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i.3 Rössler Attractor . . . . . . . . . . . . . . . . . . . . . . . . . 14

ii Chaos Theory and Strange Attractors . . . . . . . . . . . . . . . . . . 16

IIICurrent Methods of Localization 20

i Localization through Plotting of Trajectories . . . . . . . . . . . . . . 20

i.1 Localization of Hidden Attractors . . . . . . . . . . . . . . . . 21

ii Nambu Hamiltonians . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

ii.1 The Nambunian H1 . . . . . . . . . . . . . . . . . . . . . . . . 38

ii.2 The Nambunian H2 . . . . . . . . . . . . . . . . . . . . . . . . 41

IV A Geometric Approach to Localization using Competitive Modes 45

i Competitive Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

ii An example using the classical Lorenz system . . . . . . . . . . . . . 46

V Conclusions 52

2



Master’s Thesis Literary Analysis � April 26, 2019

I. Introduction

Dynamical systems are a essential part of the modern mathematical and physical

community. They’re popularity can be attested to in almost all aspects of science.

As an example, consider the system of differential equations describing the motion

of an object under the influence of some constant downward acceleration.8><>:
ȧ(t) = 0

v̇(t) = a(t)

ẋ(t) = v(t)

Here, x(t) describes the vertical position of the object, v(t) describes its velocity, and

a(t) describes its acceleration, all with respect to time t. This differential equation

can easy be solved as follows.8><>:
a(t) = a(0)

v(t) = a(0)t+ v(0)

x(t) = 1
2
a(0)t2 + v(0)t+ x(0)

(1)

This system of solutions is referred to as a dynamical system. Here we see the

purpose of dynamical systems: describing the solutions of differential equations. We

state this more formally with the following definition.

Definition I.1. Dynamical System

Say we have a continuous system of di�erential equations ẋ = F(x; t) with

F : S � R! S, where S is some open subset of Rn.

The dynamical system � : S � R ! S is a continuously di�erentiable mapping that

de�nes the solution curve of our system of di�erential equations that passes through

the point x0 2 S at t = 0 [15][23].

Some dynamical systems are much more complicated than Equation (1) and require

numerical integration techniques in order to be approximated (direct solutions are

often impossible to find). A particularly famous example of such a dynamical system

is that of the Lorenz system [19].8><>:
ẋ = �(y � x)

ẏ = x(�� z)� y
ż = xy � �z

(2)

Here, �, �, and � 2 R, and x, y, z are real functions of t 2 R.
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Figure 1: The Lorenz attractor, where � = 10, � = 28, and � = 8=3. Here, we generate

this attractor from solution curves originating very near the origin, which is an

equilibrium point of this system (an equilibrium point of a system of di�erential

equations _x = F(x; t) is a point xe in the phase space where _xe = 0).

We can numerically approximate the dynamical system to the Lorenz system using

an explicit Runge Kutta method. Choosing a specific set of parameters and initial

conditions, we plot approximations to specific solution curves in the x,y,z-graph

(called a phase space) in Figure 1. As a result, we see a very curious structure

forming in the phase space: it seems that the solution curves we plotted eventually

converge to some bounded set in the phase space, something that resembles the wings

of a butterfly. This set is called the Lorenz Attractor, a classic example of the more

general concept of a strange attractor [15].

Strange attractors, because of their complicated structures and ability to describe

steady-state situations, are a topic of great interest in the modern dynamical systems
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community. Being able to efficiently and easily visualize them would be a signifi-

cant step forward in terms of mathematical research. In this document, we will be

exploring the properties of strange attractors, as well as investigating the current

methods used to visualize them. We will then be analyzing a new method of visual-

ization, explaining its inner workings, applying it to well-known dynamical systems,

and comparing it to the visualization methods currently available.
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II. Strange Attractors in Dynamical Systems

In Section I, we loosely explained some basic concepts concerning dynamical systems

but refrained from concretely defining them. Let us first rectify this.

Definition II.1. Attracting Set

Lets say we have the dynamical system � : S � R ! S of a system of di�erential

equations. A closed, invariant set A � S is called an attracting set of our system of

di�erential equations if there exists some neighborhood N of A such that any solution

trajectory �(x; �) with x 2 N has a tA � 0 so that �(x; t) 2 A for all t � tA [15].

The maximal neighborhood Nmax of A where this is the case is called the basin of

attraction of A.

Definition II.2. Attractor

Lets say we have the dynamical system � : S � R ! S of a system of di�erential

equations. Suppose A is an attracting set of our system of di�erential equations. The

set A is an attractor if it contains a dense orbit; that is, there exists a trajectory that

passes through or comes in�nitely close to every point in A. This ensures that A is

not the union of two or more distinct attracting sets [15][21].

Attractors are not an uncommon sight in dynamical systems: stable equilibrium

points, stable limit cycles, and stable limit tori are all examples of attractors that

can occur in a dynamical system. However, defining whether an attractor is strange

or not takes some more effort, and it all has to do with the concept of dimension.

Lets say we have a nonempty set B in Rn. The topological dimension of B is simply

the formal name for the well-known, everyday concept of dimensionality. Accord-

ing to topological dimensionality, a point is 0-dimensional, a line is 1-dimensional,

a plane is 2-dimensional, and so on. Notice that the topological dimension of B is

always an integer value greater or equal to 0, and no greater than n [13].

We must define another concept of dimensionality before we can proceed. Suppose

we have the set B defined as before. We define the s-dimensional Hausdorff measure

of B as follows [7]:

Hs(B) = lim
"!0

inf

(
1X
i=1

jCijs : fCig is a "-cover of B

)
Here, a "-cover of B is a countable set fCig so that supfjx � yj : x; y 2 Cig � " 8i
and B �

S1
i=1 Ci. Using this measure, we can define the Hausdorff dimension (or

Hausdorff-Besicovitch dimension) of B as follows [7]:

dimH(B) = inffs � 0 : Hs(B) = 0g (3)

6
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Now that we have de�ned the concepts of topological and Hausdor� dimensionality,
we can move on to the de�ning of a fractal, which are essential structures in strange
attractors.

De�nition II.3. Fractal
Say we have a nonempty setB in Rn . The set B is a fractal if the Hausdor�
dimension of B is strictly greater than the topological dimension ofB [13]. Often,
this is described as self-similarity: the fractal is constructed of parts that in turn
resemble (not necessarily copy) the whole structure [7].

Finally, we can de�ne a strange attractor very simply.

De�nition II.4. Strange Attractor
Lets say we have the dynamical system� : S � R ! S of a system of di�erential
equations. SupposeA is an attractor of our set of di�erential equations. The setA
is a strange attractor if its attracting set is fractal in nature. In layman's terms, this
means thatA has a much more complicated geometric structure than, for example,
an equilibrium point, a limit cycle, or limit torus [2][21].

We can further classify strange attractors in two categories: self-excited and hidden.
However, in order to formally de�ne these two categories, we must �rst provide a
few more de�nitions.

De�nition II.5. Equilibrium Point
Lets say we have the system of di�erential equations_x= F(x). An equilibrium point
xe of this system is a point in the phase space whereF(xe) = 0. In order words,
the equilibrium point is invariant under the corresponding dynamical system. For
our purposes, we require that an equilibrium point must be distinct, i.e. there exists
a nonempty neighborhood around (but not including)xe such that all points in this
neighborhood are not equilibrium points [15].

De�nition II.6. Manifolds of Equilibrium Points
Lets say we have the dynamical system� : S � R ! S of a system of di�erential
equations that contains equilibrium pointxe. A manifold W(xe) is a set of points in
the phase space whereby either:

� lim t !1 � (x; t) = xe for all x in W(xe), in which case the manifold is called a
stable manifoldW + (xe) [2].

� lim t !�1 � (x; t) = xe for all x in W(xe), in which case the manifold is called
an unstable manifoldW � (xe) [2].

We can now de�ne self-excited and hidden strange attractors.

7
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De�nition II.7. Classi�cation of Strange Attractors
Lets say we have a system of di�erential equations that contains equilibrium points.
SupposeA is a strange attractor, then

� A is self-excited if its basin of attraction contains at least one equilibrium point
[11].

� A is hidden if its basin of attraction contains no equilibrium points [11].

