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Preface

Isogeometric analysis (IgA) is a concept that aims to unify computer-aided design and the finite element
method (FEM), by providing a common basis for the specification of the geometric models and the numer-
ical analysis. For the analysis of boundary value problems, one needs to assemble and solve a system of
equations. For linear problems, this system is linear. and there exist many different methods exist to solve
it. We can distinguish between direct methods such as the LU-decomposition, and iterative methods, like
Krylov subspace methods. Some iterative methods do not require the manipulation of the coefficients of the
linear system. As such, these methods can be used without ever storing the linear system in memory. These
methods are known as matrix-free methods.

For IgA, the system is usually assembled by using a numerical technique called Gaussian quadrature.
It is known that Gaussian quadrature is not optimal in terms of computational efficieny. When Gaussian
quadrature is used, the assembly of the linear system is usually the bottleneck in the analysis. For this reason,
there are many recent efforts that concentrate on finding more efficient means of numerical integration. One
particularly promising development is the application of weighted quadrature for this purpose, as described
in [7].

This technique is especially interesting because it is claimed that, when the linear system is assembled
and stored, the bottleneck is the speed of the memory. This means that it is potentially faster to assemble the
matrix ad-hoc when it is needed, than to load it from memory. In particular, iterative Krylov methods can be
used for this purpose, since they only require that matrix-vector products can be computed. As such, Krylov
subspace methods can be applied in a matrix-free way.

In order to benefit from such a matrix-free implementation, it is desirable to assemble the matrix in an ef-
ficient way. The process of assembly is highly parallelizable, and this can be exploited by using the concept of
computing in space. In this paradigm, hardware resources on a reconfigurable chip are configured to imple-
ment logic and arithmetic operations. This has the advantage that the degree of parallelism in the assembly is
potentially much higher than for implementations on central processing units (CPUs). In particular, we will
use the environment and hardware for dataflow computing, which is provided by Maxeler Technologies.

The project hinges on using weighted quadrature and the implementation on a dataflow engine. The
closest experts on dataflow computing were in London, England, and the experts on weighted quadrature
were in Pavia, Italy. This meant that most of the time I worked in relative isolation. I did have a mailing
correspondence with Mattia Tani (one of the authors of [7]) and Pavel Burovskiy (who works at Maxeler in
London). Both were very helpful. However, the communication over mail is limited and sensitive to miscom-
munications, and most of the progress was made during the time that I visited or was visited by either Pavel
or Mattia.

While the results from [7] were quickly reproduced, some testcases showed very bad convergence. Since
these issues were not reported anywhere, these issues were believed to be implementation bugs. A lot of effort
was spent while trying to improve the convergence. These efforts were fruitless, and it gradually became clear
that this was not an implementation issue but a mathematical one. Mathematical development of weighted
quadrature was not within the scope of this thesis, so this was an unfortunate situation. These issues made it
necessary to settle on a dataflow implementation that is specialized for a narrow range of parameters, which
limits the usefulness of the implementation.

On Tuesday June 27 2017, Mattia Tani visited Delft. He then presented the solution for the convergence
problems, as well as an efficient technique for matrix-free multiplication. These were two vital ingredients
for the dataflow implementation. While most of the design decisions for the dataflow implementation were
already made at this point, I was still able to benefit somewhat from the more efficient matrix-free imple-
mentation. However, it would certainly be beneficial for the project if these results would have been known
before the design was made.

After the meeting with Mattia, there were about two months left to incorporate the matrix-free multipli-
cation in the design, implement the design on a dataflow engine, and write this thesis. The dataflow imple-
mentation requires a lot of esoteric work, and there always seems to be more room for improvements. Testing
on a dataflow engine turned out to be a major challenge. For big problems, simulation is too slow to obtain
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iv Preface

the convergence results in a reasonable time. Moreover, to see if a design fits, it is necessary to try to map the
design to a dataflow engine. This is a time-consuming process that can take up to a day.

As a result, there was not enough time for a general, optimized implementation. The design that was
made for this project still contains lots of room for improvements, and is of little practical use. However, it
does show that a dataflow implementation is feasible, and can be significantly faster than a naive CPU imple-
mentation. Perhaps of more significance is the research that has been done on the application of weighted
quadrature for a dataflow implementation: Novel developments are consisely described, and potential pitfals
are documented. As such, it clears the way for further attempts.

This thesis is written in order to fulfill the requirements for obtaining the degree of Master of Science in
Applied Mathematics and Computer Engineering. In particular, the chapters two to five are mostly written
from a mathematical perspective. Chapters six and seven are written from an engineering perspective.

I would like to thank my supervisors Matthias Möller and Georgi Gaydadjiev for many fruitful discus-
sions. Additionally, I am very grateful for the help of Mattia Tani from the University of Pavia, for the discus-
sions about weighted quadrature, and sharing his results. I would also like to express my gratitude to Pavel
Burovskiy of Maxeler Technologies, who has invested a great amount of time and was always ready to help
me, with both technological and numerical issues.

Ruben van Nieuwpoort
Delft, September 2017
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1
Introduction

The finite element method (FEM) is an ubiquitous method for the analysis of boundary value problems.
Specifically, it can be used to find approximations to solutions of boundary value problems on a specific
domain. For industrial applications, FEM is often utilized to analyze certain properties of a geometric mod-
els. The field that deals with specifying these geometric models is called computer-aided design (CAD). The
traditional method to perform analysis on the geometry defined in CAD programs, is to convert the geomet-
ric model to a analysis-suitable geometry. In general, this conversion is not exact and the analysis-suitable
geometry only approximates the original geometry. For this reason, the conversion introduces an error. Addi-
tionally, the conversion is computationally expensive and needs to be done after each change to the geometry.

For these reasons, isogeometric analysis (IgA), which aims to make the representations used in CAD
analysis-suitable, was introduced in [1]. In this paper, techniques were introduced which make non-uniform
rational B-spline (NURBS) geometry analysis-suitable. Concretely, the geometry is made analysis-suitable by
using the basis in which the geometric models are specified as a basis for analysis.

In FEM, it is necessary to assemble a linear system, whose coefficients consist of integrals computed
over the domain. The domain is traditionally partitioned into so-called elements (and optionally, boundary
segements). The integration is then performed by looping over the elements, evaluating all integrals which
are nonzero on this element, and scattering the contributions to the FEM matrix . In contast to traditional
FEM, the elements used in IgA are structured: they form an rectangular grid.

Figure 1.1: A comparison of a structured and an unstructured mesh. This image is taken from the site of the gmsh finite element software.
This image was retrieved from www.geuz.org/gmsh/gallery/spirale.gif on september 5th, 2017.

Furthermore, the basis functions which are used in IgA are typically C k -continuous for some k ≤ 1 along
elements, whereas basis functions are only C 0-continuous in classical FEM. The integrals that arise in FEM
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2 1. Introduction

are often approximated by using a numerical integration scheme, such as the well-known Gaussian quadra-
ture rules.

The assembly of the linear system used to be a bottleneck for IgA. It is known that Gaussian quadra-
ture rules, which are the most popular numerical integration scheme for IgA, are not optimal, since they do
not take advantage of the higher continuity of the basis functions along the elements. So, by improving the
quadrature, one might hope to solve this bottleneck. Indeed, recent work such as [7] has shown that more
efficient quadrature rules exist.

In IgA, the basis functions typically have larger support than in classical FEM. The traditional approach
is to use Gaussian quadrature. In this case the assembly is a bottleneck, and it is a good idea to assemble the
matrix once, commit it to memory, and load the matrix whenever it is needed. However, the more efficient
quadrature method proposed in [7] allows the matrix to be assembled faster than it can be loaded from mem-
ory. This opens up the possibility of a matrix-free implementation: an implementation that never stores the
elements of the matrix but insteads computes the entries of the matrix as they are needed.

Of particular interest is the implementation on platforms that can take advantage of massively parallel
computations. While typical CPU’s are very fast, the number of operations that they can perform at once is
limited. Computations that can be effectively parallelized can be sped up significantly by implementing them
on a platform that allows more parallelism. Particularly, the dataflow concept is used, and the environment
for dataflow computing provided by Maxeler.

1.1. Scope
Implementations on dataflow engines are typically less flexible than implementations for a CPU. The design
process is very different than that for a CPU implementation. It requires one to decide which operations to
perform in parallel, and which ones sequentially. Hardware resources can not be shared for operations that
need to be done in parallel. Since the amount of hardware resources is limiting, the designer needs to balance
the hardware resources against the degree of parallelism. It might be necessary to optimize the way in which
the available resources are used to the value of a parameter to optimize the design (or make it fit on the FPGA
on a dataflow engine at all).

For this project, we restrict ourselves to solving Poisson’s equation for two-dimensional domains. Instead
of using the more general framework of NURBS geometry, we will only use geometries defined by B-splines.
This means it suffices to only use B-spline basis functions as a basis for analysis as well, which simplifies the
analysis slightly.

Any additional restrictions on the dataflow implementation will be introduced and explained later in this
document, in the appropriate context.

1.2. Structure
The mathematical theory behind FEM, CAD, and IgA is explained in chapter 2. Then, it is considered how
weighted quadrature can be used to efficiently assemble the isogeometric FEM matrix in chapter 3. Some
issues and their solutions are described in chapter 4, as well as some other developments in the theory of
weighted quadrature. Some linear solvers are considered in chapter 5. Then, dataflow computing is intro-
duced in chapter 6, and the dataflow design is described in chapter 7. Finally, the future work and conclusions
are discussed in chapter 8.
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1.3. Notation
Sets will be denoted with uppercase letters like V ,S,U , and their closure by the same letter with a line on top:
V ,S,U . The boundary of a setΩwill be denoted by ∂Ω. If a set V has a finite number of elements,the number
of elements will be denoted by |V |. The same letter might be used with different sub- or superscripts to refer
to a different quantity. The notation f (x) =O(g (x)) will be used to indicate that there exists some x0 ∈ R and
a constant 0 < c ∈ R such that | f (x)| < c|g (x)| whenever x > x0. The function δi , j represents the Kronecker
delta, which is defined as

δi , j =
{

1 if i = j

0 otherwise

For a function f : Ω→ R, the support supp( f ) = { x ∈ Ω : f (x) 6= 0 } denotes the subset of the domain
on which f assumes a nonzero value. If f , g : Ω → R satisfy supp( f )∩ supp(g ) 6= ;, we say that f and g
share support. Integrals over a domain Ω will denoted with

∫
Ω f (ξ) dξ. If Ω is multi-dimensional, say Ω =

[0,1]×[0,1], this can be denoted in a number of ways:
∫ 1

0

∫ 1
0 f (x, y) dx dy = ∫

Ω f (ξ) dξ. Sometimes integrals are
denoted as

∫
f (ξ) dξ, without denoting the domain of the integral. In this case the integral is to be interpreted

as an integral over the whole domain of the integrand. Similarly, the argument of a function may be omitted
to simplify notation:

∫
Ω f (x) dx = ∫

Ω f dΩ. Summations such as
∑N−1

k=0 ak may be denoted simply as
∑

k ak .
This should be interpreted as a summation over all k ∈Z for which ak is well-defined.

If the nth derivative of a function f exist, we will say that f is C n continuous. If the nth of f exists for
every n ∈ N, we say that f is C∞-continuous or smooth. For the first derivative of a real-valued function
f of one variable, Lagranges notation f ′ will be used for the first derivative, and the notation f (k) is used

for the kth derivative. For real-valued functions f of multiple variable the notation ∂ f
∂x is used to denote

partial derivatives. The kth partial derivative with respect to x is denoted ∂k f
∂xk . Further, for a function f of the

variables x1, ..., xn the gradient is defined as:

∇ f =


∂ f
∂x1
∂ f
∂x2

...
∂ f
∂xn


The notation D f will be used for the m ×n Jacobian matrix. For a function f :Rn →Rm , we have:

D f :=


∂ f1
∂x1

... ∂ f1
∂xn

...
. . .

...
∂ fm
∂x1

... ∂ fm
∂xn


The Jacobian matrix should be interpreted as a matrix-valued function, i.e. D f : Rn → Rm×n . We will denote
D f (x) = (D f )(x) ∈Rm×n .

Vectors will be denoted with bold-face Greek or lowercase Latin letters: v,ξ,Ξ ∈Rn , while matrices will be
represented by boldface, uppercase Latin letters: M ∈Rn×n . All matrices and vectors will be assumed to have
only real elements. The transpose of a matrix M or vector v is denoted by a superscript >, like in M>, v>, and
the determinant of a matrix M is denoted by det(M). Vectors are interpreted as column vectors, so that the
inner product of u and v can be written both as u·v and as u>v. The elements of a vector or matrix are denoted
with a subscript indicating the index: u = (u0,u1, ...,un−1)>,Mi , j =

∫
ψi (ξ)ψ j (ξ) dξ. Elements of vectors are

not in bold-face, so one can distinguish between a sequence of vectors v0, v1, ..., and the elements v0, v1 of a
vector v. The index starts at zero, which is sometimes a little awkward1, but this simplifies implementation in
programming languages which use zero-based arrays.

1For example, the kth element of a vector v is vk−1, not vk as one might expect.
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1.4. List of symbols

The following symbols have a consistent meaning throughout this document. They will be introduced in
the text as well, but this list can be used as a reference. The symbols are explained as they are used in this
document. Specifically, it is assumed that we are dealing with the two-dimensional case.

Ω The two-dimensional domain of the boundary value problem, which is defined as
the imageΩ= Im(s) of the mapping s :Ω0 →R2.

u The solution u :Ω→R to the boundary value problem.

s The B-spline mapping s : Ω0 → is the two-dimensional mapping that de-
fines the domain Ω of the boundary value problem. We define s(ξ,η) =
ñ1−1∑
i=0

ñ2−1∑
j=0

ci,jM̃i (ξ)Ñ j (η)

ci,j For i = 0,1, ..., ñ1 − 1, j = 0,1, ..., ñ2 − 1, the control points ci,j ∈ R2, used in the B-
spline mapping s.

M̃0, M̃1, ..., M̃ñ1−1 B-spline basis functions in the first dimension, with polynomial degree p̃1, and as-
sociated to the knot vector Ξ̃, used in the B-spline mapping s.

Ξ̃ The knot vector Ξ̃ = (ξ̃0, ξ̃1, ..., ξ̃ñ1+p̃1 ) defines the B-spline basis functions
M̃0, M̃1, ..., M̃ñ1−1 in the first dimension.

Ñ0, Ñ1, ..., Ññ2−1 B-spline basis functions in the second dimension, with polynomial degree p̃2, and
associated to the knot vector H̃ , used in the B-spline mapping s.

H̃ The knot vector H̃ = (η̃0, η̃1, ..., η̃ñ2+p̃2 ) defines the B-spline basis functions
Ñ0, Ñ1, ..., Ññ2−1 in the second dimension.

uh An approximation of the solution u : Ω→ R to the boundary value problem. The
function uh :Ω→ R is defined as a linear combination of bivariate basis functions
ψ. That is, uh(x, y) = ∑N

k=0 ukψk (x, y). The vector u ∈ RN is found by solving the
linear system A∗u = b.

ψ0,ψ1, ...,ψN−1 The basis functions ψ0,ψ1, ...,ψN−1 : Ω→ R which are used for the finite element
method, defined as ψk :=φk ◦s−1 for k = 0, 1, ..., N −1.

φ0,φ1, ...,φN−1 The multivariate B-spline basis functions defined on the parametric domain Ω0 =
[0,1]2 as φk (ξ,η) := Mk1 (ξ)Nk2 (η), where k = n1k2 +k1.

Ω0 The parametric space, defined as Ω0 = [0,1]2. Integration of Ω is typically per-
formed by a change of transformation to an integral over Ω0, so that the regular
structure can be used, and integration can be done with a square grid of quadra-
ture points.

N The number of degrees of freedom, or, equivalently, the number of FEM basis func-
tions: N = n1n2.

Q The global, two-dimensional grid of quadrature points, which is defined by a tensor
product Q =Q1 ×Q2.
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n1 The number of refined B-spline basis functions in the first dimension, which are
used in the definition of the bivariate B-spline basis functions.

M0, M1, ..., Mn1−1 The B-spline basis functions in the first dimension, with polynomial degree p1, as-
sociated to the knot vectorΞ.

Ξ The knot vector Ξ = (ξ0,ξ1, ...,ξn1+p1 ) defines the B-spline basis functions
M0, M1, ..., Mn1−1 in the first dimension. The knot vector Ξ is a refined version of
Ξ̃ (see section 2.3.1).

ξ∗0 ,ξ∗1 , ...,ξ∗
m1−1

The global quadrature points in the first dimension that can be used with weighted
quadrature.

v a,b
k,0 , v a,b

k,1 , ..., v a,b
k,m1−1

The weights for the quadrature points in the first dimension, that can be

used with weighted quadrature and which satisfy
q1

j +m1
j −1∑

s=q1
j

M (a)
j (ξ∗k,s )v a,b

k,s =
∫

M (a)
j (ξ)M (b)

k (ξ) dξ.

n2 The number of refined B-spline basis functions in the second dimension, which are
used in the definition of the bivariate B-spline basis functions.

N0, N1, ..., Nn2−1 The B-spline basis functions in the first dimension, with polynomial degree p2, as-
sociated to the knot vector H .

H The knot vector H = (η0,η1, ...,ηn2+p2 ) defines the B-spline basis functions
N0, N1, ..., Nn2−1 in the second dimension. The knot vector H is a refined version
of H̃ (see section 2.3.1).

η∗0 ,η∗1 , ...,η∗
m2−1

The global quadrature points in the second dimension that can be used with
weighted quadrature.

w a,b
k,0 , w a,b

k,1 , ..., w a,b
k,m2−1

The weights for the quadrature points in the first dimension, that can be

used with weighted quadrature and which satisfy
q2

j +m2
j −1∑

t=q2
j

N (a)
j (η∗k,t )w a,b

k,t =
∫

N (a)
j (η)N (b)

k (η) dη.





2
Finite elements and isogeometric analysis

2.1. Finite elements
2.1.1. Introduction
The finite element method is a method to solve boundary value problems. Boundary value problems pose the
problem of finding a function u :Ω→ R that satisfies a given differential equation on Ω and given boundary
conditions on the boundary ∂Ω of the domain. We will use Poisson’s problem on a two-dimensional domain
with Dirichlet boundary conditions:

For a given f ∈ L2(Ω), u∂Ω : ∂Ω→R, andΩ, find a function u :Ω→R such that

∆u = f onΩ

u = u∂Ω on ∂Ω

The ∆ represents a differential operator called the Laplace operator. For twice-differentiable functions
g : A →R on a domain A ⊂Rd , the Laplace operator is defined as

∆g =
d∑

i=1

∂2g

∂x2
i

The finite element method is a numerical method. This means that the solution u is approximated by a
function uh ≈ u. The function uh is taken to be in some finite-dimensional approximation space V h . The
space V h is spanned by a basis ψ0,ψ1, ...,ψN−1 :Ω→ R. When the basis functions ψ0, ..., ψN−1 are fixed, uh

can be expressed by a vector u = (u0,u1, ...uN−1)> ∈RN :

uh(ξ) =
N−1∑
i=0

uiψi (ξ) for ξ ∈Ω (2.1)

The elements u0,u1, ...,uN−1 ∈R are known as degrees of freedom.
Conceptually, the finite element method can be separated into several stages:

1. A method to convert the boundary value problem to a discrete system of symbolic equations. The most
popular method is the Bubnov-Galerkin method, which is often simply called the Galerkin method.

2. The discretization strategy, which describes how to obtain an actual system of equations for a given
symbolic system of equations. This involves picking the basis functions, and evaluating or approx-
imating the integrals in the symbolic system. Also, one or more methods of refinement are usually
provided, which can be used to increase the number of basis functions and thus the dimension of V h ,
so that uh ∈V h can approximate u better.

3. The solver, which solves the system of equations. If the boundary value problem is linear, the sys-
tem of equations will be linear too, and linear solvers like the conjugate gradient method, the gener-
alized minimum-residual method, or the stabilized biconjugate gradient method are popular choices.
Nonlinear systems are harder to solve, and require more advanced methods like the Newton-Rhapson
method or the Picard method (see [32]). Typical nonlinear solvers iteratively linearize the system, and
solve the linearized system with a linear solver.

7
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2.1.2. Galerkin method
The Galerkin method derives a system of symbolic equations for a given boundary value problem. The
Galerkin method is based on the weak formulation of the boundary value problem. First, let us define the
Sobolev space H 1(Ω) of functions f : Ω → R for which the first partial derivatives are square-integrable.
The weak formulation of a differential equation can be obtained by multiplying both sides by a test func-
tion v ∈ V = { v ∈ H 1(Ω) : v |∂Ω = 0 }, integrating over Ω, and demanding equality regardless of the choice of
v ∈V . Applying this to α∆u +βu = f gives

∀v ∈V :
∫
Ω
α(∆u)v +βuv dΩ=

∫
Ω

f v dΩ

One can then use theorem 9 from appendix A. and v |∂Ω = 0 to make the left-hand side symmetric:

∀v ∈V :
∫
Ω
−α(∇u ·∇v)+βuv dΩ=

∫
Ω

f v dΩ

With this equation, the complete weak formulation becomes

For a given f :Ω→R, u0 : ∂Ω→R, andΩ, find a function u ∈ H 1(Ω) such that

∀v ∈V :
∫
Ω
−α(∇u ·∇v)+βuv dΩ=

∫
Ω

f v dΩ

u = u0 on ∂Ω

The Galerkin method replaces V by a finite-dimensional approximation V h , spanned by basis functions
{ψ0,ψ1, ...,ψN−1}, and seeks an approximate solution uh ∈V h . Ignoring the boundary conditions for now, we
get the system

∀i = 0,1, ..., N −1 :
∫
Ω
−α(∇uh ·∇ψi )+βuhψi dΩ=

∫
Ω

f ψi dΩ

So uh ∈V h can be expressed as uh =∑N−1
j=0 u jψ j . Using this, we get

∀i = 0,1, ..., N −1 :
∫
Ω
−α(∇(

N−1∑
j=0

u jψ j ) ·∇ψi )+β(∇(
N−1∑
j=0

u jψ j )ψi dΩ=
∫
Ω

f ψi dΩ

Bringing the summation outside the integral yields

∀i = 0,1, ..., N −1 :
N−1∑
j=0

(∫
Ω
−α(∇ψi ·∇ψ j )+βψiψ j dΩ

)
u j =

∫
Ω

f ψi dΩ

Which can be written as a linear system Au = b of size N ×N , where the finite element matrix A ∈RN×N is
defined as

Ai , j =
∫
Ω
−α(∇ψi ·∇ψ j )+βψiψ j dΩ

and the right-hand side vector b ∈RN is defined as

bi =
∫
Ω

f ψi dΩ

Furthermore, we define the stiffness matrix S as

Si , j =
∫
Ω
∇ψi ·∇ψ j dΩ (2.2)

and the mass matrix M as

Mi , j =
∫
Ω
ψiψ j dΩ (2.3)

We can now express the finite element matrix A in terms of the stiffness matrix S and mass matrix M as

A =−αS+βM

The Dirichlet boundary conditions can be implemented by a Dirichlet lift. Each degree of freedom ui0 , ui1 ,
..., uim−1 which corresponds to a basis function which is nonzero on the boundary ∂Ω is prescribed in such
a way that

∑m−1
k=0 uikψik ≈ u∂Ω on ∂Ω. As such, the boundary condition is approximately satisfied. To pick

u0,u1, ...,um−1 in such a way, one can use L2 projection on the boundary, or make sure that uh interpolates
u∂Ω in a set of points x0, x1, ... on the boundary (see section A.2.1 and theorem 3).
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2.1.3. Assembly
Suppose that the mass matrix M is to be assembled. One could separately evaluate the integrals

∫
Ωψiψ j dΩ.

However, the basis functions are usually defined on sections of the domain called elements. The domain can
be partitioned into M elements e0,e1, ...,eM−1 so that we have∫

Ω
ψiψ j dΩ=

M−1∑
k=0

∫
ek

ψiψ j dΩ

The usual approach is to loop over the elements and evaluate
∫

ek
ψiψ j dΩ for the basis functionsψi ,ψ j which

are nonzero on that element. Typically, the basis functions will have local support, and there will be a small
number of nonzero basis functions on each element. For an element on which there are n nonzero basis
functions ψk0 ,ψk1 , ...,ψkn−1 , an element matrix E ∈ Rn×n with entries Ei , j =

∫
ψkiψk j dΩ is assembled. After

the element matrix is assembled, each entry Ei , j is added to Mki ,k j (see section B.2).

