
Using CONTACT in dynamical simulations

Interim thesis report at VORtech
by Hugo de Looij

as part of the program Applied Mathematics at the
Delft University of Technology

Supervisor (VORtech) Dr. ir. E.A.H. Vollebregt
Supervisor (TUD) Prof. dr. ir. C. Vuik

April 9, 2015

No part of this report may be reproduced, stored in a retrieval system or transmitted in any form or

by any means, mechanical, photocopying, recording or otherwise, without the prior written permission

of VORtech Computing, P.O.Box 260, 2600 AG DELFT, the Netherlands. This permission will not be

given without the prior written permission of the organisation or person that has ordered this report.

Copyright c©VORtech Computing 2015.

Contents

1 Introduction 3

2 Introduction to contact mechanics & elasticity theory 4
2.1 Displacements . 5
2.2 Strain . 5
2.3 Strain-displacement relations . 5
2.4 Stress . 6
2.5 Relation between stress & strain . 6
2.6 Other elastic properties . 7
2.7 The equations of motion . 8
2.8 The boundary value problem . 9
2.9 The different contact models . 9

3 Numerical methods for dynamical problems 10
3.1 Newton’s equation of motion for contact problems 10
3.2 Euler Forward / Backward . 10
3.3 Runge Kutta / Radau methods . 11
3.4 The Verlet method . 12
3.5 Newmark’s method . 12
3.6 The HHT method . 13
3.7 The generalized-α method . 13

4 A simple problem 14
4.1 Deformation of an elastic half space under stress 14
4.2 Contact between a rigid sphere and an elastic surface 15
4.3 Contact between two curved surfaces . 16
4.4 Contact between elastic bodies . 16
4.5 Derivation of the differential equation . 16
4.6 Properties of the solution . 17
4.7 Solving the problem numerically . 18
4.8 Using CONTACT to solve the problem . 20

5 Global deformations of a beam 22
5.1 The 1D dynamic beam equation . 22
5.2 Boundary and initial conditions . 23
5.3 Modal analysis . 23

5.3.1 Free vibrations . 23
5.3.2 Forced vibrations . 26

5.4 The discrete problem . 27
5.4.1 The CFL condition . 28
5.4.2 Implicit methods . 29

5.5 A simple moving load problem . 30

6 Applying both local and global deformations 33
6.1 Applying the Finite Element Method . 33
6.2 Combining local and global deformations using CONTACT 34

7 Research problems 35
7.1 Deformation of an elastic half space . 35
7.2 Stationary situation of a wheel on a bridge . 35

1

7.3 Time dependent train / bridge simulation . 36

8 Appendix 38
8.1 SphereOnPlane.m . 38
8.2 SphereCONTACT.m . 43
8.3 Beam.m . 48

2

1 Introduction

Contact mechanics is the theory that deals with the deformation of contacting objects. It is an
import research topic for many different industries, in particular for the rail industry. As an
example, consider a train moving over the tracks. Because of gravity, the train will exert a large
force on the rails. This results in deformation of both the wheels and the rails. It is important to
understand this process, so that the rail industry can estimate and prevent the possibility of rail
deformation, estimate the wear and tear of the rails and wheels, as even estimate the probability
of train derailment. Contact mechanics, or in this case frictional contact mechanics, gives us the
tools to understand this process.

As the name would suggest, the CONTACT software solves contact problems between two objects.
It has originally been developed by Joost Kalker. In 2000, VORtech has taken over the software.
It is now being further developed by Edwin Vollebregt, who is my supervisor for this Master
project.

The software can be used for a large amount of (homogeneous) contact problems and can be
used to compute deformations, determine the forces that are being exerted on the surface, and
determine on which areas of the contact surface slip will occur. It aims to be the worlds fastest
detailed contact model.

In this literature report, we will describe the physics and mathematics of dynamical contact
problems, i.e. time-dependent contact problems. We will describe the basics of elasticity theory,
contact mechanics (Hertz theory in specific) and time integration schemes for dynamical problems.
To get a better understanding of this theory, we will apply this for two simple dynamical contact
problems.

The main research goal for the project following the literature study is to understand how CON-
TACT can be used in combination with a sufficient time integration scheme for dynamical contact
problems. This can be fairly complex if we allow both local and global deformations and/or fric-
tion to occur. To validate whether the CONTACT approach is accurate, we would also like to
solve the same problems using a Finite Element approach.

3

2 Introduction to contact mechanics & elasticity theory

Contact mechanics is the study that deals with the physics behind the contact of two bodies.
It involves the computation of the pressure, contact forces, and deformation in either static or
dynamic problems. The bodies might have different elastic properties which can result in a
different distribution for the pressure and a different deformation of the objects.

As an example, a train will exert a large force on the rails. This results in deformation of the
wheels and the rails. The magnitude of this deformation, however, depends on properties such as
the material of both objects and the geometry of both objects around the initial contact point.

Note that this chapter is explained for the three dimensional case. The two dimensional case
is similar. We use the Cartesian coordinate system and a point u can be denoted both as
u = (ux, uy, uz) as well as u = (u1, u2, u3).

2.1 Displacements

Consider an undeformed object in rest and take one particle of this object. Now consider a force
at the boundary of the object pushing in any direction. This can trigger the particle to move
slightly, i.e. the object deforms. This translation of the particle is called the displacement. If
this displacement is zero, that means there is no deformation at this particle. There are three
displacement variables, one for each direction: ux, uy, and uz.

2.2 Strain

Strain represents the stretching (or indenting) of an object. Once again, take one particle of this
object in its undeformed state. Take another particle close to this one. If the body is deformed,
then the distance between the two particles can differ. Strain is the relative change of the position
of points in the body and is therefore a dimensionless quantity.

There are two different kinds of strain, namely the longitudinal strains εxx, εyy, and εzz, as well
as the shearing strains εxy, εxz, εyx, εyz, εzx, and finally εzy. The longitudinal strains corresponds
to the relative change of the position of points in the body in the corresponding direction. If a
homogeneous bar of 1m width is uniformly stretched to 1.5m, then the strain εxx = 3

2 . The shear
strains represent the change of angle between two points as their distance tends to zero. These
shear strains are always symmetric, so for example γxy = γyx.

All nine strain components can be added together to create the so-called strain tensor, which is
defined by

ε =

εxx γxy γxz
γyx εyy γyz
γzx γzy εzz

 (2.1)

4

2.3 Strain-displacement relations

Note that the longitudinal strains are simply the derivative of the displacement in the same
direction. The strain components are therefore connected to the displacements by the following
equations

εx =
∂ux
∂x

εy =
∂uy
∂y

εz =
∂uz
∂z

γxy =
∂ux
∂y

+
∂uy
∂x

γxz =
∂ux
∂z

+
∂uz
∂x

γyz =
∂uy
∂z

+
∂ux
∂z

(2.2)

We now redefine the strain components in smart way such that system (2.2) can be written in a
more compact way. We define

eij =

{
εi if i = j
1
2γij if i 6= j

(2.3)

So that (2.2) can be rewritten as

eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
for all 1 ≤ i, j ≤ 3 (2.4)

or even shorter

e =
1

2

(
du

dx
+

(
du

dx

)T)
(2.5)

where du
dx is the Jacobian matrix of u.

2.4 Stress

Stress is the physical quantity that represents the force per unit square that is being extered on
a particle in a body. The unit of stress is therefore Nm−2. If there is stress, it means that the
material is under tension, so that the forces are attempting to stretch (or indent) the material.
Like strain, there are nine stress components, which we denote by σij for 1 ≤ i, j ≤ 3 (or σxy,
etc). The components σxx, σyy, and σzz are the normal stresses, the others being the shearing
stresses (often denoted as τ). Similarly for the strain, the shearing stresses are symmetric (which
is a result of the conservation of angular momentum). We can define a stress tensor σ as

σ =

σxx τxy τxz
τyx σyy τyz
τzx τzy σzz

 (2.6)

5

Using this tensor we also define the so-called traction vector T at the boundary of the domain by

T = σn (2.7)

where n is the normal vector pointing out of the domain. This traction vector will be used for
the boundary conditions.

2.5 Relation between stress & strain

The stress is easily computed, but it is usually the strain we are interested in. We will therefore
look at the relation between the stress and the strain. We assume throughout the whole article
that all materials are isotropic, that is, the material has no preferred direction; regardless of the
direction in which the force is applied, a force will always give the same displacements relative to
its direction.

Figure 1: The relation between strain and stress. Source: [3].

For many ductile materials, the relation between stress and strain starts out to be linear until
a certain strain ε0 (also called the limit of proportionality) is reached, see also Figure 1. In
linear elasticity theory, we assume that the strains do not surpass this limit of proportionality.
According to Hook’s law, we have the relation [2]

6

σxx = λ(exx + eyy + ezz) + 2Gexx

σyy = λ(exx + eyy + ezz) + 2Geyy

σzz = λ(exx + eyy + ezz) + 2Gezz

σxy = Gexy

σxz = Gexz

σyz = Geyz

(2.8)

where λ is Lamé’s first parameter, and G the shear modulus. This system of equations can also
be written as

σij = λekkδij + 2Geij for 1 ≤ i, j ≤ 3 (2.9)

where Einstein’s convention is used (to sum over k, in this case), and δ being Kronecker’s delta
function. Equivalently, this is the same as

σ = λTr(e)I + 2Ge (2.10)

2.6 Other elastic properties

Other elastic moduli are the bulk modulus, Young’s modulus, Poisson’s ratio, and the P-wave
modulus. For homogeneous isotropic materials, however, these variables are dependent. Each
variable can be computed if any two of the moduli is known. Usually, we use the Young’s modulus,
also known as the modulus of elasticity, which is denoted by E. Furthermore, we use the Poisson’s
ratio

A material like steel requires more stress to be exerted to deform a certain distance compared with
rubber. The modulus of elasticity of steel (2·108Pa) is much larger than for rubber (approximately
5 · 104Pa). It is defined as

E =
G(3λ+ 2G)

λ+G
(2.11)

When a material is compressed in one direction, it usually not only deforms in this direction but
also expands in the other two directions perpendicular to the direction of compression. This is
called the Poisson effect. This effect depends on the so called Poisson ratio of the material. This
dimensionless quantity is denoted by ν and is equal to

ν =
λ

2(λ+G)
(2.12)

2.7 The equations of motion

The equations of motion form another important aspect in (dynamic) elasticity theory. Around
each particle, we compute the body force (such as gravity) in each direction. According to
Newton’s equation of motion, this is equal to the mass (or in this case, the density ρ of the
material around the particle) multiplied by the acceleration of the particle in that direction. It
can be shown that the corresponding equations of motions are [2]

7

∂σxx
∂x

+
∂σxy
∂y

+
∂σxz
∂z

+ Fx = ρ
∂2ux
∂t2

∂σyx
∂x

+
∂σyy
∂y

+
∂σyz
∂z

+ Fy = ρ
∂2uy
∂t2

∂σzx
∂x

+
∂σzy
∂y

+
∂σzz
∂z

+ Fz = ρ
∂2uz
∂t2

(2.13)

which corresponds to
∂σij
∂xj

+ Fi = ρ
∂2ui
∂t2

(2.14)

or by using tensor notation

∇ · σ + F = ρ
∂2u

∂t2
(2.15)

where (∇ · σ)i =
∂σij

∂xj
(as a regular matrix product, but with the derivatives in front).

