
Predicting the
number of students
in the Netherlands

A. Mooiman

Predicting the
number of students in the Netherlands

Master Thesis

By

Arthur Mooiman
Delft University of Technology

Under supervision of:
Prof.dr.ir. C. Vuik

Delft University of Technology

ir. W. van Til
Ministry of Education, Culture and Science

dr.ir L. Wobbes
Ministry of Education, Culture and Science

January 28, 2022

2

Acknowledgements

Last year has been one of the toughest years in my life. Partly due to the
pandemic and partly due to personal circumstances. With help of my supervisors,
colleagues and family I managed to keep going and finish my masters degree. I
want to give special thanks to my supervisors Willemijn Schramp­van Til and Kees
Vuik for their support and our weekly meetings. Furthermore, I want to give thanks
to Meindert Heres Hoogerkamp and the rest of my colleagues at the ministry of
Education, Culture and Science for our enjoyable lunches and meetings. And lastly,
special thanks to my partner for her unwavering support and encouragement.

Arthur Mooiman
Delft, 2022

3

Abstract

In this thesis the Conjugate Gradient method used in the forecasting of the
number of students in the Netherlands is investigated. The addition of international
students to the forecasting led to mathematical problem of which a solution could
not be computed. While the numerical method is working as intended, the work
presented in this thesis shows that the unsolvability lies with a linear system that
has no solution. The cause of this is attributed to the use of a selection process in
the linear system. Leading to a hugely singular matrix and a forecasting problem
without a solution. Several methods were tried to change the use of the selection
process but without any results.

Contents

Page

1 Introduction 7
1.1 Research question . 7
1.2 Thesis outline . 8

2 Movement in Education 9
2.1 Radon . 9

2.1.1 Constraints . 10
2.1.2 The minimization problem . 10

3 The forecasting problem 13
3.1 Estimate the education matrix . 14

3.1.1 Extrapolating with POLS . 14
3.2 Adding the constraints . 16
3.3 Applying weights . 16
3.4 Applying additional selection . 16

4 Calculating an optimal
education matrix 17
4.1 The steps of the algorithm . 17
4.2 The algorithms of Radon . 18

4.2.1 GBLDP . 19
4.2.2 LSSSS . 19
4.2.3 SMRCG . 19
4.2.4 WBLDP0 and WBLDPX . 19
4.2.5 GMNLS . 20
4.2.6 FNDBND . 20

5 Numerically solving the
forecasting problem 21
5.1 Conjugate Gradient . 21

5.1.1 Krylov subspace . 21
5.1.2 Standard Conjugate Gradient 22
5.1.3 Normal Equation Conjugate Gradient 24
5.1.4 CGNE . 25

4

Contents 5

5.2 Convergence of the Conjugate Gradient method 26
5.2.1 Conjugate Gradient preconditioner 26
5.2.2 CGNE preconditioner . 27

5.3 LSQR . 27
5.4 Stopping Criterion . 29
5.5 Radon’s Conjugate Gradient Algorithm 30
5.6 Difference in the preconditioner . 31

5.6.1 Calculating with updated preconditioner 31

6 Investigating a failing
forecasting case 33
6.1 Investigating the eigenvalues . 33

6.1.1 Calculating the eigenvalues of case 2019­01 34
6.1.2 Comparing case 2019­01 to case 2020­00 34

6.2 Cause of eigenvalue 0 . 35
6.2.1 LU­factorization . 35
6.2.2 Row of zeroes by mistake . 36
6.2.3 Recalculate the eigenvalues 36

6.3 Separate calculation with Conjugate Gradient and LSQR 36
6.3.1 Do control equations break the problem? 37

6.4 Different sizes for A for different calculation years 38
6.5 Optimizing the initial solution . 39
6.6 The big issue with selection . 40
6.7 Example of selection . 40

6.7.1 Visualization of selection . 40
6.7.2 The issue with selection . 41

6.8 How can the selection process go wrong? 42
6.8.1 Zero row and column . 42
6.8.2 Linear dependence . 43

6.9 Alternatives selection process . 44
6.9.1 Additional selection on 𝑀 . 44
6.9.2 Use CGNE and remove unselected columns 45
6.9.3 Conclusion . 45

7 Conclusion and recommendations 47
7.1 Conclusions . 47
7.2 Recommendations for further research 47

A List of Variables 51

B Solving examples of linear systems 53
B.1 Conjugate Gradient . 53

B.1.1 CG: Square diagonal matrix A 53
B.1.2 CG: Square 1D Poisson equation 54

B.2 CGNE . 56
B.2.1 CGNE: Rectangular diagonal matrix A 57

6 Contents

B.2.2 CGNE: Rectangular 1D Poisson equation 58
B.3 LSQR: 1D Poisson Equation . 61

1. Introduction
Education is all about the future. When children enter the educational machine at
an age of 4 they can remain there for a time that can easily hit twenty years. To
make sure this journey can be travelled without any troubles a plethora of things
have to be prepared. The correct books need to be printed, teachers need to
be trained and many more tools are necessary. We have to have enough of all of
these to facilitate a flawless educational journey. The ministry of Education, Culture
and Science (OCW) wants to make sure all these tools are available for any aspiring
student. To make sure everything is set the ministry is tasked to look into the future
of education. A way in which to do that is to estimate the number of students that
are present in the Netherlands for the upcoming years. Based on the estimations
the government can set budget to determine a precise amount of resources that
need to be available for students.

The prediction of future students has not always been the same as it is today.
The ministry of Education, Culture and Science has been predicting the number of
students going back as far as 1975. Up until that year the predictions were out­
sourced ([5], [6]). In those years the fundamentals were laid out for the currently
used prediction programs. STUFLO was developed by the Central Planning Bureau
([7]) which was used to predict the level of education of the population. In 1975 a
task force, consisting of representatives of Central Planning Bureau, Central Bureau
for Statistics and the ministry of Education, Culture and Science, was assigned to
create an application to predict how many students are in higher education. The
task force created the apps WORSA and RHOBOS ([11]). In the period between
1975 and 1990 there was however a big downside to having multiple applications
to predict different parts of education. Most of the applications and results were
not compatible with each other and there were large fluctuations in predictions
([6], pp. 6). In between the years of 1990 and 1995 it was decided to no longer
outsource the predictions and to calculate a prediction for the whole educational
system, not just parts of it. SKILL, previously STUFLO, was integrated and ex­
panded to cover the whole educational apparatus and was renamed to Radon. In
the period 1995­2018 not a lot has changed for the prediction process. In 2018
the Referentieramingen team responsible for the predictions expanded significantly
after some vulnerabilities of the prediction process were exposed. The team is now
working on stabilising and improving Radon.

1.1. Research question

As part of the stabilising and improvement of Radon we will go into greater
detail on the solving aspect of the predictions. The solving aspect of Radon has
been a black box for quite a while. During the addition of international students to
the prediction process there have been several test cases where a solution could

7

8 1. Introduction

not be found. As a focus of this thesis we will investigate the numerical algorithm
that is used and the failing test cases. We will aim to answer the following research
question:

1. What causes the numerical methods in the international students test cases
to be unable to find a solution?

2. Can the performance of the Conjugate Gradient algorithm be improved within
the forecast methodology?

1.2. Thesis outline
In chapter 2 we will expand on the predictions process, what is calculated and

what is needed to facilitate those calculations. Next, in chapter 3 we give details
on the minimization problem that needs to be solved to get a prediction. A small
summary and explanation of the algorithm used to solve the minimization problem is
given in chapter 4. The numerical method that is used in the algorithm to calculate
the solution and several alternatives are covered in chapter 5. Several examples are
showcased in Appendix B for each analysed method. In chapter 6 we dive deeper
into the failing test case to figure out why there is no convergence to a solution.

2. Movement in Education
In the Netherlands a large part of the population takes part in some form of ed­
ucation. From children in primary schools and students on universities to evening
classes. These are examples of categories in education. And each of these cate­
gories has a certain number of people in them. Every year the number of people
in each category is counted and recorded in a giant database. At the end of each
study year, the students will either stay in their respective education category or
move on to another category. The movement of the students that occurs can also
be placed in a matrix, where each cell represents the movement from an origin1
category to a destination category. This matrix is known as the education matrix, a
small example is given in Equation 2.1 and a visualisation in Figure 2.1. The educa­
tion matrix is an integral part in estimating the number of people in each category in
the upcoming years. If we can calculate the education matrix, then we know how
many students are present in the next year. Sadly there have been some cases
where an optimal education matrix cannot be calculated.

Destination

Origin (1 2
0 2) (2.1)

An example of an education matrix. The movement from origin 1 to destination 1 is
equal to 1. From origin 1 to destination 2 is equal to 2. from origin 2 to destination
2 is equal to 2. There is no movement from origin 2 to destination 1.

1 2

Figure 2.1 A schematic visualisation of the education matrix.

2.1. Radon
The Referentieramingen team of The ministry of Education, Culture and Science

is the team which is designated to predict the number of students in each category
for at least several years into the future. For this they use a program, Radon, which
calculates the education matrix. We will go into greater detail about the calcula­
tion in chapter 3. For the calculation Radon requires the data of previous years.
Among these are the education matrices and the origin and the destination vectors
of those years. During the calculation Radon extrapolates a rough estimation of the
next years education matrices, which are based on graduation chances and older
education matrices. Based on this estimation we can solve the minimization prob­

1Further definitions of words that are printed in italic can be found in Appendix A

9

10 2. Movement in Education

lem. The goal of the algorithm is to calculate the education matrix for upcoming
years.

2.1.1. Constraints

There are a multitude of constraints which are imposed on the problem. One of
the constraints will specify that each person in an origin category will also end up in
a destination category. If this is not enforced then it would be possible for students
to vanish from the system as they could leave a origin category and not end up in a
destination category. Another constraint is that each person who earns a diploma
will end up in a non­diploma destination category. These constraints are necessary
for the problem to be solved. Furthermore there are two types of constraints that
will influence the education matrix. As they either force a number of students to
end up in one or more destination categories or they force a percentage of students
from an origin category to move to one or more destination categories. These
constraints are called absolute and relative constraints respectively. An absolute
constraint is a predetermined control value on how many people can end up in one
or more destination categories. For instance, we can demand of Radon that a total
of 200 000 people will end up in the MBO (Dutch college). Relative constraints are
also predetermined control values but instead of giving a hard number, we give a
percentage. An example of this is if we want that 50 % of graduating VWO (pre­
university education) students will go to University. Then half of the students in the
category graduating VWO is forced to University.

2.1.2. The minimization problem

Now that we have seen what information and constraints are used we can take
a look at a summarized version of the forecasting problem. Which is as follows:

minx ‖x− a‖𝑊
subject to
𝐴x = b
𝑆∗x ≥ 0

0 ≤ 𝑊 ≤ ∞

(2.2)

Where 𝐴 ∈ ℝ𝑛×𝑚 is the matrix for the constrains, consisting of handshaking and
diploma equations and control values. 𝑆∗ ∈ ℝ𝑚×𝑚 the indicator matrix to select
certain categories and control values. Initially this selector selects every variable in
the education matrix x. a ∈ ℝ𝑛 is the target education matrix. b ∈ ℝ𝑛 the vector
with origin values and control values. And x ∈ ℝ𝑛 the to be calculated education
matrix to minimize the problem.

This minimization problem will minimize the difference between the extrapolated
education matrix a and the to be calculated education matrix x. Leading to an
education matrix that is close to the extrapolated version while also considering the

2.1. Radon 11

constraints imposed on the problem. In the following sections we will refer to this
problem as the forecasting problem.

