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Introduction

Optical trapping consist of:

Focussed laser beam is applied in fluid.

Small particles are trapped by electromagnetic force.
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Maxwell equations

The macroscopic Maxwell equations in vacuum:

−∇×H + ε0
∂E

∂t
= −J,

∇× E + µ0
∂H

∂t
= −K.

Compatibility relations ∇ · E = 0 and ∇ ·H = 0.

E(x, t), (time domain) electric field,

H(x, t), (time domain) magnetic field,

J(x, t), total electric current density,

K(x, t), total magnetic current density.
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Electric current density

The current density consists of three terms:

Jp, polarization current,

Jf, free (conduction) current,

Jext, external current.

Induced current is given by Jind = Jp + Jf.

The induced currents depend on E, so Jind = Jind(E).
So-called constitutive relations.

The external current is independent of E and H.
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Induced currents

Linear polarization, instantaneous response:

Jp = ε0χe
∂E

∂t
,

with χe the electric susceptibility.

Free current is proportional to the electric field (Ohm’s law):

Jf = σE,

with σ the electric conductivity.
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Maxwell equations in (rigid) matter

Substitution results in:

−∇×H + ε
∂E

∂t
+ σE = −Jext,

∇× E + µ0
∂H

∂t
= 0.

Electric permittivity given by:

ε = (1 + χe)ε0.
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Maxwell equations in fluids

Fluid in motion: movement w.r.t. the reference frame.

Induced currents because of charges moving:

Jrel = −(µ0ε− µ0ε0)v ×H,

Krel = (µ0ε− µ0ε0)v × E,

v� 1, effect will be neglected.
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Energy equation (1)

Define the electromagnetic energy density as

uem =
1

2

(
ε0‖E‖2 + µ0‖H‖2

)
,

and the Poynting vector as

S = E×H.

Then from the Maxwell equations one can derive:

∂

∂t
uem = −∇ · S− E · J−H ·K.
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Energy equation (2)

For linear polarization we had:

J = (ε− ε0)
∂E

∂t
+ σE.

This results in:

∂

∂t
uem = −∇ · S− 1

2
(ε− ε0)

∂

∂t
‖E‖2 − σ‖E‖2.

The polarization term in general oscillates.

The conduction term is strictly negative, so acts as an energy
sink.
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Momentum equation

Likewise we can derive the momentum equation:

f = −∂S
∂t

+∇ ·
←→
T .

Here
←→
T is the Maxwell stress tensor given by

←→
T = µ0H⊗H + ε0E⊗ E− 1

2
µ0‖H‖2I−

1

2
ε0‖E‖2I.

The force density is given by:

f = (∇ · E)E + (∇ ·H)H + µ0J×H− ε0K× E.
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Monochromatic source

External current density of only one frequency:

Jext(x, t) = J̃ext(x) cos(ωt + δ).

Resulting fields are also time-harmonic:

E(x, t) = Ẽ(x) cos(ωt + δ1),

H(x, t) = H̃(x) cos(ωt + δ2),

with a possible phase-shift.
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Complex fields (1)

Notice that we can write:

Jext(x, t) = Re
{
Ĵext(x)e−ıωt

}
.

Like-wise for the fields:

E(x, t) = Re
{
Ê(x)e−ıωt

}
,

H(x, t) = Re
{
Ĥ(x)e−ıωt

}
.

The phase-shifts are absorbed in Ĵext, Ê and Ĥ.
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Complex fields (2)

Time derivatives become complex multiplications:

∂

∂t
Re
{
Ê(x)e−ıωt

}
= Re

{
−ıωÊ(x)e−ıωt

}
.

Substitution in the Maxwell equations results in:

Re
{[
−∇× Ĥ(x)− ıωε0Ê(x)

]
e−ıωt

}
= Re

{
−Ĵ(x)e−ıωt

}
,

Re
{[
∇× Ê(x)− ıωµ0Ĥ(x)

]
e−ıωt

}
= 0,
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Complex polarization (1)

Linear polarization, Jp = ε0χe
∂E
∂t is non-physical.

Better form, temporal dependency, localized in space:

Jp = ε0

∫ ∞
0

f (τ)
∂E

∂t
(x, t − τ) dτ.

The complex form is given by:

Jp = Re

{
−ıωε0

[∫ ∞
0

f (τ)eıωτ dτ

]
Ê(x)e−ıωt

}
.
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Complex polarization (2)

The complex permittivity is defined as ε̂ = ε′ + ıε′′.

The real part gives the polarization current:

ε′(ω) = ε0

∫ ∞
0

f (τ)eıωτ dτ.

The imaginary part gives the free current:

ε′′(ω) =
σ(ω)

ω
.

() Electromagnetically Induced Flows 19 / 56



Complex Maxwell equations (1)

The (complex) induced current is then given by:

Ĵind = −ıω(ε̂− ε0)Ê.

Substitution in the Maxwell equations results in:

Re
{[
−∇× Ĥ(x)− ıωε̂Ê(x)

]
e−ıωt

}
= Re

{
−Ĵext(x)e−ıωt

}
,

Re
{[
∇× Ê(x)− ıωµ0Ĥ(x)

]
e−ıωt

}
= 0.

The two separate induced currents form one complex term.
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Complex Maxwell equations (2)

Finally, drop the real parts, and strip off e−ıωt .

The resulting complex Maxwell equations are:

−∇× Ĥ(x)− ıωε̂Ê(x) = −Ĵext(x),

∇× Ê(x)− ıωµ0Ĥ(x) = 0.

The compatibility relations are:

∇ · Ĥ = 0 and ∇ · Ê = 0.

The equations no longer depend on the time variable t.
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Time Averaging (1)

The frequencies are extremely large compared to all the
movement in the liquid:

f = 2.5 · 1014 Hz for λ0 = 1.2µm.

The quantities are time-averaged:

〈f (x, t)〉 =
1

T

∫ T
2

−T
2

Re
{
f̂ (x)e−ıωt

}
dt.

f (x, t) can be replaced by other quantities.
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Time Averaging (2)

The results for different quantities are:

〈E(x, t)〉 = 0,

〈E(x, t) · E(x, t)〉 =
1

2
Re
{
Ê(x) · Ê∗(x)

}
,

〈S(x, t)〉 = 〈E(x, t)×H(x, t)〉 =
1

2
Re
{
Ê(x)× Ĥ∗(x)

}
,〈

∂

∂t
[E(x, t) · E(x, t)]

〉
= 0.
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Time-averaged energy equation (1)

The time-averaged energy equation is given by:〈
∂

∂t
uem

〉
= −∇ · 〈S〉 − 〈E · J〉 .

Using the time-harmonic representation, we have:

Ĵ = −ıω(ε̂− ε0)Ê.

Also we define the complex Poynting vector

Ŝ =
1

2
Ê× Ĥ∗.
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Time-averaged energy equation (2)

Substitution of the time-averaged expressions results in:

0 = −∇ · Re
{
Ŝ
}
− 1

2
ωε′′Ê · Ê∗.

We have Re
{
Ŝ
}

the time-averaged energy flux.

The second term shows the time-averaged dissipation:

qem =
1

2
ωε′′Ê · Ê∗.

The electromagnetic energy is transformed to heat.
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Time-averaged Lorentz force (1)

The time-averaged Lorentz force is given by

〈f〉 = µ0〈J×H〉.

Using again the relation Ĵ = −ıω(ε̂− ε0)Ê, the time-averaged
result is

〈f〉 =
1

2
µ0Re

{
−ıω(ε̂− ε0)Ê× Ĥ

}
,

= ωµ0

[
ε′′Re

{
Ŝ
}

+ (ε′ − ε0)Im
{
Ŝ
}]

.
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GB: properties

Properties of the Gaussian beam model:

Widely used to model laser beams, analytical solution
available,

Transforms easily through lens systems, only the
parameters change,

Gaussian decay (e−cr
2
) in axial direction,

Only an approximation, does not satisfy the Maxwell
equations.
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GB: derivation (1)

The Maxwell equations are rewritten in terms of a vector
potential Â.
The potential is assumed to have the form:

Â(x , y , z) = ψ(x , y)eık̂z ŷ.

With:

z the propagation direction,

y the polarization direction,

k̂ the (complex) wave number, ε̂ = ε0c2

ω2 k̂2.
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GB: derivation (2)

ψ is expanded around

ŝ2 =

(
λ0

2πw0n̂

)2

.

The zero order term is used:

ψ0 =
w0

w(z)
exp

(
ık̂

ρ2

2R(z)
− ρ2

w(z)2
− ıα

k

ρ2

w(z)2
− ıζ(z)

)
.

ρ is the axial distance
√

x2 + y2.

Expected accuracy of order O(|ŝ|2).
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GB: electric field

Electric field has two components:

Epol = E0 exp(ık̂z)ψ0,

Eprop = E0 exp
(
ık̂z
)
ψ0

[
− 1

R(z)
− 2ı

k̂w(z)2
+

2α

kk̂w(z)2

]
y ,

() Electromagnetically Induced Flows 32 / 56



GB: accuracy
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Figuur: Residual of the Maxwell equations and moment equation.

Accurate to order O(|ŝ|2). We have 0.15 < |ŝ| < 0.4.
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Gaussian dipole array

The goal is to:

Create a source that does satisfy the Maxwell equations,

that resembles a Gaussian beam (focussing, exponential
radial decay).

The idea is to combine a lot of simple, exact solutions for
perfect dipoles.
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Perfect dipole (1)

The perfect dipole is a simple point source.

The external current density is given by:

Ĵext(x, t) = δ(x− xs)I0 cos(ωt − ϕ)d̂,

with

δ(x− xs) localizes the source at xs.

d̂ is the orientation of the point source.

Using Green’s functions we can derive an analytic expression for
the electric and magnetic field for the dipole.
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Perfect dipole (2)

Fields resulting from the dipole:

Ê = ıωµ0I0g(r)

[
d̂− (d̂ · r̂)r̂ +

(
1

k̂2r2
− ı

k̂r

)(
3(d̂ · r̂)r̂ − d̂

)]
,

Ĥ = I0g(r)

(
ık̂ − 1

r

)
r̂ × d̂.

The Green’s function is given by g(r) = 1
4πr e

ık̂r , r = x− xs.
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External current density

The external current density is prescribed such that:

It is zero everywhere outside the source plane,

The source plane is divided in a rectangular grid,

For each grid point Ĵext is proportional to Êgb.

The field in the domain is calculated using the Green’s function.
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Resulting field

λ
0
 = 1.2 µm, yz−plane, gb

z

y

0 5 10
0

5

10

λ
0
 = 1.2 µm, yz−plane, dipole

z

y

0 5 10
0

5

10

λ
0
 = 2.4 µm, yz−plane, gb

z

y

0 5 10
0

5

10

λ
0
 = 2.4 µm, yz−plane, dipole

z

y

0 5 10
0

5

10

This methods results in:

Similar fields for small wavelengths.

Deviations for larger wavelengths: larger |ŝ| value.

Constant I0: Numerically normalized incoming power.

() Electromagnetically Induced Flows 39 / 56



1 Introduction

2 Maxwell equations
Complex Maxwell equations

3 Gaussian sources
Gaussian beam
Gaussian dipole array

4 Incompressible Navier Stokes equations

5 Simulations

6 Conclusion and future research

() Electromagnetically Induced Flows 40 / 56



Basis of the NS equations.

The equations are based on:

Conservation of mass and incompressibility: continuity
equation, ∇ · v = 0.

Conservation of momentum: Navier-Stokes equations,
including fem.

Boussinesq approximation: Gravity driven buoyancy effects
in NS equations.

Conservation of energy: temperature equation with source
term qem.
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Incompressible Navier Stokes
equations.

For the simulations we have used the equations:

∂ivi = 0,

ρ0vj∂jvi = −∂ip′ + gyδi2∂2ρ+ µ∂2j vi + f emi ,

ρ0cpvi∂iT = k∂2i T + qem,

Steady-state equations, with

p′ = p + ρgy the modified pressure,

ρ = ρ0 (1− β(T − T0)).

fem the electromagnetic force density,

qem the electromagnetic heat dissipation.
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Solving algorithm: SIMPLE (1)

Semi-Implicit Method for Pressure Linked Equations.

Not that simple:

Pressure and velocity are coupled,

Non-linear system.

Each equation is solved separately. This is iterated until
solution is reached.

Differentiation is discretized using central differences,
Integrations are discretized using a midpoint rule.
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Solving algorithm: SIMPLE (2)

The iterative procedure is given by:

ui+1 is solved by using p′i and ui (to handle the
non-linearity),

T i+1 is solved using ui+1,

ρi+1 is solved using T i+1,

p′i+1 is solved using ui+1 and ρi+1.

ui+1 is corrected using p′i+1 to satisfy the continuity
equation.

Repeated until tolerance is met.
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Frequencies in water
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Four wavelengths are selected,

One small one, 1.2µm, no losses,

One larger one, 2.4µm, almost no losses,

Two larger ones, 2.8µm and 3.2µm, with larger losses.
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Intensities
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Figuur: Intensities for the four different wavelenghts, using the dipole
array method.
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Force density (1)
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Figuur: Force density in plane perpendicular to propagation.

Polarization direction: Away from the centre,

Perpendicular direction: Towards the centre
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Force density (2)
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Figuur: Force density for 1.2µm and 2.4µm, z direction.

No component in propagation direction.
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Force density (3)
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Figuur: Force density for 2.8µm and 3.2µm, z direction.

Relatively large component in propagation direction.
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Resulting velocity
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Velocity in the xy -plane, at the point of focus.
Streamlines indicate circular motion for small wavelengths.
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Temperature rise

For P0 = 1mW , maximum temperature rise is given by:

wavelength Energy absorbed max. ∆T

1.2 µm 0.001 0.047
2.4 µm 0.053 1.906
2.8 µm 0.998 37.653
3.2 µm 0.110 42.654

For P0 = 50mW , maximum temperature rise is given by:

wavelength max. ∆T

1.2 µm 2.0
2.4 µm 95.2

The Boussinesq approximation is only valid for small increases.
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Conclusion

Some conclusions drawn from the simulations:

The dipole array is an adequate alternative for the GB,

No losses: Force density leads to loops,

Losses: Complicated flows, large component in propagation
direction.

Temperature increase is too large, Boussinesq not valid,

Use of compressible Navier-Stokes to capture total flow.
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Further research

More work needs to be done at:

Establishing whether the correct force is used.

Use compressible NS to capture effect due to heat.

Temperature dependent viscosity.

Experimental set-up, to capture characteristic flow.

Investigate possible back-action by fluid on fields.
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