By substituting (2.2) in (2.8), and then substituting the resulting expressions for σ in (2.13), we
arrive at the alternative equations of motion

G∆u+ (λ+G)
∂

∂x

(
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

)
+ Fx = ρ

∂2ux
∂t2

G∆v + (λ+G)
∂

∂y

(
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

)
+ Fy = ρ

∂2uy
∂t2

G∆w + (λ+G)
∂

∂z

(
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

)
+ Fz = ρ

∂2uz
∂t2

(2.16)

or alternatively

G
∂2ui
∂x2

j

+ (λ+G)
∂2uj
∂xixj

+ Fi = ρ
∂2ui
∂t2

for 1 ≤ i ≤ 3 (2.17)

or in vector notation as

G∆u + (λ+G)∇(∇ · u) + F = ρ
∂2u

∂t2
(2.18)

2.8 The boundary value problem

Equation (2.18) is not complete without specifying the boundary conditions as well as the initial
values. There are two main boundary conditions, conditions for the traction and conditions for
the displacement. Both can be used at the same time for a different boundary.

Traction boundary conditions should be applied on a boundary if a force is acting on the surface.
For example, if a constant pressure p0 is being exerted on a boundary Γ1, then the corresponding
boundary condition should be −p0 = T = σ · n on Γ1.

It is also possible to specify the displacement at a boundary. If a boundary Γ2, for example,
is attached to a solid wall, the displacement should be zero. This corresponds to the boundary
condition u = 0 on Γ2.

Finally, the initial values should be specified. Since equation (2.18) is of second order, both initial
displacements u as well as the velocity for the displacements u̇ should be specified.

8

2.9 The different contact models

For systems with multiple bodies, the situation is more complex. The bodies can have different
elastic properties and the pressure distribution at the contact locations is not specifically known.
Furthermore, linear elasticity theory does not necessarily describe reality perfectly.

The first real contact model which describes contact mechanics accurately, is the Hertz model,
developed in 1880. This theory describes the contact between two elastic spheres (or a sphere
and a plane), or more general, between two bodies with a distance h(x), with h being a quadratic
function. In this model creep is neglected, i.e. there is no friction between the two objects (which
is not completely realistic if the two objects have different elastic properties). Using the Hertz
equations the displacements of the materials can be computed. The Hertz model is still being
used as of today, although it is still not perfectly realistic.

It took a long time (until the 1960s) till research showed that the Hertz model wasn’t completely
accurate. In 1970 an improvement of the Hertz model was made. This new model is called the
JKR model (named by its inventors Johnson, Kendall, and Roberts). This models also takes
adhesion into account; materials that are close to each other experience van der Waals forces to
each other. This attraction property is being used in the JKR model.

The MD (Maugis-Dugdale) model is a further improvement of the JKR model. This model
includes the effect of plastic deformation.

9

3 Numerical methods for dynamical problems

3.1 Newton’s equation of motion for contact problems

For contact mechanics, Newton’s equations of motion play an important role. As a simple one
dimensional example, consider a point with mass m on an elastic surface. Gravity exerts a force
of mg downwards. The surface will indent slightly, so that the surface will exert a contact force Fc
upwards. This force, however, depends on the total penetration, a larger strain requires a larger
force as described in Section 2.6. The resulting force therefore is F (z) = Fc(z)−F . By Newton’s
second law of motion, this resulting force is proportional to the acceleration of the point, i.e.

F (z) = m
d2z

dt2

This ordinary second order differential equation can be non-linear. Furthermore, this model
assumes no friction at the contact and also no air resistance. In general, linear structural dynamic
problems in multiple dimensions have the form

M ẍ + Cẋ +Kx = F(t) (3.1)

where M represents the mass matrix, C the stiffness, and K the damping matrix. F is the vector
of external forces which depends on the time variable.

In many contact problems, however, the equation of motion is non-linear. The contact force itself
is generally non-linear, as we will describe in Section 4. The most general form of the Newton’s
equation of motion is

M(x)ẍ + P (x, ẋ) = F(t) (3.2)

with M and P being any function.

3.2 Euler Forward / Backward

To solve differential equation (3.2), integration schemes are required. For simplicity and com-
pleteness, we will start with the well known Euler Forward and Backward integration scheme.
This scheme allows to integrate first order ordinary differential equations with respect to time. To
apply this, we first transform equation (3.2) to a (twice as large) system of first order differential
equations. We introduce y = ẋ so that

ẋ = y

ẏ = M−1(x)(F(t)− P (x,y)) (3.3)

or shortened as ż = g(t, z) for z = (x,y)T .

The Euler Forward scheme is the simplest explicit time integration scheme. It is of order O(∆t)
and is described by

zk+1 = zk + ∆tg(tk, zk)

The Euler Backward scheme is the simplest implicit time integration scheme, also of order O(∆t),
and is described by

zk+1 = zk + ∆tg(tk+1, zk+1)

Often, because g can be a complex function, it is not possible to write zk+1 as a simple function
if tk+1 and zk. Instead, one needs to apply an iterative scheme to approximate this solution.

10

Picard iteration is the easiest one to apply. One can set z0
k+1 = zk as a good initial guess and

repeatedly compute
zj+1
k+1 = zk + ∆tg(tk+1, z

j
k+1)

until ‖zj+1
k+1−z

j
k+1‖ < ε for a certain error margin. Alternatively, one can apply a faster converging

iterative method like Newton-Raphson (or the Secant method if the exact derivatives of g are
not known).

3.3 Runge Kutta / Radau methods

The Runge-Kutta methods are generalizations of the Euler Forward/Backward methods. These
methods are used to integrate the same first order ordinary differential equation with respect to
time, but with a higher order accuracy.

All Runge-Kutta methods have the form

zk+1 = zk + ∆t

n∑
i=1

biki (3.4)

where

ki = g(tk + ci∆t, zk + ∆t

n∑
j=1

aijkj) (3.5)

If A, the matrix with coefficients Aij , is a strictly lower triangular matrix, then computing ki
does not require the use of kj for j ≥ i. Hence the method is explicit. If A is not strictly lower
triangular, then the method is implicit.

The components of the matrix A and vectors c and b are often compactly written by using a
Butcher’s tableau. For the widely used RK4 method, for example, we have the tableau

c1 a11 a12 . . . a1n

c2 a21 a22 . . . a2n

...
...

...
...

cb an1 an2 . . . ann
b1 b2 . . . bn

=

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0

1 0 0 1 0
1/6 1/3 1/3 1/6

Using (3.4) and (3.5), this corresponds to the fully explicit scheme of order O(∆t4):

k1 = ∆tg(tk, zk)

k2 = ∆tg(tk +
1

2
∆t, zk +

1

2
k1)

k3 = ∆tg(tk +
1

2
∆t, zk +

1

2
k2)

k4 = ∆tg(tk + ∆t, zk + k3)

zk+1 = zk +
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4

11

The Radau methods are fully implicit Runge-Kutta methods of order O(∆t2n−1) where n is the
number of stages. As described in [5], the default Radau5 method is given by the Butcher’s
tableau

0
1

9

−1−
√

6

18

−1 +
√

6

18
3

5
−
√

6

10

1

9

11

45
+

7
√

6

360

11

45
− 43

√
6

360
3

5
+

√
6

10

1

9

11

45
+

43
√

6

360

11

45
− 7
√

6

360
1

9

4

9
+

√
6

36

4

9
−
√

6

36

Since the Radau methods are implicit, an iterative scheme should be used to determine the
solutions zk+1.

3.4 The Verlet method

The Verlet integration scheme [6] can be used to integrate the second order differential equation
of the form ẍ = g(x). It is an explicit method of order O(∆t2) and is given by

x1 = x0 + v0∆t+
(∆t)2

2
g(x0), and

xk+1 = 2xk − xk−1 + (∆t)2g(xk) for k ≥ 1 (3.6)

where x0 and v0 are the position and speed at time t = t0. An interesting property of the Verlet
method is that out of all the explicit method we have discussed, it is the only energy conserving
method. We will show this in Section 4. However, it is not always applicable for the most general
case (3.2), for example when there is air resistance, so that g is also a function of ẋ.

3.5 Newmark’s method

Newmark’s method (also known as the Newmark-beta method) is a popular integration scheme
for problems in structural dynamics. The algorithm is described by

xk+1 = xk + ∆tvk +
(∆t)2

2
((1− 2β)ak + 2βak+1)

vk+1 = vk + ∆t((1− γ)ak + γak+1) (3.7)

Here vk+1 and ak+1 are approximations of the velocity ẋ and acceleration ẍ at time tk+1, respec-
tively. The acceleration ak+1 is derived from the equations of motion (3.2) by

M(xk+1)ak+1 + P (xk+1,vk+1) = F(tk+1) (3.8)

Both parameters γ and β are required to be in [0, 1]. The method is implicit, unless both γ and
β are zero. If γ = 1/2, then the method is of second order accuracy and there is no numerical

12

damping. If, however, γ 6= 1/2, then the method is only of order O(∆t). The parameter β
defines how the acceleration is interpolated. Usually one takes β = 1/4, so that the acceleration
is averaged between timestep tk and tk+1. Another possibility is setting β = 1/6, which assumes
that the acceleration is linear in [tk, tk+1].

3.6 The HHT method

The disadvantage of the Newmark-beta method is that numerical damping can only be introduced
by lowering the order of accuracy. With this in mind, the HHT method (named after its inventors
Hilber, Hughes, and Taylor), also known as the α-method, was constructed. The HHT method
[7] is an extension of the Newmark method. An extra parameter α is introduced. The equations
(3.7) remain the same, however, instead of the discrete Newton’s equation of motion (3.8) the
HHT method is slightly different:

M(xk+1)ak+1 + (1− α)P (xk+1,vk+1) + αP (xk,vk) = F ((1− α)tk+1 + αtk) (3.9)

If α = 0, then the term αP (xk,vk) drops out of (3.10) and the right-hand side will be equal to
F (tk+1), so that we are left with Newmark’s method. The parameters can be modified so that
numerical damping can occur. If γ and β are chosen such that γ = (1+2α)/2 and β = (1+α)2/4,
then the method is second order accurate.

3.7 The generalized-α method

The generalized-α method [8] is again a generalisation of the HHT method. Once again the
equations (3.7) remain the same, but now instead of the parameter α we have two parameters
αM and αF . The corresponding equation of motion is:

(1− αM)M(xk+1)ak+1 + αMM(xk)ak+

(1− αF)P (xk+1,vk+1) + αFP (xk,vk) = F ((1− αF)tk+1 + αF tk) (3.10)

If αM = 0, then this is the HHT method with parameter α = αF . This method gives an
extra degree of freedom. Parameters γ and β are usually chosen as γ = 1/2 − αM + αF and
β = (1− αM + αF)2/4.

13

4 A simple problem

In this section, we discuss a simple contact problem involving a sphere falling on an elastic surface
using Hertz theory. The ball is either solid or elastic, but in the latter case we assume that the
modulus of elasticity of the ball is the same as for the surface. This is required, since otherwise
friction would occur in the problem. In this case the theory would not be realistic any more and
we wouldn’t be able to compute the elastic deformation for each body.

Not only is the problem useful because of its simplicity, the problems and solutions will also help
us to construct solutions of more complex problems. Furthermore, the problem is very easy to
understand so that the numerical schemes can easily be applied and discussed.

4.1 Deformation of an elastic half space under stress

First, we look at the situation where there is only one body. We assume that this body is an elastic
half space (i.e its area is {(x, y, z) : z ≤ 0} in the static situation without external forces). Now
imagine a force Fz pushing downwards at the origin. Then, according to [1], the displacement
caused by this force is:

ux =
1 + ν

2πE

[
xz

r3
− (1− 2ν)x

r(r + z)

]
Fz (4.1)

uy =
1 + ν

2πE

[
yz

r3
− (1− 2ν)y

r(r + z)

]
Fz (4.2)

uz =
1 + ν

2πE

[
2(1− ν)

r
− z2

r3

]
Fz (4.3)

where r2 = x2 + y2 + z2.

