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About VORtech

Founded in 1996 in Delft.

Specialized in mathematical consultancy and development
of high performance scientific software.

Broad range of customers.
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CONTACT

Software that solves contact problems between two
objects (e.g. train wheel & rails).

Aims to be the worlds fastest detailed contact software.

Originally developed by Prof.dr.ir. J.J. Kalker of TU Delft.

Taken over by VORtech, now further developed by Dr.ir.
E.A.H. Vollebregt.
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Goal of this project

CONTACT focusses on stationary problems.

Research: how can CONTACT be used for dynamical
contact problems?

Main problem: simulation of a train over a bridge.
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Elasticity theory

Displacement u(x, y, z, t): Particle originally located at
(x, y, z) moves to (x, y, z) + u(x, y, z, t).
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The elasticity equation

G∆u + (λ+G)∇(∇ · u) + F = ρ
∂2u

∂t2

Initial conditions:

u(x, y, z, 0) = u0(x, y, z)

∂u

∂t
(x, y, z, 0) = v0(x, y, z)

Example boundary conditions:

u(x, y, z, t) = 0 for (x, y, z) ∈ ∂Ω1

σn = p for (x, y, z) ∈ ∂Ω2
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Contact theory

Describes pressure distribution at the boundary of two
objects.

Different contact models:
I Hertz model
I Johnson-Kendall-Roberts (JKR) model
I Derjaguin-Muller-Toporov (DMT) model
I Maugis-Dugdale model (MD) model
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Time integration schemes

General form of Newton’s equation of motion

M(x)ẍ + P (x, ẋ) = F(t)

What time integration scheme should be used?

Possibilities:

Runge-Kutta / Radau methods

Verlet method

Newmark-Beta method

Using CONTACT in dynamical simulations March 31, 2015

9



Time integration schemes

General form of Newton’s equation of motion
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Time integration schemes

General form of Newton’s equation of motion

M(x)ẍ + P (x, ẋ) = F(t)

Let y = ẋ, so that

ẋ = y

ẏ = M−1(x)(F(t)− P (x,y)) (1)

which is of the form
ż = g(t, z)

for z =

(
x
y

)
.
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Runge-Kutta / Radau methods

All Runge-Kutta methods have the form

zk+1 = zk +

n∑
i=1

biki, where

ki = ∆tg(tk + ci∆t, zk +

n∑
j=1

aijkj)

c1 a11 a12 . . . a1n
c2 a21 a22 . . . a2n

...
...

...
...

cb an1 an2 . . . ann
b1 b2 . . . bn

=

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0

1 0 0 1 0

1/6 1/3 1/3 1/6
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c1 a11 a12 a13
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=

0 1
9

−1−
√
6

18
−1+

√
6

18
3
5 −

√
6
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1
9
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45 + 7

√
6

360
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√
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5 +

√
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√
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√
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√
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Runge-Kutta / Radau methods

Explicit (Runge-Kutta) methods:
I Forward Euler
I Runge-Kutta 4

Implicit (Radau) methods:
I Backward Euler
I Radau5
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The Verlet method

Applicable for problems in the form ẍ = g(x).

x1 = x0 + v0∆t+
(∆t)2

2
g(x0), and

xk+1 = 2xk − xk−1 + (∆t)2g(xk) for k ≥ 1
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Newmark’s method

Implicit algorithm described by

xk+1 = xk + ∆tvk +
(∆t)2

2
((1− 2β)ak + 2βak+1)

vk+1 = vk + ∆t((1− γ)ak + γak+1

The acceleration ak+1 should be derived from the equations of
motion:

M(xk+1)ak+1 + P (xk+1,vk+1) = F(tk+1)
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Contact between sphere and elastic half
space

Sphere is dropped from a height of 1m.

Determine the height z(t) (can be negative!).

By Hertz theory:

Fc =
4

3
E∗R1/2 max(0,−z)3/2

By Newton’s second law:

z̈ =
4

3m
E∗R1/2 max(0,−z)3/2 − g
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Contact between sphere and elastic half
space

Using Radau5:
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Contact between sphere and elastic half
space

Using Radau5:
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Contact between sphere and elastic half
space

Using Forward Euler:
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Deformation of a bridge

Euler-Bernoulli beam equation (1D):

EI
∂4u

∂x4
= −ρ∂

2u

∂t2
+ p(x, t) (2)

u(0, t) =
∂u

∂x
(0, t) = 0 (3)

u(L, t) =
∂u

∂x
(L, t) = 0 (4)
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Deformation of a bridge

Can be discretised using Finite Differences.

∂4

∂x4
ui(t) ≈

ui−2(t)− 4ui−1(t) + 6ui(t)− 4ui+1(t) + ui+2(t)

∆x4

Results into equation

ü = Au + p(u, t)

Problem: CFL condition for the Verlet method:

EI

ρ

∆t2

∆x4
≤ 1

4
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Combining global and local deformations

A bridge can deform both globally and locally:

How can both phenomenons be taken into account?
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Combining global and local deformations

Possibilities:

Complete Finite Element model
I Computationally expensive, but accurate.

Combining the beam equation (for global deformations)
and CONTACT (for local deformations).

I Hard, since both phenomenons are not independent of
each other.
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Conclusion & Discussion

Literature study:

Elasticity theory

Contact theory & models

Time integration methods for elastodynamics, tested on
two different problems:

I Dynamical contact between sphere and elastic half-space.
I Global deformation of a beam.

Implicit methods like Radau5 are preferred.

Research:

Research how CONTACT can be used for dynamical
contact problems.

Apply the Finite Element method.

Long-term goal: perform train/bridge simulation, taking
both global and local deformations into account.
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