses the negative
real axis.



Chapter 6
Rigid body motion

The goal of this chapter is to get a feeling of how dynamical contact problems can be derived
and solved using a time integration scheme such as the ones we have discussed in Chapter 5.
We will consider a simple contact problem involving a sphere falling on an elastic surface, as
we have already shortly mentioned in the beginning of Chapter 5. This problem will result in
a one-dimensional differential equation for the height of the sphere. Solving this differential
equation requires the use of a time-integration scheme. Multiple time integration schemes as
described in Chapter 5 will be used to solve the problem. This will allow us to determine
basic properties of the numerical schemes that occur for dynamical contact problems such
stability and energy conservation.

Consider a solid sphere of radius R which is dropped from height zy above an elastic half-
space having Young’s modulus E and Poisson’s ratio v. Before dropping this sphere, it has
no vertical speed, i.e. vg = 0. The mass of the ball is simply m = %wR?’p, where p is the
density of the material of the sphere.

The sphere is supposed to be either rigid or elastic, but in the latter case we assume that
the modulus of elasticity of the ball is the same as for the half-plane. This is required, since
otherwise friction would occur during contact. In this case, the theory would not be realistic
any more and we wouldn’t be able to compute the elastic deformation for each body.

For now, we are only interested in the rigid height of the sphere as a function of the time.
The height is measured from the lowest point of the sphere and is allowed to be negative.
The height z(t) is therefore equal to z(t) = —d(t), with 6(t) being the approach.

Since Hertz theory describes the normal force between two spheres or between a sphere and
an elastic half space, the rigid height of the sphere can easily be solved. If one is interested
in the deformation of the surface as function of the time, one could apply the quasi-static
approach as will be described in Section 6.4. This approach, however, is not very accurate
since the inertia of particles at the boundary elements of the half-space is ignored. In Chapter
7 we will describe a different method to solve this problem. This method takes inertia into
account but is computationally expensive.

31
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6.1 Derivation of the differential equation

Equation (4.19) gives a relation between the approach of the rigid sphere in the elastic half
space and the normal contact force. With this in mind, we can easily retrieve the differential
equation describing this test problem.

At all times, gravity exerts a force on the sphere pointing downwards. This force is constant
and is given by F; = —mg. The minus sign is important since the positive z direction points
upwards. There can also be a contact force pointing upwards. If the height of the ball with
respect to the z = 0 plane at a certain point in time is z(¢) (which is negative if and only if
there is penetration), then the approach is §(t) = —z(¢). Equation (4.19) is valid only if the
approach is positive; if the approach would be negative, there would be no contact between
the sphere and the half-plane and therefore the half-plane would not exert any force upwards.
Equation (4.19) can hence be formulated as

4
F, = gE*R1/2mx(o, —2)%/2 (6.1)

So that the resulting force is

4
F(z)=F, + F, = gE*Rl/QmaX(O, —2)3/2 —mg (6.2)

By Newton’s second law, F(z) = mZ. Dividing by m gives

4
3= %E*Rlﬂmax(o, —2)%%2 g (6.3)
This is a non-linear ordinary differential equation of form (5.3), where M = 1, F = —g and

P(z) = —%E*Rl/Qmax(O, —2)3/2,

6.2 Properties of the solution

It is very hard (or even impossible) to solve differential equation (6.3) analytically. However,
it is easy to derive some basic properties of the solution. Let ¢y be the first moment the ball
touches the surface. Before this point, equation (6.3) can be simplified to

3=—g (6.4)

The exact solution of this is of course z(t) = —3gt? + 1t + ¢o. Furthermore, since 2’(0) = 0
and 2(0) = zp, we find ¢; = 0 and ¢g = 2, so that

1
2(t) = z9 — §gt2 (6.5)
for 0 <t < tyg. Equation (6.5) describes the height of the sphere during its free fall. It follows
that tg = +/2z9. However, after touching the surface, the differential equation becomes

non-linear and very hard to solve analytically. By substituting w := —z and defining a :=
AE* Rl /2
3m

we can retrieve the following by using separation of variables:
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d2
dTZ} = aw®? + g
-3/2 d*w
de?
— w??d*w = (a + gw™3/?)dt?
w—3/2

a+ gw=3/2

3/2

—w =a+gw

d*w = dt? (6.6)

We can now try to integrate equation (6.6) twice. Maple can do this analytically. The left side
turns out to be a very large function h made of logarithms and an inverse tangent function.
The right side is simply %tQ + c1t + ¢g. Since the left-hand side is so complex, calculating the
inverse of this function is extremely hard if not impossible. Therefore, we won’t be able to
express w in an explicit way as function of ¢.

We do know, however, that at some point t; > tg, the ball reaches the lowest point. At
this moment, the kinetic energy of the ball is zero. Since there is no damping in the system
and therefore no energy is lost, the solution is symmetric with respect to ¢ = ¢;. So at
t =t; + (t1 — to) the ball will be at height 0 again, and at time ¢ = 2¢; the ball reaches its
original height zg. This cycle repeats indefinitely.

6.3 Solving the problem numerically

Next, we will discuss the numerical methods as described in Chapter 5 applied for this test
problem. All of the methods have been applied for this problem, but we only discuss some
findings since many of the results are similar.

First of all, it is important to realise that differential equation (6.3) is non-linear. This has no
negative impact on the use of explicit time integration schemes. For implicit time integration
schemes such as Backward Euler, however, it usually becomes impossible to express the height
zk+1 at the next iteration explicitly. If the differential equation would have been linear in z,
we could have moved this term to the left side so that the only task at each iteration is to
solve a 2 x 2 linear system.

Therefore, we have implemented a Picard iteration in order to solve the implicit expression.
For example, Backward Euler integration for our problem is defined by

2R = 2k 4 ARt

6.7
S [34E*31/2max(07 k1Y) g] (6.7)
m

k+1

The linear term Atv"t! can be moved to the left side to get (in matrix-vector notation)

k+1 k 0
1 —At z P
(0 1 ) (v> - <U) + At <4E*R1/2max(0, —hH1)3/2 g) (6.8)

3m

Picard iteration can therefore be applied in the following way. We set
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Height (m)
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Figure 6.1: The height of the ball as a function of the time, using a stable method such as
Radaub.

k+1 -1 k 0

z 1 —At z
= +At| 4 ., ) 6.9
<U)j+1 (0 1 ) l(v) <3 E Rl/zmax((), 7Z]l.€+1>3/2 _ g>] ( )

3m
iteratively for each j until convergence is reached; e.g. when ||[z; v]?_tll — [ v]?HH < ¢ for
some small € > 0. In our test problem, this iterative process always seemed to converge as
long as At remains reasonable (not larger than 1, for example).

The Radaub method yields the result as we would expect, as can be seen in Figure 6.1. It
is also interesting to look at the total amount of energy in the system. At ¢t = 0, the kinetic
and elastic potential energy are both zero and the potential gravitational energy is maximal.
For t € [0,tp], the potential gravitational energy is slowly transformed to kinetic energy.
Between ¢t =ty and ¢t = t1, both kinetic and gravitational potential energy are transformed to
potential elastic energy. At ¢ = ¢1, the kinetic energy is 0, the potential gravitational energy
is minimal (negative since there is penetration), and the elastic energy potential is maximal.
Since there is no damping in the system, the total amount of energy (i.e. the sum of the
kinetic, gravitational, and elastic energy) is constant. This can be see in Figure 6.2. The
cyan line represents the total amount of energy, which is the sum of the kinetic, gravitational,
and elastic energy. As one can see, the total amount of energy does indeed remain constant.

Energy conservation is an important property that is often important to maintain. As we
have seen, this can be achieved by applying Radau5 for a small time step. Radaub, however,
is a relatively expensive method compared with other integration schemes. We will therefore
have a closer look and compare the energy conservation properties of different schemes.

To do so, we will solve (6.3) using multiple integration schemes. In each of the experiments,
we consider a solid ball of radius R = 0.1m and a mass of 10kg that is being dropped from 1m.
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Figure 6.2: The energy of the ball as a function of the time, using a stable method such as
Radaub.

For each method, a constant time step At = 0.001 is used. We vary the coeflicient E. Then,
the relative difference of the total amount of energy in the system compared with the total
energy at the beginning is computed for different integration schemes. If this factor is larger
than one, it means that amplification occurs for this integration scheme. A value smaller
than one corresponds to to energy dissipation. Table 6.1 shows the maximum amplification
(or dissipation) factor during the first 10 seconds of the integration. Note that in this table,
we have subtracted one from the amplification factor.

Integrator | Accuracy E
2-107\ 2-109\ 2101
Forward Euler O(At) 3,925 71,96 268, 7
Backward Euler O(At) -0, 764 —0,9998 | —0,9999
Verlet O(AY) 1,091-1073 9,432-10~* —0,186
Leapfrog | O(At?) 2,127-107° 6,197-107* —0,207
Newmark | O(At?) —1,733-107° | —2,011-1073 | —0,0332
BDF3 | O(A#) —5,557-10~% 0,1186 2,401
Radau3 | O(At?) —2,676-107° 5,603 -1073 —0,745
RK4 | O(AtY) 8,160 - 10 0,212 1010
Radau5 | O(A#%) 1,581-107° 4,333-107% —0,116

Table 6.1: The maximum energy amplification / dissipation factor after 10 seconds for differ-
ent integration schemes.

Clearly, the explicit Runge-Kutta methods are unstable and are of no use for stiff problems.
The result of Forward Euler can be seen in Figure 6.3. Note that the height z of the ball
is proportional to the total amount of gravitational energy. After each bounce, the total
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amount of energy is increased. Interestingly, the Verlet and Leapfrog scheme are also explicit
methods but have a lot of energy conservation. However, if E = 2-10! (i.e. we consider a
steel half-space), then the disadvantage of the explicitness of both methods becomes visible.
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Figure 6.3: The energy of the ball as a function of the time, using the instable Forward Euler
method.

For implicit methods such as the Radau methods, numerical damping will generally occur.
This effect, however, is small if a method of high order is combined with a small time step.
However, this is computationally expensive because many function evaluations will be needed.

The overall best integrator seems to be the Newmark-beta method. It is energy conserving
similarly to the Verlet and Leapfrog method, but is also very stable, even for very stiff
differential equations; this is because unlike the Verlet or Leapfrog method, the Newmark-
beta method is implicit. Even if the half-space is made out of steel, only a small amount of
numerical damping (or amplification) is created for the Newmark-beta method.

6.4 Using CONTACT to solve the problem

It is interesting to see if this problem can also be solved by using CONTACT. Instead of
using equation (4.19) to determine the contact force, we could also compute the normal force
by using CONTACT. Using this we can compare the solution with the exact solution for the
Hertz problem, and also see if the properties of each numerical method still hold.