3. The forecasting problem
A summarized version of the minimization problem has been shown in Equation 2.2.
The goal of the forecasting problem is to minimize the differences between the
solution education matrix in vector form x and the extrapolated education matrix
in vector form a while also making sure the controlled variables are close to their
control value. a and x are in fact vectors while we refer to them as what they
represent, the education matrix. We note the full minimization problem that has to
be solved to calculate an optimal education matrix x:

min
(x,𝑌)

∑
𝑖𝑗𝑘
𝑔𝑖𝑗𝑘 (𝑥𝑖𝑗𝑘 − 𝑎𝑖𝑗𝑘)

2 +∑
𝑞
G𝑞 (Ŷ𝑞 −D𝑞)

2
(3.1)

Under the following conditions:

∑
𝑗
𝑥𝑖𝑗𝑘 = 𝐻𝑖𝑘 For each non­graduation category 𝑖 and each 𝑘 (3.2)

∑
𝑖
𝑥𝑖𝑑𝑘 =∑

𝑗
𝑥𝑑𝑗𝑘 For each graduation category 𝑑 and each 𝑘 (3.3)

In Equation 3.1 there are four different indices. 𝑖 and 𝑗 are the indices for origin
category and destination category. Index 𝑘 is used to categorise people based
on their age. Then an element of the education matrix 𝑥𝑖𝑗𝑘 is the movement from
origin 𝑖 to destination 𝑗 for a given age group 𝑘. The last index 𝑞 is just a numbering
for the amount of control equations imposed on the minimization problem. Since a
different education matrix is calculated for each age, we can set age to a constant
and drop it from notation.

In the minimization problem we write the education matrix as a vector. An ex­
ample of this with a 3×3 education matrix is given in Equation 3.4 and Equation 3.5:

𝑌 = (
𝑦11 𝑦12 𝑦13
𝑦21 𝑦22 𝑦23
𝑦31 𝑦32 𝑦33

) (3.4)

And its vector form:

Ŷ = vec(𝑌) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜

⎝

𝑦11
𝑦12
𝑦13
𝑦21
𝑦22
𝑦23
𝑦31
𝑦32
𝑦33

⎞
⎟
⎟
⎟
⎟
⎟
⎟

⎠

(3.5)

13

14 3. The forecasting problem

A list and explanation of all the variables that are present in the forecasting
Equation 3.1 can be found in Table 3.1. In the following sections we will cover
some of these variables.

Table 3.1 Variables of the forecasting problem.

𝑥𝑖𝑗 ∈ ℝ𝑚×𝑛 Elements of the to be calculated education matrix.
𝑎𝑖𝑗 ∈ ℝ𝑚×𝑛 Elements of the extrapolated education matrix.
𝑔𝑖𝑗 ∈ ℝ𝑚×𝑛 Weights for the education matrix.
Ŷ𝑞 ∈ ℝ𝑘 Control values. Where 𝑞 ∈ {1, 2, … , 𝑘}
D𝑞 ∈ ℝ𝑘 The predetermined control values. Where 𝑞 ∈ {1, 2, … , 𝑘}
G𝑞 ∈ ℝ𝑘 Weights for the control values. Where 𝑞 ∈ {1, 2, … , 𝑘}
𝐻𝑖𝑗 ∈ ℝ𝑚×𝑛 Origin category vector values.

3.1. Estimate the education matrix

In the minimization problem we need an estimate education matrix a of the to
be determined education matrix x. This estimation is done by multiplying the origin
values 𝐻𝑖𝑗 by the graduation chance 𝑝𝑖𝑗,

𝑎𝑖𝑗 = 𝑝𝑖𝑗𝐻𝑖𝑗 (3.6)

The graduation chance of the to be calculated year will be extrapolated from the
previous years. The extrapolation will mostly only be used for strategic streams in
education [1]. For example from VWO graduation to university. The extrapolation
that is used in Radon is Pseudo Ordinary Least Squares (POLS). The graduation
chances also need to be weighted. The weight of a graduation chance is based on
the goodness of fit of the trend of the extrapolated values.

3.1.1. Extrapolating with POLS

In this section we will cover the Pseudo Ordinary Least Squares (POLS) method
for extrapolating graduation chances 𝑝𝑖𝑗 which is used by Radon. POLS acts like
Ordinary Least Squares (OLS) but translates the resulting linear function such that
it crosses the last known graduation chance. The extrapolated graduation chance is
needed to estimate a. In Figure 3.1 we have an example of an extrapolation made
by POLS. The green dotted line is the POLS extrapolation that is used to determine
the graduation chances.

OLS is a linear least squares method for finding the unknown parameters in a
linear regression model. The method minimizes the sum of the squared residuals,
the vertical distance from an observation to the predicted linear function, to estimate
the parameter which is used in linear regression. The linear regression model takes

3.1. Estimate the education matrix 15

Figure 3.1 An example of POLS. The orange line is a linear interpolation
calculated by OLS which is then extrapolated on the red dotted line. In
POLS we place the extrapolation along the last known value. Resulting in
the green dotted line.

the form:
y = 𝑋𝜷 + 𝜺 (3.7)

Where y ∈ ℝ𝑛 is the vector of observed values, in this case the previous graduation
chances; 𝑋 ∈ ℝ𝑛×𝑝 the design matrix consisting of x𝑖 ∈ ℝ𝑛 column vectors of
regressors; 𝜷 ∈ ℝ𝑝 a parameter vector and 𝜺 ∈ ℝ𝑛 the error term. The goal is to
find 𝜷 such that the following equation is minimized:

𝜷̂ = 𝑆(𝜷) = ‖y− 𝑋𝜷‖2 (3.8)

Radon estimates 𝛽 with:

𝜷 =
∑𝑡(𝑡 − 𝑡̂)(𝑠𝑡 − 𝑠̂)
∑𝑡(𝑡 − 𝑡̂)2

(3.9)

Where 𝑡̂ is the average over the graduation chances of the observation years, and
𝑠̂ the average over the series of graduation chances. The extrapolated graduation
chances are also weighted according to their goodness of fit. Having a higher
weight for a greater goodness of fit. The data of older observation years also get
a lower weight attached to them.

16 3. The forecasting problem

3.2. Adding the constraints
We also need to add the constraints that were mentioned in subsection 2.1.1 into

the minimization problem. this is done by adding Equation 3.10 to the minimization
of the education matrix.

∑
𝑞
G𝑞 (Ŷ𝑞 −D𝑞)

2
(3.10)

In this case we have that
Ŷ𝑞 = ∑

𝑟∈S𝑞

𝑥𝑟

is the sum of the to be controlled variables. We determine that this sum has to
have the value of 𝐷𝑞. Where 𝑆𝑞 is the set of variables in the education matrix that
is controlled.

3.3. Applying weights
Weight vectors g ∈ ℝ𝑛 and G ∈ ℝ𝑘 are the vectors containing weights for the

elements of the education matrices and the control values. We can use the weights
to influence how much a flow or constraint in education should be realised. A higher
weight will make sure an absolute or relative constraint is enforced to full effect. An
infinite weight on a constraint is the highest form there is, but is hardly ever used.
A lower weight will be more lenient on the enforcement. The weights are applied
in the minimization problem for both the education matrices and the constraints.

3.4. Applying additional selection
In addition to the initial selection, as explained in subsection 2.1.2, another

selection may be used during several parts of the calculation. This selection is
made on elements of the education matrix that have to be optimized further, in
case they do not fulfill certain constraints of the problem. The selection matrix
𝑆 ∈ ℝ𝑛+𝑘 consists only of zeroes and ones. Where there is a 1 for the category that
needs to be included in the calculation. At the start of the calculation everything is
taken into account so 𝑆 will be the identity vector.

4. Calculating an optimal
education matrix
To calculate an optimal education matrix multiple steps need to be taken. Not all
of them are solving linear systems with numerical methods. In this chapter we will
go over the steps that are taken and the different parts of the algorithm that make
it happen.

4.1. The steps of the algorithm
The problem that needs to be solved is of course the Forecasting Problem. For

simplicity we note it again in Equation 4.1.

minx ‖x− a‖𝑊
subject to
𝐴x = b
𝑆∗x ≥ 0

0 ≤ 𝑊 ≤ ∞

(4.1)

The solution to the forecasting problem is an optimal education matrix x for an
upcoming year. The first step to take is to transform the problem (given in Equa­
tion 4.1) into another problem that is easier to solve. By substituting y = x − a
the problem transforms to minimizing y. This problem still minimizes the difference
between x and a but allows us to move known variables around in the constraints.
We end up with the following problem:

miny ‖y‖𝑊
subject to
𝐴y = b− 𝐴a
𝑆∗(y+ a) ≥ 0
0 ≤ 𝑊 ≤ ∞

(4.2)

The transformed problem is not directly solved with all the constraints and selection
in mind. First an initial solution y∗ is calculated as a rough starting point. In this
initial solution we do not force any of the constraints or selection. y∗ is the solution
to the following problem

miny ‖y‖𝑊
subject to
𝐴y = b− 𝐴a
0 ≤ 𝑊 ≤ ∞

(4.3)

The initial solution vector y∗ is a lot easier to calculate as we do not have to take
into account the additional constraints. Radon will improve the initial solution and

17

18
4. Calculating an optimal

education matrix

calculate z. z is calculated by adding back the constraints to the minimization prob­
lem and starting the numerical calculation with starting vector y∗. This optimization
comes down to transforming the forecasting problem even further with z = y− y∗
to:

minz ‖z‖𝑊
subject to

𝐴z = b− 𝐴a− 𝐴y∗
𝑆∗(z+ y∗ + a) ≥ 0

0 ≤ 𝑊 ≤ ∞

(4.4)

The resulting solution z∗ is optimal. The solution to minimization problem Equa­
tion 4.1 x∗ can be easily calculated with x∗ = z∗ + a+ y∗.

4.2. The algorithms of Radon

We will have a closer look at the code of Radon and its algorithms, as explained
in the technological manual [1]. The algorithm that is called upon to solve the
minimization problem (given in Equation 4.1) is called GBLDP. A small summary
and abbreviation explanation can be found in Figure 4.1 and Table 4.1. Let us first
list all the algorithms that are used by Radon.

Figure 4.1 A summary of the Radon algorithm.

GBLDP Generalized Bounded Linear Distance Programming
LSSSS Least Squares Solution Singular Symmetric System
SMRCG Scaled Minimum Residual Conjugate Gradients
WBLDP0 Weighted Bounded Linear Distance Programming (Start at 0)
WBLDPX Weighted Bounded Linear Distance Programming
GMNLS Generalized Minimum Norm Least Squares
FNDBND Find Boundary

Table 4.1 Explanation of the abbreviations used in Figure 4.1

4.2. The algorithms of Radon 19

4.2.1. GBLDP

GBLDP (Generalized Bounded Linear Distance Programming, [1], p. 23) is the
main algorithm that solves the minimization problem (given in Equation 4.1) by
calling the other algorithms along the way. It follows the steps described in the
previous sections. GBLDP first calls LSSSS (subsection 4.2.2) to solve the minimiza­
tion problem (given in Equation 4.3), calculating y∗.

4.2.2. LSSSS

LSSSS (Least Squares Solution Singular Symmetric System, [1], p. 24) sets
up for the conjugate gradient algorithm (SMRCG, 4.2.3) and does some post­
processing. It receives the minimization problems (given in Equation 4.3 and Equa­
tion 4.4) and the optimization of z∗.

4.2.3. SMRCG

SMRCG (Scaled Minimum Residual Conjugate Gradients, [1], p. 27) is the con­
jugate gradient algorithm used to calculate a solution to the linear system

𝐴x = b. (4.5)

The conjugate gradient method is the main focus of this thesis. As the Conjugate
Gradient method takes care of the calculation it is only logical to examine this first.
We will investigate how conjugate gradient works in chapter 5. SMRCG can be
called multiple times by LSSSS, each time b can be altered slightly, getting closer
to the optimal solution to the given minimization problem. The calculated solutions
are returned to GBLDP for further processing.

4.2.4. WBLDP0 and WBLDPX

WBLDP0 (Weighted Bounded Linear Distance Programming, [1], p. 29) is called
by GBLDP to initialize the calculation of the minimization problem given in Equa­
tion 4.4. The calculation starts with an initial solution vector x0 = 0. WBLDP0
stops once a feasible solution z∗ has been found. The algorithm will transform the
minimization problem (given in Equation 4.3) to the minimization problem given in
Equation 4.4. First it will check if y∗ satisfies all the added selection and weight con­
straints. If that is the case then Radon can move on to the next algorithm WBLDPX.
Any value in y∗ that doesn’t satisfy the constraints is replaced by the lower bound for
that constraint. At this point GMNLS (subsection 4.2.5) is called to minimize ‖z‖𝑊
and in turn the minimization problem of Equation 4.4. After WBLPD0 has finished
we end up with a feasible solution z∗. WBLDPX continues where WBLDP0 stops and
will minimize ‖z− z∗‖𝑊. Giving an optimal solution for z∗ and for x∗ = z∗+a+y∗.

20
4. Calculating an optimal

education matrix

4.2.5. GMNLS

GMNLS (Generalized Minimum Norm Least Squares, [1], p. 31) determines
the solution vector z∗ of which ‖z‖𝑊 is minimized for the problem given in Equa­
tion 4.4. GMNLS algorithm also takes into account that any changed variables in
y∗ by WBLDP0 satisfies the constraints. The calculation is again done via LSSSS
and SMRCG, solving the minimization problem given in Equation 4.4. Additionally
GMNLS is used to optimize solution z∗.

4.2.6. FNDBND

The FNDBND (Find Boundary, [1], p. 31) algorithm is executed after a solution
has been found that satisfies all the constraints. It will iterate over each value in
the solution and check if that value is on the boundary of the solution field. If that
is not the case then that value is moved to the closest boundary. This changes any
satisfied constraint that is an inequality to an equality, minimizing ‖z∗‖ even further.

5. Numerically solving the
forecasting problem
In this section we will be taking a look at how Radon solves the linear system

𝐴x = b, (5.1)

where 𝐴 ∈ ℝ𝑚×𝑛, x ∈ ℝ𝑛 and b ∈ ℝ𝑚 with 𝑚 ≪ 𝑛. This system is known as
an underdetermined system, meaning there are more variables than equations. To
calculate a solution to Equation 5.1 Radon uses the method Conjugate Gradient.
We will investigate the Conjugate Gradient method in section 5.1 and research
additional methods to solve Equation 5.1, CGNE in subsection 5.1.4 and LSQR in
section 5.3.

5.1. Conjugate Gradient
Conjugate Gradient works if matrix 𝐴 is square, symmetrical and positive semi­

definite. In general, the matrix 𝐴 for which Radon has to solve the linear system
is not square or symmetrical. So instead of solving 𝐴x = b Radon will solve the
linear system 𝐴𝐴𝑇u = b where x = 𝐴𝑇u. For the calculation Radon uses the
standard Conjugate Gradient method, explained in subsection 5.1.2. We discuss
two alternative methods to solve an underdetermined system. The first is CGNE, a
method based on Conjugate Gradient, which is explained in subsection 5.1.4. The
other method is LSQR, explained in section 5.3. We will first cover what type of
method Conjugate Gradient is in the section below.

5.1.1. Krylov subspace

The Conjugate Gradient method is a Krylov­subspace iterative method. The
Krylov­subspace is defined as follows (from [13]):

Definition 5.1.1 (Krylov­subspace) Let 𝐴 ∈ ℝ𝑛×𝑛 and r0 ∈ ℝ𝑛. Then the space
𝐾𝑘(𝐴; r0) as defined by:

𝐾𝑘(𝐴; r0) ∶= 𝑠𝑝𝑎𝑛{r0, 𝐴r0, ..., 𝐴𝑘−1r0}

Is a Krylov­subspace of dimension 𝑘 corresponding to matrix 𝐴 and initial residue
r0.

This definition follows from the basic iterative methods for the linear system
𝐴x = b with the following recursion:

21

22
5. Numerically solving the

forecasting problem

x𝑘+1 = x𝑘 + (b− 𝐴x𝑘) = x𝑘 + r𝑘

Which implies that

x𝑘 ∈ x0 + span{r0, 𝐴r0, ..., 𝐴𝑘−1r0}.

Meaning that we can find our solution in the Krylov­subspace.

5.1.2. Standard Conjugate Gradient

In this section we will describe the Conjugate Gradient method in greater detail.
To facilitate the formulas of Conjugate Gradient we will assume x0 = 0 so r0 = b.
These assumptions are not necessary for the Conjugate Gradient method itself but
are for ease of notation. We will furthermore assume that matrix 𝐴 is symmetric
and positive definite. Which are both necessary conditions for Conjugate Gradient
and defined as follows.

Definition 5.1.2 symmetric
The square matrix 𝐴 ∈ ℝ𝑛×𝑛 is called symmetric if and only if 𝐴 = 𝐴𝑇

Definition 5.1.3 Positive definite
The square matrix 𝐴 ∈ ℝ𝑛×𝑛 is called positive definite if and only if

∀x ∈ ℝ𝑛 ⧵ {0} ∶ x𝑇𝐴x > 0 (5.2)

Conjugate Gradient is an iterative method which finds a solution to the following
minimization problem:

||x− x𝑘||𝐴 = min
y∈𝐾𝑘(𝐴;r0)

||x− y|| (5.3)

Where we use the following definition for the used A­inner product and A­norm:

Definition 5.1.4 A­inner product
The A­inner product is defined by

(x,u)𝐴 = x𝑇𝐴u (5.4)

Definition 5.1.5 A­norm
Let 𝐴 ∈ ℝ𝑛×𝑛, then 𝐴­norm of a vector x ∈ ℝ𝑛 is defined by:

‖x‖𝐴 = √(x,x)𝐴 = √x𝑇𝐴x (5.5)

5.1. Conjugate Gradient 23

When we want to minimize ||x− x1||2𝐴 in the 𝐴­norm we have

||x− x1||2𝐴 = x𝑇𝐴x− 2𝛼0(r0)𝑇𝐴x+ 𝛼20(r0)𝑇𝐴r0, (5.6)

Where 𝛼0 is a constant that has to be chosen such that ||x−x1||2𝐴 is minimal. Which
happens when 𝛼0 =

(r0)𝑇b
(r0)𝑇𝐴r0

. These inner products can be solved as r0,b and 𝐴 are
known, leading to the Conjugate Gradient method for solving Equation 5.3. The
steps for the standard Conjugate Gradient method are given below.

Input : 𝐴 ∈ ℝ𝑛×𝑛 ,x0 ∈ ℝ𝑛 ,b ∈ ℝ𝑛
r0 = b− 𝐴x0;
p0 = r0
𝑖 = 0
while 𝑖 < 𝑖𝑚𝑎𝑥 AND

‖r𝑖‖
‖b‖ > 𝜀 do

𝛼𝑖 ∶=
(r𝑖 ,r𝑖)
(𝐴p𝑖 ,p𝑖)

;
x𝑖+1 ∶= x𝑖 + 𝛼𝑖p𝑖;
r𝑖+1 ∶= r𝑖 − 𝛼𝑖𝐴p𝑖;
𝛽𝑖 ∶=

(r𝑖+1 ,r𝑖+1)
(r𝑖 ,r𝑖)

;
p𝑖+1 ∶= r𝑖+1 + 𝛽𝑖p𝑖;

end
Algorithm 1: Conjugate Gradient

Since the forecasting problem has a few instances where the Conjugate Gradient
algorithm does not converge, we will take a look at the rate of convergence of the
method. These characteristics may give is valuable information on why there is
no convergence. From [13] we have Theorem 5.1.1 on an upper bound of the
difference between the 𝑖𝑡ℎ­solution x𝑖 and the exact solution x. Where we make
use of the following notation:

Definition 5.1.6 Spectrum of a matrix
The set of eigenvalues of a matrix 𝐴 is called the spectrum of 𝐴 and is denoted by

𝜎(𝐴) = {𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑛} (5.7)

Definition 5.1.7 Max and Min eigenvalues
The maximum eigenvalue of matrix 𝐴 is defined as

𝜆max(𝐴) = max
𝑖=1,…,𝑛

{|𝜆𝑖| ∶ 𝜆𝑖 ∈ 𝜎(𝐴)} (5.8)

The minimum eigenvalue of matrix 𝐴 is defined as

𝜆min(𝐴) = min
𝑖=1,…,𝑛

{|𝜆𝑖| ∶ 𝜆𝑖 ∈ 𝜎(𝐴)} (5.9)

24
5. Numerically solving the

forecasting problem

Definition 5.1.8 Condition number
The condition number of 𝐴 in the 𝐿𝑝­norm is noted by

𝜅𝑝(𝐴) = ‖𝐴‖𝑝‖𝐴−1‖𝑝. (5.10)

The condition number of 𝐴 in the 𝐿2­norm is noted by

𝜅2(𝐴) =
√𝜆max(𝐴𝑇𝐴)
√𝜆min(𝐴𝑇𝐴)

(5.11)

Theorem 5.1.1 The iterates x𝑖 obtained from the Conjugate Gradient algorithm
satisfy the following inequality:

||x− x𝑖||𝐴 ≤ 2(
√𝜅2(𝐴) − 1
√𝜅2(𝐴) + 1

)
𝑖

||x− x0||𝐴 (5.12)

The condition number of a matrix can tell us a lot about the convergence of Con­
jugate Gradient or any other numerical method. As we can see in Equation 5.11,
a condition number 𝜅2(𝐴) = 1 is achieved when 𝜆max = 𝜆min. That is when all
the eigenvalues of 𝐴 are equal. When this happens we can conclude from Theo­
rem 5.1.1 that ||x − x𝑖||𝐴 = 0, giving instant convergence. So it is desirable for a
matrix 𝐴 to have its eigenvalues close to each other. If it is the case that a matrix
𝐴 has 𝜆min = 0 then 𝜅2(𝐴) = ∞ giving no convergence. 𝜆min = 0 occurs when 𝐴 is
singular.

5.1.3. Normal Equation Conjugate Gradient

Radon solves a different form of linear system than in subsection 5.1.2. It sets
x = 𝐴𝑇u, so it solves for u

𝐴𝐴𝑇u = b. (5.13)

The linear system in Equation 5.13 is used to solve under­determined systems.
Which is what we have in the forecasting problem. Where 𝐴 ∈ ℝ𝑚×𝑛 is a rectangular
matrix with 𝑚 ≪ 𝑛. This system is known as the system of normal equations which
minimizes the least­squares problem

min||x∗ − 𝐴𝑇u||2. (5.14)

Where x∗ is any valid solution to 𝐴x = b. Since we defined 𝐴𝑇u = x we will find an
x that is closest to x∗ in the 2­norm. Conjugate Gradient methods that solve these
kind of problems are known as CGNE. Where ‘N’ stands for the normal equation
and ‘E’ for ‘Error’, solving the system by minimising the error.

In the following section we will describe the general details of CGNE. A more in
depth description can be found in [10].

5.1. Conjugate Gradient 25

5.1.4. CGNE

CGNE is used to solve the linear system in Equation 5.13, where matrix 𝐴 is
underdetermined. We will once again minimize ‖x−x𝑖‖ but now in the 𝐴𝐴𝑇­norm.
Showing that this is the same as minimizing the error in the 2­norm:

||x− x𝑖||2𝐴𝐴𝑇 = (𝐴𝑇u− 𝐴𝑇ui)𝑇𝐴𝐴𝑇(𝐴𝑇u− 𝐴𝑇ui) (5.15)

= (𝐴(u− u𝑖))𝑇(𝐴(u− u𝑖))
= (x− x𝑖)𝑇(x− x𝑖)
= ||e𝑖||22.

Finding a solution in the subspace x0 + 𝐾𝑚(𝐴𝐴𝑇 , r0).

To construct the algorithm we start by applying the Conjugate Gradient method
directly to the linear system in Equation 5.13 with q𝑖, the conjugate direction, to
get the following Conjugate Gradient iteration:

𝛼𝑖 ∶=
(r𝑖 , r𝑖)

(𝐴𝐴𝑇q𝑖 ,q𝑖)
(5.16)

x𝑖+1 ∶= x𝑖 + 𝛼𝑖q𝑖
r𝑖+1 ∶= r𝑖 − 𝛼𝑖𝐴q𝑖

𝛽𝑖 ∶=
(r𝑖+1, r𝑖+1)
(r𝑖 , r𝑖)

p𝑖+1 ∶= r𝑖+1 + 𝛽𝑖q𝑖

We can rewrite these iterations in the original vector x𝑖 = x0 + 𝐴𝑇(u𝑖 − u0) by
introducing p𝑖 = 𝐴𝑇q𝑖. With this substitution the residual vectors for x and u are
the same and can be obtained with p𝑖+1 ∶= 𝐴𝑇r𝑖+1 + 𝛽𝑖p𝑖. The resulting algorithm
(CGNE) is also known as Craig’s method.

Input : 𝐴 ∈ ℝ𝑚×𝑛 ,x0 ∈ ℝ𝑛 ,b ∈ ℝ𝑚
r0 = b− 𝐴x0;
p0 = 𝐴𝑇r0
𝑖 = 0
while 𝑖 < 𝑖𝑚𝑎𝑥 AND

‖r𝑖‖
‖b‖ > 𝜀 do

𝛼𝑖 ∶=
(r𝑖 ,r𝑖)
(p𝑖 ,p𝑖)

;
x𝑖+1 ∶= x𝑖 + 𝛼𝑖p𝑖;
r𝑖+1 ∶= r𝑖 − 𝛼𝑖𝐴p𝑖;
𝛽𝑖 ∶=

(r𝑖+1 ,r𝑖+1)
(r𝑖 ,r𝑖)

;

p𝑖+1 ∶= 𝐴𝑇r𝑖+1 + 𝛽𝑖p𝑖;
end

Algorithm 2: CGNE (Craig’s method)

26
5. Numerically solving the

forecasting problem

5.2. Convergence of the Conjugate Gradient method

Iterative methods like Conjugate Gradient and LSQR are often lacking in speed
of convergence. One way to improve the convergence speed and robustness is
to use preconditioning. The preconditioner is a matrix that transforms the original
linear system such that the transformed system is easier to converge to a solution.
We will first cover the preconditioner of Conjugate Gradient in subsection 5.2.1 and
after that we will cover the preconditioner of CGNE in subsection 5.2.2.

5.2.1. Conjugate Gradient preconditioner

Radon uses a simple form of preconditioning, diagonal preconditioning, for Con­
jugate Gradient which is described in Golub and van Loan [4]. Instead of solving
𝑀x = b it will solve the following:

𝑁y = f (5.17)

where

𝑁 = 𝐷−1𝑀𝐷−1,
y = 𝐷x,
f = 𝐷−1b

In this preconditioning 𝐷 is a diagonal matrix such that diag(𝑁)=I, where I is
the identity vector. This allows us to calculate the diagonal elements of 𝐷 with

𝐷𝑖𝑖 = √𝑀𝑖𝑖 .

Giving an easy calculation of 𝐷 and its inverse 𝐷−1.

Input : 𝑀 ∈ ℝ𝑚×𝑛 ,x0 ∈ ℝ𝑛 ,b ∈ ℝ𝑛
r0 = b−𝑀x0;
z0 = 𝐷−1r0
p0 = z0
𝑖 = 0
while 𝑖 < 𝑖𝑚𝑎𝑥 AND

‖r𝑖‖
‖b‖ > 𝜀 do

𝛼𝑖 ∶=
(r𝑖 ,z𝑖)
(𝑀p𝑖 ,p𝑖)

;
x𝑖+1 ∶= x𝑖 + 𝛼𝑖p𝑖;
r𝑖+1 ∶= r𝑖 − 𝛼𝑖𝑀p𝑖;
z𝑖+1 ∶= 𝐷−1r𝑖+1
𝛽𝑖 ∶=

(r𝑖+1 ,z𝑖+1)
(r𝑖 ,z𝑖)

;
p𝑖+1 ∶= z𝑖+1 + 𝛽𝑖p𝑖;

end
Algorithm 3: Preconditioned Conjugate Gradient

5.3. LSQR 27

5.2.2. CGNE preconditioner

The preconditioner that is used for Conjugate Gradient, 𝐷𝑖𝑖 = √𝑀𝑖𝑖, can not
be used for non­square matrices. So for CGNE, which we use for the rectangular
matrices, we need a different preconditioner. Instead of the regular system 𝐴x = b
we will solve

𝑁x = f (5.18)

where
𝑁 = 𝐷−1𝐴f = 𝐷−1b (5.19)

In this preconditioning 𝐷 is the diagonal matrix such that for 𝐴 ∈ ℝ𝑚×𝑛 we can
calculate 𝐷 ∈ ℝ𝑚×𝑚 with

𝐷𝑖𝑖 =
𝑛

∑
𝑗=1
|𝑎𝑖𝑗| (5.20)

We can use the preconditioning matrix in the following algorithm.

Input : 𝐴 ∈ ℝ𝑚×𝑛 ,x0 ∈ ℝ𝑛 ,b ∈ ℝ𝑛
r0 = b− 𝐴x0;
z0 = 𝐷−1r0
p0 = 𝐴𝑇z0
𝑖 = 0
while 𝑖 < 𝑖𝑚𝑎𝑥 AND

‖r𝑖‖
‖b‖ > 𝜀 do

w𝑖 = 𝐴p𝑖
𝛼𝑖 ∶=

(r𝑖 ,z𝑖)
(p𝑖 ,p𝑖)

;
x𝑖+1 ∶= x𝑖 + 𝛼𝑖p𝑖;
r𝑖+1 ∶= r𝑖 − 𝛼𝑖w𝑖;
z𝑖+1 ∶= 𝐷−1r𝑖+1
𝛽𝑖 ∶=

(r𝑖+1 ,z𝑖+1)
(r𝑖 ,z𝑖)

;

p𝑖+1 ∶= 𝐴𝑇z𝑖+1 + 𝛽𝑖p𝑖;
𝑖 = 𝑖 + 1

end
Algorithm 4: Preconditioned CGNE

5.3. LSQR
Another numerical method for solving the system 𝐴x = b is LSQR [9]. LSQR

requires that 𝐴 ∈ ℝ𝑚×𝑛 and b ∈ ℝ𝑚 are real. Similar to Conjugate Gradient,
LSQR is an iterative method. Reaching an acceptable approximation of x in around
𝑛 iterations, but that may vary based on the problem. A faster convergence is
achieved if matrix 𝐴 is well conditioned with eigenvalues close to each other. A

28
5. Numerically solving the

forecasting problem

preconditioner can be used to transform the system to get the eigenvalues closer
together.

LSQR is based on the bidiagonalization procedure of Golub and Kahan [3] and
the symmetric Lanczos process [8]. In each iteration the algorithm calculates x𝑖
such that ‖r‖2 decreases monotonically. The Lanczos process generates a sequence
of vector v𝑖 and scalars 𝑎𝑖 , 𝑏𝑖 such that 𝐴 is reduced to tridiagonal form. The Lanczos
process works as follows:

𝛽1v1 = b
while 𝑖 < 𝑖𝑚𝑎𝑥 do

w𝑖 = 𝐴v𝑖 − 𝛽v𝑖
𝛼𝑖 = v𝑇𝑖 w𝑖
𝛽𝑖+1v𝑖+1 = w𝑖 − 𝛼𝑖v𝑖

end
Algorithm 5: The Lanczos Process

Where v0 = 0 and 𝛽𝑖 is chosen such that ‖v𝑖‖ = 1 (𝑖 > 0). Then after 𝑘
iterations we have

𝐴𝑉𝑘 = 𝑉𝑘𝑇𝑘 + 𝛽𝑘+1v𝑘+1e𝑇𝑘 . (5.21)

With 𝑇𝑘 = tridiag(𝛽𝑖 , 𝛼𝑖 , 𝛽𝑖+1) and 𝑉𝑘 = [v1,v2, … ,v𝑘].

When the Lanczos process is applied to the least­squares problem

min ‖b− 𝐴x‖ (5.22)

we can simplify the steps to:

𝛽1v1 = b
𝛼1v1 = 𝐴𝑇u1
while 𝑖 < 𝑖𝑚𝑎𝑥 do

𝛽𝑖+1u𝑖+1 = 𝐴v𝑖 − 𝛼𝑖u𝑖
𝛼𝑖+1v𝑖+1 = 𝐴𝑇u𝑖+1 − 𝛽𝑖+1v𝑖

end
Algorithm 6: Bidiagonalisation

Where 𝛼 and 𝛽 are scalars of the bidiagonal matrix 𝐵𝑘, u of matrix 𝑈 and v of
matrix 𝑉

𝐵𝑘 =
⎡
⎢
⎢
⎣

𝛼1
𝛽2 𝛼2

⋱ ⋱
𝛽𝑘 𝛼𝑘

⎤
⎥
⎥
⎦
, (5.23)

𝑈𝑘 = [u1,u2, … ,u𝑘] , (5.24)
𝑉𝑘 = [v1,v2, … ,v𝑘] . (5.25)

5.4. Stopping Criterion 29

The quantities generated by the bidiagonalisation algorithm algorithm 6 can be
used to solve the least­squares problem Equation 5.22. A few additional variables
need to be defined to achieve that goal. Let

x𝑘 = 𝑉𝑘y𝑘 , (5.26)
r𝑘 = b− 𝐴x𝑘 , (5.27)

t𝑘+1 = 𝛽1e1 − 𝐵𝑘y𝑘 . (5.28)

After some rewriting it follows that

r𝑘 = 𝑈𝑘+1t𝑘+1. (5.29)

Since the goal is to minimize ‖r𝑘‖, and because 𝑈𝑘+1 is bounded and orthonormal,
we should choose y𝑘 such that we minimize ‖t𝑘+1‖ or the following associated
least­squares problem

min ‖𝛽1e1 − 𝐵𝑘y𝑘‖ (5.30)

Which is the basis for the LSQR algorithm. LSQR solves Equation 5.30 with QR
decomposition for 𝐵𝑘 [2]. Where 𝑄 is a orthogonal matrix and 𝑅 an upper triangle
matrix. The main steps of the LSQR algorithm can be summarised into the following:

Input : 𝑀 ∈ ℝ𝑚×𝑛 ,x0 ∈ ℝ𝑛 ,b ∈ ℝ𝑛
Initialisaton
𝛽1u1 = 𝑏, 𝛼v1 = 𝐴𝑇u1, w1 = v1, x0 = 0, 𝜙̂1 = 𝛽1, 𝜌̂1 = 𝛼1
while 𝑖 < 𝑖𝑚𝑎𝑥 AND

‖r𝑖‖
‖b‖ > 𝜀 do

𝛽𝑖+1u𝑖+1 = 𝐴v1 − 𝛼1u1
𝛼𝑖+1v𝑖+1 = 𝐴𝑇u𝑖+1 − 𝛽𝑖+1v1
𝜌1 = √𝜌̂21 + 𝛽2𝑖+1
𝑐1 =

𝜌̂1
𝜌1

𝑠1 =
𝛽𝑖+1
𝜌1

𝜃𝑖+1 = 𝑠𝑖𝛼𝑖+1
𝜌̂𝑖+1 = −𝑐𝑖𝛼𝑖+1
𝜙𝑖 = 𝑐𝑖𝜙̂𝑖
𝜙̂𝑖+1 = 𝑠𝑖𝜙̂𝑖
x𝑖 = x𝑖+1 +

𝜙𝑖
𝜌𝑖
w𝑖

w𝑖+1 = v𝑖+1 −
𝜃𝑖+1
𝜌𝑖

w𝑖
end

Algorithm 7: LSQR

5.4. Stopping Criterion
To stop Conjugate Gradient, CGNE or LSQR from iterating we have to use a

stopping criterion. A good choice of stopping criterion balances the quality of the

30
5. Numerically solving the

forecasting problem

criterion with the computation cost of the criterion. To satisfy this balance we use

‖r𝑖‖
‖b‖ < 𝜀 (5.31)

with 𝜀 = 10−20. This stopping criterion scales well with the size of the problem. The
norm of b only needs to be computed once, and the norm of r with each iteration.
The computation cost of the norm is low, resulting in a low cost stopping criterion.

The stopping criterion 𝜀 = 10−20 proved to be too low for good accuracy. Later
we changed it to be 𝜀 = 10−10.

5.5. Radon’s Conjugate Gradient Algorithm
In this section we investigate the Conjugate Gradient algorithm that is used by

Radon. The pseudo­code of the algorithm that is used by Radon can be found
in Figure 5.1 (from [1]). This algorithm is equal to the preconditioned Conjugate
Gradient algorithm as stated in algorithm 3.

Figure 5.1 The Conjugate Gradient method used by Radon

The programmed version of Conjugate Gradient that is used by Radon also
follows these exact steps. Meaning there is no problem in the programming of
Conjugate Gradient. The only difference in the code that was found is in the use of
the preconditioner. More information on the different preconditioner van be found
in section 5.6.

5.6. Difference in the preconditioner 31

5.6. Difference in the preconditioner

During the setup to mimic the algorithm and calculations of Radon to verify if the
method works there was a difference in results. Further investigation determined
that this is caused by the usage of a different preconditioner. First we will recall the
diagonal preconditioner that is used.

𝑁y = f (5.32)

where

𝑁 = 𝐷−1𝑀𝐷−1,
y = 𝐷x,
f = 𝐷−1b.

Where the 𝐷𝑖𝑖 was calculated with

𝐷𝑖𝑖 = √𝑀𝑖𝑖 .
In the calculation of the preconditioner Radon calculates with

𝐷𝑖𝑖 = 𝑀𝑖𝑖
instead. This difference in preconditioning is in this case preferred over the originally
stated preconditioning. That is because the new preconditioner works best for
diagonal dominant matrices. We can check if a matrix is diagonally dominant with
the following equation

|𝑎𝑖𝑖| ≥∑
𝑗≠𝑖
|𝑎𝑖𝑗|. (5.33)

If Equation 5.33 holds for all diagonal elements of matrix 𝐴 then 𝐴 is diagonally
dominant. By subtracting ∑𝑗≠𝑖 |𝑎𝑖𝑗| from both sides we can check for each diagonal
element

|𝑎𝑖𝑖| −∑
𝑗≠𝑖
|𝑎𝑖𝑗| ≥ 0.

This property can be easily verified and the results are plotted in Figure 5.2. Since
there are no negative values we can conclude that the matrix is diagonally dominant.
Which makes the use of this preconditioner a better option than the one stated in
the technological manual. Changing from 𝐷𝑖𝑖 = √𝑀𝑖𝑖 to 𝐷𝑖𝑖 = 𝑀𝑖𝑖 will also greatly
reduce the number of iterations and time needed to find a solution.

5.6.1. Calculating with updated preconditioner

After using the new preconditioner we can take another look at the convergence
of the residue. Figure 5.3a shows that the convergence of Conjugate Gradient is
much quicker than we have seen before in for example Figure 5.3b.

32
5. Numerically solving the

forecasting problem

(a) Linear view of diagonal dominance in matrix
𝐴.

(b) logarithmic view of diagonal dominance in
matrix 𝐴.

Figure 5.2 Visualisation of |𝑎𝑖𝑖| −∑𝑗≠𝑖 |𝑎𝑖𝑗| ≥ 0 for matrix 𝐴 which is used by
WBLDP0 in calculation year 2021 of case 2019­01.

(a) With updated preconditioner (b) With old preconditioner.

Figure 5.3 Convergence of residue for the Conjugate Gradient calculation of
𝐴x = b with the updated preconditioner and the old preconditioner.

The used preconditioner is almost optimal for the forecasting problem. The
best preconditioner would transform the problem such that it can be solved in one
iteration but that is equal to solving the problem. Leaving little to improve on on
that regard.

6. Investigating a failing
forecasting case
Radon case 2019­01 is an international student test case with absolute control
values. This case does not converge on a solution during the usage of Conjugate
Gradient. What is observed is that the residue of the solution does not converge.
Causing the algorithm to keep repeating the same Conjugate Gradient loop over
and over again. We will investigate the linear system and the process of calculating
the solution and determining why Conjugate Gradient does not converge.

6.1. Investigating the eigenvalues
We start the investigation by calculating the eigenvalues of matrix 𝑀 in linear

system 𝑀x = b, with 𝑀 = 𝐴𝐴𝑇. One thing that can cause Conjugate Gradient to
not converge is that matrix 𝑀 is singular. Let us first define the determinant of
matrix 𝐴.

Definition 6.1.1 Determinant
The determinant of a matrix 𝐴 ∈ ℝ𝑛×𝑛 is the product of its eigenvalues.
det(𝐴) = 𝜆1𝜆2…𝜆𝑛

Definition 6.1.2 Singular matrix
A matrix 𝐴 ∈ ℝ𝑛×𝑛 is singular if and only if its determinant is 0 (det(𝐴) = 0).

From this we can conclude that a square matrix 𝐴 is a singular matrix if and
only if it has at least one eigenvalue 0. We can use the singularity of matrix 𝐴 to
say something about the convergence of the linear system. In subsection 5.1.2 we
have covered the convergence properties of Conjugate Gradient. Showing that the
convergence of the error ‖e𝑖‖ = ‖x− x𝑖‖ obeys the following inequality,

‖e𝑖‖𝐴 ≤ 2(
√𝜅2(𝐴) − 1
√𝜅2(𝐴) + 1

)
𝑖

‖e0‖. (6.1)

When an eigenvalue of matrix 𝐴 is 0 then the condition number 𝜅2(𝑀) can not
be defined. When this happens we set the condition number 𝜅2(𝑀) = ∞. If we
use this in the convergence Inequality (Equation 6.1) we see that convergence is
not guaranteed.

33

34
6. Investigating a failing

forecasting case

6.1.1. Calculating the eigenvalues of case 2019­01

Knowing that an eigenvalue 0 can cause Conjugate Gradient to diverge we start
by calculating the eigenvalues of matrix 𝑀 that is used in the linear system from
case 2019­01. Since Conjugate Gradient is called by the algorithm multiple times
we take a look at the first use of Conjugate Gradient. We can also determine the
moment when the method diverges and look closer to that linear system.

In the first case, with the initial problem we have and 𝐴 matrix with dimension
(12021, 81249). This matrix consists only of 1’s, ­1’s and 0’s. Matrix 𝐴 holds all the
information on the constraints on the education matrix. Additionally it contains the
information of the absolute control equations. We will be calculating the eigenvalues
of matrix 𝑀 = 𝐴𝐴𝑇 as this is used to solve the problem. Calculating the eigenvalues
of this matrix gave the following information:

• 𝜆max = 9848,
• The average eigenvalue is 1 or 2,
• 𝜆min = 0.

Since 𝜆min = 0 we have at least one eigenvalue 0. Upon further inspection this is
also the only eigenvalue 0. An eigenvalue 0 is not a guarantee that the problem
does not converge.

Next we have a look at the eigenvalues of the linear system of case 2019­01
which does not converge to a solution. The dimensions of matrix 𝐴 are hugely
different with (16698, 81249), something we investigate in section 6.4. The maxi­
mum and minimum eigenvalue are both 0. So each eigenvalue is 0. This looks like
the main reason that Conjugate Gradient can not find a solution.

6.1.2. Comparing case 2019­01 to case 2020­00

We compare the eigenvalues of case 2019­01 with the eigenvalues of a case
that does converge to a solution. We call this case 2020­00. Matrix 𝐴 in case 2020­
00 has dimension (12234, 98953). We again calculate the eigenvalues of matrix
𝑀 = 𝐴𝐴𝑇.

• 𝜆max = 524,
• The average eigenvalue is 1 or 2,
• 𝜆min = 0.

The minimum eigenvalue is again 0. With only one occurrence of eigenvalue 0. So
even in a working case there appears to be a singular matrix. In Table 6.1 we have
a small overview of the three cases we studied.

6.2. Cause of eigenvalue 0 35

Case 2019­01 2019­01 ∞­loop 2020­00
𝜆max 9848 0 524
𝜆min 0 0 0
𝜅2 ∞ ∞ ∞
𝐴 dimensions (12021, 81249) (16698, 81249) (12235, 98953)

Table 6.1 Overview of eigenvalues

6.2. Cause of eigenvalue 0
It is quite likely that the 0 eigenvalue causes Conjugate Gradient to diverge here.

Because of that we will try to determine the cause of this 0. We list two equivalent
causes of a matrix being singular.

• There is linear dependence in the columns of matrix 𝐴.
• Matrix 𝐴 does not have full rank. (rank(𝐴)≠ 𝑛).

Definition 6.2.1 Rank of matrix 𝐴
The rank of matrix 𝐴 (rank(𝐴)) is equal to the dimension of the vector space gen­
erated by its columns.

Linear dependence will be hard to check in large matrices. We can check each
row in the matrix and see if there is linear dependence in the matrix. This process
will take a lot of time so we assume that there are no linear dependencies created
during the construction of matrix 𝐴.

Calculating the rank of 𝐴 will be easier. One can use Gaussian Elimination to
reduce matrix 𝐴 to an upper triangle form called row echelon. The vector space of
the row echelon form is easily determined due to its upper triangle form. Leading
to an easy calculation of rank(𝐴). Since Gaussian elimination is widely used in
numerical methods as a direct solving method known as LU­factorization ([12]),
we will investigate this first.

6.2.1. LU­factorization

Gaussian Elimination or LU­factorization is used in direct solution method to
solve linear systems. Most direct methods first factorize the original matrix 𝐴,

𝐴 = 𝐿𝑈, (6.2)

into a product of an upper triangle matrix 𝑈 and a lower triangle matrix 𝐿 with
diagonal elements set to one. Matrix 𝑈 will be in row echelon form and have the
same rank as 𝐴. We calculate the rank of 𝑈 and find that rank(𝑈) = 12020 ≠ 12021
as expected. This means that matrix 𝑈 and matrix 𝐴 are singular with only one
eigenvalue 0.

36
6. Investigating a failing

forecasting case

6.2.2. Row of zeroes by mistake

One of the easiest ways to create an eigenvalue 0 in a matrix is to have a row
or column full of zeroes. First we calculate the absolute sum of each row and then
check if any of them are 0. It appears the last row of the matrix is full of zeroes.
Upon reviewing my own code it was noticed that matrix 𝐴 was one row larger than
it should have been. Adding a row of zeroes at the end and thus creating a singular
matrix. We remove this mistake from the matrix and recalculate the eigenvalues in
the following section.

6.2.3. Recalculate the eigenvalues

Since there was a mistake in the matrix we have to recalculate the eigenvalues
with the correct matrix. Table 6.2 has the minimum and maximum eigenvalues for
all three cases.

Case 2019­01 2019­01 ∞­loop 2020­00
𝜆max 9848 0 524
𝜆min 0.2679 0 0.38
𝜅2 36753.3683 ∞ 1372.218
𝐴 dimensions (12020, 81248) (16709,81248) (12234, 98956)

Table 6.2 Overview of eigenvalues

For both case 2019­01 and 2020­00 not a lot has changed because only the
eigenvalue 0 was removed. Case 2019­01 ∞­loop is a weird case. Calculating the
eigenvalues at this time leads to many different results. One time it resulted in
complex eigenvalues and another in all zeroes. This may be a result of round­
off errors. We plot the eigenvalues of both 2019­01 and 2020­00 on their first
Conjugate Gradient usages in Figure 6.1. The eigenvalues are almost identical. We
can state that all the eigenvalues of case 2019­01 and 2020­00 are positive.

6.3. Separate calculation with Conjugate Gradient
and LSQR

To check if the issue lies with the Conjugate Gradient method of Radon we
will solve the linear system with a separate Conjugate Gradient and LSQR method.
We apply LSQR and Conjugate Gradient to the linear problems with selection and
weight. Table 6.3 shows how many iterations are needed for a method to reach
convergence. LSQR does not converge with the given maximum number of itera­
tions. The residuals for both methods are plotted in Figure 6.2 for both the initial
use of Conjugate Gradient and the infinite loop system.

6.3. Separate calculation with Conjugate Gradient and LSQR 37

Figure 6.1 Eigenvalues of both 2019­01 and 2020­00 on their first Conju­
gate Gradient usage.

Case 2019­01 2019­01 ∞­loop 2020­00
LSQR iterations 1000 (max) 1000(max) 1000 (max)
CG iterations 430 1000(max) 420

Table 6.3 Overview of running Conjugate Gradient and LSQR

An increase in maximum iterations does not allow LSQR to find a solution or
Conjugate Gradient to find a solution in the infinite loop. We can see the same
happening in case 2020­00 in Figure 6.3.

6.3.1. Do control equations break the problem?

We noticed that a different 𝐴 matrix is imported for different calculation years.
On further inspection we have seen that after matrix 𝐴 is imported the control
equations are added. This increases the number of columns and rows of the matrix
by 10. Before we dive deeper into that difference we will first check if we can
calculate the solution of the linear systems 𝐴x = b before any control equations
are added.

We can conclude from Figures Figure 6.4 and Figure 6.5 that the problem does
not originate from adding the control equations to the linear system. The addition
did cause Conjugate Gradient to be more erratic, but does not disturb its conver­
gence. So in this case the problem does not occur in the calculation of y∗ in min­
imization problem Equation 4.3. This means that the problem occurs in problem
Equation 4.4 or in the optimization of z∗.

38
6. Investigating a failing

forecasting case

(a) Convergence of residue for 2019­01 First
usage

(b) Convergence of residue for 2019­01 infinite
loop

Figure 6.2 The convergence of residue of 2019­01 with both LSQR and
Conjugate Gradient. These are both with selection and weight. LSQR does
not converge to 0 in a reasonable amount of time while Conjugate Gradient
does for the initial problem. In the infinite loop Conjugate Gradient is unable
to find a solution while LSQR has the same issues as in the initial problem.

6.4. Different sizes for A for different calculation years
In the initiation phase Radon adds the control sequences to 𝐴. adding both

rows and columns to the matrix. However, the added rows and columns are only
equal to the number of constraints that are imposed, in this case 10 constraints.
Which does not explain the large increase that was observed earlier. What does is
the fact that Radon solves each year individually. Importing a different matrix 𝐴
for each calculation year. We checked matrix 𝐴 for the first use of SMRCG (Scaled
Minimum Residual Conjugate Gradients) in year 2019 and found the sizes which we
note below. When the calculations are underway matrix 𝐴 no longer changes in
dimension. If we look to the calculation year 2020 there is a huge difference in the
number of rows in matrix 𝐴. For each year up until a specified year, a new matrix 𝐴
is imported for that year. We give an example for different dimensions for different
calculation years:

Calculation year 2019:
Columns of A: 81238
Rows of A: 12010

Calculation year 2020:
Columns of A: 81238
Rows of A: 15922

From this we can conclude that the difference in dimensions originates from the
input.

6.5. Optimizing the initial solution 39

Figure 6.3 The convergence of residue of 2020­00 with both LSQR and
Conjugate Gradient. These are both with selection and weight. Again, Con­
jugate Gradient converges while LSQR does not.

(a) Calculation year 2019. (b) Calculation year 2020. (c) Calculation year 2021.

Figure 6.4 Convergence of residue with matrix 𝐴 as imported for year
2019, 2020 and 2021. This linear system has been solved without adding
control equations to 𝐴

(a) Calculation year 2019. (b) Calculation year 2020. (c) Calculation year 2021.

Figure 6.5 Convergence of residue with matrix 𝐴 as imported for year
2019, 2020 and 2021. In this case we did add control equations to 𝐴.

6.5. Optimizing the initial solution

We will continue the investigation by optimizing the initial solution to also fit the
constraints. Calculating a solution to the following linear system:

minz ‖z‖𝑊
subject to

𝐴z = b− 𝐴a− 𝐴y∗
𝑆∗(z+ y∗ + a) ≥ 0

0 ≤ 𝑊 ≤ ∞

(6.3)

40
6. Investigating a failing

forecasting case

This system is again solved with the conjugate gradient method. The starting
vector of the conjugate gradient algorithm used in the optimisation part is set to
x0 =max(0, −(a+y∗)). Containing only the negative values of y∗+a. The values
which are not compatible with the constraint 𝑆∗(y∗ + a) ≥ 0.

6.6. The big issue with selection

At this point the algorithm only takes into account the rows of matrix 𝐴 for
which x𝑖0 is non­zero with selector 𝑆̂. The selector 𝑆̂ selects around half of the
columns of matrix 𝐴. Calculating with matrix 𝑀 = 𝐴𝑆̂𝑊−1𝐴𝑇. Figure 6.6a shows
the eigenvalues of the used matrix 𝑀. In the case of 2019­01 matrix 𝑀 will have
around 4600 rows full of zeroes. Having so many zero eigenvalues is a cause that
conjugate gradient will not converge to a solution as shown in Figure 6.6b. This is
also the point at which Radon enters an infinite loop.

(a) The eigenvalues of matrix 𝑀 = 𝐴𝑆𝑊−1𝐴𝑇.
(b) The residue of Conjugate Gradient in the
optimisation step.

Figure 6.6 The eigenvalues of matrix 𝑀 and the residue of the Conjugate
Gradient method applied to the linear system 𝑀x = b.

6.7. Example of selection

In this section we cover how selection is applied to matrix 𝑀.

6.7.1. Visualization of selection

Let us first show a visualization of how the selection is applied in Figure 6.7.

We will apply a selection to the diagram in Figure 6.7 and select only nodes
[3, 4, 5, 6], encircled by the orange square. Selecting only the elements of the ed­

6.7. Example of selection 41

1 2 3 4

5 6

Figure 6.7 A visualization of an example education matrix and its move­
ment. In this case x ∈ ℝ(6×6). The movement from an origin category to
a destination category is shown with an arrow. We apply a selection to the
categories encircled by orange.

ucation matrix which are in both the selected row and the selected column of the
education matrix. For category 3 this is [x33,x34,x35, x36,x43,x53,x63].

6.7.2. The issue with selection

The divergence issue stems from the fact that a selector is used by Radon before
applying conjugate gradient. In this section we will have a closer look at how the
selector is used; if it does what it is supposed to; and if the result is what is expected.
We show all of these with a simple example. Let 𝐴 and 𝑆 be defined as follows:

𝐴 = [
1 2 3 4
5 6 7 8
9 10 11 12

] , 𝑆 =
⎡
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎦
. (6.4)

We want to select only the first and second column in matrix 𝐴 corresponding to
the first and second variable. Then according to the current method of applying
the selector in 𝑀 = 𝐴𝑆𝐴𝑇:

𝑀 = 𝐴𝑆𝐴𝑇 (6.5)

= [
1 2 3 4
5 6 7 8
9 10 11 12

]
⎡
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

1 5 9
2 6 10
3 7 11
4 8 12

⎤
⎥
⎥
⎦

(6.6)

= [
5 17 29
17 61 105
29 105 181

] . (6.7)

42
6. Investigating a failing

forecasting case

And if we have a selector selecting all columns with diag(𝑆) = [1, 1, 1, 1]
𝑀 = 𝐴𝑆𝐴𝑇 (6.8)

= [
30 70 110
70 174 278
110 278 446

] (6.9)

Showing that the selection does have an effect on matrix 𝑀. We will continue with
this example by applying Conjugate Gradient to the linear system 𝐴𝑆𝐴𝑇u = b with
b = [1, 2, 3]𝑇. With selector diag(𝑆) = [1, 1, 1, 1] and inital solution u0 = [0, 0, 0]𝑇
we have conjugate gradient calculate a solution u. Then the solution x for 𝐴x = b
can be calculated by

𝑆𝐴𝑇u = x = [−0.05, 0.025, 0.1, 0.175]. (6.10)

The same can be done for diag(𝑆) = [1, 1, 0, 0]. Solving linear system 𝐴𝑆𝐴𝑇u = b
with Conjugate Gradient gives the following solution for x

𝑆𝐴𝑇u = x = [−0.5, 0.75]. (6.11)

Giving a solution that ignores the last two variables of x. Which is the same solution
as calculating with the following matrix 𝐴 without selection.

𝐴̂ = [
1 2
5 6
9 10

] . (6.12)

Applying the selection thus calculates a solution to the smaller linear system 𝐴̂x = b.
At the end of the calculation Radon merges the values of x that were not selected
to the solution vector Equation 6.11. In this example the final solution would be

x∗ =
⎡
⎢
⎢
⎣

−0.5
0.75
0.1
0.175

⎤
⎥
⎥
⎦
. (6.13)

6.8. How can the selection process go wrong?

In the example of section 6.7 we see nothing that could lead the conjugate
gradient method to diverge. The issue that caused Conjugate Gradient to diverge
was rows or columns full of zeroes in matrix 𝑀. The only way that is possible if the
selector selects only the values of zero in a row or column of matrix 𝐴.

6.8.1. Zero row and column

A row or column full of zeroes is a possibility when applying a selector. We
continue with a similar example as in the previous section 6.7 to show how. We

6.8. How can the selection process go wrong? 43

define 𝐴 and 𝑆 as

𝐴 = [
1 2 3 4
5 6 7 8
0 0 11 12

] , 𝑆 =
⎡
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎦
. (6.14)

Calculating matrix 𝑀
𝑀 = 𝐴𝑆𝐴𝑇 (6.15)

= [
5 17 0
17 61 0
0 0 0

] (6.16)

As we can see matrix 𝑀 now has a row and a column filled with zeroes. An appli­
cation of Conjugate Gradient on system 𝑀x = b will not give a solution since 𝑀 is
singular.

6.8.2. Linear dependence

Another possibility is that matrix 𝑀 can contain linear dependent rows after the
selection.

𝐴 = [
1 2 3 4
5 6 7 8
2 4 11 12

] , 𝑆 =
⎡
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎦
. (6.17)

Calculating matrix 𝑀
𝑀 = 𝐴𝑆𝐴𝑇 (6.18)

= [
5 17 10
17 61 34
10 34 20

] . (6.19)

Applying Conjugate Gradient to the linear system 𝑀x = b with matrix 𝑀 from
Equation 6.19 does not converge due to the linear dependence in rows one and
three. If we bring this back to the basics then this becomes more apparent.

Take for example

𝑥1 + 𝑥2 = 1 (6.20)
2𝑥1 + 3𝑥2 = 4 (6.21)

The solution to this system is 𝑥1 = −1, 𝑥2 = 2. If we select only the first variable
we end up with the following system

𝑥1 + 0𝑥2 = 1 (6.22)
2𝑥1 + 0𝑥2 = 4, (6.23)

44
6. Investigating a failing

forecasting case

which has no solution.

6.9. Alternatives selection process

Since the current use of selection can result in singular matrices, we will attempt
to use alternative methods to using selection. The first alternative is to additionally
apply a selector to matrix 𝑀. An example will show if that works out. Another
attempt is to not calculate matrix 𝑀 and to numerically solve 𝐴𝑥 = 𝑏 with CGNE,
whilst removing the unselected columns from matrix 𝐴.

6.9.1. Additional selection on 𝑀
In this section we will also apply the selection to matrix 𝑀. Selecting only the

rows that correspond with the selected column. This allows us to also drop any
zero rows or columns that could cause issues in Conjugate Gradient. One downside
is that it could also drop non­zero and non­linear dependent rows or columns.