Per de�nition, self-excited strange attractors can be easily visualized by simply plot-
ting the unstable manifolds of the equilibrium points, which are usually easy to �nd.
At least one of the unstable manifolds will 
ow into the strange attractor and, given
enough time, will show how the attractor behaves. On the other hand, �nding hid-
den attractors is much more di�cult since they can be located anywhere and are not
accessible through the equilibrium points. Much more work and time is required to
investigate if a hidden attractor is even present in the dynamical system, let alone
how it is structured and where it is located. Currently, research is being done on
how to locate hidden attractors more easily [11][10][12].

We present a few examples of strange attractors in the following subsection, all of
which are self-excited attractors and thus easy to visualize.

i. Examples of Strange Attractors

i.1 Lorenz Attractor

As we have seen before in Section I, the Lorenz system is one of the most famous
dynamical systems that can contain a strange attractor. For the reader's convenience,
we again give the Lorenz system below [6][19].

8
><

>:

_x = � (y � x)

_y = x(� � z) � y

_z = xy � �z

(4)

Here, � , � , and � are all real valued parameters.

The �rst thing we want to do is present a lemma about the symmetrical nature of
the Lorenz system.

Lemma II.1 (Symmetry of the Lorenz System ). The Lorenz system is sym-
metric under the transformation(x; y; z) ! (� x; � y; z) [15].

8
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Proof. The proving this lemma is extremely simple and can be done using the fol-
lowing equivalent statements.

_x = � (y � x) � � _x = � (( � y) � (� x))

_y = x(� � z) � y � � _y = ( � x)( � � z) � (� y)

_z = xy � �z � _z = ( � x)( � y) � �z

This means that if one structure appears in the +x; + y-plane, then that same struc-
ture will appear in the � x; � y-plane. This is also true for any equilibrium points
that the Lorenz system might have.

Speaking of equilibrium points, the Lorenz system, under very weak conditions, has
the following equilibrium points.

Lemma II.2 (Equilibrium Points of the Lorenz System ). The equilibrium
points f (xe; ye; ze)g of the Lorenz system given in Equation(4) with � 6= 0 are
(0; 0; 0) and (�

p
� (� � 1); �

p
� (� � 1); � � 1).

Proof. In the �rst equation, _xe = � (ye � xe) = 0, meaning that xe = ye.
In the second equation, _ye = xe(� � ze) � ye = 0, meaning that ye = xe(� � ze).
In the third equation, _ze = xeye � �z e = 0, meaning that �z e = xeye.

Combining these three equations,�y e = ye(�� � y2
e), meaning that either ye = 0 or

ye = �
p

� (� � 1).
Thus, any equilibrium point of the Lorenz system where� 6= 0 must be either (0; 0; 0)
or (�

p
� (� � 1); �

p
� (� � 1); � � 1). If � = 0, then the only equilibrium point of

the system is the origin.

Of course, this means that two of the equilibrium points of the Lorenz system do not
exist in the real phase space unless� > 0 and � > 1. Because of this, we will indeed
assume from now on that� > 0 and � > 1.

The Lorenz Attractor is constructed around the nonzero equilibrium points of the
Lorenz system, spreading out like twisted butter
y wings. One of the easiest ways
of visualizing this attractor is setting the parameter� = 10, � = 28, and � = 28;
indeed, these are the values that Lorenz himself used when he was �rst studying this
system [6][19]. Figure 2 gives a visual representation of the Lorenz Attractor, using
these parameter values.

9
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Figure 2: The Lorenz Attractor, developed from the unstable manifolds of the origin,
where � = 10, � = 28, and � = 8=3.

As one can see, the attractor per de�nition is invariant under the dynamical system:
a trajectory inside the attractor will forever remain inside it. But it is the shape of
the attractor that makes it strange. The Lorenz Attractor's structure is much more
complicated that a simple attracting point or limit cycle; since the Lorenz Attractor
was concretely proven to be a strange attractor in 2002, it has been con�rmed that
it is also indeed fractal in nature [22].

i.2 Chua Attractor

Chua Attractor occurs in a system of di�erential equations describing the current
and voltage 
owing through a simple electronic circuit consisting of two capacitors,
one inductor, one nonlinear resistor, and a Chua diode [18]. The system was named
after its founder Leon Chua, who introduced the system in the mid 1980's [14].

We will simply treat the Chua system as a mathematical system without paying
too much attention to the physical interpretation of it. For this reason, we will be

10
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working with a simpli�ed version of the system, one which still exhibits the strange
attractor we are looking for.

8
><

>:

_x = � (y � x � f (x))

_y = x � y + z

_z = � �y

(5)

Here, f is a nonlinear function that describes the change in resistance versus current
in the Chua diode [18]. Mathematically, multiple sources of literature simply de�ne
the function as follows [14][18][11][10][12].

f (x) = m1x +
1
2

(m0 � m1)( jx + 1j � j x � 1j)

=

8
><

>:

m1x + ( m1 � m0) x 2 (�1 ; � 1)

m0x x 2 [� 1; 1]

m1x + ( m0 � m1) x 2 (1; 1 )

(6)

Now, we de�ne the system's equilibrium points.

Lemma II.3 (Equilibrium Points of the Chua System ). The equilibrium points
f (xe; ye; ze)g of the Chua system given in Equation(5) with nonlinearity function f
de�ned in Equation (6) are

(0; 0; 0) if m0 6= 0
�

m1 � m0

m1 + 1
; 0;

m0 � m1

m1 + 1

�
if (m0 + 1)( m1 + 1) < 0

�
m0 � m1

m1 + 1
; 0;

m1 � m0

m1 + 1

�
if (m0 + 1)( m1 + 1) < 0

Proof. In the �rst equation, _xe = � (ye� xe� f (xe)) = 0, meaning that ye = xe+ f (xe).
In the second equation, _ye = xe � ye + ze = 0, meaning that ye = xe + ze.
In the third equation, _ze = � �y e = 0, meaning that ye = 0.

Combining these three equations, we immediately see that any equilibrium point of
the Chua system is (xe; 0; � xe) where xe + f (xe) = 0. Therefore, it is crucial to
calculatexe.

We must�rst prove that the function f as de�ned in Equation (6) is an odd function;
that is, f (x) = � f (� x).

11
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� f (� x) =

8
><

>:

� m1(� x) � (m1 � m0) � x 2 (�1 ; � 1)

� m0(� x) � x 2 [� 1; 1]

� m1(� x) � (m0 � m1) � x 2 (1; 1 )

=

8
><

>:

m1x + ( m0 � m1) x 2 (1; 1 )

m0x x 2 [� 1; 1]

m1x + ( m1 � m0) x 2 (�1 ; � 1)

= f (x)

In this case, we can keep focus primarily on positive values ofx. If there exists some
intersect point xe so that xe + f (xe) = 0, then � xe + f (� xe) = 0.

Furthermore, we only considerxe to be a viable answer to the equationxe+ f (xe) = 0
if there exists some open neighborhood inR around xe that does not contain any
other solution to the equation. This is in order to ensure that each resulting equilib-
rium point is its own individual, independent point in the phase space.

Say x 2 [0; 1].
Then f (x) = m0x. It is trivial to conclude that if m0 6= � 1, thenxe+ f (xe) = 0 if and
only if xe = 0. If m0 = � 1, then xe can be any value in [0; 1]. Thus, we do not con-
sider the equationxe+ f (xe) = 0 to have any viable solutions on [0; 1] whenm0 = � 1.

Say x 2 (1; 1 ).
Then f (x) = m1x + ( m0 � m1). Then xe + f (xe) = 0 for xe = ( m1 � m0)=(m1 + 1).
The question is whether this value falls in the range (1; 1 ).

For ease of analysis, let us de�ne a new functiong : R2 ! R, de�ned asg(m0; m1) =
(m1 � m0)=(m1 + 1) = xe. The function g is almost everywhere di�erentiable, with
the exception being whenm1 = � 1.

@g

@m0
=

� 1

m1 + 1
@g

@m1
=

m0 + 1

(m1 + 1) 2

Assumem0 < � 1.
Then @g=@m1 < 0 for all m1 2 Rnf� 1g. Also notice that limm1 !�1 g = 1. Thus,
we can conclude that form1 2 (�1 ; � 1), the function g always takes on a value less
than 1; in the same way form1 2 (� 1; 1 ), the function g always takes on a value

12
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greater than 1.

Sinceg(m0; m1) = xe and since we requirexe 2 (1; 1 ), we can conclude that for
m1 < � 1, the intersect point xe does not exist. Whenm1 > � 1, then the intersect
point is de�ned as xe = ( m1 � m0)=(m1 + 1) 2 (1; 1 ). If m1 = � 1, we can then
immediately see that ifxe + f (xe) = 0, then m0 = � 1. However, becausem0 < � 1,
the intersect point xe cannot exist.