So for the surface elements, i.e. points (x, y, z) ∈ R3 such that z = 0, we in particular have

ux = − (1 + ν)(1− 2ν)x

2πEr2
Fz (4.4)

uy = − (1 + ν)(1− 2ν)y

2πEr2
Fz (4.5)

uz =
(1− ν2)

πEr
Fz (4.6)

Note that since z = 0 we also have r2 = x2 + y2. Equation (4.4) and (4.5) are the similar, as
we would expect from the symmetry of the problem. From these equations, it appears that the
larger the distance from the origin, the smaller the displacement. We assumed that no friction
occurs in the problem, so that only the z-component of the displacement (i.e. equation (4.6) is
of importance.

If there are multiple forces of varying magnitude and position, then the resulting displacement
is the sum of the individual solutions. Usually, a force is not exerted on a single point but on a
certain area A. In this case we are interested in the pressure p, i.e. the force per square unit,
that is being exerted on the surface. We assume that the pressure is continuous. Then, using
equation (4.6), the z-displacement at a point (x, y) on the surface is given by

14

uz =

∫∫
A

1− ν2

πE
· p
r

dudv =
1

πE∗

∫∫
A

p(u, v)√
(u− x)2 + (v − y)2

dudv (4.7)

where

E∗ =
E

1− ν2
(4.8)

According to the Hertz theory, the pressure has a distribution of the form

p(r) = p0

(
1− r2

a2

)1/2

(4.9)

where a is the radius of the contact area. Note that (4.9) is only defined for r ≤ a. The total
force is therefore

F =

∫ a

0

p(r)2πrdr = 2πp0

[
−1

3
a2

(
1− r2

a2

)3/2
]a

0

=
2

3
πp0a

2 (4.10)

As derived in [4], if we substitute (4.9) into (4.7), we arrive at the displacement

uz =
πp0

4E∗a
(2a2 − r2) (4.11)

4.2 Contact between a rigid sphere and an elastic surface

Imagine the contact between a rigid sphere of radius R and an elastic half space. The height of
the sphere at radius r is

z = R−
√
R2 − r2 ≈ r2

2R
(4.12)

Let d be the total penetration of the sphere on the surface (i.e. the displacement at the point
(x, y) = (0, 0)). Then the vertical displacement at radius r is approximately

uz = d− (R−
√
R2 − r2) ≈ d− r2

2R
(4.13)

Equation (4.13) needs to be of the form (4.11). For this to be true, we must have

d =
πp0a

2E∗
(4.14)

and furthermore
1

2R
=

πp0

4E∗a
=⇒ a =

πp0R

2E∗
(4.15)

A direct consequence is that the contact radius satisfies

a2 = Rd (4.16)

15

and we also can retrieve an explicit formula for p0:

p0 =
2E∗a

πR
=

2E∗

πR

√
Rd =

2E∗

π

√
d

R
(4.17)

And finally by substituting equations (4.16) and (4.17) into (4.10) we get

F =
2

3
πp0a

2 =
2

3
π

2E∗

π

√
d

R
Rd =

4

3
E∗R1/2d3/2 (4.18)

4.3 Contact between two curved surfaces

Hertz theory can also be applied in the more general problem with two bodies with curved
surfaces.

Suppose the curvature of both surfaces is R1 and R2, respectively. It appears that [4] equations
(4.16) - (4.18) remain true, as long as the radius R is chosen such that

1

R
=

1

R1
+

1

R2
(4.19)

4.4 Contact between elastic bodies

A simple adjustment can be made to apply the previous theory to the case with two curves
surfaces where both bodies are elastic. Suppose the bodies have an elasticity modulus E1 and
E2, and Poisson’s modulus ν1 and ν2, respectively. Then if we define

1

E∗
=

1− ν2
1

E1
+

1− ν2
2

E2
(4.20)

instead of equation (4.8), then the same formulas remain correct. Note that the penetration d
here is the penetration of the two bodies if the deformation of both bodies is neglected.

4.5 Derivation of the differential equation

Equation (4.18) gives a relation between the penetration of the rigid sphere in the elastic half
space and the normal contact force. With this in mind, we can easily retrieve the differential
equation describing this test problem.

Consider a solid ball of radius R which is dropped from height z0 above an elastic surface having
Young’s modulus E and Poisson’s ratio ν. At this time, the velocity v0 = 0. If the density of the
ball is ρ, then the mass of the ball is simply m = 4

3πR
3ρ.

At all times, there is gravity pointing downwards with force given by Fg = −mg. There can also
be a contact force pointing upwards. If the height of the ball with respect to the z = 0 plane
at a certain point in time is z (which is negative if and only if there is penetration), then the
penetration is dn = max(0,−z), i.e. zero when the surface is not reached, and otherwise d = −z.
The contact force is therefore by equation (4.18)

Fc =
4

3
E∗R1/2max(0,−z)3/2 (4.21)

16

So that the resulting force is

F (z) = Fg + Fc =
4

3
E∗R1/2max(0,−z)3/2 −mg (4.22)

By Newton’s second law, F (z) = mz̈. Dividing by m gives

z̈ =
4

3m
E∗R1/2max(0,−z)3/2 − g (4.23)

which is a non-linear ordinary differential equation of form (3.2), where M ≡ 1, F ≡ 0 and
P (z) = g − 4

3mE
∗R1/2max(0,−z)3/2.

4.6 Properties of the solution

It does not seem to be possible to solve differential equation (4.23) analytically, but it is easy to
derive some properties of the solution. Let t0 be the first moment the ball touches the surface.
Before this point, equation (4.23) is simply

z̈ = −g (4.24)

The exact solution of this is of course z(t) = − 1
2gt

2 + c1t+ c0. Furthermore, since z′(0) = 0 and
z(0) = z0, we find c1 = 0 and c0 = z0, so that

z(t) = −1

2
gt2 + z0 (4.25)

for 0 ≤ t ≤ t0. It follows that t0 =
√

2z0. However, after touching the surface, the differential
equation becomes non-linear and very hard to solve analytically. By substituting w := −z and

defining a := − 4E∗R1/2

3m we can retrieve the following by using separation of variables:

d2w

dt2
= aw3/2 + g

=⇒ w−3/2 d2w

dt2
= a+ gw−3/2

=⇒ w−3/2d2w = (a+ gw−3/2)dt2

=⇒ w−3/2

a+ gw−3/2
d2w = dt2 (4.26)

We can now try to integrate equation (4.26) twice. Maple can do this analytically. The left side
turns out to be a very large function h made of logarithms and an inverse tangent function. The
right side is simply 1

2 t
2 + c1t + c0. Since the left-hand side is so complex, it is not possible to

invert this function analytically. Hence w cannot be explicitly defined as function of t.

We do know, however, that at some point t1 > t0, the ball reaches the lowest point (i.e. its kinetic
energy is zero). Since there is no damping in the system and therefore no energy is lost, that the
solution is symmetric with respect to t = t1. So at t = t1 + (t1 − t0) the ball will be at height 0
again, and at time t = 2t1 the ball reaches its original height z0. This cycle repeats indefinitely.

17

4.7 Solving the problem numerically

Next, we will discuss the numerical methods as described in Section 3 applied for this test problem.
All of the methods have been applied for this problem, but we only discuss the findings since
many of the results are similar.

The Radau5 and the Verlet method both give the result as we would expect, as can be seen in
Figure 2. Furthermore, if for Newmark, HHT, or the generalized-α method the parameters are
chosen such that no numerical damping is created on purpose (as described in the corresponding
chapters), then the results are similar.

Figure 2: The height of the ball as a function of the time, using a stable method such as Radau5.

It is also interesting to look at the total amount of energy in the system. At t = 0, the kinetic
and elastic potential energy are both zero, but the potential gravitational energy is maximal. For
t ∈ [0, t0], the potential gravitational energy is slowly transformed to kinetic energy. Between
t = t0 and t = t1, both kinetic and gravitational potential energy are transformed to potential
elastic energy. At t = t1, the kinetic energy is 0, the potential gravitational energy is minimal
(negative since there is penetration), and the elastic energy potential is maximal.

However, since there is no damping in the system, the total amount of energy (i.e. the sum of
the kinetic, gravitational, and elastic energy) is constant. This can be seen in Figure 3.

The fact that the total amount of energy is constant is the reason why explicit methods like Euler
Forward and Runge-Kutta 4 are never stable. The effect of Euler Forward can be seen in Figure
4. Note that the height z of the ball is proportional to the total amount of gravitational energy.
After each bounce, the total amount of energy is increased. However, if both the time step ∆t
and the total amount of time tn are small enough, then this increase of energy will not be visible.

For an implicit Runge-Kutta method like the Euler Backward, the exact opposite happens if ∆t
is too small. In this case there will be numerical damping, so that the total amount of energy
decreases over time.

18

Figure 3: The energy of the ball as a function of the time, using a stable method such as Radau5.

Figure 4: The energy of the ball as a function of the time, using the instable Euler Forward
method.

19

4.8 Using CONTACT to solve the problem

It is interesting if this problem can also be solved by using CONTACT. Instead of using equation
(4.18) to determine the contact force, we could also compute the normal force by using CON-
TACT. Using this we can compare the solution with the exact solution for the Hertz problem,
and also see if the properties of each numerical method still hold.

For CONTACT one of the two options should be specified, either contact force or the penetration.
For our problem we are interested in the second option. The surface of the ball is discretised on
a grid [X,Y]. The height Zij of the sphere at surface element (Xij , Yij) can easily be computed

Zij = R−
√
R2 − (X2

ij + Y 2
ij) + z (4.27)

As before, z denotes the height of the ball, measured from its lowest point. Note that equation
(4.27) is only valid if Zij is real. If it is not real, then the line (Xij , Yij , z) does not intersect with
the surface of the ball.

If a value Zij is negative, then this can be seen as the penetration of the ball in the surface.
The penetration Z can be supplied to CONTACT, together with other required variables such
as the elasticity coefficients of the materials and the size of the domain. Using this, CONTACT
is able to compute the contact force as well as the deformation of the elastic surface outside of
the contact area.

We denote the contact force as function of the height z by Fc(z). Note that for z ≥ 0 the surface
is still in its undeformed state, hence Fc(z) = 0. Similarly to the derivation of the differential
equation (4.23), we arrive the differential equation

z̈ =
Fc(z)

m
− g (4.28)

The same numerical methods can be applied as before. Note that the computation of Fc(z) is
relatively expensive (unless of course z ≥ 0) so implicit methods will generally take much longer.
An advantage, however, is that by using CONTACT arbitrary shapes can be used instead of just
a ball . Furthermore, the displacement of the surface outside of the contact area can be computed
with CONTACT.

We programmed the explicit Verlet method and the implicit Radau5 method in Matlab. The
results are clearly not correct yet and will therefore require more intensive research. See Figure
6 for a comparison between the CONTACT method and the hertz solution. The most obvious
observation is that Verlet method now is very unstable. If we lower the timestep ∆t, then this
amplification factor will decrease slowly. Radau5, however, seems more accurate. As for the
hertz problem, Radau5 makes sure there is energy conservation. For both solutions, however, the
maximum penetration is slightly off.

20

Figure 5: Comparison of the exact hertz solution and the CONTACT solution using the Verlet
and the Radau5 numerical integration scheme.

Figure 6: The deformation of the surface at a certain point in time, computed using CONTACT.

21

5 Global deformations of a beam

In the following more complex dynamic contact problem global deformations are also of impor-
tance. Consider an elastic beam with a force acting perpendicularly. This force will not only
cause local deformation of the beam around the initial point of contact, the whole beam also gains
momentum from the impact, thereby causing global deformation. In particular, we are interested
how CONTACT could be applied for these problems.

