Parallel Deflated CG Method to Simulate Groundwater Flow in a Layered Grid

Raju Ram

August 24, 2017

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへで

Problem Description	Proposed solution	Results	Conclusions and Recommendations
Agenda			

- Problem Description
 Groundwater Flow
- 2 Proposed solution

Hydrology Background

Figure: What is under the earth's surface

- About 98% of the earth's available fresh water is present beneath the earth's surface in soil pore spaces, called groundwater.
- Hydraulic head calculates measurement of liquid pressure is groundwater.
- Darcy's law defines the movement of water in the subsurface.

イロト イヨト イヨト イヨト

Problem Description	Proposed solution	Results	Conclusions and Recommendations
MODFLOW			

- MODFLOW software developed by U.S Geological Survey is used to simulate groundwater flow.
- Cell centered finite volume discretization: Domain is divided into rectangular boxes called cells.
- Geometries of underlying countries are not rectangular, MODFLOW computes head only at active cells (red).

Problem Description	Proposed solution	Results	Conclusions and Recommendations
Groundwater F	low Equation		

$$\frac{\partial}{\partial x} \left(K_{xx} \frac{\partial h}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_{yy} \frac{\partial h}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_{zz} \frac{\partial h}{\partial z} \right) + W = S_s \frac{\partial h}{\partial t}$$

where,

- K_{xx} , K_{yy} and K_{zz} are hydraulic conductivities along the x, y, and z coordinate axes (LT^{-1}) .
 - W is volumetric flux per unit volume representing sources and sinks of water (T^{-1}).
 - S_s is specific storage of porous material (L^{-1}) .
 - *h* is Hydraulic head (*L*).

Problem Description	Proposed solution	Results	Conclusions and Recommendations

Finite Volume Discretization

Flow from cell (i, j - 1, k) into cell (i, j, k):

$$q_{(i,j-\frac{1}{2})} = CC_{(i,j-\frac{1}{2})}(h_{i,j-1}-h_{i,j})$$

• Continuity equation:

$$\sum_{n=1}^{N} q_{i,j,n} = S_s \Delta V \frac{\Delta h}{\Delta t}$$

• For N = 6, above becomes

$$q_{left} + q_{right} + q_{up} + q_{down} + q_{top} + q_{bottom} = S_s \Delta V rac{\Delta h}{\Delta t}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Problem Description	Proposed solution	Results	Conclusions and Recommendations
System of Equ	uations		

$$CV_{(i,j,k-\frac{1}{2})}h_{(i,j,k-1)} + CR_{(i-\frac{1}{2},j,k)}h_{(i-1,j,k)} + CC_{(i,j-\frac{1}{2},k)}h_{(i,j-1,k)} + H_{c}h_{(i,j,k)} + CC_{(i,j+\frac{1}{2}),k}h_{(i,j+1,k)} + CR_{(i+\frac{1}{2},j,k)}h_{(i+1,j,k)} + CV_{(i,j,k+\frac{1}{2})}h_{(i,j,k+1)} = RHS_{(i,j,k)}$$

- System of equations of form $A\underline{u} = \underline{f}$.
- *H_c* depends on *h*(*i*,*j*,*k*): system of equations becomes non-linear.
- Picard iteration is used to make the system linear.

æ.

< 日 > < 四 > < 回 > < 回 > < 回 > <

Problem Desci	ription
00000000000)

Proposed solution

Results

Conclusions and Recommendations

Simulation Flowchart

Figure: Grounder water simulation flowchart

 Preconditioned Conjugate Gradient (PCG) in Parallel Krylov Solver (PKS) solves:

 $M^{-1}A\underline{u}=M^{-1}\underline{f}.$

• For 2 subdomains:

$$\begin{array}{ll} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array} \begin{pmatrix} \underline{u_1} \\ \underline{u_2} \end{pmatrix} = \begin{pmatrix} \underline{f_1} \\ \underline{f_2} \end{pmatrix}$$

$$A_{11}\underline{u_1} = \underline{f_1} - A_{12}\underline{u_2}$$

Figure: Partitioning of grid using 2 processors in MODFLOW

$$A_{22}u_2 = f_2 - A_{21}u_1$$

Nederlands Hydrologisch Instrumentarium (NHI)

- MODFLOW: 3D Groundwater flow using 7 layers.
- Numerical experiments for Steady state (SS) model, Stress loop and time loop is fixed.
- Consider outer Picard iteration and inner PCG iteration.
- Vary cell size: 250 m, 100 m, 50 m.