For CONTACT one of the two options should be specified, either the contact force or the
penetration. For our problem we are interested in the second option. The surface of the ball
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is discretised on a grid [X,Y]. The height Z;; of the sphere at surface element (X;;,Y;;) can
easily be computed

Zi; :Rf\/R27(X3j+Yi§)+z (6.10)

As before, z denotes the rigid height of the ball, measured from its lowest point at z = y = 0.
Note that equation (6.10) is only valid if Z;; is real. If it is not real, then the line (X;;,Y;;, 2)
does not intersect with the surface of the ball.

If a value Z;; is negative, then this can be seen as the penetration of the ball in the surface.
The penetration Z can be supplied to CONTACT, together with other required variables
such as the elasticity coefficients of the materials and the size of the domain. Using this,
CONTACT is able to compute the contact force as well as the deformation of the elastic
surface outside of the contact area. It is very important to realise that this deformation is
the stationary solution of the elasticity equations. Here, the inertia term pi of the elastic
half-space is neglected. Hence, the resulting deformation as function of space and time is the
solution of the quasi-static elasticity equations.

0.8

0.6
0.4
— Verlet (Hertz)
oo N /| T Verlet (CONTACT)
Forward Euler (Hertz)
””””” Forward Euler (CONTACT)
or — Radaus5 (Hertz)
Radau5 (CONTACT)
0.2 | | | | | 1 | l | |
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s)

Figure 6.4: Comparison of the exact Hertz solution and the CONTACT solution using the
Verlet, Forward Euler, and the Radaub numerical integration scheme.

We denote the contact force as function of the height z by F,(z). Note that for z > 0 the
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surface is still in its undeformed state, hence F,,(z) = 0. Similarly to the derivation of the
differential equation (6.3), we arrive the differential equation

—g (6.11)

The same numerical methods can be applied as before. Note that the computation of F,,(z)
is relatively expensive (unless of course z > 0, so that there is no penetration and thus
F,(z) = 0). For implicit methods we apply the Picard approach as shown before. This
usually requires roughly 5 to 10 iterations before it converges. Hence the total integration
will generally take much longer.

An advantage, however, is that by using CONTACT arbitrary shapes can be used instead of
just a ball. Furthermore, the static displacement of the surface outside of the contact area
can be computed with CONTACT.

We programmed the explicit Verlet, the Forward Euler method, as well as the implicit Radaub
method in Matlab. To compute the normal force, both Hertz theory as well as the CONTACT
approach have been implemented. See also Appendix A.2 as well as Appendix A.1 for the
Matlab code.

See Figure 6.4 for a comparison between the CONTACT method and the Hertz solution. As
one can see, applying Hertz theory will roughly yield the same result as using CONTACT
to compute the contact force. A very small difference between the Hertz and CONTACT
solution using the Verlet method can be seen, this is most due to to observation we have
made in Section 4.6; the normal force computed using CONTACT will be slightly different
than the normal force according to Hertz theory, especially if the approach is large. What is
interesting is that the Verlet integration scheme behaves much better than the Forward Euler
scheme; even though both schemes are of order O(At) accurate and require a single function
evaluation per time step, the total amount of energy seems to remain nearly constant for the
Verlet scheme. We have discussed this phenomenon in Chapter 5. The Radau5 method is of
O(At5) accurate so it is not surprising that the this scheme yields the best results.

By using CONTACT to compute the normal force, the deformation of the half-space is also
computed at each time step. This deformation is quasi-static; the half-space instantaneously
gains speed at the moment of impact. This deformation just after the impact can be seen in
Figure 6.5.

6.5 Conclusion

We shave shown how a very basic one-dimensional second order ordinary differential equation
for the rigid height of a falling sphere can be derived using Hertz theory. Multiple time inte-
gration schemes have been applied to solve this differential equation. Explicit time integration
schemes such as Forward Euler tend to become unstable. The amplification of Forward Euler
is of course well known and understood, but we have seen that especially during contact the
total amount of energy increases significantly. An exception is the Verlet method, which is
very energy conserving. The disadvantage, however, is that it is only of order O(At) ac-
curate. Implicit methods turned out to be most stable integration schemes. In particular,
we favour higher order implicit schemes such as the Radaub method, due to their stability,
energy conservation, and convergence rate.
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The same problem has also been solved using the results of CONTACT instead of Hertz

theory. By specifying the penetration (which is equal to §(z,y,t) = h(z,y)+2(t)) CONTACT
is capable of computing the normal force Fj,. Additionally, this approach resulted in the
quasi-static deformation of the elastic half-plane.
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Figure 6.5: The quasi-static deformation of the surface at a certain point in time, computed
using CONTACT.
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Chapter 7

Finite difference discretisation of
the elasticity equations

The previous chapter illustrated the basics of dynamical contact problems involving the com-
putation of the approach as function of time. In most contact problems, one is not only
interested in the approach of the two contact problems, but also on the dynamic change of
shape of both objects.

In Section 6.4 we have seen that using CONTACT combined with a time integration scheme
to solve (6.3) also results in the deformation of both objects as function of time and space.
However, this deformation is computed by solving the quasi-static elasticity equations, i.e.
the inertia term pii is ignored. Hence, deformation occurs instantaneously in that model.

In reality, deformation does not occur instantaneously. Consider a moment ¢ right after
the moment the sphere touches the elastic half-plane. At an arbitrary point (z,y) in the
contact area, a pressure p(x,y,t) pointing downwards will be exerted at the top surface of
the half-plane. Because of the boundary condition for the traction r = ¢ - n, we in particular
have o,,(x,y,0,t) = —p(z,y,t). This pressure that has arisen at the boundary, however,
propagates at a finite speed because of the wave-like nature of the elasticity equation. Hence
for each § > 0 we have o,.(x,y,—&,t + §) = 0 for some small € > 0. Hence, the partial
derivative % is a very large negative number near the boundary, and 0 everywhere else. As
a result,

0%u, 100,z 00sy 00,

o2 pl| Ox Oy ox

+F (7.1)

is a very large negative number for boundary elements at the contact area.

The result of this observation is that the surface of the half-space almost instantly gains speed
at the moment of impact between the sphere and half-space. This phenomenon happens at
a very small time scale. Computing the deformation using the quasi-static approach we have
discussed in Section 6.4 therefore seems reasonable. The quasi-static approach does ignore
the waves that occur, though.

In this chapter, we will not ignore the inertia and try to solve a very similar problem accurately
by using a finite difference discretisation for the system of equations (3.13). A cylindrical

41
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rigid object will be dropped upon an elastic half-space and we are interested in computing
the deformation that occurs, especially the behaviour near the contacting boundaries.

Note that in this chapter, we only consider the deformation of a half-plane which happens
solely around the contact area. Deformation that happens on a global scale will be discussed
in Chapter 8. The finite element method can also be applied to solve (3.13) instead of
the finite difference method. This would be a good alternative if the contacting bodies in
undeformed state have more complex shapes, i.e. we do not consider a perfect sphere/cylinder
or a half-space.

7.1 Formulation of the continuous problem

7.1.1 The problem

Consider a solid cylindrical object of length L and radius R that drops on an elastic cubical
body. The body is very large in all directions so that it represents a half-space but remains
finite. At all times, the y-axis is parallel to the axis of the cylinder. The cylinder can only
move in the z-direction, which is parallel to the direction of gravity. A positive value of z
corresponds to a positive height, a negative z means that there is penetration at the surface.

Note that for this 3-dimensional problem, the height of the surface of the cylinder is only a
function of x and time t. The y direction is not of importance for the problem at all. The
deformation as function of y (with « and z fixed) will be constant. Hence, we consider the
problem to be only two dimensional, ignoring the y direction from now on.

We suppose that the elastic body in its undeformed state is a rectangle of width h, and height
h.. The cylinder (or now circle in 2 dimensions) is centered at x = 0. We define our domain
) to be equal to

Q={(z,2) : —hgy/2 <z < hy/2,—h, < z <0} (7.2)

In this domain, which represents the object in its undeformed state, the elasticity equations
hold. The deformation w,(x, z,t) and w,(x, z,t) represent the translation of the particle at
position (z, z) in the undeformed object after time ¢.

Furthermore, we define the four boundaries of the domain:

[y = {(2,0)] = hy/2 < < hy/2}
Ty = {(—hy/2,2)| — h. < = < 0}

T3 = {(hs/2,2)] = h: < 2 <0}

Ty = {(2s—ho)| = ha/2 < 2 < hy/2)

the top boundary)

the left boundary)

the right boundary), and
the bottom boundary)

(7.3)

~ ~~ ~~

See Figure 7.1 for an illustration.

For each boundary, different boundary conditions can be described. We assume that the
object is fixed at the left, right and bottom boundaries, i.e. the particles at these boundaries
stay in their position. This corresponds to the boundary condition u,(x,t) = u.(x,t) = 0 for
all x = (x,z) € T UT'3 UTy. The cylinder will touch the surface at the top boundary I'y,
hence we will describe boundary conditions for the stress at this boundary. The pressure at
I'; will be computed using Hertz theory or can be computed using CONTACT.
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Figure 7.1: The domain 2 and its boundaries.

7.1.2 Computation of the top boundary condition using Hertz the-
ory

Let z.(t) be the height of the cylinder, measured from its lowest point at 2 = 0 (so the axis of
the cylinder has height z.(¢) + R). The approach is therefore §(¢t) = —z.(¢). Then, by Hertz
theory, the maximum pressure is equal to

2 o(t)
=—FE"/—*~ 7.4
Do o R (7.4)
assuming that §(¢t) > 0, i.e. there is penetration. Here, E* = % with E and v being the

elastic and shear modulus of the surface, respectively. Next, the contact radius a is computed.
This is simply equal to a = /R2 — (R — 6(t))2 by the Pythagoras theorem.

Hertz theory now describes the pressure distribution p:

[\ /2
1-—= f <
plz) =P ( a2> or lz] < a (7.5)
0 for |z| > a

This pressure distribution is then set as our boundary condition en = [0; —p], which corre-
sponds in the 2D case to the boundary conditions o135 = 0 and o33 = —p.

As shown before, the contact force per unit width is given by

4
F,= gE*J%l/%mx{(s, 0}3/2 (7.6)

And therefore, by Newtons second law, the height z of the cylinder must satisfy the following
differential equation:

F,
e = — — 7.7
ze m g ( )

where m is the mass of the cylinder per unit width, which is equal to m = 7R?p, where p is
the density of the cylinder.
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7.1.3 Formulation of the differential algebraic equation

Using the pressure distribution p for our boundary condition at I'y, we can describe the
mathematical formulation of the problem. As described in Chapter 3, the linear elasticity
equations can we written as

2 2 2

0 0%u, 3}
Yq +()\+G)7u+Fq =p ol for ¢g,r =1,3 (7.8)

¢ 0x? 04z, ot?

where u; = u, is the deformation in the z-direction and u, = ug the deformation in the z
direction. In this formula, both the stress and the strain components are eliminated. This
formulation, however, is not recommended since the boundary condition at I'; is described
using 013 and o33, which were eliminated from the differential equation.