𝐴 = [
1 2 3 4
5 6 7 8
9 10 11 12

] , 𝑆 =
⎡
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎦
, 𝑀 = [

5 17 29
17 61 105
29 105 181

] . (6.24)

With solution x = [−0.5, 0.75, 0, 0]𝑇.

Then we select only the rows corresponding with the chosen columns:

𝑀 = [5 17
17 61] , 𝐴 = [

1 2
5 6] (6.25)

Calculating the linear system 𝑀u = b with u0 = [0, 0]𝑇 and b = [1, 2]𝑇 gives the
following solution.

u = [0.10189, 0.02651]𝑇 (6.26)

x = 𝐴𝑇u = [1 5
2 6] [0.10189, 0.02651]

𝑇 = [0.24242, 0.37878]. (6.27)

The solution of this selected system does not achieve the desired results. Even if
the results of this linear system was correct there could be another issue when the
selector selects the last column with 𝑆 = [0, 0, 0, 1]. because then what is selected
in matrix 𝑀? This does not lead to a replacement method.

6.9. Alternatives selection process 45

6.9.2. Use CGNE and remove unselected columns

The use of CGNE instead of Conjugate Gradient allows us to apply the selection
to matrix 𝐴 instead of to matrix 𝑀. In addition to this selection we will also delete
the columns that are not selected. We again use the same example:

𝐴 = [
1 2 3 4
5 6 7 8
9 10 11 12

] , 𝑆 =
⎡
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎦
. (6.28)

After applying selection and deleting the unselected columns we calculate the fol­
lowing linear system:

[
1 2
5 6
9 10

] 𝑥 = 𝑏. (6.29)

Which sadly has the same issues as the current use of the selection. We can end
up with a singular matrix because of a row full of zeroes or linear dependence.

6.9.3. Conclusion

In subsection 6.9.1 and subsection 6.9.2 we tried two alternative selection meth­
ods. Neither method gives a proper solution to the linear system or gives a solution
to a totally different linear system, unrelated to the original system. Meaning these
are not able to replace the current method of selection.

7. Conclusion and recommendations
7.1. Conclusions

In this thesis we examined the numerical Conjugate Gradient algorithm that is
used in the prediction of the number of students in the Netherlands. The addition
of international students to the education matrix caused issues with the test cases
and Radon was unable to find a solution. In this thesis we also investigated one of
the test cases to determine what caused the issue.

We determined that the Conjugate Gradient method that was implemented for
the predictions was correctly programmed. The only difference that was found
was that the diagonal preconditioner that was used was improved upon without
changing the documentation in the technological manual ([1]). The currently used
preconditioner proved to be a better choice because the used matrices are primarily
diagonal dominant matrices.

After thoroughly investigating the algorithm to solve the forecasting problem
and the international student test case we came to the conclusion that there is an
issue with the usage of a selector. The current usage of the selector in 𝐴𝑆𝐴𝑇 = 𝑀
can result in a singular matrix 𝑀. A linear system with a singular matrix does not
have a solution. So Conjugate Gradient or any other algorithm is unable to find a
solution. We have tried two methods to replace the current way of selecting but
both of them ended up with singular matrices or solutions that can not be used for
the problem.

7.2. Recommendations for further research

The work represented in this thesis shows that the issue lies within the appli­
cation of the selector. To further research how this issue can be prevented we
recommend an investigation in a few topics.

• New selection process
The issue that was found is that the current way the selector is used in the
linear system causes a singular matrix and thus a solution can not be found.
We had a look at two other methods of applying a selection. Neither of these
two methods led to a proper solution or working selection. It is recommended
to look at possible different selection processing. If this turns out to be im­
possible then the following is suggested.

• Prevent using selection
Another possibility of solving the issue is by preventing the use of selection.
Currently Radon solves the problem in multiple steps. First finding an initial

47

48 7. Conclusion and recommendations

solution without taking into account the constraints that are imposed on the
problem. It should be possible to solve the forecasting problem from the start
with all of these constraints imposed on the problem. Preventing the use of
the selector in later steps.

Bibliography
[1] H. Adriaens, K. de Vos, and P. Fontein. Technisch ontwerp rekenmodule

Radon. 2010.

[2] Gene Golub. “Numerical methods for solving linear least squares problems”.
In: Numerische Mathematik 7.3 (1965), pp. 206–216.

[3] Gene H Golub andWilliam Kahan. “Calculating the singular values and pseudo­
inverse of a matrix”. In: Journal of the Society for Industrial and Applied
Mathematics, Series B: Numerical Analysis 2.2 (1965), pp. 205–224.

[4] Gene H Golub and Charles F Van Loan. Matrix computations. Vol. 3. JHU
press, 2013.

[5] M. Heres Hoogerkamp, N. Bleijie, and C. Chiong Meza. Historisch overzicht
referentieramingen. 2021.

[6] Directie Kennis/PSB. Een stukje historie van de Leerlingenraming bij OCW.
2016.

[7] B. Kuhry. Prognoseperikelen. De voorspelkracht van prognoses van het voorzienin­
gengebruik. 1995.

[8] Cornelius Lanczos. An iteration method for the solution of the eigenvalue
problem of linear differential and integral operators. United States Governm.
Press Office Los Angeles, CA, 1950.

[9] Christopher C Paige and Michael A Saunders. “LSQR: An algorithm for sparse
linear equations and sparse least squares”. In: ACM Transactions on Mathe­
matical Software (TOMS) 8.1 (1982), pp. 43–71.

[10] Yousef Saad. Iterative methods for sparse linear systems. SIAM, 2003.

[11] Taakgroep Studentenramingen. Rhobos ’81: Raming hoger beroepsonderwijs
studentenaantallen 1981­1995. 1981.

[12] Lloyd N Trefethen and David Bau III. Numerical linear algebra. Vol. 50. Siam,
1997.

[13] C. Vuik and D. Lahaye. Scientific computing, Lecture notes for WI4201. 2012.

49

A. List of Variables
• Origin vector 𝐻 ∈ ℝ𝑛 – In the origin vector we record the number of students
in each education category before they move to the destination vector. This
vector is the same as the destination vector of the year before.

• Destination vector 𝐵 ∈ ℝ𝑛 – In the destination vector we record the number
of students that have to end up in each education category.

• Education matrix 𝑥 ∈ ℝ𝑚×𝑛 – The education matrix contains the movement
that happens in education each year. The students that reside in the origin
categories will travel to the destination categories according to the values in
the education matrix.

• Absolute constraint – An absolute constraint on the education matrix is a
predetermined control value on how many students end up in a particular
destination category. e.g. 𝑥11 + 𝑥21 = 10 if we want to impose a value of 10
on destination category 1.

• Relative constraint – A relative constraint on the education matrix is a prede­
termined percentage on students leaving an origin category. This constraint
will force a percentage of students leaving a category to go to a chosen cat­
egory. e.g. 𝑥12

𝑥11+𝑥12
= 0.1 is a relative constraint such that the stream from

category 1 to category 2 is 10 % of the whole stream of students leaving
category 1.

51

B. Solving examples of linear sys­
tems
B.1. Conjugate Gradient

In this section we cover some simple examples to check if our implemented
Conjugate Gradient algorithm with preconditioning works. We will have a look
at simple square diagonal matrices for Conjugate Gradient and a preconditioned
Conjugate Gradient. We will expand the square matrices to rectangular 𝐴 ∈ ℝ𝑚×𝑛
with 𝑚 < 𝑛 to test CGNE. After these simple matrices we will do the same for the
1D Poisson equation:

− d
2𝑢
d𝑥2 = 𝑓 (B.1)

The exact solution to this equation can be easily calculated which allows us to
compare it with the computed solution of Conjugate Gradient.

B.1.1. CG: Square diagonal matrix A

Let 𝐴 ∈ ℝ10×10, x ∈ ℝ10, b ∈ ℝ10. We want to have a simple diagonal matrix
𝐴 and a simple vector 𝑏 so we can easily see if the computed vector x from the
Conjugate Gradient algorithm is correct. For 𝐴 we pick a diagonal matrix with the
following values on the diagonal:

diag(𝐴) = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
The rest of the values of 𝐴 are zeros. For b we take the same values as diag(𝐴):

b = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
This results in the following system

⎡
⎢
⎢
⎣

1
2

⋱
10

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

x1
x2
⋮
x10

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

1
2
⋮
10

⎤
⎥
⎥
⎦

(B.2)

One can easily see that the solution of the system is the vector of ones x = 1.

Computing the solution

We first compute the solution with Conjugate Gradient and then we compute
it with a preconditioned Conjugate Gradient. The Conjugate Gradient algorithm

53

54 B. Solving examples of linear systems

requires an initial solution vector for x. For this we pick x0 = 0. With everything
set up we can run the Conjugate Gradient algorithm and are left with the following
results.

Example 1: Square Diagonal Matrix A
CG: Solution found after 16 iterations
x = [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
Preconditioned CG: Solution found after 10 iterations
x = [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
Elapsed time for Standard CG: 0.0020012855529785156 seconds
Elapsed time for Preconditioned CG: 0.0020004043579101562 seconds

As expected the solution is x = 1. The computation time of both is also the
same, but so low that we can’t draw a conclusion. For an easy diagonal example
such as this it is often the case that a solution is found after a number of iterations
equal to 𝑛 = 10. Notice that solution for Conjugate Gradient was found after 16
iterations, more than the expected 10. This is because we had a too tight of a
stopping criterion of 𝜀 = 10−20. After changing the stopping criterion to 𝜀 = 10−10
we have the following results, lowering the number of iterations.

Example 1: Square Diagonal Matrix A
CG: Solution found after 10 iterations
x = [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
Preconditioned CG: Solution found after 10 iterations
x = [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]

In Figure B.1 we can see the speed of convergence for both Conjugate Gradient
and preconditioned Conjugate Gradient. The residual of preconditioned Conjugate
Gradient converges faster at the start but will equalize with Conjugate Gradient
after 𝑛 iterations.

B.1.2. CG: Square 1D Poisson equation

We use the Conjugate Gradient algorithm to find the solution to the 1D Poisson
equation.

− d
2𝑢
d𝑥2 = 𝑓 (B.3)

We can discretize the Poisson equation using central finite difference approxi­

B.1. Conjugate Gradient 55

Figure B.1 The convergence of the residual of Conjugate Gradient and pre­
conditioned Conjugate Gradient for the system given in Equation B.2. The
residual of the preconditioned system converges faster.

mation. Using nearest neighbour we have

− d
2𝑢
d𝑥2 =

−𝑢𝑖−1 + 2𝑢𝑖 − 𝑢𝑖+1
ℎ2 + 𝒪(ℎ2). (B.4)

The discretization can be represented in stencil notation, which represents the cou­
pling of the unknowns in the left and right neighbours, by

1
ℎ2 [−1 2 −1].

We translate the 1D Poisson Equation B.3 into a linear system of equations using
the finite difference approximation

𝐴ℎuℎ = fℎ . (B.5)

Matrix 𝐴ℎ will represent the discretized differential operator. uℎ the second order
approximation of the solution u. The domain on which we practise the Poisson
example is [0, 2𝜋]. This domain will be split up into 𝑁 mesh elements, creating a
grid consisting of 𝑁+1 nodes placed on equal distance from each other at ℎ = 2𝜋

𝑁 .
All that is left is to use a suitable f with an easy to calculate second derivative.