Assumem0 > � 1.
Then @g=@m1 > 0 for all m1 2 Rnf� 1g. Also notice that limm1 !�1 g = 1. Thus,
we can conclude that form1 2 (�1 ; � 1), the function g always takes on a value
greater than 1; in the same way form1 2 (� 1; 1 ), the function g always takes on a
value less than 1.

Sinceg(m0; m1) = xe and since we require thatxe 2 (1; 1 ), we can conclude that for
m1 > � 1, the intersect point xe does not exist. Whenm1 < � 1, then the intersect
point is de�ned as xe = ( m1 � m0)=(m1 + 1) 2 (1; 1 ). If m1 = � 1, we can then
immediately see that ifxe + f (xe) = 0, then m0 = � 1. However, becausem0 > � 1,
the intersect point xe cannot exist.

Assumem0 = � 1
Then xe + f (xe) = 0 , (m1 +1) xe = ( m1 +1). From this we can must conclude that
m1 = � 1 sincexe > 1. However, ifm1 = � 1, then xe can be any value in (1; 1 ).
Thus, we do not consider the equationxe + f (xe) = 0 to have any viable solutions
on (1; 1 ) if m0 = � 1.

Therefore, the only viable solution forxe 2 (1; 1 ) is

xe =
m1 � m0

m1 + 1
if (m0 + 1)( m1 + 1) < 0

However, we proved previously that that the functionf (x) is odd. Therefore, we can
immediately conclude that the only viable solution forxe 2 (�1 ; � 1) is

xe =
m0 � m1

m1 + 1
if (m0 + 1)( m1 + 1) < 0

In conclusion, the only equilibrium points of the Chua system are

(0; 0; 0) if m0 6= 0
�

m1 � m0

m1 + 1
; 0;

m0 � m1

m1 + 1

�
if (m0 + 1)( m1 + 1) < 0

�
m0 � m1

m1 + 1
; 0;

m1 � m0

m1 + 1

�
if (m0 + 1)( m1 + 1) < 0

13
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The Chua Attractor twists around all three equilibrium points when they exist,
sometimes generating a structure that most people describe as the "double scroll"
[18]. We visualize this attractor by choosing an appropriate set of parameters and
plot the unstable manifolds of the origin. Given enough time, they give an accurate
representation of Chua's "double scroll", as shown in Figure 3.

Figure 3: The Chua Attractor, developed from the unstable manifolds of the origin, where
� = 15:6, � = 28, m0 = � 1:15 and m1 = � 0:7 [18]. The strange attractor
revolves around all three equilibrium points, which in this case are (0, 0, 0),
(1.5, 0, -1.5), and (-1.5, 0, 1.5).

Again, we can see from this complicated invariant structure that this is indeed a
strange attractor.

i.3 R•ossler Attractor

The R•ossler Attractor was �rst described by O. R•ossler in 1976 as a play model for
many physical and chemical phenomenon, including the Lorenz system [16]. The

14
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R•ossler system of equations is simply given as
8
><

>:

_x = � (y + z)

_y = x + �y

_z = � + z(x � 
 )

(7)

Here, parameters� , � , and 
 are real-valued parameters. The equilibrium points of
this system are of particular interest and as such are de�ned in the following lemma.

Lemma II.4 (Equilibrium Points of the R•ossler System ). The equilibrium
points f (xe; ye; ze)g of the R•ossler system given by Equation(7) with � 6= 0 is given
by  


 �
p


 2 � 4��

2
;

� 
 �
p


 2 � 4��

2�
;

 �

p

 2 � 4��

2�

!

Proof. In the �rst equation, _xe = � (ye + ze) = 0, meaning that ye = � ze.
In the second equation, _ye = xe + �y e = 0, meaning that xe = � �y e.
In the third equation, _ze = � + ze(xe � 
 ) = 0, meaning that zexe � 
z e + � = 0.

Combining these three equations,�z 2
e � 
z e + � = 0,

meaning that ze = ( 
 �
p


 2 � 4�� )=(2� ).

Thus, any equilibrium point of the R•ossler system where� 6= 0 must be�
(
 �

p

 2 � 4�� )=2; (� 
 �

p

 2 � 4�� )=(2� ); (
 �

p

 2 � 4�� )=(2� )

�
. Of course,

the equilibrium points are only real if 
 2 � 4�� � 0.

If � = 0, then any equilibrium point of the R•ossler system where
 6= 0 must be
(0; � �=
; �=
 ).

If � = 
 = 0, then any equilibrium point of the R•ossler system must be
(0; � ze; ze) where ze 2 R. However, this is only possible if� = 0

R•ossler �rst used the parameters� = 0:2, � = 0:2, and 
 = 5:7 in order to generate
his attractor. With these parameters, the R•ossler system has the approximate equi-
librium points (5.693, -28.465, 28.465) and (0.007,-0.035, 0.035). It is interesting to
note that the R•ossler Attractor only circles around the latter of these equilibrium
points, not both like in previous examples. In this case, the attractor is shaped like
a mobius strip around this single equilibrium point, connecting the outer-most edge
of the upward-rising "
air" with the inner-most edge of the horizontal spiral. This
is exempli�ed in Figure 4.

15
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Figure 4: The R•ossler Attractor, developed from the unstable manifolds of the equilibrium
points (0:007; � 0:035; 0:035), where � = 0 :2, � = 0 :2, and 
 = 5 :7 [16].

ii. Chaos Theory and Strange Attractors

All the strange attractors featured in the previous subsection have been chosen specif-
ically, as they also exhibit a very interesting phenomenon: chaos. In order to de�ne
chaos, we must �rst understand a concept central to chaotic dynamical systems.

Chaos in essence has to do with how microscopic di�erences in initial conditions can
lead to macroscopic di�erences in the resulting trajectories given enough time. Let
us say we have the system of di�erential equations_x = F(x; t) with corresponding
dynamical systemx(t) = � (x(0); t). Say we have a reference trajectoryx1(t) and a
perturbed trajectory x2(t), where "(t) = jx1(t) � x2(t)j. We assume that"(0) � 1.
We then de�ne the maximum Lyapunov exponent as the eventual exponential rate
of expansion [2].

� (x1(0)) = lim
t !1

lim
" (0) ! 0

1
t

ln

 
"(t)

" (0)

!

(8)
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With this equation in mind, we can easily de�ne chaos.

De�nition II.8 (Chaos). Chaos is the phenomenon where a dynamical system is
extremely sensitive to initial conditions in some setC � Rn . Mathematically, C
exhibits chaos if for allx 2 C, the maximal Lyapunov exponent� (x) is positive [2].1

Simply put, let's say we have two trajectories in a dynamical system with extremely
similar (yet distinct) initial conditions. If these trajectories are found in a chaotic
subspace of the phase plane, then chaos dictates that the microscopic di�erence
in initial conditions will eventually result in macroscopic di�erences between the
trajectories [2][23].

As an example of the Lorenz Attractor's chaotic nature, we present a simple but
e�ective situation. Suppose we take the Lorenz system de�ned in Equation (4) with
the same parameters declared in Figure 2. We then plot two trajectoriesx1(t) and
x2(t) with initial conditions that are "(0) = jx1(0) � x2(0)j = 10� 5 apart. Figure 5
then shows the component-wise progression ofx1(t) and x2(t).

1The authors are aware of the existence of a dynamical system's Lyapunov spectrum. However,
we do not see the need of characterizing systems as hyperchaotic or not, and thus �nd it su�-
cient to just de�ne the maximal Lyapunov exponent for the purposes of this document. For more
information, see [2][21]
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Figure 5: The component-wise progression ofx1(t) (in red) and x2(t) (in blue) in the
Lorenz system when� = 10, � = 28, and � = 8=3. These plots were generated
with and RK14(10) method using a timestep of0:001 [8][9].

One can easily notice the di�erence betweenx1(t) and x2(t) after a certain amount
of time has passed. Because of the extraordinarily accurate numerical integration
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method used in developing these �gures, the di�erence between the trajectories can
only be a result of the chaotic nature of the Lorenz Attractor.

As a point of interest, one could assume that all strange attractors are chaotic, but
this is not the case. We can prove this by simply giving an example of the contrary.
The discrete Feigenbaum Attractor is an example of a strange attractor that is in fact
not chaotic [2]. Thus, we can see that chaos is present in many strange attractors,
but it can not be used to truly de�ne a strange attractor.