2.2. B-spline geometry
NURBS are the tool of preference for CAD modeling. NURBS are intuitive to use, and NURBS geometry is able
to exactly represent conic section. The implementation of an IgA code on a dataflow engine is a proof of con-
cept, and there is no direct need to use NURBS geometry. For this reason, only B-splines will be considered
in this thesis. The theory presented can be applied to the more general case of NURBS1.

2.2.1. Splines
Splines (or spline functions) are also called piecewise polynomial. The reason is illustrated by the following
definition:

Definition 1. A spline or piecewise polynomial function of (polynomial) degree p is a function f :R→R, such
that there exist ξ0 < ξ1 < ... < ξm and polynomials p0, p1, ..., pm−1 with degree at most p such that

f (x) =
{

pk if x ∈ [ξk ,ξk+1)

0 else

The values ξ0, ξ1, ..., ξm are called breaks.

In order to define spline spaces, we introduce the concept of a knot vector:

Definition 2. A knot-vector Ξ is a non-decreasing vector (ξ0,ξ1, ...,ξm). The values ξ0, ξ1, ..., ξm are called
knots, and the number of times that a knot ξk occurs in the knot vector is called the multiplicity µk of the knot.

We can now define a space of splines, where the continuity along the breaks is defined by the multiplicities
of the knots:

Definition 3. The spline space Sp (Ξ) of degree p for a knot vector Ξ= (ξ0,ξ1, ...,ξm) is defined as the space of
splines s of order p, with breaks ξ0, ξ1, ..., ξm and support on a subset of [ξ0,ξm]. Additionally, all splines s in
the space should satisfy the continuity requirements

s is C p−µk -continuous on ξk , for k = 0, 1, ..., m

To ensure that Sp (Ξ) is well-defined and continuous, we demand thatΞ is a knot vector of degree p.

Definition 4. A knot vector is called a knot vector of degree p if all knots have a multiplicity of at most p.

It should be noted that the requirement that s is continuous implies that s(ξ0) = 0 and limx→ξm s(x) = 0.
Sometimes, this is not desirable. To remove this restriction, the concept of an open knot vector of degree p is
introduced:

Definition 5. A knot vector is called an open knot vector of degree p when the first and last knot have multi-
plicity p +1, and all other knots have a multiplicity of at most p.

1NURBS basis functions N0, N1, ..., Nn−1 can be defined based on a set of weights w0, w1, ..., wn−1 and B-spline basis functions

B0,B1, ...,Bn−1 as Ni (ξ) = wi Bi (ξ)∑n−1
j=0 w j B j (ξ)
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It should be noted that a knot vector can be an open knot vector of degree p without being a (normal)
knot vector of degree p. As a standard example, we will mostly work with knot vectors where the knots are
uniformly distributed on the interval [0,1].

Definition 6. A knot vector Ξ = (ξ0,ξ1, ...,ξm) is called an uniform knot vector when ξk −ξk−1 = c for all k =
1,2, ...,m and some constant c > 0. A knot vector of the same form is called an uniform open knot vector of
degree p when ξ0 and ξn have multiplicity p + 1, and ξk+1 − ξk = c for k = p + 1, p + 2, ...,m − p and some
constant c > 0.

2.2.2. B-splines
B-splines2 have a rich mathematical history (see [10] for a survey by de Boor). The recursive definition that is
commonly used to introduce B-splines was presented in [11] by de Boor.

Definition 7. For d ≥ 1, a d-dimensional B-spline curve s : R→ Rd is defined as a linear combination of B-
spline basis functions N0,p , N1,p , ..., Nn−1,p :R→R:

s(ξ) =
n−1∑
i=0

ciNi ,p (ξ) (2.4)

The image s is a one-dimensional subset ofRd . It is common to identify s with this subset and refer to both as
a B-spline curve. The coefficients c0,c1, ...,cn−1 ∈Rd are called control points, and the B-spline basis functions
N0,p , N1,p , ..., Nn−1,p : R→ R are defined by the Cox-de-Boor recursion formula. The following version is from
[12]:

Ni ,0(ξ) =
{

1 if ξ ∈ [ξi ,ξi+1)

0 otherwise

Ni ,p+1(ξ) =αi ,p (ξ)Ni ,p (ξ)+ (1−αi+1,p (ξ))Ni+1,p (ξ)

(2.5)

for i = 0,1, ...,n −1

where

αi ,p (ξ) :=
{

0 if ξi = ξi+p+1
ξ−ξi

ξi+p+1−ξi
otherwise

The B-spline basis functions depend on the polynomial degree p and a knot vector Ξ = (ξ0,ξ1, ...,ξn+p ) of
degree p. The index p, denoting the polynomial degree, will often be omitted when its value if clear from the
context or irrelant, so that Ni denotes the same basis function as Ni ,p .

Figure 2.1: Examples of B-splines through two- and three-dimensional space.

2The term ‘B-splines’ is an abbreviation for ‘basis splines’. B-splines were introduced as basis functions for the spline space. However,
the CAD community has adopted the term to refer to splines which are represented in terms of these basis functions. This has caught
on, and it has become common to call the basis functions ‘B-spline basis functions’. This is the terminilogy that will be used in this
document as well.
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In figure 2.1 one can see examples of B-splines in two- and three-dimensional space. In figure 2.2, the
B-spline basis functions associated to the uniform knot vector Ξ = (0, 1

6 , 1
3 , 1

2 , 2
3 , 5

6 ,1) for polynomials orders
p = 0,1,2,3 are shown.
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Figure 2.2: The B-spline basis functions of degree p = 0,1,2,3 associated to the knot vectorΞ= (0, 1
6 , 1

3 , 1
2 , 2

3 , 5
6 ,1).

The following characterization of B-spline basis functions is due to Curry and Schoenberg in [8] and [9]:

Theorem 1 (Curry-Schoenberg). The set of B-spline basis functions Np,0, Np,1, ..., Np,n :R→R associated to the
knot vectorΞ= (ξ0,ξ1, ...,ξn+p ) is a basis for the spline spaceSp (Ξ). Moreover, the B-splines basis functions have
minimal support: for any f ∈Sp (Ξ) with f 6= 0 we have that there exists a basis functions Nk with supp(Nk ) ⊆
supp( f ).

Proof. For a proof that Np,0, Np,1, ..., Np,n is a basis ofSp (Ξ), see [29], chapter 1, theorem 1.8 on page 8, or [8].
For a proof that the B-spline basis functions have minimal support, see [9].

In CAD, it is convenient to have continuous curves that interpolate the first and last control point. This
means that s(0) = c0, and s(1) = cn−1 if cn−1 is the last control point. This can be achieved by using an open
knot vector to define the B-spline basis functions. The effect of taking the open knot vectorΞ= (0,0,0, 1

5 , 2
5 , 3

5 , 4
5 ,1,1,1)

of degree 2 is illustrated in figure 2.3.
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Figure 2.3: The B-spline basis functions of degree p = 2 associated to the open knot vectorΞ= (0,0,0, 1
5 , 2

5 , 3
5 , 4

5 ,1,1,1).



12 2. Finite elements and isogeometric analysis

It can be seen that the first and the last B-spline basis functions N0 and N6 are discontinuous at the first
knot ξ0 = 0, and the last knot ξ7 = 1, since N0(ξ) = 0 for ξ< 0, but N0(0) = 1. Likewise, we have limξ→1 N6ξ= 1,
but N6(ξ) = 0 for ξ ≥ 1. However, since s is only defined on [0,1), s is still continuous. In practice, we will
extend the domain of s to [0,1] by the following convention.

Convention 1. Unless indicated otherwise, the knot vector Ξ = (ξ0,ξ1, ...,ξn+p ) used to define B-spline basis
functions of degree p, is an open knot vector that satisfies ξp = 0, ξn = 1. Moreover, the domain of B-spline
curves will be taken as [0,1], where the convention

Nn−1,p (1) = 1

This convention ensures that B-spline curves are continuous mappings from [0,1] to Rd . In code, this is
achieved by including a special check for the last basis function: If the last basis function is evaluated at the
last knot of an open knot vector, it should evaluate to one (instead of zero).

Theorem 2. Suppose that Ξ = (ξ0,ξ1, ...,ξn+p ) is a (not necessarily open) knot vector of degree p. The basis
functions N0, N1, ..., Nn−1 of order p associated toΞ, and the B-spline curve s as in (2.4) with satisfy the following
properties:

1. N0,p , N1,p , ..., Nn−1,p ∈Sp (Ξ)

2. If the derivative of a B-spline basis function Ni ,p exists at a point ξ, it is given by

N ′
i ,p (ξ) = p

ξi+p −ξi
Ni ,p−1 − p

ξi+p+1 −ξi+1
Ni+1,p−1

3. The B-spline basis functions satisfy
∑n−1

i=0 Ni = 1 and
∑n−1

i=0 N ′
i = 0.

4. For a B-spline basis function Ni ,p we have supp(Ni ,p ) = supp(N ′
i ,p ) = [ξi ,ξi+p+1]. Moreover ξi ∈ supp(Ni ,p )

iff p = 0 ofΞ is an open knot vector of degree p.

5.
∫

Ni ,p (ξ)N j ,p (ξ) dξ,
∫

Ni ,p (ξ)N ′
j ,p (ξ) dξ,

∫
Ni ,p (ξ)N ′

j ,p (ξ) dξ, and
∫

N ′
i ,p (ξ)N ′

j ,p (ξ) dξ are all zero when-
ever |i − j | > p.

6. The B-spline basis functions satisfy 0 ≤ Ni ,p ≤ 1 and − p
h ≤ N ′

i ,p ≤ p
h , where h := mini∈{ 1,2,...,n }{ ξi −ξi−1 :

ξi−1 6= ξi } is the smallest nonzero difference between two consecutive knots.

7. On any point in the R, there are at most p +1 nonzero basis functions. More specifically, there are p +1
nonzero basis functions on ξ ∈ (ξp ,ξn), whenever ξ 6∈Ξ is not a knot.

8. IfΞ is an open knot vector, s interpolates the first and last control points: s(0) = c0, s(1) = cn−1.

Proof. A sketch of the proofs is given. The interested reader can try to prove the properties more rigorously,
or look at proofs given in [11], [29] or [26]. The first property follows from theorem 1. The second property can
be proved by taking the derivative of the relation (2.5). Using (2.5), it can be proved by induction on the degree
p that

∑n−1
i=0 Ni ,p (ξ) = 1 (ξ= 1 should be treated differently, since the value is defined by convention 2.2.2). By

taking the derivative of both sides, it follows that
∑n−1

i=0 N ′
i ,p = 0, and the third property follows. The fourth

property follows from (2.5) by induction (except for the case i = n −1, which follows from convention 2.2.2).
The fifth property follows from the fourth. The sixth property follows from the second and third property.
The seventh property follows from the fourth. For the eighth property, we can prove that Np− j , j (0) = 1 for
0 ≤ j ≤ p by using (2.5) and induction on j . Likewise we have Nn−1,p (1) = 1 by convention 2.2.2. From the
third property we have

∑n−1
i=0 Ni = 1, so that it follows that s(0) = c0, s(1) = cn−1.

Now, the problem of finding an interpolating B-spline is considered. Suppose that we define a one-

dimensional B-spline f (ξ) =
n−1∑
j=0

f j N j (ξ) and we want to choose the control points f0, f1, ..., fn−1 such that

f (ξ0) = y0, f (ξ1) = y1, ..., f (ξm−1) = ym−1. This is the interpolation problem, considered in section A.2.1. We
have the following theorem:
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Theorem 3 (Whitney-Schoenberg). For basis functions Ni0 , Ni1 , ..., Nin−1 with i0 < i1 < ... < in−1 which are
a subset of the B-spline basis functions N0, N1, ... associated to a not necessarily open knot vector Ξ, and
interpolations points ξ0 < ξ1 < ... < ξm−1, the interpolation matrix J in (A.7) is nonsingular if and only if n = m,
and

Nik (ξk ) 6= 0 for k = 0,1, ...,n −1 (2.6)

Proof. See [29], section 3.3, theorem 3.2 on page 19.

Given a knot vector, it is not immediately obvious how we can choose interpolation points that satisfy the
conditions (2.6) of the Whitney-Schoenberg theorem. For this purpose, one can define the Greville abscissae.

Definition 8. For a knot vector Ξ = (ξ0,ξ1, ...,ξm−1) of degree p, the Greville abscissae x0, x1, ..., xm−p−1 are
defined as

xk = ξk+1 +ξk+2...+ξk+p

p

Theorem 4. For B-spline basis functions N0,p , N1,p , ..., Nn−1,p associated to an open knot vectorΞ= (ξ0,ξ1, ...,ξn+p )
of degree p we have

Nk,p (xk ) 6= 0 for k = 0, 1, ..., n - 1

Proof. Suppose that ξk = xk . Then we have ξk = ξk+1 = ... = ξk+p . So, the knot ξk has multiplicity p + 1.
If k 6= 0,n − 1, we have that the multiplicity of ξk+1 is at most p. So, we can’t have ξk = ξk+1 = ... = ξk+p

or ξk+1 = ξk+2 = ... = ξk+p+1 and both inequalities are strict, so we have xk ∈ (ξk ,ξk+p+1). By property 4, it
follows that Nk (xk ) 6= 0.

Suppose now that k = 0. Then ξk is the first knot, and has multiplicity p +1, so it follows that ξk = ξk+1 =
... = ξk+p = 0 < ξp+1. So it follows that xk = 0, and we have N0(0) = 1 by property 4.

So, the Greville abscissae can be used as a standard choice for interpolation points for B-splines.

2.2.3. B-spline surfaces
Now that some theory on B-splines is on hands, we can consider how one can use B-splines to define surfaces,
that can be used to define geometry. Earlier, we have defined B-spline curves in terms of the B-spline basis
functions. In figure 2.1, B-splines through two- and three-dimensional space are shown. These curves can be
obtained by increasing ξ from 0 to 1, while tracing s(ξ) ∈ Rd . So, the curves are a one-dimensional subset3 of
Rd , which is the range { s(ξ) : ξ ∈ [0,1] }.

In CAD, one often wants to model a two-dimensional surface, or a three-dimensional volume. There are
several ways to extend the notion of B-spline curves to surfaces or volumes. A simple, but effective way of
doing is by defining multivariate basis functions as products of a univariate basis functions. The multivariate
basis functions are said to have a tensor product structure. Using a tensor product structure allows one to
define multivariate basis functions for an arbitrary number of dimensions. The following definition can be
seen as a two-dimensional analogue for definition 7.

Definition 9. For d ≥ 2, a d-dimensional B-spline surface s : [0,1]2 →Rd is defined as a linear combination of
bivariate basis functions φ0,0,φ1,0, ...,φn1−1,n2−1 : [0,1]2 →R:

s(ξ,η) =
n1−1∑
i=0

n2−1∑
j=0

ci,jφi , j (ξ,η) (2.7)

The image of s is two-dimensional subset of Rd . It is common to identify s with this subset and refer to
both as a B-spline surface. The coefficients c0,0,c1,0, ...,cn1−1,n2−1 ∈ Rd are called control points, and the basis
functions φ0,0,φ1,0, ...,φn1−1,n2−1 : [0,1]2 →R are defined using a tensor product structure:

φi , j (ξ,η) := Mi (ξ)N j (η) for i = 0,1, ...,n1 −1, j = 0,1, ...,n2 −1 (2.8)

where M0, M1, ..., Mn1−1 : [0,1] →R and N0, N1, ..., Nn2−1 : [0,1] →R are the B-spline basis functions of
polynomial degree p1, p2, respectively, associated to the knot vectorsΞ, and H , respectively.

3This assumes that not every control point is the same. In this case the subset would consist of a single point and thus be zero-
dimensional.
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Figure 2.4: Examples of B-spline surfaces in two- and three-dimensional space.

Remark 1. In practice, it is common to use multiple mappings to define a single geometry. Each mapping is
called a patch. This kind of geometry is called multi-patch geometry. For example, if we have three patches
and corresponding mapping s1, s2, and s3, the geometry would be given by Im(s1)∪ Im(s2)∪ Im(s3). In this
document, only single-patch geometry is used.

From now on, we will always assume that the control points are chosen in such a way that the B-spline
mapping s satisfies det(Ds) 6= 0. This guarantees that the inverse mapping s−1 exists. In practice, most ‘rea-
sonable’ mappings satisfy this property.

Figure 2.5: This figure shows two two-dimensional mappings. The one on the left is bijective, the one on the right is not.

Sometimes, it is desirable to enumerate the multivariate basis functions using a single index. The lex-
ographical order will be used for this purpose: we define N := n1n2, and φn1 j+i = φi , j , so that the tensor
product basis functions can be enumerated as φ0, φ1, ..., φn1n2−1. To be able to switch between the two nota-
tions quickly, we will use the variables i1 = i (mod n2) and i2 = b i

n1
c to denote the indices that correspond to

the univariate basis functions of φi :

φi (ξ,η) = Mi1 (ξ)Ni2 (η)

As an example, suppose that we have the B-spline basis functions M0, M1, ..., M6 and N0, N1, ..., N6, based
on the knot vectors Ξ= H = (0,0,0, 1

5 , 2
5 , 3

5 , 4
5 ,1,1,1) and p1 = p2 = 2. We have n1 = n2 = 7, so we have φ7 j+i =

Mi (ξ)N j (η). Figure 2.6 illustrates the relation between the bivariate basis functionφ19(ξ,η) = M5(ξ)N2(η) and
the univariate basis functions M5 and N2.
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Figure 2.6: The value of the bivariate basis functionφ19(ξ,η) = M5(ξ)N2(η) is shown on the parametric spaceΩ0 = [0,1]2. The parametric
space is annotated with graphs of the basis functions M0, M1, ..., M6 on top, and N0, N1, ..., N6 on the left. The graph of M5 and N2 is
highlighted to show the relation between the univariate basis functions and the bivariate basis function.

Many of the properties for univariate B-spline basis functions have an analogue for multivariate basis
functions. We will now state some of them which will be useful later.

1. A bivariate B-spline basis function φk (ξ,η) = Mk1 (ξ)Nk2 (η) can only share support with other tensor
product basis functionsφ j (ξ,η) = M j1 (ξ)N j2 (η) for which | j1−k1| ≤ p1 and | j2−k2| ≤ p2. Assuming that
p1 = p2 = p, there are at most (2p +1)2 (or, in general, (2p +1)d tensor product basis functions which
share support with φk .

2. A bivariate basis function φk (ξ,η) = Mk1 (ξ)Nk2 (η) only has support on [ξk1 ,ξk1+p1+1]× [ηk2 ,ηk2+p2+1].

3. A B-spline surface is interpolatory at the corner knots: s(0,0) = c0,0, s(1,0) = cñ1−1,0, s(0,1) = c0,ñ2−1,
s(1,1) = cñ1−1,ñ2−1.

These properties can be derived from the analogous properties for univariate B-spline basis functions.

2.2.4. Computational aspects

The definition of the B-spline basis functions suggests a naive algorithm to compute the value and derivative
of a B-spline basis function:
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Algorithm 1 Naive evaluation of the value of a B-spline basis function

1: function BSPLINEBASIS(Ξ, i , p,ξ) . returns Ni ,p (ξ)
2: if p = 0 then
3: if Ξ[i ] ≤ ξ<Ξ[i +p] orΞ[i +p] =Ξ[length(Ξ)−1] and ξ=Ξ[i +p] then
4: return 1
5: else
6: return 0
7: end if
8: end if

9:
return div((ξ−Ξ[i ])∗BSplineBasis(Ξ, i , p −1,ξ), (Ξ[i +p]−Ξ[i ]))

+div((Ξ[i +p +1]−ξ)∗BSplineBasis(Ξ, i +1, p −1,ξ),Ξ[i +p +1]−Ξ[i +1])
10: end function
11:

12: function BSPLINEBASISDERIVATIVE(Ξ, i , p,ξ) . returns the derivative N ′
i ,p (ξ) if it exists

13: if p = 0 then
14: return 0
15: end if
16: return p∗BSplineBasis(Ξ, i , p −1, ξ)

Ξ[i+p]−Ξ[i ] - p∗BSplineBasis(Ξ, i +1, p −1, ξ)
Ξ[i+p+1]−Ξ[i+1]

17: end function
18:

19: function DIV(numerator, denominator)
20: if numerator = 0 then
21: return 0
22: end if
23: return numerator

denominator
24: end function

This works, but there are more efficient algorithms available. From the definition (2.5), it can be seen that
there is at most one basis function Ni ,0(ξ) with Ni ,0(ξ) = 1. By starting with an array of zeroes and starting by
computing the i for which Ni ,0(ξ) = 1, one can compute the values Ni−1,1(ξ), Ni ,1(ξ), then Ni−2,2(ξ), Ni−1,2(ξ), Ni ,2(ξ),
and so on, until Ni−p,p (ξ), Ni−p+1,p (ξ), ..., Ni ,p (ξ) are computed:

Ni ,1 ≡ 1

zz ��
Ni−1,2

zz ��

Ni ,2

zz ��
Ni−2,3

zz ��

Ni−1,3

zz ��

Ni ,3

zz ��
Ni−3,4 Ni−2,4 Ni−1,4 Ni ,4

All computations can be done in-place by keeping just the rows in memory. So, with this algorithm, orig-
inally proposed in [11], the values of the p +1 basis functions can be computed:
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Algorithm 2 Efficient evaluation of all values of nonzero B-spline basis functions

1: function BSPLINEBASIS(Ξ, i , p,ξ)
. returns an array with the values of all basis functions which are nonzero at this point

2: let result be a new array of p +1 zeroes
3: if ξ<Ξ[0] or ξ≥Ξ[Ξ.length - 1] then
4: return result
5: end if . Find k such that ξ ∈ [ξk ,ξk+1)
6: k = 0
7: while ξ 6∈ [ξk ,ξk+1 do
8: k = k + 1
9: end while

10: result[0] = 1
11: for q = 0,1, ..., p −1 do
12: for j = k −q,k −q +1, ...,k do
13: α= (ξ−Ξ[ j ]) / (Ξ[ j +q +1]−Ξ[ j ])
14: result[ j −1] = result[ j −1] (1−α) * result[j]
15: result[ j ] = result[ j ] * α
16: end for
17: end for
18: return result
19: end function

Similar algorithms are published in [26]. The algorithm can also be adapted to calculate both all deriva-
tives and values at once (see section B.1). This is useful for quadratures which use a global grid of quadrature
points (like Gaussian quadrature, see section 3.1, and weighted quadrature, see section 3.3).

2.3. Isogeometric analysis
IgA was introduced by Hughes et al. in the seminal work [1]. Traditionally, it was necessary to convert geom-
etry defined in a CAD program to an analysis-suitable version of the geometry. IgA aims to perform analysis
directly on the geometry, without needing a conversion to another step. In other words, it aims to make
the original geometry suitable for analysis, so that only one representation of the geometry is needed. IgA
translates to ‘analysis on the same geometry’, which conveys the core idea quite nicely.

There are many different possible types of geometry that are used in CAD. Technically, IgA is an umbrella
term for all techniques that use a single geometry both for design and analysis. However, the original research
of Hughes et al. developed techniques to make NURBS-based geometry analysis-suitable. As such, the term
‘IgA’ is often used colloquially to refer to NURBS-based IgA specifically, instead of the more general isoge-
ometric concept. More recently, there have been efforts to apply the isogeometric concept to subdivision
surfaces (see e.g. [17]). To avoid confusion, it is usually mentioned explicitly if the geometry is not NURBS or
B-spline-based (e.g. ‘IgA on subdivision surfaces’).

There are multiple other advantages to using IgA besides avoiding the conversion step. Since the analysis-
suitable geometry is not able to represent most geometries exactly, the conversion introduces an error. For
some types of analysis (shell buckling analysis, bounday layer phenomena, and analysis involving sliding
contact), these errors are especially troublesome, and using IgA can yield big improvements.

2.3.1. Analysis with B-splines
An important ingredient in finite element analysis is the notion of refinement. Refinement is a term that is
used to describe methods to increase the number of basis functions. This is useful to obtain a bigger approx-
imation space V h , so that the approximation uh ∈ V h can approximate u better. There are different types of
refinement. Here, we define p-refinement and h-refinement.