This example is for example useful when interested in a moving load problem, such as a train
riding on a bridge. The bridge can be seen as an elastic beam with fixed ends. Since the train
does not stay in one position, the force of the train exerting on the bridge also differs with respect
to both place and time.

5.1 The 1D dynamic beam equation

In the following example, we consider a one dimensional beam. The two dimensional case is a
simple generalisation of this problem. Euler-Bernoulli beam theory is a simplification of the most
general elasticity theory as described in Section 2. Instead of using differential equation (2.18),
the Euler-Bernoulli dynamic elastic beam differential equation in one dimension is

∂2

∂x2

(
E(x)I(x)

∂2u

∂x2

)
= −ρ∂

2u

∂t2
+ p(x, t) (5.1)

Here E is the elasticity modulus of the material of the beam. The parameter ρ describes the
mass per unit length and p corresponds to the force per unit length (their 3D counterparts being
density and pressure, respectively). I is the second moment of area of the cross-section of the
beam. This property reflects how the points of an object are distributed with respect to a certain
axis L and is defined as

I(x) =

∫
A(x)

d(z)2dz (5.2)

in the one dimensional case, or

I(x) =

∫∫
A(x)

d(y, z)2dydz (5.3)

in the two dimensional case. Here A(x) is the (either one or two dimensional) cross section of
the beam at x, and d is defined as the distance from this point to the axis L. For the beam, this
axis L is simply the axis y = z = 0. If the cross-section of the beam has the same distribution
and size for each x ∈ [0, L], then the second moment of area I(x) = I is constant.

The Euler-Bernoulli beam theory neglects shear deformations and the solution is only accurate for
long thin beams. More complex (Timoshenko) beam theories have been developed that account
for these problems, but we will solely focus on the simpler Euler-Bernoulli beam equation.

When assuming the beam is homogeneous, then both E and I are constant and therefore the
following equation can be derived:

EI
∂4u

∂x4
= −ρ∂

2u

∂t2
+ p(x, t) (5.4)

22

5.2 Boundary and initial conditions

Equation (5.1) is a fourth order differential equation with respect to the variable x, hence we
need 4 boundary conditions. Different boundary conditions are possible for the problem, but it is
reasonable (if we see the beam as a bridge) to assume that the beam is fixed at x = 0 and x = L.
In this situation, vibration can only occur in x ∈ [0, L]. Outside of this area, the rails are fixed
to the ground. Both the displacement u and the angle ∂u

∂x should be zero at the boundaries:

u(0, t) = 0 =
∂u

∂x
(0, t)

u(L, t) = 0 =
∂u

∂x
(L, t)

(5.5)

These conditions are called clamped boundary conditions. Another possibility is to use a simply

supported beam. In this situation the bending moment M = −EI ∂
2u
∂x2 is assumed to be zero at

the boundary, instead of the slope of the beam:

u(0, t) = 0 =
∂2u

∂x2
(0, t)

u(L, t) = 0 =
∂2u

∂x2
(L, t)

(5.6)

where EI is assumed to be non-zero.

Furthermore, we have a second derivative for the time variable, so that we need an initial condition
for both the displacement u and the velocity ∂u

∂t of the displacement.

5.3 Modal analysis

5.3.1 Free vibrations

In many situations, we are interested in the frequencies of the solutions of equation (5.4). Consider
for example the free vibrations of the beam, these are solutions of the same equation where there
is no external force, i.e. p ≡ 0. The resulting partial differential equation can be solved using
separation of variables (also known as the Fourier method). Let v(x, t) = Re[w(x)eiλt]. By

substituting this into differential equation EI ∂
4u
∂x4 = −ρ∂

2u
∂t2 , we find that v is a solution if and

only if

EIw(4)(x)eiλt = ρλ2w(x)eiλt (5.7)

Dividing by EIeiλt yields the ordinary differential equation

w(4)(x) =
λ2ρ

EI
w(x) (5.8)

This differential equation has solutions of the form w(x) = cos(βx), as well as sin(βx), cosh(βx),

and sinh(βx). The parameter β much satisfy β4 = λ2ρ
EI , and therefore

23

β =

(
λ2ρ

EI

)1/4

(5.9)

We write the solution w as

w(x, t) = c1 cos(βx) + c2 sin(βx) + c3 cosh(βx) + c4 sinh(βx) (5.10)

Note that if β = 0, it follows immediately that w is a constant. It must therefore be identically
zero because of the boundary conditions. Since we are only looking for non-trivial solutions, we
can assume that β 6= 0. In this case, w satisfies the boundary equation if and only if

0 =v(0) = c1 + c3

0 =
∂v

∂x
(0) = β(c2 + c4)

0 =v(L) = c1 cos(βL) + c2 sin(βL) + c3 cosh(βL) + c4 sinh(βL)

0 =
∂v

∂x
(L) = β(−c1 sin(βL) + c2 cos(βL) + c3 sinh(βL) + c4 cosh(βL)

(5.11)

Figure 7: The first five mode shapes of the beam.

24

By dividing the 3rd and fourth equation by β, this system can be denoted as
1 0 1 0
0 1 0 1

cos(βL) sin(βL) cosh(βL) sinh(βL)
− sin(βL) cos(βL) sinh(βL) cosh(βL)



c1
c2
c3
c4

 =


0
0
0
0

 (5.12)

or as Ac = 0. We are only looking for non-trivial solutions, i.e. solutions c 6= 0. Such a solution
can only exist if A is singular (not invertible), i.e. det(A) = 0. A simple computation yields that
this is equivalent to

cos(βL) cosh(βL) = 1 (5.13)

Equation (5.13) has infinitely many solutions and each solution can be approximated by using a
numerical method like Newton-Raphson. Since cosh(βL) tends to infinity as βL→ ±∞, cos(βL)
must be near zero. Therefore, βn tends to 1

L (1
2 + k)π for certain n ∈ Z as it tends to ±∞.

The real frequencies λn of the beam are easily derived from equation (5.9):

λn = β2
n

√
ρ

EI
(5.14)

The coefficients cin for i = 1, 2, 3, 4 can be found by finding a non-zero vector cn in the nullspace
of A, i.e. Acn = 0, using the corresponding value of βn. Note that Rank(A) ≥ 3 and equality
holds if and only if (5.13) is true, so that this vector is unique up to a constant.

For this problem with clamped boundaries, wn can be computed analytically. After some com-
putation we find the following expression:

wn(x) = cosh(βnx)− cos(βnx) + kn sin(βnx)− kn sinh(βnx) (5.15)

and any multiple of this is also a solution. In this formula kn is defined as

kn =
sin(βnL) sinh(βnL)

cos(βnL) sinh(βnL)− sin(βnL) cosh(βnL)
(5.16)

The functions wn are called the mode shapes of the beam with corresponding frequencies λn. As
an example, suppose E = I = ρ = L = 1. Using Newton-Raphson to solve (5.13), we find the
following first 5 values of βn and λn as in Table 1. The second column contains the approximation
of βn given by 1

L (1
2 + n)π.

n βn
1
L (1

2 + n)π λn
1 4.73004 4.71238 22.373
2 7.85320 7.85398 61.672
3 10.9956 10.9955 120.90
4 14.1371 14.1371 199.85
5 17.2787 17.2787 298.55

Table 1: The first 5 frequencies of the beam using E = I = ρ = L = 1.

25

The approximation 1
L (1

2 + n)π therefore converges very quickly to the value of βn. Note that
β = 0 also satisfies (5.13), but this corresponds to a zero modal function. Furthermore, since
λn = β2

n

√
ρ
EI , we can ignore negative values of n too.

Using superposition the solution u can be written as

u(x, t) =

∞∑
i=1

vi(x, t) =

∞∑
i=1

Re[diwi(x)eiλt] (5.17)

The coefficients di are still unknown should be computed by using the initial conditions. Note
that these coefficients can be complex. The exponential could be expanded and each coefficient
di can be replaced for two real coefficients ai and bi. We find

u(x, t) =

∞∑
i=1

vi(x, t) =

∞∑
i=1

wi(x)[ai cos(λt) + bi sin(λt)] (5.18)

The coefficients ai and bi can now be extracted by applying the initial conditions and by noting
that the mode shapes wi are orthogonal. Suppose for example that at t = 0 there is a certain
displacement u(x, 0) = u0(x) but the beam is at rest, i.e. u̇(x, 0) ≡ 0. Then it is easy to see that
bi = 0 for all i. The coefficients mi could next be computed by using the orthogonality of the set
{wi : i ≥ 1}:

ai =
2

L

∫ L

0

u0(x)wi(x)dx (5.19)

5.3.2 Forced vibrations

For the moving load problem, the external force p(x, t) is non-zero. This force can trigger vibra-
tions of a different frequency.

Suppose as an example that this force is harmonic, so that it can be written as p(x, t) =
f(x) cos(ωt) for ω a frequency. f can be any function, in particular we are interested in a
single point force, i.e. f(x) = p0δ(x− x0) describes a force p0 at point x = x0 and 0 everywhere
else. An interesting question is how the solution will behave and what frequencies will become
dominant.

For general functions of p, the solution of differential equation (5.4) can not be found analytically.
In many situations, however, the solution can be approximated by using the modes found in the
case without external forces. Suppose we use a finite amount, say N , of nodes to construct our
solution. Using superposition u can be written as

u(x, t) ≈ uN (x, t) =

N∑
i=1

di(t)vi(x, t) =

N∑
i=1

wi(x)[ai(t) cos(λt) + bi(t) sin(λt)] (5.20)

Since each function vi(x, t) satisfies the homogeneous boundary conditions, so does uN . The
coefficients ai and bi can depend on time. In many situations, we are interested in computing
these coefficients to see what frequencies become dominant. Using modes to solve the problem has
the advantage that the coefficients are computed to construct uN and are therefore immediately
known.

26

5.4 The discrete problem

If there is no external force p, then the exact solution can be computed using equation (5.18).
A simple approximation can be found by using a limited number of modes, i.e. by settings
ai = bi = 0 for |i| ≥ k for some k ∈ N.

For a more general force p, the problem is harder. An approximation can be found by discretising
differential equation (5.4). Both the Finite Element method and the Finite Difference method
can be applied for this problem. Since the geometry of a one dimensional beam is very simple,
the Finite Difference method is sufficient. Suppose we use a uniform grid of n + 1 grid points
in total, which includes the grid points x0 and xn of both boundaries. The position of the grid
points are given by xi = i∆x for 0 ≤ i ≤ n, where ∆x = L

n .

Since there is a second order time derivative in differential equation (5.4), we should first convert
it to a system of two first order differential equations. To do so, we define v = ∂u

∂t as the speed
of the displacement of the beam. By substituting this into (5.4) and rearranging the terms a bit,
we arrive at the system of equations

∂u

∂t
= v

∂v

∂t
= −EI

ρ

∂4u

∂x4
+
p(x, t)

ρ

(5.21)

For convention, we denote ukj as a shorthand notation of u(xj , tk). The fourth order derivative
∂4

∂x4u
k
j = ∂4u

∂x4 (xj , tk) can be approximated using the following scheme:

∂4

∂x4
uj(t) =

uj−2(t)− 4uj−1(t) + 6uj(t)− 4uj+1(t) + uj+2(t)

∆x4
+O(∆x2) (5.22)

We have two kinds of boundary conditions. The Dirichlet boundary conditions u(0, t) = u(L, t) =
0 can simply be applied by substituting 0 for each term uk0 or ukn. Alternatively, one could set uk0
and uki at zero manually at each time step.

For the other boundary conditions, the Neumann conditions ∂u
∂x (0, t) = ∂u

∂x (L, t) for all t, we
temporarily introduce two virtual points x−1 = −∆x and xn+1 = (n + 1)∆x = L + ∆x. The
derivative ∂u

∂x at grid point xk is discretised by uk+1−uk−1

2∆x . Since this derivative is zero at x = 0
(i.e. when k = 0), this yields u−1 = u1. So if we substitute u1 for each term u−1 and similarly
for the other boundary, we have eliminated the virtual points outside our domain.