Chaotic attractors in particular, because of their intriguing behavior and occurrence
in many areas of science, are phenomena that are on the foreground of modern
mathematical research. One of the current topics in this �eld of research is the
localization of these attractors: determining which sets of the phase space could
contain an attractor and which sets cannot. In the next section, we will be exploring
some current localization techniques currently in use. Then we will explore a new
localization technique that has surfaced in recently years, showing potential in easily
localizing chaotic attractors in a great many systems.
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III. Current Methods of Localization

Localization can be seen as narrowing down the location of a strange attractor,
should it exist [4][17]. The usefulness of localization can be explained with a thought
experiment. Say we have a dynamical system and we wish to investigate whether
this system under a certain set of parameters contains a strange chaotic attractor.
Instead of searching the entiren-dimension phase space, we apply a localization anal-
ysis over our dynamical system. In this way, we only need to investigate the regions
permitted by the localization analysis to potentially contain a strange attractor, and
ignore the rest. This would speedup the search for a strange attractor signi�cantly.

Here we present an overview of a number of localization techniques.

i. Localization through Plotting of Trajectories

The easiest method of localizing a strange attractor is by simply plotting a trajectory
with an initial condition in the basin of attraction of the attractor itself. Chaos may
force the trajectory to lose accuracy to the true solution, but for localization this
hardly posses a problem; the trajectory will still give a clear picture of the structure
and location of the attractor.

The issue is then determining the basins of attraction for each attractor. In general,
this is not an easy task. Basins of attraction can be frustratingly small and di�cult
to �nd. One could brute-force the issue by plotting a large number of trajectories
scattered throughout the phase space, but this is extremely costly; the number of
trajectories needed for this approach would be too enormous for this method to be
considered viable.

In light of this, we divide attractors into two di�erent categories: self-excited and
hidden, the de�nitions of which are given in De�nition II.7 Localizing a self-excited
attractor only requires plotting the unstable manifolds of an equilibrium point in its
basin of attraction; at least one of the manifolds will enter the attractor after a �nite
period of time, thus showing the location and structure of the attractor. Figures 2,
3, and 4 from Section II are perfect examples of this technique.

Hidden attractors, on the other hand, are much more complicated to localize, as they
can in theory be located anywhere in the phase space without an equilibrium point to
"anchor" them down. One way of localizing a hidden attractor is by simplifying the
system of di�erential equations substantially and analytically computing a rough
approximation. Using this rough approximate, we iteratively re�ne it, leading to
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a much more accurate approximation of our hidden attractor. We highlight this
method below.

i.1 Localization of Hidden Attractors

This method is described entirely in [10] and [12], where the authors of the article
apply their technique to di�erential systems of the form

_x = Px + � (x) (9)

Here, x(t) 2 Rn , P 2 Rn� n is a constant matrix, and� : Rn� n ! Rn� n is a continu-
ous vector function with � (0) = 0 [10][12].

Now, say there exists some matrixK 2 Rn� n so that P0 = P + K has two purely
imaginary eigenvalues called� i! 0 with ! 0 2 R. We also require that the rest of the
eigenvalues ofP0 all have negative real parts. We can then rewrite Equation (9) into
the following form. For purposes that we shall explain later, we also introduce a new
variable " that ranges from 0 to 1.

_x = P0x + "' (x)

where ' (x) = � (x) � K x
(10)

Notice that if " = 1, the Equation (9) and Equation (10) are equivalent.

Lets say for " = 0 that our system contains a periodic attractor, one that we can
analytically compute. We can then increase" by a su�ciently small increment, re-
sulting in a dynamical system that has been slightly augmented. We assume, since
this augmentation was small, that the periodic attractor has been slightly augmented
as well, resulting in a new (pseudo-)periodic attractor. If the increase to" was suf-
�ciently small, then it stands to reason that any point x0 on our original periodic
attractor will be in the basin of attraction of this new (pseudo-)periodic attractor.
Thus, we can plot a trajectory fromx0 and with it approximate our new attractor
after a transient amount of time [10][12].

Please note that it is very possible that increasing" beyond a certain value may
result in a bifurcation in our dynamical system that destroys our attractor. We have
no guarantees that our attractor will stay intact.

We then increase our" over and over, using a point in the attractor that was just
found (assuming it exists) as an initial condition for a trajectory under Equation (10).
This trajectory will then wander into the new attractor for the system (assuming it
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exists) since the increase of" was chosen small enough to where our initial condition
of the trajectory can be found in this new attractor's basin of attraction. We can
continue to do this until either any increase in" augments the system of equations
enough to where the attractor disintegrates entirely, or to where" = 1. If the latter
happens, then we have found an attractor for Equation (9). If this attractor does not
contain any equilibrium points in its basin of attraction, then it must be a hidden
attractor [10][12].

We show this process in more detail with an example taken from [10] and [12].
Suppose we have the following system

8
><

>:

_x = � (y � x � f (x))

_y = x � y + z

_z = � �y � 
z

(11)

where � = 8:4562,� = 12:0732,
 = 0:0052, andf (x) is de�ned as in Equation (6)
with m0 = � 0:1768 andm1 = � 1:1468. Notice that this system is very similar to
that de�ned in Equation (5) when 
 = 0. Therefore, we shall refer to this system as
a form of a Chua system [10][12].

Following the form presented in Equation (9), we can rewrite our Chua system into
the following form [10][12].

_x = Px + q� (r T x)

where� (r T x) = ( m0 � m1)
�
jr T x + 1j � j r T x � 1j

�
=2

and

P =

2

4
� � (m1 + 1) � 0

1 � 1 1
0 � � � 


3

5 , q =

2

4
� �
0
0

3

5 , r =

2

4
1
0
0

3

5

(12)

Now, let us de�ne matrix P0 and function ' for this system while introducing a new
variable " 2 [0; 1]. For k 2 R

_x = P0x + "q' (r T x) where

P0 = P + kqr T =

2

4
� � (m1 + 1 + k) � 0

1 � 1 1
0 � � � 


3

5 ,

' (r T x) = � (r T x) � kr T x

(13)

wherek is chosen so that the eigenvalues ofP0 are equal toi! 0, � i! 0, and � d, where
! 0 2 R � 0 and Re(d) 2 R > 0 [10][12]. Notice that Equation (12) and Equation (13)
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are equivalent when" = 1.

In order to compute the variables! 0, k, and d, we introduce a concept from system
and control theory: the transfer function2. In this case, the transfer function can be
de�ned as

WP (p) = r T (P � pI )� 1q with p 2 C (14)

Then [10] and [12] state thatIm (WP (� i! 0)) = 0 and k = � Re(WP (� i! 0)) � 1, giving
a method of at least approximating the values of! 0 and the corresponding values of
k. Then, using a result from linear algebra, we can see that

d =
det(P0)

� ! 2
0

=
� (m1 + k + 1)( � + 
 ) � �


! 2
0

The system de�ned in Equation (13) may contain a hidden attractor, but �nding
it in its current form can be di�cult. Therefore, we apply the invertible linear
transformation x = Sy, with S 2 Rn� n and y 2 Rn .

_x = P0x + "q' (r T x)

,

S� 1 _x =
�
S� 1P0S

�
S� 1x + "(S� 1q)'

�
(r T S)S� 1x

�

,

_y = Ay + "b' (cT y)

Here, A = S� 1P0S, b = S� 1q, and cT = r T S. In order to fully determine what S
should be, we must �rst concretely de�neA, b, and c. We do so as follows [10][12].

_y = Ay + "b' (cT y)

where ' (cT y) = ( m0 � m1)
�
jcT y + 1j � j cT y � 1j

�
=2 � kcT y

and

A =

2

4
0 � ! 0 0
! 0 0 0
0 0 � d

3

5 , b=

2

4
b1

b2

1

3

5 , c =

2

4
1
0
h

3

5 , whereb1; b2; h 2 R

(15)

The reason for this de�nition comes in the form of a theorem.

Theorem III.1. Say we have the system de�ned in Equation(13) with " = 0, and
where! 0 and k are concretely de�ned. If there exists ana0 2 R so that

�( a0) =
Z 2�=! 0

0
' (a0 cos(! 0t)) ( b1 cos(! 0t) + b2 sin(! 0t)) dt = 0

2The physical interpretation of this function is not important for this document and therefore
is omitted here. For an introduction into transfer functions, see [1]

23



Master's Thesis Literary Analysis� April 26, 2019

and that � 0(a0) < 0, then there exists a periodic solution in Equation(13) (with
" = 0) with initial condition [x(0); y(0); z(0)]T = S[a0; 0; 0]T [12].