Therefore, we will instead take a look at the elasticity equations in their usual form. Combined
with the boundary and initial conditions, we get

2
8 ug  Oogn

Por = o, + F, for (z,2) € Q,t>0,¢=1,3
ou ou,
eqr:2<8x3+axq> for (z,2) € Q,t>0,q,7=1,3
Ogr = AennOgr + 2Gegy for (x,2) € Q,t >0,q,7r =1,3 (7.9)
Uy = Uy =0 for (z,2) e ToUT,LUTy,t >0
013 =0 for (z,2) €T1,t >0
o33 = —p(x, z.) for (x,2) € Fl,t >0
Ug(z,2,0) = uy(z,2,0) =0 for (x,y) €

where Q = QU (T UT2 UT3UTy) = {(z,2) : —hy/2 < x < hy;/2,—h, < z < 0}. Einstein
convention is used for the n parameter. This system is called a differential algebraic equation,
because some parts are differential equations while others are algebraic equalities. In this
case, the first equation contains a time-derivative, the second and third do not. The last two
equations are instantaneous and must be satisfied at all times.

Furthermore, we also have the ordinary differential equation for the height of the ball. At
t = 0, the ball has a height 2y and has no vertical speed.

4
5. = —FE*RY?*max{0,—2.}*/> =g fort >0

3m
2.(0) = 20 (7.10)
dz.
a0 =0

Note that differential algebraic equation (7.9) and differential equation (7.10) are connected,
since the boundary condition at I'; depends on the height of the ball.
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7.2 Discretisation

If the geometry of the object in its undeformed state is not too complicated, the problem can
be discretised by using the finite difference method. When used together with a good time
integration scheme, this will result in a good simulation of the deformation of the object.

(1,3) (2,3) (3,3) (4,3)
11.2) *(2,2) *(3,2) T4.2)
(1,1) 2.1 NER) (4,1)

Figure 7.2: The discretisation of 2.

For our problem, the domain of computation is a rectangle. There are many ways to discretise
this domain. We will consider a straightforward discretisation; a uniform grid where all
components (u,, u,, 011,013, 033, €11, €13, and e33) are defined on the same grid elements. The
disadvantage of this approach is that the accuracy might be lower at the boundary. Another
option is to use a staggered approach, where the grid elements of different components can
be defined at different positions in the domain.

The uniform grid has m, and m, elements in the x and z direction. At each row and column,
we start numbering at 1, which is the element at the left or bottom boundary. The mt
and m'" element is located at the right and top boundary, respectively. Therefore, we have
grid width Az = mtil and height Az = mi:jl. The position p of each grid point (i,5) has
coordinates

2 (7.11)

As an example, suppose that h, = 6,h, = 3, m, =4, and m, = 3. Then Az = % =2 and

Az = % = % See figure 7.2 for an illustration.
Note that the usual global ordering is used to map a grid point (¢,5) to point I, where
1 < T < m = mgm,, so that the example in Figure 7.3 can be represented using global
coordinates by

Suppose the Forward (or Backward) Euler method is chosen as our integration scheme. The
first step is to rewrite (7.9) as a system of first order derivatives. Define v = %—7;, then we
have differential equations
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©) *(10) *an (12)

Figure 7.3: The discretisation of €2 using a global index.

0
%:% for (z,2) € Q,t > 0,9 =1,3
1/0 Ou,
eqr = = ( Sy ) for (x,2) € Q,t > 0,q,r = 1,3
2 \ 0z, ' O, (7.12)
Ogqr = Aenndqgr + 2Geqr for (z,2) € Qt > 0,¢,7 = 1,3
B'U 1 BU n
oy ( D +Fq) for (#,2) €1 >0, =1,3
The equality
1 auq 8”7’
R 7.13
Cor =3 (83:,« * axq> (719)
can be discretised using standard central differences. For the (i, )™ component of the grid,
we have
(U1)¢+1,' — (ul)i—lv'
(enn)iy = ]2A$ :
1 (U1)i G+l — (Ul)ij—l (u3)i+1 Jj (u3)i_1 J
i = iR = 2 2 2 : 714
(e13)ij = (ea1)i,; 2 ( 2Az * 2Ax (719
o (ua)ijrn — (us)ij—1
(ess)iy ~ 2Az

These approximations are valid and of second order accuracy for interior points (i, 7). For
the boundaries, the formulation is no longer valid. A possible fix for this is to use one-sided
differences instead. For example, at the left boundary we can use

(u1)2,5 — (u1)1,

e (7.15)

(e11)1,5 =

However, this is only of first order accuracy. Usually, this is not a problem if the discretisation
at internal grid points has a higher order of accuracy. However, for better accuracy, a higher
order one-sided difference scheme can be used instead. As an example, for the left boundary
we can use the numerical approximation

=3(u1)1,; +4(u1)2; — (u1)s
Ax

(611)17]‘ ~ (716)
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which is an approximation of (e11)1,; = ( g%)l,j of second order accuracy. Using this scheme
for the boundary points and central differences for the internal points, the total discretisation

will therefore be of second order accuracy.

The general disadvantage of using one-sided difference schemes is that the corresponding
discretisation matrix will no longer be symmetric. Hence, Cholesky decomposition and other
tricks that rely on the symmetry of the matrix can no longer be used to solve the linear
system. However, the matrix corresponding to equation (7.9) is not symmetric as we will see
shortly, regardless of the symmetry of A. A one-sided difference scheme at the boundary can
therefore easily be implemented without causing more problems.

These equations for (e11); j, (€13)i,;, and (es3); ; for 1 <i < my,1 < j < m, form a system.
This system is linear and can therefore be written as e = Bu. In this expression, B is the
matrix that contains the central (and one-sided at the boundary) differences coefficients, and
e = [e11; e13; e33] is the vector that contains all the strain components.

The part
Ogr = Aennlgr + 2Geyy (7.17)

can directly be written in vector notation as ¢ = Ce. ¢ is the vector that contains all the
stress components: o = [011;013; 033].

Importantly, the equation

Ouq

5 = (Vae  ¢=1,3 (7.18)

is only valid for internal grid points (i, j) since the elasticity equations and therefore also the
discretised equations (7.14) are only valid in . Let

Qin ={(4,7),1 <i<my,1 <j<m,,(i7) is an internal grid point} (7.19)

be the set of internal grid points. We let m;, denote the amount of internal grid points. Then
equation (7.18) corresponds to < (ug);; = (vg)i; for (i,5) € Q. Define 1y and 3 be the
vectors of length m;, that contain the internal components of u; and ug, respectively. We do
the same to define v; and v3. Then (7.18) can simply be written as

d
where w = [u1; 03] and v = [vy;v3].
Lastly, the part
Ovg 1 (0ogm
—_— = - F, 7.21
gt p (azn * q) (7.21)

is also only valid for internal grid points. Using central differences as before, one can approx-
imate this term:

8 1 ag i,j — O i,j— ..

&(Ul)i,j %; N +( 13) JHQAZ( 13)ig1 +F1(%J)}

9, 1T(os1)it1,j — (031)i-1; | (933)i,5+1 — (033)
(03)13 ~ +

ot ’ p 2Ax 2Az

[(011)¢+1,j — (o11)i-1,

(7.22)

Ll oy Fg(i,ﬁ}
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Let v = [vq;v3] and F = [Fy; F3]. Then this can be written as %\7 =To+F.

Hence, the discretised differential algebraic equation can be written as

d
a{lk == ‘D/k

e’ = Bu¥

ot = Cer (7.23)
d

+boundary conditions

For each grid point at the boundary, two boundary conditions should be given for a total of
2(m — myy) conditions.

7.2.1 Implementation with the Forward Euler approach

The Forward Euler method is applied by setting

ﬁk+1 — ﬁk + At\ofk

7.24
VR = ¥F 4 At(To" + FF) (7.24)
By combining everything, we arrive at the following linear system:
I 0 0 0\ [u\"" uk 4+ Atvk
-B I 0 0 e 0
o 1 o|l|ls| = 0 (7.25)
0 0 0 I)\v vF + At(To® + FF)

which we will notate as Ax*+1 = £k,

Note that the identity matrix at the first block row is only described for internal grid points
(7,7). For boundary points, the diagonal element at the corresponding row is 0 by default.
Boundary conditions should be added at this row.

To illustrate this, consider a similar 1D situation where m, = 4. Then X, = {2,3}. Suppose
that the stress at the boundaries is given and equal to 1 at the left boundary and —1 at the
right boundary. Then the first four rows of the equation are

0000 100 0 1
0100 0000 ki1 | Ul + Atoh
0010 0000 T uk Ak (7.26)
0000 000 1 ~1

The first row here simply sets the stress (013“;' 1)1 equal to 1. The second and third row

represents the time integration for elements u% and u%. Lastly, the fourth row makes sure
that (054 1)4 is equal to —1.
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7.2.2 Implementation with the Backward Euler approach

The Backward Euler method is very similar:

ﬁk+1 _ ﬁlc + At\O’kJrl

7.27
‘ollc-i-l _ ‘ofk + At(T0k+l + F/c-i-l) ( )

k+1

By moving the v**! and ¢ to the left side, the following linear system can be derived:

k+1 k

I 0 0 —AtI u u 0

—B I 0 0 e e 0
0 ¢ I 0 ol o] TA 0 (7.28)
0 0 AT I v v vk 4 AtFRTL

or AxF*t1 = x¥ + AtfF+1. If, furthermore, the body force F is constant (zero in many cases),
the right hand side does not depend on time step k£ + 1. In that case, the solution of the
linear system can be computed directly and is equal to x*+! = A=1(x* 4+ AtfF).

7.3 Dynamic boundary conditions

Since the boundary condition at I'y depends on the height of the cylinder, (7.9) and (7.10)
should be solved at the same time.

As an example, for Backward Euler we have

sz“ = zf + Atvf“

oP T =k L At (4E"F1[€1/2max{07 —zf“}B/Q — g) (7.29)
3m
This can be written as
I 0 0 —AtI 0 0 u\ 7t fu” 0
-B I 0 0 0 0 e e 0
0o -C I 0 0 0 o I LA 0
0 0 AT I 0 0 v Tl v 0
0 0 0 0 1 —At Ze Ze 0
0 0 0 0o 0 1 Ve Ve - E*RY?max{0, -2 T1}3/2 — ¢
(7.30)

or AxF*t1 = x* + f*+1. The only non-linear term is contained in the last equation. We know
that if z¥*1 > 0, i.e. the ball will not touch the surface at time t**1, then the linearity of
(7.30) drops out of the system. In that case,
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A I 0 0 —AtT 0 0\ ' u®

e B I 0 0 0 0 0

o 0 -Cc I 0 0 0 0

v I ) 0 —AT I 0 0 vk (7.31)
e 0 0 0 0 1 —At 2k

Ve 0 0 0 0 0 1 vk — Atg

Difficulties occur when zF*1 < 0, i.e. there is penetration. x**' can then no longer be

explicitly stated as function of x*. It is possible to use the height z¥ instead of 2¥*! for (7.30).
However, this changes the time integration scheme and causes stability issues. Therefore, one
should use a implicit solver for this system. This deals with both the non-linearity of (7.29)
and the not yet known right hand vector f*+1.

