The use of CONTACT in dynamical
simulations

Hugo de Looij

Faculty EEMCS, Applied Mathematics

November 26th 2015

3
VORTECH TUDelft The use of CONTACT in dynamical simulations ~ November 26th 2015



About VORtech

VORTECH

@ Founded in 1996 in Delft.

@ Specialized in mathematical consultancy and development
of high performance scientific software.

@ Broad range of customers.
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CONTACT

@ Software that solves contact problems between two
objects (e.g. train wheel & rails).

@ Main problem: simulation of a train over a bridge.

@ Research question: how can CONTACT be used for
dynamical contact problems?
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Rigid body motion

@ A rigid ball is dropped on
an elastic surface.

@ Height ball z(t) measured
from a reference point.

e How to compute z(t)?

3
VORTECH TUDelft The use of CONTACT in dynamical simulations ~ November 26th 2015



Rigid body motion

@ A rigid ball is dropped on
an elastic surface.

@ Height ball z(t) measured
from a reference point.

e How to compute z(t)?

@ Gravitational force

Fy =mg
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Rigid body motion

A rigid ball is dropped on
an elastic surface.

Height ball z(¢) measured
from a reference point.

e How to compute z(t)?

Gravitational force

Fy =mg

@ Normal force exerted by
the surface

P, = gE*\/ﬁa(t)?)/?
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Possibilities CONTACT
CONTACT is capable of

@ Computing the normal force Fj,.

@ Computing the distribution of the pressure p,, in the
contact area.

e Computing the (quasi-)stationary elastic deformation of
the surface.

Can be done for arbitrarily shaped objects by supplying the
penetration.
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Rigid body motion

@ The resulting force is F'(z) = F,(z) — Fj.

@ By Newton's second law:

mZ = F(z)
F,(z) —mg

Can be solved using a time integration scheme.
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Time integration schemes

Different kind of integration schemes:

Runge-Kutta schemes,  (Forward Euler, RK4, ...)
Radau schemes, (Backward Euler, Radaus, ...)
Verlet,

Leapfrog,

Backward differentiation formulas,
Newmark-beta,
HHT, and

°
°
°
°
@ Adams methods,
°
°
°
o Generalized-« integration.
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Numerical results

Runge-Kutta 4
Verlet

Radau5
Newmark-beta

t(s)
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Computing the deformation

The deformation of the surface is described by:

;

0%u; 80’1]
,=1,2,3
T Z oz; TS
Gui 8Uj .o
i = = =1,2,3
€ij <6$3 + or; (2W) 5 4y
3
o = 2Ge;j + Nojj Zekk 1,7 =1,2,3
\ k=1

This can be solved using a Finite Element approach.

@ Expensive, need to discretise w.r.t. z direction.

@ Accurate, inertia is taken into account.
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The quasi-static deformation

Using CONTACT
@ Computational inexpensive.
@ Quasi-static, inertia at the surface elements is ignored.
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Global deformation of a bridge

. Elastic Curve
(Deformed shape)

The (1D) Euler-Bernoulli beam equation:

2 2U 2U
5oz (B@I@GS) = =00 55 +plat)
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Global deformation of a bridge

S Y i _..—»i'
= X — Y
' Elastic Curve

" (Deformed shape)

The (1D) Euler-Bernoulli beam equation:

2 2U 2U
5oz (B@I@GS) = =00 55 +plat)

Bl 0*u 0%u (e t)
51 = Pt
Ox* ot? ’
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Modal analysis
Mode shapes are natural vibrations of the beam.
Substitute u(x,t) = eMw(x) into
0*u 0%u
EI%S = %0
o P o
—  EluW(z) = p\w(z)
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Modal analysis

Mode shapes are natural vibrations of the beam.