After discretising, we arrive at the system of equation

du

dt
= v

dv

dt
= Au + f

(5.23)

Next, an appropriate time integration scheme should be used, such as the ones described in
Section 3, in order to find an approximation of the solution.

27

5.4.1 The CFL condition

A very important mathematical property to consider for the discrete problem is the CFL number
and the CFL condition. If this condition is not satisfied, then information does not propagate
fast enough, creating artificial wiggles in the solution that tend to infinity, thereby making the
results useless.

The CFL condition usually occurs in parabolic and hyperbolic differential equations. Although
the beam equation is neither parabolic nor hyperbolic, for this differential equation the CFL
number also plays a role.

Consider a fully discretised model, where the partial derivative ∂2

∂t2uj(tk) is discretised using

∂2

∂t2
ukj =

uk+1
j − 2ukj + uk−1

j

∆t2
+O(∆t2) (5.24)

If there are no external forces, i.e. p ≡ 0, then the discretised differential equation can be written
as

uk+1
j = ∆t2

EI

ρ

[
−ukj−2 + 4ukj−1 − 6ukj + 4ukj+1 − ukj+2

∆x4

]
+ 2ukj − uk−1

j (5.25)

Note that equation (5.25) is equal to the definition of the Verlet integration method. Von Neu-
mann stability analysis can now be applied on this equation.

Since this is a multistep scheme, we should apply its corresponding stability theorem. Let ukj =

gkeijξ (i being the imaginary unit here), where g 6= 0 is an amplification factor. By substituting
this into equation (5.25) and expanding the exponent, we find

gk+1eijξ =
EI∆t2

ρ∆x4
gkeijξ

[
−e−2iξ + 4e−iξ − 6 + 4eiξ − e2iξ

]
+ 2gkeijξ − gk−1eijξ (5.26)

Dividing by gk−1eijξ yields

g2 =
EI∆t2

ρ∆x4
g
[
−e−2iξ + 4e−iξ − 6 + 4eiξ − e2iξ

]
+ 2g − 1 (5.27)

Note that eiξ + e−iξ = 2 cos(ξ), so we can rewrite this to

g2 +

(
−2− EI∆t2

ρ∆x4
[−2 cos(2ξ) + 8 cos(ξ)− 6]

)
g + 1 = 0 (5.28)

Hence, there are two solutions for g. Let y = EI∆t2

ρ∆x4 [cos(2ξ)− 4 cos(ξ) + 3], then we find

g± =
2− 2y ±

√
(−2 + 2y)2 − 4

2
= 1− y ±

√
y2 − 2y (5.29)

Note that g± is allowed to be imaginary, that is, if y2 − 2y < 0, then g± = 1− y ± i
√

2y − y2.

28

Both amplification factors g+ and g− should be less or equal to one in absolute value for all values
of ξ. First, we note that 0 ≤ cos(2ξ)− 4 cos(ξ) + 3 ≤ 8, so that y ≥ 0. If y > 2, then y2 > 2y, so

that g− = 1−y−
√
y2 − 2y ≥ 1−y < −1, so that the method is unstable. However, if 0 ≤ y ≤ 2,

then we have

|g±| = |1− y ± i
√

2y − y2| =
√

(1− y)2 + |2y − y2| =
√

1− 2y + y2 + 2y − y2 = 1 (5.30)

hence we have stability. Since furthermore 0 ≤ cos(2ξ)− 4 cos(ξ) + 3 ≤ 8 holds, we also find

y =
EI∆t2

ρ∆x4
≤ 2

cos(2ξ)− 4 cos(ξ) + 3
=

1

4
(5.31)

which is therefore the CFL condition for the fully discretised model, i.e. the Verlet method. Note
that this CFL condition does not only depend on which integration scheme is used, it also depends

on how the fourth order derivative ∂4u
∂x4 is discretised. If instead of (5.22) a better approximation

is made, the coefficients for the CFL condition can differ.

This is a fairly strong restriction. If the spatial mesh is required to be twice as fine as it was
before, then the time step should be set in the order of 4 times smaller, therefore requiring in the
order of 4 times more time integration steps.

5.4.2 Implicit methods

As we have seen, explicit time integration methods can result into strong CFL conditions. It might
therefore be a good idea to apply an implicit instead. Consider the Backward Euler method. This
integration method is unconditionally stable, so that there is no CFL condition. Picard iteration,
however, can result in problem for implicit time integration schemes. In general, Picard iteration
can stop converging if ∆t is too large compared to ∆x.

A different iterative solver should be used instead, such as Newton-Raphson. This solver could
be combined with a line search algorithm so that it will converge more often.

For the simple implicit Backward Euler method, we can compute the solution analytically. A
single Backward Euler step is given by

uk+1 = uk + ∆tvk+1

vk+1 = vk + ∆t[Ak+1 + fk+1]
(5.32)

If we define zk = [uk;vk], this system can be rewritten as

zk+1 = zk + ∆tBzk+1 + ∆tgk+1 (5.33)

where

B =

(
0 I
A 0

)
and gk+1 =

(
0

fk+1

)
(5.34)

Therefore, zk+1 can be computed analytically:

29

zk+1 = (I −∆tB)−1(zk + ∆tgk+1) (5.35)

If the inverse of (I −∆tB) is computed, then uk+1 and vk+1 can be computed explicitly at each
time step.

5.5 A simple moving load problem

Consider the following (very simplistic) problem with a train (modelled as a single point force)
moving over a track. In this problem we do not take local deformations into account, and therefore
we can also ignore phenomena such as slip.

Consider a small bridge that spans a total of 20m which is clamped at both sides. There are
no supports between the two ends of the bridge. The bridge itself is made out of steel with a
thickness of 50cm. An NS DD-AR train with a mass of 76 tons moves over the the bridge with
a speed of 30m/s. This example corresponds to the values as shown in Table 2.

Property Value Explanation
E 2 · 1011 Elastic modulus of steel

I 0.0104m4 I(x) =
∫ 0.25

−0.25
|z|2dz

L 20m Bridge of 20 meters
ρ 7900kg/m3 Density of steel
m 76 · 104kg Mass of train
v 30 Speed of train in m/s

Table 2: The properties of the bridge and train.

The force the train exerts on the bridge mg at the position of the train, which is x(t) = vt and
is therefore

p(x, t) = mgδ(x− vt) 0 ≤ x ≤ L (5.36)

After defining w = ∂u
∂t and rewriting equation (5.4) as a system of two linear ordinary differential

equations, it can then be discretised using a finite difference approach to approximate u̇ and ẇ.
Next, a time integration scheme such as the ones we have described in Section 3 can be used
to integrate with respect to time. Alternatively, the partial differential equation can also be
discretised completely (including the time derivative) as we have done in the previous section.

n βn
1
L (1

2 + n)π λn Frequency (λn/(2π))
1 0.23650 0.23561 0.1089 · 10−3 0.1733 · 10−4Hz
2 0.39266 0.39269 0.3002 · 10−3 0.4778 · 10−4Hz
3 0.54978 0.54977 0.5886 · 10−3 0.9368 · 10−4Hz
4 0.70685 0.70685 0.9730 · 10−3 1.5485 · 10−4Hz
5 0.86393 0.86393 1.4534 · 10−3 2.3132 · 10−4Hz

Table 3: The first 5 eigenfrequencies of the bridge.

Table 3 shows the corresponding values of λn and βn for the free vibration modes, as well as the
corresponding frequencies.

The algorithm to solve this problem (with the properties as shown in Table 2) has been imple-
mented in Matlab. We use a uniform mesh in the spatial direction with mesh size ∆x = L

100 .

30

Figure 8: The displacement of the beam at time t ≈ 4.67. The red star represents the load of the
train.

The time integration is done using Verlet integration. According to (5.37), the following CFL
condition should hold:

∆t ≤ (∆x)2

2

√
ρ

EI
≈ 3.8977 · 10−5 (5.37)

In Figure 8 the solution is shown at a certain point of time, using the time step ∆t = 3.8976·10−5.
The integration is clearly stable. The train moves from the left side to the right side, so as we
would expect, a wave appears and follows the train to the right. After applying Verlet integration
numerically, it appears that the maximum displacement of the beam occurs at about t ≈ 3.33.
At this time, the train is exactly in the middle of the beam. The total displacement is about
0.3cm.

To show the effect of the CFL condition, we use the same experiment but now with a time step
∆t = 3.899 · 10−5, resulting in a CFL number slightly higher than the upper bound we have
found. See the results in Figure 9.

As we can see, artificial wiggles are created which tend to infinity. So our CFL condition is very
accurate.

The CFL condition (5.37) was computed for the fully discretised model, i.e. the Verlet method.
The Euler Forward method gives a similar result. However, this condition does not seem to
be accurate when using the Runge-Kutta 4 method. For the RK4 method, the following CFL
condition seems to hold:

∆t ≤ 0.188
ρ

EI
∆x4 = O(∆x4) (5.38)

31

Figure 9: The displacement of the beam at time t ≈ 0.06, using a CFL number slightly larger
than 1

4 . The red star represents the position of the wheel.

This can numerically be verified by finding for multiple values of ∆x (up to a certain precision)
the lowest value of ∆t so that the integration is unstable. Afterwards, one applies Richardson
extrapolation to get the result.

The difference is significant. Although the time integration itself is of higher order, the time step
∆t should be made roughly 16 times smaller when decreasing the mesh size by 2. For Euler
Forward and Verlet integration this is only 4 times. This makes the RK4 method not preferable
for many situations, as one easily needs an hour of computation time if more one wishes to have
more than 50 discretisation points in the spatial direction.

32

6 Applying both local and global deformations

In Section 4 we discussed the physics involving a sphere falling on an elastic surface. Using Hertz
theory we derived a differential equation that described the deformation of the elastic sphere. In
Section 5 we described the total deformation and bending of a beam.

These two sections describe different phenomena. In Section 4 we only consider local deformations,
the elastic surface itself does not move. Section 5 is focussed on the global deformation that occurs
when there are forces being exerted on the beam.

In many dynamical contact problems, however, both phenomena occur at the same time. If a
train is moving over a bridge, then the rails will be deformed slightly around each contact area.
But the bridge as a whole will bend as well. These are two different systems but they are not
completely separate of each other. The global deformation of the bridge will also effect the local
deformation, since this changes the shape of the material around the initial contact point.

Figure 10: A visual interpretation of a train wheel on a bridge, combining global and local
deformations. The cyan line represents the global deformation of the bridge if there is no local
deformation. Note that the ratios in this figure are not realistic.

6.1 Applying the Finite Element Method

The straightforward approach that governs the global as well as the local deformations, is to use
the Finite Element Method applied to equations (2.18). A simple mesh should be created for the
beam. This should be either a 2D mesh or a 3D mesh, as long as it includes the thickness of the
beam.

After the weak formulation is derived, the corresponding integrals should be computed (using
sufficient basic functions). For the boundary elements the corresponding boundary conditions
should be applied here. These boundary conditions depend on the time. Either Hertz theory or
CONTACT should be used to determine the traction boundary conditions.

Another possibility is to use finite element software with built-in contact conditions.

33

Next, the time derivative ∂u
∂t can be computed for each element. An appropriate time integration

scheme as in Section 3 should be used to integrate with respect to time.

The advantage of this method is that since the whole bridge (including its thickness) is discretised,
both the global and local deformations are automatically included in the problem. This method
results in an accurate solution of the problem if the elements are chosen small enough and can
be used to verify the correctness of the real problem. It may be useful to use a grid which is finer
around the contact region, so that the local deformation can be studied in much more detail.