We will use this periodic solution to hopefully construct a hidden attractor in Equa-
tion (12), if one exists.

Of course,S must �rst be de�ned before any further progress can be made. Therefore,
after numerous calculations, we can conclude from [10] that

S =

2

6
6
6
6
4

1 0 � h

m1 + k + 1
� ! 0

�

h

�
(d � � (k + m1 + 1))

m1 + k �
! 2

0

�
� ! 0(m1 + k + 1 + 1 =� )

h

�
(� + ( d � � (m1 + k + 1))(1 � d))

3

7
7
7
7
5

With this, we can de�ne the the variablesb1, b2, and h.

h =
� (� 2(m1 + k + 1) 2 + � + ! 2

0)

! 2
0 + d2

b1 = h � �

b2 =
dh � � 2(m1 + k + 1)

! 0

Having completely de�ned every variable in Equation (15), we can �nally numerically
localize the hidden attractor in Equation (11). The most pivotal step is de�ning! 0

and the corresponding value fork using the transfer function given in Equation (14),
and then approximate the corresponding value fora0 from Theorem III.1, if it exists.
Numerically, we �nd not one, but two sets of appropriate parameters, given below.

(! (1)
0 ; k(1) ; a(1)

0 ) = (2 :0392; 0:2099; 5:8499)

(! (2)
0 ; k(2) ; a(2)

0 ) = (3 :2454; 0:9598; 1:0422)

Therefore, since we have two sets of parameters, we can �nd at most two hidden
attractors in Equation 11 using this method. We �rst focus on the �rst set of pa-
rameters! (1)

0 , k(1) , and a(1)
0 ).

From Theorem III.1, we see that the system de�ned in Equation (13) with" = 0 has
a periodic solution with the initial condition x(0) = (5 :8499; 0:3690; � 8:3577). This
periodic solution is given in Figure 6.
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Figure 6: A periodic solution of the system described in Equation(13) using ! (1)
0 , k(1) ,

a(1)
0 , and " = 0 , starting at initial condition x(0) = (5 :8499; 0:3690; � 8:3577).

We can take any point along the periodic orbit shown in Figure 6 and use it as the
initial condition of a trajectory in Equation (13), increasing " incrementally. If " is
increased by a su�ciently small amount, this new trajectory should start somewhere
in the basin of attraction of the new (pseudo-)periodic attractor, should it exist.
We chose to increase" from 0 to 0.2. Figure 7 then shows the progress of this new
trajectory and the (pseudo-)periodic attractor it falls into.
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Figure 7: The (pseudo-)periodic solution of the system described in Equation(13) using
! (1)

0 , k(1) , a(1)
0 , and " = 0 :2.

We can again take any point along the (pseudo-)periodic attractor shown in Figure
7 and use it as the initial condition of a trajectory in Equation (13), increasing"
from 0.2 to 0.4. Figure 8 shows the progress of this new trajectory and the (pseudo-
)periodic attractor it falls into.
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Figure 8: The (pseudo-)periodic solution of the system described in Equation(13) using
! (1)

0 , k(1) , a(1)
0 , and " = 0 :4.

We can yet again take any point along the (pseudo-)periodic attractor shown in
Figure 8 and use it as the initial condition of a trajectory in Equation (13), increasing
" from 0.4 to 0.6. Figure 9 shows the progress of this new trajectory and the (pseudo-)
periodic attractor it falls into.
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Figure 9: The (pseudo-)periodic solution of the system described in Equation(13) using
! (1)

0 , k(1) , a(1)
0 , and " = 0 :6.

We can again take any point along the (pseudo-)periodic attractor shown in Figure
9 and use it as the initial condition of a trajectory in Equation (13), increasing"
from 0.6 to 0.8. Figure 10 shows the progress of this new trajectory and the (pseudo-
)periodic attractor it falls into. Notice that the structure of this (pseudo-)periodic
attractor is starting to resemble something less like a limit cycle and more like a
strange attractor.

28



Master's Thesis Literary Analysis� April 26, 2019

Figure 10: The (pseudo-)periodic solution of the system described in Equation(13) using
! (1)

0 , k(1) , a(1)
0 , and " = 0 :8.

Finally, we can again take any point along the attractor shown in Figure 10 and use
it as the initial condition of a trajectory in Equation (13), increasing" from 0.8 to
1. Notice that when " = 1, Equation (13) is equivalent to Equation (12). Figure 11
shows the progress of this new trajectory and the strange attractor it falls into.
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Figure 11: An attractor of the Chua system described in Equation(11). Since the maxi-
mal Lyapunov Exponents of this attractors is larger than 0.0 (calculations not
shown), we can conclude that this is a chaotic attractors of our Chua system.

We can also use the same technique for the second set of parameters (! (2)
0 ; k(2) ; a(2)

0 ).
Through careful manipulation of " , we can approximate a second attractor of our
Chua system, which we show in Figure 12.
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Figure 12: Another attractor of the Chua system described in Equation(11). Since the
maximal Lyapunov Exponents of this attractors is larger than 0.0 (calculations
not shown), we can conclude that this is a chaotic attractors of our Chua
system.

Together, along with plotting the manifolds of the three equilibrium points of the
system, we can show how our Chua system behaves in Figure 13 [10][12].
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Figure 13: The Chua system described in Equation(11), showing the attractors (in red
and magenta) as well as the manifolds of the three equilibrium points (in
black). Since none of the manifolds of the equilibria fall into our two attrac-
tors, we can conclude that these attractors must be hidden chaotic attractors.

Notice that this method is generally applicable to all systems that can be described by
Equation (9), making this method very generally applicable. However, this method
gives no guarantees that a hidden attractor will exist in a particular system, only
that if it exists there is the potential of approximating it incrementally. These incre-
ments are dependent on", and thus great care must be taken in increasing" during
every step of the algorithm.

On a di�erent note, we saw that each step in this method required a considerable
amount of analytic prowess. Our di�erential system of equations needed to be trans-
formed multiple times, each transformation having its advantages and disadvantages.
Perhaps it would be better to use a di�erent method that is not as academically tax-
ing.
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In conclusion, using trajectories to map out the structure of a strange attractor can
be very e�ective. For self-excited attractors, can be very simple: plot out all unstable
manifolds of all equilibria of the dynamical system and see if any of the manifolds
fall into an attractor of the system. For hidden attractors, this process is much more
complicated and requires more sophisticated methods.

ii. Nambu Hamiltonians

This method involves the use of Nambu mechanics, a generalization of Hamiltonian
mechanics, which are commonplace in mechanical physics. We �rst give the de�nition
for a Hamiltonian system. Then we expand upon it using the Nambu formalism, but
only focusing on the 3-dimensional case for simplicity's sake; for a more complete
de�nition, see [20].

De�nition III.1. Hamiltonian System
Supposex(t) 2 A and y(t) 2 B for t 2 R, with A � Rn and B � Rn . Suppose
there exists a functionH : A � B ! R with H 2 C1(A; B ) so that we can de�ne the
2n-dimensional system of equations

8
>>>><

>>>>:

_x =
@H

@y
=

 
@H

@y1
; � � � ;

@H

@yn

! T

_y = �
@H

@x
= �

 
@H

@x1
; � � � ;

@H

@xn

! T

This is known as a Hamiltonian system withn-degrees of freedom, whereH is the
Hamiltonian of the system [15].

Notice that in a Hamiltonian System,

_H =
@H

@x
_x +

@H

@y
_y = � _y _x + _x _y = 0

We can conclude thatH (x(t); y(t)) = H (x(0); y(0)) for all t 2 R. This means that
for any trajectory in our system, the value ofH remains constant.

We can also see it a di�erent way. The equationH (x(t); y(t)) = H (x(0); y(0)) de-
�nes a surface in the phase plane. If a trajectory of our system were to have the
initial condition ( x(0); y(0)), then the trajectory would have to remain on this sur-
face for all t 2 R.

As one can see, using the Hamiltonian is an incredibly e�cient way to localize the
trajectories of a system. However, it is not always possible to �nd a Hamiltonian
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function. Even when it is possible, calculating a suitable Hamiltonian is usually a
very di�cult task.

We now expand on the concept of a Hamiltonian system by introducing what we call
Nambu systems. For simplicity, we only focus on 3-dimensional Nambu systems; for
a more complete de�nition, see [20].