The following algorithm is an example on how to apply Picard iteration for this problem. Let
xk = [uk;e; ok vk 2k k).

Algorithm 7.1 Applying the Backward Euler method using Picard iteration

1: Compute initial condition x°.

2: for k=1tondo > Loop over each of n time steps
3: Set x = xF~1 > Initial guess at each time step
4 repeat

5 Compute vector f(x) as in (7.30).

6 Solve Ax* = f(x) for x*.

T: Set error = ||x* — x|| for x*.
8

9

Set x = x*
until error < ¢
10: Set x*F = x.
11: end for

Here, n is the number of iterations. If this method converges, then Ax*+1 = f ~ f**+1 50 that
we have approximated the solution of the non-linear implicit system.

7.4 Numerical results

The finite difference discretisation of the elasticity equation with dynamic boundary condi-
tions has been programmed in Matlab. Both the Forward Euler as well as the backward Euler
have been applied. For the Backward Euler method, algorithm (7.1) has been applied. See
Appendix A.3 for the Matlab implementation.

A uniform mesh with m, = 40 and m, = 30 elements has been used to discretise the half-
plane. This matrix A as in (7.30) for this very small problem is already roughly 12000 x 12000
large. In generic 3D situation this would be even larger. As a result, computing solution of
Ax = v is computationally very expensive. This is even worse for implicit methods that
require the use of an iterative process at each time step. If CONTACT is used to compute
the pressure instead of applying Hertz theory, computing the right hand side f would also
require much more computational power. In short, we are severely restricted on the amount
of mesh points.
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In the implementation we have used to different values of At. We use At = 103 for those
time steps j where 2J7! > 0, i.e. there is no penetration yet, hence we can solve (7.31)
instead of the implicit (7.30). If 22=! > 0, i.e. there was penetration at the previous time
step, we use At = 10~4. There are two reasons for the dynamic time step. First of all, contact
happens very quickly and the contact force and pressure therefore change rapidly as function
of the time. It is therefore important to observe this in great detail. Additionally, for implicit
methods, the Picard iteration can break down if either the time step or the Young’s modulus
of the material is too large.

In Figure 7.4 the deformation of the half-plane can be seen just right after impact. Backward
Euler has been applied to get these results. The impact of the sphere can clearly be seen and
the boundary of the half-plane follows the boundary of the cylinder perfectly. During the
impact, waves appear near the boundary which slowly propagate to the rest of the half-plane.

There are some problems that occur, though. As mentioned before, the algorithm is compu-
tationally extremely expensive if a fine mesh for the elastic half-plane is used. The accuracy
of the discretisation is therefore very limited. Furthermore, approximately halfway during
impact a gap between the half-plane and the cylinder emerges when the elements at the
boundary of the half-plane continue to move downwards but the cylinder has reached its low-
est point. This is an unrealistic phenomenon and might point to a problem in the formulation
of the pressure at the boundary.

Another major problem is that if the materials is made of a stiff material like steel, the
iterative process never converges. A similar problem occurs in Chapter 10. There a solution
is proposed which might also be applied on this problem.

The explicit Forward Euler turned out to be unstable. Right after the impact between the
cylinder and the half-plane occurs, the elements at the boundary of the half-plane jump to
random directions. This instablity starts at the contact area and slowly propagates to the
rest of the half-plane. This phenomenon can be seen in Figure 7.5.

It appears that there is a hidden CFL condition needs to be satisfied in order for the explicit
time integration to be stable. This will be discussed for a similar differential equation in
Section 8.3.3.

7.5 Conclusion

In this chapter we have shown how the finite difference method can be used in order to
discretise the elasticity equations. Central differences (except near the boundary) can be used
to approximate the spatial derivatives. To solve the differential algebraic equation, a time
integration scheme has been combined with the algebraic relations between the displacement
and the strain as well as the relations between the stress and the strain into one single system.

A similar problem as in Chapter 6 involving a cylinder falling on an elastic half-space has
been solved using this approach. Explicit time integration schemes break down quickly, but
implicit schemes like Backward Euler combined with a Picard approach can result in fairly
realistic deformations. However, this approach is computationally extremely expensive, can
result in unrealistic scenarios, or even breaks down in the iterative process for rigid materials
like steel.
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Figure 7.4: The deformation of the surface just after the impact of a rigid cylinder, using
Backward Euler as integration scheme.
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Figure 7.5: The deformation of the surface just after the impact of a rigid cylinder using the
instable Forward Euler as integration scheme.
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Chapter 8

Global deformation of a bridge

In the previous chapters, we have discussed the contact dynamic of an object falling on an
elastic half-plane. The half-plane itself is fixed and does not move as a whole. Deformation
only occurs strictly around the contact area. This is what we call local deformation.

In this chapter, we will discuss the global deformation of a bridge. Consider an elastic bridge of
length L with an object exerting a force downwards. Not only will this cause local deformation
of the beam around the initial point of contact as we have discussed previously, the whole
beam will also deform as a whole. This is what we will describe as global deformation.

The difference between this situation and the problem of the same object exerting a force on
an half-plane is hidden in the boundary condition at the bottom of the bridge and half-plane.
For the half plane, we have the boundary condition 0 = lim,_, . u(z,y,t) for all z € R and
t > 0. That is, particles far away from the contact area are not capable of moving. Particles
at the bottom of a bridge, however, are not fixed to anything. But we do know that there is
no external force at the bottom of the bridge. This can be translated to the traction boundary
condition ¢ -n = 0.

In this chapter, we will focus on the theory of global deformations. In particular, we are
interested in solving a moving load problem, such as a train riding on a bridge. The force
of the train exerting on the bridge differs with respect to both place and time. The bridge
will deform globally as a train moves over it. To compute this deformation, two different
approaches will be discussed; the discrete approach and the modal approach.

8.1 The 1D dynamic beam equation

Consider an elastic beam (such as a bridge) and suppose a force is being exerted on the top
of this beam. The resulting deformation can be computed by solving the elasticity equations
using an approach such as described in Chapter 7.

If this beam is supposed to be long and thin, which is the case if we consider a bridge,
Euler-Bernoulli theory also becomes applicable for this problem. The Euler-Bernoulli beam
equation is a simplification of the elasticity equations and describes the deformation of a beam
as function of space and time. Shear deformation is being ignored and the solution is only
accurate for long thin beams. More complex (Timoshenko) beam theories have been developed

55
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that account for these problems, but we will solely focus on the simpler Euler-Bernoulli beam
equation [15].

Euler-Bernoulli theory assumes that particles in the beam cannot move in the x direction.
Additionally, it is assumed that the vertical displacement is constant for particles at the same
z-coordinate; the effect in the z direction is being ignored. As the result, the displacement
u = u, described by the beam equation is only a function of x and ¢. The beam equation is
given by

2 27_L 2u
2 <E(ﬂc)1(m)ng> = @2 4 plat &

Here E is the elasticity modulus of the material of the beam. The parameter p(z) describes
the mass per unit length and p corresponds to the force per unit length (their 3D counterparts
being density and pressure, respectively). I is the second moment of area of the cross section
of the beam. This property reflects how the points of an object are distributed with respect
to a certain axis L and is defined as

= 22 VA .
I(z) = /A e (8.2)

in the one dimensional case, or

= z 2 z .
I(z) = / /A 02 (8.3)

in the two dimensional case. Here A(x) is the (either one or two dimensional) cross section
of the beam at x, and d is defined as the distance from this point to the axis L. For the
beam, this axis L is simply the axis y = z = 0. If the cross section of the beam has the same
distribution and size for each x € [0, L], then the second moment of area I(x) = I is constant.

When assuming the beam is homogeneous, then E.,I and p are constant and therefore the
following equation can be derived:

0tu 0?u
EI@ =P +p(z,t) (84)

8.2 Boundary and initial conditions

Equation (8.1) is a partial differential equation which is of fourth order with respect to the
x variable, hence we need 4 spatial boundary conditions. Various boundary conditions are
possible for this problem and the choice depends on the problem. A reasonable assumption (if
we see the beam as a bridge) is that the beam is fixed at = 0 and « = L. In this situation,
vibration can only occur in = € (0, L). Outside of this area, the rails are fixed to the ground.

Both the displacement u and the angle g—g should be zero at the boundaries:

ou
w(0,8) =0 = 2%00,1)

g;” (8.5)
w(Lt) =0 = 2408
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These conditions are called clamped boundary conditions. Another (more realistic) possibility
is to consider a simply supported beam. In this situation the bending moment M = —ET %
is assumed to be zero at the boundary, instead of the slope of the beam. This boundary
conditions is satisfied if the beam is free to rotate at the boundaries and does not experience
any torque. Usually, this torque is insignificant and may therefore be ignored.

The corresponding boundary conditions for this case are, since both E and I are assumed to
be non-zero:

2
u(0,0)=0=24(0,1)
62?” (8.6)
u

Furthermore, we have a second derivative for the time variable, so that we need an initial

condition for both the displacement u and the velocity % of the displacement. Usually, we

assume the beam is in rest at ¢ = 0, hence u(z,0) = Ftu(z,0) = 0 for all z € [0, L].

8.3 The discrete problem

8.3.1 Discretisation of the differential equation

For a general force function p(x,t), differential equation (8.1) cannot be solved analytically. A
straightforward approach to get an approximation of the solution is by discretising differential
equation (8.4). Both the Finite Element method and the Finite Difference method can be
applied for this problem. As we will discuss in Section 8.4, a modal approach is also very
effective.

0 Ax L
*——— 06— 0 —0
o T T2 I3 In

Figure 8.1: The discretisation of the beam for n = 4.