6.2 Combining local and global deformations using CONTACT

The applied finite element method can become relatively costly if one wishes to compute defor-
mations for very fine meshes, since it includes an extra dimension for the thickness of the beam.
It is therefore an interesting question whether the results of Section 4 (about local deformations)
and those of Section 5 (about global deformations) can somehow be used together to compute
the solution accurately without it being too computationally expensive.

The main problem that will be researched during this thesis project is how CONTACT can be
used used to compute the total deformation for these dynamical contact problems. Taking both
local and global deformations into account, an algorithm should be developed that returns a good
estimate of the total deformation, comparing this to the result of the Finite Element approach.

We will research how to do this more in detail in the following months. To give a slight outline;
the total deformation will be computed iteratively at each time step. We start by computing the
global deformation (not taking local deformation into account), using a given pressure p, and using
this our initial guess of the total deformation. Then, the so called undeformed distance can be
computed. This is the distance between the two bodies in a given coordinate system. CONTACT
should then be called next. CONTACT then uses the undeformed distance to compute the local
deformations in the contact area.

CONTACT also produces a pressure distribution around the initial contact point. This pressure
should agree with the original pressure distribution we used to compute the global deformation.
If this is not yet the case, the global deformation should be re-evaluated. This time, the newly
computed pressure distribution should be used. This process is repeated until a stable solution is
found, in which the pressure described in the local contact problem corresponds to the pressure
described in the global problem. At this point, the global and local deformation are in agreement
with each other and therefore the total deformation should be correct.

34

7 Research problems

The main goal of this research is to find a way to use CONTACT in dynamical contact problems,
in particular those that occur in the rail industry.

It is often too hard to solve problems like these in full detail. Therefore, we will start looking
at very simple (test) problems, solve these, and then gradually increase its complexity of the
problem. These test problems are simple (often unrealistic) problems and are created solely to
gain a better understanding of different parts of the main problem.

7.1 Deformation of an elastic half space

The first test program we will have a look at is the deformation of an elastic half space. We are
interested in how its deformation can be computed if an object like a sphere exerts a force on the
surface. A lot of analysis has already been done in Section 4. The total deformation is computed
according to Hertz theory.

The first goal is to find out how CONTACT can be used to solve the same problem. Instead of
using equation (4.18) to compute the normal force, we could also use CONTACT to do so. This
will allow us to get a better understanding of CONTACT before we move on to the more difficult
problems. With this approach, not only the total deformation is computed, but CONTACT also
returns the pressure in the contact area and the displacement of the surface outside the contact
area.

Applying the Finite Element method is also a good practice for this problem. Using Hertz
theory we can derive boundary conditions for the elasticity equation (2.18). This can then be
implemented using the Finite Element method to gain experience working with this. Furthermore,
we will compare the result of the two different approaches.

7.2 Stationary situation of a wheel on a bridge

In the second problem we will research, we will take both global and local deformations into
account. As before, consider an object such as a sphere or a (train) wheel on a bridge. For now,
we will only look at the static problem. In this situation, the gravitational force of the wheel
is the same as the normal force of the bridge. Furthermore, the wheel also stays in the same
horizontal position.

For this problem we will try to compute the global and local deformation of the bridge. This
should be done as described in Section 6. The main goal of this research problem is to solve
the problem as described in Section 6.2, i.e. on how to derive the pressure distribution that
corresponds to both the local and the global problem.

Applying the Finite Element method for this particular test problem is similar (even simpler,
since there is no time dependency now) as for the previous test problem.

Note that if for this problem we use the parameters as in Table 2, the total global deformation
will be extremely small (as in a total deformation of 0.2cm for a bridge of length 20m). This
would have little to no effect on the local deformation and its pressure distribution in the contact
area. It might therefore be advantageous to use different (unrealistic) parameters. For example,
we could decrease the elasticity modulus by multiple factors. This will result in a much larger
deformation of the bridge as a whole, and will therefore significantly change the undeformed
distance between the bridge and the wheel.

35

7.3 Time dependent train / bridge simulation

The third and last research problem is an extension of the second problem. Instead of only looking
at the stationary situation, we will also take time into account for this problem. We will consider
a train that is moving as in Section 5.5, but now we will also take local deformation into account
like in the second test problem.

Multiple time integration methods as described in Section 3 will be tested. This involves solving
the pressure distribution problem (as in Problem 2 we just discussed). Furthermore, if an implicit
integration scheme is used, an iterative solver should be applied to solve the implicit problem.
Properties like accuracy, stability (and CFL number), computational complexity, and numeri-
cal damping and amplification will be researched and compared between all tested numerical
integration schemes.

The results can then be further analysed. In particular, we are interested in what frequencies
of the bridge will become dominant if a train moves over the bridge with a certain speed and
whether resonance can occur.

36

References

[1] Landau, L. D., & Lifshitz, E. M. (1975). Elasticity theory. Pergamonn Press, second edition.

[2] Sadd, M. Fundamental equations of dynamic elasticity. Chapter 10. http://personal.egr.
uri.edu/sadd/mce565/Ch10.pdf

[3] ESA. Glossary, http://www.spaceflight.esa.int/impress/text/education/Glossary/

Glossary_L.html

[4] Popov, V. L. (Ed.). (2010). Contact mechanics and friction. Springer, Berlin.

[5] Geng, S. (1995). Construction of high-order symplectic PRK methods. J. Comput. Math,
13(1), 40-50.

[6] Verlet, L. (1967). Computer” experiments” on classical fluids. I. Thermodynamical properties
of Lennard-Jones molecules. Physical review, 159(1), 98.

[7] Negrut, D., Rampalli, R., Ottarsson, G., & Sajdak, A. (2007). On an Implementation of the
Hilber-Hughes-Taylor Method in the Context of Index 3 Differential-Algebraic Equations of
Multibody Dynamics (DETC2005-85096). Journal of computational and nonlinear dynamics,
2(1), 73-85.

[8] Chung, J., & Hulbert, G. M. (1993). A time integration algorithm for structural dynamics
with improved numerical dissipation: the generalized-α method. Journal of applied mechanics,
60(2), 371-375.

[9] Jerri, A. J. (1998). The Gibbs phenomenon in Fourier analysis, splines and wavelet approxi-
mations (Vol. 446). Springer Science & Business Media.

37

8 Appendix

The following matlab codes have been written and used for this report.

8.1 SphereOnPlane.m

This matlab code computes the deformation of the elastic sphere as discussed in Section 4. In
this code, differential equation (4.23) is integrated using all of the integration schemes of Section
3. Picard iteration is used for those methods that are implicit.

1 % Settings:
2 g = 9.81; % Gravitational acceleration
3

4 % Material properties
5 E = 1.5E+8; % Young’s modulus of Polybutadiene
6 nu = 0.50; % Poisson ratio
7 rho = .91E+6; % Density in g / mˆ3
8

9 % General settings:
10 R = 0.11; % Radius of ball
11 z0 = 1; % Height of ball at t=t0
12 v0 = 0; % Speed of ball at t=t0
13 eps = 0.0001; % Max picard error
14

15 % Time to integrate
16 dt = .002;
17 t0 = 0;
18 t1 = 1;
19

20

21

22 % Code starts here
23 t = t0:dt:t1;
24 m = 4/3∗pi∗Rˆ3 ∗ rho; % Mass of ball
25 n = length(t);
26 Estar = E / (2 ∗ (1 − nu)ˆ2);
27 z = [z0, zeros(1,n − 1)];
28 v = [v0, zeros(1,n − 1)];
29 a = [−g, zeros(1,n − 1)];
30 delta = [max(0,R − z0), zeros(1,n − 1)];
31

32

33 % z’’ = A(z)
34 A = @(x) 4/3 ∗ Estar ∗ sqrt(R) ∗ max(0, −x).ˆ(3/2) / m − g;
35

36

37

38

39 if 0
40 % RK4
41 % Butcher tableau:
42 % IIA Method
43 T = [0,0,0,0;1/2,0,0,0;0,1/2,0,0;0,0,1,0];
44 b = [1/6, 1/3, 1/3, 1/6];

38

45 [kz,kv] = deal(zeros(4,1));
46 for i = 2:n
47 kzo = kz;
48 kvo = kv;
49 for j = 1:4
50 a = v(i − 1) + dt ∗ T ∗ kvo;
51 kz(j) = a(j);
52 a = A(z(i − 1) + dt ∗ T ∗ kzo);
53 kv(j) = a(j);
54 end
55 z(i) = z(i − 1) + dt ∗ b ∗ kz;
56 v(i) = v(i − 1) + dt ∗ b ∗ kv;
57 end
58

59 end
60

61

62

63

64 if 0
65 % RADAU5
66 % Butcher tableau:
67 if 1
68 % IA Method
69 T = [1/9, (−1−sqrt(6))/18, (−1+sqrt(6))/18;
70 1/9, 11/45 + 7∗sqrt(6)/360, 11/45 − 43∗sqrt(6)/360;
71 1/9, 11/45 + 43∗sqrt(6)/360, 11/45 − 7∗sqrt(6)/360];
72 b = [1/9, 4/9 + sqrt(6)/36, 4/9 − sqrt(6)/36];
73 else
74 % IIA Method
75 T = [11/45 − 7∗sqrt(6)/360, 37/225 − 169∗sqrt(6)/1800, −2/225 + sqrt(6)/75;
76 37/225 + 169∗sqrt(6)/1800, 11/45 + 7∗sqrt(6)/360, −2/225 − sqrt(6)/75;
77 4/9 − sqrt(6)/36, 4/9 + sqrt(6)/36, 1/9];
78 b = [4/9 − sqrt(6)/36, 4/9 + sqrt(6)/36, 1/9];
79 end
80 [kz, kv] = deal(zeros(3,1));
81 for i = 2:n
82 % Integrating with RADAU5
83 % Solving the system with Picard iteration
84 while 1
85 kzn = v(i − 1) + dt ∗ T ∗ kv;
86 kvn = A(z(i − 1) + dt ∗ T ∗ kz);
87 error = norm([kzn;kvn] − [kz;kv]);
88 kz = kzn;
89 kv = kvn;
90 if error < eps
91 z(i) = z(i − 1) + dt ∗ b ∗ kz;
92 v(i) = v(i − 1) + dt ∗ b ∗ kv;
93 break;
94 end
95 end
96 end
97

98 end
99

39

100

101

102 if 0
103 % Newmark
104 beta = 1/4;
105 gamma = 1/2;
106 for i = 2:n
107 % Integrating with HHT
108 % Solving the system with Picard iteration
109 z(i) = z(i − 1);
110 v(i) = v(i − 1);
111 a(i) = a(i − 1);
112 while 1
113 zn = z(i − 1) + dt ∗ v(i − 1) + dtˆ2 / 2 ∗ ((1 − 2∗beta) ∗ a(i − 1) + 2∗beta ∗ a(i));
114 vn = v(i − 1) + dt ∗ ((1 − gamma) ∗ a(i − 1) + gamma ∗ a(i));
115 an = A(z(i));
116 if norm([zn − z(i); vn − v(i); an − a(i)]) < eps
117 break;
118 end
119 z(i) = zn;
120 v(i) = vn;
121 a(i) = an;
122 end
123 end
124 end
125

126

127

128

129 if 0
130 % HHT
131 alpha = −1/3;
132 beta = (1 − alpha)ˆ2/4;
133 gamma = 1/2 − alpha;
134 A2 = @(zold,znew) −alpha ∗ A(zold) + (1 + alpha) ∗ A(znew);
135