De�nition III.2. Nambu System for 3 Dimensions
Supposex(t) = ( x(t); y(t); z(t)) 2 A for t 2 R, with A � R3. Suppose there ex-
ist functions H1; H2 : A ! R with H1; H2 2 C1(A) so that we can de�ne the 3-
dimensional system of equations

8
>>>>>><

>>>>>>:

_x =
@H1

@y

@H2

@z
�

@H1

@z

@H2

@y

_y =
@H1

@z

@H2

@x
�

@H1

@x

@H2

@z

_z =
@H1

@x

@H2

@y
�

@H1

@y

@H2

@x

We call this a 3-dimensional Nambu system, whereH1 and H2 are the "Nambunians"
of the system (this naming is a personal choice by the authors and is not re
ected
in other literature). Notice that we can reduce this de�nition signi�cantly into the
equation _x = r H1 � r H2, where "� " signi�es the cross-product [17][20].

We now introduce and prove a few lemmas for 3-dimensional Nambu Systems.

Lemma III.2. Suppose we have a Nambu system as described in de�nition III.2.
Then _H1 = _H2 = 0
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Proof. We prove this for H1 only. The proof for H2 is extremely similar.

_H1 =
@H1

@x
_x +

@H1

@y
_y +

@H1

@z
_z

=
@H1

@x

 
@H1

@y

@H2

@z
�

@H1

@z

@H2

@y

!

+
@H1

@y

 
@H1

@z

@H2

@x
�

@H1

@x

@H2

@z

!

+
@H1

@z

 
@H1

@x

@H2

@y
�

@H1

@y

@H2

@x

!

=
@H1

@x

@H1

@y

@H2

@z
�

@H1

@x

@H1

@z

@H2

@y

+
@H1

@y

@H1

@z

@H2

@x
�

@H1

@x

@H1

@y

@H2

@z

+
@H1

@x

@H1

@z

@H2

@y
�

@H1

@y

@H1

@z

@H2

@x
= 0

Just as before with Hamiltonian systems, we can use Lemma III.2 to conclude that
H1(x(t); y(t); z(t)) = H1(x(0); y(0); z(0)) and H2(x(t); y(t); z(t)) = H2(x(0); y(0); z(0)),
which both describe surfaces in the phase space. As a result, ifH1 andH2 are distinct,
the trajectory with initial condition ( x(0); y(0); z(0)) must lie in the intersection of
these two equations. Therefore, if one knows the Nambunians of a Nambu system,
they are able to very accurately predict where any trajectory will be in the phase
space [17].

Lemma III.3. Suppose we have a Nambu system as described in de�nition III.2.
SupposeH 1 and H 2 are continuously di�erentiable functions ofH1 and H2, where
the corresponding Jacobian has a determinant of 1. ThenH 1 and H 2 can be used
instead ofH1 and H2 in De�nition III.2.

Proof. Suppose we have a Nambu system described in De�nition III.2, wherex =
r H1 � r H2. Suppose we have continuously di�erentiable functionsH 1(H1; H2) and
H 2(H1; H2) where

�
�
�
�
�
@(H 1; H 2)

@(H1; H2)

�
�
�
�
�

=
@H 1

@H1

@H 2

@H2
�

@H 1

@H2

@H 2

@H1
= 1
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We take a look atrH 1 � rH 2, which is a 3-dimensional vector. We focus on each of
its elements (rH 1 � rH 2)1, (rH 1 � rH 2)2, and (rH 1 � rH 2)3. Let us start with
the �rst element.

(rH 1 � rH 2)1 =
@H 1

@y

@H 2

@z
�
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@z
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!
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@H 1

@H2

@H 2

@H1

!  
@H1

@y

@H2

@z
�
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= ( r H1 � r H2)1

In a very similar way, (rH 1 � rH 2)2 = ( r H1 � r H2)2 and (rH 1 � rH 2)3 =
(r H1 � r H2)3. In conclusion, _x = r H1 � r H2 = rH 1 � rH 2. Therefore, we can
replaceH1 with H 1 and H2 with H 2 in De�nition III.2 and still have an equivalent
Nambu system.

Because of Lemma III.3, we can construct an in�nite number of Nambunians for a
Nambu system. This will be important later on.

In order to show the power of Nambu systems and provide a concrete example as
to how they can be used to localize strange attractors, we focus yet again on the
Lorenz system as described in Equation (4) with� = 10, � = 28, and � = 8=3. This
example is handled in far greater detail in [17]. We simplify the mathematics here,
focusing on understandability.

First of all, the Lorenz system cannot be written as a 3-dimensional Nambu system,
the reason for which is simple to explain. Only divergence-free systems have the
possibility of being a Nambu system [17]. However, the divergence of the Lorenz
system isr � _x = � (� + 1 + � ) 6= 0. Therefore, we must split the system into
a "dissipative" (meaning "divergence-containing") partxD and a "non-dissipative"
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(meaning "divergence-free") partxND [17].

8
><

>:

_x = � (y � x)

_y = x(� � z) � y

_z = xy � �z

=

8
><

>:

_xND = �y ND

_yND = xND (� � zND )

_zND = xND yND

+

8
><

>:

_xD = � �x D

_yD = � yD

_zD = �z D

(16)

We will focus on the non-dissipative part for now, later reconnecting it with the
dissipative part and drawing conclusions from that.

For the non-dissipative part of the Lorenz system, we are able to �nd the Nambunians
as described in [17].

H1(x; y; z) =
1
2

y2 +
1
2

z2 � �z

H2(x; y; z) = �
1
2

x2 + �z
(17)

From Lemma III.2, we are able to conclude that a trajectory starting at (xND (0); yND (0); zND (0))
will always lie in the intersection of

H1(xND (t); yND (t); zND (t)) = H1(xND (0); yND (0); zND (0))

H2(xND (t); yND (t); zND (t)) = H2(xND (0); yND (0); zND (0))
(18)

We show this occurrence in Figure 14 by taking the initial condition (xND (0); yND (0); zND (0)) =
(1; 5; � 1) and plotting the corresponding trajectory and the surfaces de�ned in Equa-
tion (18).
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Figure 14: The nondissipative part of the Lorenz system as the intersection between the
surfaces de�ned in Equation (18).

Let us now recombine the dissipative part of the Lorenz system with the nondissi-
pative part and see what conclusions we can make. The following analysis is based
o� of [17], which we refer to for a more complete overview. We start by focusing on
the Nambunian H1.

ii.1 The Nambunian H1

Because of Lemma III.2, we know that_H1(xND ; yND ; zND ) = 0. However, this is not
the case for the recombined, original Lorenz system. In this case,

_H1(x; y; z) = �z (� � z) � y2

Notice that _H1(x; y; z) � 0 for all points in the phase space where
y2 + � (z � �= 2)2 � �� 2=4. This is equivalent to saying that _H1(x; y; z) � 0 for all
points "outside" the cylinder y2 + � (z � �= 2)2 = �� 2=4.

Say we have some trajectoryT (t) = ( xT (t); yT (t); zT (t)) with initial condition
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T (0) = ( x0; y0; z0). Say � 2 R, then

S1(T (0); � ) �
1
2

y2 +
1
2

z2 � �z = H1(T (� )) � y2 + ( z � � )2 = 2H1(T (� )) + � 2 (19)

de�nes the surface that contains the pointT (� ) of our trajectory, and still contains
the nondissipative solution of the Lorenz system with the initial conditionT (0). No-
tice that S1(T (0); � ) describes a cylinder in the phase space.

To �nd some surface of a similar shape toS1(T (0); � ) that localizes the Lorenz
Attractor, suppose there exists somek > � 1

2 � 2 so that _H1(x; y; z) < 0 for all points
in the phase space outside the cylinder

Sk � y2 + ( z � � )2 = 2k + � 2

Notice that Sk is exactly the same asS1(T (0); � ) when H1(T (� )) = k. We know
such ak exists since we know from above that_H1(x; y; z) � 0 for all points outside
the cylinder y2 + � (z � �= 2)2 = �� 2=4.

We can conclude that if trajectoryT (t) has its initial condition outside of Sk , then
there must exist aT 2 R> 0 so that 8t < T , _H1(T (t)) < 0. It is to be noted that T
is speci�c for each trajectory. This means that with time,S1(T (0); t) will shrink in
radius 8t < T . However, sinceT (t) is always found onS1(T (0); t) per construction,
this is equivalent to saying thatT (t) will get closer and closer to some subset inside
or on the cylinder Sk 8t < T .