The most obvious way to introduce new basis functions is to simply insert knots. This reduces the support
of the basis functions and allows for the refined basis to represent irregular functions with more precision. In

this project, we will define h-refinement (or sometimes knot insertion) as adding a knot with value ξk+ξk+1
2 for

each ξk 6= ξk+1. So, h-refinement introduces a new knot with multiplicity one in the middle of each element.
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Figure 2.7: The B-spline basis functions of polynomial degree 2 are plotted for a knot vector (0,0,0,1,1,1). Then, h-refinement is used
to refine the knot vector to (0,0,0, 1

2 ,1,1,1), (0,0,0, 1
4 , 1

2 , 3
4 ,1,1,1), and finally (0,0,0, 1

8 , 1
4 , 3

8 , 1
2 , 5

8 , 3
4 , 7

8 ,1,1,1). The corresponding basis
functions are plotted.

Another way to refine the basis functions is to increase the polynomial degree. To keep the same continu-
ity at the knots, the multiplicity of the knots should be increased. This is called p-refinement (or sometimes
order elevation).

Figure 2.8: The B-spline basis functions of polynomial degree 1 are plotted for a knot vector (0,0, 1
4 , 1

2 , 3
4 ,1,1). Then, p-refinement is

used to refine the knot vector to (0,0,0, 1
4 , 1

4 , 1
2 , 1

2 , 3
4 , 3

4 ,1,1,1) for p = 2, (0,0,0,0, 1
4 , 1

4 , 1
4 , 1

2 , 1
2 , 1

2 , 3
4 , 3

4 , 3
4 ,1,1,1,1) for p = 3, and finally

(0,0,0,0,0, 1
4 , 1

4 , 1
4 , 1

4 , 1
2 , 1

2 , 1
2 , 1

2 , 3
4 , 3

4 , 3
4 , 3

4 ,1,1,1,1,1) for p = 4. The corresponding basis functions are plotted.

In figures 2.7 and 2.8, the different character of h- and p-refinement can clearly been seen. Figure 2.8
also shows nicely that p-refinement preserves the continuity (in this case C 0-continuity) on the knots. In
general, p-refinement reduces the error more if the solution u is smooth, while h-refinement works better if
u changes rapidly. If we are working with a domain that is the range of a B-spline mapping, it is necessary
to preserve the continuity at the knots. Often, the solution u is smooth. In this case, it suffices to preserve
the contuinity at existing knots, and have C p−1 continuity at the other knots. This can be achieved by first
applying p-refinement, and only then applying h-refinement.

Anticipating some developments in later chapters, we will also define a special type of refinement that
lowers the continuity of the basis functions at the knots. This is obtained by keeping the same polynomial de-
gree, but increasing the multiplicity of all internal knots of the knot vector by one. By property 1 from section
2.2.2, this will lower the continuity of the B-spline basis functions at the knots4: If they were C k -continuous
before, they will be C k−1-continuous after the multiplicity of the knot is increased. This is not a usual refine-

4Or, more accurately, the continuity of all B-spline basis functions which are nonzero at a knot will be decreased at that knot.
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ment strategy, but needed in some cases when weighted quadrature is used. This type of refinement will be
simply referred to as decreasing the continuity at the knots.

It is also possible to increase the polynomial degree p without increasing the multiplicity of the inner
knots. This is called k-refinement. Since we will want to preserve the continuity at knots, this type of refine-
ment will not be used, and it is only mentioned for completeness.

Figure 2.9: The B-spline basis functions of polynomial degree 4 are plotted for a knot vector (0,0,0,0,0, 1
4 , 1

2 , 3
4 ,1,1,1,1,1). Then, the conti-

nuity is lowered at the knots to obtain the knot vectors (0,0,0,0,0, 1
4 , 1

4 , 1
2 , 1

2 , 3
4 , 3

4 ,1,1,1,1,1), (0,0,0,0,0, 1
4 , 1

4 , 1
4 , 1

2 , 1
2 , 1

2 , 3
4 , 3

4 , 3
4 ,1,1,1,1,1),

and finally (0,0,0,0,0, 1
4 , 1

4 , 1
4 , 1

4 , 1
2 , 1

2 , 1
2 , 1

2 , 3
4 , 3

4 , 3
4 , 3

4 ,1,1,1,1,1).

A note should be made on refinement with tensor product basis functions. Refinements can be made by
refining the basis functions in one of the dimensions. Often, the complexity of geometry is not uniform, and
it is desirable to do local refinements: refinements that only change the basis functions in certain region of
the geometry. Local refinement is not possible with tensor product basis functions. If a refinement is made
to one set of basis functions, the finer structure will spread across the other dimensions due to the tensor
product structure. This can be seen in figure 2.10.

Figure 2.10: This figure shows that when basis functions with a tensor product structure are used, local refinement is not possible

For this reason, there is interest in related techniques to represent B-spline geometries. However, not all
theory for tensor product isosgeometric analysis transfers directly to these other techniques. Some work has
been done to apply isogeometric analysis to alternatives to tensor product B-spline geometry, most notably
to T-splines, TBH-splines, and LR-splines (see [5], [13], and [19], respectively).

Integration on B-spline geometry
Now suppose the finite element method is to be used to solve a boundary value problem on a domain Ω

which is the range of a B-spline mapping s :Ω0 →Ω.

Remark 2. From now on, we will assume that the univariate basis functions M̃0, M̃1, ..., M̃ñ1−1 of degree p̃1

and Ñ0, Ñ1, ..., Ññ2−1 of degree p̃2 are the ones used in the definition of the mapping s. The basis functions M0,
M1, ..., Mn1−1 of order p1 and N0, N1, ..., Nn2−1 of order p2 are the basis functions which are used to define the
bivariate basis functionsφ0,φ1, ...,φN−1 by means of a tensor product. These are assumed to be refined versions
of the basis functions that are used in the mapping s, so that ñ1 ≤ n1, p̃1 ≤ p1, ñ2 ≤ n2, and p̃2 ≤ p2.
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It is natural to use the B-spline basis functions φ0,φ1, ...,φn−1 which are used in the mapping as basis
functions for the finite element method. To obtain a good approximation, it might be necessary to refine the
basis functions. However, these are defined on the parameteric spaceΩ0, and not on the physical spaceΩ. A
simple solution is to define the basis functions ψ0,ψ1, ...,ψm−1 :Ω→R for the finite element method as

ψ=φ◦s−1 (2.9)

So, the approximation space which is used in FEM is the space spanned by the functions ψ0,ψ1, ...,ψN−1.
This means that any functions in V h can be written as a linear combination of ψ0, ψ1, ..., ψN−1. Specifically,
we will use (2.1.1) and write the approximation uh ≈ u as

uh =
N−1∑
k=0

ukψk :Ω→R

Substituting this in equations (2.2) and (2.1.2), using the multivariate chain rule yields the following ex-
pressions for the stiffness and mass matrix

Si , j =
∫
Ω0

∇φT
i (ξ)G(ξ)∇φ j (ξ) dξ (2.10)

Mi , j =
∫
Ω0

φi (ξ)g (ξ)φ j (ξ) dΩ0 (2.11)

where

G(ξ) = |det(Ds(ξ))| (Ds(ξ))−>(Ds(ξ))−1 (2.12)

g = |detDs(ξ)| (2.13)

The functions G and g are called the geometric factor. The geometric factors can be evaluated with-
out the need to evaluate s−1 by using that Ds−1(ξ) = (Ds(ξ))−1. Now suppose that both Ω0 and Ω are two-
dimensional, and that s uses a tensor product structure of basis functions φi (ξ,η) = Mqi (ξ)Npi (η). We then
have

φi (ξ,η) = Mi1 (ξ)Ni2 (η) (2.14)

Substituting this in (2.11) yields

Mi , j =
∫ 1

0

∫ 1

0
Mi1 (ξ)Ni2 (η)g (ξ,η)M j1 (ξ)N j2 (η) dξ dη (2.15)

In the two-dimensional case we have ∇φi (ξ,η) ∈R2 and G(ξ,η) ∈R2×2. Moreover, we have

∇φi (ξ,η) =
(

M ′
i1

(ξ)Ni2 (η)
Mi1 (ξ)N ′

i2
(η)

)

G(ξ,η) =
(

G0,0(ξ,η) G1,0(ξ,η)
G0,1(ξ,η) G1,1(ξ,η)

)
Substituting this in (2.10) gives

Si , j =

∫ 1
0

∫ 1
0 G0,0(ξ,η)M ′

i1
(ξ)Ni2 (η)M ′

j1
(ξ)N j2 (η)dξ dη

+∫ 1
0

∫ 1
0 G0,1(ξ,η)M ′

i1
(ξ) Ni2 (η)M j1 (ξ) N ′

j2
(η)dξ dη

+∫ 1
0

∫ 1
0 G1,0(ξ,η)Mi1 (ξ)N ′

i2
(η)M ′

j1
(ξ)N j2 (η)dξ dη

+∫ 1
0

∫ 1
0 G1,1(ξ,η)Mi1 (ξ) N ′

i2
(η)M j1 (ξ) N ′

j2
(η)dξ dη

(2.16)

for the stiffness matrix. It can be seen that the four integrands consist of different geometric factors and
combinations of derivatives, but the structure is the same in each. Moreover, the structure of the integral is
also the same as for the one in the equation (2.11) for the mass matrix. Indeed the assembly of the stiffness
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and mass matrix is very similar, but assembly of the stiffness matrix requires four times as much memory and
computations.

Property (4) from section (2.2.2) and the ordering that we have defined on the bivariate basis functions
(2.8) induce a noteworthy structure on the sparsity of both the mass and the stiffness matrix. While the exact
sparsity pattern depends on the polynomial degree and knot vector of the basis functions M0, M1, ...Mn1−1,
N0, N1, ..., Nn2−1 there is a common structure that can best be visualized. This is the two-dimensional case for
polynomial degree p = 2, where all knot vectors have multiplicity one, and 7 basis functions are used in both
dimensions:

This sparsity pattern is shared by the mass and stiffness matrix. In this two-dimensional case, there are
2p +1 bands. Each band has width 2p +1, so there are at most (2p +1)2 nonzero elements in each row. In
general, the sparsity pattern of a d-dimensional matrix can be obtained by repeating the sparsity pattern of
the (d −1)-dimensional matrix (2p +1) times, and there are at most (2p +1)d nonzero elements in each row.

The matrix can be efficiently stored by storing only the bands. For this (2p+1)d N values need to be stored,
instead of the N 2 values that are required for the full matrix.





3
State of the art in isogeometric analysis

matrix assembly

Quadrature rules are a simple but effictive way to approximate integrals.

Definition 10. For a domain A and a weight function w : A → R, a quadrature rule or simply quadrature is a
set of tuples (ξ∗0 , w0), (ξ∗1 , w1), ..., (ξ∗n−1, wn−1) ∈ A×R such that

n−1∑
k=0

f (ξ∗k )wk ≈
∫

A
f (ξ)w(ξ) dξ (3.1)

for certain functions f : A → R. If w 6= 1, the quadrature is called a weighted quadrature. If we have
n−1∑
k=0

f (ξ∗k )wk = ∫
A f (ξ)w(ξ) dξ for a certain function f : A → R, the quadrature rule is said to be exact for f . If

the quadrature is exact for every function f ∈ V , it is said to be exact for V . We will refer to V as the exactness
space of the quadrature.

When the weight function w is not mentioned, it can be assumed that w = 1.
Suppose that a quadrature rule is exact on a space V . In general, the quadrature is most accurate when it

is applied to integrands which can be closely approximated by a function in the space V . This makes sense,
since using the quadrature rule to approximate

∫
f (ξ) dξ is effectively the same as approximating

∫
f (ξ) dξ by∫

f ∗(ξ) dξ, where f ∗ ∈V interpolates f at the quadrature points.
It should be noted that if we have two-dimensional square region I1 × I2, and there is a quadrature rule

(v0,ξ∗0 ), (v1,ξ∗1 )..., (vn1−1,ξ∗n1−1) for I1 and a quadrature rule (w0,η∗0 ), w1,η∗1 )..., (wn2−1,η∗n2−1) for I2, then we

can simply apply both quadrature rules1:

n1−1∑
i=0

n2−1∑
j=0

f (ξ∗i ,η∗j )vi w j ≈
∫

I1

∫
I2

f (ξ,η) dη dξ

3.1. Gaussian quadrature
The most popular quadrature rules are Gaussian quadrature rules.

Theorem 5 (Gauss). For a nonempty interval I , and 1 ≤ n ∈N, there exists a quadrature with n points which
is exact for polynomials of degree p < 2n. This quadrature rule is called the n-point Gaussian quadrature.

Proof. See [14], theorem 4.10 on page 58.

It can be shown that every quadrature that is exact for the space of polynomials of degree p, needs to have
at least d p−1

2 e quadrature points. The space of polynomials of order p and lower has dimension p +1. This
motivates to the following definition.

1This method works as long as the weight function has a tensor product structure.

23
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Definition 11. A quadrature rule for a function space V with dimension n is called an optimal quadrature or
a generalized Gaussian quadrature, if it is exact for V , and uses dn

2 e quadrature points.

Consider the space S(Ξ), Ξ= (0,0,0,0, 1
3 , 1

3 , 1
3 , 1

3 , 2
3 , 2

3 , 2
3 , 2

3 ,1,1,1,1) of splines of degree 3 which are discon-
tinuous on the knots 1

3 and 2
3 . A function f ∈ S(Ξ). The basis functions essentially exists of three separate

polynomials of degree 3, since there is no continuity along the edges. One such polynomial can be expressed
as a +bx + cx2 +d x3. So, the space S(Ξ) has dimension 12 (one can also count the number of B-spline basis
functions that are defined byΞ). When 2-point Gaussian quadrature is used on the elements, we see that it is
exact, since the splines are polynomial of order 3 on each element. Since the dimension of the space is double
the number of quadrature points, Gaussian quadrature is optimal for this space.

Now consider the space S(Ξ),Ξ = (0,0,0,0, 1
3 , 2

3 ,1,1,1,1) of splines of degree 3 which are C 2-continuous
on the knots 1

3 and 2
3 . There are 6 B-spline basis functions, so the dimension of the space is 6. Using 2-point

Gaussian quadrature on each element is exact, but not optimal, since it needs 6 quadrature points for a space
of dimension 6. Some research has been done on generating optimal quadrature rules for spline spaces (see
e.g. [16], [18], [4]).

In IgA, Gaussian quadrature is often used per element. This is natural because it fits very well in the tra-
ditional framework of looping over the elements and integrating over the elements separately, and because
the basis functions are typically polynomial on each element. Often, p +1 points are used, so that the inte-
grals (2.11) and (2.10) in the mass and stiffness matrix can be integrated exactly when the geometric factor is
constant. Of course, the geometric factor is usually not constant, so an error is introduced. In practice, this
error is small enough to yield an usable numerical linear system. For a concise description of how Gaussian
quadrature can be used to assembly the isogeometric FEM matrix, see [25].

3.2. Quadrature by interpolation

Suppose we have a space V with basis v0, v1, ..., vn−1, and a function f (ξ) =
n−1∑
j=0

f j v j (ξ) ∈ V . The integral∫
I f (ξ) dξ over some interval I can be evaluated as∫

I
f (ξ) dξ=

∫
I

n−1∑
j=0

f j v j (ξ) dξ=
n−1∑
j=0

f j

(∫
I

v j (ξ) dξ

)
If we define f = ( f0, f1, ..., fn−1) ∈Rn and h ∈Rn by hi =

∫
I vk (ξ) dξ, we can write this as a dot product∫

I
f (ξ)dξ= f ·h

Now suppose f is chosen so that f interpolates g at ξ∗0 ,ξ∗1 , ...,ξ∗m−1. To solve for f, we can proceed as in
(A.6), and solve the linear system

Jf = g

where J is the interpolation matrix for the basis functions v0, v1, ..., vn−1 and the interpolation points ξ∗0 ,ξ∗1 , ...,ξ∗m−1,
and gi = g (ξ∗i ) for i = 0,1, ...,m−1. It is assumed that the interpolation points are chosen such that J is invert-
ible. Since f ≈ g , we can assume that

∫
I f (ξ) dξ≈ ∫

I g (ξ) dξ as well. So we have∫
I

g (ξ) dξ≈ h · J−1g

Defining w := J−>h allows us to write this as∫
I

g (ξ) dξ≈ w ·g =
m−1∑
j=0

w j g (ξ j )

So we have essentially defined a quadrature rule. The weights can be computed by solving the system

J>w = h (3.2)

The system can be written more explicitly as

∀i = 0,1, ...,n −1 :
m−1∑
j=0

vi (ξ∗j )w j =
∫

I
vi (ξ) dξ (3.3)
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The same system arises when one simply picks a quadrature rule (ξ∗0 , w0), (ξ∗1 , w1), ..., (ξ∗m−1, wm−1), and
demands that the quadrature rule is exact for all the basis functions v0, v1, ..., vn−1. As such, these conditions
are called the exactness conditions.

3.3. Weighted quadrature
In [7], Francesco Calabrò, Giancarlo Sangalli and Mattia Tani propose to use weighted quadrature to approx-
imate the elements of the mass matrix:

M j ,k =
∫

N j (ξ)g (ξ)Nk (ξ) dξ (3.4)

where N0, N1, ..., Nn−1 are B-spline basis functions.
In particular, this integral is then interpreted as a weighted integral

∫
f (ξ)w(ξ) dξ, where f (ξ) = g (ξ)Nk (ξ)

and w(ξ) = N j (ξ) is the weight function. The weight function is then used to define a weighted quadrature.
We want to find quadrature points ξ∗0 < ξ∗1 < ... < ξ∗m−1 and weights w0, w1, ..., wm−1 such that the quadrature
can be used to approximate the integrals of the mass matrix in the following way:

m−1∑
k=0

f (ξk )wk ≈
∫

f (ξ)N j (ξ) dξ (3.5)

This is the general idea behind weighted quadrature. To evaluate all the elements of the mass matrix (3.4),
it is necessary to have n different quadrature rules, obtained by setting the weight function w to any of the B-
spline basis functions N0, N1, ..., Nn−1. The weights for the quadrature rule with weight function w(·) = N j (·)
will be denoted w j ,0, w j ,1, ...

In the approach described in [7], the positions of the quadrature points are chosen beforehand. To ensure
the accuracy of the quadrature, it is demanded that the quadrature rule with w(ξ) = N j (ξ) is exact for every
f ∈Sp (Ξ):

∀ f ∈Sp (Ξ) :
m−1∑
s=0

f (ξk )w j ,k =
∫

f (ξ)N j (ξ) dξ (3.6)

Since N0, N1, ..., Nn−1 is a basis for Sp (Ξ), this can be formulated in an equivalent way as:

∀i = 0,1, ...,n −1 :
m−1∑
k=0

Ni (ξk )wk =
∫

Ni (ξ)N j (ξ) dξ (3.7)

Like in quadrature by interpolation, the weights can be computed by interpreting this system as a linear
system where the weights w j ,0, w j ,1, ... are the unknowns. To reduce the computational cost of evaluating
the basis function and geometric factors during assembly, a global grid of quadrature points is used. That is,
all quadratures use the same global grid of quadrature points ξ∗0 < ξ∗1 < ... < ξ∗m−1. The values computed at
quadrature points can then be re-used for different quadratures.

To reduce the size of the linear system (3.7), the weights of all quadrature points outside the support of N j

are set to zero. We define the set of G j of indices of quadrature points in the support of N j as G j := { s : ξ∗s ∈
supp(N j ) }. The quadrature points in the domain of N j will be called active for N j . In this way, the exactness
conditions are automatically satisfied for basis functions Ni for which

∫
Ni (ξ)N j (ξ) dξ= 0. We denote the set

indices of basis functions Ni for which
∫

Ni (ξ)N j (ξ) dξ 6= 0 as F j := { i :
∫

Ni (ξ)N j (ξ) dξ 6= 0 }. Now, we can find
weights that satisfy the exactness conditions (3.7) by using a reduced linear system to compute the weights:

∀i ∈ F j :
m−1∑
s∈G j

Ni (ξs )ws =
∫

Ni (ξ)N j (ξ) dξ

In [7], it is stated without proof that the linear system has a solution when

|F j | ≤ |G j | (3.8)

for every basis function N j . That is, for every basis function N j , there need to be at least as many quadra-
ture points in its support as there are basis functions that share support with N j .

Note that we still have not defined how the weights should be picked. In [7] only the case of open knot
vectors where all internal knots have multiplicity one is considered. For these knot vectors, it is proposed
by a rule that we will call the midpoint rule. This rule states that quadrature points should be taken in the
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middle of each knot span, and on the knots. The first and last knot span are an exception: there should be p
quadrature points uniformly distributed knots on these knot spans (in addition to the quadrature points on
the knots which are the boundaries of these knot spans). Let us consider an illustrative example.

Example

The technique is now illustrated at the hand of an example. Take p = 2, Ξ = (0,0,0, 1
4 , 1

2 , 3
4 ,1,1,1). The basis

functions look as follows:
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Figure 3.1: The basis functions N0, N1, N2, N3, N4, for p = 2 andΞ= (0,0,0, 1
4 , 1

2 , 3
4 ,1,1,1).

Applying the described strategy of picking quadrature points, the global grid G of quadrature points is

(0,
1
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,
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6
,

1

4
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The vertical lines correspond to the position of quadrature points. The elements defined by the knot
vector are [0, 1

4 ), [ 1
4 , 1

2 ), [ 1
2 , 3

4 ), and [ 3
4 ,1). Using the proposed method, we define p + 1 = 3 regularly spaced

knots on the first element: ξ∗0 = 0, ξ∗1 = 1
12 , ξ∗2 = 1

6 . For the elements [ 1
4 , 1

2 ) and [ 1
2 , 3

4 ), quadrature points are
taken to be in the middle and on the edges of these elements. We see that ξ∗3 = 1

4 , ξ∗4 = 3
8 , ξ∗5 = 1

2 , ξ∗6 = 5
8 ,

ξ∗7 = 3
4 . Then, there are p +1 quadrature points on the last element, so ξ∗8 = 5

6 , ξ∗9 = 11
12 , ξ∗1 0 = 1.

Now, suppose we want to compute the quadrature (w1,0,ξ∗0 ), (w1,1,ξ∗1 ), ..., (w1,11,ξ∗11) for N1. The exactness
conditions are: ∑11

s=0 w1,s N0(ξ∗s ) = ∫ 1
0 N0(ξ)N1(ξ) dξ∑11

s=0 w1,s N1(ξ∗s ) = ∫ 1
0 N1(ξ)N1(ξ) dξ∑11

s=0 w1,s N2(ξ∗s ) = ∫ 1
0 N2(ξ)N1(ξ) dξ∑11

s=0 w1,s N3(ξ∗s ) = ∫ 1
0 N3(ξ)N1(ξ) dξ∑11

s=0 w1,s N4(ξ∗s ) = ∫ 1
0 N4(ξ)N1(ξ) dξ∑11

s=0 w1,s N5(ξ∗s ) = ∫ 1
0 N5(ξ)N1(ξ) dξ

N1 only shares support with N0, N1, N2, N3, so F1 := { 0,1,2,3 }. The support of N1 is (0, 1
2 ). Since we

have w1,k = 0 whenever ξ∗k 6∈ supp(N1) = (0, 1
2 ), we see that only quadrature points ξ∗1 ,ξ∗2 ,ξ∗3 ,ξ∗4 are active, so

G1 = { 1,2,3,4 }. The other weights are set to zero and can be ignored in the summation. Now, the condition 3.3
is satisfied for functions which do not share support with N1, since both the right-hand side and the left-hand
side will be zero. So we are left with the system:


N0(ξ∗1 ) N0(ξ∗2 ) N0(ξ∗3 ) N0(ξ∗4 )
N1(ξ∗1 ) N1(ξ∗2 ) N1(ξ∗3 ) N1(ξ∗4 )
N2(ξ∗1 ) N2(ξ∗2 ) N2(ξ∗3 ) N2(ξ∗4 )
N3(ξ∗1 ) N3(ξ∗2 ) N3(ξ∗3 ) N3(ξ∗4 )




w1,1

w1,2

w1,3

w1,4

=


∫ 1

0 N0(ξ)N1(ξ) dξ∫ 1
0 N1(ξ)N1(ξ) dξ∫ 1
0 N2(ξ)N1(ξ) dξ∫ 1
0 N3(ξ)N1(ξ) dξ





3.3. Weighted quadrature 27

Now, the B-spline basis functions in the matrix can be evaluated. Likewise, one can evaluate the integrals
on the right-hand side by using the Gaussian quadrature rule with p +1 = 3 quadrature points on each ele-
ment. We see that

∫ 1
0 N0(ξ)N1(ξ) dξ= 7

240 ,
∫ 1

0 N1(ξ)N1(ξ) dξ= 1
12 ,

∫ 1
0 N2(ξ)N1(ξ) dξ= 5

96 , and
∫ 1

0 N3(ξ)N1(ξ) dξ=
1

480 . We get the system:


4
9

1
9 0 0

1
2

2
3

1
2

1
8

1
18

2
9

1
2

3
4

0 0 0 1
8




w1,1

w1,2

w1,3

w1,4

=


7

240
1

12
5

96
1

480



Solving this system yields w1,1 = 9
160 , w1,2 = 3

80 , w1,3 = 9
160 , w1,4 = 1

60 .