136 for i = 2:n
137 % Solving the system with Picard iteration
138 z(i) = z(i − 1);
139 v(i) = v(i − 1);
140 a(i) = a(i − 1);
141 while 1
142 zn = z(i − 1) + dt ∗ v(i − 1) + dtˆ2 / 2 ∗ ((1 − 2∗beta) ∗ a(i − 1) + 2∗beta ∗ a(i));
143 vn = v(i − 1) + dt ∗ ((1 − gamma) ∗ a(i − 1) + gamma ∗ a(i));
144 an = A2(z(i − 1), z(i));
145 if norm([zn − z(i); vn − v(i); an − a(i)]) < eps
146 break;
147 end
148 z(i) = zn;
149 v(i) = vn;
150 a(i) = an;
151 end
152 end
153 end
154

40

155 if 0
156 % HHT 2
157 alpha = 0;
158 beta = 1/2 + alpha;
159 gamma = (1 + alpha)ˆ2 / 4;
160 A2 = @(zold,znew) (1 − alpha) ∗ A(znew) + alpha ∗ A(zold);
161

162 for i = 2:n
163 % Solving the system with Picard iteration
164 z(i) = z(i − 1);
165 v(i) = v(i − 1);
166 a(i) = a(i − 1);
167 while 1
168 zn = z(i − 1) + dt ∗ v(i − 1) + dtˆ2 / 2 ∗ ((1 − 2∗beta) ∗ a(i − 1) + 2∗beta ∗ a(i));
169 vn = v(i − 1) + dt ∗ ((1 − gamma) ∗ a(i − 1) + gamma ∗ a(i));
170 an = A2(z(i − 1), z(i));
171 if norm([zn − z(i); vn − v(i); an − a(i)]) < eps
172 break;
173 end
174 z(i) = zn;
175 v(i) = vn;
176 a(i) = an;
177 end
178 end
179 end
180

181

182

183

184 if 0
185 % Generalized alpha
186 alphaM = 1;
187 alphaF = 1;
188 gamma = 1/2 − alphaM + alphaF;
189 beta = 1/4 ∗ (1 − alphaM + alphaF)ˆ2;
190

191 for i = 2:n
192 % Solving the system with Picard iteration
193 z(i) = z(i − 1);
194 v(i) = v(i − 1);
195 a(i) = a(i − 1);
196 while 1
197 zn = z(i − 1) + dt ∗ v(i − 1) + dtˆ2 / 2 ∗ ((1 − 2∗beta) ∗ a(i − 1) + 2∗beta ∗ a(i));
198 vn = v(i − 1) + dt ∗ ((1 − gamma) ∗ a(i − 1) + gamma ∗ a(i));
199 an = (A((1 − alphaF) ∗ z(i − 1) + alphaF ∗ z(i)) − (1 − alphaM) ∗ a(i − 1)) / alphaM;
200 if norm([zn − z(i); vn − v(i); an − a(i)]) < eps
201 break;
202 end
203 z(i) = zn;
204 v(i) = vn;
205 a(i) = an;
206 end
207 end
208 end
209

41

210

211

212

213 if 1
214 % Verlet
215

216 z(2) = z(1) + v(1) ∗ dt + 1/2 ∗ A(z(1)) ∗ dtˆ2;
217 for i = 3:n
218 z(i) = 2 ∗ z(i−1) − z(i−2) + A(z(i−1)) ∗ dtˆ2;
219 end
220 % Computing the velocity
221 for i = 2:n−1
222 v(i) = (z(i + 1) − z(i − 1)) / (2 ∗ dt);
223 end
224 v(n) = (z(n) − z(n − 1)) / dt;
225

226 end
227

228

229

230

231 if 0
232 % Euler Backward
233 for i = 2:n
234 % Solving the system with Picard iteration
235 z(i) = z(i − 1);
236 v(i) = v(i − 1);
237 while 1
238 delta(i) = max(0, −z(i));
239 a(i) = 4/3 ∗ Estar ∗ sqrt(R) ∗ delta(i)ˆ(3/2) / m − g;
240 zn = z(i − 1) + (t(i) − t(i−1)) ∗ v(i);
241 vn = v(i − 1) + (t(i) − t(i−1)) ∗ a(i);
242 if norm([zn − z(i); vn − v(i)]) < eps
243 break;
244 end
245 v(i) = vn;
246 z(i) = zn;
247 end
248 end
249 end
250

251

252

253 if 0
254 % Euler Forward
255 for i = 2:n
256 z(i) = z(i−1) + (t(i)−t(i−1)) ∗ v(i−1);
257 v(i) = v(i−1) + (t(i)−t(i−1)) ∗ a(i−1);
258

259 % Computing the acceleration
260 Fc = 4/3 ∗ Estar ∗ sqrt(R) ∗ max(0, −z(i−1))ˆ(3/2); % Contact force
261 Fz = −m∗g;
262 a(i) = (Fc + Fz) / m;
263 end
264 end

42

265

266

267

268

269 plot(t,z);
270 xlabel(’Time (s)’);
271 ylabel(’Height (m)’);
272

273 figure;
274 Ekin = 1/2 ∗ m ∗ v.ˆ2;
275 Egrav = m ∗ g ∗ z;
276 Eelas = 8/15 ∗ Estar ∗ sqrt(R) ∗ max(0, −z).ˆ(5/2);
277 Etotal = Ekin + Egrav + Eelas;
278 plot(t,Ekin,t,Egrav,t,Eelas,t,Etotal);
279 legend(’Kinetic energy’,’Gravitational potential energy’,’Elastic potential energy’,’Total energy’);
280 xlabel(’Time (s)’);
281 ylabel(’Energy (J)’);
282

283

284 if 0
285 f = figure;
286 xlabel(’x (m)’);
287 ylabel(’z (m)’);
288 j = 0:pi/100:2∗pi;
289 spherex = R ∗ cos(j);
290 spherey = R ∗ sin(j) + R;
291 x = −2∗R:.01:2∗R;
292 for i = 1:n
293 plot(spherex, spherey + z(i));
294 hold on;
295 uz = max(0, −z(i)) − x.ˆ2 / (2 ∗ R);
296 plot(x, − max(0, uz));
297 axis([−R, R, min(z), max(z) + 2 ∗ R]);
298 axis equal;
299 hold off;
300 pause(dt);
301 end
302 end

8.2 SphereCONTACT.m

In this code, the same problem is simulated. Instead of using equation (4.18), CONTACT is used
to compute the contact force.

1 if 1
2 % Settings:
3 settings.g = 9.81; % Gravitational acceleration
4

5 % Material properties
6 settings.E = 1.5E+8; % Young’s modulus of Polybutadiene
7 settings.nu = 0.50; % Poisson ratio
8 settings.G = settings.E / (2∗(1 + settings.nu));
9

10 % General settings:

43

11 R = 0.11; % Radius of ball
12 rho = .91E+6; % Density in g / mˆ3
13 z0 = 1; % Height of ball at t=t0
14 v0 = 0; % Speed of ball at t=t0
15 eps = 0.0001; % Max picard error
16

17 % Time to integrate
18 dt = .005;
19 t0 = 0;
20 t1 = 1;
21

22 t = t0:dt:t1;
23 m = 4/3∗pi∗Rˆ3 ∗ rho;
24 n = length(t);
25 %Estar = E / (2 ∗ (1 − nu)ˆ2);
26

27 z = [z0; zeros(n − 1, 1)];
28 v = [v0; zeros(n − 1, 1)];
29 a = [−settings.g; zeros(n − 1, 1)];
30

31 % Creating the ball
32 settings.dx = .005;
33 settings.dy = .005;
34 x = −R:settings.dx:R;
35 y = −R:settings.dy:R;
36 [X,Y] = meshgrid(x,y);
37 Z = R − sqrt(Rˆ2 − X.ˆ2 − Y.ˆ2);
38 ind = imag(Z) ˜= 0;
39 Z(ind) = R;
40 %[X(ind), Y(ind)] = deal(NaN); % To prevent plotting
41 deformed = zeros([size(Z), n]);
42 Fg = m ∗ settings.g;
43 Fn = zeros(n,1);
44

45 A = @(F) F / m − settings.g;
46

47

48 if 0
49 % Verlet
50 for k = 2:n
51 [Fn(k),deformed(:,:,k)] = compute(Z + z(k − 1), settings);
52

53 Fres = Fn(k) − Fg;
54 a(k) = Fres / m;
55

56 % Integrating using Verlet
57 if k == 2
58 z(2) = z(1) + v0 ∗ dt + 1/2 ∗ a(1) ∗ dtˆ2;
59 else
60 z(k) = 2 ∗ z(k − 1) − z(k − 2) + a(k − 1) ∗ dtˆ2;
61 end
62 end
63 end
64

65

44

66

67

68 if 0
69 % RADAU5
70 % Butcher tableau:
71 if 1
72 % IA Method
73 T = [1/9, (−1−sqrt(6))/18, (−1+sqrt(6))/18;
74 1/9, 11/45 + 7∗sqrt(6)/360, 11/45 − 43∗sqrt(6)/360;
75 1/9, 11/45 + 43∗sqrt(6)/360, 11/45 − 7∗sqrt(6)/360];
76 b = [1/9, 4/9 + sqrt(6)/36, 4/9 − sqrt(6)/36];
77 else
78 % IIA Method
79 T = [11/45 − 7∗sqrt(6)/360, 37/225 − 169∗sqrt(6)/1800, −2/225 + sqrt(6)/75;
80 37/225 + 169∗sqrt(6)/1800, 11/45 + 7∗sqrt(6)/360, −2/225 − sqrt(6)/75;
81 4/9 − sqrt(6)/36, 4/9 + sqrt(6)/36, 1/9];
82 b = [4/9 − sqrt(6)/36, 4/9 + sqrt(6)/36, 1/9];
83 end
84 [kz, kv, kzn, kvn] = deal(zeros(3,1));
85 for k = 2:n
86 % Integrating with RADAU5
87 % Solving the system with Picard iteration
88 while 1
89 for i = 1:3
90 kzn(i) = v(k − 1) + dt ∗ T(i,:) ∗ kv;
91 kvn(i) = A(compute(Z + z(k − 1) + dt ∗ T(i,:) ∗ kz, settings));
92 end
93 error = norm([kzn;kvn] − [kz;kv]);
94 kz = kzn;
95 kv = kvn;
96 if error < eps
97 z(k) = z(k − 1) + dt ∗ b ∗ kz;
98 v(k) = v(k − 1) + dt ∗ b ∗ kv;
99 [Fn(k),deformed(:,:,k)] = compute(Z + z(k), settings);

100 break;
101 end
102 end
103 end
104 end
105

106

107 if 1
108 % RK4
109 % Butcher tableau:
110 % IIA Method
111 T = [0,0,0,0;1/2,0,0,0;0,1/2,0,0;0,0,1,0];
112 b = [1/6, 1/3, 1/3, 1/6];
113 [kz,kv] = deal(zeros(4,1));
114 for k = 2:n
115 kzo = kz;
116 kvo = kv;
117 for i = 1:4
118 kz(i) = v(k − 1) + dt ∗ T(i,:) ∗ kvo;
119 kv(i) = A(compute(Z + z(k − 1) + dt ∗ T(i,:) ∗ kzo, settings));
120 end

45

121 z(k) = z(k − 1) + dt ∗ b ∗ kz;
122 v(k) = v(k − 1) + dt ∗ b ∗ kv;
123 end
124 end
125

126

127

128

129

130

131 end
132

133

134

135 if 1
136 f = figure;
137 xlabel(’x (m)’);
138 ylabel(’y (m)’);
139 zlabel(’z (m)’);
140 for k = 1:n
141 if z(k) < .2
142 surf(X, Y, Z + z(k)); % The ball (buttom)
143 hold on;
144 surf(X, Y, −Z + 2∗R + z(k)); % The ball (top)
145 surf(X, Y, −deformed(:,:,k)) % The surface
146 axis equal;
147 axis([−R, R, −R, R, min(z), .1 + 2 ∗ R]);
148 hold off;
149 pause(dt);
150 end
151 end
152 end