Assume without loss of generality that _H1(T (T )) = 0. Then T (T ) must be inside
or on the cylinder Sk . However, we know then thatT (t) cannot return back to the
outside ofSk since we just saw that any trajectory with any initial condition outside
of Sk must be unequivocally drawn towardsSk . Therefore,T (t) will stay inside or on
Sk for all t � T . In conclusion, we have proven thatT (t) will be attracted to some
subset of the surface or interior ofSk . Since we have not speci�ed the trajectory
T (t), we can conclude that all attractors, global or otherwise, are found inside or on
Sk , including the Lorenz Attractor!

After a rather long-winded explanation of whySk will contain all attractors of the
Lorenz System, we can easily see that the Lorenz Attractor must be found inside the
set of the phase space where

y2 + ( z � � )2 � 2k + � 2

However, we now hope to �nd the optimalk in order to localize the Lorenz Attractor
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as e�ciently as possible. In essence, we wish to �nd

kmin = min f k > �
1
2

� 2 j _H1(x; y; z) � 0 8(x; y; z) where y2 + ( z � � )2 � 2k + � 2g

Reference [17] rede�nes this value (usingkmax instead ofkmin ) as

U0 = f (x; y; z) 2 R3 j _H1(x; y; z) = 0 g

kmin = maxf H1(x; y; z) j (x; y; z) 2 U0g

What is important is that this is a constrained optimization problem that can be
solved using Lagrange's Multiplier Method (see [5]). Sparing the extraneous details,
we see that the Lorenz Attractor must be found somewhere in the set

f (x; y; z) 2 R3 j y2 + ( z � � )2 � 2kmin + � 2g

where

kmin = H1

 

0;
� ��

2 � 2�

p
� � 2;

� (2 � � )

2 � 2�

!

=
� 2(� � 2)2(� � 1)

2(2 � 2� )2

(20)

We show that this is indeed the case in Figure 15 by plotting the Lorenz Attractor
along with boundary of the localizing set de�ned in Equation (20).

Figure 15: The Lorenz Attractor, nestled comfortably within the localizing set de�ned in
Equation (20).

40



Master's Thesis Literary Analysis� April 26, 2019

ii.2 The Nambunian H2

Just as with H1, we know that _H2(xND ; yND ; zND ) = 0. However, this is not the case
for the recombined, original Lorenz system. In this case,

_H2(x; y; z) = � (x2 � �z )

Notice that _H2(x; y; z) � 0 for all points in the phase space wherex2 � �z . This
is equivalent to saying that _H2(x; y; z) � 0 for all points "below" the paraboloid
x2 = �z .

Say we have some trajectoryT (t) = ( xT (t); yT (t); zT (t)) with initial condition T (0) =
(x0; y0; z0). Say � 2 R, then

S2(T (0); � ) � �
1
2

x2 + �z = H2(T (� )) � z �
H2(T (� ))

�
=

x2

2�
(21)

de�nes the surface that contains the pointT (� ) of our trajectory, and still contains
the nondissipative solution of the Lorenz system with the initial conditionT (0). No-
tice that S2(T (0); � ) describes a paraboloid in the phase space.

To �nd some surface of a similar shape toS2(T (0); � ) that localizes the Lorenz
Attractor, suppose there exists somek 2 R so that _H2(x; y; z) > 0 for all points in
the phase space "below" the paraboloid

Sk � z �
k

�
=

x2

2�

Notice that Sk is exactly the same asS2(T (0); � ) when H2(T (� )) = k. We know
such ak exists since we know from above that_H2(x; y; z) � 0 for all points below
the paraboloid x2 = �z .

Similar to our analysis with the NambunianH1, we can conclude that if trajectory
T (t) has its initial condition below Sk , then there must exist aT 2 R> 0 so that
8t < T , _H2(T (t)) > 0. It is to be noted that T is speci�c for each trajectory.
This means that with time, S2(T (0); t) will shift upwards in the positive z-direction
8t < T . However, sinceT (t) is always found onS2(T (0); t) per construction, this is
equivalent to saying that T (t) will get closer and closer to some subset above or on
the paraboloid Sk 8t < T .

Again assume without loss of generality that_H2(T (T )) = 0. Then T (T ) must be
above or on the paraboloidSk . However, we know then thatT (t) cannot return
to the area underneathSk since we just saw that any trajectory with any initial
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condition underneathSk must be unequivocally drawn towardsSk . Therefore,T (t)
will stay above or on Sk for all t � T . In conclusion, we have proven thatT (t)
will be attracted to some subset of the surface or area aboveSk . Since we have not
speci�ed T (t), we can conclude that all attractors, global or otherwise, are found
above or onSk , including the Lorenz Attractor. Thus, we can conclude that the
Lorenz Attractor must be found inside the set of the phase space where

z �
x2 + 2k

2�

However, we now hope to once again �nd the optimalk in order to localize the Lorenz
Attractor as e�ciently as possible. In essence, we wish to �nd

kmax = max
�

k 2 R j _H2(x; y; z) � 0 8(x; y; z) where z �
x2 + 2k

2�

�

Reference [17] rede�nes this value as

U0 = f (x; y; z) 2 R3 j _H2(x; y; z) = 0 g

kmax = maxf H2(x; y; z) j (x; y; z) 2 U0g

Once again, this is a constrained optimization problem that can be solved using
Lagrange's Multiplier Method (see [5]). Sparing the extraneous details, we see that
the Lorenz Attractor must be found somewhere in the set

(

(x; y; z) 2 R3 j z �
x2 + 2kmax

2�

)

where

kmax = H2(0; 0; 0) = 0

(22)

We show that this is indeed the case in Figure 16 by plotting the Lorenz Attractor
along with boundary of the localizing set de�ned in Equation (22).

As a result, we are able to localize the Lorenz Attractor using the NambuniansH1

and H2. We represent these results in Figure 17 by plotting the Lorenz Attractor
along with boundary of the localizing sets de�ned in Equations (20) and (22).
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Figure 16: The Lorenz Attractor, nestled comfortably within the localizing set de�ned in
Equation (22).

Figure 17: The Lorenz Attractor, nestled comfortably within the localizing sets de�ned in
Equations (20) and (22).
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As a concluding note, recall Lemma III.3. From this lemma, we know that we can
construct an in�nite number of Nambunian pairs usingH1 and H2, and in-so-doing
an in�nite number of di�erent localizing sets just like those constructed in Equations
(20) and (22). Therefore, a more intensive analysis using multiple pairs of localizing
sets could lead to a very e�cient localization of the Lorenz Attractor indeed.

Of course, this method is only applicable to systems that have a nonzero nondissi-
pative part, for which the Nambunians can be found (which is a di�cult task in and
of itself). The analysis that follows is also rather lengthy and may not even be pos-
sible. It all depends on how the Nambunians behave and interact with the system,
which can make analysis di�cult if not impossible. In conclusion, this method can
be very e�cient in localizing strange attractors, but can only be applied e�ectively
to a limited number of dynamical systems due to the cost of �nding the appropriate
Nambunian functions.
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IV. A Geometric Approach to Localization using
Competitive Modes

We now get to the heart of this literary analysis: a preliminary analysis of a ge-
ometric approach in localizing strange attractors. For this, we will �rst explore a
thorough understanding of the concept of competitive modes of a system of di�er-
ential equations, and from this we will move on to using these competitive modes
geometrically.

i. Competitive Modes

As a toy example, let us take the following di�erential equation for a simple oscillator.
(

_x = y

_y = � �x with � � 0

This equation can be solved exactly by the equation below.

x(t) = x(0) cos
� p

�t
�

+
y(0)
p

�
sin

� p
�t

�

y(t) = � x(0)
p

� sin
� p

�t
�

+ y(0) cos(
p

�t )

What we notice is that x(t) is periodic, with a frequency of
p

�= 2� . For this reason,
we (the authors) simply call � the squared frequency of the oscillation: only

p
�

a�ects the frequency of the oscillator. We will apply this concept to much more
general systems.

We take a generaln-dimensional autonomous system of di�erential equations _x i =
Fi (x) with i 2 f 1; 2; � � � ; ng. We can easily transform this system into a system of
interconnected oscillators as follows [4][24]:

•x i = _Fi (x)

=
nX

j =1

@Fi
@xj

(x)
@xj
@t

=
nX

j =1

@Fi
@xj

(x)Fj (x) = f i (x)

(23)

This of course only works ifFi is x j -di�erentiable for all i; j 2 f 1; 2; � � � ; ng. However,
if this is the case, we make one more assumption, which we give below [4][24].

f i (x) = hi (x1; � � � ; x i � 1; x i +1 ; � � � ; xn ) � x i gi (x1; � � � ; xn ) 8i 2 f 1; 2; � � � ; ng (24)
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If both Equation (23) and Equation (24) hold, then we can rewrite our original
system of di�erential equations into the form given below [4][24].