Results

Problem statement

- PCG iterations increase with increasing number of subdomains in PKS, due to decoupling in global information.
- Goal of this masters project is to gain wall clock time by reducing the iteration increase.

<ロト
・ロト
・日

Summary: Problem Description

- So far we covered ...
 - Hydrological background behind the problem.
 - Finite Volume Discretization.
 - Preconditioner.
 - Problem statement.

Results

Summary: Problem Description

- So far we covered ...
 - Hydrological background behind the problem.
 - Finite Volume Discretization.
 - Preconditioner.
 - Problem statement.
- Next ...
 - Deflation Preconditioner

<ロ > < 母 > < 臣 > < 臣 > < 臣 > < 臣) < 2/30

Eigenvectors with small eigenvalues hampers the PCG convergence.

- We approximate the eigenvectors with constant deflation vectors (CDPCG) and linear deflation vectors (LDPCG).
- Columns of deflation matrix Z are deflation vectors.

a) Used to remove influence of k small eigenvalues. Condition number reduces to $\frac{\lambda_n}{\lambda_{k+1}}$ from $\frac{\lambda_n}{\lambda_1}$.

a) Used to remove influence of k small eigenvalues. Condition number reduces to $\frac{\lambda_n}{\lambda_{k+1}}$ from $\frac{\lambda_n}{\lambda_1}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

14/30

b) We define projector $P_1 = I - AZE^{-1}Z^T, \quad P_2 = I - ZE^{-1}Z^TA$

a) Used to remove influence of k small eigenvalues. Condition number reduces to $\frac{\lambda_n}{\lambda_{k+1}}$ from $\frac{\lambda_n}{\lambda_1}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ● 臣 ● のへの

- b) We define projector $P_1 = I - AZE^{-1}Z^T$, $P_2 = I - ZE^{-1}Z^TA$
- c) Solve for deflated system: $P_1 A \tilde{u} = P_1 f$.

a) Used to remove influence of k small eigenvalues. Condition number reduces to $\frac{\lambda_n}{\lambda_{k+1}}$ from $\frac{\lambda_n}{\lambda_1}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ● 臣 ○ のへの

- b) We define projector $P_1 = I - AZE^{-1}Z^T$, $P_2 = I - ZE^{-1}Z^TA$
- c) Solve for deflated system: $P_1 A \tilde{u} = P_1 f$.

d)
$$u = (I - P_2)u + P_2u$$
,

a) Used to remove influence of k small eigenvalues. Condition number reduces to $\frac{\lambda_n}{\lambda_{k+1}}$ from $\frac{\lambda_n}{\lambda_1}$.

14/30

- b) We define projector $P_1 = I - AZE^{-1}Z^T$, $P_2 = I - ZE^{-1}Z^TA$
- c) Solve for deflated system: $P_1 A \tilde{u} = P_1 f$.

d)
$$u = (I - P_2)u + P_2u$$
,

e) $(I - P_2)u$ in d) becomes $ZE^{-1}Z^T f$.

- a) Used to remove influence of k small eigenvalues. Condition number reduces to $\frac{\lambda_n}{\lambda_{k+1}}$ from $\frac{\lambda_n}{\lambda_1}$.
- b) We define projector $P_1 = I - AZE^{-1}Z^T$, $P_2 = I - ZE^{-1}Z^TA$
- c) Solve for deflated system: $P_1 A \tilde{u} = P_1 f$.

d)
$$u = (I - P_2)u + P_2u$$
,

- e) $(I P_2)u$ in d) becomes $ZE^{-1}Z^T f$.
- f) $P_2 u = P_2 \tilde{u}$, substitute \tilde{u} from c) in d) to obtain u.

Problem Description	Proposed solution	Results	Conclusions and Recommendations

What to add in PCG to make it DPCG?