1 function [Fn, deformed] = compute(undeformed, settings)
2

3 if min(undeformed(:)) >= 0
4 Fn = 0;
5 deformed = zeros(size(undeformed));
6 else
7 % Computing the contact force
8

9 fid = fopen(’temp.inp’, ’w’);
10 fprintf(fid,’ 3 module %% result element 1, Contact patch 1\n’);
11 fprintf(fid,’%% Next case 1\n’);
12 fprintf(fid,’ 200020 P−B−T−N−F−S PVTIME, BOUND , TANG , NORM , FORCE , STRESS\n’);
13 fprintf(fid,’ 022020 L−D−C−M−Z−E FRCLAW, DISCNS, INFLCF, MATER , RZNORM, EXRHS\n’);
14 fprintf(fid,’ 002111 G−I−A−O−W−R GAUSEI, IESTIM, MATFIL, OUTPUT, FLOW , RETURN\n’);
15 fprintf(fid,’ 200 30 30 1 1.0E−04 MAXGS , MAXIN , MAXNR , MAXOUT, EPS\n’);
16 fprintf(fid,’ 0.000 0.000 0.000 0.000 FUN, FUX, FUY, CPHI\n’);
17 fprintf(fid,’%% Note: N=1 means FUN == FN, F=0 means FUX == CKSI, FUY == CETA\n’);
18 fprintf(fid,’ 0.3000 0.3000 FSTAT, FKIN\n’);
19 fprintf(fid,sprintf(’ %.4f %.4f %.4E %.4E SIGMA 1,2, GG 1,2\n’,settings.nu,settings.nu,settings.G,1E

+20));
20 fprintf(fid,’ 1 IPOTCN\n’);

46

21 fprintf(fid,sprintf(’ %3d %3d %6.3f %6.2f %5.4f %5.4f MX,MY,XL,YL,DX,DY\n’,size(undeformed,2),
size(undeformed,1), −size(undeformed,2)/2 ∗ settings.dx, −size(undeformed,1)/2 ∗ settings.dy,
settings.dx, settings.dy));

22 fprintf(fid,’ 9 1 IBASE, IPLAN\n’);
23 fprintf(fid,’%% PENETRATION, (1)−(2): SPECIFIED PER ELEMENT’);
24

25 for i = 1:size(undeformed,1)
26 fprintf(fid,’\n’);
27 for j = 1:ceil(size(undeformed,2) / 5)
28 fprintf(fid,’\n ’);
29 p = undeformed(i,5∗(j−1)+1:min(size(undeformed,2),5∗(j−1)+5));
30 fprintf(fid,sprintf(’ %.4E’,p));
31 end
32 end
33

34 fprintf(fid,’\n%% UNRESTRICTED PLANFORM’);
35 fprintf(fid,’\n 0 module’);
36

37 tic;
38 system(’../i01/contact v13.1/bin/contact 2 temp.inp’);
39

40 Fn = read forces;
41 deformed = read deformed distance(undeformed);
42

43 end
44

45

46 end

1 function [Fn, Fx, Fy] = read forces()
2

3 fid = fopen(’temp.out’);
4

5 while isempty(findstr(fgets(fid), ’TOTAL FORCES’))
6 end
7

8 fgets(fid);
9 array = str2num(fgets(fid));

10 Fn = array(1);
11 Fx = array(2);
12 Fy = array(3);
13

14 end

1 function p = read penetration
2

3 A = load(’temp.0001.mat’,’−ascii’);
4

5 p = max(A(4:end, 8));
6

7 end

47

8.3 Beam.m

In this code, we consider a one dimensional beam with properties as can be found in Table 2.
Differential equation (5.4) is discretised. The same time integration schemes are used to integrate
with respect to time.

1 if 1
2 L = 20;
3 dx = L / 5;
4 dt = 0.053;
5 plotdt = 0.01;
6 t1 = 100;
7 eps = 1e−10;
8

9 E = 2E+10;
10 I = 0.0104;
11 L = 20;
12 rho = 7900;
13 mass = 76E+3;
14 veloc = 3;
15 g = 9.81;
16

17 x = (0:dx:L)’;
18 t = (0:dt:t1)’;
19 k = length(t);
20 m = length(x);
21 A = zeros(m);
22 [u,v] = deal(zeros(m,k));
23

24 % The following is based on the differential equation
25 % dˆ2 u / dtˆ2 = −dˆ4 u / dxˆ4 + p
26 % where dˆ4/dxˆ4 u i = (u (i−2) − 4u (i−1) + 6u i − 4u (i+1) + u (i+2)) / dxˆ4
27

28 % Different pressure distributions:
29 p = @(x,t) 0; % no force
30 %p = @(x,t) (x .∗ (1 − x))’ ∗ cos(t); % oscillating force
31 %p = @(x,t) point force(x, veloc∗t, mass∗g) / rho; % moving point force
32 %p = @(x,t) point force(x, veloc∗3.3333, mass∗g) / rho; % constant point force
33

34

35 % Creating the discretisation matrix
36 A(2, 1:4) = [4, −7, 4, −1] / dxˆ4; % u 0 is equal to u 2
37 for i = 3:m − 2
38 A(i, i − 2 : i + 2) = [−1, 4, −6, 4, −1] / dxˆ4;
39 end
40 A(m − 1, m − 3:m) = [−1,4, −7, 4] / dxˆ4; % u (m+1) is equal to u (m−1)
41

42 A = A ∗ E ∗ I / rho;
43

44

45

46 % Initial condition:
47 u(:,1) = x.ˆ2 .∗ (L − x).ˆ2; % both u and d u / d x are 0 at x = 0 and x = 1
48 u(:,1) = 0; % zero everywhere
49 v(:,1) = 0;

48

50

51 if 1
52 % Integrating using Euler Forwards
53 for j = 2:k
54 u(:,j) = u(:,j − 1) + dt ∗ v(:,j − 1); % du/dt = v
55 v(:,j) = v(:,j − 1) + dt ∗ (A ∗ u(:,j)); % dv/dt = dˆ2u/dtˆ2 = −dˆ4/dxˆ4 u + p
56 end
57 end
58

59 if 0
60 % Euler Backwards
61 B = eye(2∗m) − dt ∗ [zeros(m), eye(m); A, zeros(m)];
62 % Computing the inverse of B:
63 Binv = Bˆ(−1);
64

65 for j = 2:k
66 z = Binv ∗ [u(:, j − 1); v(:, j − 1)];
67 u(:, j) = z(1:m);
68 v(:, j) = z(m+1:end);
69 end
70 end
71

72 if 0
73 % Euler Backwards old w/picard
74 for j = 2:k
75 % Solving the system with Picard iteration
76 un = u(:, j − 1);
77 vn = v(:, j − 1);
78 iter = 1;
79 while 1
80 u(:, j) = u(:, j − 1) + dt ∗ vn;
81 v(:, j) = v(:, j − 1) + dt ∗ (A ∗ un);
82 if norm([un − u(:, j); vn − v(:, j)]) < eps
83 break;
84 end
85 un = u(:, j);
86 vn = v(:, j);
87 iter = iter + 1;
88 if iter >= 100
89 disp(’Picard iteration does not converge.’);
90 return;
91 end
92 end
93 end
94 end
95

96

97 if 0
98 % Verlet
99

100 u(:,2) = u(:,1) + v(:,1) ∗ dt + 1/2 ∗ dtˆ2 ∗ (A∗u(:,1) + p(x,0));
101 for i = 3:k
102 u(:,i) = 2 ∗ u(:,i − 1) − u(:,i − 2) + dtˆ2 ∗ (A∗u(:,i − 1) + p(x, (i − 2) ∗ dt));
103 end
104 % Computing the velocity

49

105 for i = 2:m−1
106 v(:,i) = (u(:,i + 1) − u(:,i − 1)) / (2 ∗ dt);
107 end
108 v(:,m) = (u(:,m) − u(:,m − 1)) / dt;
109

110 end
111

112

113

114 if 0
115 % RK4
116 f = @(z,t) A∗z + p(x, t);
117 eps = 1e−10;
118 % Butcher tableau:
119

120 T = [0,0,0,0;1/2,0,0,0;0,1/2,0,0;0,0,1,0];
121 b = [1/6, 1/3, 1/3, 1/6];
122

123 [ku,kv] = deal(zeros(m,4));
124 for i = 2:k
125 kuo = u(:,j − 1);
126 kvo = kv;
127 for j = 1:4
128 ku(:,j) = v(:,i − 1) + dt ∗ ku ∗ T(:,j);
129 kv(:,j) = f(u(:,i − 1) + dt ∗ kv ∗ T(:,j), (i − 1)∗dt);
130 end
131 u(:,i) = u(:,i − 1) + dt ∗ ku ∗ b’;
132 v(:,i) = v(:,i − 1) + dt ∗ kv ∗ b’;
133 end
134

135 end
136

137

138

139

140 if 0
141 % RADAU5
142 f = @(z,t) A∗z + p(x, t);
143 eps = 1e−10;
144 % Butcher tableau:
145 if 1
146 % IA Method
147 T = [1/9, (−1−sqrt(6))/18, (−1+sqrt(6))/18;
148 1/9, 11/45 + 7∗sqrt(6)/360, 11/45 − 43∗sqrt(6)/360;
149 1/9, 11/45 + 43∗sqrt(6)/360, 11/45 − 7∗sqrt(6)/360];
150 b = [1/9, 4/9 + sqrt(6)/36, 4/9 − sqrt(6)/36];
151 else
152 % IIA Method
153 T = [11/45 − 7∗sqrt(6)/360, 37/225 − 169∗sqrt(6)/1800, −2/225 + sqrt(6)/75;
154 37/225 + 169∗sqrt(6)/1800, 11/45 + 7∗sqrt(6)/360, −2/225 − sqrt(6)/75;
155 4/9 − sqrt(6)/36, 4/9 + sqrt(6)/36, 1/9];
156 b = [4/9 − sqrt(6)/36, 4/9 + sqrt(6)/36, 1/9];
157 end
158 [ku, kv, kun, kvn] = deal(zeros(m,3));
159

50

160 for i = 2:k
161 % Integrating with RADAU5
162 % Solving the system with Picard iteration
163 iter = 0;
164 while 1
165 for j = 1:3
166 kun(:,j) = v(:,i − 1) + dt ∗ ku ∗ T(:,j);
167 kvn(:,j) = f(u(:,i − 1) + dt ∗ kv ∗ T(:,j), (i − 1)∗dt);
168 end
169 error = norm([kun(:);kvn(:)] − [ku(:);kv(:)]);
170 nrm = norm([kun(:);kvn(:)]);
171 if iter > 100
172 break
173 end
174 ku = kun;
175 kv = kvn;
176 if error < eps || error/nrm < eps
177 u(:,i) = u(:,i − 1) + dt ∗ ku ∗ b’;
178 v(:,i) = v(:,i − 1) + dt ∗ kv ∗ b’;
179 break;
180 end
181 iter = iter + 1;
182 end
183 if iter > 100
184 break;
185 end
186 end
187 end
188

189

190 end
191

192 if 1
193 f = figure;
194 xlabel(’x (m)’);
195 ylabel(’z (m)’);
196 set(gca, ’ydir’,’reverse’);
197 for i = 1:plotdt/dt:k
198 plot(x,u(:,round(i)));
199 hold on;
200 axis([0,L,min(u(:)),max(u(:))]);
201 set(gca, ’ydir’,’reverse’);
202 hold off;
203 pause(0.001);
204 end
205 end

51