8
>>>>>>>>><

>>>>>>>>>:

•x1 + g1(x1; � � � ; xn )x1 = h1(x2; � � � ; xn )

•x2 + g2(x1; � � � ; xn )x2 = h2(x1; x3; � � � ; xn )

� � �

•x i + gi (x1; � � � ; xn )x i = hi (x1; � � � ; x i � 1; x i +1 ; � � � ; xn )

� � �

•xn + gn (x1; � � � ; xn )xn = hn (x1; � � � ; xn� 1)

(25)

In a sense, we have turned our system into a system of interconnected, nonlinear
oscillators.

De�nition IV.1. Competitive Modes Say we have then-dimensional autonomous
system of di�erential equations _x = F(x). If Equation (23) and Equation (24) hold
for this system, then the system can be transformed as shown in Equation(25). The
solutions x i for Equation (25) are then known as the competitive modes of the sys-
tem, with gi and hi being the corresponding squared frequency functions and forcing
functions, respectively [4][24].

Currently, there is an open conjecture connecting chaos and competitive modes to-
gether, and it is presented as follows.

Conjecture IV.1. The conditions for a dynamical system to be chaotic are given
below (assuming Equation(23) and Equation (24) hold) [4][24]:

� there exist at least two squared frequency functions in the system;
� at least two squared frequency functionsgi and gj are competitive or nearly

competitive; that is, there existst 2 R so that gi (t) � gj (t) and gi (t); gj (t) > 0;
� at least one squared frequency function is a function of evolution variables such

as t;
� at least one forcing function is a function of the system variables.

ii. An example using the classical Lorenz system

The Lorenz system as de�ned in Equation (4) has been used for a plethora of exper-
iments involving chaos, and now it once again provides a useful framework to test
the potentiality of Conjecture IV.1.
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Using the de�nition of the Lorenz system, we can easily see why the following system
of equations is valid.

8
><

>:

•x = � (� + � � z)x � � (� + 1) y

•y = ( � (� � z) + 1 � x2)y + (( � + � + 1) z � � (� + 1)) x

•z = ( � 2 � x2)z + ( �x 2 � (� + � + 1) xy + �y 2)

Decomposing this, we can then easily de�ne the squared frequency functions

g1(x; y; z) = �z � � (� + � )

g2(x; y; z) = x2 + �z � (�� + 1)

g3(x; y; z) = x2 � � 2

(26)

and the forcing term functions

h1(y; z) = � � (� + 1) y

h2(x; z) = ( � + � + 1) xz � � (� + 1) x

h3(x; y) = �x 2 � (� + � + 1) xy + �y 2

(27)

We notice that

� there exist at least two squared frequency functions in the system, i.e. there
are at least 2g functions;

� at least one squared frequency function is a function of evolution variables such
as t, i.e. at least oneg function is not a constant;

� at least one forcing term function is a function of the system variables, i.e. at
least oneh function is not a constant.

All that remains is to investigate whether at least two squared frequency functions
are competitive or nearly competitive. To do this, we choose the classic parameters
� = 10, � = 28, and � = 8=3 and plot a trajectory into the Lorenz Attractor, as
shown in Figure 18. For every point in the trajectory, we plot the values ofg1 (in
red), g2 (in green), andg3 (in blue), shown in Figure 19.
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Figure 18: A trajectory through the classical Lorenz system where� = 10, � = 28, and
� = 8=3 and x(0) = 0 :1, y(0) = 0 :1, z(0) = 0 :1.
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Figure 19: The squared frequency functionsg1 (given in red), g2 (given in green), and g3

(given in blue) of the trajectory shown in Figure 18. We only plot for t � 15
to ensure that the trajectory in Figure 18 is inside the Lorenz Attractor.

We notice from Figure 19 thatg1 is always less thang2. This can be easily proven
to be true. Consider the di�erenceg2(x; y; z) � g1(x; y; z) = x2 + ( � 2 � 1). Since
� > 1, we then immediately see thatg2(x; y; z) � g1(x; y; z) > 0. Thus, we only have
to focus on the potential intersections betweeng1 and g3, and g2 and g3 [24].

Focusing our attention ong1 and g3, we see that
g3(x; y; z) � g1(x; y; z) = x2 � �z + ( � (� + � ) � � 2). If g3 � g1 = 0, then we can
conclude that

�z = x2 +
�
� (� + � ) � � 2

�
(28)

Investigating Figure 19, we see thatg1 is always less thang3 while in the Lorenz
Attractor. This has two results. First of all, the interaction betweeng1 and g3 can
not lead to the Lorenz Attractor exhibiting chaos according to Conjecture IV.1. Sec-
ond, when looking at the situation in a "reverse" point of view, we see that since
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g3(x; y; z) > g1(x; y; z) for all points (x; y; z) 2 R3 in the Lorenz Attractor, the at-
tractor must lie under the plane de�ned in Equation 28 (which is indeed the case).
This phenomenon is shown in Figure 20.

Focusing our attention ong2 and g3, we see that
g2(x; y; z) � g3(x; y; z) = �z + ( � 2 � �� � 1). If g2 � g3 = 0, then we can conclude
that

�z = �� + 1 � � 2 (29)

Investigating Figure 19, we see thatg2 and g3 do intersect regularly while in the
Lorenz Attractor. This has two results. First of all, sinceg2 and g3 are competitive,
Conjecture IV.1 claims that the Lorenz Attractor is chaotic (which is indeed the
case). Second, when we again look at the situation in a "reverse" point of view, we
see that sinceg3(x; y; z) = g1(x; y; z) for some points (x; y; z) 2 R3 in the Lorenz
Attractor, the attractor must intersect the plane de�ned in Equation 29 (which is
indeed the case). This phenomenon is shown in Figure 20.

This "reversing" of viewpoints is the key to understanding how Conjecture IV.1 can
be used to localize a strange attractor in a comparatively easy way. First, one can
transform (if possible) the system of di�erential equations in question into the form
given by Equation (25). From this, the squared frequency functionsf gi g can easily
be de�ned. Once they are, one can de�ne surfaces in the phase space where these
squared frequency functions intersect each other. Then, if Conjecture IV.1 is true,
any strange chaotic attractor must be found in a set that touches or passes through
at least one of these intersection surfaces.

In conclusion, Conjecture IV.1 is valid for the Lorenz System since it accurately
predicts chaos, shown by this and other similar analyses [3][4][24]. On the other
hand, the conjecture is able to accurately predict the general location of the Lorenz
Attractor. This method can then be applied more generally to other dynamical
systems to help determine where chaotic attractors may be located.
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Figure 20: The intersection surfaces de�ned in Equation (28) (given in magenta) and
in Equation (29) (given in cyan). We see that the Lorenz Attractor is found
entirely under the intersection surface de�ned in Equation (28), and touching
the intersection surface de�ned in Equation (29).
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V. Conclusions

Strange attractors are an intriguing result from the study of dynamical systems.
Though their structures are both beautiful and intricate in nature, they represent
the steady-state solutions found in a dynamical system and therefore demand aca-
demic research in order to be understood as best as they can be.

Localizing a strange attractor can be the �rst step in learning more about these
structures. Current localization algorithms, though invaluable in this �eld of re-
search, can be quite costly. Most require reworking the corresponding system of
di�erential equations into a pre-existing format, one that has been researched ex-
tensively and provides concrete results. The issue lies not in the existence of these
formats, but rather in the e�ort and puzzling needed to coerce the dynamical system
in question into one of these formats.

The new method highlighted in this document involving the localization of chaotic
attractors through competitive modes, is an attempt at localizing attractors robustly
and with a minimum amount of e�ort. Though this localization technique may be
less conclusive than other methods, more research is required to understand the va-
lidity, application, and results of this method. In doing so, we can provide a clear
understanding of a technique that could be very useful indeed.

As such, for this Master thesis, we focus on the following research questions.

� For which well-known dynamical systems is Conjecture IV.1 valid?
� Is Conjecture IV.1 true and can it be proven?
� Supposing that Conjecture IV.1 is true, can we use it to develop even more

accurate localization techniques?
� Can Conjecture IV.1 also be applied to discrete dynamical systems?
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