In general, the linear system that is obtained this way does not need to be square, but by (3.8), it must
have at least as many unknown as equations. This underdetermined system can be solved with a singular
value decomposition, a QR-decomposition, or by solving the normal equations (see section A.3).

3.3.1. Extension to stiffness matrix

For assembling the stiffness matrix for a two-dimensional problem, integrals of the form
∫

Ni (ξ)N ′
j (ξ) dξ,∫

N ′
i (ξ)N j (ξ) dξ, and

∫
N ′

i (ξ)N ′
j (ξ) dξ need to be assembled as well. To compute quadrature rules for integrals

of the form
∫

Ni (ξ)N ′
j (ξ) dξ, only the weight function w = N ′

i is different. Again, the quadrature points in the

global grid G will be used, so only the right-hand side of the linear system is different. From now on, we will
use the notation w a,b

k,0 , w a,b
k,1 , ... for weights such that:

∑
k∈G j

N (a)
i (ξ∗k )w a,b

j ,k =
∫

N (a)
i (ξ)N (b)

j (ξ) dξ

So, the weights which were referred to as w j ,0, w j ,1, ... before, will be called w0,0
j ,0 , w0,0

j ,1 , ... from now on.

For the weights w0,1
j ,0 , w0,1

j ,1 , ... we have the weight function w = N ′
j , and we find the system

∀i ∈ F j :
m−1∑
k=0

Ni (ξ∗k )w j =
∫

I
Ni (ξ)N ′

j (ξ) dξ (3.9)

The only difference with (3.7) is the right-hand side. For the weights w a,b with a = 1, which are used for
the quadrature rules for integrals of the form

∫
N ′

k (ξ)N (b)
j (ξ) dξ, we have the exactness conditions

∀i ∈ F j :
∑

k∈G j

N (b)
j (ξi )wi =

∫
I

N (b)
j (ξ)N ′

k (ξ) dξ (3.10)

The most logical way to proceed is to mimic the example and use this as a linear system. The same exam-
ple as in the last section is used, but the weights w1,0

1,1 , w1,0
1,2 , ..., w1,0

1,4 are computed instead of w0,0
1,1 , w0,0

1,2 , ..., w0,0
1,4 .

We have p = 2, Ξ= (0,0,0, 1
4 , 1

2 , 3
4 ,1,1,1) and the global grid of quadrature points (0, 1

12 , 1
6 , 1

4 , 3
8 , 1

2 , 5
8 , 3

4 , 5
6 , 11

12 ,1).
The exactness conditions are now imposed on the derivatives of the basis functions N ′

0, N ′
1, ..., N ′

5:
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Figure 3.2: The derivatives N ′
0, N ′

1, N ′
2, N ′

3, N ′
4 of the basis functions, for p = 2 andΞ= (0,0,0, 1

4 , 1
2 , 3

4 ,1,1,1).

The linear system is

∑4
s=1 w1,0

1,s N ′
0(ξ∗s ) = ∫ 1

0 N ′
0(ξ)N1(ξ) dξ∑4

s=1 w1,0
1,s N ′

1(ξ∗s ) = ∫ 1
0 N ′

1(ξ)N1(ξ) dξ∑4
s=1 w1,0

1,s N ′
2(ξ∗s ) = ∫ 1

0 N ′
2(ξ)N1(ξ) dξ∑4

s=1 w1,0
1,s N ′

3(ξ∗s ) = ∫ 1
0 N ′

3(ξ)N1(ξ) dξ

(3.11)

Solving this system by using Gaussian elimination or QR-decomposition often works. However, in some
cases, divisions by zero occur, and invalid weights are computed. To see why this happens, it helps to look at
the system that is generated in this simple case. Using ξ∗1 = 1

12 , ξ∗2 = 1
6 , ξ∗3 = 1

4 , ξ∗4 = 3
8 , and evaluating all basis

functions and integrals, we get


− 16

3 − 8
3 0 0

4 0 −4 −2
4
3

8
3 4 0

0 0 0 2




w1,0
1,1

w1,0
1,2

w1,0
1,3

w1,0
1,4

=


− 5

12
0
3
8
1

24


This is a singular matrix, since the rows add up to zero. The reason that solving the singular system usually

works fine is because the numerical evaluation usually introduces a small error, which makes the system
nonsingular. This way, the linear system can still be solved, even for methods that are not supposed to work
for singular matrices. Of course, this behavior can not be relied on. One solution is to use a method that is
suitable for dealing with singular linear systems. One can, for example, use a singular value decomposition to
find a solution x for which ||Ax−b||l 2 is minimal. However, it is not necessary to introduce such a complicated
and computationally expensive step. Instead, it might be better to avoid ending up with a singular system.

The derivatives of the basis functions N0,2, N1,2, ... are linear, and in figure 3.2 it can be seen that not only
the rows are linearly dependent, but the derivatives N ′

0, N ′
1, ..., N5 of the basis functions are linearly depen-

dent. This suggests that the exactness conditions should not be imposed on N ′
0, N ′

1, ..., N ′
5 but instead for a

basis of this space. We will use the following theorem.

Theorem 6. Let Ξ be an open knot vector of order p, and N0,p , N1,p , ..., Nn−1,p be the B-spline basis functions
that are associated to this knot vector. consider the space that is spanned by the derivates N0,p , N1,p , ..., Nn−1,p .
This space has dimension n − 1, so the derivates N0,p , N1,p , ..., Nn−1,p themselves can not be a basis for this
space. However, the B-spline basis functions N1,p−1, N2,p−1, ..., Nn−1,p−1 of order p−1 are a basis for this space.

Proof. By property (2) from section (2.2.2), it can be seen that Sp−1(Ξ) is a basis for the space of derivatives
of S(Ξ).

Remark 3. Notice that the first basis function N0,p−1 is not in the basis, since it is zero everywhere.
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Let’s apply this to the example. Instead of using the derivatives N ′
0,2, N ′

1,2, ..., N ′
5,2, we use the basis func-

tions N1,1, N2,1, ..., N5,1.
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Figure 3.3: The basis functions N1,1, N2,1, N3,1, N4,1, N5,1 forΞ= (0,0,0, 1
4 , 1

2 , 3
4 ,1,1,1).

Now, we take all the quadrature points in the domain of N1 as active, and demand exactness for all basis
functions of degree one which have support on these quadrature points. This gives the exactness conditions

∑4
s=1 w1,0

1,s N0,1(ξ∗s ) = ∫ 1
0 N0,1(ξ)N1,2(ξ) dξ∑4

s=1 w1,0
1,s N1,1(ξ∗s ) = ∫ 1

0 N1,1(ξ)N1,2(ξ) dξ∑4
s=1 w1,0

1,s N2,1(ξ∗s ) = ∫ 1
0 N2,1(ξ)N1,2(ξ) dξ

Evaluating this gives the linear system

 2
3

1
3 0 0

1
3

2
3 1 1

2
0 0 0 1

2




w1,0
1,1

w1,0
1,2

w1,0
1,3

w1,0
1,4

=
 5

96
5

48
1

96



This linear system is underdetermined. A solution x with minimal l 2 norm ||x||l 2 can be found by solving
A>Ax = b, using a QR-decomposition or singular value decomposition (see theorem 13 and 14 in appendix
A). Using one of these techniques, we can find w1,0

1,1 = 5
96 , w1,0

1,1 = 5
48 , w1,0

1,3 = 0, w1,0
1,1 = 1

96 .

3.3.2. Efficient assembly

The quadrature rule that is used is just one element of the assembly. While weighted quadrature uses a lot less
quadrature points than Gaussian quadrature, it does not achieve the best performance when an elemental
loop is used.
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Figure 3.4: On the left, a schematic representation of the parameteric domain with the quadrature points that are used for Gauss quadra-
ture for basis functions of degree p = 2. On the right, the parameteric domain with the quadrature points that are used for weighted
quadrature for basis functions of degree p = 2.

In this section, it is described how one can use weighted quadrature to assemble matrices arising in iso-
geometric analysis efficiently.

Remark 4. In this subsection, we will deviate from the notation in the last subsection. We will perform a general
analysis and assume that there are on average r quadrature points per element. Further, we will assume that
the polynomial degree of the B-spline basis functions is p for both dimensions, and use that the number of
degrees of freedom N = n1n2 is approximately equal to the number of elements.

The traditional way to assembly the FEM matrix is to use a loop over the elements, as demonstrated in
section B.2. As shown in 2.2.3, there are (2p +1)2 nonzero basis functions on each element. So, each element
contributes to (2p+1)2 matrix elements. Since the number of elements is approximately equal to the number
of basis functions N , the assembly of the global FEM matrix costs at least O((2p +1)2N ) operations.

If the B-spline basis functions M0, M1, ..., and N0, N1, ... are both of degree p, and two quadrature rules
with r quadrature points (ξ∗0 , v0), (ξ∗1 , v1), ..., (ξ∗r−1, vr−1) and (η∗0 , w0), (η∗1 , w1), ..., (η∗r−1, vr−1) are used, one
can approximate the integral in (2.15) on a single element with the summation

Mi , j ≈
r−1∑
s=0

r−1∑
t=0

vs wt Mi1 (ξ∗s )Ni2 (η∗t )g (ξ∗s ,η∗t )M j1 (ξ∗s )N j2 (η∗t )

For simplicity, Gaussian quadrature is used here instead of weighted quadrature, but the theory applies to
weighted quadrature as well. Naively computing this sum will cost O(r 2) operations. By property 5, it follows
that there are (p +1)2 bivariate basis functions φi (ξ,η) = Mi1 (ξ)Ni2 (η) nonzero on each element (or (p +1)d

for the d-dimensional case). So, the element matrix will be (p +1)2× (p +1)2. Since each entry in the element
matrix will cost O(r 2) operations (or r d for the d-dimensional case), the total cost of assembling the element
matrix is O(p4r 2) (or O(p2d r d ) for the d-dimensional case). The cost of assembling the mass matrix this way
is O(p4r 2N ).

The idea behind sum-factorization, introduced in [3], is to re-structure the summations:

r−1∑
s=0

vs Mi1 (ξ∗s )M j1 (ξ∗s )
r−1∑
t=0

wt Ni2 (η∗t )g (ξ∗s ,η∗t )N j2 (η∗t )︸ ︷︷ ︸
Is,i2, j2

The values It ,i2, j2 should be evaluated first, and re-used in the other computations. Since s = 0, 1, ..., r −1,
and there are (p +1)2 combinations i1, j1, it follows that it costs O(r p2) to evaluate the intermediate values
It ,i2, j2 (or O(r pd ) for d dimensions). These can be re-used in the evaluation of the outer sum. So, after the
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intermediate values It ,i2, j2 are calculated, it costs only O(r ) operations to evaluate the summation. So, the
total cost of evaluating the element matrix is O(r p4) (or O(r p2d ) for d dimensions). So the mass matrix costs
O(r p2d N ) to assemble.

Row-wise assembly

As shown in the last section, it is possible to assemble an element matrix in O(r p2d ) operations. Since the
number of elements is approximately equal to the number of n basis functions2, we see that the cost of the
assembly is O(nr p2d ). More generally, every approach that uses an elementwise approach has a cost of at
least O(np2d ), since for each element the element matrix with (p+1)2d entries needs to be assembled. In this
section, it is shown that it is possible to assemble the matrix in a more efficient way.

Figure 3.5: On the left, the support ofφ17(ξ)(η) = M3(ξ)N2(η) is shown on the parameteric space. On the right, the sparsity pattern of the
FEM matrix shown, with the 18th row, which can be assembled by using the quadarature points in the support of φ17, highlighted.

The idea is to assemble a single row of the matrix at once. This can be done by fixing the function φi ,
and then computing all (2p +1)d nonzero elements Mi , j =

∫
φi (ξ)g (ξ)ψ j (ξ) dξ for this i . The idea is to use

sum-factorization again, but now loop over all quadrature points in the support of φi . Since the support is at
most p +1 elements, and we assume that the average element contains r quadrature points, we can write the
expression to evaluate as:

r (p+1)−1∑
s=0

vs Mi1 (ξ∗s )M j1 (ξ∗s )
r (p+1)−1∑

t=0
wt Ni2 (η∗t )g (ξ∗s ,η∗t )N j2 (η∗t )︸ ︷︷ ︸

Is,i2, j2

Since i is fixed, and there are p +1 nonzero N j2 (η∗t ) at any (ξ∗s ,η∗t ), there are (r (p +1))d (p +1) values that
need to be summed to calculate the intermediate values Is,i2, j2 for every ξ∗s . In the next step, there are p +1
values at r (p+1) points ξ∗s which need to be summed. The first step dominates the computational complexity,
and assembling a row this way costs O(r d pd+1). Assembling the whole mass matrix costs O(r d pd+1N ).

Weighted quadrature has on average r = 2 quadrature points per element, so it takes O(pd+1N ) time (note
that r d is considered a constant since it is assumed that d ≤ 3).

Application to two-dimensional case
Now, we show how weighted quadrature can be applied to a two-dimensional problem. Suppose that s :
[0,1]2 →Ω defines the domain Ω, and M0, M1, ..., Mm−1 and N0, N1, ..., Nn−1 are the univariate B-spline basis
functions of degree p. By (2.15), we have:

Mi , j =
∫ 1

0

∫ 1

0
Mi1 (ξ)Ni2 (η)g (ξ,η)M j1 (ξ)N j2 (η) dξ dη

2This holds even if the basis functions are defined using a tensor product.
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Suppose we have the quadrature rules (ξ∗0 , v a,b
j ,0 ), (ξ∗1 , v a,b

j ,1 ), ... for a,b ∈ { 0,1 }, j = 0, 1, ..., n1 −1 in the first

dimension, and (η∗0 , w a,b
j ,0 ), (η∗1 , w a,b

j ,1 ), ... for a,b ∈ { 0,1 }, j = 0, 1, ..., n2 −1 in the second dimension. Then we

can approximate the right-hand side of 3.3.2 with weighted quadrature to obtain:

Mi , j ≈
∑

s∈F 1
i1

v0,0
i1,s M j1 (ξ∗s )

∑
t∈F 2

i2

w0,0
i2,t g (ξ∗s ,η∗t )N j2 (η∗t )

︸ ︷︷ ︸
Is,i2, j2

(3.12)

Now suppose we have G(ξ,η) =
(

G0,0(ξ,η) G0,1(ξ,η)
G1,0(ξ,η) G1,1(ξ,η)

)
. Then we can approximate the stiffness matrix as

Si , j ≈

∑
s∈F 1

i1

v1,1
i1,s M ′

j1
(ξ∗s )

∑
t∈F 2

i2

w0,0
i2,t G0,0(ξ∗s ,η∗t )N j2 (η∗t )+ ∑

s∈F 1
i1

v0,1
i1,s M j1 (ξ∗s )

∑
t∈F 2

i2

w1,0
i2,t G0,1(ξ∗s ,η∗t )N ′

j2
(η∗t )

+ ∑
s∈F 1

i1

v1,0
i1,s M ′

j1
(ξ∗s )

∑
t∈F 2

i2

w0,1
i2,t G1,0(ξ∗s ,η∗t )N j2 (η∗t )+ ∑

s∈F 1
i1

v0,0
i1,s M j1 (ξ∗s )

∑
t∈F 2

i2

w1,1
i2,t G1,1(ξ∗s ,η∗t )N ′

j2
(η∗t )

(3.13)

Again, sum-factorization should be used to obtain the best possible asymptotic runtime. So, the values
I 0,0, I 0,1, I 1,0, and I 1,1 should be evaluated first and re-used in the other computations, so that we obtain

Si , j ≈
∑
s

v1,1
i1,s M ′

j1
(ξ∗s )I 0,0

s,i2, j2
+∑

s
v0,1

i1,s M j1 (ξ∗s )I 0,1
s,i2, j2

+∑
s

v1,0
i1,s M ′

j1
(ξ∗s )I 1,0

s,i2, j2
+∑

s
v0,0

i1,s M j1 (ξ∗s )I 1,1
s,i2, j2

where
I 0,0

s,i2, j2
:=∑

t
w0,0

i2,t G0,0(ξ∗s ,η∗t )N j2 (η∗t )

I 0,1
s,i2, j2

:=∑
t

w1,0
i2,t G0,1(ξ∗s ,η∗t )N ′

j2
(η∗t )

I 1,0
s,i2, j2

:=∑
t

w0,1
i2,t G1,0(ξ∗s ,η∗t )N j2 (η∗t )

I 1,1
s,i2, j2

:=∑
t

w1,1
i2,t G1,1(ξ∗s ,η∗t )N ′

j2
(η∗t )

3.4. Other methods
In this chapter, different assembly strategies were explored. In particular, we have considered Gaussian
quadrature, which has r = p + 1 points per element, and weighted quadrature, which has on average r = 2
quadrature points per element. The naive way to assemble the mass matrix costs O(r d p2d ) per degree of
freedom. Using elementwise assembly with sum-factorization costs O(r p2d ) per degree of freedom. Finally,
using sum-factorization and assembling row-wise has a cost of O(r d+1pd+1). Some other state-of-the-art
methods that do not use an elementwise assembly loop are now considered.

In [21], a uniform knot vector is used, so that the integrals of products of B-spline basis functions can
be looked up. The geometric factor is then included in the integral by interpolating the exact integrals. This
strategy takes O(p2d ) operations per degree of freedom to assemble the FEM matrix.

In [22], which relies on the work in [21], it is proposed to use a rank R tensor approximation to assemble
the FEM matrix in O(Rpd ) operations per degree of freedom.



4
Improvements on weighted quadrature

In this chapter, the technique described in [7] will be adapted to a more general setting. Some other math-
ematical improvements are also described. It should be noted that most of the results in this section were
communicated by Mattia Tani, and are the work of Giancarlo Sangalli and Mattia Tani. Specifically, the re-
sults in sections 4.3, 4.4, and 4.2 are based on results reported by Mattia Tani, while the work in section 4.1 is
original. Any errors in the description should be attributed to the author of this document.

While mathematical work on weighted quadrature was not within the scope of this project, the approach
presented in [7] turned out to be not directly applicable for a general IgA implementation. The results in
[7] are based on a smooth (that is, C∞-continuous) mapping. The technique needs to be adapted in order
to work for non-smooth mappings. To understand the problems that occur when the technique is applied
to non-smooth mappings, it is useful to interpret weighted quadrature as a technique that interpolates the
function on which the quadrature is applied1. Unfortunately, applying weighted quadrature to non-smooth
mappings also requires the use of basis functions which are based on an open, non-uniform knot vector,
while in [7] only uniform open knot vectors are considered.

In section 4.1, different rules for picking quadrature rules are proposed that generalize the midpoint rule
to non-uniform knot vectors. In section 4.2, the problems with non-smooth mappings are demonstrated,
analyzed, and solved. In section 4.3, a more accurate quadrature rule is described. Finally, in section 4.4 an
efficient way to performed matrix-free multiplication by a matrix that is assembled with weighted quadrature
is shown.

4.1. Generalization to non-uniform open knot vectors
In order to use weighted quadrature for non-uniform open knot vectors, it is necessary to find quadrature
points that satisfy conditions (3.8). For uniform open knot vectors, the midpoint rule from [7], which is de-
scribed in section 3.3, can be used. For non-uniform knot vectors, the situation is more complex. We present
several generalizations of the midpoint rule that can be used for non-uniform knot vectors. Just like the mid-
point rule, we will place quadrature points on the knots and evenly divided over knot spans. Since the support
of the basis functions depend on the multiplicities of the knots, it is natural to let the number of quadrature
points on each knot span (ξk ,ξk+1) for which ξk 6= ξk+1 depend on the multiplicities µk and µk+1. Indeed, this
is the approach that is taken. Moreover, we will characterize rules for picking quadrature points by a function
m :N2 →N that maps the multiplicities µk ,µk+1 of the knots to the number of quadrature points on the knot
span (ξk ,ξk+1).

It should be noted that there are several criteria for selecting rules for picking quadrature points. First,
it is important that the quadrature points are evenly divided over the elements, in order to ensure that the
quadrature rule will be accurate. Then, there are a number of ways in which the rules for picking quadrature
points influence the amount of computations that need to be done:

1. For each quadrature point, the basis functions need to be evaluated, and the weights need to be com-
puted and stored. Additionally, for each tensor product quadrature point, the geometric factor needs
to be evaluated.

1This is a nontrivial step, since the technique is not explicitly presented as an interpolation technique.
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2. For each basis function, a linear system needs to be solved in order to find the weights of the quadrature
rule corresponding to that basis function. The size of this linear system depends on the number of
active quadrature points.

These two considerations are the most important ones in the computing-in-time paradigm. In the computing-
in-space paradigm, there are other, more important considerations:

1. In the hardware implementation, it is desirable to keep some data in registers for all active quadrature
points. So, it the worst-case number of active quadrature points is high, this will make the hardware
implementation more expensive.

2. If between two basis functions the number of new active quadrature points is constant, this will make
the hardware implementation simpler and cheaper.

The different rules for picking quadrature points will have different trade-offs between these considera-
tions.

4.1.1. Max rule
The max rule for picking quadrature points is defined by

m(µ1,µ2) =
{

p +1 if µ1 +µ2 > p +1

max(µ1,µ2) otherwise

This is a straightforward generalization of the midpoint rule, with an exception for basis functions which
only have support on one knot span. These basis functions share support with p+1 basis functions. This rule
will use p +1 quadrature points in the first knot span, while the midpoint rule uses only p. This rule can be
adapted to also yield p quadrature points when min(µk ,µk+1) = 1 and max(µk ,µk+1) = p+1. If p < 4, this rule
is guaranteed to give quadrature points that satisfy conditions (3.8). When p ≥ 4, we can make sure that

This quadrature rule does not work for basis functions of order p < 4, or when enough h-refinement is
used (see section 4.1.3). The max rule is the rule that is used in the final dataflow implementation.

4.1.2. Regular rule
The regular rule for picking quarature points is defined by

m(µ1,µ2) =µ1 +µ2 −1

One should take p instead of p +1 quadrature points on the first and last element. This rule yields more
quadrature points than the maximum rule. However, this rule has the advantage that it is possible to choose
the active quadrature points in a more regular way. More specifically, when the quadrature points taken
to be ξ∗0 < ξ∗1 < ... < ξ∗m−1, the active quadrature points for basis function Nk can be taken as ξmax(0,2k−p),
ξmax(0,2k−p)+1, ..., ξmin(2k+p,m−1). This way, there are only two active basis functions for Nk that are not active
for Nk−1. This is great for a hardware implementation, since there are exactly two new active quadrature
points that need to be handled. For the max rule, this number can be anywhere from 0 to p+1. Unfortunately
there was no time to test this rule.

4.1.3. Bounds on the number of quadrature points
The regular rule yields 2(m−1)+p quadrature points in total, where m is the number of knots. For the number
of quadrature points given by the max rule, there is no simple expression. However, max rule always gives less
quadrature points than the regular rule.

We will now derive bounds on the number of active quadrature points. In general, the worst case happens
when the first and last element on which a basis function has support have the maximum number of quadra-
ture points. This is illustrated in figure 4.1. Notice that the basis function indicated in green has 4p −1 = 7
quadrature points inside its support.
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Figure 4.1: Basis functions of degree 2 for an open knot vector with three elements.

In this, there are 2(p −1)+1 knots in the inner p −1 knot spans, and 2p in the outer knot spans. So there
are 4p −1 quadrature points in the support. This is an upper bound of the number of active quadrature for
both the regular rule and the max rule. However, when the regular rule is used, one can choose to restrict to
using at most 2p +1 active quadrature rules.

Another possibility to reduce the worst-case number of active quadrature points, is to ensure that this
specific worst case never happens. This can be done by using h-refinement. h-refinement inserts knots with
multiplicity 1, which creates new knot spans. In this way, the basis functions associated to the refined knot
vector have smaller support. If there are enough knots with multiplicity 1 inserted, there can be at most one
knot with a higher multiplicity in the support of each basis function. Without proof, we state that if the last H
refinements are all h-refinements, and

2H > p +1

then the number of active quadrature points is at most 3p. This approach is used in the dataflow implemen-
tation.