The simple geometry of a one dimensional beam allows us to apply the Finite Difference
method. In this section we will solely focus on this method, but of course a Finite Element
approach can be used instead. Suppose we use a uniform grid of n + 1 grid points in total,
which includes the grid points zg and x,, of both boundaries. The position of the grid points
are given by x; = iAxz for 0 < i < n, where Az = %

Since there is a second order time derivative in differential equation (8.4), we should first

convert it to a system of two first order differential equations. To do so, we define v = % as
the speed of the displacement of the beam. By substituting this into (8.4) and rearranging

the terms a bit, we arrive at the system of equations

ou
ot
v EI 0% p(z,t)
ot p dx*t p

(8.7)
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For convention, we denote u as a shorthand notation of u(z;,t). As shown in [18], the

fourth order derivative a‘%uf = g%‘(xj, tx) can be approximated using the following scheme:
o4 wj—o(t) — duj_1(t) + 6u;(t) — dujp1(t) + ujpa(t)
Sl (t) = -2 J ij4 J J + O(Az?) (8.8)

8.3.2 Implementation of the boundary conditions

The Dirichlet boundary conditions «(0,¢) = u(L, t) = 0 can be applied by adding the equation
u’{j = 0 and u* = 0, which corresponds to the element at the boundary z = 0 or z =
L, respectively, to the linear system of equations, similarly to our approach in Chapter 7.
Alternatively, one can simply eliminate all the terms uf or u* directly for each expression

that contains these terms.

Both the boundary conditions for the clamped beam %(OJ) = g—;(L,t) = 0 as well as the

boundary conditions for the simply supported beam % (0,t) = % (L, t) = 0 are implemented

by introducing a virtual point outside the domain [0, L] and then eliminating it by using the
boundary conditions.

Consider the left boundary. We introduce a virtual point z_; = —Axz. Since at ¢ = 0 we

added the equation uf = 0 to the linear system (or eliminated uf by replacing it with zero),

we do not have a term u* , in the system. For i = 1, however, we have

gvk:—E—I uk | — dub + 6ul — 4ub + uk +lpk (8.9)
de ? p Azt p ! ’
where p¥ = p(x;,t;). The Neumann condition 2—5(0715) = 0 for the clamped beam can be
k k
17U k k

. . . . u
discretised at t = t; using central differences: —5x—, hence u®,; = uy. Therefore, we can
eliminate u* | at i = 1:

ac’t T

d EI [ —4ub 4+ Tuf — 4l +u57 1
k _{ Ug T (U3 Uy U3}+p11€ (8.10)

- Azt

8%u

Similarly, the boundary condition 3-%(0,t) = 0 for the simply supported can be discretised

k ko k
uy —2ug+u’

at t =t using -——4>—= =0, hence u* ;| = —u} + 2uf. This results in the equation
iv’f __EI —2uf + 5uk — duk 4+ uf N lplf (8.11)
dt p Azt p
After discretising, we arrive at the system of n + 1 equations
du
oy
dt (8.12)
dv _ Au+f
dt

Next, an appropriate time integration scheme should be used, such as the ones described in
Chapter 5, in order to find an approximation of the solution.
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8.3.3 The CFL condition

A very important mathematical property to consider for the discrete problem is the CFL
number and the CFL condition. If this condition is not satisfied, then information does not
propagate fast enough, creating artificial wiggles in the solution that tend to infinity, thereby
making the results useless.

The CFL condition usually occurs in parabolic and hyperbolic differential equations. Al-
though the beam equation is neither parabolic nor hyperbolic, for this differential equation
the CFL number also plays a role.

Consider a fully discretised model, where the partial derivative g—;uj (tx) is discretised using
2 k+1 k k—1
9% .y 2uj + uj

— 2

If there are no external forces, i.e. p = 0, then the discretised differential equation can be
written as

tinj —u§_2 + élué?_1 — Gu;? + 4u§+1 —uk

W= A ; A 21 4ok — b (8.14)

Note that equation (8.14) is equal to the definition of the Verlet integration method. Von
Neumann stability analysis can now be applied on this equation.

Since this is a multistep scheme, we should apply its corresponding stability theorem [16].
Let uf = g*e'¢ (i being the imaginary unit here), where g # 0 is an amplification factor. By
substituting this into equation (8.14) and expanding the exponent, we find

EIA#?

k1 i _
pAzt

g gF et [—eTHE 4 deT — 6+ 4e’t — e¥¢] + 2¢FeC — gFleE (8.15)

Dividing by gF¥~1e¥¢ yields

»  EIAt?
 pAzt g

[—e™%€ 4 40 — 6 4 4e’€ — ¢®¢] 429 — 1 (8.16)

Note that e + e~% = 2cos(£), so we can rewrite this to

9+ <—2 - F;I:Axf [—2cos(26) + 8cos(§) — 6]) g+1=0 (8.17)

Hence, there are two solutions for g. Let y = ?Aif [cos(2§) — 4 cos(§) + 3], then we find

9+

22+ /(24297 —4
=Y (2 +2y) —1—y+ o2 -2y (8.18)

Note that g is allowed to be imaginary, that is, if y?> — 2y < 0, then g4+ = 1 —y +i1/2y — y2.
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Both amplification factors g and g_ should be less or equal to one in absolute value for all
values of £. First, we note that 0 < cos(28) —4cos(§) +3 < 8, so that y > 0. If y > 2,
then y? > 2y, so that g =1 —y — \/y2 — 2y > 1 —y < —1, so that the method is unstable.
However, if 0 < y < 2, then we have

gl =1 —y+iv2y -2 = VI -y + 2y -2 = V1-2y+32 +2y —y?> =1 (8.19)
hence we have stability. Since furthermore 0 < cos(2€) — 4 cos(€) + 3 < 8 holds, we also find

_ EBIae 2 1 (8.20)
~ pAxt T cos(26) —4cos(é) +3 4 '

which is therefore the CFL condition for the fully discretised model, i.e. the Verlet method.
Note that this CFL condition does not only depend on which integration scheme is used, it
also depends on how the fourth order derivative % is discretised. If instead of (8.8) a better
approximation is made, the coefficients for the CFL condition can differ.

This is a fairly strong restriction. If the spatial mesh is required to be twice as fine as it was
before, then the time step should be set in the order of 4 times smaller, therefore requiring
in the order of 4 times more time integration steps.

8.3.4 Implicit methods

As we have seen, explicit time integration methods can result in a strong CFL condition.
To get rid of this condition, it might be a good idea to apply an implicit scheme instead.
Consider the Backward Euler method. This integration method is unconditionally stable, so
that there is no CFL condition. Picard iteration, however, can result in problems for implicit
time integration schemes. In general, Picard iteration can stop converging if At is too large
compared to Azx.

A different iterative solver should then be used instead, such as Newton-Raphson. This solver
could be combined with a line search algorithm so that it will converge more often.

For the implicit Backward Euler method, we can compute the solution analytically if we
suppose that f¥+1 is known beforehand. A single Backward Euler step is given by

u" !l = uf Aty

vk+1 — vk 4 At[Ak—'rl + fk+1] (821)
we define z" = |u”; v”|, this system can be rewritten as
If defi k k. vk, thi b i
2" = zF 4 AtBzM  Atght! (8.22)

where

0 I 0
B = <A 0) and ght! = <fk+1) (8.23)
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k+1

Therefore, z can be computed analytically:

2" = (I — AtB)7'(z" + Atghth) (8.24)

If the inverse of (I — AtB) is computed, then u**! and v¥*! can be computed explicitly at
each time step.

8.4 Modal analysis

In many situations, we are interested in the eigenfrequencies of the solutions of equation (8.4).
As a bridge deforms, multiple waves of different wave lengths appear. These waves are called
mode shapes. As we will show shortly, these mode shapes only depend on the stiffness and
the mass of the beam; they are independent on the pressure function p. Engineers can make
sure that the frequency of the applied periodic force does not coincide with a modal frequency
in order to prevent resonance.

In this section, we will consider a different approach to solve the beam equation. This ap-
proach makes use the mode shapes of the beam. First, we will discuss how the mode shapes
and eigenfrequencies can be computed. Then, we will show how the response of each mode
shape as the result of a pressure being exerted on the beam can be derived. Finally, the total
response of the bridge is approximated by superposing the responses of each mode.

8.4.1 Mode shapes

We are interested in the frequencies that occur in the solutions of equation (8.4). The free
vibrations of the beam are solutions of the same equation where there is no external force,
i.e. p = 0. The resulting partial differential equation can be solved using separation of

variables (also known as the Fourier method). Let v(z,t) = w(x)e***. By substituting this
into differential equation ET % = —p%, we find that v is a solution if and only if
ETw® (2)e™ = pA2w(z)e™ (8.25)

Dividing by EIe** yields the ordinary differential equation

)\2
w® (z) = E—?w(x) (8.26)
This differential equation has solutions of the form w(xz) = cos(Bz), as well as sin(fz),
cosh(Bx), and sinh(Bz). The parameter 3 should satisfy 3* = %, and therefore
A2 1/4
= —_— 8.27
5= (%) (5.27)

We write the solution w as

w(x) = ¢1 cos(Bx) + e sin(Bz) + ¢z cosh(fz) + ¢4 sinh(Sz) (8.28)
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Note that if § = 0, it follows immediately that w is a constant. It must therefore be identically
zero due to the boundary conditions. Since we are only looking for non-trivial solutions, we
can assume that § # 0.

8.4.2 Boundary conditions

For the clamped beam, we must have v(0) = v(L) = 92(0) = 2°(L). w satisfies the boundary

equation if and only if

0=v(0) =c1 +c3
0= ?(0) = fB(c2 + c4)
! ~ . (8.29)
0 =v(L) = ¢y cos(BL) + czsin(BL) + c3 cosh(BL) + cq sinh(BL)
0= %(L) = B(—c1sin(BL) + ca cos(BL) + ez sinh(BL) + cq cosh(BL))

By dividing the third and fourth equation by 3, this system can be denoted as

1 0 1

0 1 0
cos(BL) sin(BL) cosh(BL) sinh(BL) es |
—sin(BL) cos(BL) sinh(BL) cosh(BL) Cy

0 C1
L (8.30)

O O OO

or as Ac = 0. We are only looking for non-trivial solutions, i.e. solutions ¢ # 0. Such a
solution can only exist if A is singular (not invertible), i.e. det(A4) = 0. A simple computation
yields that this is equivalent to

cos(BL) cosh(BL) =1 (8.31)

Equation (8.31) has infinitely many solutions. Since cosh(8L) > 1, cos(8L) > 0 must hold.
Furthermore, since cosh(L) tends to infinity as § — oo, cos(SL) must be near zero for large
8. Therefore, the n-th solution 3, tends to +(% + n)x for n > 1 as n tends to infinity. The
solutions of (8.31) can be approximated by using a numerical method like Newton-Raphson.

The actual frequencies A, of the beam are then easily derived from equation (8.27):

EI
A = 32,25 (8.32)
p

The coefficients ¢!, for i = 1,2,3,4 can be found by finding a non-zero vector c, in the
nullspace of A, i.e. Ac,, = 0, using the corresponding value of /3,,. Note that Rank(A) > 3
and equality holds if and only if (8.31) is true, so that this vector is unique up to a scale
factor.

For this problem with clamped boundaries, w,, can be computed analytically. After some
computation we find the following expression:

wp () = cosh(Brx) — cos(Bnx) + ky sin(Brx) — ky sinh(B,x) (8.33)
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and any multiple of this is also a solution. In this formula k,, is defined as

B sin(f, L) sinh(5, L) (8.34)
" cos(BnL)sinh(B,L) — sin(B, L) cosh(B, L) ’

The functions w,, are called the mode shapes of the beam with corresponding frequencies A,,.
As an example, suppose E = I = p = L = 1. Using Newton-Raphson to solve (8.31), we find
the following first 5 values of 5, and A, as in Table 8.1. The second column contains the
approximation of 3, given by %(% +n)w.

Bn (G )T | A

4.73004 | 4.71238 22.373
7.85320 | 7.85398 61.672
10.9956 | 10.9955 120.90
14.1371 | 14.1371 199.85
17.2787 | 17.2787 298.55

U W N3

Table 8.1: The first 5 frequencies of the clamped beam using E =1 =p=L=1.

As one can see, the approximation %(% +n)m converges very quickly to the value of 3,,. Note
that 8 = 0 also satisfies (8.31), but this corresponds to a zero modal function. Furthermore,

ET

since A\, = (2 =, we can ignore negative values of n too.

In Figure 8.2 the first five mode shapes are shown for the clamped beam.

From the boundary conditions for the simply supported beam, we find

OZ’U(O) :Cl+03
2
= 0 = P+ a)
0 =v(L) = ¢1 cos(BL) + cosin(BL) + ¢3 cosh(SL) + ¢4 sinh(BL)
0%
© 02

(8.35)

0 (L) = 52(—01 cos(BL) — cosin(BL) + ¢ sinh(BL) + ¢4 cosh(BL))

It follows directly from the first two equations that ¢; = ¢3 = 0, since (8 is assumed to be
non-zero. The third and fourth equation yield 0 = c4(sinh(BL) + cosh(BL)) = c4e’%, hence
¢y = 0. Therefore, w(x) = cosin(Bz). For non-trivial solutions we must have c¢o # 0, and
therefore sin(BL) = 0, i.e. L is a multiple of :

nm

8.4.3 Orthogonality of the mode shapes

An important property of the mode shapes for both the clamped beam as well as the simply
supported beam, is that they are orthogonal. To prove this, we will first proof the following
important Lemma.

Lemma 8.1. For two mode shapes w; and wj, either for the case with the clamped beam or
the simply supported beam, the following equation must hold:
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Mode shape 1 (p = 4.73)
Mode shape 2 (P = 7.8532)
157 Mode shape 3 (P = 10.9956)
— Mode shape 4 (f = 14.1372)
~ Mode shape 5 (P = 17.2788)

Figure 8.2: The first five mode shapes of the clamped beam.

L 64
/ EI& T ;dx (8.37)
0
Proof: We integrate by parts twice. We have
L 4 L
0*wy 3w; Ow;
El—w;dx = |EI EI e
/O ozt T T { } /0 023 Ox
2, (8.38)
:{EI } {Ela : 811@} / EI wza wjd
or ox?

The first term is zero since w;(0) ( ) = 0. For the clamped beam, the second term is

also zero because 087;): 1(0) = 0(;; 1(L) = 0. Additionally, for the simply supported beam, this

. . 92 .
term is zero as well since %(L) 0.

It now follows directly that
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L 4, L 200 9201
/ Ela wle: Ela w; 0w

0 ax4 0 81'2 5352 (8 39)

L 2 2 L 4 '
0%w; 0°w; 0*w;
= EI d ‘dr = EI—2w;d
/0 dz2 or2 " /0 gzt V1
which proves the Lemma. O

Using the Lemma, proving the orthogonality of the mode shapes is fairly straightforward:
Theorem 8.2. For both the clamped beam and the simply supported beam, the mode shapes
are orthogonal.

Proof: Let w; and w; be mode shapes with corresponding eigenfrequencies A; and A;. Since
both v;(x,t) = w;(z)e*it and v;(z,t) = w;(x)e it satisfy equation (8.4), we have

4, 2 ‘ ,
EI%;ZZ (z)eit = —p% [w(z)e™] = pAZw(z)e™ ™ (8.40)
and therefore
4o
EIaaxuf (x) + pA2w;(2) = 0 (8.41)

Next, we multiply by w;(z) and integrate from = = 0 to x = L:

o- | ’ (El%t’f(x)wj(x) # ohui(o)u ) ) da

- /O ’ (Elaa?f (2)wi(w) + pATwi(2)w; (w>> dz (8.42)

- /0 ’ (Eza;;‘jj (@)w;(z) + pA2w; (x)w; (a:)> da + p(A} = A3) /0 ) wi(z)w;(z)dz

L
=02 =) [ witauy @)

where we applied Lemma 8.1 for the first equation. If \; # \;, then p(A? — )\5) = 0, hence we
can conclude that fOL w;(x)w;(z)de = 0. If A; = A, then fOL w;(z)?dz > 0, since we did not
allow the zero function to be a mode shape. Therefore, the mode shapes are orthogonal. [

Additionally, since orthogonality holds, we can safely assume that the mode shapes are or-
thonormal by dividing each mode shape by its norm.

8.4.4 Modal analysis using the discretisation

Another approach is to use the finite difference discretisation matrix A to compute the eigen-

frequencies and to construct the mode shapes. The exact mode shapes satisfy w£4) (z) =
Biw(x). For a discretised mode shape, we have
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EI EI

Aw(z) ~ —wM (2) = == Biw(z) = NX2w(x) (8.43)
P P

Hence, it seems that the eigenvectors of the matrix A satisfy a similar equation as the mode

shapes. The corresponding eigenvalues seem to be equal to the square of the eigenfrequencies.

Therefore, it is worth checking whether these eigenvectors and eigenvalues are approximations

of the mode shapes and eigenfrequencies.

A VI, ne =20 | /i, ng = 200
28.7004 | 28.3771 28.6974
79.1137 | 77.1775 79.0956
155.0946 | 148.6791 155.0336
256.3792 | 240.4848 256.2257
382.9863 | 350.0241 382.6624

Table 8.2: Comparison between the analytical eigenfrequencies A and /g, where u represents
the eigenvalues of the discretisation matrix A.

As an example, consider a bridge with clamped boundaries using the elastic properties as
given in Table 8.3. The first three eigenvectors and their corresponding eigenfrequencies are
computed. This is done both by using 20 discretisation points as well as 200. Note that the
first two eigenvalues of A, both with value 1, are ignored. These eigenvalues are results of the
implementation of the boundary conditions.

nar
0.3
0.z

01

-0z

-0

04 | 1 | | 1 | | 1 | |

Figure 8.3: Comparison between the first three mode shapes and the eigenvectors computed
for n, = 20

As one can see, the eigenfrequencies correspond well with the square root of the eigenvalues
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of A. The difference between the two is clearly much smaller if the discretisation matrix is
larger. However, the approximation becomes worse for larger eigenfrequencies. An important
property to mention is that the discretisation matrix A only has n eigenvalues (or n — 2 if the
two 1-eigenvalues are ignored), yet there are an infinite amount of eigenfrequencies. Hence the
larger eigenvalues and their corresponding eigenvectors might be the combination of multiple
eigenfrequencies and mode shapes.

Similarly, we compare the eigenvectors with the mode shapes. Note that if w is an eigen-
vectors, any (non-zero) multiple is an eigenvector too. We have assumed that the mode
shapes are normalised, hence we should multiply each eigenvector by a constant so that its
interpolated function has norm 1, i.e. we set

wi=w/ AJJZW? (8.44)

i=1

04r

_04 1 1 1 1 1 1 1 1 1 1

Figure 8.4: Comparison between the first three mode shapes and the eigenvectors computed
for n, = 200. The eigenvectors seem to approximate the mode shapes perfectly.

See Figure 8.3 and 8.4. Here, the first 3 (analytical) mode shapes as well as the normalised
eigenvectors corresponding to the smallest 3 eigenvalues (excluding the two eigenvalues with
value 1) are shown. The eigenvectors clearly approximate the mode shapes fairly well. Simi-
larly to the result for the eigenvalues, the approximation is better for smaller eigenvalues and
increasing the number of mesh points n, increases the accuracy of the solution.

This approach is useful if the mode shapes and/or the corresponding eigenfrequencies are
not known beforehand. For example, if the beam is not homogeneous (i.e. E,I, and/or p
are not constant), then the mode shapes do not satisfy (8.26). In this situation, the derived
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differential equation for w might be impossible to solve analytically. To get an approximation
of the mode shapes and eigenfrequencies, one could therefore compute the eigenvalues and
eigenvectors of the discretisation matrix instead.

Note that the eigenvectors only correspond to amplitudes for certain z. To compute w;(x)
for some general x € [0, L], one may need to interpolate with respect to the discrete set
{z;]0 < i < n}. Next, the coefficients ¢;(t) for i = 1,...,m can be computed, and the modal
approximation u,, can be constructed. The eigenfrequencies A can be computed by taking
the square root of the eigenvalues p of the matrix.

8.5 The stationary case

8.5.1 The analytic solution

Assume that the pressure is independent of the time. we will write the solution of equation
(8.4) as a superposition of the mode shapes. First, we will only look at the stationary situation,
i.e. the solution of the stationary beam equation

ElI— = p(x) (8.45)
Using superposition the solution u can be written as
u(z) = Z ciw;(x) (8.46)
i=1

where w; is the i*" mode shape and ¢; € R for all i > 1. In order to compute the coefficients
¢i, we first substitute expression (8.46) into differential equation (8.45):

p(x) = EI% [Z ciw;(x)

= EIZ ciw§4) (x)
. L (8.47)
= EIZciﬁfwi(x) = chiA?wi(m)

i=1 i=1
where equation (8.26) is applied.

Next, we multiply (8.47) by a mode shape w;(x) and then integrate from z =0 to x = L. By
the orthonormality of the mode shapes, we find

L L <t
/0 p(x)w;(z)dz = p/o ;ci)\iwi(x)wj(x)da: :p;ci/\i/o w;(x)w;(x)dx

= pc; /\?

(8.48)

And therefore, the coeflicients c¢; are equal to
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L
¢ = T}\Q/o p(x)w;(x)dx (8.49)

8.5.2 Numerical approximation using mode shapes

The goal is to compute the coefficients ¢; and then approximate u by using a finite (say m)
number of modes:

m

u(T) ~ up(z) = Z ciw;(x) (8.50)

=1

The coefficients ¢; are given by (8.49). In most practical situations, the integral cannot be
computed analytically. Hence, a numerical integrator should be used.

Computing the Riemann sum is the easiest way to approximate the integral. If a better
approximation is required, the Trapezoidal rule or a higher order Newton-Cotes formula can
be used.

It is worth noting that in many cases, the pressure p(z) is only non-zero in a relatively small
region. For example, the contact area of a train wheel on a bridge is very small, usually a
few millimeters at most, compared with the length of the complete bridge, which spans 10
meter easily. Therefore, computing this integral accurately requires far less grid points than
discretisating the entire bridge using the Finite Difference or the Finite Element method.

In Figure 8.5 the first four mode shapes for a simply supported beam is shown. The black line
represents the support of the pressure function. As an example, this can represent the pressure
of a wheel on a bridge located at x = 1/2. The mode shapes represented by the dashed lines
are odd function with respect to & = 1/2. Therefore the corresponding coefficients ¢; (for
i even) are approximately equal to zero. If p is assumed to be even around x = 1/2, then
p(x)w;(x) is odd, hence ¢; = 0 for i even.

8.5.3 Error analysis

Theorem 8.3. For both the clamped beam and the simply supported beam, let p € £2(0, L)
and u the solution of the corresponding beam equation, and wu,, the approximation using m
modes. Then we have the following error estimate:

L4||P||2
”u - umHg < 37r4EIm73 (851)
Proof: By the triangle inequality,
e’} m e s} 1 L
Ju=wmlly = I3 e = 3wl =1 3 15 | [ pladuste)de | wil,
i=1 i=1 im=my1 P [Jo
(8.52)
> | [ pwstads] fuily
; PA; | Jo
1=m-+1
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0.5

— Mode shape 1 /
AL Mode shape 2 \ |
— Mode shape 3
""""" Mode shape 4 | o (
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Figure 8.5: The first four modes for a simply supported beam.

By the Cauchy-Schwarz inequality, since |lw;||, = 1, it follows that

o0 o0

1| [E 1
=< > | [ s < 3 bl
j=mr1 P2 /o j=m+1 7
= Z —zIplly = lIpll, Z AT (8.53)
j=m+1 PA; j=m+1 piET
(oo} o0
1 L*p| 1
SHpHQ Z 1 - 1 2 Z 1
o () BEL . TEL S

Since the function z — gﬂ% is a decreasing function for x > 0, we can bound the sum
S L by the integral [ Zrda. Hence

j=m+1 j7
LYply, [~ 1 LYp| I
HU 7’I.Lm||2 < 4 2 / 7(3135‘ = 472 5.3
Tt BT T mET 3z | (8.54)

Ll
3rtEIms3

m

which is exactly what was to be shown. O
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Hence, given a function p and constants £ and I, not only does the modal approach converge
to the exact solution, the error is of order O(m~3). The error can therefore by decreased by
a factor 1000 by simply taking 10 times as many modes in the approximation.

In most practical situations, we are interested in the reverse of this Theorem. The following
Corollary tells us how many modes are needed to find an accurate result.

Corollary 8.4. Given ¢ > 0, the error for the modal approximation is ||u — un,||, < ¢, if m
satisfies

eL*lpll, ) *
Proof: This is direct consequence of Theorem 8.3. O

8.5.4 Numerical validation

Consider the following (arbitrary) example. Suppose L = F = I = 1 and consider the beam
to be simply supported at both x = 0 and x = L. Let p by given by

-1 for z €[.299,.301]
p(x) =<2 for z €[.899,.901] (8.56)

0 otherwise

The solution of the stationary beam equation is approximated by using 1,2, or 3 mode shapes.
The result can be seen in Figure 8.6. The figure includes the result of the finite difference
method, using a very small mesh size Az = 1/1000.

The approximation using one mode shape is constructed using only a half sine function, and
is therefore not accurate. However, as we can see, the shape of the finite difference solution is
matched by using only 2 modes. Using only 7 mode shapes, the difference between the finite
difference solution and the modal solution cannot be distinguished in a similar graph.

See Appendix A.4 for the Matlab code implementing both the discrete approach as well as
the modal approach. Here, the finite difference solution using a very small mesh is computed
as well as the modal solution using a variable number of mode shapes.

8.6 Forced vibrations

8.6.1 The differential equation

A similar approach can be taken to approximate the solution of the time-dependent differential
equation (8.1). Now, the external force p(x,t) is also allowed to be a function of the time.
For the moving load problem, as an example, the external force moves as wave from one side
to the other. This force can trigger vibrations of different frequencies.

Using superposition, we can write the solution of (8.4) as
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Figure 8.6: The approximation of the stationary beam equation using the first 3 mode shapes.

u(z) = Z ¢i(t)w;(x) (8.57)

i=1

The difference with the stationary case is that the coefficients ¢;(t) are not necessarily constant
and can vary with respect to time. To compute the coefficients, we substitute (8.57) into (8.4):

0

Zcz'(t) wi(z)

[Bretywl (@) + pef (twi(a)] (8.58)

s

o

&
Il
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wi(x) [EIe;(t)! + pf (t)]

o

N
Il
—

Next, we multiply by a mode shape w;(z) and integrate both sides from x = 0 to z = L:
Since the mode shapes are orthonormal, we have
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g 4
/0 p(z, t)w;(z)dx —/ Zwl EIcl( )B; + pc; (t)} dz

L
- Z [Blei(t)5 +PC§/(t)}/ wi(2)w; (x)dx (8.59)
i=1 0

= ElIc;(t)B] + pcj(t)
The coefficients c; therefore each satisfy an ordinary differential equation. It is important

to note that the differential equations corresponding to different coefficients ¢;(t) and ¢;(t)
(i # j) are independent of each other.

8.6.2 Numerical approximation using mode shapes

Similarly to the stationary case, the solution of (8.1) can be approximated by using m modes:

u(z,t) = U (z,t) ch w;(x (8.60)
i=1

To compute this approximation, we need to solve m independent differential equations for
¢i(t), 1 <i < m. For each differential equation, we also need initial conditions for ¢;(0) and
¢;(0). Differential equation (8.59) is of second order, hence both ¢;(0) as well as ¢(0) should
be given.

In most situations, both u(x,0) = up(z) and v(z,0) = vo(x) are known. Using the orthonor-
mality of the mode shapes, the initial conditions for ¢; can be extracted:

¢;(0) = Z/ w;(x)w;(x dxfzcj / (x)wj(z)dx

(8.61)
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and similarly for ¢ (0):

L[ L
(0) :/0 [Zcé(O)wl(x)l wj(z) :/0 vo(z)w; (z)dx (8.62)

In most problems, both the displacement as well as the velocity is zero at ¢ = 0. It follows
from (8.61) and (8.62) that c;(t) = ¢} (t) =0 for all j > 1.

Note that (8.59) can be rewritten as

" 1t EI , ‘
cj(t) = - ; p(z, t)w;(z)dr — 7@- c;(t) forall1<j<m (8.63)
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Note that for each separate mode shape w;, differential equation (8.63) is independent on w;
for all ;7 < 4. Therefore, each differential equation corresponding to a different mode shape
can be solved separately. These ordinary differential equation (8.63) can be solved using an
integration scheme. This can be solved in a similar way as we have described before, see
Section 8.3.4 for the implementation of an implicit integration scheme.

The right hand-side of (8.63) involves the computation of an integral. This integral should be
approximated at each iteration using an integrator such as the trapezoidal rule or a similar
Newton-Cotes formula.

8.7 A simple moving load problem

Consider the following (very simplistic) problem with a train moving over a track. In this
problem we do not take local deformations into account, and therefore we can also ignore
phenomena such as slip. The train is modelled as a single point that exerts a constant
(moving) point force on the track.

3
x10

1 | 1 | | | | | |

0 2 4 6 8 10 12 14 16 18 20
x (m)

Figure 8.7: The displacement of the beam at time ¢ ~ 4.67. The red star represents the load
of the train.

Consider a small bridge that spans a total of 20m which is clamped at both sides. There are
no supports between the two ends of the bridge. The bridge itself is made out of steel with
a thickness of 50cm. An NS DD-AR train with a mass of 76 tons moves over the the bridge
with a speed of 30m/s. This example corresponds to the values as shown in Table 8.3.

The force the train exerts on the bridge mg at the position of the train, which is z(t) = vt
and is therefore
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Property | Value Explanation
E [ 210" Elastic modulus of steel
1] 00104m* | I(z) = [700 |2]2d>
L | 20m Bridge of 20 meters
p | 7900kg/m> | Density of steel
m | 76 - 10%kg Mass of train
v | 30 Speed of train in m/s

Table 8.3: The properties of the bridge and train.

p(z,t) = mgd(x — vt) 0<z<L (8.64)

where § is the Dirac delta function. The resulting force is therefore

L L
F(t) = /0 p(x,t)de = mg/o §(z — vt)dz = myg (8.65)

which is indeed equal to the gravitational force of the train.

8.7.1 The discrete problem

Both the finite difference method as well as the modal approach will be analysed and used to
solved this problem. For the finite difference approach, (8.4) can be rewritten as two linear
ordinary differential equations by defining w = %7; and using finite differences to approximate
the derivatives. Next, a time integration scheme such as the ones we have described in Chapter
5 can be used to integrate with respect to time. Alternatively, the partial differential equation
can also be discretised completely, i.e. including the time derivative, and then solving the

equation for the displacement and velocity components for the next iteration.

The algorithm to solve this problem (with the properties as shown in Table 8.3) has been
implemented in Matlab. We use a uniform mesh in the spatial direction with mesh size
Ax = fﬁ. The time integration is done using Verlet integration. According to (8.20), the
following CFL condition should hold:

A 2
At < ;) ,/% ~ 3.8977 - 1075 (8.66)

In Figure 8.7 the solution is shown at a certain point of time, using the time step At =
3.8976 - 107°. The integration is clearly stable. The train moves from the left side to the
right side, so as we would expect, a wave appears and follows the train to the right. After
applying Verlet integration numerically, it appears that the maximum displacement of the
beam occurs at about ¢ &~ 3.33. At this time, the train is exactly in the middle of the beam.
The total displacement is about 0.3cm.

To show the effect of the CFL condition, we use the same experiment but now with a time
step At = 3.899 - 1077, resulting in a CFL number slightly higher than the upper bound we
have found. See the results in Figure 8.8.
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Figure 8.8: The displacement of the beam at time ¢t ~ 0.06, using a CFL number slightly
larger than i. The red star represents the position of the wheel.

As we can see, artificial wiggles are created which tend to infinity. So our CFL condition is
very accurate.

The CFL condition (8.20) was computed for the fully discretised model, i.e. the Verlet
method. The Forward Euler method gives a similar result. However, this condition does
not seem to be accurate when using the Runge-Kutta 4 method. For the RK4 method, the
following CFL condition seems to hold:

At < 0.188%Ax4 = O(Az) (8.67)

This can numerically be verified by finding for multiple values of Az (up to a certain precision)
the lowest value of At so that the integration is unstable. Afterwards, one applies Richardson
extrapolation to get the result.

