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Abstract

The aim of this research is to provide a mathematical model that describes the physics in a levee when waves
are overtopping a flood embankment. Ideally, this numerical simulation can replace empirical methods
based on overtopping simulations and provide more insight into the physical process of an overtopping flow
on a levee. This could prove to be useful for the design and maintenance of flood barriers.

Different interpretations of the stress tensor of pore water have each lead to distinct systems of partial
differential equations. For each interpretation, the resulting system has been solved, using a finite element
analysis in combination with a time-stepping method, in order to assess the validity of the imposed defini-
tions. However, only one definition lead to a mathematical framework that yielded trustworthy results. In
this final mathematical framework, both the hydrostatic water pressure and the gravitational force have been
disregarded, resulting in a system only consisting of variables such as soil particles displacements, pore wa-
ter velocities and a distribution function ξ(t ). The distribution function ξ(t ) represents the fraction of the
exerted wave stress on the surface carried by the pore water. By definition, the fraction can vary over time,
which stands in contrast to state of the art models.

The applicability of the results is limited, since the problem is simplified to a one-dimensional setting
in which only normal stresses are exerted. The mathematical framework could theoretically be extended
to multiple dimensions. However, it remains contestable whether it sufficiently simulates the physics in a
levee. Further research is needed to show whether the extension holds when shear stresses are present and
whether the same distribution function ξ(t ) can be applied to non-axial directions. In conclusion, this re-
search is a proof of concept and serves as a stepping stone for more research. The used code can be found at
https://github.com/HaveMersie/Overtoppingfailure.
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Nomenclature

v̄i The expected value of the displacement of the pore water in the xi -direction in a tube.

n The normal vector, pointing outwards.

δWσ Virtual work performed by body forces.

δWg Virtual work performed by body forces.

δWg Virtual work performed by internal and external forces.

εi j The strain tensor for soil.

γw The hydraulic conductivity.

µ The dynamic viscosity of the pore water.

ω Vorticity of the displacement field of the soil particles.

Ωp The part of the domain consisting of pore water.

Ωp The part of the domain consisting of soil particles.

ωv Vorticity of the displacement field of the pore water.

ρp The density of the soil skeleton.

ρs The density of the porous soil.

ρw The density of the ground water.

σi j The stress tensor for the soil skeleton.

σw
i j The stress tensor for the pore water.

σ̃i j The stress tensor for an unsaturated soil skeleton.

σ̃w
i j The stress tensor for a fully saturated soil skeleton.

ũi The local displacement of the soil particles in the xi -direction in a tube.

ṽi The local displacement of the pore water in the xi -direction in a tube.

G The shear modulus.

g The gravitational constant.

K The compression modulus.

Ks The calibration constant.

P The water pressure.

p The porosity of the soil.

qi The specific displacement in the xi -direction.

Sp The surface of domainΩp .

Sw The surface of domainΩw .

ui The displacement of the soil particles in the xi -direction.

vi The displacement of the pore water in the xi -direction.
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1
Introduction

Grass covers have shown to offer erosion protection to river levees and flood embankments. Overtopping
waves can trigger erosion of the levee slope. In this thesis it is hypothesized that the hydrodynamic load that
acts on a levee, induced by the overtopping flow, can result in deformation of the porous medium. This can
lead to failure due to ’head-cut’, ’roll-up’ and ’collapse’, that are thoroughly explained by Le et al. [8]. Accord-
ing to Steendam et al. [13], little research has been conducted with respect to the erosive effect of overtopping
flow on dike slopes, mostly because of complications of scale models and the costs of overtopping tests. There
have been some recent developments with respect to the other side of the spectrum. Van Bergeijk et al. [14]
have made it possible to predict stresses originating from an arbitrary wave. In other words, this model fo-
cuses on the external load on the levee. Moreover, with the development of the wave overtopping simulator
(Van der Meer et al. [17]), more practical field research has been conducted in the last years. This is a simula-
tor which is positioned on an isolated part of a flood embankment. For a given time, the simulator lets waves
flow over the slope. At the same time, measurements are made that are used to provide a solid basis between
the endured stresses and the reason of failure.

At the same time, theoretical models have been developed that predict water pressures in porous media.
One of these methods is the PORO-WSSI model by Ye et al. [5] that is based on the dynamic response in porous
seabeds. The idea is that overtopping waves can be described as a summation of harmonic waves. Hence
the model could be applied to overtopping waves as well. This method requires the a priori assumption
that the pore water pressures match the hydrodynamic pressures under the waves, with the result that the
effective stresses are assumed to be 0 on the surface. In other words, the assumption is made that the pore
water instantaneously absorbs the full hydrodynamic surface load. Since the model results do not match the
measured reality, it is often assumed that in practice the pore water cannot assumed to be incompressible
[6]. This is not a new assumption, since compressibility of the pore water is also proposed by Verruijt [18]. By
accounting for the compressibility in tests, the model outcomes are fitted to the test results. In practice this
is done by including a calibrated Skempton coefficient. This method has been the state of the art approach
for some time now. However, this approach is rather questionable, since tests are being tweaked to match the
model outcomes and vice versa.

In a new proposed model by Van Damme and Den Ouden-van der Horst [15], these a priori assump-
tions have been disregarded, in pursuit of a process based approach to more accurately determine the effect
of overtopping flow. Instead of assuming that the pore water absorbs the full hydrodynamic surface load,
momentum balance equations are taken as boundary conditions, to enforce that the momentum balance
equation will be valid on the whole domain. This makes the system more complex, but also more similar
to a real situation. Furthermore, the assumed compressibility of the pore water is questionable. It is not a
reasonable assumption that pore water in a seabed contains air, since the air has had all the time to dissolve
in the sea water over time.

In this thesis, the new proposed model by Van Damme and Den Ouden-van der Horst [15] is derived and
numerically solved with the use of a Finite Element solver. Furthermore, a different approach is attempted,
where a Finite Element solver is used to directly solve the momentum equations of the soil particles and
pore water, by using balance of volume. Lastly, the author has derived new assumptions on which a modified
model is based on. This model will also be solved with a Finite Element solver and a golden-section search. In
case further research shows that the final model is accurate enough, this model can provide significant insight
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6 1. Introduction

in the way flood embankments fail. On top of that, the model can be implemented for other interesting
applications related with flows over porous media, e.g. oxygen uptake in lung tissue. Being able to have
a better understanding of the oxygen uptake in lung tissue can also provide more insight in processes that
oxygen uptake is a result of, such as diffusion capacity, lung volume, breathing pattern, et cetera. (Lin et al.
[9]). Another important application could be to analyze the effect of harmonic waves on the sand layers on
top of buried offshore pipelines. As described by Martin et al. [10], the sand layer on top of these shallowly
buried pipes can be affected by vibrations of the pipeline and by waves running over the layer. When the
sand layer disappears, the pipe might experience an undesirable uplift. The overtopping waves model could
quantify the pore water pressures in the sand layer, thus providing more insight in this phenomenon.

In Chapter 2, the model describing the physics in the levee will be derived, including the boundary- and
initial conditions. Since this model did not yield any numerical results, a simplified version was analyzed in
Chapter 3 and the original model was subsequently modified and solved. In Chapter 4, an attempt was made
to directly solve the momentum balance equations. In Chapter 5, some assumptions have been disregarded
and changed, with a new model as a result. In this chapter, the new model was numerically solved as well. In
Chapter 6, conclusions will be drawn and some possible extensions and open questions will be discussed for
future research.



2
Physical Model

2.1. Notation
Firstly, some notation will be introduced to improve the understandability of this thesis. As is often done in
soil mechanics, indices are replaced by the variable that belongs to the specific index. E.g. u2 will be written
as uy , the component in the y-direction and not the partial derivative of u with respect to y . The same thing
is done for tensors, e.g. σ12 is written as σx y . Partial derivatives will simply be written in the classical way,

e.g.
∂uy

∂y . The Einstein summation convention is often used, to make expressions more concise. In short this
means that a repeated index represents a summation over this index, i.e.

∂ui

∂xi
= ∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
. (2.1)

2.2. Assumptions
In order to derive at the system which describes the physics in the levee, some assumptions are made. It is
possible that these assumptions will be withdrawn in future research, as an extension to the original goal of
this thesis. The assumptions are:

• The densities of the soil particles and pore water are taken to be constant.

• The advective acceleration of the soil particle matrix is taken to be zero.

• The advective acceleration of the pore water is taken to be zero.

• Soil particles are incompressible.

• Pore water particles are incompressible

2.3. Values of parameters
For convenience, the parameters are chosen to have the same value throughout this thesis, unless stated
otherwise. It is not important for the proof of concept of this thesis what the actual values of the parameters
are, as long as they have the right order of magnitude. The used values for the parameters are given by

7



8 2. Physical Model

p = 0.4, (2.2)

ρp = 2650 kgm−3, (2.3)

ρw = 997 kgm−3, (2.4)

K = 50 ·106 Nm−2, (2.5)

G = 10.7 ·106 Nm−2, (2.6)

γw = 104 Nm−3, (2.7)

Z = 3 m, (2.8)

µ= 1.307 ·10−3 Nsm−2. (2.9)

2.4. Definitions
The definitions of the stress tensors are of major importance, since they dictate the form of the resulting
system of partial differential equations. The stress tensor for pore water, σw

i j , is defined by Falconer [3]. The

stress tensor for the soil particles is based on the one defined by Verruijt [20] when the coefficients are defined
as

α=2G , (2.10)

β=K − 2

3
G , (2.11)

where K [Nm−2] is the compression modulus and G[Nm−2] is the shear modulus. However, in contrast with
Verruijt’s definition, an additional frictional water term is added. The stress tensors are therefore defined as:

σi i =−
(
β
∂u j

∂x j
+α∂ui

∂xi

)
, σw

i i =µ
(

2
∂2vi

∂xi∂t
− 2

3

∂2v j

∂x j∂t

)
−P, (2.12)

σi j |i 6= j =−α
2

(
∂ui

∂x j
+ ∂u j

∂xi

)
−µ

(
∂2vi

∂x j∂t
+ ∂2v j

∂xi∂t

)
, σw

i j |i 6= j =µ
(
∂2vi

∂x j∂t
+ ∂2v j

∂xi∂t

)
, (2.13)

where P [Nm−2] denotes the hydrostatic water pressure, given by P = 1
3 (σw

xx +σw
y y +σw

zz ), which is a negative
stress. ui [m] represents the displacement of the soil particles in the xi -direction, whereas vi [m] represents
the displacement of the pore water in the xi -direction. The strain tensor, denoted by εp , is defined as

ε
p
i j =

1

2

{
∂ui

∂x j
+ ∂u j

∂xi

}
. (2.14)

Furthermore, note that the viscosity µ
[
Nsm−2

]
is the dynamic viscosity, since the stresses σw

i j |i 6= j [Nm−2]

would otherwise not be of the right dimension. Now that the definitions are set, the system of equations that
describe the physics in the levee, will be derived.

2.5. Volume balance equation
To arrive at the volume balance equations, some observations have been made. First of all, both the pore
water and the soil particles are assumed incompressible. A volume balance equation can be derived when
we assume that a change of volume can only be induced by adding water or taking water out of the porous
medium. The density formula for the porous medium is given by

ρs = ρp (1−p)+ρw p, (2.15)

where ρs [kgm−3] is the density of the porous medium, ρp [kgm−3] is the density of the soil matrix, ρw [kgm−3]
is the density of the pore water and p is the porosity. The density ρs can only change when p changes, since
the densities ρp and ρw are assumed constant. The change in porosity with respect to time is induced by



2.6. Essential boundary conditions 9

the flux of the pore water; hence the volume balance equation for incompressible pore water, in Cartesian
coordinates, is given by

∂p

∂t
+ ∂

∂xi

(
p
∂vi

∂t

)
= 0, (2.16)

where vi represent the displacements of the pore water in the three different directions. This is similar to the
mass balance equations stated by Bui et al. [1], with the exception that in this expression the spatial gradient
of the void fractions over the distribution is not considered to be negligible. In a similar manner, the volume
balance equation for incompressible soil particles is given by

∂(1−p)

∂t
+ ∂

∂xi

[
(1−p)

∂ui

∂t

]
= 0, (2.17)

where ui represent the displacements of the soil particles in the three different directions. Now we impose
that soil particles and pore water are mixed so well, that functions ui and vi are defined everywhere on the
domain of interest. As a consequence, we can sum Equations (2.16) and (2.17) to arrive at the volume balance
equation for the porous medium

∂

∂xi

{
p

[
∂(vi −ui )

∂t

]}
+ ∂

∂xi

(
∂ui

∂t

)
= 0. (2.18)

This volume balance equation will be used several times throughout this thesis. In order to derive useful
partial differential equations, the expression for the virtual work will be derived. Before the derivation of the
virtual work can be made, the essential boundary conditions need to be stated.

2.6. Essential boundary conditions
When a simple rectangular prism is taken as the domain of interest, given byΩ= [0,L]× [0,B ]× [−Z ,0], some
essential boundary conditions can be formulated.

Following the boundary conditions for a porous seabed (Ye et. al [5]), the bottom of the levee, i.e. at
z =−Z , is both rigid and impermeable. As a consequence, the soil should not be allowed to sink here, hence
the vertical displacement should be set to zero, i.e. uz = 0. Because of the impermeability, the pore water
should not be able to infiltrate the bottom boundary, hence it also has to hold that vz = 0 is on z = −Z . On
the sides of the rectangular prism, we can impose essential boundary conditions as well. When L and B are
sufficiently large, it is expected that the displacements at these boundaries in the normal direction will be
negligible. Thus we would have that for x = 0 and x = L it holds that ux = 0. Analogously it has to hold that
for y = 0 and y = B , uy = 0. These essential conditions will be put to use in the next section, where the virtual
work will be derived.

2.7. Virtual work
There are several forces working on- and in the soil, that do virtual work. One of these forces is the gravita-
tional force, of which the virtual work is given by

δŴg =
∫
Ωp

ρp g u∗
z dΩ+

∫
Ωw

ρw g v∗
z dΩ, (2.19)

where Ωp is the part of the domain consisting of soil particles, Ωw is the part of the domain consisting of
pore water, g ms−2 is the gravitational constant and u∗

i [m] and v∗
i [m] are the virtual displacements of the

soil particles and pore water respectively in the three different directions. Another external force working on
the soil matrix and the pore water is the force exerted by the overtopping wave. When we denote Fext as the
external stress exerted by the wave, the virtual work due to this stress is given by

δWF =
∮

Sp

Fext ·u∗dS +
∮

Sw

Fext ·v∗dS, (2.20)

=
∮

z=0∩Sp

Fext ·u∗dS +
∮

z=0∩Sw

Fext ·v∗dS, (2.21)

=
∮

z=0∩Sp

(
u∗

x Fxz +u∗
y Fy z +u∗

z Fzz

)
dS +

∮
z=0∩Sw

(
v∗

x Fxz + v∗
y Fy z + v∗

z Fzz

)
dS. (2.22)
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The virtual work done by the internal forcing, denoted by δWσ, is given by Van Damme and den Ouden-van
der Horst [15] as

δWσ =−
∫
Ωp

ε
p
i j σ̃i j dΩ−

∫
Ωw

εw
i j σ̃

w
i j dΩ, (2.23)

Substituting the strain tensor gives:

δWσ =−1

2

∫
Ωp

{
2
∂u∗

x

∂x
σ̃xx +

(
∂u∗

x

∂y
+
∂u∗

y

∂x

)
σ̃x y +

(
∂u∗

x

∂z
+ ∂u∗

z

∂x

)
σ̃xz

}
dΩ (2.24)

−1

2

∫
Ωp

{(
∂u∗

y

∂x
+ ∂u∗

x

∂y

)
σ̃y x +2

∂u∗
y

∂y
σ̃y y +

(
∂u∗

y

∂z
+ ∂u∗

z

∂y

)
σ̃y z

}
dΩ (2.25)

−1

2

∫
Ωp

{(
∂u∗

z

∂x
+ ∂u∗

x

∂z

)
σ̃zx +

(
∂u∗

z

∂y
+
∂u∗

y

∂z

)
σ̃z y +2

∂u∗
z

∂z
σ̃zz

}
dΩ (2.26)

−1

2

∫
Ωw

{
2
∂v∗

x

∂x
σ̃w

xx +
(
∂v∗

x

∂y
+
∂v∗

y

∂x

)
σ̃w

x y +
(
∂v∗

x

∂z
+ ∂v∗

z

∂x

)
σ̃w

xz

}
dΩ (2.27)

−1

2

∫
Ωw

{(
∂v∗

y

∂x
+ ∂v∗

x

∂y

)
σ̃w

y x +2
∂v∗

y

∂y
σ̃w

y y +
(
∂v∗

y

∂z
+ ∂v∗

z

∂y

)
σ̃w

y z

}
dΩ (2.28)

−1

2

∫
Ωw

{(
∂v∗

z

∂x
+ ∂v∗

x

∂z

)
σ̃w

zx +
(
∂v∗

z

∂y
+
∂v∗

y

∂z

)
σ̃w

z y +2
∂v∗

z

∂z
σ̃w

zz

}
dΩ. (2.29)

Because of the symmetry of the stress tensor this simplifies to

δWσ =−
∫
Ωp

{
∂u∗

x

∂x
σ̃xx +

(
∂u∗

x

∂y
+
∂u∗

y

∂x

)
σ̃x y +

(
∂u∗

x

∂z
+ ∂u∗

z

∂x

)
σ̃xz

}
dΩ (2.30)

−
∫
Ωp

{
∂u∗

y

∂y
σ̃y y +

(
∂u∗

y

∂z
+ ∂u∗

z

∂y

)
σ̃y z

}
dΩ (2.31)

−
∫
Ωp

{
∂u∗

z

∂z
σ̃zz

}
dΩ (2.32)

−
∫
Ωw

{
∂v∗

x

∂x
σ̃w

xx +
(
∂v∗

x

∂y
+
∂v∗

y

∂x

)
σ̃w

x y +
(
∂v∗

x

∂z
+ ∂v∗

z

∂x

)
σ̃w

xz

}
dΩ (2.33)

−
∫
Ωw

{
∂v∗

y

∂y
σ̃w

y y +
(
∂v∗

y

∂z
+ ∂v∗

z

∂y

)
σ̃w

y z

}
dΩ (2.34)

−
∫
Ωw

{
∂v∗

z

∂z
σ̃w

zz

}
dΩ. (2.35)
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Using Theorem 1 of Appendix A gives

δWσ =
∫
Ωp

u∗
x

0
0

 ·∇σ̃xx +
u∗

y

u∗
x

0

 ·∇σ̃x y +
u∗

z
0

u∗
x

 ·∇σ̃xz +
 0

u∗
y

0

 ·∇σ̃y y +
 0

u∗
z

u∗
y

 ·∇σ̃y z +
 0

0
u∗

z

 ·∇σ̃zz dΩ (2.36)