4.1.4. Using global interpolation

A completely different strategy is to drop the requirement that the active quadrature points should be inside
the support of the weight function Nk . For example, the Greville abscissae can be used as the quadrature
points. This is similar to the approach that is used in [21]. Using this approach, the number of quadrature
points will be equal to the number of basis functions in the projection space, and all of the active quadrature
points for the quadrature rule with weight function Nk will also be active quadrature points for the quadrature
rule with weight function Nk−1. This is likely to be slightly less accurate, since the grid of quadrature points
is not as dense. However, it is not clear if this approach has been tested with weighted quadrature, and the
accuracy of the quadrature might be acceptable.

4.2. Generalization to non-smooth mappings

When weighted quadrature is applied to a mapping that is not C∞-continuous, it can be seen that the conver-
gence is not as good as expected. The following plots are convergence plots for one-dimensional problems.
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Testing shows that the exactness conditions are satisfied. Observing the convergence graphs for the mass
and stiffness matrix for a one-dimensional problem separately reveals a clue.
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Obviously, the problem is in the mass matrix. Unfortunately, in two dimensions the matrix has a different
structure, and the convergence is also bad for the stiffness matrix.

The author was made aware of the nature of the problem – and of its solution – by Mattia Tani. Even if the
weights are picked in such a way that the exactness conditions hold, this is not a guarantee for convergence.
In (3.3), the exactness is only imposed on the approximation space. Now suppose we want to evaluate∫

f (ξ)Ni (ξ) dξ

with a weighted quadrature rule. Using the approximation space A with weighted quadrature essentially
means that we find an l 2 projection2 f ∗ of f onto A. In order to have an accurate approximation f ∗ ≈ f , it is
necessary that the approximation space A has the same or lower continuity than the integrand f .

Suppose that the mapping s is smooth and one-dimensional. We can use the notation s : [0,1] →R to em-
phasize that s is real-valued. Then we have f (·) = |s′(·)|N j (·). Since s is C∞-continuous, |s′| is C∞-continuous
as well. The continuity of the projection space A should be equal to the continuity of the B-spline basis func-
tions N0, N1, .... So f (·) = det(Ds(·))N j (·) has the same continuity as the basis functions, and the projection
space is indeed not of higher continuity than the integrand f .

For the case of a one-dimensional B-spline mapping s(·) = ∑
k ck Ñk (·), we have f (·) = |s′(·)|N j (·). The

B-spline basis functions Ñ0, Ñ1, ... are of order p̃. The knot vector Ξ̃ is refined to obtain the knot vector Ξ.
From Ξ, the FEM basis functions N0, N1, ... of order p are obtained, so that we have p̃ ≤ p. Now assume, for
simplicity, that all internal knots of Ξ̃ have multiplicity 1. Then, s is (p̃ −1)-continuous at the knots, and s′ is
(p̃ −2)-continuous at the knots. We also assumed that the functions N0, N1, ... preserve the continuity of Ñ0,
Ñ1, ... at the knots. So N0, N1, ... are used as basis functions for the projection space, the projection space
is only (p̃ − 1)-continuous at the knots. So the projection space has a higher continuity than the integrand
f (·) = |s′(·)|N j (·) and the quadrature rule is not guaranteed to give an accurate approximation.

2More precisely, we have that f ∗ is the unique minimizer of
∑

s ( f (ξ∗s )− f ∗(ξ∗s ))2.
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For the stiffness matrix, this problem does not occur. For the stiffness matrix, N0,p−1, N1,p−1, ... are the
basis functions of the projection space. These basis functions are (p̃ −2)-continuous, just like the integrand
f (·) := | 1

s′(·) |N ′
j (·).

For the multivariate case, the problem occurs both for the mass matrix and for the stiffness matrix, since
the integrals occuring in the stiffness matrix also contains integrands of the form

∫
f (ξ)Ni (ξ) dξ (see 2.16).

This can be resolved by increasing the multiplicity of the knots of the knot vector for the approximation
space, which reduces the continuity of the approximation space at the knots. After this, p- and h-refinement
can be applied as usual. The resulting knot vector is used to obtain the basis functions of the projection space.
For the knot vector on which the univariate FEM basis functions are based, it is not necessary to increase the
multiplicity (but the same sequence of p- and h-refinements should be used).

4.3. A more accurate quadrature rule
This section describes a more accurate quadrature rule that is due to Giancarlo Sangalli and Mattia Tani.

In section 3.3.1, four different quadratures are used to evaluate integrals of the form∫
N j (ξ)g (ξ)Ni (ξ) dξ∫
N j (ξ)g (ξ)N ′

i (ξ) dξ∫
N ′

j (ξ)g (ξ)Ni (ξ) dξ∫
N ′

j (ξ)g (ξ)N ′
i (ξ) dξ

The difference between the quadrature rules for the integrals
∫

N j (ξ)g (ξ)Ni (ξ) dξ and
∫

N ′
j (ξ)g (ξ)Ni (ξ) dξ,

is that a different projection space is used. The projection space for the quadrature rules for integrals of the
form

∫
N j (ξ)g (ξ)Ni (ξ) dξ uses basis function of degree p, which are C p−µk -continuous along each knot ξk ,

while the projection space for the quadrature rules for integrals of the form
∫

N ′
j (ξ)g (ξ)Ni (ξ) dξ uses basis

functions of degree p −1 which are C p−µk−1-continuous along knots ξk .
It is possible to use one projection space that is accurate for both integrands N j (ξ)g (ξ) and N ′

j (ξ)g (ξ). This

can be done by taking the knot vector which is used to define the basis functions of the projection space, and
increasing the multiplicity of each knot by one. Then, the basis functions of degree p can be used to define
a projection space which is C p−µk−1-continuous along knots ξk (where µk denotes the multiplicity of ξk in
the first knot vector). So the quadrature rule defined by using this projection space can be used to accurately
approximate integrals of the form

∫
N j (ξ)g (ξ)Ni (ξ) dξ and

∫
N ′

j (ξ)g (ξ)Ni (ξ) dξ. The same principle works for

defining a quadrature rule which can be used for both
∫

N j (ξ)g (ξ)N ′
i (ξ) dξ and

∫
N ′

j (ξ)g (ξ)N ′
i (ξ) dξ.

So, it suffices to compute just two quadrature rules: One for integrals of the form
∫

f (ξ)Ni (ξ) dξ and
one for integrals of the form

∫
f (ξ)N ′

i (ξ) dξ. These quadratures are reported to be as accurate as Gaussian
quadrature by Mattia Tani. However, this accuracy comes at the cost of needing more than two quadrature
points per element. If the max rule is used, we obtain a minimum of three quadrature points per element. If
the regular quadrature rule is used, we obtain a minimum of four quadrature points per element.

4.4. Efficient matrix-free multiplication
Suppose we want to do a matrix-free multiplication to obtain the elements a0, a1, ..., aN−1 of the vector a = Mz,
which is obtained by multiplying some vector z = (z0, z1, ..., zN−1)> by the mass matrix M. By the definition of
matrix multiplication, we have

ai =
N−1∑
j=0

Mi , j z j

Substituting (2.1.2) gives

ai =
N−1∑
j=0

(∫
Ω
ψiψ j dΩ

)
z j

We can bring the summation inside the integrals, so that we have

ai =
∫
Ω
ψi

(
N−1∑
j=0

z jψ j

)
dΩ
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Now, for the vector z we define the associated spline z as

z(ξ,η) :=
N−1∑
j=0

z jφ j (ξ,η)

Notice that this is analogous to (2.1.1). Using (2.3.1), we have

z ◦s−1 =
N−1∑
j=0

z jψ j

We can now rewrite the formula for ai as

ai =
∫
Ω
ψi (z ◦s−1) dΩ

So, elements of a matrix-vector product can be written as an integral of a basis function with another
function z ◦ s−1. Analogous to the derivation in section 2.3.1, we can transform this integral to one in the
parametric domain:

ai =
∫
Ω0

ψi z g dΩ

Now, for the two-dimensional case we can use (2.3.1) to obtain

ai =
∫ 1

0

∫ 1

0
Mi1 (ξ)Ni2 (η)z(ξ,η) dξ dη

And if weighted quadrature is used to approximate this integral, we get

ai ≈
∑

s∈F 1
i1

v0,0
i1,s

∑
t∈F 2

i2

w0,0
i2,t z(ξ∗s ,η∗t ) (4.1)

This is a more efficient way of calculating ai than assembling a whole row of the matrix and calculating
the inner product of the row and the vector z.

The same method can be applied to the stiffness matrix to obtain a formula for the elements a0, a1, ..., aN−1

of the matrix-vector product a = Sz of the vector z with the stiffness matrix S. In this case, we have

ai =
∫
Ω
∇ψi ·∇(z ◦s−1) dΩ

=
∫
Ω0

(∇ψ)> G ∇z dΩ

Expanding this for the two-dimensional case yields

ai =
∫ 1

0

∫ 1
0 M ′

i1
(ξ)Ni2 (η)G0,0(ξ,η) ∂z

∂ξ (ξ,η)dξ dη + ∫ 1
0

∫ 1
0 M ′

i1
(ξ) Npi (η)G0,1(ξ,η) ∂z

∂η (ξ,η)dξ dη

+ ∫ 1
0

∫ 1
0 Mi1 (ξ)N ′

i2
(η)G1,0(ξ,η) ∂z

∂ξ (ξ,η)dξ dη + ∫ 1
0

∫ 1
0 Mi1 (ξ) N ′

i2
(η)G1,1(ξ,η) ∂z

∂η (ξ,η)dξ dη

And when weighted quadrature is used, we obtain

ai ≈
∑

s v1,1
i1,s

∑
t w0,0

i2,t G0,0(ξ∗s ,η∗t ) ∂z
∂ξ (ξ∗s ,η∗t ) + ∑

s v0,1
i1,s

∑
t w1,0

i2,t G0,1(ξ∗s ,η∗t ) ∂z
∂η (ξ∗s ,η∗t )

+ ∑
s v1,0

i1,s

∑
t w0,1

i2,t G1,0(ξ∗s ,η∗t ) ∂z
∂ξ (ξ∗s ,η∗t ) + ∑

s v0,0
i1,s

∑
t w1,1

i2,t G1,1(ξ∗s ,η∗t ) ∂z
∂η (ξ∗s ,η∗t )

In practice it will be useful to store the intermediate values G0,0(ξ∗s ,η∗t ) ∂z
∂ξ (ξ∗s ,η∗t ), G0,1(ξ∗s ,η∗t ) ∂z

∂η (ξ∗s ,η∗t ),

G1,0(ξ∗s ,η∗t ) ∂z
∂ξ (ξ∗s ,η∗t ), G1,1(ξ∗s ,η∗t ) ∂z

∂η (ξ∗s ,η∗t ), since this value can be re-used. For this purpose, we define:

z0,0(ξ∗,η∗) = G0,0(ξ∗s ,η∗t ) ∂z
∂ξ (ξ∗s ,η∗t )

z0,1(ξ∗,η∗) = G0,1(ξ∗s ,η∗t ) ∂z
∂η (ξ∗s ,η∗t )

z1,0(ξ∗,η∗) = G1,0(ξ∗s ,η∗t ) ∂z
∂ξ (ξ∗s ,η∗t )

z1,1(ξ∗,η∗) = G1,1(ξ∗s ,η∗t ) ∂z
∂η (ξ∗s ,η∗t )

(4.2)
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So we have

ai ≈
∑

s v1,1
i1,s

∑
t w0,0

i2,t z0,0(ξ∗s ,η∗t ) + ∑
s v0,1

i1,s

∑
t w1,0

i2,t z0,1(ξ∗s ,η∗t )

+ ∑
s v1,0

i1,s

∑
t w0,1

i2,t z1,0(ξ∗s ,η∗t ) + ∑
s v0,0

i1,s

∑
t w1,1

i2,t z1,1(ξ∗s ,η∗t )
(4.3)



5
Matrix-free solution techniques

Gaussian elimination is a simple, well-known algorithm for solving linear systems. Methods that directly
compute the exact solutio v of the linear system Mv = b are know as direct solvers. For larger linear systems,
direct methods are often too slow to be of practical use. For this reason, iterative methods are often preferred.
These methods approximate the solution v by a sequence of vectors v0,v1, ... such that limn→∞ vn = v.

5.1. Introduction to matrix-free methods

If a matrix M has a particular structure, it might be possible to calculate Mb without ever assembling M in
memory. This is called a matrix-free multiplication. One straightforward ways to do matrix-free multiplica-
tion is to assemble only a single row at a time, and compute the i th element ai of a = Mb by taking the inner
product of the i th row of the matrix and b. This has the same cost as assembling the whole matrix. However,
there is no need to load the assembled matrix rows from memory. If the assembly of a single row can be done
faster than loading a matrix row from memory, matrix-free multiplication can be much faster. In some special
cases, it is possible to perform a row-vector inner product in a more efficient way than assembling the whole
row and performing the inner product.

Linear solvers that never use elements from the matrix explicitly, but only rely on matrix multiplications,
can be implemented with matrix-free multiplications. Many iterative methods fall in this category. A class of
particular interest is the class of so-called Krylov iterative methods.

5.2. Conjugate gradient method

The conjugate gradient method is a well-known method for solving symmetric positive-definite linear sys-
tems. It is the preferred method for symmetric positive definite systems. The conjugate gradient method was
introduced by [15].

The conjugate gradient method will do at most imax iterations, and will return the iterate xi when the
residual ri = b−Axi satisfies ||ri||l 2 ≤ ε||r0||l 2 . The conjugate uses a starting guess x0. If one has a reasonable
approximation or estimate x0 ≈ x, this can be used. We will use no starting guess and set x0 = 0. In this case
we have r0 = b. The following algorithm is obtained (based on the one given in [28]):
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Algorithm 3 Conjugate gradient method

1: function CG(A,b, imax,ε) . Computes solution x of Ax = b
2: x = 0
3: r = b
4: δ= bTb
5: δ0 = δ
6: for i = 1 : imax do
7: q = Ad
8: α= δ

d Tq
9: x = x+αd

10: r = r−αq
11: δold = δ
12: δ= rTr
13: if δ≤ ε2δ0 then
14: return x
15: end if
16: β= δ

δold
17: d = r+βd
18: end for
19: error("Conjugate gradient has not converged within imax iterations")
20: end function

5.2.1. Results

We now compare the convergence of the symmetric linear system that is obtained with Gauss quadrature with
the system that is obtained with weighted quadrature. The system is generated from the one-dimensional
problem u′′ = ex with 192 basis functions of polynomial degree 2.

It can be seen that the conjugate gradient method works well for the symmetric linear system that is ob-
tained by using Gauss quadrature. For the nonsymmetric system obtained with weighted quadrature, the
conjugate gradient does not converge to an accurate approximation to the solution of the linear system. For
systems obtained from two-dimensional systems, the situation is similar, but the conjugate gradient con-
verges to a more accurate approximation before the convergence stops.
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It is not entirely clear why this behaviour occurs. A plausible argument is that the tensor product structure
makes the matrix more symmetric, and this causes better behavior. Tests show that the number of basis
functions (which is typically larger for two-dimensional problems) has no influence. Symmetrizing the matrix
obtained by weighted quadrature results in good convergence of the conjugate gradient method, but the
solution u of the linear system no longer yields an accurate approximation uh .

It might be preferable to obtain an approximation that has a smaller error than conjugate gradient can
offer. In this case, an linear method that is suitable for non-symmetric linear systems should be used, or the
use of a preconditioner might be considered.

5.3. Stabilized biconjugate gradient method

The stabilized biconjugate gradient method (BiCGSTAB) was published in [31]. Like the conjugate gradient
method, it is a Krylov subspace method. However, it is adapted to work for non-symmetric matrices as well.
The method is related to the biconjugate gradient method, conjugate gradient squares, and generalized mini-
mum residual method. All these methods can be used for the same purpose (the convergence varies between
different methods, though). Like CG, BiCGSTAB requires a starting guess x0. Again, we will take x0 = 0.
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Algorithm 4 Stabilized biconjugate gradient method

1: function BICGSTAB(A,b, imax,ε) . Computes solution x of Ax = b
2: x = 0
3: r = b
4: r0 = b
5: v = 0
6: p = 0
7: ρold = 1
8: α= 1
9: ω0 = 1

10: δ0 = bTb
11: ρ = δ0

12: for i = 1 : imax do
13: β= ρ

ρold

α
ω

14: p = r+β(p−ωv)
15: v = Ap
16: α= ρ

r0·v
17: h = x+αp
18: s = r−αv
19: t = As
20: ω= s·t

t·t
21: x = h+ωs
22: r = s−ωt
23: if rTr ≤ ε2δ0 then
24: return x
25: end if
26: ρ = r0 · r
27: end for
28: error("BiCGSTAB has not converged within imax iterations")
29: end function

For a symmetric matrix, BiCGSTAB will compute the same vectors x0,x1, ... as CG. However, BiCGSTAB
needs two matrix multiplication per iteration. Since the matrix multiplication is usually the most expensive
operation, the cost per iteration is approximately twice as high as for CG.

5.3.1. Results

In figure 5.1, it can be seen that solving the linear system obtained with weighted quadrature converges about
as well as conjugate gradient applied to the linear system that is obtained with Gauss quadrature for the same
problem. It should be noted that one iteration of BiCGSTAB performs two CG-type iterations, so a BiCGSTAB
iteration is approximately twice as expensive.
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Figure 5.1: The l 2 norm of the residual is plotted as a function of the number of iterations, for CG with Gauss quadrature, CG with
weighted quadrature, and BiCGSTAB with weighted quadrature.

5.4. Boundary conditions in matrix-free solvers
In this section, we will consider how to derive a linear system A′u = b′ that implements the boundary condi-
tions, as well as a linear system A∗u = b∗ that implements the boundary conditions and is symmetric. The
matrix-free solution of these systems is considered as well.

Implementing Dirichlet boundary conditions in linear systems arising from FEM problems, is a well-
studied problem that is treated in most books on FEM. Dirichlet boundary conditions are the easiest type
of boundary conditions to implement. FEM aims to compute a function uh :Ω→R that is an approximation
uh ≈ u to the solution u :Ω→R of a boundary value problem. Dirichlet boundary conditions simply impose
u = u∂Ω on the boundary ∂Ω of the domain Ω. The Dirichlet boundary conditions are usually imposed on
the approximation uh by prescribing the coefficients ui0 , ui1 , ... in the approximation uh = ∑N−1

i=0 uiψi to
the solution of the boundary value problem that correspond to basis functions ψi that have support on the
boundary.

Suppose that there are m coefficients ui0 , ui1 , ..., uim−1 that correspond to basis functions with support on
the boundary. We define S to be the set of the indices of these coefficients: S = { i0, i1, ..., im−1 }. In general,
it is not possible to pick ui0 , ui1 , ..., uim−1 in such a way that uh satisfies the boundary conditions uh = u∂Ω
everywhere on the boundary ∂Ω. So they are picked in such a way that uh ≈ u∂Ω on ∂Ω. Assume that by some
method (see sections A.2.1 and A.2.2) the prescribed values vi0 , vi1 , ..., vim−1 are picked, so that the boundary
conditions are implemented by imposing uik = vik for k = 0,1, ...,m −1 on the linear system.

To accurately denote the computations, the notation xbound is used to denote the vector (x0, x1, ..., xN−1)
with elements

(xbound)i =
{

xi if i ∈ S

0 otherwise

The complementary vector with be denoted by xfree:

(xfree)i =
{

0 if i ∈ S

xi otherwise

So that x = xbound +xfree.
Usually, the boundary conditions are implemented by changing the i +1th equation in the linear system

to ui = vi for each prescribed degree of freedom i ∈ S. We then obtain the linear system A′u = b′ where

A′
i , j =

{
δi , j if i ∈ S

Ai , j otherwise
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b′ = bfree +vbound

This method requires changing the right hand side b, as well as the FEM matrix A, to obtain the system
A′u = b′. There are two problems with this

1. The linear system obtained by simply changing the i +1th equation to ui = vi for each i ∈ S is in general
not symmetric.

2. For solvers that use a matrix-free multiplication that exploits the structure of A, the matrix A′ does not
have the same structure, so the matrix-free multiplication can not be done in the same way.

The first problem is only a problem when conjugate gradient (or another method that depends on the
symmetry of the system) is used. The second problem is simpler to solve, and as such, we will address it first.
By reordering the equations in the linear system A′u = b′ one can see that it is equivalent to (Au)free = bfree

and ubound = vbound. So we have

A′x = (Ax)free +xbound

In this way, the multiplication by the matrix A′ can be done in a matrix-free way, by computing Axfree

and replacing the indices (A′x)i that correspond to prescribed degrees of freedom i ∈ S by the corresponding
value xi in x. Using this method, it is possible to solve a system that implements the boundary conditions,
and solve it with BiCGSTAB.

For the conjugate gradient method, however, we need a symmetric linear system1. We start with the
system A′u = b′. This linear system is asymmetric, since for i ∈ S we have Ai , j = 0 for j 6= i , but in general we
don’t have A j ,i = 0 for j 6= i . This asymmetry can be repaired by ‘sweeping’ the nonzero elements A j ,i in a way
similar to Gaussian elimination. This way we obtain a symmetric system A∗u = b∗ where

A∗
i , j =

{
δi , j if i ∈ S or j ∈ S

Ai , j otherwise

b∗
i =

vi if i ∈ S

bi − ∑
k∈S

Ai ,k vk otherwise

Now, the result of a matrix-free multiplication A∗x can be computed by using

A∗x = (Axfree)free +xbound

Additionally, we need to compute the ‘sweeped’ right-hand side b∗. This can be done by using

b∗ = (b−Avbound)free +vbound

In this way, the right-hand side vector b can be computed using a single matrix-free multiplication.

5.5. Discussion
While the conjugate gradient method does not converge to a good approximation in the one-dimensional
case, it converges to some extent for the linear systems that correspond to two-dimensional problems. Just
like in the one-dimensional case, the conjugate gradient method is only able to approximate the solution to
the linear system up to a certain accuracy. However, this accuracy might be enough, depending on the pur-
pose. In fact, the conjugate gradient method often converges faster to this accuracy than BiCGSTAB. Figure
5.2 illustrates this situation.

1Actually, a symmetric positive definite system is needed. We state without proof that the obtained system is positive definite as well, if
the matrix A is symmetric positive definite to begin with.
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Figure 5.2: The l 2 norm of the residual is plotted as a function of the number of iterations for CG and BiCGSTAB.

It depends on the purpose if the conjugate gradient method provides the necessary accuracy. For this
project, it might be necessary to obtain approximations with a higher precision than the conjugate gradient
method can offer. For this reason, BiCGSTAB is preferred.





6
Dataflow computing

This introduction to dataflow computing is based on [24], a tutorial by Maxeler.

6.1. Introduction

In the most commonly used model of computation, a instruction sequences are executed. While modern
processors can execute multiple sequences of instructions in parallel when data and code dependencies al-
low this, the instructions need to be executed in order, so the computations are inherently sequential. This
paradigm of computing is also referred to as computing in time or control-flow. Historically, there has been
a steady rise in the speed in which instructions could be executed, mainly driven by improvements in the
manufactoring process in the semiconductor industry. Computations done in the control-flow paradigm di-
rectly profit from this increasing performance. However, the physical limits of the increase in speed have
been reached, and sequential programs can no longer profit from an exponential increase in execution speed
as in the past.

An alternative is dataflow computing. In dataflow computing, there is no processor. Instead there are a
number of arithmetic and logic units exist which together perform a fixed function. These units are connected
in a certain way, and the data ‘flows’ through the units, toward the final results. The units are implemented
in space, so that they can perform the basic operations in parallel. So, in dataflow computing, computing is
done in space instead of time. In this way, thousands of parallel operations can be done. This parallelism is
the biggest strength of dataflow computing. While the execution speed of hardware is no longer rising as fast,
the number of transistors that fit on a given silicon area is still rising exponentially. This means that with each
generation of new technology, there is more space to compute in. So, dataflow implementations still benefit
from the increase in number of transistors per unit area.

To describe dataflow graphs used in dataflow programming, Maxeler uses a small set of operations, de-
noted by the following symbols:
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Computation nodes perform arithmetic and logic operations (e.g., +, ∗, <, &) as
well as type casts to convert between floating point, fixed point and integer data
representations.

Value nodes provide parameters which are either constant or set by the CPU at run-
time.

Stream offsets allowing access to past or future elements of data streams.

Multiplexer (mux) nodes for selecting one value of several alternatives in runtime.

Counter nodes for directing control flow over time, for example, keeping track of
the position in a stream for boundary calculations.