Substitute u(x,t) = eMw(x) into

o*u d%u
—  EluW(z) = p\w(z)
=  w(z) = ¢ cos(fz) + cosin(fx)
+c3 cosh(Bx) + ¢4 sinh(Bx)
1/4
pA?
h = —
where 3 ( i3 I)
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Modal analysis

The mode shapes for a clamped beam satisfy
cos(SL)cosh(BL) =1

Mode shape 1 ( = 4.73)

157 Mode shape 2 ( = 7.8532)
Mode shape 3 (8 = 10.9956)
Mode shape 4 ( = 14.1372)

w(x)
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Modal analysis

The solution can be written as

u(z,t) = Z ci()w;(x)

i=1
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Modal analysis
The solution can be written as
o0
u(a,t) = ci(t)wi(x)
i=1
Idea: approximate u by
u(x,t) = up(z,t) = Z ci(t)w;(x)
i=1

How do we compute ¢;(t)?
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Modal analysis

EIY cityw(x) = —p > (tywi(x) + p(x, 1)
=1 =1
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Modal analysis
EIY c(tyw”(x :_pzc” Ywi(z) + p(z, 1)
=1

We havew ( ) = Biw(x), so that

sz ) [BIBk(t) + pcl ()] = pla, )
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Modal analysis
EI Z Ci (t)wi pz & (Hw;(z) + p(x,t)
=1

We havew ( ) = Biw(x), so that

sz EI,34CZ( t) + pc;'(t)] = p(z,t)

Multiplying by w;(z) and integrating over [0, L] yields

S (tersten + )] [ wmsenn) = [ ot e

=1
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Modal analysis

We arrive at the differential equation:

L
pci(t) = /0 p(x, t)w;(x)dr — Elﬁ?cj(t)

3
VORTECH TUDelft The use of CONTACT in dynamical simulations ~ November 26th 2015



Modal analysis

We arrive at the differential equation:

L
pci(t) = /0 p(x, t)w;(x)dr — Elﬁ?cj(t)

The modal coefficients ¢; are independent of each other.
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Modal analysis

We arrive at the differential equation:

L
pci(t) = /0 p(x, t)w;(x)dr — Elﬁ?cj(t)

The modal coefficients ¢; are independent of each other.

Can be solved by combining
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Modal analysis

We arrive at the differential equation:

L
pci(t) = /0 p(x, t)w;(x)dr — Elﬁ?cj(t)

The modal coefficients ¢; are independent of each other.

Can be solved by combining
@ A numerical integrator (such as a Newton-Cotes formula),
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Modal analysis
We arrive at the differential equation:
L 4
pej(0) = [ oty @) = I8}, 1)
The modal coefficients ¢; are independent of each other.
Can be solved by combining

@ A numerical integrator (such as a Newton-Cotes formula),

@ A time integration scheme (such as Newmark-beta), and
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Modal analysis

We arrive at the differential equation:

L
pci(t) = /0 p(x, t)w;(x)dr — Elﬁ?cj(t)

The modal coefficients ¢; are independent of each other.

Can be solved by combining
@ A numerical integrator (such as a Newton-Cotes formula),
@ A time integration scheme (such as Newmark-beta), and

@ An iterative solver (such as Picard iteration).
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Theorem

The error of the stationary modal solution satisfies

LYpll, _3
[u — umlly < oy oy ot O(m™)

z (m)

X (m)
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Combining local and global deformation

We described two different phenomena:

@ Local deformation (occurring around the contact area),
and

@ Global deformation.
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Combining local and global deformation

We described two different phenomena:

@ Local deformation (occurring around the contact area),
and

@ Global deformation.

In reality, a bridge can deform both globally as locally:
utot(x7t) = U(l‘, t) + l(:U? t)
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Combining local and global deformation

0.01

z(m)
g

-0.03

-0.04
— Train wheel

Total deformation

-0.05 ~ Global deformation
— Local deformation
. . L | . . . . .
0 1 2 3 4 5 6 7 8 9 10
x (m)
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Combining local and global deformation

@ The global deformation can be derived by superposing the
modal coefficients that satisfy

L
pci(t) = /0 p(x, t)w;(x)dr — EIﬂ;-lcj(t)

@ The rigid height z(¢) of the wheel can be derived by

solving
d?z
e 2 = F(1)
dt?
3
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Combining local and global deformation