+
∫
Ωw

v∗
x

0
0

 ·∇σ̃w
xx +

v∗
y

v∗
x

0

 ·∇σ̃w
x y +

v∗
z

0
v∗

x

 ·∇σ̃w
xz +

 0
v∗

y

0

 ·∇σ̃w
y y +

 0
v∗

z
v∗

y

 ·∇σ̃w
y z +

 0
0

v∗
z

 ·∇σ̃w
zz dΩ (2.37)

−
∮

Sp


u∗

x
0
0

 σ̃xx +
u∗

y

u∗
x

0

 σ̃x y +
u∗

z
0

u∗
x

 σ̃xz +
 0

u∗
y

0

 σ̃y y +
 0

u∗
z

u∗
y

 σ̃y z +
 0

0
u∗

z

 σ̃zz

 ·ndΓ (2.38)

−
∮

Sw


v∗

x
0
0

 σ̃w
xx +

v∗
y

v∗
x

0

 σ̃w
x y +

v∗
z

0
v∗

x

 σ̃w
xz +

 0
v∗

y

0

 σ̃w
y y +

 0
v∗

z
v∗

y

 σ̃w
y z +

 0
0

v∗
z

 σ̃w
zz

 ·ndΓ (2.39)

=
∫
Ωp

u∗
x

(
∂σ̃xx

∂x
+ ∂σ̃x y

∂y
+ ∂σ̃xz

∂z

)
+u∗

y

(
∂σ̃x y

∂x
+ ∂σ̃y y

∂y
+ ∂σ̃y z

∂z

)
+u∗

z

(
∂σ̃xz

∂x
+ ∂σ̃y z

∂y
+ ∂σ̃zz

∂z

)
dΩ (2.40)

+
∫
Ωw

v∗
x

(
∂σ̃w

xx

∂x
+
∂σ̃w

x y

∂y
+ ∂σ̃w

xz

∂z

)
+ v∗

y

(
∂σ̃w

x y

∂x
+
∂σ̃w

y y

∂y
+
∂σ̃w

y z

∂z

)
+ v∗

z

(
∂σ̃w

xz

∂x
+
∂σ̃w

y z

∂y
+ ∂σ̃w

zz

∂z

)
dΩ (2.41)

−
∮

Sp∩z=−Z

{
−u∗

x σ̃xz −u∗
y σ̃y z

}
dΓ−

∮
Sw∩z=−Z

{
−v∗

x σ̃
w
xz − v∗

y σ̃
w
y z

}
dΓ (2.42)

−
∮

Sp∩z=0

{
u∗

x σ̃xz +u∗
y σ̃y z +u∗

z σ̃zz

}
dΓ−

∮
Sw∩z=0

{
v∗

x σ̃
w
xz + v∗

y σ̃
w
y z + v∗

z σ̃
w
zz

}
dΓ (2.43)

−
∮

Sp∩x=0

{
−u∗

y σ̃x y −u∗
z σ̃xz

}
dΓ−

∮
Sw∩x=0

{
−v∗

y σ̃
w
x y − v∗

z σ̃
w
xz

}
dΓ (2.44)

−
∮

Sp∩x=L

{
u∗

y σ̃x y +u∗
z σ̃xz

}
dΓ−

∮
Sw∩x=L

{
v∗

y σ̃
w
x y + v∗

z σ̃
w
xz

}
dΓ (2.45)

−
∮

Sp∩y=0

{−u∗
x σ̃x y −u∗

z σ̃y z
}

dΓ−
∮

Sw∩y=0

{
−v∗

x σ̃
w
x y − v∗

z σ̃
w
y z

}
dΓ (2.46)

−
∮

Sp∩y=B

{
u∗

x σ̃x y +u∗
z σ̃y z

}
dΓ−

∮
Sw∩y=B

{
v∗

x σ̃
w
x y + v∗

z σ̃
w
y z

}
dΓ, (2.47)

where it is used that on the boundaries with Dirichlet boundary conditions, the virtual displacement should
be zero. The virtual work of the inertial forces is given by

δWin =
∫
Ωp

u∗
i

{
∂2ρp ui

∂t 2 + ∂

∂x j

(
1

2
ρp

(
∂u j

∂t

)2
)}

dΩ+
∫
Ωw

v∗
i

{
∂2ρw vi

∂t 2 + ∂

∂x j

(
1

2
ρw

(
∂v j

∂t

)2
)}

dΩ. (2.48)

The principle of virtual work states that the virtual work done by the internal- and external forces should
equal the virtual work done by the inertial forces [7], which results in the following equality:
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∮
z=0∩Sp

(
u∗

x Fxz +u∗
y Fy z +u∗

z Fzz

)
dS +

∮
z=0∩Sw

(
v∗

x Fxz + v∗
y Fy z + v∗

z Fzz

)
dS (2.49)

+
∫
Ωp

u∗
x

(
∂σ̃xx

∂x
+ ∂σ̃x y

∂y
+ ∂σ̃xz

∂z

)
+u∗

y

(
∂σ̃x y

∂x
+ ∂σ̃y y

∂y
+ ∂σ̃y z

∂z

)
+u∗

z

(
∂σ̃xz

∂x
+ ∂σ̃y z

∂y
+ ∂σ̃zz

∂z

)
dΩ (2.50)

+
∫
Ωw

v∗
x

(
∂σ̃w

xx

∂x
+
∂σ̃w

x y

∂y
+ ∂σ̃w

xz

∂z

)
+ v∗

y

(
∂σ̃w

x y

∂x
+
∂σ̃w

y y

∂y
+
∂σ̃w

y z

∂z

)
+ v∗

z

(
∂σ̃w

xz

∂x
+
∂σ̃w

y z

∂y
+ ∂σ̃w

zz

∂z

)
dΩ (2.51)

−
∮

Sp∩z=−Z

{
−u∗

x σ̃xz −u∗
y σ̃y z

}
dΓ−

∮
Sw∩z=−Z

{
−v∗

x σ̃
w
xz − v∗

y σ̃
w
y z

}
dΓ (2.52)

−
∮

Sp∩z=0

{
u∗

x σ̃xz +u∗
y σ̃y z +u∗

z σ̃zz

}
dΓ−

∮
Sw∩z=0

{
v∗

x σ̃
w
xz + v∗

y σ̃
w
y z + v∗

z σ̃
w
zz

}
dΓ (2.53)

−
∮

Sp∩x=0

{
−u∗

y σ̃x y −u∗
z σ̃xz

}
dΓ−

∮
Sw∩x=0

{
−v∗

y σ̃
w
x y − v∗

z σ̃
w
xz

}
dΓ (2.54)

−
∮

Sp∩x=L

{
u∗

y σ̃x y +u∗
z σ̃xz

}
dΓ−

∮
Sw∩x=L

{
v∗

y σ̃
w
x y + v∗

z σ̃
w
xz

}
dΓ (2.55)

−
∮

Sp∩y=0

{−u∗
x σ̃x y −u∗

z σ̃y z
}

dΓ+
∮

Sw∩y=0

{
−v∗

x σ̃
w
x y − v∗

z σ̃
w
y z

}
dΓ (2.56)

−
∮

Sp∩y=B

{
u∗

x σ̃x y +u∗
z σ̃y z

}
dΓ−

∮
Sw∩y=B

{
v∗

x σ̃
w
x y + v∗

z σ̃
w
y z

}
dΓ (2.57)

=
∫
Ωp

u∗
i

{
∂2ρp ui

∂t 2 + ∂

∂x j

(
1

2
ρp

(
∂u j

∂t

)2
)}

dΩ+
∫
Ωw

v∗
i

{
∂2ρw vi

∂t 2 + ∂

∂x j

(
1

2
ρw

(
∂v j

∂t

)2
)}

dΩ (2.58)

Because the known stress tensors are only defined on the original domainΩ, it is necessary to go back to this
original domain. In this thesis, two different approaches have been attempted. One approach is based on the
original model by Van Damme and den Ouden-van der Horst [15] and an alternate approach is posed by the
author. In the section, the original approach will be explained. The alternate approach will be elaborated in
Chapter 5.

2.7.1. Original approach

Since it is presumed that the soil particles and pore water are perfectly mixed, it is arguable that an integral
over domainΩp equals an integral over domainΩmultiplied by the fraction (1−p) of the soil particles, i.e.

∫
Ωp

. . .dΩ= (1−p)
∫
Ω

. . .dΩ, (2.59)∫
Ωw

. . .dΩ= p
∫
Ω

. . .dΩ, (2.60)

Applying this to Equation (2.49) results in
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(1−p)
∫
Ω

u∗
x

(
∂σ̃xx

∂x
+ ∂σ̃x y

∂y
+ ∂σ̃xz

∂z

)
+u∗

y

(
∂σ̃x y

∂x
+ ∂σ̃y y

∂y
+ ∂σ̃y z

∂z

)
+u∗

z

(
∂σ̃xz

∂x
+ ∂σ̃y z

∂y
+ ∂σ̃zz

∂z

)
dΩ (2.61)

+p
∫
Ω

v∗
x

(
∂σ̃w

xx

∂x
+
∂σ̃w

x y

∂y
+ ∂σ̃w

xz

∂z

)
+ v∗

y

(
∂σ̃w

x y

∂x
+
∂σ̃w

y y

∂y
+
∂σ̃w

y z

∂z

)
+ v∗

z

(
∂σ̃w

xz

∂x
+
∂σ̃w

y z

∂y
+ ∂σ̃w

zz

∂z

)
dΩ (2.62)

−(1−p)
∮

S∩z=−Z

{
−u∗

x σ̃xz −u∗
y σ̃y z

}
dΓ−p

∮
S∩z=−Z

{
−v∗

x σ̃
w
xz − v∗

y σ̃
w
y z

}
dΓ (2.63)

−(1−p)
∮

S∩z=0

{
u∗

x (σ̃xz −Fxz )+u∗
y (σ̃y z −Fy z )+u∗

z (σ̃zz −Fzz )
}

dΓ (2.64)

−p
∮

S∩z=0

{
v∗

x (σ̃w
xz −Fxz )+ v∗

y (σ̃w
y z −Fy z )+ v∗

z (σ̃w
zz −Fzz )

}
dΓ (2.65)

−(1−p)
∮

S∩x=0

{
−u∗

y σ̃x y −u∗
z σ̃xz

}
dΓ−p

∮
S∩x=0

{
−v∗

y σ̃
w
x y − v∗

z σ̃
w
xz

}
dΓ (2.66)

−(1−p)
∮

S∩x=L

{
u∗

y σ̃x y +u∗
z σ̃xz

}
dΓ−p

∮
S∩x=L

{
v∗

y σ̃
w
x y + v∗

z σ̃
w
xz

}
dΓ (2.67)

−(1−p)
∮

S∩y=0

{−u∗
x σ̃x y −u∗

z σ̃y z
}

dΓ−p
∮

S∩y=0

{
−v∗

x σ̃
w
x y − v∗

z σ̃
w
y z

}
dΓ (2.68)

−(1−p)
∮

S∩y=B

{
u∗

x σ̃x y +u∗
z σ̃y z

}
dΓ−p

∮
S∩y=B

{
v∗

x σ̃
w
x y + v∗

z σ̃
w
y z

}
dΓ (2.69)

=(1−p)

∫
Ω

u∗
i

{
∂2ρp ui

∂t 2 + ∂

∂x j

(
1

2
ρp

(
∂u j

∂t

)2
)}

dΩ+p

∫
Ω

v∗
i

{
∂2ρw vi

∂t 2 + ∂

∂x j

(
1

2
ρw

(
∂v j

∂t

)2
)}

dΩ. (2.70)

To find the momentum equations for the soil particles and the pore water, extensions for the unknown stress
tensors are needed.

2.7.2. An extension for unknown stress tensors σ̃i j and σ̃w
i j

In order to retrieve useful relations, an extension is needed for these stress tensors to an arbitrary domain Θ,
containing both soil particles and pore water. σ̃i j should be defined such that the total energy of σi j on an
arbitrary domainΘ is equivalent to the total energy of σ̃i j onΘp ⊂Θ, i.e.∫

Θp

1

2
ε

p∗
i j σ̃i j dΘ=

∫
Θ

1

2
ε

p∗
i j σi j dΘ. (2.71)

This makes sense because of the observation that σi j should theoretically only have a contribution on the
fraction ofΘ containing soil particles. Even though the Einstein summation convention is used in Expression
(2.71), this expression also holds element wise, since the derivation should also hold in the one-dimensional
case. In order to arrive at an extension for σ̃i j , it makes sense to approximate the stress tensor by averaging.
Taking an infinitely small elementΘwe use an averaging for the integrand 1

2ε
p∗
i j σi j :

1

2
ε

p∗
i j σi j ≈ 1

|Θ|
∫
Θ

1

2
ε

p∗
i j σi j dΘ. (2.72)

Using Requirement (2.71) gives

1

2
ε

p∗
i j σi j ≈ 1

|Θ|
∫
Θp

1

2
ε

p∗
i j σ̃i j dΘ. (2.73)

Since Θ (and hence Θp ) is an infinitely small domain, the assumption is made that the integrand 1
2ε

p∗
i j σ̃

p
i j is

constant on this small domain. This simplifies the integral to:

1

|Θ|
∫
Θp

1

2
ε

p∗
i j σ̃i j dΘ≈ |Θp |

|Θ|
1

2
ε

p∗
i j σ̃i j , (2.74)

= (1−p)|Θ|
|Θ|

1

2
ε

p∗
i j σ̃i j , (2.75)

= (1−p)
1

2
ε

p∗
i j σ̃i j . (2.76)
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BecauseΘ is an arbitrary small region, it can be concluded that

σi j ≈ (1−p)σ̃i j , (2.77)

on the whole domain Ω, by combining Equations (2.73) and (2.74). The same thing can be done for σw
i j ,

resulting in the extension

σw
i j ≈ pσ̃w

i j , (2.78)

on the whole domain Ω. These extensions can be utilized to express the partial derivative of the unknown
stress tensors in the known stress tensors. Writing out this partial derivative gives

∂σ̃i j

∂x j
= ∂

∂x j

(
σi j

1−p

)
, (2.79)

=
(1−p)

∂σi j

∂x j
+ ∂p

∂x j
σi j

(1−p)2 , (2.80)

≈
(1−p)

∂σi j

∂x j

(1−p)2 , (2.81)

= 1

1−p

∂σi j

∂x j
, (2.82)

where the approximation is justified by the fact that the partial derivatives in space of the porosity are nearly

zero, while the porosity is somewhere around 0.4. A similar thing can be done for
∂σ̃w

i j

∂x j
. Using the extension

for the stress tensor results in:∫
Ω

u∗
x

(
∂σxx

∂x
+ ∂σx y

∂y
+ ∂σxz

∂z

)
+u∗

y

(
∂σx y

∂x
+ ∂σy y

∂y
+ ∂σy z

∂z

)
+u∗

z

(
∂σxz

∂x
+ ∂σy z

∂y
+ ∂σzz

∂z

)
dΩ (2.83)

+p
∫
Ω

v∗
x

(
∂σw

xx

∂x
+
∂σw

x y

∂y
+ ∂σw

xz

∂z

)
+ v∗

y

(
∂σw

x y

∂x
+
∂σw

y y

∂y
+
∂σw

y z

∂z

)
+ v∗

z

(
∂σw

xz

∂x
+
∂σw

y z

∂y
+ ∂σw

zz

∂z

)
dΩ (2.84)

−
∮

S∩z=−Z

{
−u∗

xσxz −u∗
yσy z

}
dΓ−

∮
S∩z=−Z

{
−v∗

xσ
w
xz − v∗

yσ
w
y z

}
dΓ (2.85)

−
∮

S∩z=0

{
u∗

x (σxz − (1−p)Fxz )+u∗
y (σy z − (1−p)Fy z )+u∗

z (σzz − (1−p)Fzz )
}

dΓ (2.86)

−
∮

S∩z=0

{
v∗

x (σw
xz −pFxz )+ v∗

y (σw
y z −pFy z )+ v∗

z (σw
zz −pFzz )

}
dΓ (2.87)

−
∮

S∩x=0

{
−u∗

yσx y −u∗
zσxz

}
dΓ−

∮
S∩x=0

{
−v∗

yσ
w
x y − v∗

z σ
w
xz

}
dΓ (2.88)

−
∮

S∩x=L

{
u∗

yσx y +u∗
zσxz

}
dΓ−

∮
S∩x=L

{
v∗

yσ
w
x y + v∗

z σ
w
xz

}
dΓ (2.89)

−
∮

S∩y=0

{−u∗
xσx y −u∗

zσy z
}

dΓ−
∮

S∩y=0

{
−v∗

xσ
w
x y − v∗

z σ
w
y z

}
dΓ (2.90)

−
∮

S∩y=B

{
u∗

xσx y +u∗
zσy z

}
dΓ−

∮
S∩y=B

{
v∗

xσ
w
x y + v∗

z σ
w
y z

}
dΓ (2.91)

=(1−p)

∫
Ω

u∗
i

{
∂2ρp ui

∂t 2 + ∂

∂x j

(
1

2
ρp

(
∂u j

∂t

)2
)}

dΩ+p

∫
Ω

v∗
i

{
∂2ρw vi

∂t 2 + ∂

∂x j

(
1

2
ρw

(
∂v j

∂t

)2
)}

dΩ (2.92)

Since the displacements are virtual, it should hold that:

∂σi j

∂x j
− (1−p)

∂2ρp ui

∂t 2 − (1−p)
∂

∂x j

(
1

2
ρp

(
∂u j

∂t

)2
)
= 0, (2.93)

∂σw
i j

∂x j
−p

∂2ρw vi

∂t 2 −p
∂

∂x j

(
1

2
ρw

(
∂v j

∂t

)2
)
= 0, (2.94)
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for x ∈ Ω, which are the six momentum equations for the soil particles and the pore water respectively (i ∈
{1,2,3}). Furthermore, since the displacements on the boundary are virtual as well, we conclude that it has to
hold that for z =−Z :

σxz = 0, (2.95)

σy z = 0, (2.96)

σw
xz = 0, (2.97)

σw
y z = 0. (2.98)

For z = 0:

σxz = (1−p)Fxz , (2.99)

σy z = (1−p)Fy z , (2.100)

σzz = (1−p)Fzz , (2.101)

σw
xz = pFxz , (2.102)

σw
y z = pFy z , (2.103)

σw
zz = pFzz . (2.104)

For x = 0:

σx y = 0, (2.105)

σxz = 0, (2.106)

σw
x y = 0, (2.107)

σw
xz = 0, (2.108)

For x = L:

σx y = 0, (2.109)

σxz = 0, (2.110)

σw
x y = 0, (2.111)

σw
xz = 0. (2.112)

Clearly the system is heavily affected by the boundary condition at z = 0, since this is the boundary where the
wave exerts it stress.

2.7.3. Boundary condition at z = 0
The boundary condition at z = 0 is the reason why in this research it has been decided to differentiate from
the state of the art models. In the model by Ye et. al [5] it is assumed that the water carries the full load of the
wave, i.e. it is presumed that for z = 0:

σxz = 0, (2.113)

σy z = 0, (2.114)

σzz = 0, (2.115)

σw
xz = Fxz , (2.116)

σw
y z = Fy z , (2.117)

σw
zz = Fzz . (2.118)

It is very unlikely that the soil particles on the surface will not be influenced by the wave stress, so this seems
like an inaccurate way of modelling this problem. In comparison with the PORO–WSSI model, the boundary
Condition (2.99) is already more probable. However even this boundary condition poses some problems,
because it fixes the fraction of the wave stress being carried by the pore water. In practice it is expected
that the fraction of the load being carried is not constant, but varies over time. In order to capture this by a
boundary condition, the boundary conditions are summed such that the fluxes of the stresses are not fixed
anymore. This means that we end up with three boundary conditions at z = 0, namely:
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σxz +σw
xz = Fxz , (2.119)

σy z +σw
y z = Fy z , (2.120)

σzz +σw
zz = Fzz . (2.121)

Because by doing this three boundary conditions are lost, additional boundary conditions have to be
formulated to make the system well defined. This boundary condition will be formulated in section 2.12.1.
Note that this is not the mathematically most sound way of stating things. This is exactly why the distinction
is made between the original approach and the approach by the author. This more formalized approach will
be discussed in Chapter 5. For now we will continue with boundary Conditions (2.119) - (2.121). To express
these boundary conditions in the variables that we want to solve for, the stress tensors have to be substituted.
Hence the definition of the stress tensors directly influence the resulting momentum equations, expressed
in the variables. However, within the research group there was some discussion about the definition of the
stress tensors, which will be elaborated on in the next section.

2.7.4. Discussion fluid tensile stress
This disagreement within the research group was mainly about the meaning of variable P in the fluid tensile
stress, given by

σw
i i =µ

(
2
∂2vi

∂xi∂t
− 2

3

∂2v j

∂x j∂t

)
−P. (2.122)

One belief is that the gradient of the velocity of the pore water is negligibly small and the approximation

σw
i i =−P, (2.123)

should be used. Applying this yields the original model, as also stated in the prior literature report [11]. This
is worked out in Sections 2.7.5 - 2.13. Furthermore, this assumption is also used in Chapter 4, in which an
attempt is made to solve the momentum equations directly. According to Falconer [3], this variable P is
the hydrostatic pressure. This would mean that at z = −Z , the value of P should be −ρw pg Z when the
virtual gravitational work is included or simply 0 when the virtual gravitational work is disregarded. However,
following this train of thought, P would have a known profile that only changes when the surface at z = 0 is
being pressed down.

However, within the research group there was some skepticism towards the definition of Falconer. An idea
was that P was in fact a variable for the total water pressure. This means that when the gravitational terms are
disregarded, it would be 0 at z =−Z (there is no pore water displacement so there cannot be any dynamic wa-
ter pressure either) or −ρw pg Z when the gravitational terms are taken into account. The difference between
the previous definition of P , is simply that P does not have a known profile in this case, but is a variable.

Another opinion is that the hydrostatic pressure could be neglected when the virtual work done by the
gravitational force is not taken into account. This would boil down to using

σw
i i =µ

(
2
∂2vi

∂xi∂t
− 2

3

∂2v j

∂x j∂t

)
, (2.124)

as a stress tensor. This will be worked out in Chapter 5. In the next section we will continue with the derivation
of the simplified momentum equation by using Assumption (2.123).

2.7.5. Simplified Momentum Equations
In state of the art models often the momentum equations are solved on the domain of interest. Directly solv-
ing the Momentum Equations on the domain will be attempted in Chapter 4. If this approach would work,
it could be easily extended to a three-dimensional setting, because of the similarities between the momen-
tum equations. However, the approach by Van Damme and Den Ouden-van der Horst [15] makes use of the
curl- and divergence-operators, applied to the momentum equations. Taking the curl in a three-dimensional
setting results in three non-trivial equations. However, only one of these equations can be put in a useful
partial differential equation. Moreover, analysis of the intersection of a flood embankment would already
provide lots of insight, so for the moment there is little incentive to implement a three-dimensional model.
In a two-dimensional model, only the x-direction and z-direction have to be used, i.e. for i = 1 and i = 3.
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Before applying these operators on the momentum equations, some simplifications of the momentum
Equations (2.93) and (2.94) can be made. When the last term of momentum Equation (2.93) is considered,
assuming that ρp is constant in space, we have that:

∂

∂xi

(
1

2
ρp

(
∂ui

∂t

)2)
=1

2
ρp

∂

∂xi

((
∂ui

∂t

)2)
, (2.125)

=ρp
∂ui

∂t

∂2ui

∂xi∂t
, (2.126)

=ρp
∂xi

∂t

∂2ui

∂xi∂t
, (2.127)

(2.128)

in which we see an advective acceleration term. Obviously the same thing can be done for ∂
∂xi

(
1
2ρw

(
∂vi
∂t

)2
)
.

Often the advective accelerations are negligible compared to the contribution of the particle-particle and
particle-water interaction. Substituting the tensor, using approximation (2.123), in the momentum equation
of the soil particles gives

∂2ρp (1−p)ux

∂t 2 +ρp (1−p)

[
∂x

∂t

(
∂2ux

∂t∂x

)
+ ∂z

∂t

(
∂2ux

∂t∂z

)]
−ρp (1−p)gx (2.129)

−α
2

∂

∂z

(
∂ux

∂z
− ∂uz

∂x

)
− (β+α)

∂

∂x

(
∂ux

∂x
+ ∂uz

∂z

)
− γw

Ks

∂p(vx −ux )

∂t
= 0, (2.130)

∂2ρp (1−p)uz

∂t 2 +ρp (1−p)

[
∂x

∂t

(
∂2uz

∂t∂x

)
+ ∂z

∂t

(
∂2uz

∂t∂z

)]
−ρp (1−p)gz (2.131)

+α
2

∂

∂x

(
∂ux

∂z
− ∂uz

∂x

)
− (β+α)

∂

∂z

(
∂ux

∂x
+ ∂uz

∂z

)
− γw

Ks

∂p(vz −uz )

∂t
= 0. (2.132)

The last term of these expressions is called the Darcy term. In the next section it will be explained where this
term finds its origin.

Darcy term

The Darcy term γw
Ks

∂p(vi−ui )
∂t appears as a result of taking the partial derivative of the µ

(
∂2vi
∂x j ∂t +

∂2v j

∂x j ∂t

)
-term

with i = 1 and j = 3. In order to understand this, we note that the pore water flows through small ’tubes’.
The radii of these ’tubes’ are randomly distributed, according to Van Damme [16]. Even though for a given
radius the pore water velocity profile is known, the pore water velocity and hence the pore water displace-
ments have stochastic values, because of the randomness of the tube geometry. Hence, locally the stochastic
displacements are denoted by ũi and ṽi . If we observe one ’tube’ in the soil, the velocity of the pore water ˙̃vx

is parabolic, as can be seen in Figure 2.1.

Figure 2.1: A horizontal ’tube’ in the soil matrix
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The stress tensors, defined in Section 2.4, are based on an infinitely small element and subsequently av-
eraged such that they hold for the whole soil matrix. The same thing will be done for the partial derivative of
the stress tensor. Taking the partial derivative to z results in

∂

∂t

(
∂2ṽx

∂z2 + ∂2ṽz

∂x∂z

)
≈C

d v̄x

d t
, (2.133)

since there is barely any perpendicular acceleration (it is assumed that the ’tube’ nearly has a constant width,
so there will hardly be any pore water moving inward) and because the second derivative of a parabolic pro-
file is a constant. In this expression C ∈R and v̄x is the average pore water velocity in the tube, i.e. a resulting
pore water velocity of a random draw from the radius distribution. The soil contains a fraction p ’tubes’, that
all have a parabolic profile. This profile depends on the relative velocity with respect to the tube wall. To
extrapolate this local constant to an expression that is valid for the whole soil matrix, we return back to the
deterministic displacements. The constant is hence proportional to p(vx −ux ). Observe that this constant is
only constant in space (within one tube), not in time. Note that vx and ux can be seen as the expected value of
the horizontal displacements in a tube. The proportionality is made explicit by introducing a calibration con-

stant Ks , which explains the Darcy term γw
Ks

∂p(vx−ux )
∂t at the end of the expression. This calibration constant

Ks has the units
[ m

s

]
and equals the pressure gradient after multiplication by the specific density of the pore

water. Obviously the same analysis can be done for i = 3, j = 1. Hence the momentum balance equations for
the soil particles become

ρp (1−p)
∂2ux

∂t 2 −ρp (1−p)gx − α

2

∂

∂z

(
∂ux

∂z
− ∂uz

∂x

)
− (β+α)

∂

∂x

(
∂ux

∂x
+ ∂uz

∂z

)
− γw

Ks

∂p(vx −ux )

∂t
= 0, (2.134)

ρp (1−p)
∂2uz

∂t 2 −ρp (1−p)gz + α

2

∂

∂x

(
∂ux

∂z
− ∂uz

∂x

)
− (β+α)

∂

∂z

(
∂ux

∂x
+ ∂uz

∂z

)
− γw

Ks

∂p(vz −uz )

∂t
= 0. (2.135)

Similarly, the momentum balance equations for the pore water can be found. Note that the sign of the
Darcy term should change sign, since action equals minus reaction. Hence the momentum balance equa-
tions for both the soil particles and pore water are reduced to

ρp (1−p)
∂2ux

∂t 2 −ρp (1−p)gx − α

2

∂

∂z

(
∂ux

∂z
− ∂uz

∂x

)
− (β+α)

∂

∂x

(
∂ux

∂x
+ ∂uz

∂z

)
− γw

Ks

∂p(vx −ux )

∂t
= 0, (2.136)

ρp (1−p)
∂2uz

∂t 2 −ρp (1−p)gz + α

2

∂

∂x

(
∂ux

∂z
− ∂uz

∂x

)
− (β+α)

∂

∂z

(
∂ux

∂x
+ ∂uz

∂z

)
− γw

Ks

∂p(vz −uz )

∂t
= 0, (2.137)

ρw p
∂2vx

∂t 2 +ρw pgx + ∂P

∂x
+ γw

Ks

∂p(vx −ux )

∂t
= 0, (2.138)

ρw p
∂2vz

∂t 2 +ρw pgz + ∂P

∂z
+ γw

Ks

∂p(vz −uz )

∂t
= 0. (2.139)

Since the analysis has only been made for a two-dimensional setting, it is the right time to introduce the
domain of interest, which can be seen in Figure 2.2. Note thatΓ1 is the boundary at z =−Z , Γ2 is the boundary
at x = L, Γ3 is the boundary at z = 0 and Γ4 is the boundary at x = 0. Both of these notations will be used
interchangeably. Note that even though we are interested in displacements of soil particles and pore water,
the computational domain is fixed. This is because the displacements are expected to be small. A moving
computational domain could be interesting for further research, but goes beyond the scope of this thesis.
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Γ1

Γ2

Γ3

Γ4 Ω

−Z

L
x

z

Figure 2.2: The domain of interestΩ.

To obtain the partial differential equations of the original model, the curl and divergence operators are ap-
plied on the four momentum Equations (2.136) - (2.139). The curl will be applied to find a partial differential
equation for the vorticity.

2.8. Vorticity equation
Taking the curl of the Momentum Equations (2.136)-(2.137) results in

∂

∂z

(
ρp (1−p)

∂2ux

∂t 2 −ρp (1−p)gx − α

2

∂

∂z

(
∂ux

∂z
− ∂uz

∂x

)
− (β+α)

∂

∂x

(
∂ux

∂x
+ ∂uz

∂z

)
− γw

Ks

∂p(vx −ux )

∂t

)
(2.140)

− ∂

∂x

(
ρp (1−p)

∂2uz

∂t 2 −ρp (1−p)gz + α

2

∂

∂x

(
∂ux

∂z
− ∂uz

∂x

)
− (β+α)

∂

∂z

(
∂ux

∂x
+ ∂uz

∂z

)
− γw

Ks

∂p(vz −uz )

∂t

)
= 0.

(2.141)

Working out the partial derivatives gives

ρp (1−p)
∂2

∂t 2

(
∂ux

∂z

)
− ∂

∂z

(
ρp (1−p)gx

)− α

2

∂2

∂z2

(
∂ux

∂z
− ∂uz

∂x

)
− (β+α)

∂2

∂z∂x

(
∂ux

∂z
− ∂uz

∂x

)
− γw

Ks

∂2p(vx −ux )

∂z∂t
(2.142)

−ρp (1−p)
∂2

∂t 2

(
∂uz

∂x

)
+ ∂

∂x

(
ρp (1−p)gz

)− α

2

∂2

∂x2

(
∂ux

∂z
− ∂uz

∂x

)
+ (β+α)

∂2

∂x∂z

(
∂ux

∂z
− ∂uz

∂x

)
+ γw

Ks

∂2p(vz −uz )

∂x∂t
= 0.

(2.143)

Re-arranging the terms gives the equation

ρp (1−p)
∂2

∂t 2

(
∂ux

∂z
− ∂uz

∂x

)
− α

2

[
∂2

∂z2

(
∂ux

∂z
− ∂uz

∂x

)
+ ∂2

∂x2

(
∂ux

∂z
− ∂uz

∂x

)]
− γw p

Ks

(
∂

∂t

[
∂ux

∂z
− ∂uz

∂x

])
(2.144)

=γw p

Ks

(
∂

∂t

[
∂vx

∂z
− ∂vz

∂x

])
. (2.145)

When the vorticity of the water displacement vector is defined as

ωv = ∂vx

∂z
− ∂vz

∂x
, (2.146)

and the vorticity for the soil matrix is defined analogously, the constitutive equation for the vorticity can be
written as

ρp (1−p)
∂2ω

∂t 2 + γw p

Ks

∂ω

∂t
− α

2

(
∂2ω

∂x2 + ∂2ω

∂z2

)
= γw p

Ks

∂ωv

∂t
. (2.147)

Analogously a constitutive relation for ωv can be found by taking the curl of the Momentum Balance Equa-
tions (2.138) and (2.139) of the pore water, given by:
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∂ρw pωv

∂t 2 + γw p

Ks

∂ωv

∂t
= γw p

Ks

∂ω

∂t
. (2.148)

However, the momentum balance equation for soil states that ω=ωv , so the only thing that remains is

ρp (1−p)
∂2ω

∂t 2 − α

2
∆ω= 0. (2.149)

Now we have found a partial differential equation that describes the vorticity. In the next section, a partial
differential equation for the volumetric strain will be derived.

2.9. Volumetric strain equation
To find a partial differential equation describing the volumetric strain, the divergence operator is used instead
of the curl operator. Firstly, we define specific displacements qx and qz as:

qx = p(vx −ux ), (2.150)

qz = p(vz −uz ). (2.151)

Note that the volumetric strain, by definition, is equal to the divergence of the displacement vector [12], so in
the two-dimensional case this becomes

εvol =
∂ux

∂x
+ ∂uz

∂z
. (2.152)

Taking the divergence of momentum Equations (2.136) and (2.137) gives the following equality:

∂2

∂t 2

(
ρp (1−p)

∂ux

∂x

)
− α

2

∂2

∂x∂z

(
∂ux

∂z
− ∂uz

∂x

)
− (β+α)

∂2εvol

∂x2 − γw

Ks

∂2qx

∂x∂t
(2.153)

+ ∂2

∂t 2

(
ρp (1−p)

∂uz

∂z

)
+ α

2

∂2

∂z∂x

(
∂ux

∂z
− ∂uz

∂x

)
− (β+α)

∂2εvol

∂z2 − γw

Ks

∂2qz

∂z∂t
= 0, (2.154)

⇒ ∂2

∂t 2

(
ρp (1−p)εvol

)− (β+α)

(
∂2εvol

∂x2 + ∂2εvol

∂z2

)
− γw

Ks

∂

∂t

(
∂qx

∂x
+ ∂qz

∂z

)
= 0, (2.155)

⇒ρp (1−p)
∂2εvol

∂t 2 − (β+α)

(
∂2εvol

∂x2 + ∂2εvol

∂z2

)
− γw

Ks

∂

∂t

(
∂qx

∂x
+ ∂qz

∂z

)
= 0, (2.156)

where it is assumed that ux and uz are sufficiently smooth, which enables changing the order of differentia-
tion. Substituting the volume balance Equation (2.18) results in

ρp (1−p)
∂2εvol

∂t 2 + γw

Ks

∂εvol

∂t
− (β+α)

(
∂2εvol

∂x2 + ∂2εvol

∂z2

)
= 0. (2.157)

This partial differential equation describes the volumetric strain over time. Finally, a relation between the
volumetric strain and the water pressure will be derived.
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2.10. Pressure equation
A relation for the pressure P needs to be derived as well. Taking the divergence of the momentum balance
equations of the pore water gives

∂

∂x

(
ρw p

∂2vx

∂t 2

)
+ ∂

∂x
ρw pgx + ∂2P

∂x2 + γw

Ks

∂

∂x

∂p(vx −ux )

∂t
+ ∂

∂z

(
ρw p

∂2vz

∂t 2

)
+ ∂

∂z
ρw pgz + ∂2P

∂z2 + γw

Ks

∂

∂z

∂p(vz −uz )

∂t
=0,

(2.158)

⇒ ρw
∂

∂x

(
∂2pvx

∂t 2

)
+ ∂2P

∂x2 + γw

Ks

∂

∂x

∂p(vx −ux )

∂t
+ρw

∂

∂z

(
∂2pvz

∂t 2

)
+ ∂2P

∂z2 + γw

Ks

∂

∂z

∂p(vz −uz )

∂t
=0,

(2.159)

⇒ ρw
∂

∂t

(
∂

∂x

∂pvx

∂t
+ ∂

∂z

∂pvz

∂t

)
+ ∂2P

∂x2 + ∂2P

∂z2 + γw

Ks

∂

∂x

∂p(vx −ux )

∂t
+ γw

Ks

∂

∂z

∂p(vz −uz )

∂t
=0,

(2.160)

⇒−ρw
∂2p

∂t 2 + ∂2P

∂x2 + ∂2P

∂z2 + γw

Ks

∂

∂x

∂p(vx −ux )

∂t
+ γw

Ks

∂

∂z

∂p(vz −uz )

∂t
=0,

(2.161)

⇒−ρw
∂

∂t

[
(1−p)

∂εvol

∂t

]
+ ∂2P

∂x2 + ∂2P

∂z2 + γw

Ks

∂

∂x

∂p(vx −ux )

∂t
+ γw

Ks

∂

∂z

∂p(vz −uz )

∂t
=0,

(2.162)

⇒−ρw (1−p)
∂2εvol

∂t 2 + ∂2P

∂x2 + ∂2P

∂z2 − γw

Ks

∂εvol

∂t
=0.

(2.163)

The volume balance equation implies that

∂p

∂t
= (1−p)

∂εvol

∂t
, (2.164)

with

∇· ∂pvi

∂t
=−∂p

∂t
. (2.165)

Equation (2.165) is used for Equality (2.161) and Equation (2.164) is used for Equality (2.162). For Equality
(2.163) it is used that, when the functions are sufficiently smooth, Equation (2.18) can be rewritten as:

∂

∂t

{[
∂p(vi −ui )

∂xi

]}
=− ∂

∂t

(
∂ui

∂xi

)
= ∂εvol

∂t
. (2.166)

So we end up with expression

− ∂2P

∂x2 − ∂2P

∂z2 =−γw

Ks

∂εvol

∂t
−ρw (1−p)

∂2εvol

∂t 2 . (2.167)

Hence, when the solution for εvol is known, the pressure P can directly be determined.

2.11. Relations for the displacement
Vorticity, volumetric strain and displacements can be related by working out

−∂w

∂z
− ∂εvol

∂x
=− ∂2ux

∂z2 + ∂2uz

∂z∂x
− ∂2ux

∂x2 − ∂2uz

∂x∂z
, (2.168)

=− ∂2ux

∂x2 − ∂2ux

∂z2 , (2.169)

where we have assumed sufficiently smoothness.
This can be done analogously for ∂w

∂x − εvol
∂z , assuming that ux is sufficiently smooth, which results in the

following set of equations:
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{
− ∂2ux

∂x2 − ∂2ux
∂z2 =− ∂w

∂z − ∂εvol
∂x ,

− ∂2uz
∂x2 − ∂2uz

∂z2 = ∂w
∂x − ∂εvol

∂z .
(2.170)

These relations are used as fourth and fifth equations of our system, since these expressions are more useful
than the definitions of ω and εvol. This is because it is more straightforward for these partial differential
equations to formulate a weak formulation. Now there are five partial differential equations that describe five
parameters. The only thing that is left are stating the boundary conditions and initial conditions.

2.12. Boundary conditions
Since the model is based on a two-dimensional setting, the essential boundary conditions and the natural
boundary conditions, found in Section 2.7, only need to be given in two dimensions as well. When the stress
tensors are substituted, we have that for z =−Z :

−α
2

(
∂ux

∂z
+ ∂uz

∂x

)
−µ

(
∂2vx

∂z∂t
+ ∂2vz

∂x∂t

)
= 0, (2.171)

µ

(
∂2vx

∂z∂t
+ ∂2vz

∂x∂t

)
= 0, (2.172)

uz = 0, (2.173)

vz = 0, (2.174)

which is equivalent to saying that for z =−Z we have that

∂ux

∂z
= 0, (2.175)

∂2vx

∂z∂t
= 0, (2.176)

uz = 0, (2.177)

vz = 0. (2.178)

Hence by definition, it also holds that ω= 0 for z =−Z .
For x = 0:

−α
2

(
∂ux

∂z
+ ∂uz

∂x

)
−µ

(
∂2vx

∂z∂t
+ ∂2vz

∂x∂t

)
= 0, (2.179)

µ

(
∂2vx

∂z∂t
+ ∂2vz

∂x∂t

)
= 0, (2.180)

ux = 0, (2.181)

vx = 0, (2.182)

which is equivalent to saying that for x = 0 we have that

∂uz

∂x
= 0, (2.183)

∂2vz

∂x∂t
= 0, (2.184)

ux = 0, (2.185)

vx = 0, (2.186)

Analogously, for x = L it has to hold that

∂uz

∂x
= 0, (2.187)

∂2vz

∂x∂t
= 0, (2.188)

ux = 0, (2.189)

vx = 0, (2.190)
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For z = 0:

−α∂uz

∂z
−βεvol −P = Fzz (2.191)

−α
2

(
∂uz

∂x
+ ∂ux

∂z

)
= Fxz . (2.192)

Since the partial differential equations that were found in the previous sections do not contain water dis-
placements vi anymore, additional boundary conditions are needed. Furthermore, an additional boundary
condition is still needed for z = 0, as discussed before.

2.12.1. Additional boundary conditions
For x = 0, x = L and z =−Z it is expected that, when L and Z are sufficiently large, the effect by the wave stress
flattens out. This is why on these boundaries a homogeneous Neumann boundary condition is assumed for
both P and εvol.

At z = 0, i.e. at the top of the levee, the boundary conditions are only related with Fxz and Fzz . Both of
these functions are assumed to be known at z = 0 and represent the hydrodynamic loads, induced by the
overtopping waves of interest. As we have seen from the virtual work, the total stress component is deter-
mined by the water pressure and the effective stress, i.e. Fzz =σw

zz +σzz . Substituting the expression for σzz

gives the boundary condition

Fzz |z=0 =−P |z=0 −βεvol|z=0 −α∂uz

∂z
|z=0. (2.193)

There is no Darcy friction term present on the surface of the domain [19]. Since the shear stress is a weighted
average of the shear stresses experienced between all soil particles in two directions, we have that

Fxz |z=0 = Fzx |z=0 = α

2

(
∂ux

∂z
+ ∂uz

∂x

)
|z=0, (2.194)

due to symmetry of the stress tensor. It can easily be checked that the boundary condition can equivalently
be written as

Fxz |z=0 = α

2
w |z=0 −α∂ux

∂z
|z=0. (2.195)

The momentum balance equation for the pore water in the vertical direction is given by:

∂2ρp (1−p)uz

∂t 2 + ∂2ρw pvz

∂t 2 + ∂Fxz

∂x
=−∂Fzz

∂z
. (2.196)

In the analytical approach by Van Damme and Den Ouden-van der Horst [15] the accelerations cannot be
ignored since this would violate the existence of an analytical solution. However, numerical analysis provides
more flexibility, so the accelerations will initially be neglected. This results in the simpler relation

∂Fxz

∂x
=−∂Fzz

∂z
. (2.197)

Substituting the partial derivatives of the other two boundary conditions at z = 0 and using the definition of
εvol results in an equivalent expression for the third boundary condition at z = 0, given by

− (α+β)
∂εvol

∂z
+ α

2

∂ω

∂x
− ∂P

∂z
= 0. (2.198)

The only things left are the initial conditions of the variables.

2.13. Initial conditions
Since the partial differential equations of the model are of the second order in time, two initial conditions for
both the vorticity and volumetric strain are necessary. We make the assumption that at t = 0 no hydrody-
namic load is present on the soil. In other words, there will not be a shear stress on the surface, so the initial
vorticity will be equal to zero as well, i.e. w |t=0 = 0. Furthermore, in order to create a second initial condition
to the vorticity, it is assumed that the first overtopping wave will only arrive after some time. Hence the vor-
ticity will initially not change over time, so it can be imposed that ∂w

∂t |t=0 = 0. Furthermore, it is assumed that
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at t = 0 effective stresses are absent and as a consequence the volumetric strain will be zero, i.e. εvol = 0. Since

the dynamic water pressure is also assumed to be zero at t = 0, it has to hold that ∂εvol
∂t |t=0 = 0. In summary,

the initial conditions are

w |t=0 = ∂w

∂t
|t=0 =0, (2.199)

εvol|t=0 = ∂εvol

∂t
|t=0 =0. (2.200)

2.14. Complete system
In this chapter, a full derivation of the complete system that describes the physics in the levee is given. In
conclusion, the system can be written as

for x ∈Ω



ρp (1−p) ∂
2εvol
∂t 2 + γw

Ks

∂εvol
∂t − (α+β) ∂

2εvol
∂x2 − (α+β) ∂

2εvol
∂z2 = 0,

ρp (1−p) ∂
2w
∂t 2 − α

2
∂2w
∂x2 − α

2
∂2w
∂z2 = 0,

ρw (1−p) ∂
2εvol
∂t 2 + γw

Ks

∂εvol
∂t − ∂2P

∂x2 − ∂2P
∂z2 = 0,

∂ω
∂z + ∂εvol

∂x − ∂2ux
∂x2 − ∂2ux

∂z2 = 0,

− ∂ω
∂x + ∂εvol

∂z − ∂2uz
∂x2 − ∂2uz

∂z2 = 0,

(2.201)

With the boundary conditions

for x = 0 and x = L:



ux = 0,
∂uz
∂x = 0,

w = 0,
∂εvol
∂x = 0,
∂P
∂x = 0.

(2.202)

For z = 0:


α
2ω−α ∂ux

∂z = Fxz ,

−βεvol −α ∂uz
∂z −P = Fzz ,

−(α+β) ∂εvol
∂z + α

2
∂ω
∂x − ∂P

∂z = 0.

(2.203)

For z =−Z :



uz = 0,
∂ux
∂z = 0,
∂P
∂z = 0,

ω = 0,
∂εvol
∂z = 0.

(2.204)

Finally, we have the initial conditions: {
ε̇vol|t=0 = εvol|t=0 = 0,

ω̇|t=0 =ω|t=0 = 0.
(2.205)

Note that both −(α+β), −α
2 and −1 are negative constants, which strengthens the idea that the partial differ-

ential equations are solvable. In the following section, a numerical approach will be extensively worked out
in order to solve the system.
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One-dimensional stationary solution

Since the numerical framework of the original model, extensively worked out in the literature report, did not
yield any valuable results, it is assumed that the original model is either inconsistent or consistent but with
infinite solutions. In order to analyse the problem of the model, an attempt is made to find a stationary
solution of a simplified model. As a test case, the shear stress will be set to zero. Furthermore, when the
normal stress exerted by the wave is chosen to be a function solely of time, no changes will occur in the
x-direction. The derivatives with respect to x will be zero and there will not be any displacements in the x-
direction either. As a result, the two-dimensional system can be reduced to a one-dimensional model, given
by

for x ∈Ω


(1−p) ∂

2εvol
∂t 2 + γw

ρp Ks

∂εvol
∂t − α+β

ρp

∂2εvol
∂z2 = 0,

ρw (1−p) ∂
2εvol
∂t 2 + γw

Ks

∂εvol
∂t − ∂2P

∂z2 = 0,
∂εvol
∂z − ∂2uz

∂z2 = 0,

(3.1)

with boundary conditions

For z = 0:

{
−βεvol −α ∂uz

∂z −P = Fzz (t ),

−(α+β) ∂εvol
∂z − ∂P

∂z = 0.
(3.2)

For z =−Z :


uz = 0,
∂P
∂z = 0,
∂εvol
∂z = 0.

(3.3)

Finally, we have the initial conditions: {
ε̇vol|t=0 = εvol|t=0 = 0. (3.4)

In order to do some checks, Fzz (t ) is chosen such that both the value and the gradient on t = 0 are equal
to zero. Furthermore, for t → ∞ the normal stress will be constant, say F < 0. The solution of the one-
dimensional system should tend to a stationary solution, belonging to Fzz = F . To find this stationary solu-
tion, the stationary one-dimensional system has to be solved.

3.1. Stationary one-dimensional model
Noting that in this one-dimensional test case without a shear stress, it holds that

εvol =
∂uz

∂z
, (3.5)

the stationary one-dimensional system is given by

for x ∈Ω
{
∂3uS

z
∂z3 = 0,

d 2P S

d z2 = 0,
(3.6)

25
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with boundary conditions

For z = 0:

−(α+β)
duS

z
d z −P S = F,

−(α+β)
∂2uS

z
∂z2 − dP S

d z = 0.
(3.7)

For z =−Z :


uS

z = 0,
∂P S

∂z = 0,
∂2uS

z
∂z2 = 0.

(3.8)

It can immediately be seen from the partial differential equations that

uS
z = K1z2 +K2z +K3, (3.9)

P S = K4z +K5, (3.10)

with Ki ∈ R for i = 1, . . . ,5. Using the Set of boundary conditions (3.7), it has to hold that K1 = K4 = 0 and
K3 = K2Z , resulting in

uS
z = K2z +K2Z , (3.11)

P S = K5. (3.12)

Even though the first equation of the Set of boundary conditions (3.8) relates K2 and K5 by

− (α+β)K2 +K5 = F, (3.13)

the second equation of the Set of boundary conditions (3.8) holds for all values of K2 and K5. This simply
means that an equation is missing to solve the stationary one-dimensional problem, i.e. there are infinitely
many stationary solutions. One may expect that when a system has infinitely many stationary solutions, it is
most likely that the system itself has infinitely many solutions as well. This would explain why the numerical
approach did not yield any good results. Other combinations of boundary conditions can be tried to see
whether this would make the system well-posed.

3.2. Changing boundary conditions at z =−Z
One could argue that if Z is large enough, a homogeneous Dirichlet boundary condition for P or a homoge-
neous Dirichlet boundary condition for εvol are justified. Imposing these different sets of boundary condi-
tions at least makes sure that the stationary one-dimensional system is well-posed.

3.2.1. Boundary conditions alternative 1
When the Neumann boundary condition of εvol is changed to a Dirichlet boundary condition, the boundary
conditions are given by

For z =−Z :


uS

z = 0,
∂P S

∂z = 0,
∂uS

z
∂z = 0,

(3.14)

which results in the stationary solution

uS
z = 0, (3.15)

P S = F. (3.16)

This scenario is very unlikely, since there would be no deformation of the soil whatsoever in the limit case.
Furthermore this goes against the observations that in the limit situation the pore water hardly carries any
load.

When the system was solved numerically, the time integration matrix turned out to be singular, in other
words this system is ill-posed.
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3.2.2. Boundary conditions alternative 2
Another possibility is changing the boundary condition for P to a Dirichlet boundary condition as well. This
gives the set of boundary conditions

For z =−Z :


uS

z = 0,

P S = 0,
∂uS

z
∂z = 0,

(3.17)

which results in the stationary solution

uS
z =− F

2(α+β)(Z −1)
z2 − F Z

(α+β)(Z −1)
z − F Z 2

2(α+β)(Z −1)
, (3.18)

P S = F

1−Z
z + F

1−Z
. (3.19)

Again, this stationary solution is not very likely, since in a stationary situation we expected the stationary
water pressure P S to be zero. When the system was solved numerically, the time integration matrix turned
out to be singular, in other words this system is ill-posed as well.

3.2.3. Boundary conditions alternative 3

For z =−Z :


uS

z = 0,

P S = 0,
∂2uS

z
∂z2 = 0,

(3.20)

which results in the statinary solution

uS
z =− F

α+β z − F

α+βZ , (3.21)

P S = 0. (3.22)

This is a stationary solution that would agree with observations in reality, where in a limit case the soil par-
ticles carry the load. Applying these boundary conditions to a numerical scheme yields some results. The
numerical approximation will be elaborated on in the next section.

3.3. Numerical approximation
In order to make a finite element approximation, a weak formulation is needed. To obtain the weak formu-
lation for the system, the three equations are being multiplied by test functions ηεvol , ηP and ηuz respectively.
Subsequently the equation is integrated over the domain −Z ≤ z ≤ 0. The weak formulation is then given by

ρp (1−p)
∫ 0
−Z η

εvol
∂2εvol
∂t 2 d z + γw

Ks

∫ 0
−Z η

εvol
∂εvol
∂t d z +ηεvol (0) ∂P

∂z (0)+ (α+β)
∫ 0
−Z

∂ηεvol

∂z
∂εvol
∂z d z = 0,

ρw (1−p)
∫ 0
−Z η

P ∂2εvol
∂t 2 d z + γw

Ks

∫ 0
−Z η

P ∂εvol
∂t d z −ηP (0) ∂P

∂z (0)+∫ 0
−Z

∂ηP

∂z
∂P
∂z d z = 0,∫ 0

−Z η
uz ∂εvol

∂z d z + ηuz (0)P (0)
α+β +∫ 0

−Z
∂ηuz

∂z
∂uz
∂z d z =− ηuz (0)F (t )

α+β .

(3.23)

Substituting the Galerkin approximations for the variables, given by

εvol =
n∑

j=1
a j (t )η j (z), (3.24)

P =
n∑

j=1
b j (t )η j (z), (3.25)

uz =
n∑

j=1
c j (t )η j (z), (3.26)

results in the following Galerkin equations:
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∑n
j=1

{
ä j (t )ρp (1−p)

∫ 0
−Z ηiη j d z + ȧ j (t )

γw
Ks

∫ 0
−Z ηiη j d z +b j (t )ηi (0)

∂η j
∂z (0)+a j (t )(α+β)

∫ 0
−Z

∂ηi
∂z

∂η j
∂z d z

}
= 0,∑n

j=1

{
ä j (t )ρw (1−p)

∫ 0
−Z ηiη j d z + ȧ j (t )

γw
Ks

∫ 0
−Z ηiη j d z −b j (t )ηi (0)

∂η j
∂z (0)+b j (t )

∫ 0
−Z

∂ηi
∂z

∂η j
∂z d z

}
= 0,∑n

j=1

{
a j (t )

∫ 0
−Z ηi

∂η j
∂z d z +b j (t )

ηi (0)η j (0)
α+β + c j (t )

∫ 0
−Z

∂ηi
∂z

∂η j
∂z d z

}
=− ηi (0)F (t )

α+β .

(3.27)

Writing this in matrix form results in

Maa ä(t )+Waa ȧ(t )+Saa a(t )+Sab b(t ) = 0, (3.28)

Mba ä(t )+Wba ȧ(t )+Sbb b(t ) = 0, (3.29)

Sca a(t )+Scbb(t )+Scc c(t ) = f (t ), (3.30)

where the element matrices are given by

M ek
aa = ρp (1−p)

∫
ek

ηiη j dΩ, (3.31)

W ek
aa = γw

Ks

∫
ek

ηiη j dΩ, (3.32)

Sek
aa = (α+β)

∫
ek

∂ηi

∂z

∂η j

∂z
dΩ, (3.33)

M ek
ba = ρw (1−p)

∫
ek

ηiη j dΩ, (3.34)

W ek
ba = γw

Ks

∫
ek

ηiη j dΩ, (3.35)

Sek
bb =

∫
ek

∂ηi

∂z

∂η j

∂z
dΩ, (3.36)

Sek
ca =

∫
ek

ηi
∂η j

∂z
dΩ, (3.37)

Sek
cc =

∫
ek

∂ηi

∂z

∂η j

∂z
dΩ, (3.38)

where ek denotes an internal element, i.e. ek = [zk−1, zk ] and (i , j ) ∈ {k − 1,k}2.. Computing these element
matrices, using the Theorem by Holand et al. [4] from Appendix A gives

M ek
aa = ρp (1−p)

zk − zk−1

6
(1+δi j ), (3.39)

W ek
aa = γw

Ks

zk − zk−1

6
(1+δi j ), (3.40)

Sek
aa = α+β

zk − zk−1
(−1+2δi j ), (3.41)

M ek
ba = ρw (1−p)

zk − zk−1

6
(1+δi j ), (3.42)

W ek
ba = γw

Ks

zk − zk−1

6
(1+δi j ), (3.43)

Sek
bb = 1

zk − zk−1
(−1+2δi j ), (3.44)

Sek
ca = 1

2
(−1+2δ j ,k ), (3.45)

Sek
cc =

1

zk − zk−1
(−1+2δi j ), (3.46)

where (i , j ) ∈ {k −1,k}2.
The element vector is equal to zero. The boundary element matrix is given by
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Sbek
ab = ηi (0)

∂η j

∂z
, (3.47)

Sbek
bb =−ηi (0)

∂η j

∂z
, (3.48)

Sbek
cb = ηi (0)η j (0)

α+β , (3.49)

(3.50)

where i = n, j ∈ {n −1,n}. Computing these values gives

Sbek
ab = 1

zk − zk−1
(2δ j ,n −1), (3.51)

Sbek
bb =− 1

zk − zk−1
(2δ j ,n −1), (3.52)

Sbek
cb = 1

α+βδ j ,n , (3.53)

(3.54)

where i = n, j ∈ {n −1,n}. The boundary element vector is simply given by

f bek =−ηi (0)Fzz (t )

α+β , (3.55)

or computed

f bek
n =−Fzz (t )

α+β . (3.56)

By introducing χ(t ) =
(

a(t )
ȧ(t )

)
and θ(t ) =

(
b(t )
c(t )

)
, the system can equivalently be written as:

Mχχχ̇(t ) = Sχχχ(t )+Sχθθ(t ), (3.57)

Sθχθ(t ) = Mθχχ̇(t )+ fθ(t )+ f̃ , (3.58)

where

Mχχ =
(

I ∅
Waa Maa

)
, (3.59)

Sχχ =
(

∅ I
−Saa ∅

)
, (3.60)

Sχθ =
(

∅ ∅
−Sab ∅

)
, (3.61)

Sθχ =
(
Sbb ∅
Scb Scc

)
, (3.62)

Mθχ =
(−Wba −Mba

−Sca ∅

)
, (3.63)

fθ(t ) =
(

0
f (t )

)
. (3.64)

Note that f̃ (t ) can be introduced to include a inhomogeneous Dirichlet boundary condition at z = −Z for
variable P . Now that the numerical system is stated as a time-dependent system and a quasi-time-dependent
system, a time-stepping method can be implemented.

Dirichlet boundary conditions

The two Dirichlet boundary conditions at z =−Z are imposed in the numerical scheme by setting the corre-
sponding rows of matrices Sθχ, Mθχ and f̃ (t ) to zero rows and subsequently putting pivots in these rows of
matrix Sχθ . The only thing that is left is a numerical integration of the system.
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3.3.1. Numerical integration

Since at this stage the mere concern is whether a numerical solution exists, accuracy is of minor importance.
Hence a first-order time-integration method should suffice for now. In order to not have to worry about the
size of a time step, an unconditionally stable method is preferred. The Backward Euler method is hence a
suitable candidate. Applying Backward Euler on the time-dependent system gives

Mχχχ
n+1 = Mχχχ

n +∆tSχχχ
n+1 +∆tSχθθ

n+1 (3.65)

Evaluating the quasi-time-dependent system on t = tn+1 simply gives the relation

Sθχθ
n+1 = Mθχχ̇

n+1 + f̃ n+1. (3.66)

Moreover, when the time-dependent-system is also evaluated at t = tn+1 and it is assumed that matrix Mχχ is
invertible, it holds that

χ̇n+1 = M−1
χχSχχχ

n+1 +M−1
χχSχθθ

n+1. (3.67)

Combining equations (3.66) and (3.67) results in

Sθχθ
n+1 = MθχM−1

χχSχχχ
n+1 +MθχM−1

χχSχθθ
n+1 + f̃ n+1 (3.68)

The Equalities (3.65) and (3.68) can be written as one numerical scheme:

(
Mχχ−∆tSχχ −∆tSχθ
MθχM−1

χχSχχ MθχM−1
χχSχθ−Sθχ

)(
χn+1

θn+1

)
=

(
Mχχ ∅
∅ ∅

)(
χn

θn

)
+

(
0

− f̃ n+1

)
. (3.69)

It is of interest whether the system approaches the stationary solution, which was found by analysing the
stationary system. Hence Fzz (t ), the perpendicular stress exerted on the surface, is chosen to be a trigono-
metric function that stays constant once it reaches its maximum absolute value, i.e. Hence Fzz (t ) needs to be
equal to a constant, say Fzz , for t →∞, but also needs to satisfy the initial conditions. The wave stress is thus
chosen to be:

F (t ) =
{
−Fzz (1−cos(t )) for t <π
−2Fzz for t ≥π (3.70)

where the value of Fzz is chosen as Fzz = 104. Note that F (t ) ≤ 0 for t ≥ 0, since the wave is exerting a down-
ward stress.

The three variables εvol, P and uz are plotted at three times: the starting time, at a time where the wave has
just commenced, t = 0.5, and a moment where the stress has already reached its peak, t = 3.0. The number
of integration points is chosen to be n = 1000 and the time step size is chosen as ∆t = 0.01.
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(a) εvol at different times

(b) P at different times
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(c) uz at different times

Figure 3.1: The variables at times t = 0, t = 0.5 and t = 3.0.

The numerical results, depicted in Figure 3.1, show that once again the pore water hardly carries any
load, even when the wave stress just starts exerting its stress on the soil. As a matter of fact it remains zero
throughout the whole simulation, which is why only one line can be seen. This does not agree with findings
from wave overtopping simulations. It can however be seen that the numerical solution indeed reaches the
stationary solution. Thus it is likely that there is not something wrong with the solving of the system, but
probably with the system itself, since it fails to capture reality in a proper manner. It is important to note that
imposing a inhomogeneous Dirichlet boundary condition for P at z = −Z yields a similar unrealistic result.
In the next section, an attempt is made to solve the momentum equations for both the soil particles and the
pore water directly, without applying the divergence- and curl operator first.



4
Balance of volume

A logical approach for solving the momentum Equations (2.137) and (2.139) is assuming that the volume
balance (2.18) holds and deriving a direct relation between uz and Vz . Since the one-dimensional volume
balance states that

∂

∂z

{
p

[
Vz − ∂uz

∂t

]}
+ ∂

∂z

∂uz

∂t
= 0, (4.1)

integration with respect to z gives

pVz −p
∂uz

∂t
+ ∂uz

∂t
= A(t ), (4.2)

⇒Vz = A(t )

p
− 1−p

p

∂uz

∂t
. (4.3)

where A(t ) is constant in z, but can depend on time. However, since we have homogeneous Dirichlet bound-
ary conditions for uz and vz on z =−Z , it should hold that

∂uz

∂t
(t ,−Z ) = 0, (4.4)

Vz (t ,−Z ) = 0. (4.5)

When evaluating Equation (4.3) on z =−Z and for an arbitrary time, this means that

Vz (t ,−Z ) = A(t )

p
− 1−p

p

∂uz

∂t
(t ,−Z ), (4.6)

⇒ 0 = A(t )

p
− 1−p

p
·0, (4.7)

which can only hold when A(t ) = 0 for all t ≥ 0. The direct relation between uz and Vz is hence

Vz (t , z) =−1−p

p

∂uz

∂t
(t , z). (4.8)

By substituting this expression, a new system can be formulated, only using variables uz and P . Note that
this can only be done in one dimension, since in multiple dimensions the volume balance does not provide
enough information for a direct, useful substitution.

33
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4.1. Resulting system from substitution
Substituting Relation (4.8) in the momentum Equations (2.137) and (2.139) gives the new system

(1−p)ρp
∂2uz

∂t 2 − (α+β)
∂2uz

∂z2 + γw

Ks

∂uz

∂t
= 0, (4.9)

−(1−p)ρw
∂2uz

∂t 2 − dP

d z
− γw

Ks

∂uz

∂t
= 0, (4.10)

with Dirichlet boundary conditions

uz (t ,−Z ) = 0, (4.11)

P (t ,−Z ) =−ρw pg Z . (4.12)

On z = 0 we have that

−P − (α+β)
∂uz

∂z
= Fzz (t ), (4.13)

where Fzz (t ) is the perpendicular stress exerted on the surface. For the test case, the same Function (3.70) is
used. In the next sections, two different approaches will be analysed to attempt to solve the resulting system
analytically.

4.2. Analytical solution 1
An analytical solution can be found by carrying out a set of steps, as will be done in the following subsections.
However, some notes regarding boundary- and initial conditions will be made.

4.2.1. Assuming P (t , z) to be known
In order to analytically solve this, we first assume P (t , z) to be a known function, which enables the solving of
u(t , z) in terms of P (t , z) and Fzz (t , z). Subsequently an expression for P (t , z) will be found, using the second
partial differential equation. Hence on boundary z = 0, we have boundary condition

(α+β)
∂uz

∂z
(t ,0) = P (t ,0)+Fzz (t ). (4.14)

Lastly, we should consider the initial conditions, which are given by

u(0, z) = 0, (4.15)

∂uz

∂t
(0, z) = 0. (4.16)

In order to solve this system, the quasi-stationary problem needs to be solved first.

4.2.2. Quasi-stationary problem
The quasi-stationary problem is given by:

−(α+β)
∂2uS

z

∂z2 = 0, (4.17)

with uS
z = uS

z (t , z) for t ≥ 0,−Z ≤ z ≤ 0 subject to

uS
z (t ,−Z ) = 0, (4.18)

(α+β)
∂uS

z

∂z
(t ,0) = P (t ,0)+Fzz (t ). (4.19)
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The solution of this problem is linear in z and given by

uS
z (t , z) = P (t ,0)+Fzz (t )

α+β (z +Z ). (4.20)

The next step is to formulate the transient problem.

4.2.3. Transient problem
We introduce:

uz (t , z) = uS
z (t , z)+uT

z (t , z), (4.21)

which results in

(1−p)ρp
∂2uT

z

∂t 2 + γw

Ks

∂uT
z

∂t
− (α+β)

∂2uT
z

∂z2 =−(1−p)ρp
∂2uS

z

∂t 2 − γw

Ks

∂uS
z

∂t
, (4.22)

and conditions

uT
z (0, z) =−uS

z (0, z), (4.23)

=−P (0, z)+Fzz (0)

α+β (z +Z ), (4.24)

= 0, (4.25)

∂uT
z (0, z)

∂t
=−uS

z

∂t
(0, z), (4.26)

=−
P (0,z)
∂t +F ′

zz (0)

α+β (z +Z ), (4.27)

= 0, (4.28)

uT
z (t ,−Z ) = 0, (4.29)

uT
z (t ,0) = 0. (4.30)

Since it is expected that the shape of the transient solution and the shape of the homogeneous transient
solution are the same, the homogeneous transient problem will be analysed.

4.2.4. Homogeneous transient problem
The homogeneous transient problem is given by

(1−p)ρp
∂2uHT

z

∂t 2 + γw

Ks

∂uHT
z

∂t
− (α+β)

∂2uHT
z

∂z2 = 0, (4.31)

with conditions

uHT
z (0, z) = 0, (4.32)

∂uHT
z (0, z)

∂t
= 0, (4.33)

uHT
z (t ,−Z ) = 0, (4.34)

uHT
z (t ,0) = 0 (4.35)

An attempt will be made to analytically solve this system by using separation of variables.
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4.2.5. Separation of variables
The assumption is made that uHT

z can be expressed as a multiplication of functions that depend on only one
variable, i.e.

uHT
z = Z1(z)T1(t ). (4.36)

These expressions are substituted in the boundary conditions.

Boundary conditions

Substitution in the boundary conditions gives

Z ′
1(0)T1(t ) = 0, (4.37)

Z1(−Z )T1(t ) = 0, (4.38)

for t ≥ 0. Since we are not interested in trivial solutions, it has to hold that

Z ′
1(0) = 0, (4.39)

Z1(−Z ) = 0. (4.40)

The separation of variables will now be applied to the momentum equation of the soil particles.

4.2.6. Momentum equation soil
Substitution of Expression (4.103) in the momentum Equation (4.9) for the soil particles gives

(1−p)ρp Z1(z)T1(t )′′− (α+β)Z ′′
1 (z)T1(t )+ γw

Ks
Z1(z)T1(t )′ = 0. (4.41)

Dividing this equation by Z1(z)T1(t ) gives

(1−p)ρp
T1(t )′′

T1(t )
− (α+β)

Z ′′
1 (z)

Z1(z)
+ γw

Ks

T1(t )′

T1(t )
= 0. (4.42)

For this to hold, there should be a constant, say λ ∈R, such that

(1−p)ρp
T1(t )′′

T1(t )
+ γw

Ks

T1(t )′

T1(t )
=−λ, (4.43)

−(α+β)
Z ′′

1 (z)

Z1(z)
=λ, (4.44)

which is equivalent to saying

(1−p)ρp T1(t )′′+ γw

Ks
T1(t )′+λT1(t ) = 0, (4.45)

−(α+β)Z ′′
1 (z)−λZ1(z) = 0. (4.46)

The differential equation for Z1(z) will be analysed, where a distinction is made between three cases: λ = 0,
λ=µ2 and λ=−µ2 with µ> 0.

Case 1: λ= 0

The ordinary differential equation reduces to:

Z ′′
1 (z) = 0, (4.47)

which has the general solution

Z1(z) =C1z +C2, (4.48)

where C1,C2 ∈ R. However, the only values that satisfy the boundary Conditions (4.104) and (4.105) for Z1(z)
are C1 =C2 = 0. This would mean that uHT

z T (t , z) ≡ 0, the trivial solution.
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Case 2: λ=−µ2

The general solution for the differential equation is

Z1(z) =C3e
µzp
α+β +C4e

− µzp
α+β (4.49)

with C3,C4 ∈R. The boundary conditions give the relations

C3 −C4 = 0, (4.50)

C3e
− µZp

α+β +C4e
µZp
α+β = 0, (4.51)

which can only hold for C3 =C4 = 0 and hence this case does not yield a non-trivial solution.

Case 3: λ=µ2

The general solution for the differential equation is

Z1(z) =C5 cos

(
µz√
α+β

)
+C6 sin

(
µz√
α+β

)
(4.52)

with C5,C6 ∈R. The boundary conditions give that

C6 = 0, (4.53)

C5 cos

(
−µZ√
α+β

)
= 0. (4.54)

Since for a non-trivial solution it is required that C5 6= 0, it has to hold that

cos

(
−µZ√
α+β

)
= 0, (4.55)

which is the case for

−µZ√
α+β

= π

2
+kπ, (4.56)

⇒µk = π
√
α+β

2Z
+k

π
√
α+β
Z

, (4.57)

where k ∈N0. Hence the solution of the homogeneous transient problem is of the form

uHT
z (t , z) =

∞∑
k=0

T H
k (t )cos

(( π
2Z

+k
π

Z

)
z
)

, (4.58)

where functions T H
k (t ) are yet to be determined. However, these functions are not important, since only the

form of function uHT
z (t , z) will be used, not the actual solution.

4.2.7. Solution of transient problem
The Ansatz is used that the transient solution should have the same form as uHT

z , giving

uT
z (t , z) =

∞∑
k=0

Tk (t )cos
(( π

2Z
+k

π

Z

)
z
)

(4.59)

Substitution in the Equations (4.89) gives

∞∑
k=0

(
ρp (1−p)T ′′

k (t )+ γw

Ks
T ′

k (t )+ (α+β)

(
π+2kπ

2Z

)2

Tk (t )

)
cos

(
π+2kπ

2Z
z

)
= h(t , z), (4.60)
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where h(t , z) is the notation for the right hand side of the transient problem, i.e.

h(t , z) =−(1−p)ρp
∂2uS

z

∂t 2 − γw

Ks

∂uS
z

∂t
. (4.61)

Note that the cosine functions are orthogonal. Furthermore, it holds that∫ 0

−Z
cos2

(
π+2kπ

2Z
z

)2

d z = Z

2
, (4.62)

for all k ∈N0. Hence, multiplying Equation (4.127) by cos
(
π+2lπ

2Z z
)

and integrating over z from z =−Z to z = 0,

gives that

Z

2

(
ρp (1−p)T ′′

k (t )+ γw

Ks
T ′

k (t )+ (α+β)

(
π+2kπ

2Z

)2

Tk (t )

)
=

∫ 0

−Z
h(t , z)cos

(
π+2kπ

2Z
z

)
d z, (4.63)

for k ∈N0. For convenience we now define

D1 = ρp (1−p), (4.64)

D2 = γw

Ks
, (4.65)

D3,k = (α+β)

(
π+2kπ

2Z

)2

, (4.66)

hk (t ) = 2

Z

∫ 0

−Z
h(t , z)cos

(
π+2kπ

2Z
z

)
d z. (4.67)

Using this short notation, the resulting ordinary differential equation can be written as

D1T ′′
k (t )+D2T ′

k (t )+D3,k Tk (t ) = hk (t ), (4.68)

Tk (0) = 0, (4.69)

T ′
k (0) = 0. (4.70)

The determinant of the characteristic equation is given by

Dk = D2
2 −4D1D3,k . (4.71)

Three distinct cases should be considered: D < 0, D = 0 and D > 0.

Case 1: Dk < 0

For Dk < 0 the solution for Tk (t ) is given by

Tk (t ) =− 2√−Dk

∫ t

0
hk (t̃ )sin

(√−Dk (t̃ − t )

2D1

)
e

D2(t̃−t )
2D1 d t̃ . (4.72)

Case 2: Dk = 0

For Dk = 0 the solution for Tk (t ) is given by

Tk (t ) =− 1

A

∫ t

0
hk (t̃ )(t̃ − t )e

D2(t̃−t )
2D1 d t̃ . (4.73)

Case 3: Dk > 0

For Dk > 0 the solution for Tk (t ) is given by

Tk (t ) =− 2√
Dk

∫ t

0
hk (t̃ )sinh

(√
Dk (t̃ − t )

2D1

)
e

D2(t̃−t )
2D1 d t̃ . (4.74)

Taking this altogether, the solution for the system can be formulated.



4.3. Analytical solution 2 39

4.2.8. Solution
In conclusion, the solution of the system can be written as

uz (t , z) = P (t , z)+Fzz (t )

α+β (z +Z )+
∞∑

k=0
Tk (t )cos

(( π
2Z

+k
π

Z

)
z
)

, (4.75)

where Tk (t ) are given by Expressions (4.72), (4.73) or (4.74), depending on the value of Dk .

4.2.9. Resulting partial differential equation
When Expression (4.75) for uz (t , z) is substituted in the partial differential Equation (4.10), it results in a par-
tial differential equation for P (t , z), given by:

− (1−p)ρw

 ∂2P (t ,z)
∂t 2 +F ′′

zz (t )

α+β (z +Z )+
∞∑

k=0
T ′′

k (t )cos
(( π

2Z
+k

π

Z

)
z
) (4.76)

− ∂P

∂z
− γw

Ks

[
∂P (t ,z)
∂t +F ′

zz (t )

α+β (z +Z )+
∞∑

k=0
T ′

k (t )cos
(( π

2Z
+k

π

Z

)
z
)]

= 0, (4.77)

or equivalently

− (1−p)ρw

α+β
∂2P (t , z)

∂t 2 (z +Z )− γw

Ks (α+β)

∂P (t , z)

∂t
(z +Z )− ∂P

∂z
(4.78)

= (1−p)ρw

α+β F ′′
zz (t )(z +Z )+ (1−p)ρw

∞∑
k=0

T ′′
k (t )cos

(( π
2Z

+k
π

Z

)
z
)
+ γw

Ks (α+β)
F ′

zz (t )(z +Z )+ γw

Ks

∞∑
k=0

T ′
k (t )cos

(( π
2Z

+k
π

Z

)
z
)

.

(4.79)

However, since the functions Tk (t ) explicitly depend on function P (t , z) as well, it is not clear how this
partial differential equation should be solved. Hence, another analytical approach has also been attempted,
which will be described in the next section.

4.3. Analytical solution 2
In this section, similar steps will be carried out as done before. However, some adaptations to the boundary
conditions are made with the hope of finding an analytically solvable system.

4.3.1. Rewriting the boundary condition
Note that by introducing a distribution function 0 ≤ ξ(t ) ≤ 1, solely depending on time, we can write this
boundary condition into two separate boundary conditions:

−P = ξ(t )Fzz (t ), (4.80)

(α+β)
∂uz

∂z
= (1−ξ(t ))Fzz (t ). (4.81)

This ξ(t ) function comes a bit out of the blue, but a formal mathematical reasoning will be given in Chapter 5.
The function ξ(t ) represents the fraction of the force being carried by the pore water, whereas the soil particles
carry fraction 1−ξ(t ). Again, the initial conditions are given by

u(0, z) = 0, (4.82)

∂uz

∂t
(0, z) = 0. (4.83)

In order to solve this system, the quasi-stationary problem needs to be solved first.
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4.3.2. Quasi-stationary problem
The quasi-stationary problem is given by:

−(α+β)
∂2uS

z

∂z2 = 0, (4.84)

with uS
z = uS

z (t , z) for t > 0,−Z < z < 0 subject to

uS
z (t ,−Z ) = 0, (4.85)

(α+β)
∂uS

z

∂z
(t ,0) = ξ(t )Fzz (t ). (4.86)

The solution of the quasi-stationary problem is hence given by

uS
z (t , z) = ξ(t )Fzz (t )

α+β (z +Z ). (4.87)

The next step is stating the transient problem.

4.3.3. Transient problem
By introducing

uz (t , z) = uS
z (t , z)+uT

z (t , z), (4.88)

we have that

(1−p)ρp
∂2uT

z

∂t 2 + γw

Ks

∂uT
z

∂t
− (α+β)

∂2uT
z

∂z2 =−(1−p)ρp
∂2uS

z

∂t 2 − γw

Ks

∂uS
z

∂t
, (4.89)

with conditions

uT
z (0, z) =−uS

z (0, z), (4.90)

=−ξ(0)Fzz (0)

α+β (z +Z ), (4.91)

= 0, (4.92)

∂uT
z (0, z)

∂t
=−uS

z

∂t
(0, z), (4.93)

=−ξ
′(0)Fzz (0)

α+β (z +Z )− ξ(0)F ′
zz (0)

α+β (z +Z ), (4.94)

= 0, (4.95)

uT
z (t ,−Z ) = 0, (4.96)

uT
z (t ,0) = 0. (4.97)

Since it is expected that the shape of the transient solution and the shape of the homogeneous transient
solution are the same, the homogeneous transient problem will be analysed.

4.3.4. Homogeneous transient problem
The homogeneous transient problem is given by

(1−p)ρp
∂2uHT

z

∂t 2 + γw

Ks

∂uHT
z

∂t
− (α+β)

∂2uHT
z

∂z2 = 0, (4.98)

with conditions
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uHT
z (0, z) = 0, (4.99)

∂uHT
z (0, z)

∂t
= 0, (4.100)

uHT
z (t ,−Z ) = 0, (4.101)

uHT
z (t ,0) = 0 (4.102)

An attempt will be made to analytically solve this system by using separation of variables.

4.3.5. Separation of variables
The assumption is made that uHT

z can be expressed using functions depending on only one variable, i.e.

uHT
z = Z1(z)T1(t ). (4.103)

These expressions are substituted in the boundary conditions.

Boundary conditions

Substitution in the boundary conditions gives

Z ′
1(0)T1(t ) = 0, (4.104)

Z1(−Z )T1(t ) = 0, (4.105)

for t ≥ 0. Since we are not interested in trivial solutions, it has to hold that

Z ′
1(0) = 0, (4.106)

Z1(−Z ) = 0. (4.107)

The separation of variables will now be applied to the momentum equation of the soil particles.

4.3.6. Momentum equation soil
Substitution in the momentum Equation (4.9) for the soil particles gives

(1−p)ρp Z1(z)T1(t )′′− (α+β)Z ′′
1 (z)T1(t )+ γw

Ks
Z1(z)T1(t )′ = 0. (4.108)

Dividing this equation by Z1(z)T1(t ) gives

(1−p)ρp
T1(t )′′

T1(t )
− (α+β)

Z ′′
1 (z)

Z1(z)
+ γw

Ks

T1(t )′

T1(t )
= 0. (4.109)

For this to hold, there should be a constant, say λ ∈R, such that

(1−p)ρp
T1(t )′′

T1(t )
+ γw

Ks

T1(t )′

T1(t )
=−λ, (4.110)

−(α+β)
Z ′′

1 (z)

Z1(z)
=λ, (4.111)

which is equivalent to saying

(1−p)ρp T1(t )′′+ γw

Ks
T1(t )′+λT1(t ) = 0, (4.112)

−(α+β)Z ′′
1 (z)−λZ1(z) = 0. (4.113)

The differential equation for Z1(z) will be analysed, where a distinction is made between three cases: λ = 0,
λ=µ2 and λ=−µ2 with µ> 0.
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Case 1: λ= 0

The ordinary differential equation reduces to:

Z ′′
1 (z) = 0, (4.114)

which has the general solution

Z1(z) =C1z +C2, (4.115)

where C1,C2 ∈ R. However, the only values that satisfy the boundary Conditions (4.104) and (4.105) for Z1(z)
are C1 =C2 = 0. This would mean that uHT

z T (t , z) ≡ 0, the trivial solution.

Case 2: λ=−µ2

The general solution for the differential equation is

Z1(z) =C3e
µzp
α+β +C4e

− µzp
α+β (4.116)

with C3,C4 ∈R. The boundary conditions give the relations

C3 −C4 = 0, (4.117)

C3e
− µZp

α+β +C4e
µZp
α+β = 0, (4.118)

which can only hold for C3 =C4 = 0 and hence does not yield a non-trivial solution.

Case 3: λ=µ2

The general solution for the differential equation is

Z1(z) =C5 cos

(
µz√
α+β

)
+C6 sin

(
µz√
α+β

)
(4.119)

with C5,C6 ∈R. The boundary conditions give that

C6 = 0, (4.120)

C5 cos

(
−µZ√
α+β

)
= 0. (4.121)

Since for a non-trivial solution it is required that C5 6= 0, it has to hold that

cos

(
−µZ√
α+β

)
= 0, (4.122)

which is the case for

−µZ√
α+β

= π

2
+kπ, (4.123)

⇒µk = π
√
α+β

2Z
+k

π
√
α+β
Z

, (4.124)

for k ∈N0. Hence the solution of the homogeneous transient problem is of the form

uHT
z (t , z) =

∞∑
k=0

T H
k (t )cos

(( π
2Z

+k
π

Z

)
z
)

. (4.125)

The form of the solution of the homogeneous transient problem will now be used to solve the transient prob-
lem.



4.3. Analytical solution 2 43

4.3.7. Solution of transient problem
The Ansatz is used that the transient solution should have the same form as uHT

z , giving

uT
z (t , z) =

∞∑
k=0

Tk (t )cos
(( π

2Z
+k

π

Z

)
z
)

. (4.126)

Substitution in the Equations (4.89) gives

∞∑
k=0

(
ρp (1−p)T ′′

k (t )+ γw

Ks
T ′

k (t )+ (α+β)

(
π+2kπ

2Z

)2

Tk (t )

)
cos

(
π+2kπ

2Z
z

)
= h(t , z), (4.127)

where h(t , z) is the notation for the right hand side of the transient problem, i.e.

h(t , z) =−(1−p)ρp
∂2uS

z

∂t 2 − γw

Ks

∂uS
z

∂t
. (4.128)

Note that the cosine functions are orthogonal. Furthermore, it holds that∫ 0

−Z
cos2

(
π+2kπ

2Z
z

)2

d z = Z

2
, (4.129)

for all k ∈N0. Hence, multiplying Equation (4.127) by cos
(
π+2lπ

2Z z
)

and integrating over z from z =−Z to z = 0,

gives that

Z

2

(
ρp (1−p)T ′′

k (t )+ γw

Ks
T ′

k (t )+ (α+β)

(
π+2kπ

2Z

)2

Tk (t )

)
=

∫ 0

−Z
h(t , z)cos

(
π+2kπ

2Z
z

)
d z, (4.130)

for k ∈N0. For convenience we now define

D1 = ρp (1−p), (4.131)

D2 = γw

Ks
, (4.132)

D3,k = (α+β)

(
π+2kπ

2Z

)2

, (4.133)

hk (t ) = 2

Z

∫ 0

−Z
h(t , z)cos

(
π+2kπ

2Z
z

)
d z. (4.134)

Using this short notation, the resulting ordinary differential equation can be written as

D1T ′′
k (t )+D2T ′

k (t )+D3,k Tk (t ) = hk (t ), (4.135)

Tk (0) = 0, (4.136)

T ′
k (0) = 0. (4.137)

The determinant of the characteristic equation is given by

Dk = D2
2 −4D1D3,k . (4.138)

Three distinct cases should be considered: Dk < 0, Dk = 0 and Dk > 0.

Case 1: Dk < 0

For Dk < 0 the solution is given by

Tk (t ) =− 2√−Dk

∫ t

0
hk (t̃ )sin

(√−Dk (t̃ − t )

2D1

)
e

D2(t̃−t )
2D1 d t̃ . (4.139)
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Case 2: Dk = 0

For Dk = 0 the solution is given by

Tk (t ) =− 1

A

∫ t

0
hk (t̃ )(t̃ − t )e

D2(t̃−t )
2D1 d t̃ . (4.140)

Case 3: Dk > 0

For Dk > 0 the solution is given by

Tk (t ) =− 2√
Dk

∫ t

0
hk (t̃ )sinh

(√
Dk (t̃ − t )

2D1

)
e

D2(t̃−t )
2D1 d t̃ . (4.141)

Taking this altogether, the solution for the system can be formulated.

4.3.8. Solution
In conclusion, the solution for uz (t , z) can be written as

uz (t , z) = ξ(t )Fzz (t )

α+β (z +Z )+
∞∑

k=0
Tk (t )cos

(( π
2Z

+k
π

Z

)
z
)

, (4.142)

where Tk is given by Expressions (4.139), (4.140) or (4.141), depending on the value of Dk . The solution for
uz (t , z) will now be substituted in the momentum equation for the pore water.

4.4. Solution of P (t , z)
Substituting Solution (4.142) in partial differential Equation (4.10) gives the partial differential equation:

− (1−p)ρw

(
ξ′′(t )Fzz (t )

α+β (z +Z )+ ξ′(t )F ′
zz (t )

α+β (z +Z )+ ξ′(t )F ′
zz (t )

α+β (z +Z )+ ξ(t )F ′′
zz (t )

α+β (z +Z )+
∞∑

k=0
T ′′

k (t )cos
(( π

2Z
+k

π

Z

)
z
))

(4.143)

− ∂P

∂z
− γw

Ks

(
ξ′(t )Fzz (t )

α+β (z +Z )+ ξ(t )F ′
zz (t )

α+β (z +Z )+
∞∑

k=0
T ′

k (t )cos
(( π

2Z
+k

π

Z

)
z
))

= 0, (4.144)

which can equivalently be written as

∂P

∂z
=

(
−(1−p)ρw

ξ′′(t )Fzz (t )+2ξ′(t )F ′
zz (t )+ξ(t )F ′′

zz (t )

α+β − γw

Ks

ξ′(t )Fzz (t )+ξ(t )F ′
zz (t )

α+β
)

(z +Z ) (4.145)

−
∞∑

k=0

(
(1−p)ρw T ′′

k (t )+ γw

Ks
T ′

k (t )

)
cos

(( π
2Z

+k
π

Z

)
z
)

. (4.146)

Integrating both sides to z gives that

P (t , z) =
(
−(1−p)ρw

ξ′′(t )Fzz (t )+2ξ′(t )F ′
zz (t )+ξ(t )F ′′

zz (t )

α+β − γw

Ks

ξ′(t )Fzz (t )+ξ(t )F ′
zz (t )

α+β
)[

z2

2
+ z Z

]
(4.147)

−
∞∑

k=0

(
(1−p)ρw T ′′

k (t )+ γw

Ks
T ′

k (t )

)
2Z

(2k +1)π
sin

(
(2k +1)πz

2Z

)
+CP (t ). (4.148)

Note that P (t , z) has to satisfy

P (t ,−Z ) =−ρw pg , (4.149)

P (t ,0) =−ξ(t )Fzz (t ) (4.150)

Boundary Condition (4.150) gives that



4.5. Total solution 45

CP (t ) =−ξ(t )Fzz (t ). (4.151)

As a result, it has to hold, according to boundary Condition (4.149), that

−ρw pg =
(
(1−p)ρw

ξ′′(t )Fzz (t )+2ξ′(t )F ′
zz (t )+ξ(t )F ′′

zz (t )

α+β − γw

Ks

ξ′(t )Fzz (t )+ξ(t )F ′
zz (t )

α+β
)

Z 2

2
(4.152)

−
∞∑

k=0

(
(1−p)ρw T ′′

k (t )+ γw

Ks
T ′

k (t )

)
2Z

(2k +1)π

(
−1)k+1 −ξ(t )Fzz (t ). (4.153)

This resulting ordinary differential equation describes function ξ(t ).

4.5. Total solution
The solutions for uz and P are given by

uz (t , z) =ξ(t )Fzz (t )

α+β (z +Z )+
∞∑

k=0
Tk (t )cos

(( π
2Z

+k
π

Z

)
z
)

, (4.154)

P (t , z) =
(
−(1−p)ρw

ξ′′(t )Fzz (t )+2ξ′(t )F ′
zz (t )+ξ(t )F ′′

zz (t )

α+β − γw

Ks

ξ′(t )Fzz (t )+ξ(t )F ′
zz (t )

α+β
)[

z2

2
+ z Z

]
(4.155)

−
∞∑

k=0

(
(1−p)ρw T ′′

k (t )+ γw

Ks
T ′

k (t )

)
2Z

(2k +1)π
sin

(
(2k +1)πz

2Z

)
−ξ(t )Fzz (t ), (4.156)

where ξ(t ) is the solution of the ordinary differential Equation (4.152). However, ordinary differential Equa-
tion (4.152) is rather complicated and it is not trivial to solve this, since the functions Tk (t ) are dependent
on function ξ(t ) as well. Therefore, this analytical approach does not yield an explicit solution, just like the
analytical approach without the use of function ξ(t ). In the next section, an attempt was made to solve the
system numerically.

4.6. Numerical solution
In order to retrieve a numerical solution, a numerical system has to be found by using the standard approach
of stating a weak formulation and substituting the Galerkin approximations.

4.6.1. Numerical system
Multiplying the partial differential equations by test functions ηuz and ηP respectively and integrating from
z =−Z to z = 0 gives the weak formulation

(1−p)ρp

∫ 0

−Z
ηuz

∂2uz

∂t 2 dΩ− γw

Ks

∫ 0

−Z
ηuz

∂uz

∂t
dΩ+ (α+β)

∫ 0

−Z

∂ηuz

∂z

∂uz

∂z
dΩ− (α+β)ηuz (0)

∂u

∂z
(0) = 0, (4.157)

−(1−p)ρw

∫ 0

−Z
ηP ∂

2uz

∂t 2 dΩ+ γw

Ks

∫ 0

−Z
ηP ∂uz

∂t
dΩ−

∫ 0

−Z
ηP ∂P

∂z
dΩ= 0. (4.158)

Using boundary condition (4.13) for uz gives

(1−p)ρp

∫ 0

−Z
ηuz

∂2uz

∂t 2 dΩ− γw

Ks

∫ 0

−Z
ηuz

∂uz

∂t
dΩ+ (α+β)

∫ 0

−Z

∂ηuz

∂z

∂uz

∂z
dΩ+ηuz (0)P (0) =−ηuz (0)Fzz (t ),

(4.159)

−(1−p)ρw

∫ 0

−Z
ηP ∂

2uz

∂t 2 dΩ+ γw

Ks

∫ 0

−Z
ηP ∂uz

∂t
dΩ−

∫ 0

−Z
ηP ∂P

∂z
dΩ= 0. (4.160)

Using the Galerkin approximations
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uz =
n∑

j=1
d j (t )η j , (4.161)

P =
n∑

j=1
e j (t )η j , (4.162)

gives the following Galerkin equations:

n∑
j=1

{
d̈ j (t )(1−p)ρp

∫ 0

−Z
ηiη j dΩ− ḋ j (t )

γw

Ks

∫ 0

−Z
ηiη j dΩ+d j (t )(α+β)

∫ 0

−Z

∂ηi

∂z

∂η j

∂z
dΩ+e j (t )ηi (0)η j (0)

}
=−ηi (0)Fzz (t ),

(4.163)
n∑

j=1

{
d̈ j (t )− (1−p)ρw

∫ 0

−Z
ηiη j dΩ+ ḋ j (t )

γw

Ks

∫ 0

−Z
ηiη j dΩ−e j (t )

∫ 0

−Z
ηi
∂η j

∂z
dΩ

}
= 0,

(4.164)

for i = 1, . . . ,n. In matrix form this can be put as

Mdd d̈ (t )+Wdd ḋ (t )+Sdd d (t )+Sde e(t ) = fd (t ), (4.165)

Med d̈ (t )+Wed ḋ (t )+See e(t ) = 0. (4.166)

The element matrices are given by

M ek
dd = (1−p)ρp

∫
ek

ηiη j dΩ, (4.167)

W ek
dd =−γw

Ks

∫
ek

ηiη j dΩ, (4.168)

Sek
dd = (α+β)

∫
ek

∂ηi

∂z

∂η j

∂z
dΩ, (4.169)

M ek
ed =−(1−p)ρw

∫
ek

ηiη j dΩ, (4.170)

W ek
ed = γw

Ks

∫
ek

ηiη j dΩ, (4.171)

Sek
ee =−

∫
ek

ηi
∂η j

∂z
dΩ, (4.172)

where the element ek = [zk−1, zk ]. There is no contribution for the element vector. When the element matri-
ces are computed, using Theorem 2 of Appendix A, we have that

M ek
dd = (1−p)ρp

zk − zk−1

6
(1+δi j ), (4.173)

W ek
dd =−γw

Ks

zk − zk−1

6
(1+δi j ), (4.174)

Sek
dd = α+β

zk − zk−1
(−1+2δi j ), (4.175)

M ek
ed =−(1−p)ρw

zk − zk−1

6
(1+δi j ), (4.176)

W ek
ed = γw

Ks

zk − zk−1

6
(1+δi j ), (4.177)

Sek
ee =

1

2
(2δ j ,k−1 −1), (4.178)

The boundary element matrix is given by
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Sbek
de = ηi (0)η j (0), (4.179)

or computed

Sbek
de = 1, (4.180)

and the boundary element vector is given by

fd =−ηi (0)Fzz (t ), (4.181)

or computed
fd =−Fzz (t ). (4.182)

Similarly as before, by introducing vector ψ(t ) =
(

d
ḋ

)
, the system can equivalently be written as

Mψψψ̇(t ) = Sψψψ(t )+Sψe e(t )+ fψ(t ), (4.183)

See e(t ) = Meψψ̇(t ), (4.184)

where

Mψψ =
(

I ∅
Wdd Mdd

)
, (4.185)

Sψψ =
(

∅ I
−Sdd ∅

)
, (4.186)

Sψe =
(

∅
−Sde

)
, (4.187)

fψ(t ) =
(

0
fd (t )

)
, (4.188)

See = See , (4.189)

Meψ = (−Wed −Med
)

. (4.190)

4.6.2. Numerical integration
For the numerical integration, the same argumentation holds as stated before. Applying the Backward Euler
method gives

Mψψψ
n+1 = Mψψψ

n +∆tSψψψ
n+1 +∆tSψe en+1 +∆t f n+1

ψ . (4.191)

When Equation (4.184) is evaluated in t = tn+1, we have that

See en+1 = Meψψ̇
n+1 + fe . (4.192)

where fe contains the inhomogeneous Dirichlet boundary condition. Assuming that Mψψ is an invertible
matrix, it holds that

ψ̇n+1 = M−1
ψψSψψψ

n+1 +M−1
ψψSψe en+1 +M−1

ψψ f n+1
ψ . (4.193)

Combing Equation (4.192) and (4.193) gives

See en+1 = MeψM−1
ψψSψψψ

n+1 +MeψM−1
ψψSψe en+1 +MeψM−1

ψψ f n+1
ψ + fe . (4.194)

The Equations (4.191) and (4.194) can be written in one numerical scheme as

(
Mψψ−∆tSψψ −∆tSψe

MeψM−1
ψψSψψ MeψM−1

ψψSψe −See

)(
ψn+1

en+1

)
=

(
Mψψ ∅
∅ ∅

)(
ψn

en

)
+

(
∆t f n+1

ψ

−MeψM−1
ψψ f n+1

ψ − fe

)
. (4.195)

Solving the numerical system with n = 1000 and ∆t = 0.01 gives Figures 4.1-4.2b. It can clearly be seen that
the values of the parameters explode over time.
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(a) P at t = 0.25 (b) P at t = 2.5

Figure 4.1: P at two different times

(a) uz at t = 0.25 (b) uz at t = 2.5

Figure 4.2: uz at two different times

This system is clearly not in agreement with what happens in reality. All the methods up and till this point
have not yielded any results that seem acceptable. So far we have always assumed that there is a balance
of volume. What this means is that soil can only have a change of volume due to pore water flowing in or
out. However, even though both the soil particles and the pore water are assumed incompressible, one could
argue that the structure of the soil might induce a minimal change of volume. When soil granules move with
respect to each other, pores could either expand or shrink. The soil will still be expected to resist change of
the current configuration as much as possible, hence these volume changes will be very little. In the next
chapter, the validity of the volume balance equation will be disregarded and alternatively the volume balance
equation will be minimized by introducing a new function ξ(t ).



5
New approach with ξ(t )

By slightly adjusting some assumptions, a new model can be derived from similar expressions for the virtual
work. Instead of Equation (2.59), the assumption can be made that the distribution of the stresses in a domain
does not go proportionally with the porosity and is hence fixed, but actually varies over time. This can be
done by introducing a new variable 0 ≤ ξ(t ) ≤ 1, which denotes the fraction of the stresses being carried by
the water. This means we assume that, ∫

Ωp

. . .dΩ= (1−ξ(t ))
∫
Ω

. . .dΩ, (5.1)∫
Ωw

. . .dΩ= ξ(t )
∫
Ω

. . .dΩ. (5.2)

On a similar note, new extensions for the stress tensors can be derived.

5.1. An extension for unknown stress tensors σ̃i j and σ̃w
i j

As seen before, the extension is based on conservation of energy, i.e.∫
Θp

1

2
ε

p∗
i j σ̃i j dΘ=

∫
Θ

1

2
ε

p∗
i j σi j dΘ. (5.3)

Taking an infinitely small elementΘwe use an averaging for the integrand 1
2ε

p∗
i j σi j :

1

2
ε

p∗
i j σi j ≈ 1

|Θ|
∫
Θ

1

2
ε

p∗
i j σi j dΘ. (5.4)

Using Requirement (5.3) gives

1

2
ε

p∗
i j σi j ≈ 1

|Θ|
∫
Θp

1

2
ε

p∗
i j σ̃i j dΘ. (5.5)

The new Assumptions (5.1) and (5.2) can now be applied to the right hand side of Equation (5.5), which results
in

1

|Θ|
∫
Θp

1

2
ε

p∗
i j σ̃i j dΘ= (1−ξ(t ))

|Θ|
∫
Θ

1

2
ε

p∗
i j σ̃i j dΘ. (5.6)

Since Θ is an infinitely small domain, the assumption is made that the integrand 1
2ε

p∗
i j σ̃

p
i j is constant on this

small domain. This simplifies Equation (5.6) to

(1−ξ(t ))

|Θ|
∫
Ω

1

2
ε

p∗
i j σ̃i j = (1−ξ(t ))|Θ|

|Θ|
1

2
ε

p∗
i j σ̃i j , (5.7)

= (1−ξ(t ))
1

2
ε

p∗
i j σ̃i j . (5.8)

49
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SinceΘ is an arbitrary small region, it can be concluded that

σi j ≈ (1−ξ(t ))σ̃i j , (5.9)

on the whole domainΩ, by combining Equations (5.6) and (5.8). The same thing can be done forσw
i j , resulting

in the extension

σw
i j ≈ ξ(t )σ̃w

i j , (5.10)

on the whole domainΩ.
Following the same derivation of the virtual work as in Section 2.7, but using the Equations (5.1), (5.2),

(5.9) and (5.10), gives the following six momentum equations for soil particles and pore water respectively
(i ∈ {1,2,3}):

∂σi j

∂x j
− (1−ξ)

∂2ρp ui

∂t 2 − (1−ξ)
∂

∂x j

(
1

2
ρp

(
∂u j

∂t

)2
)
= 0, (5.11)

∂σw
i j

∂x j
−ξ∂

2ρw vi

∂t 2 −ξ ∂

∂x j

(
1

2
ρw

(
∂v j

∂t

)2
)
= 0, (5.12)

for x ∈Ω. Furthermore, it has to hold that for z =−Z :

σxz = 0, (5.13)

σy z = 0, (5.14)

σw
xz = 0, (5.15)

σw
y z = 0. (5.16)

For z = 0:

σxz = (1−ξ(t ))Fxz , (5.17)

σy z = (1−ξ(t ))Fy z , (5.18)

σzz = (1−ξ(t ))Fzz , (5.19)

σw
xz = ξ(t )Fxz , (5.20)

σw
y z = ξ(t )Fy z , (5.21)

σw
zz = ξ(t )Fzz . (5.22)

For x = 0:

σx y = 0, (5.23)

σxz = 0, (5.24)

σw
x y = 0, (5.25)

σw
xz = 0, (5.26)

For x = L:

σx y = 0, (5.27)

σxz = 0, (5.28)

σw
x y = 0, (5.29)

σw
xz = 0. (5.30)

It is important to note that using new Assumptions (5.1) and (5.2) for the estimation of the integral and old
extensions (2.77) and (2.78) of the stress tensor results in the original system, found in Section 2.7. Using the
old Assumptions (2.59) and (2.60) for the estimation of the integral and the new Extensions (5.9) and (5.10)
for the stress tensor results in the same system that was found in this section. In the next section, a test case
will be analysed.
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5.2. One-dimensional test case
For the one-dimensional test case, some assumptions are made. The wave stress is considered to only have
a normal component, which is again given by Function (3.70). Because of symmetry, displacements and
spatial derivatives in the x− (and y−) direction can be neglected. Disregarding the virtual work done by the
gravitational force and hence disregarding the hydrostatic pressure P , i.e. using stress tensors given by

σi i =−
(
β
∂u j

∂x j
+α∂ui

∂xi

)
, σw

i i =µ
(

2
∂2vi

∂xi∂t
− 2

3

∂2v j

∂x j∂t

)
, (5.31)

σi j |i 6= j =−α
2

(
∂ui

∂x j
+ ∂u j

∂xi

)
−µ

(
∂2vi

∂x j∂t
+ ∂2v j

∂xi∂t

)
, σw

i j |i 6= j =µ
(
∂2vi

∂x j∂t
+ ∂2v j

∂xi∂t

)
, (5.32)

Now we define Vz as

Vz = ∂vz

∂t
. (5.33)

Substituting the stress tensors and the expression for Vz in the momentum Equations (5.11) and (5.12) results
in the system

(1−ξ(t ))ρp
∂2uz

∂t 2 − (α+β)
∂2uz

∂z2 −p
γw

Ks
Vz +p

γw

Ks

∂uz

∂t
= 0, (5.34)

ξ(t )ρw
∂Vz

∂t
− 4

3
µ
∂2Vz

∂z2 +p
γw

Ks
Vz −p

γw

Ks

∂uz

∂t
= 0, (5.35)

with boundary conditions

−(α+β)
∂uz

∂z
= (1−ξ(t ))Fzz (t ), (5.36)

−4

3
µ
∂Vz

∂z
= ξ(t )Fzz (t ), (5.37)

on z = 0. On z =−Z we have that

uz = 0, (5.38)

Vz = 0. (5.39)

When Fzz (t ) = F is constant for t →∞, we expect the system to tend to a stationary solution. In the following
section, the stationary solution of the system will be found.

5.3. Stationary solution
The stationary system is given by

−(α+β)
∂2uz

∂z2 +p
γw

Ks
Vz−= 0, (5.40)

−4

3
µ
∂2Vz

∂z2 −p
γw

Ks
Vz = 0, (5.41)

with boundary conditions

−(α+β)
∂uz

∂z
= (1−ξ(t ))Fzz , (5.42)

−4

3
µ
∂Vz

∂z
= ξ(t )Fzz , (5.43)
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on z = 0 and

uz = 0, (5.44)

Vz = 0, (5.45)

on z =−Z . Since the determinant D of the characteristic equation of Equation (5.41) is equal to D =− 16(pµγw )
3Ks

<
0, the general stationary solution for Vz , denoted by V S

z , is given by:

V S
z =C1 cos

(
1

2

√
3pγw

Ksµ
z

)
+C2 sin

(
1

2

√
3pγw

Ksµ
z

)
(5.46)

Boundary condition (5.43) gives that

C2 =−1

2

√
3Ks

µpγw
ξS F. (5.47)

Boundary condition (5.45) gives that

C1 =−C2 tan

(
−1

2

√
3pγw

Ksµ
Z

)
, (5.48)

=−1

2

√
3Ks

µpγw
ξS F tan

(
−1

2

√
3pγw

Ksµ
Z

)
. (5.49)

Hence, we have that

V S
z = 1

2

√
3Ks

µpγw
ξS F tan

(
−1

2

√
3pγw

Ksµ
Z

)
cos

(
1

2

√
3pγw

Ksµ
z

)
− 1

2

√
3Ks

µpγw
ξS F sin

(
1

2

√
3pγw

Ksµ
z

)
(5.50)

Substituting this expression in differential equation (5.40) and integrating twice to z gives

uS
z =−2

Ks

pγw

√
µKs

3pγw
ξS F tan

(
−1

2

√
3pγw

Ksµ
Z

)
cos

(
1

2

√
3pγw

Ksµ
z

)
+2

Ks

pγw

√
µKs

3pγw
ξS F sin

(
1

2

√
3pγw

Ksµ
z

)
+C3z+C4

(5.51)
Boundary condition (5.42) gives that

C3 =−1−ξS

α+β F + Ks

pγw
ξS F, (5.52)

Dirichlet Boundary condition (5.44) gives that

C4 =2
Ks

pγw

√
µKs

3pγw
ξS F tan

(
−1

2

√
3pγw

Ksµ
Z

)
cos

(
−1

2

√
3pγw

Ksµ
Z

)
(5.53)

−2
Ks

pγw

√
µKs

3pγw
ξS F sin

(
−1

2

√
3pγw

Ksµ
Z

)
− 1−ξS

α+β F Z + Ks

pγw
ξS F Z . (5.54)

The functions uz and Vz depend on the stationary parameter ξS , which can be found by minimizing the
integral of the squared volume balance, i.e.

min
0≤ξS≤1

∫ 0

−Z

(
p

dVz

d z

)2

d z, (5.55)

where it is already used that
∂uS

z
∂t = 0. Substituting the function for V S

z gives
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min
0≤ξS≤1

∫ 0

−Z
p2

(
− 3

4µ
ξS F tan

(
−1

2

√
3pγw

Ksµ
Z

)
sin

(
1

2

√
3pγw

Ksµ
z

)
− 3

4µ
ξS F sin

(
1

2

√
3pγw

Ksµ
z

))2

d z. (5.56)

Differentiating this expression to ξS and setting it equal to zero gives

2p2ξS
∫ 0

−Z

(
3

4µ
F tan

(
−1

2

√
3pγw

Ksµ
Z

)
sin

(
1

2

√
3pγw

Ksµ
z

)
+ 3

4µ
F sin

(
1

2

√
3pγw

Ksµ
z

))2

d z = 0, (5.57)

which can only hold for ξS = 0. In other words, in the stationary situation the soil particles carry the full
exerted stress. The functions for uS

z and V S
z are hence given by

V S
z (z) = 0, (5.58)

uS
z (z) =− F

α+β (z +Z ). (5.59)

5.4. Numerical solution
For the numerical implementation, it is assumed that the parameter ξ(t ) is a known constant for every time
step. The value of ξ(t ) at an arbitrary time t = tk is found with the Golden Section method, which is explained
in Section 5.5. As always with a finite element approach, the first step is to find a weak formulation. Multiply-
ing the partial differential equations with test functions ηuz and ηVz respectively and integrating over z from
z =−Z to z = 0 gives

(1−ξ(t ))ρp

∫ 0

−Z
ηuz

∂2uz

∂t 2 d z − (α+β)
∫ 0

−Z
ηuz

∂2uz

∂z2 d z −p
γw

Ks

∫ 0

−Z
ηuz Vz d z +p

γw

Ks

∫ 0

−Z
ηuz

∂uz

∂t
d z = 0, (5.60)

ξ(t )ρw

∫ 0

−Z
ηVz

∂Vz

∂t
d z − 4

3
µ

∫ 0

−Z
ηVz

∂2Vz

∂z2 d z +p
γw

Ks

∫ 0

−Z
ηVz Vz d z −p

γw

Ks

∫ 0

−Z
ηVz

∂uz

∂t
d z = 0. (5.61)

Applying Theorem 1 of Appendix A and Boundary conditions (5.36) and (5.37) gives

(1−ξ(t ))ρp

∫ 0

−Z
ηuz

∂2uz

∂t 2 d z + (α+β)
∫ 0

−Z

∂ηuz

∂z

∂uz

∂z
d z + (1−ξ(t ))ηuz (0)Fzz (t )−p

γw

Ks

∫ 0

−Z
ηuz Vz d z +p

γw

Ks

∫ 0

−Z
ηuz

∂uz

∂t
d z = 0,

(5.62)

ξ(t )ρw

∫ 0

−Z
ηVz

∂Vz

∂t
d z + 4

3
µ

∫ 0

−Z

∂ηVz

∂z

∂Vz

∂z
d z +ξ(t )Fzz (t )ηVz (0)+p

γw

Ks

∫ 0

−Z
ηVz Vz d z −p

γw

Ks

∫ 0

−Z
ηVz

∂uz

∂t
d z = 0,

(5.63)

Substituting the Galerkin approximations

uz ≈
n∑

j=1
f j (t )η j (z), (5.64)

Vz ≈
n∑

j=1
g j (t )η j (z), (5.65)

and setting ηuz = ηi for some i ∈ {1, . . . ,n} and ηVz = ηi for some i ∈ {1, . . . ,n} gives the Galerkin equations

n∑
j=1

{
d2 f j

d t 2
(t )(1−ξ(t ))ρp

∫ 0

−Z
ηiη j d z + f j (t )(α+β)

∫ 0

−Z

∂ηi

∂z

∂η j

∂z
d z + (1−ξ(t ))ηi (0)Fzz (t )− g j (t )p

γw

Ks

∫ 0

−Z
ηiη j z d z +

d f j

d t
(t )p

γw

Ks

∫ 0

−Z
ηiη j d z

}
= 0,

(5.66)

n∑
j=1

{
ġ j (t )ξ(t )ρw

∫ 0

−Z
ηiη j d z + g j (t )

4

3
µ

∫ 0

−Z

∂ηi

∂z

∂η j

∂z
d z +ξ(t )ηi (0)Fzz (t )+ g j (t )p

γw

Ks

∫ 0

−Z
ηiη j d z −

d f j

d t
(t )p

γw

Ks

∫ 0

−Z
ηiη j d z

}
= 0.

(5.67)
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Writing this in matrix form results in

M f f f̈ (t )+W f f ḟ (t )+S f f f (t )+S f g g (t ) = f̃ f (t ), (5.68)

Wg f ḟ (t )+Wg g ġ (t )+Sg g g (t ) = f̃g (t ), (5.69)

where the element matrices are given by

M ek
f f = ρp (1−ξ(t ))

∫
ek

ηiη j d z, (5.70)

W ek
f f = p

γw

Ks

∫
ek

ηiη j d z, (5.71)

Sek
f f = (α+β)

∫
ek

∂ηi

∂z

∂η j

∂z
d z, (5.72)

Sek
f g =−p

γw

Ks

∫
ek

ηiη j d z, (5.73)

W ek
g f =−p

γw

Ks

∫
ek

ηiη j d z, (5.74)

W ek
g g = ρwξ(t )

∫
ek

ηiη j d z, (5.75)

Sek
g g = 4

3
µ

∫
ek

∂ηi

∂z

∂η j

∂z
d z +p

γw

Ks

∫
ek

ηiη j d z, (5.76)

or computed

M ek
f f = ρp (1−ξ(t ))

zk − zk−1

6
(1+δi j ), (5.77)

W ek
f f = p

γw

Ks

zk − zk−1

6
(1+δi j ), (5.78)

Sek
f f =

α+β
zk − zk−1

(−1+2δi j ), (5.79)

Sek
f g =−p

γw

Ks

zk − zk−1

6
(1+δi j ), (5.80)

W ek
g f =−p

γw

Ks

zk − zk−1

6
(1+δi j ), (5.81)

W ek
g g = ρwξ(t )

zk − zk−1

6
(1+δi j ), (5.82)

Sek
g g = 4

3
µ

1

zk − zk−1
(−1+2δi j )+p

γw

Ks

zk − zk−1

6
(1+δi j ), (5.83)

There is no contribution for the element vector and for the boundary element matrices. The boundary ele-
ment vector is given by

f̃ bek
f =−(1−ξ(t ))ηi (0)Fzz (t ), (5.84)

f̃ bek
g =−ξ(t )ηi (0)Fzz (t ), (5.85)

or computed

f̃ bek
f =−(1−ξ(t ))Fzz (t ), (5.86)

f̃ bek
g =−ξ(t )Fzz (t ). (5.87)

Introducing ζ=
 f

ḟ
g

 gives the linear system

Wζζζ̇= Sζζζ+ f̃ζ, (5.88)
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where

Wζζ =
 I ∅ ∅

W f f M f f ∅
∅ Wg f Wg g

 , (5.89)

Sζζ =
 ∅ I ∅
−S f f ∅ −S f g

∅ ∅ −Sg g

 , (5.90)

f̃ζ =
 0

f̃ f

f̃g

 . (5.91)

The Backward Euler method is applied to this linear system, for which the value of ξ(t ) is needed on time
t = tn+1. Once this value is found, the value of ζn+1 can be retrieved by solving

(Wζζ−∆tSζζ)ζn+1 =Wζζζ
n +∆t f̃ n+1

ζ (5.92)

In the following section, it will be explained how the value of ξ(t ) will be found for a given time.

5.5. Golden-section search
In order to find a value for ξ(t ) for each time step, some sort of condition is needed. Since for this new model
it is assumed that the volume balance does not hold, this equation can not be used. However, the volume
balance expression can still be utilized to find a value for ξ(t ). It can be argued that even though the volume
of the soil does not stay constant, the change of volume will be as little as possible, simply because the soil
will pose resistance to any major changes. Hence, when the volume balance is squared and integrated over
the whole domain, the value of ξ(t ) for any given time t = tn+1 can be found by minimizing this function on
t = tn+1. This can be mathematically written down as

min
0≤ξ(tn+1)≤1

∫ 0

−Z

(
∂

∂z

{
p

[
Vz − ∂uz

∂t

]}
+ ∂

∂z

(
∂uz

∂t

))2

d z, (5.93)

where uz and Vz should satisfy the system of partial differential equations and comply with the boundary-
and initial conditions. Note that this is a constrained minimization problem, which could also be solved by
introducing a penalty function or using Lagrange multipliers. However, it is chosen to use a more straight-
forward approach, making use of the Galerkin approximations. Substituting the Galerkin approximations
gives

min
0≤ξ(tn+1)≤1

n∑
j=1

∫ 0

−Z

(
pg j (t )

∂η j

∂z
+ (1−p)

d f j

d t
(t )

∂η j

∂z

)2

d z, (5.94)

⇒ min
0≤ξ(tn+1)≤1

K∑
k=1

n∑
j=1

∫
ek

(
pg j (t )

∂η j

∂z
+ (1−p)

d f j

d t
(t )

∂η j

∂z

)2

d z, (5.95)

⇒ min
0≤ξ(tn+1)≤1

K∑
k=1

∫
ek

(
− pgk−1(t )

zk − zk−1
+ pgk (t )

zk − zk−1
− (1−p) d fk−1

d t (t )(t )

zk − zk−1
+ (1−p) d fk

d t (t )(t )

zk − zk−1

)2

d z, (5.96)

⇒ min
0≤ξ(tn+1)≤1

K∑
k=1

1

zk − zk−1

[
p(gk (t )− gk−1(t ))+ (1−p)(

d fk

d t
(t )(t )− d fk−1

d t
(t )(t ))

]2

, (5.97)

For any given time t = tn+1, the value of ξ(tn+1) will be found through the means of a golden-section search.
ξ(tn+1) needs to be narrowed down in an efficient way. The golden-section search does exactly this, as will be
explained with Figure 5.1. The initial triplet is {x1, x2, x3}. Note that in our case, x1 = 0 and x3 = 1. The interval
widths always have the same ratio, given by 2−φ : 2φ−3 : 2−φ, where φ is the golden ratio. The fourth point
is chosen to be x4 = x1 + (x3 − x2). For all these points, the function value is computed of the function that
needs to be minimized. When the function value in point x2, denoted by f2 is smaller than the function value
in point x4, denoted by f4a , the new triplet will be chosen as {x1, x2, x4}. When the function value in point
x2, denoted by f2 is bigger than the function value in point x4, denoted by f4b , the new triplet will be chosen
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as {x2, x4, x3}. With the new triplet the same procedure will be carried out, until the interval is sufficiently
small. For every time step this golden-section search is carried out. Implementing this yields some numerical
results, that will be discussed in Section 5.7. However, before the numerical results are obtained it will be
discussed what is expected of the solution.

Figure 5.1: Diagram of Golden-Section search [21].

5.6. Expectations

As it has been mentioned several times in this thesis, several overtopping failure simulations have shown that
the wave stress is initially being carried by the pore water, or at least for a major part. After some time this
fraction decreases and the soil particles take over. When a load is being exerted for a larger amount of time,
the soil particles completely take over the carrying of the load. This last phenomenon is also substantiated
by the analytical stationary solution, in which ξ(t ) = 0 for all t > T , for some T > 0. It is however important
to realise what the physical explanation is of this occurrence and how the solutions are expected to behave.
The soil can be seen as a spring, where the soil particles are being compressed by an exerted stress. The pore
water serves as a damper in the soil matrix. Following this reasoning, it is logical that in a stationary situation
in which the soil particles are compressed as far as the stress enforces, the soil matrix as a whole does not
move anymore and as a result there are no damping terms and velocities of both water and soil present. But
what happens exactly when the wave initially hits the soil?

At the moment the wave hits the domain, the soil matrix wants to be compressed. However, the time
derivative of the compression is limited by the pore water pressure in the soil. To relief the soil of this pres-
sure, pore water needs to flow out. When pressure is relieved, the effective stresses in the soil increase. As a
consequence, both the soil particles and the pore water are moving with a negative-, hence downward veloc-
ity. Since the soil matrix as a whole is moving with a negative velocity, the pore water will have an absolute
negative velocity, but a relative positive velocity with respect to the soil particles. For the function ξ(t ), this
means that ξ(t ) will have a peak close to t = 0, since the pore water is pushed downwards by the wave. After a
while, when the pore water pressure has increased, the value of ξ(t ) will become smaller, since the pore water
wants to escape the soil. When even more time has passed, ξ(t ) will tend to zero as the stationary solution
will be reached. In the next section, the numerical results will be put to the test.
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5.7. Numerical results
Three different scenarios are analysed, that only differ by the value of the calibration constant Ks , which
is dependent on the type of the soil. It is expected that for lower values of this calibration constant, it will
take longer to reach the stationary solution. The three different values of Ks are Ks = 10−4, Ks = 5 ·10−5 and
Ks = 10−5. Furthermore, three different time step sizes are chosen: ∆t = 0.01,∆t = 0.001 and ∆t = 0.0001. In
every scenario, the number of integration points is n = 100. First the results will be given for time step size
∆t = 0.01.

5.7.1. Numerical results for∆t = 0.01
For ∆t = 0.01 and Ks = 10−4, the numerical results are given in Figures 5.2 and 5.3a.
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(a) uz over time

(b) Vz over time

Figure 5.2: Solutions of uz and Vz for different times with Ks = 10−4 and ∆t = 0.01.
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(a) Value of ξ(t ) over time with Ks = 10−4 and ∆t = 0.01. (b) Value of ξ(t ) over time with Ks = 5 ·10−5 and ∆t = 0.01.

(c) Value of ξ(t ) over time with Ks = 10−5 and ∆t = 0.01.

Figure 5.3: Value of ξ(t ) over time with ∆t = 0.01 and different values for Ks

It can be seen that the solutions of uz and Vz tend to the stationary solution that was described in Section
5.3. Furthermore, the value of ξ(t ) initially is above 0, but tends to zero over time. This is also something
that was expected, since the pore water initially carries more load than the soil particles, but this shifts once
the load is applied over a longer period of time. However, the peak value of ξ(t ) is still very low, around 0.06.
This means that the pore water only carries 6% of the load on its peak, which is not very little. Nevertheless,
this value increases once the resolution of the solution is higher, as can be seen in Sections 5.7.2 and 5.7.3.
When the value of Ks is decreased to Ks = 5 ·10−5, the solutions of uz and Vz for the given times are not visibly
different, hence only Figure 5.3b is given as a result. Decreasing the value even further to Ks = 10−5 gives
Figure 5.3c.

As stated before, decreasing the value of Ks results in very similar numerical results for uz and Vz for the
given times. However, locally there could be differences, induced by the different functions for ξ(t ), depicted
in Figures 5.3a, 5.3b and 5.3c. These different functions of ξ(t ) mostly differ close to t = 0, the moment where
the stress starts being exerted. It is however important to note that, since Backward Euler is used with time
step size ∆t = 0.01, these differences could occur due to numerical errors. In the next section, the time step
size is made ten times smaller.

5.7.2. Numerical results for∆t = 0.001
For this smaller time step size, the functions uz (z, t ) and Vz (z, t ) for the given times remain basically un-
changed with respect to the ones found with time step size∆t = 0.01. Hence, only the results for function ξ(t )
will be given, depicted in Figures 5.4a, 5.4b and 5.4c.
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(a) Value of ξ(t ) over time with Ks = 10−4 and ∆t = 0.001. (b) Value of ξ(t ) over time with Ks = 5 ·10−5 and ∆t = 0.001.

(c) Value of ξ(t ) over time with Ks = 10−5 and ∆t = 0.001.

Figure 5.4: Value of ξ(t ) over time with ∆t = 0.001 and different values for Ks

The functions for ξ(t ) seem to be a bit smoother, which could be due to reduced numerical errors. Also
note that the peak values of the ξ(t ) functions are higher. The Figures 5.4b and 5.4c nevertheless still show
some strange oscillations. To ensure that this is because of the chosen numerical scheme, the time step will
be made smaller one more time.

5.7.3. Numerical results for∆t = 0.0001

Again, even for this small time step size, the functions uz (z, t ) and Vz (z, t ) remain approximately the same.
Hence, only the results for function ξ(t ) will be given, depicted in Figures 5.5a, 5.5b and 5.5c. It can clearly be
seen that no strange oscillations occur anymore with this higher resolution. To illustrate this observation in
one view, the ξ-functions corresponding to Ks = 10−5 have been depicted in one figure, Figure 5.6. Moreover,
the peak values of ξ(t ) for the different values of Ks are all located around 0.5, which is a value that physically
makes sense, since initially the pore water and soil particles would contribute more or less equally. The only
major difference that can be seen is that the smaller Ks , the more time it takes for ξ(t ) to be close to zero. This
is something that was expected as well, since with a smaller Ks , the soil poses more resistance to deformation
and hence the whole process is slowed down. With these results with a higher resolution, our hypotheses are
confirmed, which concludes the proof of concept of this new method.
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(a) Value of ξ(t ) over time with Ks = 10−4 and ∆t = 0.0001. (b) Value of ξ(t ) over time with Ks = 5 ·10−5 and ∆t = 0.0001.

(c) Value of ξ(t ) over time with Ks = 10−5 and ∆t = 0.0001.

Figure 5.5: Value of ξ(t ) over time with ∆t = 0.0001 and different values for Ks

5.8. Extensions and remarks
As we have seen in the previous section, the new model imitates the findings in overtopping simulations:
initially the pore water plays a role in carrying the load exerted by the wave, but over time this contribution
diminishes and all that is left is a compressed domain of soil, with no pore water velocity. This was all based
on the assumption that the volume balance does not hold, but is minimized over ξ(t ). Whether this assump-
tion holds should be thoroughly analysed in soil experiments, if possible. However, the results leading from
this assumption are hopeful. Obviously the applicability of the results in practice can only be assessed by a
comparison with an overtopping simulation. Therefore a two-dimensional extension of this model is essen-
tial, since shear stresses are inherent to overtopping flow. It is important to realize that this extension could
theoretically be made straightforwardly. This can be done by relaxing some assumptions, such as imposing a
non-zero function for the frictional stresses Fxz (t ) (and Fy z (t )) exerted by the wave, not neglecting the vari-
ables in the x− (and y−) direction and not ignoring the spatial derivatives to x (and y). In order to solve the
system for the new variables, the momentum balance equations in the x- (and y-) direction need to be taken
into consideration and implemented in the linear system. Furthermore, Assumptions (5.1) and (5.2) should
hold, which is now only verified for a one-dimensional domain. When these assumptions are incorrect, thus
shear- and axial stresses are distributed in a different manner, additional equations are needed. For these ad-
ditional equations, new empirical relations are essential, which can only find their origin in soil experiments.
However, the invalidity of these assumptions is doubtful, since it is assumed that pore water and soil particles
are mixed perfectly and are seen as loose particles in the domain, not having interactive mechanisms that
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(a) Value of ξ(t ) over time with Ks = 10−5 and ∆t = 0.01. (b) Value of ξ(t ) over time with Ks = 10−5 and ∆t = 0.001.

(c) Value of ξ(t ) over time with Ks = 10−5 and ∆t = 0.0001.

Figure 5.6: Value of ξ(t ) over time with Ks = 10−5 and different time step sizes

strengthen the soil in either axial or shear direction.
In the case that this model would be falsified in a two- or three-dimensional setting, a remaining possi-

bility could be to not differentiate between soil particles and pore water, but as an alternative define a stress
tensor that is valid for the soil matrix as a whole. A candidate could be a weighted average of the stress ten-
sors of soil particles and pore water, where wi = ui = vi , where wi is the displacement of the soil matrix in
xi -direction.



6
Conclusion and discussion

The aim of this thesis has been to provide a mathematical framework that describes the physics in a flood
embankment in a two-dimensional setting. Nowadays decisions are usually based on overtopping simula-
tions, but these simulations are expensive, only test one specific kind of wave stress and one specific type
of soil. There is a mathematical status quo approach [5], based on a porous seabed, which can be used to
describe the dynamic pressure in levees. However, the outcome of this method does not match the findings
in overtopping simulations. This difference is explained by the questionable assumption that the pore wa-
ter is considered to be compressible. Furthermore it makes use of the assumption that the stresses resulting
from waves are solely being absorbed by the pore water. Physically it makes more sense that these stresses
are endured by both the soil particles and the pore water. In order to retrieve a more accurate model for the
computation of the water pressure, these assumptions were abandoned in this thesis.

In Chapter 2 a mathematical framework was derived by applying the curl- and divergence operators to
the momentum balance equations of the pore water and soil particles and assuming a balance of volume.
This system of equations was solved with the use of finite elements, which was described in the antecedent
literature research [11]. However, the numerical approach did not yield any results. After a short analysis of
a one-dimensional simplification, carried out in Chapter 3, the stationary version of the system turned out
to be ill-posed, with an infinite amount of solutions. Changing the boundary condition on the bottom of the
domain, i.e. z =−Z , resulted in numerical solutions. However these solutions did not agree with the findings
of experiments, since in these results the pore water hardly contributed to the absorption of the stresses.

In Chapter 4, another approach has been attempted. Instead of applying the divergence- and curl op-
erators on the momentum balance equations, the momentum balance equations are solved directly, both
analytically and numerically. In order to do this, again balance of volume has been assumed. The analytical-
and numerical solutions both exploded, hence it was clear that some assumptions had to be modified. In
Chapter 5, new extensions for the stress tensors and a new assumptions for the stress distribution have been
derived with the use of a new parameter ξ(t ), which represents the fraction of the load that is carried by the
pore water. This ξ(t ) is dependent on time, and was solved using a Golden-Section search, during every time
step. The resulting solutions for uz and Vz coincided with the analytical findings for the stationary solution.
Moreover, the function ξ(t ) became smoother for smaller time step sizes and had the expected shape: ini-
tially being relatively close to 1, but gradually tending to 0 over time. When the value Ks was decreased, it
took longer to reach the stationary solution, which also agrees with the situation in practice. The proof of
concept of this new method in a one-dimensional setting is hence concluded.

Nevertheless, there are some important aspects that need to be touched upon in further research. Of
course, this research is purely theoretical and need to be tested against actual overtopping simulations. It
could be seen that the model follows the general trend of a situation as in an experiment, but ideally the
numerical model should be able to replace overtopping simulations and hence has to be sufficiently accurate.
The final model is based on the assumption that the volume balance does not hold, but is in fact minimized.
The theoretical substantiation of this argument is solid, but should be tested by experiments. In order to
make a valid comparison, the numerical model should at least be extended to two dimensions. How this
should be done is explained in this thesis, but not yet worked out. This would work under the assumption
that axial- and shear stresses are distributed similarly. If this assumption proves to be incorrect, an additional
parameter needs to be introduced, that represents the fraction of the shear stress that is carried by the pore
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water. An additional equation needs to be found that enables solving the system for these new parameters,
comparable to the volume balance. Moreover, in an ideal situation, the assumption of negligible advective
accelerations can be withdrawn, although this is expected to make very little difference. If the model still does
not agree with the experiments, some adjustments can still be made, e.g. changing the domain from being
fixed to a moving domain. The assumption that the domain is fixed works for small displacements, but when
we are interested in stresses with a big order of magnitude and a long running time, it might pose problems
with respect to the accuracy of the results.

In the case that the model would still not agree with findings in practice, one last completely different
approach can be tried in which no distinction is made between soil particles and the pore water. In other
words, ui = vi and a stress tensor for the soil as a whole should be defined. A logical option would be to
choose for a weighted average of the stress tensors of the pore water and -soil particles. The weights in the
expression of the new tensor can serve as an answer to the question of what the dominating damping factor
is in the soil.



A
Theorems

The following theorem is a corollary of the Divergence theorem.

Theorem 1 Let F be a continuously differentiable vector field, g be a scalar function and Ω ⊂ R3 a volume in
three-dimensional space which is compact and has a piecewise smooth boundary S. Then it holds that:∫

Ω

[
F ·∇g + g (∇·F )

]
dΩ=

∮
S

g F ·ndS. (A.1)

The following theorems are by Holand et al. [4].

Theorem 2 Let e be the line segment between x1 and x2, let λ1 and λ2 be linear on e such that λi (x j ) = δi j ,
and let m1,m2 ∈ N0 = {1,2, . . .}. Then: ∫

e
λ

m1
1 λ

m2
2 dΓ= ‖x1 −x2‖m1!m2!

(1+m1 +m2)!
. (A.2)

Theorem 3 Suppose that e is a triangle with vertices x1, x2 and x3. Let λ1,λ2 and λ3 be linear functions on e
subject to λi (x j ) = δi j and let m1,m2,m3 ∈N. Then:∫

e
λ

m1
1 λ

m2
2 λ

m3
3 dΩ= |∆e |m1!m2!m3!

(2+m1 +m2 +m3)!
, (A.3)

with

|∆e | =
∣∣∣∣∣∣
1 x1 z1

1 x2 z2

1 x3 z3

∣∣∣∣∣∣= ‖(x2 −x1)× (x3 −x1)‖, (A.4)

the area of the parallelogram, which is twice the area of the triangle.
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