I/O nodes connecting data streams between Kernel and Manager.

Table 6.1: The symbols used in dataflow graphs and their descriptions. Adapted from [24].

Dataflow computing works especially well for programs that involve a large number of operations that
do not have a data dependency between them. Take, for example, the task of computing yi = x2

i + xi to a
list of numbers x0, x1, ..., xN−1. In the control-flow paradigm one typically writes in a high-level programming
language that gets compiled to a machine-readable sequence of instructions:

for (int i = 0; i < N; i++)
y[i] = x[i] * x[i] + x[i];

One would expect this piece of code to take O(n) operations to complete.

In the dataflow paradigm, one often works from a dataflow graph. The dataflow graph that describes the
computation y = x2 +x is as follows:

Figure 6.1: The dataflow graph that computes y = x ∗x +x.

This function can then be instantiated N times in space to get the following dataflow structure:
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...

︸ ︷︷ ︸
N times

An implementation of this dataflow graph will be able to apply the function to N numbers x0, x1, ..., xN−1 at
the same time, so the time needed is only the time that is needed to perform the multiplication and addition.
However, this assumes that N is fixed, there is enough space to implement N instances of the graph 6.1, and
that all the numbers x0, x1, ..., xN−1 are available at the same time.

6.2. Environment
In particular, the environment provided by Maxeler Technologies was used. A short description of the en-
vironment will be given. For a more thorough introduction, see [24]. Maxeler uses custom hardware called
dataflow engines that combine reconfigurable hardware and dynamic random-access memory. The in- and
outputs of the dataflow engine, as well as the computations that the dataflow engine should perform, are
specified in a high-level language called MaxJ, which is an extension of Java. The MaxJ code can be com-
piled by MaxCompiler to a form that can be synthesized onto the reconfigurable hardware. CPU code can
then interface with the dataflow engine by using an interface that is called the simple life computer (SLiC)
interface.

On the dataflow engines, a fiel-programmable gate array (FPGA) is used to implement the dataflow graph.
FPGAs consists of a large array of interconnected computational units and memory blocks. The interconnec-
tions, as well as the computational units and memory blocks, can be reconfigured to implement different
functions on the FPGA, and effectively implement entire dataflow graphs. FPGAs are typically programmed
by providing a description of the different functions that need to be implemented in a so-called register trans-
fer language like VHDL or Verilog. The translation from the register-transfer language to a binary bitstream
that can be used to program the FPGA is usually done by vendor-specific, proprietary tools. It is notoriously
difficult to use register-transfer language to program an FPGA to perform a non-trivial function. However,
since FPGAs are able to compute in space, FPGA implementations can sometimes achieve higher speeds
than traditional CPU implementations. Using a higher-level programming language that compiles to register-
transfer level to program FPGAs is known as high-level synthesis. High-level synthesis aims to get rid of most
of the disadvantages of writing register-transfer language, while retaining most of its advantages.

Hardware

There are different models of the dataflow engines that Maxeler produces. However, from a high-level view,
they all have a similar design, and are mostly compatible. The biggest difference is that the newer models con-
tain more and faster dynamic random-access memory (DRAM) the FPGA’s have more lookup tables (LUTs)
available, and are rated for higher clockspeeds. The FPGA communicates with the CPU and the DRAM via a
common pheriperal component interconnect express (PCIe) bus.
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Maxeler uses the term large memory (LMEM) for the DRAM, and fast memory (FMEM) for the static
random-access memory (SRAM) that is incorporated in the FPGA. The speed at which an FPGA implemen-
tation can run depends both on the design and the FPGA. Optimized designs run at about one tenth of the
clock speed of that of modern CPUs. To compensate for this, FPGA implementations should be highly par-
allel before a speedup can be expected. The expected speedup should be high enough to make the increase
in engineering time worthwhile. High-level synthesis tools help managing complexity and decrease the time
needed for an FPGA implementation, but the time required to implement an FPGA design is still significantly
more than the time needed to make a CPU implementation.

6.3. Concepts
The programming environment provided by Maxeler introduces a few concepts, which are briefly explained
here.

6.3.1. Kernels
Kernels are the most essential concept that Maxeler has introduced. Kernels correspond to a part of a dataflow
graph. The computations implemented in a kernel can be described with a dataflow graph. Kernels typically
have a number of streaming inputs and outputs. From the programmer’s point of view, the kernel consumes
its inputs on each tick. While a kernel can produce a value for each output, this is not enforced. Since kernels
only tick when a value is available for each of its inputs, kernels run asynchronously with respect to each
other: One kernel might tick, while the other is still waiting until all of the inputs have a value to consume.
Multiple kernels can be combined on a single dataflow engine, by connecting inputs and outputs via streams.

6.3.2. Streams
Streams form the connections between kernels, CPU, and DRAM. Since all these components work asyn-
chronously with respect to each other, it is necessary to have some kind of first-in-first-out (FIFO) queue in
a stream. Most of the time, streams do their work ‘behind the scenes’, and the programmer need not to be
aware of the details.

6.3.3. Managers
In the manager, one specifies which kernels should be instantiated on a dataflow engine, and how the kernels,
the CPU, and the DRAM should be interconnected with streams to perform the desired computation.
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6.4. A simple example
We will now show an example of a simple dataflow application, which is adopted from [24]. In the example,
the CPU will send a stream of N numbers x0, x1, ..., xN−1 to the dataflow engine. The dataflow engine then
computes a running average over three consecutive numbers and outputs the averages

yi = xi−1 +xi +xi+1

3

Two edge cases should be handled differently:

y0 = x0 +x1

2

yN−1 = xN−2 +xN−1

2

Figure 6.2: An example kernel to compute the running average. This image is taken from [24]

The part of the kernel that is on the left of the dotted line generates control signals that are needed to
handle the edge cases, based on a 32-bit counter. The part of the kernel that is on the right selects either
selects the previous value of x (or zero, if the counter equals zero) the current value of x, and the next value of
x (or zero, if the counter equals N −1), and adds the three values together. Then, the sum is divided by three
(or two, if the counter equals zero or N −1).

To actually run the kernel, it is also necessary to write a manager, which instantiates the kernel on a
dataflow machine. Some CPU code which uses the SLiC interface to send data to the dataflow engine is also
needed. For testing, it is not necessary to actually have a physical dataflow engine. It is far more convenient
to use the simulator capabilities in MaxIDE. This way, one can test the kernel without having to place and
route.
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import com.maxeler.maxcompiler.v2.build.EngineParameters;
import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
import com.maxeler.maxcompiler.v2.managers.standard.Manager;
import com.maxeler.maxcompiler.v2.managers.standard.Manager.IOType;

class AverageManager
{

public static void main(String[] args)
{

EngineParameters params = new EngineParameters(args);
Manager manager = new Manager(params);
Kernel kernel = new MovingAverageKernel(manager.makeKernelParameters());
manager.setKernel(kernel);
manager.setIO(IOType.ALL_CPU);
manager.createSLiCinterface();
manager.build();

}
}

In this example, a manager is instantiated with the parameters of the DFE. Then, a new instance of the
MovingAverageKernel is instantiated and set on the DFE by the manager. The manager is then configured to
allow IO from and to the CPU and to generate the SLiC interface, which can be used from the C code. Finally,
the manager is built, which starts the build (either for simulation or for a real DFE, depending on the settings).
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A matrix-free dataflow implementation

In this chapter, the implementation of a dataflow design that uses isogeometric analysis and weighted quadra-
ture to solve Poisson’s problem is described. First, a short summary is given, which captures the necessary
information to understand the dataflow implementation without reading all of the preceding chapters.

7.1. Summary
The goal is to approximate the function u :Ω→R, which is the solution to Poisson’s problem

∆u = f onΩ

u = u∂Ω on ∂Ω

Specifically, we use a two-dimensional domainΩwhich is topologically isomorphic to a square. Moreover,
Ω is defined as the image Im(s) of a mapping s : [0,1]2 → R2. By using isogeometric analysis and weighted
quadrature, we are able to transform this problem into a linear system

Su = b

so that the elements u0, u1, ..., uN−1 define an approximation uh(ξ,η) =∑N−1
i=0 ψi (ξ,η). The functions ψ0, ψ0,

..., ψ0 are defined as
ψk =φk ◦s−1

The functions φ0, φ1, ..., φN−1 are defined as a tensor product:

φn1i2+i1 (ξ,η) = Mi1 (ξ)Ni2 (η)

where M0, M1, ..., Mn1−1 and N0, N1, ..., Nn2−1 are functions with bounded support. So, we have N = n1n2.
To solve the linear system Su = b, the BiCGSTAB algorithm described in section 5.3 is used. To evaluate

matrix-vector products, the matrix-free multiplication described in section 4.4 is used. That is, we have to
compute (4.4). This expression is rather complicated, and we will illustrate the matrix-free multiplication for
the mass matrix (4.4) instead, which is analogous in structure.

For a vector y = Mx, where M is the mass matrix, we have

yi ≈
∑

s∈G1
i1

v0,0
i1,s

∑
t∈G2

i2

w0,0
i2,t b(ξ∗s ,η∗t )

where

b(ξ,η) :=
N−1∑
j=0

x j Mi1 (ξ)Ni2 (η)g (ξ,η)

For the multiplication by the stiffness matrix we have

yi ≈
∑

s v1,1
i1,s

∑
t w0,0

i2,t z0,0(ξ∗s ,η∗t ) + ∑
s v0,1

i1,s

∑
t w1,0

i2,t z0,1(ξ∗s ,η∗t )

+ ∑
s v1,0

i1,s

∑
t w0,1

i2,t z1,0(ξ∗s ,η∗t ) + ∑
s v0,0

i1,s

∑
t w1,1

i2,t z1,1(ξ∗s ,η∗t )
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where
z0,0(ξ∗,η∗) = G0,0(ξ∗s ,η∗t ) ∂z

∂ξ (ξ∗s ,η∗t )

z0,1(ξ∗,η∗) = G0,1(ξ∗s ,η∗t ) ∂z
∂η (ξ∗s ,η∗t )

z1,0(ξ∗,η∗) = G1,0(ξ∗s ,η∗t ) ∂z
∂ξ (ξ∗s ,η∗t )

z1,1(ξ∗,η∗) = G1,1(ξ∗s ,η∗t ) ∂z
∂η (ξ∗s ,η∗t )

7.2. Strategy for dataflow implementation
A dataflow design is not as easy to debug or as flexible as a CPU implementation. The dataflow design requires
the configuration of hardware resources. If too many hardware resources are needed, measures need to be
taken to minimize resource utilization. This can be a hard task and in the worst case it is necessary to start
with a new design. To avoid ending up with a non-functional design (either due to bugs or to overutilization
of resources), the following structured approach is taken.

1. A CPU implementation is constructed. This serves as a reference for both timing and numerical results.
Additionally, it can be used to identify the code that is suitable for a dataflow implementation.

2. Based on the CPU implementation, the part of the code which is to be implemented on a DFE is iden-
tified, and a design plan is made.

3. A performance model is made, which estimates both the hardware utilization and the speed of the
implementation. For the hardware utilization, the counts of the arithmetic operations that need to be
allocated on the dataflow engine needs to be estimated. Additionally, the amount of data that needs to
be stored is estimated, and it should be decided on which memory the data is to be stored (FMEM or
LMEM). Based on the steps that the design takes and the memory access, the performance of the DFE
implementation is estimated.

4. If the hardware utilization is too high (typically this means that the design uses more hardware re-
sources than available on a single dataflow engine), or the performance is not satisfactory, the design is
adjusted and the performance model is adapted accordingly.

5. When the estimated hardware utilization and the performance of the DFE are satisfactory, the design
can be frozen. Now, a model of the DFE implementation is programmed in C. This is a CPU imple-
mentation that closely mimics the structure of the intended DFE implementation. This can help as a
reference when testing the DFE implementation.

6. Now, the actual design can be described in MaxJ. The engineering principle of modular development
and testing the parts in isolation should be applied, in order to avoid ending up with a large design that
is untested and may contain a lot of bugs. Typically, the simulation mode is used to be able to quickly
test (portions of) the design. The hardware reference can be used to quickly detect and fix problems in
the design.

7. When the design is finished and yields the correct results in simulation, it can be attempted to start a
hardware build. In this process, the design is converted to a configuration bitstream for the FPGA, im-
plementing computations on the DFE. This requires vendor-specific synthesis tools to map the spec-
ification of the design to the available hardware resources. This is an NP-hard problem. Even when a
heuristic is used, it can take a very long time before an acceptable result is acquired, and the synthesis
can take up to a full day.

7.3. CPU implementation
The CPU is a straightforward implementation of an IgA code that solves α∆u +βu = f for some domain
Ω⊂ Rd that is the image of a mapping s. The implementation is restricted to the one- and two-dimensional
case (d = 1,2), since there is no need to test higher-dimensional cases. The code can be easily adapted to
work for three-dimensional testcases as well.

The implementation performs the following steps:

1. Define the boundary value problem that is to be solved (see section 2.1.1).

2. Define the approximation space (see section 2.1.1).
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3. Compute weighted quadrature rules for all basis functions and their derivative (see chapter 3 and 4).

4. Assemble the FEM matrix A and the right-hand side vector b (see chapter 3).

5. Apply the Dirichlet boundary conditions (see section 5.2 and 5.4).

6. Solve the linear system using conjugate gradient, BiCGSTAB, or Gaussian elimination (see chapter 5).

7. The solution of the linear system now defines an approximation uh to u. Measure the L2 error ||u −
uh ||L2 with Gaussian quadrature.

The different steps can be divided into substeps:

1. Define the boundary value problem that is to be solved.

(a) Choose the dimension d ∈ { 1,2 }.

(b) Pick α,β ∈R such that α and β are not both zero.

(c) Choose the function f ∈ L2(Ω).

(d) Pick the solution u∂Ω, which is used to measure the error, and to provide Dirichlet boundary con-
ditions.

(e) Define the domainΩ by picking a mapping s : [0,1] →R2. The domain isΩ := Im(s).

2. Define the approximation space. For an accurate approximation, the approximation space needs to be
not more continuous than the mapping s. In practice, s is usually defined as a B-spline mapping, and
appropriate continuity is ensured by only applying h- and p-refinement.

(a) Define the knot vectorΞ of degree p1 that define the basis functions M0, M1, ..., Mn1−1. For d = 1,
the FEM basis functions are φk = Mk ◦s−1.

(b) For d = 2, it is necessary to define another knot vector H of degree p2 which defines the B-
spline basis functions N0, N1, ..., Nn2−1, and the FEM basis functions are ψ = φ ◦ s−1, where
φn1k2+k1 (ξ,η) := Mk1 (ξ)Nk2 (η) for k1 = 0, 1, ..., n1 −1, and k2 = 0, 1, ..., n2 −1.

3. Compute weighted quadrature rules for all basis functions and their derivative.

(a) Define the knot vector(s) that define the basis functions of the projection space. If s is C∞-
continuous or α = 0, this can simply be the same as the approximation space. Otherwise, the
projection space needs to be adapted to have at most the same continuity as the geometric factor
on the points where s is not C∞-continuous. It is sufficient to lower the continuity of the knots
corresponding to these points by one.

(b) Using the knot vector(s) defined in 3a, define a grid of global quadrature points in each dimension.

(c) For each dimension, evaluate all nonzero basis functions of the projection space and their deriva-
tives at both the Gaussian quadrature points and the quadrature points which are defined in 3b.

(d) For each dimension, for each basis function and its derivative, use the computed values to gener-
ate a linear system for the weights, using the values evaluated in 3c. Solve this linear system for
the weights (if necessary, use a QR-decomposition), and store them.

4. Assemble the FEM matrix A and the right-hand side vector b.

(a) Evaluate the B-spline basis functions at the weighted quadrature points, and the mapping basis
functions at the weighted quadrature points and the Gaussian quadrature points.

(b) Using the values computed in step 4a, evaluate f ◦ s, and the geometric factor g at each Gaussian
quadrature point, and evaluate the geometric factors g and G at each weighted quadrature point.

(c) Using the values computed in step 4b, assemble the right-hand side vector b by computing and
storing bk = ∑

(ξ∗s ,η∗t )∈supp(φi )
vs wtφi (ξ∗s ,η∗t )g (ξ∗s ,η∗t ) ≈ ∫

Ω f (x)ψ(x) dx for k = 0,1, ..., N −1.

(d) Assemble the FEM matrix A by computing the elements of the mass matrix (see (3.3.2)) and stiff-
ness matrix (see (3.3.2)), and use that the FEM matrix is given by Ai , j = −αS+βM, as derived in
section 2.1.2. Store the FEM matrix in a sparse format.
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5. Apply the Dirichlet boundary conditions using either L2 projection or interpolation.

(a) Set up the linear system for finding the coefficients by L2 projection or interpolation.

(b) Adapt the linear system to fix the degrees of freedom with support on the boundary.

(c) If the conjugate gradient method is used as a solver, it is necessary to symmetrize the matrix.

6. Solve the linear system using the conjugate gradient method, the BiCGSTAB method, or Gaussian elim-
ination. For the iterative methods, a stoppping tolerance ε has to be chosen.

7. The solution of the linear system u = (u0,u1, ...,uN−1)> now defines an approximation uh ≈ u by uh =∑N−1
k=0 ukψk . Approximate the L2 error ||u −uh ||L2 =

√∫
Ω(u −u)2 dΩwith Gaussian quadrature.

It should be noted that the CPU implementation is not optimized for performance. It is meant to be a clear
reference and to experiment with different parameters and settings. The experimental nature of weighted
quadrature made this necessary: a lot of changes have been made as a reaction to the issues with weighted
quadrature.

The initial code was done in MATLAB, because MATLAB natively supports many matrix operations and
decompositions. However, a C(++) implementation is preferred because it resembles the structure of the
dataflow engine more closely, and interfaces with DFEs more efficiently. The code also includes functions for
the efficient evaluation of B-splines, matrix and vector operations, as well as a QR-decomposition, a singular
value decomposition, code to prescribe values in a linear system, and code to symmetrize the matrix. This
has made the codebase considerably larger than the MATLAB implementation.

7.4. Analysis of data
Remark 5. As before, we will denote the B-spline basis functions which are used in the B-spline mapping
by M̃0, M̃1, ..., M̃ñ1−1 for the first dimension, and Ñ0, Ñ1, ..., Ññ2−1 for the second dimension, so that the total
number of bivariate basis functions is ñ1ñ2. Further, we will assume that these basis functions have polynomial
degree p̃. For the B-spline basis functions which are used in the definition of the FEM basis functions, the
notation M0, M1, ..., Mn1−1 will be used for the first dimension, and N0, N1, ..., Nn2−1 for the second dimension.
The polynomial degree of these basis function is assumed to be p. The number of basis functions is then N =
n1n2, which is also the number of degrees of freedom.

We will now make some assumptions on the size of the data. Running an algorithm on the dataflow
engine incurs some overhead. Since the two-dimensional assembly can be performed quite fast, we will
assume that the number of basis functions is quite large, say 100 < n < 1000, to justify the need for dataflow
acceleration. In particular, we will assume that the number of basis functions is approximately equal to n
in both dimensions: n1,n2 ≈ n, so that N = n1n2 ≈ n2. Furthermore, the number of FEM basis functions is
much larger than the polynomial degrees, and the number of basis functions used in the B-spline mapping:
ñ1, ñ2, p̃, p ¿ n. It follows that we also have n ¿ N .

The BiCGSTAB algorithm needs to store the elements of the vectors. Since BiCGSTAB uses 8 vectors,
and each vector is of size N , there are 8N values that need to be stored. Dataflow engines have a couple of
megabyte FMEM storage capacity. If we assume that n1,n2 = 1024 and that values are stored using 48 bits (or
6 bytes), this gives 10242 ·8 ·6 = 6 MB. If we consider the other values that need to be stored in FMEM, this will
probably not fit, so the vectors need to be stored in LMEM.

On the other hand, to assemble the matrix we need to have values at the quadrature points. There are ap-
proximately 2n quadrature points in each dimension, so that the two-dimensional grid of quadrature points
contains (2n)2 = 4N quadrature points. For the one-dimensional quadrature points, we need to store all
nonzero values of univariate basis functions, their derivatives, and four weights. So, there are 2n quadrature
points in each dimension, and 6(p +1) values that need to be stored, which totals to 24(p +1)n values. For
n ≈ 1000, we can still store this in FMEM.

Then, we have the geometric factor G, which is different at each tensor product quadrature point. The
geometric factor does not have a nice tensor product structure, but needs a matrix inversion to be evaluated.
For this, a division is necessary, which makes evaluating the geometric factor quite expensive in terms of
hardware resources. Since there are 4N quadrature points and the geometric factor is a matrix which contains
4 elements, there are 16N values which need to be stored for the geometric factor. On the other hand, if we
want to compute the geometric factor on-the-fly, we need the values of the mapping basis functions and
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their derivative at each one-dimensional quadrature point. There are p̃ +1 nonzero basis functions at each
quadrature point, and there are 2n quadrature points in each dimension, which totals to 8n(p̃ +1) values in
total.

7.5. Design
We will now sketch the design of the DFE implementation.

From a high-level view, we need to implement the various steps of the BiCGSTAB algorithm, and map
them onto a dataflow engine in an efficient way. Adapting a slightly more low-level view, the different vector
and matrix operations need to be implemented. The most complex operation is the matrix multiplication.

7.5.1. BiCGSTAB
Consider the inner loop of BiCGSTAB in algorithm 4. There are two dot products. Since the operations af-
ter the inner product depend on the dot product, the computation of the dot products needs to finish com-
pletely before the rest of the computations can be started. Further, the matrix multiplication can not be easily
pipelined with the vector operations, since the first element y0 of a matrix-vector product y = Mx can only be
computed when enough elements of the vector x are known:

Figure 7.1: The sparsity pattern of the vector and matrix. The elements which are needed to compute the first element of the matrix-
vector product are highlighted. To compute the first entry of the matrix-vector product Mx, elements of x with high indices are needed,
which makes it hard to pipeline the matrix multiplication with vector operations.

So, we have to split up the inner loop of BiCGSTAB in five phases that can be executed on the dataflow
engine:

1 1: p = r+β(p−ωv)

2
2: v = Ap
3: compute r0 ·v

3 4: h = x+αp
5: s = r−αv

4
6: t = As
7: compute s · t,t · t

5
8: x = h+ωs
9: r = s−ωt

10: compute r0 · r,r · r
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Part 1, 3, and 5 perform vector operations. For efficiency, they can be implemented as a single kernel
which can perform the necessary operations. Part 2 and 4 can use a single kernel which performs the matrix
multiplication and dot product. To compensate for the overhead of running on a dataflow engine, the design
should use a fairly large number of basis functions. This means that the vectors are too big to fit in the static
memory on the FPGA and should be stored in the LMEM. The kernels can now be combined in the following
way:

The stream between the CPU and LMEM is needed to set vectors, and load them when the BiCGSTAB
algorithm has completed. The vector kernel and matrix kernel need to load vectors, perform operations, and
write back the results. So, a single arrow in the diagram might represent multiple memory streams.

7.5.2. Matrix multiplication

The original idea was to assemble one row at a time and calculate the inner product of this row and used
sum-factorization to assemble a whole row of the matrix at once. It is about p +1 times more efficient to use
the matrix-free multiplication which is derived in section 4.4. The method of assembling the matrix row-wise
is not used anymore. Therefore, it will not be considered here.

The matrix multiplication computes the matrix-vector product y = Sz. From (4.4) we see that four sum-
mations have to be evaluated:

ai ≈
∑

s v1,1
i1,s

∑
t w0,0

i2,t z0,0(ξ∗s ,η∗t ) + ∑
s v0,1

i1,s

∑
t w1,0

i2,t z0,1(ξ∗s ,η∗t )

+ ∑
s v1,0

i1,s

∑
t w0,1

i2,t z1,0(ξ∗s ,η∗t ) + ∑
s v0,0

i1,s

∑
t w1,1

i2,t z1,1(ξ∗s ,η∗t )
(7.1)

The limits of the summation are omitted to keep the formula readable, but the summation ranges from
s = q1

i1
to q1

i1
+m1

i1
−1 in the first dimension and from t = q2

i2
to q2

i1
+m2

i2
−1 in the second dimension. By

a bound from section 4.1.3, the summations are over a maximum of 3p quadrature points per dimension,
or over 9p2 tensor product quadurature points. So, the weights do only need to be stored for at most 3p
quadrature points per dimension. In addition, the values z0,0(ξ∗s ,η∗t ), z0,1(ξ∗s ,η∗t ), z1,0(ξ∗s ,η∗t ), and z1,1(ξ∗s ,η∗t )
are needed for each of the at most 9p2 quadrature points (ξ∗s ,η∗t ).
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Figure 7.2: The support of φ15(ξ)(η) = M1(ξ)N2(η) is shown on the parameteric space. It can be seen that the number of quadrature
points inside the support is less than 3p = 6 in each dimension.

Now, if we assume that we succesively compute y0, y1, ..., yN−1 in this way, many values can be re-used
between computations. In fact, most of the data in the window can be re-used between the computation of
two sequential degrees of freedom, since two succesive basis functions φk−1 and φk share many quadrature
points:

Figure 7.3: The support of φ16(ξ,η) = M2(ξ)N2(η) is shown in red, and the support of φ17(ξ,η) = M3(ξ)N2(η) is shown in blue. It can be
seen that there is only a column of 6×2 quadrature points that is inside the support of φ17 but not inside the support of φ16.

Since the values corresponding to these quadrature points was used in the computation of the last degree
of freedom, these are still held in registers. For this reason, the values ba,b for a,b = 0,1 can be held in 3p
shift registers, each with size 3p. If there are q quadrature points in the first dimension, the values in the shift
register need to be shifted q places to the left to make space for the new values. Per dimension, the number
of quadrature points per element is stored in an array in FMEM.

A similar situation holds for the basis functions φk−n1 and φk :
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Figure 7.4: The support of φ10(ξ,η) = M3(ξ)N1(η) is shown in red, and the support of φ17(ξ,η) = M3(ξ)N2(η) is shown in blue.

However, the values z0,0(ξ∗,η∗), z0,1(ξ∗,η∗), z1,0(ξ∗,η∗), z1,1(ξ∗,η∗) were not used in the last computation,
but in a computation n1 cycles earlier. If these values would be held in shift registers, there would need to
be n1 of these shift registers. This is not very efficient. A better way is to allocate some FMEM and use it as a
buffer for the 3p horizontal rows for which the quadrature points need to be stored.

So, using all values that were already computed before, the functions z0,0 z0,1, z1,0, z1,1, only need to be
evaluated for the quadrature points in the top-right element. This is convenient, since for the quadrature
points in the same element the same basis functions are nonzero. In order to compute z0,0 z0,1, z1,0, z1,1,
we first compute ∂z

∂ξ , ∂z
∂η , and the elements G0,0, G0,1, G1,0, G1,1 of the geometric factor G. Computing the

value of ∂z
∂ξ (ξ∗,η∗), ∂z

∂η (ξ∗,η∗) is a matter of keeping the degrees of freedom corresponding to basis functions

that are nonzero on (ξ∗,η∗) in registers, multiplying the nonzero basis functions (or their derivative) by the
corresponding degrees of freedom, and adding them. Assuming that the univariate basis functions Mi , Mi+1,
..., Mi+p are nonzero on ξ∗, and the univariate basis functions N j , N j+1, ..., N j+p are nonzero on η∗, we can
express the idea in code as

float[] computepartials(float[] M, float[] dMdxi,
float[] N, float[] dNdeta, float[][] z, int p)

{
float dzdxi = 0, dzdeta = 0;
for (int k2 = 0; k2 < p + 1; k2++)

for (int k1 = 0; k1 < p + 1; k1++)
{

dzdxi += z[k1][k2] * dMdxi[k1] * N[k2];
dzdeta += z[k1][k2] * M[k1] * dNdeta[k2];

}
return { dzdxi, dzdeta };

}

The computation of the entries of the Jacobian matrix Ds can be done in a way that is similar to the
evaluation of the partial derivatives. However, the Jacobian matrix is twice as expensive to evaluate, since it
contains four entries, while there are only two partial derivatives. In (2.3.1), the geometric factor is defined as

G(ξ) = |det(Ds(ξ))| (Ds(ξ))−>(Ds(ξ))−1

So for the evaluation of the geometric factor, it is necessary to evaluate the Jacobian matrix Ds of the
mapping s. The Jacobian consists of 4 elements. For example, for the first element of the Jacobian matrix Ds,
we have

(Ds(ξ∗,η∗))0,0 =
N−1∑
k=0

(ck )0
∂φ

∂ξ
(ξ∗,η∗)
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where the notation (ck )0 is used to denote the first coordinate of the control point ck . Using property 4
from section 2.2.2, we see that there are only (p̃ +1)(p̃ +1) nonzero basis functions φk . By using φk (ξ,η) =
M̃k1 (ξ)Ñk2 (η)), it can be seen that we have a sum as in (7.6.1) where M = p̃ + 1. So, the evaluation of the
Jacobian matrix costs 4((p̃ +1)2 −1) additions and 4(p̃ +1)(p̃ +2) multiplications.

Now define A := Ds(ξ,η). We then have

A−1 = 1

det(A)

(
A1,1 −A0,1

−A1,0 A0,0

)
By expanding G = |det(A)|A−>A−1, we get

G = |det(A)|
det(A)2

(
A1,1 −A1,0

−A0,1 A0,0

)(
A1,1 −A0,1

−A1,0 A0,0

)

= 1

|det(A)|
(

A2
1,1 +A2

1,0 −(A1,1A0,1 +A1,0A0,0)
−(A1,1A0,1 +A1,0A0,0) A2

0,1 +A2
0,0

)
So, in code the evaluation of the geometric factor can be done as

float[2][2] geometricfactor(float A[2][2])
{

float absdetinv = 1 / abs(A[0][0] * A[1][1] - A[1][0] * A[0][1]);
float symm = -(A[1][1] * A[0][1] + A[1][0] * A[0][0]) * absdetinv;
return {

{ (A[1][1] * A[1][1] + A[1][0] * A[1][0]) * absdetinv, symm },
{ symm, (A[0][1] * A[0][1] + A[0][0] * A[0][0]) * absdetinv }

};
}

Once ∂z
∂ξ (ξ∗,η∗), ∂z

∂η (ξ∗,η∗) and the elements of the geometric factor are computed for each new quadra-

ture point (ξ∗,η∗), it is trivial to compute z0,0(ξ∗,η∗) = G0,0(ξ∗,η∗) ∂z
∂ξ (ξ∗,η∗), z0,1(ξ∗,η∗) = G0,1(ξ∗,η∗) ∂z

∂η (ξ∗,η∗),

z1,0(ξ∗,η∗) = G1,0(ξ∗,η∗) ∂z
∂ξ (ξ∗,η∗), and z1,1(ξ∗,η∗) = G1,1(ξ∗,η∗) ∂z

∂η (ξ∗,η∗).
Once these values are computed and the values of z0,0, z0,1, z1,0, z1,1 that were computed earlier are loaded

from FMEM, the values can be placed in shift registers:

A single red, blue, or purple block represents the values z0,0(ξ∗,η∗), z0,1(ξ∗,η∗), z1,0(ξ∗,η∗), z1,1(ξ∗,η∗)
for a quadrature point (ξ∗,η∗). The red blocks represent values that are computed, while the blue values
represent values that were used before and were loaded from the buffer, and the purple values represent the
values that were used in the last cycle, and are still present in registers. This diagram is for p = 2, so the grid
has size 3p ×3p = 6×6, and there are at most p +1 = 3 new quadrature points. The orange blocks on the side
and top represent weights for a quadrature point, and the yellow blocks in the top-right corner represent the
weights that correspond to the new quarature points.

Suppose, as an example, that the new element contains a grid of 2×2 quadrature points. Then, the two
multiplexers on the top load the newly computed values which are represented, while the lowest multiplexer
is set to load the value(s) that was loaded from the buffer into the shift registers:
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The shift registers then shift the weights and the values of z0,0, z0,0, z0,0, z0,0 which were used in the last
cycle two places, and shift in the new values and weights.

Finally, the values z0,0(ξ∗,η∗), z0,1(ξ∗,η∗), z1,0(ξ∗,η∗), z1,1(ξ∗,η∗) are multiplied by the weights and summed.
In this way, the new degree of freedom is computed. The summations can be split over multiple cycles, but
we will assume now that the four summations are all done simultaneously in a single cycle.

The next cycle, the same steps are repeated and the next degree of freedom of the matrix-vector product
is computed.

7.6. Performance model
For the performance model, we estimate the hardware utilization and the performance of the dataflow im-
plementation, to see if a dataflow implementation is feasible and worth the effort. It should be noted that the
CPU implementation that was made as a reference is used as a reference for timing as well. This is not ideal,
since this implementation is not optimized. In particular, an implementation that uses multiple cores and
vector processing is expected to be a lot faster. Such an optimized implementation of an IgA code that uses
weighted quadrature is outside the scope of this project. So, the actual speedup might be a lot lower: this is
impossible to say without making such an optimized implementation,

7.6.1. Hardware utilization
To estimate the utilization of hardware resources, we count the arithmetic operations in the design. Then,
we can simply multiply the number of operations of each type by the number of resources that an operation
of that type takes. The final number is then compared with the number of resources on the dataflow engine.
It should be noted that the estimate obtained this way is an optimistic estimate, in the sense that the actual
hardware utilization will usually be higher. This is due to the hardware resources for factors that are not
considered here (for example, the FIFO queues which are used in the implementation of streams, the non-
arithmetic operations, and the hardware resources that are needed to pipeline the design).

For the implementation of this design, two DFEs are considered. The first is a fourth generation DFE,
which is referred to as MAX4. The other one is a new DFE of the fifth generation, MAX5.
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Vector operations
The hardware resources for the vector operations are relatively simple to estimate. A generic kernel that is
able to compute v1 + c1v2, v1 + c1v2 and their sum is implemented. This is enough to handle all the vector
operations in the BiCGSTAB algorithm. We will compute nvec elements of these vectors at the same time
to speed up the computations. In addition, it is needed to calculate 2 dot products. The dot products are
implemented with adders. Floating-point adders have a high latency, and in practice an adder tree of 5 adders
is used in the computation of the dot product. We will not elaborate on this, but simply use this figure.

By simply counting the number of operations that need to be done, we see that 5nvec +8 additions need
to be done, as well as 4nvec multiplications.

Matrix multiplication
It is often necessary to evaluate a sum of the form

M−1∑
i=0

M−1∑
j=0

ai b j ci , j (7.2)

By adapting a sum-factorization-like approach, such a sum can be evaluated in the following way:

float accumulate(float a[M], float b[M], float c[M][M])
{

float acc = 0;
for (int i = 0; i < M; i++)
{

float acc_j = 0;
for (int j = 0; j < M; j++)

acc_j += c[i][j] * b[j];
acc += a[i] * acc_j;

}
return acc;

}

This way, the evaluation can be done in M 2 −1 additions1 and M(M +1) multiplications.
The evaluation of the geometric factor is done in 4 additions, 11 multiplications, and 1 division (in ad-

dition to the operations that are necessary for the evaluation of the Jacobian matrix). To evaluate the sum-
mations (7.5.2) it is still necessary to evaluate the partial derivatives of the function that is associated to the
vector z. The derivatives can be computed in a way analogous to the computation of the derivatives in the
Jacobian. So, computing the partial derivatives can be done in 2((p + 1)2 − 1) additions and 2(p + 1)(p + 2)
multiplications.

Finally, for each quadrature point (ξ∗,η∗) we combine the geometric factor and the partial derivatives of z
to obtain G0,0(ξ∗,η∗) ∂z

∂ξ (ξ∗,η∗), G0,1(ξ∗,η∗) ∂z
∂η (ξ∗,η∗), G1,0(ξ∗,η∗) ∂z

∂ξ (ξ∗,η∗), and G1,1(ξ∗,η∗) ∂z
∂η (ξ∗,η∗). These

are the values that are needed in (7.5.2). This is done in 4 multiplications.
Now assume that it is necessary to evaluate these values for nqp quadrature points at once. Then, the

evaluation of the geometric factor costs 4nqp(p̃ +1)2 additions, 4nqp((p̃ +1)(p̃ +2)+11) multiplications, and

nqp divisions. Evaluating the values G0,0(ξ∗,η∗) ∂z
∂ξ (ξ∗,η∗), G0,1(ξ∗,η∗) ∂z

∂η (ξ∗,η∗), G1,0(ξ∗,η∗) ∂z
∂ξ (ξ∗,η∗), and

G1,1(ξ∗,η∗) ∂z
∂η (ξ∗,η∗) costs 2nqp((p +1)2 −1) additions and 2nqp((p +1)(p +2)+2) multiplications (assuming

the geometric factors are already computed or streamed from memory).
Finally, the computation of a single element ai of the vector a requires evaluating (7.5.2). These summa-

tions are over at most 3p ×3p quadrature points, so each of them can be computed in 9p2 −1 additions and
3p(3p +1) multiplications. Since there are four of these summations which need to be added, the evaluation
of (7.5.2) can be done in 4(9p2 −1)+3 additions and 12p(3p +1) multiplications.

7.6.2. Performance
The performance of the design is estimated by applying some simple principles. A design is said to be com-
pute bound if the speed of execution is bounded by the computations that need to be done. On the other

1In the code, M(M +1) additions are used, but there are M +1 additions that add some value to 0, and this addition can be eliminated in
hardware (in software too, but this creates very ugly code).
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hand, if the speed is limited by the speed of the memory, the design is said to be memory bound. In reality the
situation might be more complicated, but the results of this model are usually accurate. We will simply define
the memory time as the size of the memory that needs to be loaded, divided by the speed of the memory, and
the compute time as the number of cycles times the duration of a cycle. We will approximate the execution
time by taking the longest of these two times. If the former is the longest, we say the design is memory bound,
else we say the design is compute bound. We will handle the steps with vector operations separately from the
steps with a matrix multiplication.

To estimate the performance, we will assume that there is a global clock, as common in hardware design.
The clock ‘ticks’ at a certain frequency, and the time tcycle between two ticks is called a clock cycle. We will
assume that every allocated unit can perform exactly one operation per tick.

We will assume that every step which does vector operations takes the same amount of time tvector. The
time that a matrix multiplication takes is denoted by tmatrix. Since a single BiCGSTAB iteration uses 3 steps
with vector operations and 2 matrix multiplications, we can express the total time of a single BiCGSTAB
titeration as

titeration = 2tmatrix +3tvector (7.3)

Vector operations

The vector kernel performs nvec operations per cycle. So, if the kernel is compute bound, it will take N
nvec

cycles to run to completion. So, in this case the execution time will be N
nvec

tcycle.
If the execution of a step with vector operations is memory bound, the time that the step takes will be

approximated by the time that the memory takes to read and/or write the results. It is assumed that we
use a datatype that uses bdatatype bytes. The steps with vector operations use a variable number of vectors.
We assume now that in each step 4 vectors are read, and two are written by the vector kernel. This is not
completely accurate, since the first step with vector operations only reads three vectors and writes a single
vector. It is accurate for the other two steps with vector operations, and allows us to work with a single value
tvector instead of three different values. Assuming that the step with vector operations is memory bound, we

have tvector = 6
N bdatatype

smem
. Here, bdatatype is the size in bytes of the datatype that is used in the vectors, and smem

is the speed of the memory.
Putting everything together, we have

tvector = max(
N

nvec
tcycle,6

N bdatatype

smem
) (7.4)

Matrix operations
The matrix kernel is designed to compute a single degree of freedom per cycle. If the matrix multiplication
is compute bound, this means that it will take tmatrix = N tcycle. For the matrix multiplication the partial
derivatives of the function z associated to the vector z need to be evaluated. For this, (p +1)2 elements of z
are needed. Since p +1 ‘windows’ into the vector elements are necessary, the input vector is streamed p +1
times. Additionally, the matrix kernel takes an extra vector to compute the dot product v · r0 in step 2. The
output needs to be written to memory as well. So, if the matrix multiplication is memory bound, it will take

tmatrix = (p +3)
N bdatatype

smemory
time.

So we find

tmatrix = max(N tcycle, (p +3)
N bdatatype

smemory
) (7.5)

7.6.3. Results
One way to handle the variable number of quadrature points is to only handle a limited number of quadrature
points per cycle. This saves hardware resources, but limits the speed of the design, and is more complicated,
since it is necessary to have different types of cycles (one in which a degree of freedom is computed, and one
in which no degree of freedom is computed), and keeping track of all values is more complicated. Alterna-
tively, it is possible to compute a degree of freedom in each cycles. This requires that all quadrature points in
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an element are handled in a single cycle. In the worst case, there are (p +1)2 quadrature points, so enough
hardware resources need to be configured to handle this number of quadrature points.

The computation of the geometric factor requires a matrix inversion and is the most expensive part of the
design. It is preferable to compute the geometric factor once (for example, on the CPU, or in a separate stage
on the DFE), and store them in LMEM. However, this is very hard to do with a variable number of quadrature
points.

At the time that the design was made, the problems with p-refinement (see section 4.2) were not solved
yet, and the efficient matrix-free multiplication (see section 4.4) was not known to the author. The perfor-
mance model was made for a design that uses row-wise assembly. The performance suggested that a design
that uses basis functions with polynomial degree p = 2 would fit on the DFE without many changes. Addition-
ally, the problems with p-refinement were not solved. So, it made sense to restrict the design to polynomial
order p = 2.

This simplifies the design significantly. While the number of quadrature points per element is still vari-
able, the maximum number of quadrature points per element is (p +1)2. In this case, a simple design that
uses a matrix multiplication that computes one degree of freedom per cycle is possible. The computation of
the geometric factor can be done on-the-fly. Assuming that p = p̃ = 2, nvec, and that the matrix multiplication
assembles one degree of freedom per cycle (so that we need to handle (p +1)2 = 9 quadrature points in the
worst case) gives 567 additions, 931 multiplications, and 9 divisions. We can use the operation counts of the
LUTs, flip-flops (FFs), digital signal processing blocks (DSPs), and block random-access memories (BRAMs),
and the information in appendix D to compute the hardware utilization on the MAX5 DFE. Using a 48-bit
fixed point datatype we get:

Table 7.1: Hardware utilization for p = 2 on MAX5, using 48-bit fixed point values

LUTs FFs DSPs BRAMs
Additions 567 27216 27783 0
Multiplications 931 49343 230888 8379 0
Divisions 9 22995 45621 0 0
Data 98304 values 0 0 0 256
Buffer 49152 values 0 0 0 128
Total 99554 304292 8379 384
Total available 1182240 2364480 6840 4320
Utilization 9% 13% 123% 9%

So, the design will not fit when 48-bit fixed point values are used (unless some optimizations are done).
It is obvious that the number of DSPs is the limiting factor. In the same way, it can be seen that the design
will (quite easily) fit when 32-bit floating point or 27-bit fixed point is used. So, when floating point values are
used, a precision between 32 and 64-bit is required, and for fixed point a precision between 27 and 45-bit is
feasible2.

The LMEM in the MAX5 DFE has a speed of 47.65 GB/s. It is assumed that a 48-bit datatype is used, 1024
basis functions are used in every dimension, and a clock speed of 200MHz is used. With these parameters we
can estimate the execution time of the different steps in a BiCGSTAB iteration.

By using (7.6.2), we find that the vector steps take

tvectormax(
10242

4
· 1

200 ·106 ,6
10242 ·6

47.65 ·10243 )

= max(0.00131,0.00074) = 0.00131

So the vector operations are compute bound, and take 1.31 ms. It should be noted that the vector compu-
tations can be done faster by increasing nvec. However, the matrix multiplication is the bottleneck, so it does
not help a lot to use more hardware resources for the vector operations.

Now, we can use (7.6.2) to find the time that a matrix multiplication takes:

tmatrix = max(10242 · 1

200 ·106 ,5
10242 ·6

47.65 ·10243 )

2The multipliers on the DSP blocks on MAX5 DFE have a size of 18 by 27 bits, so using a 45-bit fixed point datatype maps more efficiently
to DSP blocks and would likely fit. The same holds for floating point types with 45 mantissa bits.
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= max(0.00524,0.000614) = 0.00524

So the matrix multiplication is compute bound as well, and takes 5.24 ms. By (7.6.2), we find that the
time for a single iterations is 14.41 ms. So, if 1000 BiCGSTAB iterations are needed, this can be done in 14.41
seconds.

7.7. Changes to the design
During the testing of the design, the LMEM access on a DFE turned out to be restricted to multiples of 384
bytes. For this reason, it was necessary to instantiate extra kernels that throw away the values that are not
needed.

Figure 7.5: The structure of the dataflow implementation. The arrows represent streams.

Another problem was that accessing the LMEM repeatedly requires writing a memory command gener-
ator. This is a complicated and time-consuming task. For this reason, the design was simplified and now
requires that the CPU starts each step. This does introduce some overhead - it is not clear how much.

One of the factors that prevent using the design for basis functions of higher polynomial degree is the
limited number of streams from and to LMEM. There can be a maximum of 15 of such streams. In figure 7.5,
it can be seen that there are 14 memory streams used. For p = 4 and higher, there will be too few memory
streams available, and it will be necessary to use some trick to optimize some of the memory streams away.
One way to do this is to connect the CPU to one of the kernels instead of directly to the LMEM. The kernel
can then (by setting some option from the CPU) serve as a passthrough kernel that allows the CPU to either
read from or write to LMEM.

7.8. Build results
When a 45-bit floating point format is used, the design indeed fits on the MAX5 DFE:

PRELIMINARY RESOURCE USAGE
Logic utilization: 755147 / 1182240 (63.87%)
LUTs: 446650 / 1182240 (37.78%)
Primary FFs: 616994 / 2364480 (26.09%)
DSP blocks: 2727 / 6840 (39.87%)
Block memory (BRAM18): 2479 / 4320 (57.38%)
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Unfortunately the design was not able to meet the timing constraints. Pavel Burovskiy pointed out that
the FPGA on the MAX5 DFE is divided into three separate silicon dies called super logic regions (SLRs, see
[33]) for more information). The interconnections between these regions are limited, and the failure to meet
the timing constraints is likely a result of the single, big kernel that implements the matrix multiplication
being split over differen SLRs. Unfortunately, the author was not aware of the existence of these SLRs while
working on the dataflow design. The following image, which is automatically generated by MaxIDE, shows
the configuration of the hardware resources on the FPGA on the MAX5.
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This can be solved, but this requires a re-design into multiple kernels. Unfortunately, there was not
enough time to do this. Instead, some optimizations were used, such as hardcoding the mapping, which
allows to save some resources. When a 32-bit floating point format is used and pipelining is mostly disabled,
the design fits on an older DFE, the MAX4:

FINAL RESOURCE USAGE
Logic utilization: 249336 / 262400 (95.02%)
Primary FFs: 338724 / 524800 (64.54%)
Secondary FFs: 60228 / 524800 (11.48%)
Multipliers (18x18): 1074 / 3926 (27.36%)
DSP blocks: 546 / 1963 (27.81%)
Block memory (M20K): 1892 / 2567 (73.70%)

The design meets timing at the very low clock speed of 20 MHz. While the single precision datatype that
is used is not precise enough to converge well, the DFE implementation still works. So while the implemen-
tation is not of practical use, it does show that even an unoptimized DFE implementation can be faster than
a CPU implementation.

The problem is illustrated in figure 7.6. It can be seen that, while both versions use the BiCGSTAB method,
the CPU version converges faster, and to a more accurate solution, due to the higher precision that the CPU
version uses.

Figure 7.6: A comparison of the convergence speed of the CPU and the DFE. Both use the BiCGSTAB method, but the CPU uses higher
precision.

Even with this low clock frequency, the DFE version is about five times as fast as the CPU version: 1000
BiCGSTAB iterations are done in about 10 seconds instead of the 50 seconds that the CPU version takes.





8
Conclusion

In this thesis, several contributions are made:

1. The application of weighted quadrature to IgA is described and analyzed. The technique presented
in [7] is extended to non-uniform knot vectors. It is shown that the technique presented in [7] has
several issues. The solutions to these issues (due to Mattia Tani and Giancarlo Sangalli) are presented.
Additionally, some new developments (also due to Giancarlo Sangalli and Mattia Tani) are documented.

2. An IgA code that implements weighted and Gaussian quadrature, as well as multiple iterative and direct
linear solvers has been coded from scratch.

3. The architecture for a dataflow implementation is sketched, a reference implementation on the CPU
has been made, and a proof-of-concept dataflow implementation is presented.