The difference is significant. Although the time integration itself is of higher order, the time
step At should be made roughly 16 times smaller when decreasing the mesh size by 2. For
Forward Euler and Verlet integration this is only 4 times. This makes the RK4 method not
preferable for many situations, as one easily needs an hour of computation time if more one
wishes to have more than 50 discretisation points in the spatial direction.

8.7.2 The modal approach

Similarly, the modal approach (using m = 10 modes) is applied to solve this moving load
problem. There is no CFL condition for the modal approach regardless of the choice of



8.7. A SIMPLE MOVING LOAD PROBLEM 77

(explicit) time integration schemes. This is because each modal coefficient is prescribed
by an ordinary differential equation; this is solved without the need of a mesh width Az.
Additionally, the solution w,, only consists of waves with bounded wave lengths and therefore
cannot behave as in (8.8).

Bn 1(E4+n)7 | A Frequency (\,/(27))
0.23650 | 0.23561 28.700 | 4.567Hz
0.39266 | 0.39269 79.113 | 12.59Hz
0.54978 | 0.54977 155.09 | 24.68Hz
0.70685 | 0.70685 256.37 | 40.80Hz
0.86393 | 0.86393 382.98 | 60.95Hz

T W R[S

Table 8.4: The first 5 eigenfrequencies of the bridge.

Table 8.4 shows the corresponding values of A, and f3,, for the free vibration modes, as well
as the corresponding frequencies.

As an example, Verlet integration can be applied to solve (8.63). For each 1 < i < m, we set

1 1 [t EI
A=ttt Jaop |1 [ otopmia - e
0

(8.68)
k41 ko k-1 |1 [F k EI 4 0
;T =2¢ — T+ (AT | - p(z, t")w;(x)de — —B; ¢; for k> 1
P Jo P
which is by definition of p equal to
1 El
o} = o + Ate] + S (At)” [mgwi(vto) - 5;*09}
P P (8.69)

)

EI
At =2ck — M4 (A)? {mgwi(vtk) - — 400] for k> 1
p P

The resulting solution u™(z,t*) = Y>I" | cPw;(z) behaves similar to the static case. The

coefficients cf tend to 0 very quickly as 4 tends to infinity. This results in a similar situation
as shown in Figure 8.6.

8.7.3 Resonance

An advantage of applying the modal approach is that because resonance can easily be anal-
ysed. If the exerted pressure p is periodic and its frequency corresponds to any of the eigenfre-
quencies, then the corresponding modal coefficient (and hence the total solution) will amplify.

Suppose the pressure as in (8.64) is L—periodic, i.e.

p(z,t) = —mgd(mod(z — vt, L)) (8.70)

This can represent the total exerted force of a train caused by the multiple wheels. We are
interested in the influence of the velocity v of the train.
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As computed in Table 8.4, the lowest eigenfrequency of the beam is equal to 4.567Hz. If the
speed v of the train is equal to 4.567L = 91.356 m/s, then the first modal response integral
fOL p(z, t)wi (z,t)dx is a periodic function. By definition, its frequency corresponds to the
lowest eigenfrequency of the beam. To see whether resonance can indeed occur at this speed,
we can compute the norm ||u(t)|| ... We have done so for the ‘critical’ speed v = 91.356m/s,
as well as a slightly different speed v = 100m/s. See Figure 8.9.

x10™
v=91.356 m/s
v=100 m/s
2 L .
_8
E
1 L il
0 IW | | | | | | | \/\
0 02 04 06 0.8 1 1.2 14 1.6 1.8 2

t(s)
Figure 8.9: Resonance occurring when v = 91.356m/s.

As one can see, the two solutions are similar at the beginning. However, after a while the two
solutions become out of phase. For the case where v = 100m/s, the phase change between the
exerted pressure and the first eigenfrequency will create damping. However, for the critical
speed v = 91.356, the periods are equal and hence resonance occurs.

8.8 Conclusion

Two methods have been proposed in order to solve the beam equation (8.4). First, there is the
usual finite difference approach. By discretising the bridge into elements and approximating
the derivatives we are capable of solving both the static as well as the time-dependent beam
equation. In the latter case, a time integration scheme should be used. We have shown that
explicit integration schemes for this differential equation can suffer from a CFL condition.
This CFL condition is fairly strict, and stability is only ensured if At = O(Az?). Spatial
accuracy is therefore limited since the number of time iterations need to increase rapidly.
This is however not the case for an implicit method such as Backward Euler.
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Secondly, the modal approach has been introduced. The mode shapes and the correspond-
ing eigenfrequencies can be computed analytically by the method of separation of variables.
Alternatively, as shown in Section 8.4.4, they can also be approximated by looking at the
eigenvectors and eigenvalues of the finite difference matrix. We have derived an ordinary
differential equation for each mode shape. These differential equations are independent and
can therefore be solved independently. Both explicit as well as implicit integration schemes
can be applied. Additionally, each iteration requires the computation of an integral. This
integral can be approximated by using an integrator such as the trapezoidal rule or a similar
Newton-Cotes formula.

Both approaches have been applied to solve a basic moving load problem. The solutions
computed using the finite difference method corresponds to the modal solution. We have
shown (for the static case, the time-dependent case seem to have simular results) that the
error of the modal approach is of order O(m~3) so that the solution converges quickly. Usually,
taking 50 mode shapes is enough to get accurate results.

The modal approach looks promising. It is a stable and computationally inexpensive approach
of solving the beam equation. Additionally, each modal coefficient can be solved indepen-
dently of each other. Because of these advantages, we will use this approach in the coming
chapters.
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Chapter 9

Combining local and global
deformations using CONTACT

In the previous chapter we have introduced the concept of the global deformation of a beam.
This deformation is the result of a pressure being exerted on the surface. However, as we
have discussed in Chapter 6 and 7, this pressure will also result in local deformation, i.e.
deformation strictly around the contact area.

The finite difference approach can be used to solve the 2 dimensional (i.e. in the x and z
direction) linear elasticity equations given the right boundary conditions. This approach will
automatically take both global and local deformation into account. However, as we have
discussed in Chapter 7, this approach is computationally very expensive, often unstable and
the results do not always seem realistic.

The goal of this chapter is to show how CONTACT can be used to combine local defor-
mation with the global deformation of a bridge by using mode shapes. This approach will
be computationally much less expensive than the complete finite difference approach. Some
assumptions need to be made which will be discussed in this chapter.

9.1 Assumptions

9.1.1 The total deformation of a beam

We construct the total deformation a beam as the sum of the global and local deformation,
i.e.

Ugot (2, 1) = u(z, t) + U(z,t) (9.1)

where ugo; is the total deformation. w denotes the global deformation, i.e. the solution
computed using modes, and [ the local deformation. The local deformation must have the
important property that for fixed ¢, [ is (almost) zero almost everywhere, except near the
area of contact.

81
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9.1.2 The penetration and approach for a globally deformed beam

In Chapter 6 we have discussed the basic dynamics of a rigid sphere falling on an elastic
half-space. We have seen the approach ¢ is simply given by §(¢) = —z(t), where z(t) is the
height of the lowest point of the sphere. Similarly, the penetration 6(z,y,t) is given by 6.10.
This example is simply since there is no global deformation.

However, consider the same sphere falling on an elastic beam. The beam is much more flexible
than the half-plane since elements on the bottom boundary are not fixed. As a result, the
height —z(¢) does not equal to the approach §(t). Instead, we assume that the penetration is
defined with respect to the globally deformed beam, i.e.

0(z,y,t) = u(x,t) — z(z,y,t) (9.2)

where z(z,y,t) is the height of the surface of the sphere at position (z,y) at time ¢. The
approach ¢ is as usual §(t) = max(, ,)cd(z,y,t) the maximum penetration.

Using this definition, the two problems are consistent in that the approach and penetration
is computed with respect to the global deformed situation (which is zero for the half-plane
problem). The assumption is realistic since global deformation is more of a result of bending
and vertical translation, the material itself is not really compressed.

9.1.3 The pressure for a globally deformed beam

Since the penetration between the object and the beam is now defined with respect to the
global deformation of the beam, the situation becomes more complex. Hertz theory to com-
pute the pressure distribution and normal force is no longer valid since the geometry of the
surface of the beam is no longer flat as was the case for the half-space.

As discussed in Section 4.5, CONTACT can be used for arbitrarily shaped objects. CON-
TACT returns the pressure distribution p(z,y), the normal force F),, as well as the static-
deformation. The same pressure distribution should be used to solve the beam equation.

9.1.4 The quasi-static local deformation

One of the advantages of the modal approach is that we do not need to discretise with respect
to the z direction, resulting in a much less computationally expensive algorithm. However,
this comes with a disadvantage. Without discretising in the z direction, the shock behaviour
occurring during and after the impact of an object on a half-plane or bridge can not be
computed and combined with the modal approach for the global deformation.

Therefore, we will make the important assumption that this shock behaviour can be neglected.
This shock will only occur near the contact area. This area is for the train-bridge problem
very small. By using the static local deformation 4; computed using CONTACT for the local
deformation, we are effectively solving the quasi-static elasticity equations. Using this will
result in an error, but we expect this error to be small, especially compared to the global
deformation of the bridge.
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9.2 Combining global and local deformations

In Chapter 6 we discussed the physics involving a sphere falling on an elastic surface. Using
Hertz theory we derived a differential equation that described the height of a rigid sphere
falling on an elastic half-plane. In Chapter 8 we described the total deformation and bending
of a beam.

These two chapters describe different phenomena. In Chapter 6 we only consider local de-
formation, the elastic surface itself does not move. We derived a differential equation and
algorithm to compute the height and quasi-static local deformation of the half-plane. Chapter
8 is focussed on the global deformation that occurs when there are forces being exerted on
the beam.

The interesting and challenging problem is that the two different kinds of deformation are
not independent of each other. Using mode shapes, the global deformation can be computed
if the external pressure p is known. This pressure distribution around the contact area can be
computed using CONTACT when supplying the penetration. This penetration, however, is
the distance between the sphere and the global deformed bridge. This information is not yet
known since the goal is to compute this global deformation. A very similar problem involving
the height of the sphere also occurs. This height depends on the normal force of the bridge
which is computed using CONTACT after supplying the penetration. But this penetration
is not known since it is dependent on the height of the sphere.

Computing the total deformation u. of the bridge is therefore not straightforward. An
algorithm should be used to compute the pressure distribution p, global deformation u, as
well as the contact force F;, in such a way both the global and local problems are consistent
with each other. That is, if the pressure is recomputed using the already computed global
deformation w and normal force F),, the exact pressure distribution should be derived.

9.3 The stationary problem

For simplicity, we consider the stationary problem of a train standing still on a bridge. Our
goal is to compute the total deformation of the bridge w0 (z). To do so accurately, both the
global and local phenomena should be taken into account. Denote the height of the train
wheels with respect to the zy-plane