@ The global deformation can be derived by superposing the
modal coefficients that satisfy

L
pci(t) = /0 p(x, t)w;(x)dr — EI/B;-lcj(t)

@ The rigid height z(¢) of the wheel can be derived by
solving
d?z
e Both p(x,t) and F(t) are derived using CONTACT by
supplying the penetration
8w, t) = Y cj(tywj(w) — [=(t) + g(a — st)]

Jj=1
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Combining local and global deformation
Applied to Backward Euler:
KT =k 4 Atektt
gl _ o AT T k+1 k1 gkt 4 k+1
&y 201—1—7 plx, ¢, 2" " w (x)de — EIB ¢}
0
il = ¢k 4 Atekt!
gl _ e AT T k1 k41 gkt 4 k+1
et = e+ > p(z, ™ 2" T Ywyy, (2)de — E18,,¢,
0

Zk‘+1 2 + Até’k-‘rl

) ) F Ck+1 Zk+1 tk+1
Zk+1:Zk+At ( ) ) )_g
me
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Combining local and global deformation

This can be written as

0
1 —At 5 . L
Atﬂ,ﬁ“ 1 a i a ¥ l/ p(a, FHL R R Y, (2)da
p ! ép ép PJo
1 ~At Cm =|ec,| TAt Lk 0
AtEﬂA 1 Cm Cm 7/ pla, R R R Yy (1) da
p 2 2 P Jo
1 —At P P 0
0 1 F(Ck+1,zk+l,tk+1) _
Mme
or
Ayk:-l-l — yk + Atfk—i-l
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Combining local and global deformation

This can be written as

0
1 —At 5 . L
At%ﬂf ; : k41 : k ;1)A,p(myckwl’zk+17tk+1)wl(z)d$
1 —At m =om| +a Lk 0
AtQﬂA 1 Cm Cm ,/ P(I,CkH,zkH‘tk“)wm(z)dx
o Pm . . rJo .
(1J 71At z 2 F(Ck+1’zk+l’tk+1)
T me
or k+1 k k+1
Ay™t = y* 4 AT
Picard approach:
k+1 _ 4—1/_k k
yit =AT (" + Atff)
For stiff materials, this doesn't converge!
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The Quasi-Newton approach

We linearise F(c?“,zf“,tkﬂ) at each iteration j.

@ Cannot be done analytically, but instead we can set

k+1 _k+1 1k+1 k+1 _k+1 k+1
8}73 NF(C]‘ 7Zj 7t )_F(Cj 7Zj _aat )
82,;6-4-1 a
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The Quasi-Newton approach

We linearise F(c?“,zf“,tkﬂ) at each iteration j.

@ Cannot be done analytically, but instead we can set

k+1 _k+1 1k+1 k+1 _k+1 k+1
8}73 %F(Cj 7Zj 7t )_F(Cj 7Zj _avt )
az;'ﬁ-l a

k+1

@ To achieve stability, we should also linearise w.r.t to c;i .
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The Quasi-Newton approach

We linearise F(c?“,zf“,tkﬂ) at each iteration j.

@ Cannot be done analytically, but instead we can set

k+1 _k+1 1k+1 k+1 _k+1 k+1
BFJ %F(C] 7Zj 7t )_F(CJ 7Zj _aat )
82,;6-4-1 a

k+1

@ To achieve stability, we should also linearise w.r.t to c;i .

@ This is computationally very expensive.
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The Quasi-Newton approach

We linearise F(c?“,zf“,tkﬂ) at each iteration j.

@ Cannot be done analytically, but instead we can set

k4+1 _k+1 jk+1 k41 _k+1 k+1
OF; - Fci ™, 27 t") = Fcj 2 —a,t™)
8zl§+1 a
J
@ To achieve stability, we should also linearise w.r.t to c?“.
@ This is computationally very expensive.
Idea: we only linearise with respect to the approach (5;-“'1.
k+1
ki1 _ ki1, (OF skl skl
Fj+1_Fj +(35 ) (5j+1 5]' )
J
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The Quasi-Newton approach

§(t) = max [u(z,t) —w(x,t)]

0<z<L
m
= max E —g(x —st)| — z(t)
0<z<L
=1
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The Quasi-Newton approach

i(t) = Jnax, [u(z,t) —w(zx,t)]

= Jmax. [Z ci(t)wi(z) — gz — St)] —2(1)
=R is

After iteration j of time step k + 1, we have

E+1 Z k+1 k| k1
6]+1_0<Z<L[ C,JJrlwZ —gla —st )] Zj+1
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The Quasi-Newton approach

i(t) = Jnax, [u(z,t) —w(zx,t)]

= Jmax. [Z ci(t)wi(z) — gz — St)] —2(1)
=R is

After iteration j of time step k + 1, we have
k+1 _ k+1 k+1

m
k41 k+1 k41 k41 k41
~ Zcijﬂwl(:v - g(al:jJr — sththy — z]il
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The Quasi-Newton approach

After linearising, we arrive at

okl At 4 k41 or\*+! L ~ kil k1
lj+1+ P Elﬂ zJ+1+ <85) ]+1 ch3+1w )
=1
At o\ 1 i
_ ik k+1 k+1 k+1
e @), e ne

1 1 1Wi
Zi+ me 08 7 Jt+ 4.j+ J

k+1+§ QFkH <Zl_c+1 _ Kl (xk+1))
i=1

m
At k+1 0 k+1 k+1 k+1 k+1
=3k *Atg+ Fi7 4 2 F) P 720 w; (57
06 J 1] J
i=1
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The Quasi-Newton approach
This can be written as

k-i-l +AtAk+1 k+1 =% +Atgk+1 where

]+1
EIBAL wi(@™) 9 9 ki _wm(x§+l) .9 e 1.9 e
p P BT A P 96 1 p 061
el : : :
A= 7“’1(‘”?“) 9 pkr1 254 _ wm(m?H) 9 e 10 e
,(Ll a6 ™ . T8 i p 0§ ™I
(e 0 i+ _wm(@i") EFM 1 ﬁFch
Me a5~ me a6 me 00
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The Quasi-Newton approach
This can be written as

k-i-l +AtAk+1 k+1 =% +Atgk+1 where

]+1
gﬂét wl(szrl) 9 Ik-H o _wm(x§+l) . Elkﬁ—l 1 . 21k+1
p P "985 b ' P 96! p 061
o : : :
A= 7“’1(‘”?“) 9 1kn Hgi wm(m?H) 9 e 10 e
L asma . “oetmi , gatmi
_wl(sz) ngﬂ wm(x i) QFIM 1 EFIcH
me a5~ me a6 me 00

The matrix A?H is dense; the mode shapes ¢; and the rigid
height z are dependent on each other!
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The Quasi-Newton approach

We arrive at the system

k+1 . =1 k+1
Aj 1 X) i X g;
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The Quasi-Newton approach

We arrive at the system

(i 7)), 6) o)
k+1 . =1\ k-+1
Aj 1 X) i X g;
Theorem

The solution of the system is given by

. k41 o k+1 E+1 1 Jk+1y ~ k+1
x Y] (xj —i—Atgj + X)) — X,

j+1 At J
where 1 ebt
AtDei T ()T D
Yk‘+1 —D— J J
J - k+1\T NHak+1
1+ A(EF)T Del
v
3
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Numerical results

-4
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0
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~ -10
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t=027s
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0 2 4 [ 8 10 12 14 186 18 20
X (m)
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Conclusion & Further Research

Quasi-static deformation is computed using CONTACT.

Combined with a time integration scheme such as
Newmark-beta or Radaub.

Global deformation is solved using modal analysis.

The total deformation is solved using a Quasi-Newton
approach.
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Conclusion & Further Research

Quasi-static deformation is computed using CONTACT.

@ Combined with a time integration scheme such as
Newmark-beta or Radaub.

@ Global deformation is solved using modal analysis.

@ The total deformation is solved using a Quasi-Newton
approach.

o Further research: taking friction into account as the result
of rolling and sliding of wheels.
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Any questions?
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