• Deflation pre processing phase: residual update

solve
$$Eq_1=Z^{ op}r^{(0)}, E=Z^{ op}AZ,\,\,$$
 sparse LU to decompose E $ilde{r}^{(0)}=r^{(0)}-AZq_1$

• Deflation runtime phase: DPCG mat-vec prod:

$$Ax = r^{(0)} \xrightarrow{Deflation} P_1 A \tilde{x} = P_1 r^{(0)}$$

solve $Eq_3^{(k)} = Z^T v^{(k)}$
 $P_1 v^{(k)} = v^{(k)} - AZq_3^{(k)}$

• Deflation post processing phase:

Solve for
$$q_2 : Eq_2 = Z^T A \tilde{x}$$

Solution correction: $u = Z(q_1 - q_2) + \tilde{x} + u^{(0)}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Deflated PCG Algorithm

pcedure DPCG(A, f, $u^{(0)}$, tol, k_{max} , M, Z $r^{(0)} = f - Au^{(0)}$, k=1	C) Once ▷ Initialization
if (deflation) then $\tilde{u}^{(0)} = u^{(0)}$ $u^{(0)} = 0$	Deflation pre-processing phase
Decompose $Z^T AZ$ ($d \times LC$, GC) = 1 solve $\tilde{L}\tilde{q}_1 = Z^T r^{(0)}$ (GC); $\tilde{U}q_1 = \tilde{q}_1$ $r^{(0)} = r^{(0)} - AZq_1$ end if	$\tilde{L}\tilde{U} \Rightarrow d=3$ for NHI model in LDPCG
while $(k < k_{max} \text{ and } r^{(k-1)} > tol)$ $z^{(k-1)} = M^{-1}r^{(k-1)} \Rightarrow P$ if $k = 1$ then $p^{(1)} = z^{(0)}$	do Preconditioning with Additive Schwarz
else $\beta_k = \frac{(r^{(k-1)})^T z^{(k-1)}}{(r^{(k-2)})^T z^{(k-2)}}$	
$p^{(k)} = z^{(k-1)} + \beta_k p^{(k-1)}$ end if $v^{(k)} = Ap^{(k)}$ ITER1	⊳ Search direction times
if (deflation) then solve $L\bar{q}_3^{(k)} = Z^T v^{(k)}$ (GC); $\partial q_3^{(k)}$ $v^{(k)} = v^{(k)} - AZq_3^{(k)}$ end if $a \to z = a$	beflation run time phase $\tilde{q}_3^{(k)} = \tilde{q}_3^{(k)}$
$\alpha_k = \frac{(r^{(k-1)})^T z^{(k-1)}}{(r^{(k-1)})^T z^{(k-1)}}$	
$\begin{split} & \alpha_k = \frac{(r^{(k-1)})r_k^{(k-1)}}{(p^{(k)})^T v^{(k)}} \\ & u^{(k)} = u^{(k-1)} + \alpha_k p_k \\ & r^{(k)} = r^{(k-1)} - \alpha_k v^{(k)} \\ & k = k+1 \end{split}$	⊳ Iterate update ⊳ Residual update
$a_k = \frac{(r^{(k-1)})r^{(k-1)}}{(r^{(k)})r^{(k-1)}}$ $u^{(k)} = u^{(k-1)} + \alpha_k p_k$ $r^{(k)} = r^{(k-1)} - \alpha_k v^{(k)}$ $k = k + 1$ end while Once $k = k \cdot 1$ $k = k \cdot 1$	▷ Iterate update ▷ Residual update
$\begin{array}{l} a_k = \frac{(r^{(k-1)}) \cdot r^{(k-1)}}{(r^{(k-1)}) \cdot r^{(k)}} \\ u^{(k)} = u^{(k-1)} + a_k p_k \\ r^{(k)} = r^{(k-1)} - a_k v^{(k)} \\ k = k + 1 \\ end while \\ h = k - 1 \\ fi (defiation) then \\ solve L_{q_2} = \frac{2^r}{2^r} Au^{(k)} (LC, GC); Dq \\ u^{(k)} = u^{(k)} + \overline{u}^{(0)} + \mathcal{Z}(q_1 - q_2) \end{array}$	▷ Iterate update ▷ Residual update ▷ Deflation post-processing phase $_2 = \hat{q}_2$

Results

Choosing Deflation Vectors

- Extraction of one subdomain from the Netherlands domain.
- The brown layer denote ghost layer cells.

(a) constant deflation vector

(b) linear-x deflation vector

Figure: Deflation vectors: a) in CDPCG and a)-d) in LDPCG

<ロト</p>
・ロト
・日

Problem Description	Proposed so	lution	Results	Conclusions and Recommendations
Summary:	Proposed	Solution		

• We discussed Deflation algorithm.

<ロト</p>
・ロト
・日
・< 日</p>
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Problem Description	Proposed solution	Results	Conclusions and Recommendations
Summary:	Proposed Solution	า	

- We discussed Deflation algorithm.
- Choosing deflation vectors in NHI Steady State (SS) model .