4. Several suggestions are contributed, which should enable a more efficient and practical dataflow im-
plementation.

The dataflow implementation is only a partial success. In order to fit the design on an older dataflow
engine, it was necessary to reduce the precision. This causes the convergence of the dataflow implementa-
tion to be worse than that of the CPU version. For this reason, this specific dataflow implementation is not
preferable to the CPU implementation. However, the design does show the potential of a dataflow imple-
mentation that uses weighted quadrature: Even with the unoptimized dataflow implementation that uses a
low clock speed, the BiCGSTAB iterations are significantly faster on the dataflow engine than that they are
on the CPU. Additionally, build results show that it should be possible to run the design in a higher precision
and with a higher clock speed on the newer MAX5 DFE. The dataflow implementation is a milestone: It is
the first dataflow implementation that uses IgA with weighted quadrature. Moreover, it shows the feasibility
of a dataflow implementation for this use case. For this reason, the design can still be considered succesful
as a proof of concept. So while a dataflow implementation has shown to be feasible, it is still not clear if the
performance reasonably justifies the increase in engineering effort.

The trouble with the implementation of weighted quadrature and the lack of resources on weighted
quadrature left not as much time for experimentation and engineering work as desired. Work on the math-
ematical development of weighted quadrature was originally outside the scope of this thesis, but it was nec-
essary to find the cause of the problems with p-refinement. Mattia Tani, one of the authors of [7], initially
reported that there should be no such issues, and the CPU implementation was believed to contain a bug for
a long time. A considerable amount of time was spent trying to find the supposed bug. When the problem
was acknowledged to be a mathematical issue, and the solution was presented by Mattia Tani on June 27th,
there were only five days left before the final on-site stay at Maxeler in London. This has prevented a more
extensive analysis of the behaviour of the convergence as a function of all the parameters.

8.1. Future work
In order to estimate the practical use of a dataflow implementation more accurately, it is necessary to have
a more efficient CPU implementation. While a reference CPU implementation was made, it was beyond
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the scope of this thesis to optimize this implementation. The CPU implementation does not use multiple
processors, GPU acceleration, the efficient matrix-free multiplication, or x86 extensions for vector processing.

As mentioned before, there was no time to do an extensive analysis of the convergence behaviour. This ex-
tensive analysis is desirable because it might allow one to identify the range of the parameters of the problems
for which dataflow engines are likely to outperform CPUs. This sounds rather straightforward, but one should
not underestimate the complexity. There are a number of parameters that should be taken into account. Ig-
noring more advanced topics like mixed-precision computations for now, the most important parameters
are:

1. The number of basis functions

2. The polynomial degree of the basis functions

3. The machine precision and number representation (fixed or floating point)

4. The rule that is used to pick the quadrature weights

5. The quadrature rule that is used

6. The linear solver that is used, and the number of iterations that is used

7. The choice of preconditioner (optional)

All of these parameters influence each other. Moreover, they influence the cost (and possibly the archi-
tecture) of the design: some parts of the design scale as O(p3) in the polynomial degree p, and some parts
scale as O(b2) in the number of bits b in the machine precision. So, on the one hand there is the desire to
increase the polynomial degree and the machine precision to improve the convergence. On the other hand,
the design scales badly with these parameters. Of special interest is the convergence of the method when
either the ‘regular rule’ for picking quadrature points, or global quadrature points are used (see section 4.1),
since these can considerably simplify the design of a dataflow implementation.

As of yet, weighted quadrature has only been applied to B-spline geometries. There is no obvious reason
that weighted quadrature would not work for NURBS geometries. So, it should be possible to generalize the
technique and use weighted quadrature for NURBS geometries.

One way in which both the dataflow implementation and the CPU implementation might be improved,
is by the use of a preconditioner. A preconditioner would hopefully improve the convergence behaviour.
The preconditioner presented in [30] is of special interest, since it is designed to work well with weighted
quadrature. The feasibility of implementing this preconditioner on a dataflow engine is not assessed in this
thesis.

Since the dataflow implementation is only a proof of concept, it can be generalized in several ways. The
extension to differential equations of the form α∆u +βu = f should not require major changes in the archi-
tecture. The same ideas that are used in the dataflow implementation of the 2D case can be used to solve
3D problems. However, the design probably needs to be significantly changed for this. It is hard to say, but a
dataflow implementation might be more appropriate for 3D problems than for 2D problems. Modern CPUs
are already quite fast for 2D problems on a single patch, so problems which are computationally expensive to
solve usually yield a very precise solution. So, a high machine precision needs to be used, which do not map
well to dataflow engines.

In practice, most geometries use multiple patches, which are coupled at the boundaries. There are also
more complicated boundary conditions which might be used. These things might be challenging to do on a
DFE in a matrix-free way.

8.1.1. Improvements to the dataflow implementation
For reasons mentioned earlier, the implementation was restricted to use basis functions of polynomial de-
gree 2. In general, it is better to use basis functions of a higher degree. To make the design usable for basis
functions of higher degree, and to meet the timing constraints on the MAX5 DFE, some changes to the design
are required. In particular, it is necessary to:

1. Split up the design into different parts that do not need much interconnect between them

2. Reduce the area that is needed for the design



8.1. Future work 75

The computations in the matrix-free multiplication can be split into four summations with an identi-
cal structure. In the current design, the summations are computed in the same kernel. It should be rather
straightforward to split this big kernel into four instances of the same kernel. It seems plausible that with this
changes, the design would fit on the MAX5 DFE, and would meet the timing constraints.

In order to reduce the area that the design needs, multiple measures can be taken. By splitting the compu-
tations in four identical blocks, one can reduce the area that the design needs by splitting the computations
over multiple clock ticks (of course, this comes at the cost of needing more cycles for a matrix multiplication).

Another promising way to reduce the design is to use a more regular pattern of quadrature points. This
will help to make efficient use of the available logic and arithmetic units.

Next, the evaluation of the geometric factors is quite expensive, and it might help to precompute them,
and stream them from LMEM. This does increase the size of the data that is streamed from LMEM, so one
should make a performance model to see if this is likely to help for the design that is used. This measure
should probably only be used when a regular grid of quadrature points is used as well. Otherwise, a variable
number of data needs to be loaded and orchestrated. This is far from trivial, and is likely to be expensive,
both in terms of the on-chip logic and design effort.

These measures can be applied independently, and it is expected that the area that the design uses can be
reduced significantly. If the area allows, it might be beneficial to implement the preconditioner described in
[30] on the DFE. It should also be mentioned that when the number of basis functions is small enough, one
might be able to store the vectors in FMEM, which would allow for a significant speedup (especially when the
geometric factor is computed on-the-fly, since in this case it would not be necessary to load any data from
LMEM).





A
Some mathematical theory

A.1. Multivariate calculus
Theorem 7 (Multivariate chain rule). Suppose that s : A → B and f : B →C are differentiable functions. Then
f ◦ s is differentiable as well. Moreover, for ξ ∈ A, we have

D( f ◦ s)(ξ) = D f (s(ξ))Ds(ξ) (A.1)

Proof. See [23], section 2.5, page 153, theorem 11.

Theorem 8 (Change of variables). Suppose that s :Ω0 →Ω is a differentiable bijection. For f :Ω→Rwe have∫
Ω

f (x) dx =
∫
Ω0

f (s(ξ))|det(Ds(ξ))| dξ (A.2)

Proof. See [23], section 6.2, page 382, theorem 2.

Lemma 1 (Gauss’ divergence theorem). LetΩ⊂Rd be a bounded domain with a piecewise smooth boundary,
let n be the outward normal, and w :Ω→Rd be a continuously differentiable vector field. Then∫

Ω
∇·w dΩ=

∫
∂Ω

w ·n dΓ

Proof. See [2], section 16.4, theorem 8, page 925.

Lemma 2. Let v :Ω→R and w :Ω→Rd be continuously differentiable for some domainΩ⊂Rd . Then we have

∇· (vw) =∇v ·w+ v(∇·w)

Proof. See [2], section 16.2, theorem 3b, page 915.

Theorem 9. Given two continuously differentiable functions u, v :Ω→R, we have∫
Ω

(∆u)vdΩ=
∫
∂Ω

v∇u · ndΓ−
∫
Ω
∇u ·∇v dΩ (A.3)

Proof. This theorem can be proved by using lemma 1 and 2. From lemma 2, we see

(∇·w)v =∇· (vw)−∇v ·w

Substituting w =∇u gives
(∇·∇u)v =∇· (v∇u)−∇v ·∇u

We now have ∫
Ω

(∆u)v dΩ=
∫

(∇· (∇u))v dΩ=
∫
Ω
∇· (v∇u) dΩ−

∫
Ω
∇v ·∇u dΩ (A.4)
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We can now apply lemma 1 with w = v∇u to see∫
Ω
∇· v∇u dΩ=

∫
∂Ω

v∇u ·n dΓ

Substituting this in (A.4) gives∫
Ω

(∆u)vdΩ=
∫
∂Ω

v∇u · ndΓ−
∫
Ω
∇u ·∇v dΩ

A.2. Approximation theory
Definition 12. The L2 norm of a function f :Ω is denoted || f ||L2 and defined as || f ||L2 = ∫

Ω f (ξ)2 dξ.

A related concept is the l 2 norm.

Definition 13. The l 2 norm of a vector v ∈Rn is denoted ||v ||l 2 and defined as ||v ||l 2 =
√

n−1∑
k=0

v2
k .

A.2.1. Interpolation
Let us consider the interpolation problem. Suppose that we have a space V which is spanned by basis func-
tions N0, N1, ..., Nn−1 : A → R, and we want to find a function f ∈ V which interpolates the point yi at ξi for
k = 0,1, ...,m −1. Writing this as a system yields

f (ξ0) = y0

f (ξ1) = y1
...

f (ξm−1) = ym−1

(A.5)

Since f ∈ V , we can write f (ξ) =
m−1∑
j=0

f j N j (ξ), where the coefficients f0, f1, ..., fN−1 are still unknown.

Substituting this in (A.5) yields

m−1∑
j=0

f j N j (ξ0) = y0

m−1∑
j=0

f j N j (ξ1) = y1

...
m−1∑
j=0

f j N j (ξm−1) = ym−1

which is equivalent to a linear system

Jf = y (A.6)

where

Ji , j = N j (ξi ) (A.7)

This matrix J will be called the interpolation matrix. So, if the interpolation matrix is square and non-
singular, the interpolation problem has a unique solution for every choice of y0, y1, ..., ym−1. In general, it
depends on the choice of basis functions N0, N1, ..., Nm−1 and nodes ξ0, ξ1, ..., ξm−1 if the interpolation ma-
trix J is singular or not. If the basis functions are B-spline basis functions, we have the Whitney-Schoenberg
theorem (theorem 3).



A.3. Linear algebra 79

A.2.2. L2 projection
Suppose we have a function g :Ω→ R, a space V of functions on Ω, and we want to find an f ∗ ∈V such that
|| f − g |L2 | is small.

Definition 14. The L2 projection of a function f :Ω→R onto a space V of functions Ω→R is a function g ∈V
for which || f − g ||L2 is minimal. That is, there exists no g∗ ∈V for which || f − g ||L2 < || f − g ||L2 .

We have the following theorem.

Theorem 10. If V is spanned by basis functions N0, N1, ..., Nn−1 : Ω→ R the L2-projection of f onto V exists
and is unique.

Proof. See [14], theorem 1.8 on page 3, and theorem 1.11 on page 4.

The following theorem can be used to find the L2 projection.

Theorem 11. The L2 projection of f onto the space V spanned by the basis functions N0, N1, ..., Nn−1 satisfies∫
Ω

f (ξ)Ni (ξ) dξ=
∫
Ω

g (ξ)Ni (ξ) dξ (A.8)

Proof. See [14], page 30, theorem 3.2.

We can substitute f (ξ) =
m−1∑
j=0

f j N j (ξ) and interpret the resulting system

n−1∑
j=0

(∫
Ω

Ni (ξ)N j (ξ) dξ

)
f j =

∫
Ω

g (ξ)Ni (ξ) dξ for i = 0,1, ...,n −1 (A.9)

as a linear system Lf = g, where Li , j =
∫
ΩNi (ξ)N j (ξ) dξ and gi =

∫
Ω g (ξ)Ni (ξ) dξ. Since the l 2 projection exists

and is unique, this system is nonsingular, which means that it can be used to find the vector f of coefficient
f0, f1, ..., fn−1.

A.3. Linear algebra
Definition 15. A matrix M is called orthogonal if M is square and M>M = I.

Definition 16. For a matrix M, the Moore-Penrose pseudoinverse or simply pseudoinverse M+ is defined as
the matrix which satisfies

1. (M+)+ = M

2. MM+M = M

3. M+M is symmetric

Theorem 12. The pseudoinverse M+ exists for every matrix M and is unique.

Proof. See [27], theorem 1.

Theorem 13. For a m×n matrix M, x = M+b minimizes ||Mx−b||l 2 . Moreover, over all x that minimize ||Mx−
b||l 2 , x = M+b minimizes ||x||l 2 .

Proof. See [6], chapter 2, page 109, corollary 3.

Definition 17. For a matrix M ∈Rm×n with m ≥ n, the QR-decomposition is a tuple (Q,R), where Q ∈Rn×n is
orthogonal, R ∈Rm×n satisfies Ri , j = 0 for i > j , and QR = M.

Definition 18. For a matrix M ∈ Rm×n , the singular value decomposition is a triple (U,S,V), where U ∈ Rn×n

is orthogonal, S ∈Rm×n satisfies Si , j = 0 for i 6= j , V ∈Rn×n is orthongal, and USV = M.
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Theorem 14. Suppose we have a matrix M ∈Rm×n . Then

M+ = V>S+U>

where (U,S,V) is the singular value decomposition of M. Moreover, if det(M>M) 6= 0, we have

M+ = (M>M)−1M

and
M+ = QT R−1

Proof. See [27], lemma 1.6 for a proof of the first equality. The second equality is proved in [20], proposition
3.2.



B
Algorithms

B.1. Efficient evaluation of values and derivatives of nonzero B-spline ba-
sis functions

Algorithm 5 Efficient evaluation of values and derivatives of nonzero B-spline basis functions

1: function BSPLINEBASIS(Ξ, i , p,ξ)
. returns an array with the values of all basis functions which are nonzero at this point

2: let values be a new array of p +1 zeroes
3: let derivatives be a new array of p +1 zeroes
4: if ξ<Ξ[0] or ξ≥Ξ[Ξ.length - 1] then
5: return values, derivatives
6: end if . Find k such that ξ ∈ [ξk ,ξk+1)
7: k = 0
8: while ξ 6∈ [ξk ,ξk+1 do
9: k = k +1

10: end while
11: values[0] = 1
12: for q = 0,1, ..., p −2 do
13: for j = k −q,k −q +1, ...,k do
14: α= (ξ−Ξ[ j ]) / (Ξ[ j +q +1]−Ξ[ j ])
15: values[ j −1] = values[ j −1] (1−α) * values[j]
16: values[ j ] = values[ j ] * α
17: end for
18: end for

. Compute derivatives
19: for j = 1,2, ..., p do
20: α= p / (Ξ[ j +k +p]−Ξ[ j +k])
21: derivatives[ j −1] = derivatives[ j −1] - α
22: derivatives[ j ] = α
23: end for

. Finish computing the values of the basis functions
24: for j = k - p + 1, k - p + 2, ..., k do
25: α= (ξ−Ξ[ j ]) / (Ξ[ j +p]−Ξ[ j ])
26: values[ j −1] = values[ j −1] (1−α) * values[j]
27: values[ j ] = values[ j ] * α
28: end for
29: return values, derivatives
30: end function

81



82 B. Algorithms

B.2. Elemental loop

Algorithm 6 Assembly of the mass matrix with an elemental loop

1: let ψ0,ψ1, ...,ψN−1 be the basis functions
2: let e0,e1, ...,eM−1 be the elements
3: let glob_mat be an N ×N matrix with each element equal to zero
4: for k= 0,1, ..., M −1 do
5: let n be the number of basis functions with support on ek

6: let k0, k1, ..., kn−1 be the indices of the basis functions with support on ek

7: let elem_mat be an n ×n matrix with each element equal to zero
. assemble element matrix elem_mat

8: for i = 0,1, ...,n −1 do
9: for j = 0,1, ...,n −1 do

10: elem_mat[i , j ] = elem_mat[i , j ] +
∫

ek
ψkiψk j dΩ

11: end for
12: end for

. scatter element matrix elem_mat to global matrix glob_mat
13: for i = 0,1, ...,n −1 do
14: for j = 0,1, ...,n −1 do
15: glob_mat[ki , k j ] = glob_mat[ki , k j ] + elem_mat[i , j ]
16: end for
17: end for
18: end for



C
Code

C.1. Vector kernel
package iga;

import igaUtils.FloatingPoint;
import java.util.List;
import maxpower.kernel.io.AspectChangeIO;
import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEType;
import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;
import com.maxeler.maxcompiler.v2.kernelcompiler.types.composite.DFEVector;
import com.maxeler.maxcompiler.v2.kernelcompiler.types.composite.DFEVectorType;

public class VectorKernel extends Kernel
{

public VectorKernel(KernelParameters kp)
{

super(kp);

DFEType scalartype = Datatype.scalartype;
DFEVectorType<DFEVar> scalarvectortype =

new DFEVectorType<DFEVar>(scalartype, 4);

// inputs
DFEVar constant1 = io.scalarInput("constant1", scalartype);
DFEVar constant2 = io.scalarInput("constant2", scalartype);

AspectChangeIO lmemio = new AspectChangeIO(this, 1536);
DFEVector<DFEVar> a = lmemio.input("a", scalarvectortype);
DFEVector<DFEVar> b = lmemio.input("b", scalarvectortype);
DFEVar setctob = io.scalarInput("setctob", dfeBool());
DFEVector<DFEVar> c = setctob ? b : lmemio.input("c", scalarvectortype,

~setctob);
DFEVector<DFEVar> d = lmemio.input("d", scalarvectortype);
DFEVector<DFEVar> extra = lmemio.input("extra", scalarvectortype);

// vector operations
DFEVector<DFEVar> e = a + constant1 * b;
DFEVar outputsum = io.scalarInput("outputsum", dfeBool());
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DFEVector<DFEVar> d_scaled = constant2 * d;
DFEVector<DFEVar> f_0 = c + d_scaled;
DFEVector<DFEVar> f = (outputsum ? (e + d_scaled) : f_0);

// calculate dot products
List<DFEVar> list1 = (extra * f).getElementsAsList();
DFEVar dotproduct1 = FloatingPoint.accumulate(

((list1[0] + list1[1]) + (list1[2] + list1[3])));
List<DFEVar> list2 = (f * f).getElementsAsList();
DFEVar dotproduct2 = FloatingPoint.accumulate(

((list2[0] + list2[1]) + (list2[2] + list2[3])));

DFEVar cycles = io.scalarInput("cycles", dfeUInt(64));
DFEVar counter = control.count.simpleCounter(64);
DFEVar flushoutput = counter.eq(cycles - 1);
lmemio.output("e", e, ~outputsum, flushoutput);
lmemio.output("f", f, constant.var(true), flushoutput);

AspectChangeIO pcieio = new AspectChangeIO(this, 128);
pcieio.output("dotproduct1", dotproduct1, flushoutput, flushoutput);
pcieio.output("dotproduct2", dotproduct2, flushoutput, flushoutput);

}
}

C.2. Matrix kernel
package iga;

import igaUtils.FloatingPoint;
import igaUtils.Matrix;
import maxpower.kernel.io.AspectChangeIO;
import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEType;
import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;

public class MatrixKernel extends Kernel
{

public MatrixKernel(KernelParameters kp)
{

super(kp);

DFEType scalartype = Datatype.scalartype;

AspectChangeIO lmemio = new AspectChangeIO(this, 1536);
DFEVar extra = lmemio.input("extra", scalartype);
DFEVar vector_0 = lmemio.input("v0", scalartype);
DFEVar vector_1 = io.input("v1", scalartype);
DFEVar vector_2 = io.input("v2", scalartype);

// multiply with matrix
DFEVar result = Matrix.multiply(this, scalartype,

new DFEVar[] { vector_0, vector_1, vector_2 });
DFEVar mux = io.scalarInput("useresultindotproduct", dfeBool());

// output result of matrix multiplication
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DFEVar flushoutput = control.count.simpleCounter(64).eq(
io.scalarInput("cycles", dfeUInt(64)) - 1);

lmemio.output("result", result, constant.var(true), flushoutput);

// calculate dot products
DFEVar dotprodvector = mux ? vector_0 : extra;

DFEVar add1 = dotprodvector * result;
DFEVar add2 = result * result;
DFEVar dotproduct1 = FloatingPoint.accumulate(add1);
DFEVar dotproduct2 = FloatingPoint.accumulate(add2);

// output dot products
AspectChangeIO pcieio = new AspectChangeIO(this, 128);
pcieio.output("dotproduct1", dotproduct1,

flushoutput, flushoutput);
pcieio.output("dotproduct2", dotproduct2,

flushoutput, flushoutput);
}

}

C.3. BiCGSTAB CPU code
// indices of vectors on the DFE
#define H 0
#define P 1
#define R 2
#define R0 3
#define S 4
#define T 5
#define V 6
#define X 7

double alpha, beta, delta, delta0, rho, rho_old, omega;

real *bicgstab_init(real *b)
{

// DFE needs padding at the end
b = realloc(b, vectorsize);

double residuenorm = l2norm(b, ndofs);
real *zerovector = calloc(vectorsize, 1);

if (STREAMTYPE == FIXEDPOINT)
for (int i = 0; i < ndofs; i++)

*((int64_t*)(&(b[i]))) = (int64_t)(b[i] * MUL);

dfe_extraindex = R0;

dfe_setvec(P, zerovector);
dfe_setvec(X, zerovector);
dfe_setvec(R, b);
dfe_setvec(R0, b);
dfe_setvec(V, zerovector);

alpha = 1;
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delta = residuenorm;
delta0 = residuenorm;
rho = residuenorm;
rho_old = 1;
omega = 1;

return zerovector;
}

real *bicgstab_solve(double *b_ptr, double epsilon, int max_iterations)
{

double dotproduct1, dotproduct2;

real *b = (real *)b_ptr;
if (STREAMTYPE == FLOAT)

for (int i = 0; i < ndofs; i++)
b[i] = (float)b_ptr[i];

real *result = bicgstab_init(b);

double bound = epsilon * epsilon * delta0;
for (int i = 0; delta > bound && i < max_iterations; i++)
{

beta = (rho * alpha) / (rho_old * omega);

// DFE step 1
// p = r + beta * (p - omega * v)
dfe_vectorupdate(-1, P, beta, -omega * beta, R, P, -1, V, true, true,

&dotproduct1, &dotproduct2);

// DFE step 2
// v = A * p
dfe_matrixmultiply(V, P, false, &dotproduct1, &dotproduct2);

alpha = rho / dotproduct1;

// DFE step 3:
// h = x + alpha * p
// s = r - alpha * v
dfe_vectorupdate(H, S, alpha, -alpha, X, P, R, V, false, false,

&dotproduct1, &dotproduct2);

// DFE step 4
// t = A * s
dfe_matrixmultiply(T, S, true, &dotproduct1, &dotproduct2);

omega = dotproduct1 / dotproduct2;

// DFE step 5
// x = h + omega s
// r = s - omega t
dfe_vectorupdate(X, R, omega, -omega, H, S, -1, T, true, false,

&dotproduct1, &dotproduct2);

rho_old = rho;
rho = dotproduct1;
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delta = dotproduct2;
}

dfe_readvec(result, X);
dfe_terminate();
return result;

}





D
MAX5 hardware resources

D.1. System details

Table D.1: MAX5 system details

Resource Number
LUTs 1182240
FFs 2364480
DSPs 6840
BRAMs 4320
Max clock frequency 350 MHz
LMEM throughput 47.65 GB/s
LMEM capacity 48 GB

D.2. Hardware resources per arithmetic operation

D.2.1. 27-bit fixed point

Table D.2: Hardware resources for 32-bit fixed point on MAX5

Operation LUTs FFs DSPs BRAMs
Addition 27 28 0 0
Multiplication 5 45 2 0
Division 826 1716 0 0

D.2.2. 48-bit fixed point

Table D.3: Hardware resources for 48-bit fixed point on MAX5

Operation LUTs FFs DSPs BRAMs
Addition 48 49 0 0
Multiplication 53 248 9 0
Division 2555 5069 0 0
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D.2.3. 32-bit floating point

Table D.4: Hardware resources for 32-bit floating point on MAX5

Operation LUTs FFs DSPs BRAMs
Addition 177 308 2 0
Multiplication 77 165 2 0
Division 742 1353 0 0

64-bit floating point

Table D.5: Hardware resources for 64-bit floating point on MAX5

Operation LUTs DSPs BRAMs
Addition 582 949 3 0
Multiplication 132 534 7 0
Division 3135 5979 0 0
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