𝑢 = 𝑥 cos(𝑥) (B.6)

− d
2𝑢
d𝑥2 = 2 sin(𝑥) + 𝑥 cos(𝑥) (B.7)

56 B. Solving examples of linear systems

The boundary conditions for this problem are Dirichelet boundary conditions

𝑢(0) = 0 (B.8)
𝑢(2𝜋) = 2𝜋 (B.9)

Since we have Dirichlet boundary conditions we can calculate the first node and
the last node separately. In addition to that we can make matrix A symmetric by
translating the connections of the left­most and right most interior points to the
left and right boundary point into contributions to f. We will give the details on the
system given in Equation B.5:

1
ℎ2

⎛
⎜⎜⎜⎜

⎝

ℎ2 0 0 … … … 0
0 2 −1 0 … … 0
⋮ −1 2 −1 0 … 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ … 0 −1 2 −1 0
0 … … 0 −1 2 0
0 … … … 0 0 ℎ2

⎞
⎟⎟⎟⎟

⎠

⎛
⎜

⎝

𝑢1
𝑢2
⋮
𝑢𝑁
𝑢𝑁+1

⎞
⎟

⎠

= ⎛⎜

⎝

𝑓1
𝑓2 + 𝛼
⋮

𝑓𝑁 + 𝛽
𝑓𝑁+1

⎞
⎟

⎠

(B.10)

Computing the solution

We run the Conjugate Gradient algorithm 1 and the preconditioned algorithm 3
for the 1D Poisson equation and get the following results.

Example 2: Square 1D Poisson equation
N=32
CG: Solution found after 30 iterations
Preconditioned CG: Solution found after 30 iterations
N=128
CG: Solution found after 126 iterations
Preconditioned CG: Solution found after 126 iterations

We plot both solutions and the exact solution in Figure B.2. The computed
solution is close to the exact solution from Equation B.7. Showing us that the
algorithm works as intended.

In Figure B.3 we have visualised the convergence of the residuals for 𝑁 = 32
and 𝑁 = 128. The last residual has been left out as there was a large jump to
10−10

B.2. CGNE
In this section we will cover the same examples as in section B.1. However, we

will make a slight modification to matrix 𝐴 by adding extra columns consisting only

B.2. CGNE 57

(a) CG Solution for 𝑁 = 32 (b) CG Solution for 𝑁 = 128

Figure B.2 CG solution u compared to the exact solution for 𝑁 = 32 and
𝑁 = 128. A higher number of grid nodes has a higher accuracy.

(a) Convergence of residue for 𝑁 = 32 (b) Convergence of residue for 𝑁 = 128.

Figure B.3 The convergence of the residuals of the square 1D Poisson sys­
tem on a logarithmic scale. For 𝑁 = 32 we have a decreasing graph. The
residual for 𝑁 = 128 is no longer a decreasing function and even increasing
in the end before hitting the stopping criterion.

of zeros. With the rectangular matrix A we can test CGNE algorithm 2.

B.2.1. CGNE: Rectangular diagonal matrix A

Let 𝐴 ∈ ℝ10×20, x ∈ ℝ30, b ∈ ℝ10. We want to have a simple rectangular matrix
𝐴 and a simple vector 𝑏 so we can easily see if the computed vector 𝑥 from the
CGNE algorithm is correct. For 𝐴 we pick the diagonal matrix from subsection B.1.1
with the following values on the diagonal:

diag(𝐴) = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

58 B. Solving examples of linear systems

We then add 10 more columns filled with a diagonal set to ones to 𝐴 making it a
rectangular matrix. For b we take the same values as diag(𝐴):

b = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

This results in the following linear system

⎡
⎢
⎢
⎣

1 0
2 0

⋱ ⋱
10 0

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

x1
x2
⋮
x20

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

1
2
⋮
10

⎤
⎥
⎥
⎦
. (B.11)

The solution for this equation is 𝑥1…𝑥10 = 1 and additionally (without loss of
generality) 𝑥11…𝑥20 = 0.

Computing the solution

We compute the solution with CGNE algorithm 2 and the preconditioned version
algorithm 4.

Example 3: Rectangular diagonal matrix A
CGNE: Solution found after 10 iterations
x = [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
CGNE Precon: Solution found after 1 iteration
x = [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

CGNE computes the expected solution in the same number of iterations as Con­
jugate Gradient did for the square matrix. CGNE Precon actually computes the
solution in its first iteration. Making it a lot faster than the non­preconditioned
CGNE and more like a direct method. When we visualise the residual in Figure B.4
we can see that the residual of the preconditioned CGNE starts a lot smaller than
of CGNE and iterates below the stopping criterion after the first iteration.

B.2.2. CGNE: Rectangular 1D Poisson equation

We follow the same steps as in subsection B.1.2. Using the CGNE algorithm to
find the solution to the 1D Poisson equation.

− d
2𝑢
d𝑥2 = 𝑓 (B.12)

B.2. CGNE 59

Figure B.4 Residuals for CGNE and preconditioned CGNE on rectangular
matrix A.

Solving the linear system associates with the central discretization, adding extra
columns containing zeros to 𝐴ℎ.

⎛
⎜⎜⎜⎜

⎝

ℎ2 0 0 … … … 0 0 … 0
0 2 −1 0 … … 0 ⋮ ⋱ ⋮
⋮ −1 2 −1 0 … ⋮ ⋮ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮ ⋮ ⋱ ⋮
⋮ … 0 −1 2 −1 0 ⋮ ⋱ ⋮
0 … … 0 −1 2 0 ⋮ ⋱ ⋮
0 … … … 0 0 ℎ2 0 … 0

⎞
⎟⎟⎟⎟

⎠

⎛
⎜

⎝

𝑢1
𝑢2
⋮

𝑢3𝑁+2
𝑢3(𝑁+1)

⎞
⎟

⎠

= ⎛⎜

⎝

𝑓1
𝑓2
⋮
𝑓𝑁
𝑓𝑁+1

⎞
⎟

⎠

(B.13)
With

f = 𝑥 cos(𝑥). (B.14)

Computing the solution

The solution to the system given in Equation B.13 can be computed with the
CGNE algorithm 2.

Example 4: Rectangular 1D Poisson equation
N=32
CGNE: Solution found after 54 iterations
CGNE Precon: Solution found after 56 iterations
N=128

60 B. Solving examples of linear systems

CGNE: Solution found after 542 iterations
CGNE Precon: Solution found after 562 iterations

The iterations needed to calculate the solution of the 1D Poisson equation is
much larger than for the simple square matrix. We will first see if the computed
solution is correct by plotting the computed solution in Figure B.5 next to the exact
solution. From the figure we can conclude that the solution that is found is correct.

(a) CGNE and preconditioned solution for N =
32

(b) CGNE and preconditioned solution for N =
128

Figure B.5 CGNE and preconditioned solution u compared to the exact so­
lution for 𝑁 = 32 and 𝑁 = 128. A higher number of grid nodes has a higher
accuracy.

To investigate the high number of iterations needed we will take a look at the
residue of each iteration in Figure B.6. After the first 𝑛 iterations, where 𝑛 is the
number of rows of 𝐴, we can see that the residue becomes unstable. This be­
haviour is due to the the rounding errors reaching 10−16, the smallest machine­
representable number.

B.3. LSQR: 1D Poisson Equation 61

(a) CG & CGNE: Residue for Rectangular 1D
Poisson with 𝑁 = 32

(b) CG & CGNE: Residue for Rectangular 1D
Poisson with 𝑁 = 128

Figure B.6 Residue for the rectangular 1D Poisson equation for 𝑁 = 32
and 𝑁 = 128 on a logarithmic scale. Both algorithms have a difficult time
converging and after 𝑛 iterations.

B.3. LSQR: 1D Poisson Equation

In this section we will cover the same 1D Poisson equation and solve them with
the LSQR algorithm from [9]. The 1D Poisson equation is

− d
2𝑢
d𝑥2 = 𝑓 (B.15)

where we take as an example
f = 𝑥 cos(𝑥). (B.16)

LSQR will solve the linear system (given in Equation B.17), associated with the
central discretization, adding extra columns containing zeros to 𝐴ℎ.

⎛
⎜⎜⎜⎜

⎝

ℎ2 0 0 … … … 0 0 … 0
0 2 −1 0 … … 0 ⋮ ⋱ ⋮
⋮ −1 2 −1 0 … ⋮ ⋮ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮ ⋮ ⋱ ⋮
⋮ … 0 −1 2 −1 0 ⋮ ⋱ ⋮
0 … … 0 −1 2 0 ⋮ ⋱ ⋮
0 … … … 0 0 ℎ2 0 … 0

⎞
⎟⎟⎟⎟

⎠

⎛
⎜

⎝

𝑢1
𝑢2
⋮

𝑢3𝑁+2
𝑢3(𝑁+1)

⎞
⎟

⎠

= ⎛⎜

⎝

𝑓1
𝑓2
⋮
𝑓𝑁
𝑓𝑁+1

⎞
⎟

⎠

(B.17)

Computing the solution

We compute the solution to the 1D Poisson equation with LSQR for both 𝑁 = 32
and 𝑁 = 128.

62 B. Solving examples of linear systems

Example 5: LSQR Rectangular 1D Poisson equation
N=32
LSQR: Solution found after 50 iterations
N=128
LSQR: Solution found after 482 iterations

The number of iterations needed to find the solution with LSQR is less than that
of CGNE. But it is still not the expected 𝑛 iterations. First we compare the LSQR
solution with the exact solution in Figure B.7. Showing us that the LSQR solution is
close to the exact solution in fewer iterations.

(a) Residue for Rectangular 1D Poisson with
N=32

(b) Residue for Rectangular 1D Poisson with
N=128

Figure B.7 LSQR solution compared to the exact solution for both N=32
and N=128.

To investigate why the number of iterations is not equal to 𝑛 we will plot the
residuals on each iteration in Figure B.8. As we can see the residue after iteration 𝑛
will monotonically decrease. A possible reason for the slow convergence is because
of the rounding error being 10−16.

B.3. LSQR: 1D Poisson Equation 63

(a) Residue for Rectangular 1D Poisson with
𝑁 = 32

(b) Residue for Rectangular 1D Poisson with
𝑁 = 128

Figure B.8 Residue for the rectangular 1D Poisson equation for 𝑁 = 32 and
𝑁 = 128 on a logarithmic scale.

	Introduction
	Research question
	Thesis outline

	Movement in Education
	Radon
	Constraints
	The minimization problem

	The forecasting problem
	Estimate the education matrix
	Extrapolating with POLS

	Adding the constraints
	Applying weights
	Applying additional selection

	Calculating an optimal education matrix
	The steps of the algorithm
	The algorithms of Radon
	GBLDP
	LSSSS
	SMRCG
	WBLDP0 and WBLDPX
	GMNLS
	FNDBND

	Numerically solving the forecasting problem
	Conjugate Gradient
	Krylov subspace
	Standard Conjugate Gradient
	Normal Equation Conjugate Gradient
	CGNE

	Convergence of the Conjugate Gradient method
	Conjugate Gradient preconditioner
	CGNE preconditioner

	LSQR
	Stopping Criterion
	Radon's Conjugate Gradient Algorithm
	Difference in the preconditioner
	Calculating with updated preconditioner

	Investigating a failing forecasting case
	Investigating the eigenvalues
	Calculating the eigenvalues of case 2019-01
	Comparing case 2019-01 to case 2020-00

	Cause of eigenvalue 0
	LU-factorization
	Row of zeroes by mistake
	Recalculate the eigenvalues

	Separate calculation with Conjugate Gradient and LSQR
	Do control equations break the problem?

	Different sizes for A for different calculation years
	Optimizing the initial solution
	The big issue with selection
	Example of selection
	Visualization of selection
	The issue with selection

	How can the selection process go wrong?
	Zero row and column
	Linear dependence

	Alternatives selection process
	Additional selection on M
	Use CGNE and remove unselected columns
	Conclusion

	Conclusion and recommendations
	Conclusions
	Recommendations for further research

	List of Variables
	Solving examples of linear systems
	Conjugate Gradient
	CG: Square diagonal matrix A
	CG: Square 1D Poisson equation

	CGNE
	CGNE: Rectangular diagonal matrix A
	CGNE: Rectangular 1D Poisson equation

	LSQR: 1D Poisson Equation