Summary: Proposed Solution

- We discussed Deflation algorithm.
- Choosing deflation vectors in NHI Steady State (SS) model .

・ロト ・ 日 ・ モ ・ モ ・ モ ・ つくぐ

- What next?: Numerical results for various models.
 - cell size: 250 m, two layer iMOD unit case.
 - cell size: 100 m, seven layer NHI SS model.
 - cell size: 50 m, seven layer NHI SS model.

250 m, Two Layer iMOD Unit Case Iterations

Iterations increase with increasing subdomains

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回 のへで

NHI 100m Cellsize: Iteration Improvement

Results

NHI 50m Cellsize: Iteration Improvement

Variation of iterations with increasing subdomains in NHI SS 50m model

Number of subdomains

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

140

NHI 50m Cellsize: Inner Iteration in Each Picard Iteration

Variation of inner iterations with Picard iteration in NHI SS 50m model

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Overview of Results: 100 Subdomains

	PCG	CDPCC	2	LDPC	G	LDPCG SU
Cell size	Iters	Iters	SU	Iters	SU	vs CDPCG SU
250	2527	1768	1.43	1496	1.69	1.18
100	10775	5209	2.07	3313	3.25	1.57
50	20927	10244	2.04	4966	4.21	2.06

Table: Speed up in iterations (Iters) for NHI SS model with 100 subdomains, \underline{SU} stands for speed up.

• Performance of LDPCG improves for higher resolution odels.

Improvement in Wall Clock Time: NHI SS 100m

NHI 100m SS: Factor improvement in wall clock time

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 • のへで

Speed up in NHI SS 100m: 4 subdomains as a reference

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- LDPCG method (especially the construction of *E*) is difficult to implement.
- Load imbalance issue due to active cell of ghost layer arises, even after using Recursive Coordinate Bisection (RCB) domain decomposition.

Problem Description	Proposed solution	Results	Conclusions and Recommendations
Conclusions			

• Deflation preconditioner (using linear deflation vectors) has potential to achieve speed up in a wall clock time by factor **4**.

Problem Description	Proposed solution	Results	Conclusions and Recommendations
Conclusions			

- Deflation preconditioner (using linear deflation vectors) has potential to achieve speed up in a wall clock time by factor **4**.
- The wall clock improvement is obtained due to huge decrease in iterations.

Problem Description	Proposed solution	Results	Conclusions and Recommendations
Conclusions			

- Deflation preconditioner (using linear deflation vectors) has potential to achieve speed up in a wall clock time by factor **4**.
- The wall clock improvement is obtained due to huge decrease in iterations.
- Linear deflation vectors seems to be the optimal choice in the deflation preconditioner.

 Investigate the serial solver convergence: by changing the maximum number of inner iterations, checking accuracy of ILU(0) subdomain solve.

- Investigate the serial solver convergence: by changing the maximum number of inner iterations, checking accuracy of ILU(0) subdomain solve.
- Reduce the local communication in constructing *AZ* with linear deflation vectors.

- Investigate the serial solver convergence: by changing the maximum number of inner iterations, checking accuracy of ILU(0) subdomain solve.
- Reduce the local communication in constructing *AZ* with linear deflation vectors.
- Investigate the load imbalance in PCG and deflated PCG.

- Investigate the serial solver convergence: by changing the maximum number of inner iterations, checking accuracy of ILU(0) subdomain solve.
- Reduce the local communication in constructing *AZ* with linear deflation vectors.
- Investigate the load imbalance in PCG and deflated PCG.
- Check Deflation performance in NHI transient simulation.

Problem Description	Proposed solution	Results	Conclusions and Recommendations
Recommendation	ons		

- Investigate the serial solver convergence: by changing the maximum number of inner iterations, checking accuracy of ILU(0) subdomain solve.
- Reduce the local communication in constructing AZ with linear deflation vectors.
- Investigate the load imbalance in PCG and deflated PCG.
- Check Deflation performance in NHI transient simulation.
- Implement deflation in other Deltaras packages such as SEAWAT (used for fresh salt groundwater computation).

Problem Description	Proposed solution	Results	Conclusions and Recommendations
References			

- Jarno Verkaik, First Applications of the New Parallel Krylov Solver for MODFLOW on a National and Global Scale.
- PKS Workshop, iMOD Delft software days (DSD), 14 June 2017, Deltares

Questions/Feedback ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで…