Modeling the Austenite Ferrite Transformation by Cellular Automaton Improving Interface Stability Delft University of Technology

Mathias Mul September 19, 2014

TATA STEEL

1/38

Outline

1 Introduction

Microstructure The moving boundary problem

2 Model and Methods

Cellular automaton Model outline Implementation Problems

3 Results

Convergence of CA to Murray-Landis method Improving interface stability Fraction curves

4 Conclusions

TUDelft

Mathias Mul (TU Delft)

1 Introduction

Microstructure

The moving boundary problem

2 Model and Methods

Cellular automator Model outline Implementation Problems

3 Results

Convergence of CA to Murray-Landis method Improving interface stability Fraction curves

4 Conclusions

TUDelft

Mathias Mul (TU Delft)

Steel microstructure

Microstructure determines mechanical properties of steel.

Ferrite/Pearlite microstructure

Iron atom lattices

Ferrite nucleation and growth (by Kees Bos, Principal researcher at TATA Steel)

Cooling

High temperature: austenite (γ) Low temperature: ferrite (α)

TUDelft

Mathias Mul (TU Delft)

Austenite to Ferrite Transformation

September 19, 2014

/ 38

1 Introduction

Microstructure The moving boundary problem

2 Model and Methods

Cellular automator Model outline Implementation Problems

3 Results

Convergence of CA to Murray-Landis method Improving interface stability Fraction curves

4 Conclusions

TUDelft

Mathias Mul (TU Delft)

-≣->

Moving boundary problem

The problem of the moving interface S can be stated as

7́∪Delft

Mathias Mul (TU Delft)

Austenite to Ferrite Transformation

September 19, 2014

・ロト ・何ト ・ヨト ・ヨト

Introduction

Microstructure The moving boundary problem

2 Model and Methods

Cellular automaton

Model outline Implementation Problems

3 Results

Convergence of CA to Murray-Landis method Improving interface stability Fraction curves

4 Conclusions

tuDelft

Mathias Mul (TU Delft)

Cellular Automaton

Model built of cells with properties

★ state

- ★ neighbourhood
- ★ transformation rule

example:

Introduction

Microstructure The moving boundary problem

2 Model and Methods

Cellular automaton

Model outline

Implementation Problems

3 Results

Convergence of CA to Murray-Landis method Improving interface stability Fraction curves

4 Conclusions

TUDelft

Mathias Mul (TU Delft)

Model outline

- 1 Compute carbon concentration at interface cells
- 2 Compute growth velocity of interface cells
- 3 Compute growth length of interface cells
- 4 Transform cells according to a transformation rule
- 5 Redistribute excess carbon from newly transformed cells
- 6 Solve a time step of carbon diffusion in austenite

Introduction

Microstructure The moving boundary problem

2 Model and Methods

Cellular automaton Model outline

Implementation

Problems

3 Results

Convergence of CA to Murray-Landis method Improving interface stability Fraction curves

4 Conclusions

TUDelft

Mathias Mul (TU Delft)

Growth dynamics

For every interface cell *i* we define: Growth length $\ell_i \ge 0$ Growth velocity $v_i \ge 0$ Inward growth $\lambda_i \ge 0$

The velocity v is calculated according to the classical equation

$$v = M \underbrace{\Delta G(X^{ ext{interface}}, T)}_{ ext{driving force}}, \qquad ext{where} \quad \Delta G : \mathbb{R}^3 o \mathbb{R},$$

and M the interface mobility.

$$\lambda_i = \sum_{j \in \mathcal{M}_i} \mathsf{w}_{ji} \ell_j$$

 $w_{ji} = \frac{1}{\sqrt{k}}$

where cells i and j are k-level neighbours

A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

TUDelft

Mathias Mul (TU Delft)

Austenite to Ferrite Transformation

How to determine $X^{\text{interface}}$?

Growth dynamics(2)

Transformation rule: ℓ

Transformation rule: λ

TUDelft

Mathias Mul (TU Delft)

Austenite to Ferrite Transformation

▲ 壹 ▶ ▲ 壹 ▶ 壹 September 19, 2014

6 / 38

Carbon Redistribution Mechanics

tUDelft

Mathias Mul (TU Delft

Austenite to Ferrite Transformation

September 19, 2014

≣⇒

Diffusion Time Step Find $X(t + \Delta t)$ on $\Omega^{\gamma}(t)$ such that

$$\left\{ egin{array}{rcl} rac{\partial X}{\partial t} &=&
abla \cdot (D(z)
abla X) & ext{in } \Omega^{\gamma}(t), & t < ilde{t} \leq t + \Delta t \ rac{\partial X}{\partial n} &=& 0 & ext{on } \partial \Omega^{\gamma}(t) \end{array}
ight.$$

given X(t) on Ω^{γ} and D(z) on Ω .

TUDelft

Austenite to Ferrite Transformation

⊒ > September 19, 2014

< ∃ >

Interface Carbon Smoothing

Increased Diffusion at Interface

$$D = D_0 \cdot e^{-\frac{Q(z)}{RT}}$$

TUDelft

Mathias Mul (TU Delft)

Austenite to Ferrite Transformation

▶ ▲ 클 ▶ ▲ 클 ▶ · 클 · ✓ September 10, 2014 - 10

Introduction

Microstructure The moving boundary problem

2 Model and Methods

Cellular automator Model outline Implementation

Problems

Convergence of CA to Murray-Landis method Improving interface stability Fraction curves

4 Conclusions

TUDelft

Mathias Mul (TU Delft)

1-dim CA in comparison to Murray-Landis

CA: Interface S always lies on pre-set points ML: Interface S may freely move

$\mathbf{Unstable\ interfaces} \rightarrow \mathbf{Dendrites}$

14	
ŤU	Delft

Mathias Mul (TU Delft)

Austenite to Ferrite Transformation

September 19, 2014 22

Unknown parameters

- Mobility $M_0 \cdot e^{\frac{-Q^{\alpha,\gamma}}{RT}}$
- Nucleation process
- Increased interface growth at boundaries
- Smoothe range/Increased diffusion factor
- Initial austenitic structure

Mathias Mul (TU Delft)

Austenite to Ferrite Transformation

▲ □ ▶ ▲ @ ▶ ▲ 볼 ▶ ▲ 볼 ▶ 볼 · September 19, 2014 : 2

3 / 38

Introduction

Microstructure The moving boundary problem

2 Model and Methods

Cellular automator Model outline Implementation Problems

3 Results

Convergence of CA to Murray-Landis method

Improving interface stability Fraction curves

4 Conclusions

TUDelft

Mathias Mul (TU Delft)

Comparison: CA to Murray-Landis

$$\Delta z
ightarrow 0, \qquad \Delta t = 0.9 rac{\Delta z}{v_{
m max}}$$

14	
TU	Delft

Mathias Mul (TU Delft)

Austenite to Ferrite Transformation

September 19, 2014

A I >
 A I >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Introduction

Microstructure The moving boundary problem

2 Model and Methods

Cellular automator Model outline Implementation Problems

3 Results

Convergence of CA to Murray-Landis method Improving interface stability

Fraction curves

4 Conclusions

TUDelft

Mathias Mul (TU Delft)

Inward growth results

TUDelft

Mathiaa I		- 144 \
IVIAL MAS 1	VIIIII	
in a cina b i	· · · · · ·	 ~

September 19, 2014

Carbon smoothing results

$$M_0 = 0.6$$

agierocabasel, thetar0.4142, ND=15, th=15, gil=50.650, L=02m/400+1.5+005 agierocabasel, thetar2.4142, M0=1.5, th=16, gil=50.600, L=02m/400+1.5+005 agierocabasel, thetar2.4142, ND=1.5, th=15, gil=50.600, L=02m/400+1.5+005

Ť∪Delft			
		⋳⊳∢⋷⋗∢⋷⋗∊⋷,	୬ଏଙ
Mathias Mul (TU Delft)	Austenite to Ferrite Transformation	September 19, 2014	28 / 38

Combined results: Inward growth & Carbon smoothing

Indext, Hastr-2 442, M0-16, H-10, guideded, L-20-480-154-005

 $M_0 = 1.5$

f uDelft			
		▲@▶▲콜▶▲콜▶ 콜	୬ଏଙ
Mathias Mul (TU Delft)	Austenite to Ferrite Transformation	September 19, 2014	29 / 38

Fast Interface Diffusion

Test Example: Unwanted behaviour for $M_0 = 0.5$

A wobbly shape from A look from the inside Slices of the grain. the outside. reveals the dendritic structure.

Fast Interface Diffusion

$$D = D_0 \cdot e^{-\frac{\rho Q^{\gamma}}{RT}}$$

$5 \times$ higher diffusion coefficient

Outer grain view, ho= 0.9.

Inner grain view, $\rho = 0.9$.

TUDelft

Math	ias N	Anti	TU	Delf	+)
ivia cii	145 1	viui j		DCII	۰,

Austenite to Ferrite Transformation

Fast Interface Diffusion

$$D = D_0 \cdot e^{-rac{
ho Q^{\gamma}}{RT}}$$

$30 \times$ higher diffusion coefficient

Outer grain view, ho = 0.8.

Inner grain view, $\rho = 0.8$.

~ ~ ~

19, 2014

″ũ∪ Delft		
	< □ >	<⊡ > <≣ > <
Mathias Mul (TU Delft)	Austenite to Ferrite Transformation	September 1

Introduction

Microstructure The moving boundary problem

2 Model and Methods

Cellular automator Model outline Implementation Problems

3 Results

Convergence of CA to Murray-Landis method Improving interface stability

Fraction curves

4 Conclusions

TUDelft

Mathias Mul (TU Delft)

- E - >

Fraction Curve Fitting

The modeled fraction curve and the experimental fraction curve.

Ť UDelft			
	▲ □ ▶ ◀	@ + 《 문 + 《 문 + _ 문	୬୯୯
Mathias Mul (TU Delft)	Austenite to Ferrite Transformation	September 19, 2014	34 / 38

Fraction Curve Fitting

M_0 = 0.05 Fast grain boundary growth factor = 0.85 Fast interface diffusion factor = 0.75

Initial austenite grain density = 5.0e14 m^-3 Number of ferrite nucleations = 2.225e15 m^-3

thias Mul (TU Delft)

Austenite to Ferrite Transformation

September 19, 2014

5 / 38

Conclusions

- ★ Inward growth seems to reduce dendritic growth and results in less extreme grain shapes
- ★ Carbon smoothing reduces dendritic growth, smoothing area can be scaled up at higher computational costs
- ★ An increased interface diffusion coefficient reduces dendritic growth in an easy-to-implement way, at higher computational costs
- ★ Cellular Automaton is a useful framework for phase transformation models with local concentration differences.

Future Research

- ? Experimentally determine parameters for mobility and interface diffusion.
- ? Adaptive grid refinements for a thinner interface
- *?* Finite Elements for a better conditioned problem
- ? Parallel implementation for parts of the linear solver
- ? Develop cellular automaton hardware on a chip for fast computation and communication between cells

Steel structure by *Olafur Eliasson* Source: www.mymodernmet.com

