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Chapter 1

Introduction

For every animal’s survival it is vital for its body to be able to repair injured parts. When
injured the body responds with a series of events, beginning with containing the damage and
working towards recovery. The biological model described in [1] and summarized below describes
the various stages of the wound healing process.

In medicine the cutaneous wound healing process is generally divided into three partly over-
lapping stages. These stages mainly consist of (1) inflammation, (2) granulation tissue formation
and (3) wound closure. In the inflammation stage the body attempts to contain the damage.
The inflammatory process tries to either destroy, dilute or wall off the injurious agent. Along
with removing the cause of the injury it starts off the healing process, [1].

In the second stage granulation tissue is formed in the wound. Fibroblasts invade the wound
area and contract the surrounding tissue (extracellular matrix) to ensure that new small blood
vessels, capillaries, can be formed (angiogenesis). As new blood capillaries are formed, oxygen
and nutrients can once again be transported to the wound side.

Finally when the tissue is provided with enough oxygen and nutrients the process of wound
closure starts. Cells in the epidermis, which mainly consist of keratinocytes, start regenerating
the upperlayer of the wound. Usually the skin can not be replaced fully and some marks are
left where the wound was located, like scars.

The second and third stage of wound healing do not take place at the same location in the
wound. The former is located in the dermis, the latter is limited to the epidermis. The epidermis
and the dermis consist of different type of cells and are separated by a so-called basal membrane,
see also Figure 1.1.

In this thesis we first present a selection of the currently available mathematical models
that seek to describe the biological processes of wound healing as well as possible. The healing
process is very complex and many factors contribute to it, therefore simplifications have to be
made. In Chapter 2 we give a detailed description to which mathematical wound healing models
this has led so far.

The main topics in this thesis are combining two models for angiogenesis and coupling
models for the different stages of wound healing. Currently models exist for the different stages
separately, but only scarcely have there been attempts to couple the models. This is vital as the
various stages of wound healing overlap and hence influence each other.

Such coupled models could give more insights on how the process of wound healing works.
These insights might lead to treatments that reduce healing time, e.g. the use of certain hor-
mones to speed up the healing process. Also scars and other deformations due to incomplete
healing might be prevented or reduced.

For several models simulations have been done to give more insight on how these models
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Figure 1.1: A schematic of the events during wound healing. The dermis
and epidermis are illustrated. The picture was taken with permission from
http://www.bioscience.org/2006/v11/af/1843/figures.htm

behave. Also the dependence of the models on certain parameters is investigated. Finally
recommendations are made for future research in the topic of mathematically describing wound
healing.
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Chapter 2

Currently available mathematical

models

The mathematical model for the proliferative stage of wound healing is usually separated in
three distinct parts representing three stages of wound healing. These three stages are wound
contraction, angiogenesis and wound closure. Note that the inflammation stage mentioned in
Section 1 is not taken into account. This is due to the fact that inflammation only contains the
damage and only after the inflammation stage is finished the real healing process starts.

In this chapter we present some of the currently available models on the above mentioned
wound healing stages. In Section 2.1 we first present three models on wound contraction. Each
model is an extension of the previous as it incorporates an extra aspect of wound contraction.
Next in Section 2.2 two models on angiogenesis are presented. The two models take a very
different approach on how to model the growth of new blood vessels in the wound. For the
third stage, wound closure, two models are presented in section 2.3. In Section 2.4 a study that
attempts to combine models of the three stages is briefly discussed. In all the models that we
deal with, we consider a bounded simply connected domain Ω ⊂ R

2. The boundary is denoted
by ∂Ω.

2.1 Wound contraction models

During the wound contraction stage fibroblasts (connective tissue cells) invade the wound site
and contract the extracellular matrix (ECM). The contraction decreases the area of contact be-
tween the wound and its surroundings, thus reducing the chance of contamination and infection.
Furthermore this process is vital in assuring that new blood vessels can be formed in the wound
during angiogenesis, since the fibroblasts invading the wound form the tissue in which the new
capillaries can grow. The wound contraction stage is limited to the dermis, but the contraction
of the ECM also effects the tissue in the epidermis.

All the wound contraction models are based on the linear viscoelastic equations, i.e.

−∇ · σ = fext. (2.1)

Here σ = σecm + σcell, the stresstensor, accounts for the ECM related stress, σecm, and the cell
stress, σcell. Furthermore fext represents the external forces acting on the tissue.

In all the below discussed models the ECM related stress tensor σecm is given as

σecm = µ1
∂ε

∂t
+ µ2

∂θ

∂t
I+

E

1 + ν

(

ε+
ν

1− 2ν
θI

)

. (2.2)
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Here the first two terms on the right hand side respresent the viscous effects and the last term
the elastic effects. If we let u = u(x, t) denote the displacement of the ECM, then the strain
tensor ε and the dilation θ in equation (2.2) are respectively given by

ε =
1

2

(

∇u+ (∇u)T
)

(2.3)

and
θ = ∇ · u. (2.4)

Furthermore, in (2.2), I denotes the identity tensor and µ1, µ2, E and ν respectively represent
the dynamic and kinematic viscosity, Young’s modulus and Poisson’s ratio.

Also the external forces acting on the tissue, fext, are modelled similarly in all three models,
i.e.

fext = −sρu. (2.5)

Here ρ = ρ(x, t) denotes the ECM density and s is the tethering elasticity coefficient.
At time t = 0 it is assumed that there is no displacement of the ECM, i.e. u(x, 0) = 0.

Also we assume that u vanishes at the boundary far away from the wound, i.e. u(x, t) = 0 for
x ∈ ∂Ω. This can be justified by taking the computational domain Ω sufficiently large, so that
the boundary effects can be ignored.

2.1.1 The model of Tranquillo

In this section we present the wound contraction model due to Tranquillo, [2]. It is the most
simple formulation of the three models as it only covers (in combination with the viscoelastic
equations) the change of the fibroblast concentration and the ECM density in time.

Fibroblasts are motile cells and thus are subject to, besides being diffused by passive con-
vection caused by the ECM displacement, diffusion. Furthermore, the fibroblast concentration
is affected by fibroblast production, which is assumed to follow a logistic growth pattern. All
together this gives us the partial differential equation (PDE) for the fibroblast concentration
ufib = ufib(x, t) as

∂ufib
∂t

+∇ ·

(

∂u

∂t
ufib −Dfib∇ufib

)

= λfibufib
(

u0fib − ufib
)

. (2.6)

Here Dfib denotes the diffusion coefficient, λfib the fibroblast production rate and u0fib the equilib-
rium fibroblast concentration. In equation (2.6) the second term on the left hand side accounts
for both passive and active convection. The term on the right hand side represents the fibroblast
production.

For the ECM density ρ = ρ(x, t) we find a similar PDE, but since the ECM is nonmotile and
consists of very long molecular chains, the diffusion term is negligible. Also the ECM production
is assumed to depend on the fibroblast concentration. This leads to

∂ρ

∂t
+∇ ·

(

∂u

∂t
ρ

)

= λecmufib
(

ρ0 − ρ
)

, (2.7)

where λecm is the ECM production rate and ρ0 denotes the ECM equilibrium density.
The cell traction term, σcell, used in the model due to Murray and Tranquillo depends on

both the ECM density and the fibroblast concentration. The higher the ECM density and the
fibroblast concentration the larger the stress is on the ECM. The cell traction term is thus, in
this model, given by

σcell =
τρufib

1 + λu2fib
I, (2.8)
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where λ quantifies how the cell traction depends on the fibroblast concentration and τ is a
proportionality constant.

For the fibroblast concentration we impose a no flux boundary condition, this is justified
by taking the computation domain Ω sufficiently large. Since u = 0 on the boundary, we have
∂u
∂t = 0 on ∂Ω, and hence no boundary condition has to be imposed on ∂Ω for ρ. Note that if
we do not assume zero displacement at the boundary we have to impose a boundary condition
for ρ. Furthermore, at time t = 0 we assume both quantities to be zero inside the wound, i.e.

ufib(x, 0) = 0, ρ(x, 0) = 0

for x ∈ Ωw, and to be at their equilibrium outside the wound, i.e.

ufib(x, 0) = u0fib, ρ(x, 0) = ρ0

for x ∈ Ωu. Here Ωw denotes the wounded and Ωu = Ω \ Ωw the undamaged tissue.

2.1.2 The model of Olsen et al

The model for wound contraction proposed by Olsen et al. in [3] differs from Tranquillo’s model
in two ways. In the first place, it deals with the presence of myofibroblasts. Myofibroblasts are
a kind of weak muscle cells. They are nonmotile cells that differentiate from fibroblasts and
transmit and amplify the traction forces generated by the fibroblasts, [8]. Secondly, the model
incorporates the effects of a growth factor that triggers wound contraction.

In addition to new PDEs for both the myofibroblast and growth factor concentration some
differences are found in the other governing equations. The equation concerning the fibroblast
concentration ufib becomes

∂ufib
∂t

+∇ ·

(

∂u

∂t
ufib −Dfib∇ufib +

afib
(bfib + cecm)2

ufib∇cecm

)

=

(

λfib +
λ0fibcecm

C1/2 + cecm

)

ufib

(

1−
ufib
K

)

−
k1cecm

Ck + cecm
ufib + k2umyo − dfibufib, (2.9)

where cecm and umyo respectively denote the growth factor and myofibroblast concentration.
The cell death rate is denoted by dfib, the myofibroblast to fibroblast differentiation rate by k2
and the fibroblast to myofibroblast differentiation rate by k1. Furthermore λ0fib, C1/2 and Ck are
known constants that monitor the growth factor’s influence on the contraction process and K
is a parameter that regulates the equilibrium concentration.

If we compare equation (2.9) with equation (2.6) we see that there is an extra convective
term, the fourth term on the left hand side. This term accounts for cell movement due to
chemotaxis. Chemotaxis is the phenomenon in which, in this case, fibroblasts are attracted by
a chemical, in this case the growth factor. The production term, first on the right hand side,
now also incorporates growth factor stimulated proliferation. The other three terms on the right
hand side respectively account for differentiation to and from myofibroblasts and cell death.

The PDE for the myofibroblast concentration umyo is similar to equation (2.9). But since my-
ofibroblast are nonmotile cells, they will only move due to passive convection. The myofibroblast
concentration thus solves

∂umyo

∂t
+∇ ·

(

∂u

∂t
umyo

)

= εmyo

(

λfib +
λ0fibcecm

C1/2 + cecm

)

umyo

(

1−
umyo

K

)

+
k1cecm

Ck + cecm
ufib − k2umyo − dmyoumyo, (2.10)
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where εecm is a proportionality constant and dmyo and u0myo denote the myofibroblasts death
rate and the myofibroblast equilibrium concentration respectively.

Both fibroblasts and myofibroblasts contribute to the production of the ECM, furthermore
the production is chemically enhanced by the growth factor, [8]. The PDE for the ECM density
ρ then is given by

∂ρ

∂t
+∇ ·

(

∂u

∂t
ρ

)

=

(

λρ +
λ0ρcecm

Cρ + cecm

)

ufib + ηbumyo

R2
ρ + ρ2

− dρ(ufib + ηdumyo)ρ, (2.11)

where λρ and dρ are the ECM production and death rate respectively. Furthermore λ0ρ and Cρ

are known constants that monitor the growth factor’s influence on the contraction process. Rρ

is a parameter that quantifies how the ECM production rate depends on the ECM density itself
and ηb and ηd are proportionality constants.

The dynamics of the growth factor concentration cecm are mainly determined by the fibrob-
lasts and myofibroblasts as they produce the growth factor. Also the growth factor is motile,
so it is subject to active convection. This leads to the following PDE for the growth factor
concentration

∂cecm
∂t

+∇ ·

(

∂u

∂t
cecm −Dc∇cecm

)

=
kc(ufib + ζumyo)cecm

Γ + cecm
− dccecm. (2.12)

Here the second and third term on the left hand side account for passive and active convection.
The terms on the right hand side account for growth factor production and growth factor decay
respectively. Furthermore Dc is the growth factor diffusion coefficient, kc denotes the growth
factor production rate and dc the decay rate. Also Γ is a parameter that quantifies how the
growth factor production rate depends on the growth factor concentration itself and ζ is a
proportionality constant.

Since the myofibroblasts transmit and amplify the traction forces generated by the fibroblasts
this is also visible in the cell traction term σcell. For the model due to Olsen et al. this term is
given by

σcell =
τufib (1 + ξumyo) ρ

R2
τ + ρ2

I, (2.13)

where ξ is a proportionality constant and Rτ quantifies how the cell traction depends on the
ECM density.

The initial and boundary conditions for the fibroblast concentration and the ECM density
remain the same as in the model due to Tranquillo. For the myofibroblast and growth factor
concentration the following initial conditions are imposed

umyo(x, 0) = 0, cecm(x, 0) = c0ecm

for x ∈ Ωw and
umyo(x, 0) = 0, cecm(x, 0) = 0

for x ∈ Ωu. Here c0ecm denotes the growth factor equilibrium concentration. Furthermore the
growth factor concentration satisfy a no flux boundary condition on all boundaries. For the
myofibroblast concentration we can apply the same reasoning as for the ECM density ρ and
hence no boundary conditions have to be imposed.
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2.1.3 The model of Javierre

In [11] an extension of the model due to Olsen et al. is presented. Javierre et al. propose the
mechanical stress to act as a factor that effects the differentiation from fibroblasts to myofibrob-
lasts. They introduce an estimation of the mechanical stimulus that depends on the dilation
θ = ∇ · u as

pcell(θ) =
Kactpmax

Kactθ1 − pmax
(θ1 − θ)χ[θ1,θ∗](θ) +

Kactpmax

Kactθ2 − pmax
(θ2 − θ)χ[θ2,θ∗](θ) +Kpasθ. (2.14)

Here χ denotes the indicator function, i.e.

χI(θ) =

{

1, if θ ∈ I,
0, else.

and the first two terms on the right hand side account for the contractile stress generated
internally by the myosin machinery and transmitted through the actin bundles, [11]. The third
term on the right hand side establishes the contractile stress supported by the passive resistance
of the cell. See also Figure 2.1 for a plot of pcell(θ).

Furthermore, in equation (2.14), the compression and traction strain limits are respectively
denoted by θ1 and θ2, pmax respresents the maximal contractile force exerted by the actomyosin
machinery and Kmax and Kpas the volumetric stiffness moduli of the active and passive com-
ponents of the cell. Also the parameter θ∗ can be computed from Kact and pmax as θ∗ = pmax

Kact
,

[11].
To incorporate the effects of the mechanical stimulus on the fibroblast to myofibroblast

differentiation an extra factor is found before the differentiation term (the second term on the
right hand side) in equation (2.9). The fibroblast to myofibroblast differentiation term changes
to

pcell(θ)

τd + pcell(θ)

k1cecm
Ck + cecm

ufib, (2.15)

where τd is a parameter that quantifies how the differentiation rate depends on the mechanical
stimulus. Note that this term is also present in the PDE for the myofibroblast concentration
and that thus the second term on the right hand side of equation (2.10) also changes to the
above.

The mechanical stimulus also effects the the cell stresses and thus the cell traction term σcell.
In [11] it is assumed that σcell depends linearly on pcell(θ) and thus that

σcell = pcell(θ)
ufib (1 + ξumyo) ρ

R2
τ + ρ2

I. (2.16)

In order to give more insight in the process of wound contraction we did some simula-
tions with the model due to Javierre et al. The simulations have been done using numerical
techniques described in Chapter 6. As a computational domain we use the unit square, i.e.
Ω = {x = (x, y)| 0 ≤ x, y ≤ 1}, and the initial wound is given by Ωw =

{

x| |x| ≤ 1
2

}

. The re-
sults are given in Figures 2.2 to 2.4, where we show the solution two days after injury. The
computations have been done using parameter values taken from [11].

In Figure 2.2 we show the fibroblast and myofibroblast concentration two days after injury.
The myofibroblast concentration is highly concentrated around the wound edge, whereas the
fibroblast have invaded the wound. If we compare Figure 2.4 with Figure 2.2 we see that the
ECM displacement is largest at places of high myofibroblast concentration. Here the effect of the
myofibroblasts, as they transmit and amplify the traction forces generated by the fibroblasts,
can clearly be seen.
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Figure 2.1: The mechanical stimulus pcell as a function of the dilation θ, computed with values
from [11].
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Figure 2.2: Normalized fibroblast (left) and myofibroblast (right) concentration two days after
injury.
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Figure 2.3: Normalized ECM density (left) and growth factor concentration (right) two days
after injury.
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Figure 2.4: Displacement of the ECM two days after injury.

Figure 2.3 shows the ECM density and the growth factor concentration two days after injury.
We see that the ECM density is slightly elevated at the wound edge, which is to be expected since
the wound is healing there. Furthermore the growth factor concentration has spread throughout
the computational domain, but is still concentrated inside the wound.

The normalized solutions in time at x = 0, furthest in the wound, are shown in Figure 2.5.
This gives an indication of the development of the solutions in time. We see that the fibroblast
concentration rises towards it equilibrium, whereas the myofibroblast concentration first rises
and then falls again. This is due to the fact that, as the wound heals, the myofibroblasts
differentiate back to fibroblasts again and eventually will disappear completely. Also the growth
factor concentration eventually goes to zero as the wound is healed. The ECM density slowly
rises in time and will eventually reach its equilibrium, allthough it can take some time before
the ECM is completely restored.

2.2 Angiogenesis models

Angiogenesis is the wound healing stage that succeeds and partly overlaps wound contraction.
The fibroblast invasion during wound contraction gives the wound a stable structure for new
capillaries to grow in. These new capillaries can then provide the wound with oxygen and
nutrients needed for healing. This process, which takes place in the dermis, is modelled in two
very different ways.

2.2.1 The model of Maggelakis

The model due to Maggelakis, proposed in [4], assumes a positive relation between the lack
of oxygen in the wound and the growth of new capillaries. The shortage of oxygen activates
macrophages in the wound area, which in their turn start the production of a growth factor
that stimulates capillary regeneration, [8]. In return, the growth of new capillaries reduces the
shortage of oxygen due to transport. The flow chart of this system can be seen in Figure 2.6.

If we let uoxy, cmd and ucap respectively denote the oxygen concentration, the macrophage
derived growth factor (MDGF) concentration and the capillary density, the model due to Magge-
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Figure 2.6: A schematic of the negative feedback mechanism for the model for angiogenesis due
to Maggelakis. The +/- signs denote that the increase has a positive/negative effect on the
quantity. This image was taken with permission from [8].
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lakis follows as

∂uoxy
∂t

= Doxy∆uoxy − λoxyuoxy + λ13ucap, (2.17)

∂cmd

∂t
= Dmd∆cmd − λmdcmd + λ21Q(uoxy), (2.18)

∂ucap
∂t

= Dcap∆ucap + λcapcmducap

(

1−
ucap
u0cap

)

. (2.19)

Here the Di are the diffusion coefficients, whereas the terms λoxyuoxy and λmdcmd respectively
represent the oxygen consumption and the decay of the growth factor. The MDGF production
rate Q depends on the oxygen concentration in the following way

Q(uoxy) =







0, if x ∈ Ωu,
0, if uoxy ≥ uθ,
1− uoxy

uθ
, if uoxy < uθ,

where uθ is a given threshold value for the MDGF production. So the production of MDGF
drops linearly to zero when the oxygen concentration is below the threshold value uθ and rising.

The last term in equation (2.19) accounts for the formation of new capillaries, where u0cap is
the equilibrium capillary density. The capillary growth is assumed to be logistic and is triggered
by the presence of the macrophage derived growth factor. The term λ13ucap in (2.17) captures
the transport of oxygen towards the wound, which is larger if there are more capillaries.

The initial conditions are given by

uoxy(x, 0) =

{

0 if x ∈ Ωw,
u0oxy if x ∈ Ωu,

cmd(x, 0) = 0,

ucap(x, 0) =

{

0 if x ∈ Ωw,
u0cap if x ∈ Ωu.

Here u0oxy and u0cap denote the equilibrium solutions for the oxygen concentration and the capil-
lary density respectively. So initially the wound itself is void of oxygen, capillaries and MDGF,
whereas in the healthy tissue enough oxygen is available and the capillary network is intact. For
all three variables we impose no flux boundary conditions. This is reasonable due to symmetry
and when taking the computational domain Ω large.

2.2.2 The model of Gaffney et al.

The model proposed in [5] by Gaffney et al. takes a completely different approach to model
angiogenesis. It models the relation between the capillary tip concentration and the endothelial
cell density, which is a building block for new blood capillaries, [8]. It does not take into account
the relation between shortage of oxygen and growth of new capillaries.

The model due to Gaffney et al. tries to capture the process where endothelial cells migrate
out of blood vessels facing the wound. As they migrate they form tubes that extend from the
parent vessel, [8]. At the tips of these tubes cells proliferate to form new capillaries that extend
into the wound area. Tips branch and join and thus form a new network of capillaries, from
which the process is repeated until the capillary network is completely restored.
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If we let utip = utip(x, t) and uend = uend(x, t) be the capillary tip concentration and the
endothelial cell density respectively, then the partial differential equations of this model read

∂utip
∂t

= ∇ · {D1∇utip +D2utip∇uend}+ f(utip, uend) (2.20)

∂uend
∂t

= λ1∇ · {D1∇utip +D2utip∇uend}+ g(utip, uend). (2.21)

The first term on the right hand side in both equations denotes transport as well as an additional
migration towards a decreasing blood vessel density, [8]. The two functions f and g both depend
on the capillary tip concentration and the endothelial cell density. They represent production
and decay of utip and uend respectively.

For the capillary tip concentration growth is only due to tip branching, the splitting of tips
into new tips. Decay can either be caused by two tips meeting at one point or a tip meeting a
capillary. Since the probability that a tip is located at a certain point is proportional to utip,
the growth term is also proportional to utip. Decay due to two tips meeting then is proportional
to u2tip, whereas decay casued by a tip meeting a capillary is proportional to utipuend. All this
combined gives us the function f as

f(utip, uend) = λ2utip − λ3u
2
tip − λ4utipuend. (2.22)

The function g(utip, uend) can be split into four separate terms. The first denoting prolifer-
ation due to logistic growth of the endothelial cell density, [8]. The second term accounts for
extra growth due to the presence of tips, which are build from endothelial cells. The third and
fourth term are taken together and represent growth due to two tips joining or one tip merging
with a capillary (compare to the last two terms in equation (2.22)). The whole function g is
then given by

g(utip, uend) =λ6auend(u
0
end − uend) + λ6χutipuend(u

1
end − uend)

+ λ5(λ3u
2
tip + λ4utipuend). (2.23)

At the boundary of the computational domain Ω it is assumed that no transport takes place
of both capillary tips and endothelial cells, so they both satisfy a no flux boundary condition.
This is reasonable due to symmetry and when taking Ω large. Furthermore it is assumed that
inside the wound area, x ∈ Ωw, there are no capillary tips and endothelial cells initially present.
Outside the wound area, the endothelial cell concentration is at its equilibrium, u0end, due to a
undamaged capillary network. The capillary tip concentration is everywhere zero, except for a
small strip facing the wound area.

2.3 Wound closure models

The final stage of the healing process is closure of the wound. When the wounded area has
been sufficiently supplied with oxygen and nutrients, cells in the epidermis start dividing and
so regenerate the damaged skin as good as possible. This process is triggered by numerous
growth factors, but in the following two models it is assumed that only one generic growth
factor influences wound closure, [8]. Note that this process takes place in the epidermis, unlike
wound contraction and angiogenesis. This should be taken into account if one wants to couple
a wound closure model with a model of wound contraction or angiogenensis. This because
these two processes only influence wound closure at the boundary between the dermis and the
epidermis, the basal membrane.
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Figure 2.7: The function s(cepi) for an activator (left) and an inhibitor (right).

2.3.1 The model of Sherratt and Murray

If the density of epidermal cells is low, the production of the epidermal cell derived growth factor
is high. And under the influence of the growth factor the production of epidermal cells increases.
Those are the basics for the model due to Sherratt and Murray proposed in [6]. As the wound
heals, the production of epidermal cells decreases to a point where the proliferation rate is in
balance with the decay rate, [8].

If we let uepi denote the epidermal cell density then its balance is given by

∂uepi
∂t

= Depi∆uepi + s(cepi)uepi

[

2−
uepi
ueqepi

]

− λepiuepi, (2.24)

where the terms on the right hand side account for diffusive transport, proliferation and cell
death respectively. The growth factor concentration is denoted by u5 and s is a nonlinear
function of this concentration describing the mitotic rate.

Sherratt and Murray consider two different types of growth factors, activators and inhibitors.
The function s(cepi) is different in both cases and reads

s(cepi) =
2cm(h− β)cepi
c2m + c2epi

+ β (2.25)

for the activator and

s(cepi) =
(h− 1)cepi + h

2(h− 1)cepi + 1
(2.26)

for the inhibitor, here h and cm are known constants and

β =
1 + c2m − 2hcm

(1− cm)2

The function s(cepi) is plotted in Figure 2.7 for h = 10 and cm = 40.
The growth factor concentration behaves similarly to equation (2.24) and thus for u5 we

obtain
∂cepi
∂t

= Degf∆cepi + f(uepi)− λegfcepi. (2.27)

Here the function f is a nonlinear function of uepi, which is also different in the activator and
inhibitor case. For the activator case it is given by

f(uepi) =
uepi(1 + α2)

u2epi + α2
, (2.28)

17



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

u
epi

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u
epi

Figure 2.8: The function f(uepi) for an activator (left) and an inhibitor (right).

where α is a constant, and for the inhibitor it is given by

f(uepi) = uepi. (2.29)

The function f(uepi) is plotted in Figure 2.8 for α = 0.1.
For both the epidermal cell density and the growth factor concentration the initial value is

zero inside the wound and both are at their equilibrium outside the wound, i.e.

uepi(x, 0) =

{

0, for x ∈ Ωw

ueqepi, for x ∈ Ωu

cepi(x, 0) =

{

0, for x ∈ Ωw

ceqepi, for x ∈ Ωu.

Furthermore it is assumed that there is no transport of both epidermal cells and growth factor
over the boundaries of the computational domain. Thus a no-flux boundary condition is induced
on both uepi and cepi.

2.3.2 The model of Adam

The model due to Adam, proposed in [7], takes a somewhat different approach as it only considers
the dynamics of the growth factor concentration. Then based on the presence of the growth
factor the healing process is described, [8].

Firstly, the computational domain Ω is split up in three subdomains Ω1(t), Ω2(t) and Ω3(t).
They denote the wound area, the active layer and the outer (healthy) tissue respectively and
are functions of time since the wound is healing.

The presence of growth factor is influenced by diffusive transport, decay and production. If
we denote its concentration by c, the partial differential equation for the growth factor is given
by

∂c

∂t
= ∇ · (D∇c)− λc+ PχΩ2(x), (2.30)

where D, λ and P are the diffusion coefficient, decay factor and production rate respectively.
Furthermore

χΩ2(x) =

{

1, for x ∈ Ω2(t)
0, for x ∈ Ω1(t) ∪ Ω3(t),

(2.31)

the indicator function of Ω2(t). On the boundary ∂Ω we assume no transport of the growth
factor and thus a no-flux boundary condition is imposed. Initially the growth factor is assumed
to be absent in the entire computational domain, [8].
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If we denote the interface between Ω1(t) and Ω2(t) by W (t),

W (t) = Ω̄1(t) ∩ Ω̄2(t), (2.32)

then healing at a certain location on W (t) implies that the inward normal component of the
velocity, vν , is positive, [8]. The model due to Adam, see [7], says that this is so when the growth
factor concentration exceeds a certain value, i.e. vν 6= 0 if and only if c(x, t) > ĉ, for x on the
interface W (t).

Furthermore it is assumed that the healing rate is proportional to the local curvature κ of
the wound. Then the velocity component in the outward (from Ω1(t)) normal direction is given
by

vν = −(α+ βκ)w(c(t,x) − ĉ). (2.33)

Here α and β are positive constants, prohibiting growth of the wound if κ ≥ 0, and w(s) falls
within the family of Heaviside functions.

So to know if the wound is healing at a certain location along the interface W (t), one needs
to know the growth factor concentration there. To know the rate of healing, one must look at
the curvature of the wound.

2.4 Coupled model

The models described in the previous sections all account for a single stage in the wound healing
process. In fact these stages (partially) overlap each other in the healing process and thus are
also influenced by one another. Furthermore where wound contraction and angiogenesis are
dermal processes, wound closure occurs in the epidermis.

In [9] an attempt is made to combine models of the three stages to get more insight in the
wound healing process, such as geometry influences. The model due to Murray and Tranquillo,
see Section 2.1.1, is used for wound contraction. For angiogenesis and wound closure the model
due to Maggelakis, see Section 2.2.1, and Sherratt and Murray, see Section 2.3.1, are used re-
spectively. Furthermore they consider a computational region in which there is a clear difference
between the dermis and the epidermis, so that angiogenesis and wound closure can be simulated
in separate regions. In Figure 2.9 the computational region is depicted.

Figure 2.9: The geometry of the model with the dermis and the epidermis. This figure was
taken, with permission, from [9].

The results in [9] show a clear sequence of the above mentioned stages of wound healing.
Also, they partially overlap (although the amount of overlapping does depend on the choice of
parameters) and thus influence one another, see Figures 2.10 and 2.11. For more details and
results we refer to [9].
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Figure 2.10: The concentration in the upper left part, see Figure 2.9, of the wound: capillary,
ECM and fibroblast densities in the dermis, epidermal cell density in the epidermis. Here the
capillary diffusity was taken Dc = 0.01 cm2/s. This figure was taken, with permission, from [9].

Figure 2.11: The concentration in the upper left part, see Figure 2.9, of the wound: capillary,
ECM and fibroblast densities in the dermis, epidermal cell density in the epidermis. Here the
capillary diffusity was taken Dc = 0.001 cm2/s. This figure was taken, with permission, from
[9].
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Chapter 3

Some mathematical analysis on the

visco-elastic equations

In this chapter we present some mathematical analysis on the visco-elastic problem. First, in
Section 3.1, we construct analytic solutions for visco-elastic problems in R

1. In Section 3.2 we
investigate the stability of the visco-elastic problem.

This chapter is included to give some more insights on how the numerical solution should
behave, i.e. their stability properties and steady state solution. These properties can be examined
for the analytic solution. This analysis can be used to give an indication on what we may expect
from the behaviour of the numerical solution computed for the wound contraction models.

3.1 Construction of analytic solutions for visco-elastic problems

in R
1

3.1.1 Homogeneous Dirichlet boundary conditions

The visco-elastic problem is used in Section 2.1 to model wound contraction. For Ω = [0, 1] ⊂ R
1

with Dirichlet boundary conditions this problem is given by






−(µ1 + µ2)
∂2

∂x2

(

∂u
∂t

)

− (λ+ 2µ)∂
2u

∂x2 + γu = f(x), for (x, t) ∈ Ω× R
+,

u(0, t) = u(1, t) = 0,
u(x, 0) = u0(x).

(3.1)

Here we use the Lamé parameters λ and µ instead of E and ν for notational convenience. We
use the eigenfunction expansion

u(x, t) =
∑

k≥1

ak(t) sin(kπx) (3.2)

and substitute this into equation (3.1). We may differentiate term by term since u(x, t) and
the eigenfunctions satisfy the same homogeneous boundary conditions, for more details see [12]
page 116, and thus obtain the following differential equation for the ak

(kπ)2(µ1 + µ2)
dak
dt

+ ((λ+ 2µ)(kπ)2 + γ)ak = fk. (3.3)

Here we have divided by sin(kπx), we may assume sin(kπx) 6= 0, and the fk are the coefficients
of the Fourier sine series of f(x), i.e.

fk = 2

∫ 1

0
f(x) sin(kπx)dx. (3.4)
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Note that fk is a constant. The solution of (3.3) is then given by

ak(t) = a0ke
αkt +

fk
(λ+ 2µ)(kπ)2 + γ

, (3.5)

where αk is given by

αk = −

[

γ

(µ2 + µ2)(kπ)2
+

λ+ 2µ

µ1 + µ2

]

(3.6)

and a0k can be obtained from the initial condition. We know that

u0(x) = u(x, 0) =
∑

k≥1

ak(0) sin(kπx). (3.7)

Also we can write the initial solution as

u0(x) =
∑

k≥1

u0k sin(kπx), (3.8)

where u0k are the coefficients of the Fourier sine series of u0(x), i.e.

u0k = 2

∫ 1

0
u0(x) sin(kπx)dx. (3.9)

So ak(0) must be equal to u0k for all k ≥ 1, i.e.

fk
(λ+ 2µ)(kπ)2 + γ

+ a0k = u0k.

This gives us as

a0k = u0k −
fk

(λ+ 2µ)(kπ)2 + γ
. (3.10)

Note that from (3.6) we can conclude that

lim
t→∞

ak(t) =
fk

(λ+ 2µ)(kπ)2 + γ

and hence the steady state solution of problem (3.1) is given by

uS(x) = lim
t→∞

u(x, t) =
∑

k≥1

fk
(λ+ 2µ)(kπ)2 + γ

sin(kπx). (3.11)

Hence the solution of the linear visco-elastic problem on [0, 1] with Dirichlet boundary conditions,
problem (3.1), given by equation (3.2) converges to a steady state solution. This steady state
solution is given by equation (3.11). In the next section we demonstrate a similar result, only
now a homogenous Neumann boundary condition is assumed at x = 1 .

3.1.2 Free boundary condition at x = 0

In this section we study the same visco-elastic problem as in Section 3.1.1, see equation (3.1),
but now we assume a homogenous Neumann boundary condition at x = 0, i.e. ux(0) = 0. We
use the same concept to find a solution as in Section 3.1.1, only now the eigenfunction expansion
is given by

u(x, t) =
∑

k≥1

bk(t) cos(
π

2
(2k − 1)x). (3.12)
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Similar to ak in Section 3.1.1, bk then solves the differential equation

π2

4
(2k − 1)2(µ1 + µ2)

dbk
dt

+ ((λ+ 2µ)
π2

4
(2k − 1)2 + γ)bk = fk. (3.13)

Here fk are the coefficients of the Fourier cosine series of f(x), i.e.

fk = 2

∫ 1

0
f(x) cos(

π

2
(2k − 1)x)dx. (3.14)

The solution of (3.13) is given by

bk(t) = b0ke
−αkt +

fk

(λ+ 2µ)π
2

4 (2k − 1)2 + γ
, (3.15)

where αk is given by

αk = −

[

γ

(µ2 + µ2)
π2

4 (2k − 1)2
+

λ+ 2µ

µ1 + µ2

]

(3.16)

and b0k can be obtained from the initial condition. We know that

u0(x) = u(x, 0) =
∑

k≥1

bk(0) cos(
π

2
(2k − 1)x). (3.17)

Also we can write the initial solution as

u0(x) =
∑

k≥1

u0k cos(
π

2
(2k − 1)x), (3.18)

where u0k are the coefficients of the Fourier cosine series of u0(x), i.e.

u0k = 2

∫ 1

0
u0(x) cos(

π

2
(2k − 1)x)dx. (3.19)

So bk(0) must be equal to u0k for all k ≥ 1, i.e.

fk

(λ+ 2µ)π
2

4 (2k − 1)2 + γ
+ b0k = u0k.

This gives us as

b0k = u0k −
fk

(λ+ 2µ)π
2

4 (2k − 1)2 + γ
. (3.20)

Note that from (3.16) we can conclude that

lim
t→∞

bk(t) =
fk

(λ+ 2µ)π
2

4 (2k − 1)2 + γ

and hence the steady state solution of problem (3.1) is given by

uS(x) = lim
t→∞

u(x, t) =
∑

k≥1

fk

(λ+ 2µ)π
2

4 (2k − 1)2 + γ
cos(

π

2
(2k − 1)x). (3.21)

Hence the solution of the linear visco-elastic problem on [0, 1] with a homogenous Dirichlet
boundary condition at x = 0 and a homogenous Neumann boundary condition at x = 1, given
by equation (3.12), converges to a steady state solution. This steady state solution is given by
equation (3.21).
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3.2 Stability analysis of the visco-elastic equations

In this section we consider the stability of the steady-state solution of the visco-elastic equation.
Suppose that u(x, t) satisfies the following problem,















−∇ · σ = f(x), (x, t) ∈ Ω× R
+,

u = 0, (x, t) ∈ ∂Ω1 × R
+,

σ · n = 0, (x, t) ∈ ∂Ω2 × R
+,

u = 0, (x, t) ∈ Ω× {0}.

(3.22)

Here Ω is a Lipschitz domain in R
d, with boundary ∂Ω = ∂Ω1 ∪ ∂Ω2 with ∂Ω1 ∩ ∂Ω2 = ∅. The

stress tensor σ is given by
σ = σE + σV, (3.23)

where

σE = σE(u) = 2µε+ λ(∇ · u)I, (3.24)

σV = σV(u) = µ1εt + µ2(∇ · ut)I. (3.25)

Here I denotes the indentity tensor and the strain is denoted by

ε = ε(u) =
1

2

(

∇u+ (∇u)T
)

. (3.26)

Now let

a(u, φ) =

∫

Ω
σE(u) : ε(φ)dΩ (3.27)

and

b(u, φ) =

∫

Ω
(µ1ε(u) + µ2(∇ · u)I) : ε(φ)dΩ. (3.28)

Furthermore we define the function space Σ by

Σ =
{

ψ ∈ H1(Ω) : ψ = 0 for x ∈ ∂Ω1

}

(3.29)

Then solving (3.22) is equivalent to finding u(x, t) ∈ L2 ([0, T ]; Σ), subject to u(x, 0) = 0, such
that

b(ut, φ) + a(u, φ) = (φ, f) (3.30)

for all φ ∈ Σ2. To this extent we state the following result about the existence and uniqueness
of the steady state solution, uS(x), which is defined by







−∇ · σE(u
S) = f(x), x ∈ Ω,
uS = 0, x ∈ ∂Ω1,

σE · n = 0, x ∈ ∂Ω2.
(3.31)

Theorem 3.2.1. Problem (3.31) has one and only one solution in Σ2 if f(x) ∈ L2(Ω).

Proof. The proof resides on demonstrating that there is a unique uS ∈ Σ2 such that

a(uS , φ) = (φ, f) (3.32)

for all φ ∈ Σ2. Since a(uS , φ) represents a bilinear form, we will show that a(uS , φ) is a coercive
bilinear form. The bilinearity properties can be demonstrated in a very trivial way. Also

σ(u) : ε(φ) = (2µε(u) + λ(∇ · u)I) : ε(φ)

= 2µε(u) : ε(φ) + λ(∇ · u)(∇ · φ) (3.33)
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and thus is a(u, φ) symmetric (and hence bounded). If we let

|ε(u)| =
√

ε(u) : ε(u), (3.34)

we immediately see from (3.33) that

σ(u) : ε(u) ≥ 2µ|ε(u)|2. (3.35)

This implies that

a(u,u) ≥ 2µ

∫

Ω
ε(u) : ε(u)dΩ = 2µ||ε(u)||2. (3.36)

Next we use Korn’s inequality, valid if meas(∂Ω1) > 0 (see Corollary 11.2.22 in [13]), which
states that there is a constant C > 0

||ε(u)||2 ≥ C
(

||∇u||2 + ||u||2
)

, (3.37)

to show that
a(u,u) ≥ 2µC

(

||∇u||2 + ||u||2
)

(3.38)

and thus that a(u, φ) is a coercive bilinear form. Then, by Lax-Milgram’s Lemma, it follows
that problem (3.31) has one and only one solution in Σ2.

Next, we consider convergence, and hence stability, to this steady state solution.

Theorem 3.2.2. The solution of problem (3.30) converges to the solution of problem (3.31) as
t→ ∞ almost everywhere (a.e.) in Ω.

Proof. Let v(x, t) = u(x, t) − uS(x), then v solves

{

b(vt, φ) + a(v, φ) = 0, (x, t) ∈ Ω× R
+,

v = 0, (x, t) ∈ Ω× {0}.
(3.39)

Note that
b(vt,v) = −a(v,v),

which can be rewritten as
1

2

d

dt
b(v,v) = −a(v,v). (3.40)

Next we know that µ1, µ2, µ and λ are all positive and finite real numbers and thus it is possible
to find α > 0 and β > 0 such that

βµ1 ≤ 2µ ≤ αµ1

βµ2 ≤ λ ≤ αµ2.

From the above we may conclude that there are α, β > 0 such that

β(µ1 + µ2) ≤ 2µ + λ ≤ α(µ1 + µ2)

and hence
αb(v,v) ≤ a(v,v) ≤ βb(v,v). (3.41)

Using the above we can change equation (3.40) to, there exists an α ∈
[

0, 2µ+λ
µ1+µ2

]

such that

1

2

d

dt
b(v,v) ≤ −αb(v,v) (3.42)
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with
b(v,v)|t=0 = b(uS ,uS).

Next, application of Grönwall’s Lemma gives

0 ≤ b(v,v) ≤ b(uS ,uS)e−2αt, (3.43)

which in turn, using the Squeeze Theorem, implies

lim
t→∞

b(v,v) = 0. (3.44)

Now, from (3.41), we may conclude that

lim
t→∞

a(v,v) = 0, (3.45)

and from this we see, since a(v,v) is coercive, that the H1-norm tends to zero as t→ ∞, i.e.

lim
t→∞

(

||∇v||2 + ||v||2
)

= 0.

The above implies that
lim
t→∞

v(x, t) = 0 a.e. in Ω

and thus that
lim
t→∞

u(x, t) = uS(x) a.e. in Ω.
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Chapter 4

A novel model on angiogenesis

In Section 2.2 we presented two currently available models on angiogenesis, the process of cap-
illary formation. These two models each take a very different approach on how to model this
process. Where the model due to Maggelakis, [4], focusses on the relation between a lack of oxy-
gen and capillary growth, the model due to Gaffney et al., [5], attempts to model the migration
of endothelial cells into the wound. Both models adress an important aspect of angiogenesis,
but on the other hand both also miss an important aspect.

In this section we present a novel angiogenesis model based on the models of Maggelakis
and Gaffney et al. In this model we attempt to unite the two approaches and thus create a
model that covers both aspects of angiogenesis. We wish to do so, since both models adress an
important aspect of angiogenesis. Combining these two aspects in one model we hope to create
a more accurate model of the process of angiogenesis. As a basis we take the model of Gaffney
et al. and build in the mechanism depicted in Figure 2.6. This assures that both the endothelial
cell migration and the oxygen shortage aspects are covered in this novel angiogenesis model.

The model due to Gaffney et al. is given by (2.20) and (2.21), where the functions f and g
are given by

f(utip, uend) =λ2utip − λ3u
2
tip − λ4utipuend,

g(utip, uend) =λ6auend(u
0
end − uend) + λ6χutipuend(u

1
end − uend)

+ λ5(λ3u
2
tip + λ4utipuend).

To incorporate the effects of the macrophage derived growth factor (MDGF) concentration cmd

on the growth of capillary tips and the proliferation of endothelial cells we assume that λ2 and
λ6 are functions of cmd. These functions must be zero if there is no MDGF present and rise as
the MDGF concentration rises. Furthermore the effects of additional MDGF must be lower if
there is already a lot of MDGF present. Therefore we let

λ2(cmd) = λ02
cmd

cmd + τtip
,

λ6(cmd) = λ06
cmd

cmd + τend
,

where τtip and τend qualify how respectively λ2 and λ6 depend on the MDGF concentration.
The functions λ2(cmd) and λ6(cmd) are given in Figure 4.1 for 0 ≤ cmd ≤ 1.

This settles the trigger mechanism that the MDGF concentration fullfills in the growth of
new capillaries. The PDE for the MDGF concentration remains the same as it only responds to
a lack of oxygen and thus is still given by (2.18). Also for the oxygen concentration not much
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Figure 4.1: λ2 and λ6 as functions of cmd. Here we used τtip = τend = 1, λ02 = 0.83 and λ06 = 1.

changes, only now the oxygen is transported to the wound via both capillary tips and endothelial
cells. Thus the last term in (2.17) changes to

λ13

(

utip +
λoxyuθuend
λ13u0end

)

.

With this last step we have created a novel angiogenesis model that incorporates both the
effects of oxygen shortage and the migration of endothelial cells into the wound. To get a good
overview of what the model looks like we give the PDEs that drive the model, i.e.

∂uoxy
∂t

= Doxy∆uoxy − λoxyuoxy + λ13

(

utip +
λoxyuθuend
λ13u0end

)

, (4.1)

∂cmd

∂t
= Dmd∆cmd − λmdcmd + λ21Q(uoxy), (4.2)

∂utip
∂t

= ∇ · {D1∇utip +D2utip∇uend}+ f(utip, uend), (4.3)

∂uend
∂t

= λ1∇ · {D1∇utip +D2utip∇uend}+ g(utip, uend), (4.4)

where the functions f and g are given by

f(utip, uend) =λ
0
2

cmd

cmd + τtip
utip − λ3u

2
tip − λ4utipuend,

g(utip, uend) =λ
0
6

cmd

cmd + τend

(

auend(u
0
end − uend) + χutipuend(u

1
end − uend)

)

+ λ5(λ3u
2
tip + λ4utipuend).

To show how this new model behaves we did some computations, from which some re-
sults can be seen in Figures 4.2 to 4.4. The computations have been done using numerical
techniques described in Chapter 6. As a computational domain we use the unit square, i.e.
Ω = {x = (x, y)| 0 ≤ x, y ≤ 1}, and the initial wound is given by Ωw =

{

x| |x| ≤ 1
2

}

.
In Figure 4.2 we see the oxygen and MDGF concentration seven days after injury. The

relation between a lack of oxygen and the production of the macrophage derived growth factor
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Figure 4.2: Normalized oxygen (left) and macrophage derived growth factor (right) concentration
seven days after injury.
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Figure 4.3: Normalized capillary tip concentration (left) and endothelial cell density (right)
seven days after injury.
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Figure 4.4: Normalized solutions furthest in the wound, at x = 0, in time.
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can clearly be seen. In areas where the oxygen concentration is low, i.e. inside the wound, the
MDGF concentration is at its peak and vice versa. Also in Figure 4.4 we see that as the oxygen
concentration rises the MDGF concentration drops at approximately the same rate.

Furthermore in Figure 4.3 we see a front of capillary tips, which slowly moves towards the
center of the wound. Also the endothelial cell density is slighty elevated at the wound edge,
since this is where the new capillaries are formed. This can also be seen in Figure 4.4, where the
endothelial cell density first peaks and then drops again towards an equilibrium. The capillary
tip concentration also peaks, but then drops to zero again. This is to be expected since eventually
all capillary tips join together in the newly formed capillary network.
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Chapter 5

Coupling between wound contraction

and angiogenesis

For all three stages during the proliferative phase of wound healing mathematical models have
been presented that attempt to describe the processes involved in these stages. These models
only focus on one wound healing stage particularly and do not take into account the interactions
between these stages. One example of interaction is the need of oxygen for the growth of cells
and thus the dependency of the profileration terms on the oxygen concentration. But there
are several more interactions that we can think of, including some that will not be taken into
account here either.

In [9] an attempt is made to combine models of the three wound healing stages into one
mathematical model. This model was discussed in Section 2.4. In this chapter we take the novel
model on angiogenesis, presented in Chapter 4, and make an attempt to couple it with the wound
contraction model due to Javierre given in Section 2.1.3. We will investigate both the influence
of the oxygen concentration on the wound contraction mechanism and the influence of the
fibroblast concentration on capillary growth. Furthermore the displacement of the extracellular
matrix (ECM) will also effect the angiogenesis process, this will also be taken into account. For
now we will not consider wound closure.

In the wound contraction stage several processes require energy to work. The growth of new
tissue consumes energy as cells divide and form new cells, i.e. mitosis. Also the active movement
of the fibroblasts requires energy since the cells crawl over each other, so to speak. This energy
needed for wound contraction comes primarly from the food we eat, but oxygen is needed to put
the energy to use, i.e. the cells require oxygen to get the most out of the energy. This means
that the oxygen concentration is good indicator for the amount of energy that is available.

If we look at the partial differential equation (PDE) for the fibroblast concentration in the
Javierre model,

∂ufib
∂t

+∇ ·

(

∂u

∂t
ufib −Dfib∇ufib +

afib
(bfib + cecm)2

ufib∇cecm

)

=

(

λfib +
λ0fibcecm

C1/2 + cecm

)

ufib

(

1−
ufib
K

)

−
pcell(θ)

τd + pcell(θ)

k1cecm
Ck + cecm

ufib + k2umyo − dfibufib, (5.1)

the third term on the left hand side denotes the active convection and the first term on the right
hand side respresents fibroblast proliferation. To incorporate the effects of the oxygen level on
these two processes we replace these two terms with the following,

Dfib
uoxy

τoxy + uoxy
∇ufib
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for the diffusion and

uoxy
τoxy + uoxy

(

λfib +
λ0fibcecm

C1/2 + cecm

)

ufib

(

1−
ufib
K

)

for the proliferation of fibroblasts. The extra term in front,
uoxy

τoxy+uoxy
, assures that if there is no

oxygen present, i.e. no energy can be consumed, the two processes are stopped. When the tissue
is saturated with oxygen the processes continue at their normal rate (the term then approaches
one). Note that due to the PDE for the oxygen concentration the oxygenlevel will never rise to
dangerous levels (the concentration moves towards an equilibrium), i.e. oxygen poisoning will
never take place.

The proliferation of myofibroblasts also consumes energy and thus the same dependency on
the oxygen concentration can be found in the PDE for the myofibroblasts. This concludes the
influence of the oxygen level on wound contraction covered in this model.

The other way around wound contraction also effects the growth of new capillaries. First the
displacement of the ECM causes passive convection of the variables of the angiogenesis model.
This means that in each of the four equations an extra term is found that describes this passive
convection, i.e.

∇ ·

(

∂u

∂t
ui

)

,

where ui denote the four variables of the novel angiogenesis model.
Furthermore the new capillaries need tissue to grow in. At first all tissue in the wound has

been destroyed by the injury and so the capillaries can not grow. Gradually fibroblasts invade
the wound and new tissue is formed. Only then can the recovery of the capillary network start.
This is why it is reasonable to let the growth of capillaries depend on the fibroblast concentration.

The growth terms in (4.3) and (4.4) are given by

λ02
cmd

cmd + τtip
utip

and
λ06

cmd

cmd + τend

(

auend(u
0
end − uend) + χutipuend(u

1
end − uend)

)

respectively. Similarly to how the oxygen concentration is coupled with the fibroblast PDE
we couple the fibroblasts to the capillary tip and endothelial cell density PDEs. Therefor we
introduce the factor

ufib/u
0
fib

τfib + ufib/u
0
fib

in front of both production terms. This results in no capillary growth if there are no fibroblasts
present, i.e. there is no tissue for them to grow in. As the fibroblast concentration rises the rate
of capillary growth also rises towards its normal rate, since the term approaches one.

This concludes the coupling between the wound contraction model due to Javierre and the
novel angiogenesis model covered in this thesis. Of course there are several other interaction
between them. One can for instance think about the differentation from fibroblasts to myofi-
broblasts and back, which surely also consumes energy. This could be a subject for further
study.

Next we present some results of the computation done on the coupled model. The simulations
have been done using numerical techniques described in Chapter 6. The values of the parameters
used can be found in Appendix A. We vary the diffusion speeds of the fibroblasts and the oxygen,
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Figure 5.1: Normalized solutions furthest in the wound, at x = 0, in time for Dfib = 0.02 and
Doxy = 0.01.

since we consider these to be of great importance (the problem seems to be diffusion dominated)
and we would like to study the effect of these parameters on the solution.

In Figures 5.1 to 5.4 the results of the simulations can be found. The figures show the
normalized solutions in time furthest in the wound, i.e. at x = 0. The difference in diffusion
speeds can clearly be seen in the graphs.

We see that with slow fibroblast diffusion the growth of capillaries start off at a later point
in time. This is to be expected since the fibroblasts provide the tissue in which the capillaries
can grow. The growth of the capillaries does follow a similar course. First the capillary tips find
their way to the center of the wound and after that the capillary network is restored.

With a lower oxygen diffusion coefficient the oxygen reaches the center of the wound much
later. Also the fibroblast concentration is effected. In Figure 5.2 we even see the fibroblast
concentration drop very fast after it had risen due to fibroblasts diffusion. This shows the
effect of the coupling. The oxygen concentration is still too low to provide enough energy for
proliferation (growth of new cells) and so the fibroblasts concentration that grew due to diffusion
drops again due to death.

Also with slower oxygen diffusion, the oxygen concentration depends more on the growth
of new capillaries. In Figures 5.2 and 5.4 we see that the oxygen concentration rises far slower
than 5.1 and 5.3. The oxygen concentration grows due to capillaries transporting oxygen to the
wound side and not primarly due to diffusion.

We see that the varying the diffusion speeds has a major effect on the solutions. This confirms
our idea that the problem is diffusion dominated. Although the solutions follow similar patterns
in all cases, the differences can also be seen clearly.

Furthermore the coupling between the two models can also be seen. Especially with low
diffusion speeds we see that the fibroblast concentration clearly depends on the oxygen concen-
tration. Also the growth of new capillaries starts off later than in the uncoupled model, see
Chapter 4. This can also be explained by the coupling, since the growth of capillaries is now
dependend of the fibroblast concentration. So the growth can not begin untill there is enough
tissue available, i.e. the fibroblast concentration is non-zero.
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Figure 5.2: Normalized solutions furthest in the wound, at x = 0, in time for Dfib = 0.02 and
Doxy = 0.001.
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Figure 5.3: Normalized solutions furthest in the wound, at x = 0, in time for Dfib = 0.002 and
Doxy = 0.01.
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Figure 5.4: Normalized solutions furthest in the wound, at x = 0, in time for Dfib = 0.002 and
Doxy = 0.001.
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Chapter 6

Numerical methods

For several of the models mentioned in the previous chapters we presented computational results.
In this chapter we give an overview on how these results were obtained, i.e. which numerical
methods and techniques were used to obtain the solutions.

First, in Section 6.1, we show how we handle the space and time discretization of a nonlinear
reaction-diffusion equation. We considers this type of equation as almost all partial differential
equations (PDE) found in the wound healing models are of this type. Only the linear visco-
elastic equations which we will discuss in Section 6.2, are not. This will also show how we take
care of a system of coupled PDEs. All the programming to obtain the solution have been done
in Matlab c©.

6.1 Reaction-diffusion equation

In this section we consider the nonlinear reaction-diffusion equation

∂c

∂t
= D∆c+ λc(1 − c) for (x, t) ∈ Ω× [0, T ] (6.1)

subject to

∂c

∂n
= 0 for (x, t) ∈ ∂Ω× [0, T ],

c(0,x) = c0(x).

Here D and λ are constants and n denotes the outward normal vector.
To discretize (6.1) in space we use the Finite Element Method (FEM). We multiply (6.1) by

a testfunction η and integrate over the computational domain Ω to obtain

∫

Ω

∂c

∂t
ηdΩ =

∫

Ω
Dη∆c+ λc(1 − c)ηdΩ. (6.2)

The testfunction η must be in the same space as c, i.e. η must be smooth and must satisfy the
same boundary conditions as c. To the first term on the right hand side of (6.2) we apply the
product rule for differentation and Gauss’ Theorem. This gives us

∫

Ω

∂c

∂t
ηdΩ =

∫

Ω
−D∇η · ∇c+ λc(1− c)ηdΩ +D

∫

∂Ω
η∇c · ndΓ, (6.3)

where the last term on the right hand side is equal to zero due to the boundary condition.
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Next we use Galerkin’s method and approximate c by

cN =
N
∑

j=1

cj(t)φj(x). (6.4)

The (basis) functions φj(x), j = 1 . . . N , must be in the same space as c, i.e. they must be
sufficiently smooth and must satisfy the same boundary conditions. Furthermore we also want
the testfunction η to be a linear combination of φj(x), i.e.

η =

N
∑

j=1

bjφj(x). (6.5)

This choice is natural since the testfunction is in the same space as c. As η is chosen arbitrarily,
we may assume that all bj are equal to zero except for one, bi = 1. Using this and substituting
(6.4) and (6.5) into (6.3) we obtain

d

dt

N
∑

j=1

cj

∫

Ω
φiφjdΩ = −D

N
∑

j=1

cj

∫

Ω
∇φi · ∇φjdΩ+ λ

N
∑

j=1

cj

∫

Ω
(1− c)φiφjdΩ (6.6)

for i = 1 . . . N . Note that on the right hand side the term 1−c has not been approximated using
Galerkin’s method. This term is nonlinear and will lead to a nonlinear system of equations,
which is not desirable. The term 1− c will be evaluated at the previous timestep.

Note that (6.6) can be written in matrix-vector form,

M
dc̄

dt
= S(c)c̄ + f, (6.7)

where c̄ = [c1, c2, . . . , cN ]T . We will omit the bar from now on and just write c. The (time)
matrix M contains the integrals on the left hand side of (6.6),

Mij =

∫

Ω
φiφjdΩ, (6.8)

whereas S(u), the mass matrix, contains the integrals on the right hand size

S(c)ij = −D

∫

Ω
∇φi · ∇φjdΩ+ λ

∫

Ω
(1− c)φiφjdΩ. (6.9)

In this case f = 0, but normally it contains the terms in the original PDE that do not depend
on c. Now we split the domain Ω up into (triangular) elements ek and can construct the time
and mass matrix using element matrices, see [10] for more details.

Let us denote the element time and mass matrix byMe and Se(c) respectively. For the φj(x)
we use the linear basisfunctions. The elements of Me are then given, for i, j = 1, . . . , 3, using
Newton-Cotes for a triangle with linear basisfunctions, by

M ij
e =

∫

e
φiφjde

=

3
∑

k=1

φi(xk)φj(xk)

∫

e
φkde

= δij
|∆|

6
.
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Here we have used local numbering, i.e. xk denote the corners of the triangle and φk the cor-
responding basisfunctions that are not zero in the entire element. Furthermore ∆ denotes the
surface of the element. The elements of Se(c) are given by

S(c)ije = −D

∫

e
∇φi · ∇φjde+ λ

∫

e
(1− c)φiφjde,

for i, j = 1, . . . , 3. In a similar way as done with the elements of Me we can use Newton-Cotes
to approximate the elements of Se(c) and find

S(c)ije = −D
|∆|

2
(ai1a

j
1 + ai2a

j
2) + λ(1− c(xi))

|∆|

6
δij , (6.10)

where akl (k = 1, . . . , 3, l = 1, 2) are derivatives of the linear basisfunctions and can be found
in [10] at page 105. Furthermore note that the element mass matrix depends of the solution c
due to the nonlinear term 1− c in (6.1). This term wil be evaluated at the previous timestep as
stated before.

This concludes the space discretization of (6.1). Both the time matrix M and the mass
matrix S(c) in (6.7) have been determined. Next step is to integrate (6.7) in time, more on this
in Section 6.3.

6.2 Linear visco-elastic equations

To give an indication on how we handle the space discretization of a coupled system of partial
differential equations we show in this section how we apply the methods presented in the previous
section to the linear visco-elastic equations. The idea is similar, but some extra steps are needed.

The linear visco-elastic equations are given by

−∇ · σ = −sρu, (6.11)

where σ is the (second order) stress tensor and s is a constant. Furthermore we assume that
there is no displacement on the boundary, i.e.

u = 0 for (x, t) ∈ ∂Ω× [0, T ].

The stress tensor is given by

σ = µ1
∂ε

∂t
+ µ2

∂θ

∂t
I+

E

1 + ν

(

ε+
ν

1− 2ν
θI

)

. (6.12)

Here ε = 1
2

(

∇u+ (∇u)T
)

denotes the strain tensor and θ = ∇ · u the dilation. The other

parameters are all constants.
As we did in Section 6.1 we multiply (6.11) by a testfunction η = [η1, η2]

T and integrate
over the computational domain Ω. The testfunction is a vectorfunction because there are two
unknowns, namely u and v. Also η must be in the same space as u, i.e. η is smooth and zero
on ∂Ω. We obtain

−

∫

Ω
η∇ · σdΩ = −

∫

Ω
ηsρudΩ. (6.13)

Next we apply the product rule for differentation and Gauss’ theorem to the left hand side to
get

∫

Ω
σ · ∇ηdΩ = −

∫

Ω
ηsρudΩ +

∫

∂Ω
σ · nηdΓ, (6.14)
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where the second integral on the right hand side is zero due to η being zero on the boundary.
Now note that the (second order) stress tensor σ can be written as

σ =

(

σ11 σ12
σ21 σ22

)

and thus that we can write (6.14) as two equations, i.e.

∫

Ω

[

σ11
σ12

]

· ∇η1dΩ = −

∫

Ω
sρuη1dΩ, (6.15)

∫

Ω

[

σ21
σ22

]

· ∇η2dΩ = −

∫

Ω
sρvη2dΩ. (6.16)

The elements of σ can be found from (6.12) and are given by

σ11 =µ1
∂

∂t

∂u

∂x
+ µ2

∂

∂t

(

∂u

∂x
+
∂v

∂y

)

+
E

1 + ν

∂u

∂x
+

E

1 + ν

ν

1− 2ν

(

∂u

∂x
+
∂v

∂y

)

,

σ12 = σ21 =
1

2
µ1

∂

∂t

(

∂u

∂x
+
∂v

∂y

)

+
1

2

E

1 + ν

(

∂u

∂y
+
∂v

∂x

)

,

σ22 =µ1
∂

∂t

∂v

∂y
+ µ2

∂

∂t

(

∂u

∂x
+
∂v

∂y

)

+
E

1 + ν

∂v

∂y
+

E

1 + ν

ν

1− 2ν

(

∂u

∂x
+
∂v

∂y

)

.

Next we apply Galerkin’s method and approximate u and v by

uN =
N
∑

j=1

uj(t)φj(x) (6.17)

and

vN =

N
∑

j=1

vj(t)φj(x) (6.18)

respectively. The (basis) functions φj(x), j = 1 . . . N , must be in the same space as u and v, i.e.
they must be sufficiently smooth and must satisfy the same boundary conditions. Furthermore
we also want the testfunctions η1 and η2 to be a linear combination of φj(x), i.e.

η1 =
N
∑

j=1

b1jφj(x), η2 =
N
∑

j=1

b2jφj(x). (6.19)

Again we make a clever choice of the testfunctions, i.e. we let bkj = 0 for all j except for

bki = 1, where k = 1, 2. Now if we substitute (6.17), (6.18) and (6.19) in (6.15) and (6.16) we see
that, as in Section 6.1, we can make a distinction between a time matrix M and a mass matrix
S.

Next we split the domain Ω up into (triangular) elements ek and can construct the time
and mass matrix using element matrices, see [10] for more details. In this case there are two
unknowns per nodal point and thus size of the element matrices is 6×6. But we can split up the
element matrices into submatrices, as shown on page 128 of [10], i.e.

Me =

[

Muu
e Muv

e

Mvu
e Mvv

e

]

; Se =

[

Suu
e Suv

e

Svu
e Svv

e

]

.
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If we then use linear basis functions the elements of the submatrices of the element time matrix,
for i, j = 1, . . . , 3 are given by

Muu
e (i, j) =

|∆|

2

(

(µ1 + µ2)a
1
i a

1
j +

1

2
µ1a

2
i a

2
j

)

Muv
e (i, j) =

|∆|

2

(

µ2a
1
i a

2
j +

1

2
µ1a

2
i a

1
j

)

Mvu
e (i, j) =

|∆|

2

(

µ2a
2
i a

1
j +

1

2
µ1a

1
i a

2
j

)

Mvv
e (i, j) =

|∆|

2

(

(µ1 + µ2)a
2
i a

2
j +

1

2
µ1a

1
i a

1
j

)

.

Here we used Newton-Cotes to approximate the integrals and akl (k = 1, . . . , 3, l = 1, 2) are
derivatives of the linear basisfunctions and can be found in [10] at page 105. Note that the
linear basis functions do not satisfy the same boundary conditions as u and v, i.e. they are not
zero on the boundary. This can be circumvented, we show how in Section 6.3. In a similar way
we can obtain the elements of the submatrices of the element mass matrix as

Suu
e (i, j) = −

|∆|

2

(

E

1 + ν

(

1 +
ν

1− 2ν

)

a1i a
1
j +

1

2

E

1 + ν
a2i a

2
j

)

− sρ
|∆|

6
δij

Suv
e (i, j) = −

|∆|

2

(

E

1 + ν

ν

1− 2ν
a1i a

2
j +

1

2

E

1 + ν
a2i a

1
j

)

Svu
e (i, j) = −

|∆|

2

(

E

1 + ν

ν

1− 2ν
a2i a

1
j +

1

2

E

1 + ν
a1i a

2
j

)

Svv
e (i, j) = −
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δij ,

for i, j = 1, . . . , 3. Here δij is the Kronecker delta.
This concludes the space discretization of (6.11). We are now left with a matrix-vector

differential equation

M
du

dt
= Su (6.20)

where both the time matrix M and the mass matrix S in have been determined by the use
of element matrices and their submatrices. The vector u contains the unknowns uj and vj ,
j = 1, . . . , N . Next step is to integrate (6.20) in time, more on this in Section 6.3.

6.3 Time integration

In the previous sections we have shown how the (system of) partial differential equations are
discritized in space. This leads in both cases to a coupled system of initial value problems of
the form

M
dc

dt
= S(c)c, (6.21)

accompanied by an initial condition c(0) = c0. In (6.21) M and S(c) are the time and mass
matrix respectively.

To solve the solution c from (6.21) we must now integrate in time. We will denote the solution
at time t = tm = m∆t as cm, where ∆t is the timestep. Then if we use a Crank-Nicholson time
integration scheme for (6.21) we obtain

(

M −
1

2
∆tS(cm)

)

cm+1 =

(

M +
1

2
∆tS(cm)

)

cm. (6.22)
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Note that the mass matrix S depends on the solution at the previous timestep. This is done to
deal with nonlinearity in the partial differential equations as for example in (6.1). Normally the
Crank-Nicholson scheme is second order accurate, but since we let the mass matrix S depend on
the solution at the previous timestep we can only be sure that it is first order accurate. However
in practice the accuracy will be somewhere between first and second order.

As stated in Section 6.2, if the variables satisfy Dirichlet boundary conditions we still have
to do some work. We are now left with a matrix-vector equation of the form

Ac = b,

where c contains the unknowns at each timestep. Now suppose that cj , for some 1 ≤ j ≤ N , is
located on the boundary ∂Ω and the solution there is subject to the Dirichlet boundary condition
c = cB. We can then easily impose this boundary condition via the matrix vector equation. If
we let Aj,j = K and bj = KcB, where K is large compared to the other entries of A and b,
then we automatically obtain the required boundary condition for c. This process is known as
penalization.

After dealing with the essential boundary conditions we are left with solving the matrix-
vector equation. This type of equation is easily solved in Matlab, especially as M and S are
sparse matrices.
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Chapter 7

Conclusions and future work

The proliferative phase of the wound healing process can be divided in three stages, i.e. wound
contraction, angiogenesis and wound closure. For each separate stage there are currently several
different models available. These are to some extent reasonable depictions of the real process.

In reality, of course, these separate stages overlap, they influence one another. Some of these
influences have been investigated in this report with the coupling of two stages of the wound
healing process, i.e. wound contraction and angiogenesis. The coupled model is diffusion domi-
nated and thus the solution depends greatly on the choice of diffusion parameters. Investigating
the solution’s dependence on the model’s parameters could be a topic for future research.

Also, in this report, a novel angiogenesis model has been proposed that combines the two
already existing models of Maggelakis and Gaffney et al. It both incorporates the lack of
oxygen mechanism that Maggelakis uses in his model and the capillary growth mechanism that
is captured quite well in the model due to Gaffney et al. This novel model gives a reasonable
depiction of how angiogenesis works quantitively, but also here the choice of parameters could
be researched to also assure some level of qualitative correctness.

As said, a lot of work can still be done on the topic of wound healing. For future research
we would recommend

1. Combination of the angiogenesis and wound contraction model with wound closure.

2. Modelling of the position of the basal membrane, which separates the dermis from the
epidermis.

3. Investigating the choice of the model’s parameters, to assure better qualitative correct
models.
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Appendix A

Parameter values for the coupled

model

Parameter Description Value Dimension

u0
fib Fibroblast density in healthy tissue 104 cells/cm3

D0
fib Fibroblast diffusion rate 2 × 10−2/2 × 10−3 cm2/day

afib Determines, with bfib, the maximal chemotaxis rate per unit GF conc. 4 × 10−10 g/cm day

bfib GF conc. that produces 25% of the maximal chemotatic response 2 × 10−9 g/cm3

λfib Fibroblast proliferation rate 0.832 day−1

λ0
fib Maximal GF induced proliferation rate 0.3 day−1

K Determines the fibroblast equilibrium density 1 × 107 cells/cm3

C1/2 Half-maximal GF enhancement of fibroblasts proliferation 1 × 10−8 g/cm3

k1 Maximal fibroblast to myofibroblast differentation rate 0.8 day−1

k2 Myofibroblast to fibroblast differentation rate 0.693 day−1

Ck Half-maximal GF enhancement of fibroblast to myofibroblast differentation 10−8 g/cm3

dfib Fibroblast death rate 0.831 day−1

εmyo Myofibroblast to fibroblast logistic growth rate proportionality factor 0.5 -

dmyo Myofibroblasts death rate 2.1 × 10−2 day−1

τoxy Determines oxygen enhancement of (myo)fibroblasts proliferation 2 × 10−4

Table A.1: Parameters related to the fibroblast and myofibroblast equations.

Parameter Description Value Dimension

ρ0 Collagen concentration in healthy tissue 0.1 g/cm3

ρini Initial collagen concentration in the wound 10−3 g/cm3

λρ Collagen production rate 7.59 × 10−10 g3/cm6 cell day

λ0
ρ Maximal rate of GF induced collagen production 7.59 × 10−9 g3/cm6 cell day

Cρ Half-maximal GF enhancement of collagen production 10−8 g/cm3

Rρ Half-maximal collagen enhancement of ECM deposition 0.3 g/cm3

ηb Myofibroblast to fibroblast collagen production rate proportionality factor 2 -

dρ Collagen degradation rate per unit of cell density 7.59 × 10−8 cm3/cell day
ηd Myofibroblast to fibroblast collagen degradation rate proportionality factor 2 -

c0ecm Initial GF concentration in the wound 10−8 g/cm3

Dc GF diffusion rate 5 × 10−2 cm2/day

kc GF production rate per unit of cell density 7.5 × 10−6 cm3/cell day
ζ Myofibroblast to fibroblast chemical production rate proportionality factor 1 -

Γ Half-maximal enhancement of net GF production ×10−8 g/cm3

dc GF decay rate 0.693 day−1

Table A.2: Parameters related to the collagen and growth factor equations.
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Parameter Description Value Dimension

pmax Maximal cellular active stress per unit of ECM 10−4 N g/cm2 cell

Kpas Volumetric stiffness moduli of the passive components of the cell 2 × 10−5 N g/cm2 cell

Kact Volumetric stiffness moduli of the active filaments of the cell 1.852 × 10−5 N g/cm2 cell
θ1 Shortening strain of the contractile element −0.6 -
θ2 Lengthening strain of the contractile element 0.5 -

τd Half-maximal mechanical enhancement fo fibroblast to myofibroblast differentation 10−5 N g/cm2 cell
µ1 Undamaged skin shear viscosity 200 N day/cm2
µ2 Undamaged skin bluk viscosity 200 N day/cm2
E Undamaged skin Young’s modulus 33.4 N/cm2
ν Undamaged skin Poisson’s ratio 0.3 -

ξ Myofibroblasts enhancement of traction per unit of fibroblasts density 10−3 cm3/cell

Rτ Traction inhibition collagen density 5 × 10−4 g/cm3

s Dermis tethering factor 5 × 102 N/cm g

Table A.3: Parameters related to the mechanical behaviour of cells and the ECM.

Parameter Description Value Dimension

u0
oxy Oxygen concentration in healthy tissue 5 mg/cm3

Doxy Oxygen diffusion rate 10−2/10−3 day−1

λoxy Oxygen decay rate 2 × 10−2 day−1

λ13 Oxygen transport rate 1 day−1

uθ Threshold value for macrophage derived GF 5 mg/cm3

Dmd Macrophage derived GF diffusion rate 0.1 day−1

λmd Macrophage derived GF decay rate 1 day−1

λ21 Macrophage derived GF production rate 10 day−1

u0
tip Normalized initial capillary tip concentration in the small strip facing the wound 1 -

D1 Capillary tip diffusion rate 3.5 × 10−4 cm2/day

u0
end Normalized endothelial cell density in healthy tissue 1 -

D2 Endothelial cell diffusion rate 3.5 × 10−4 cm2/day

λ0
2 Capillary tip growth rate 0.83 day−1

τtip Half-maximal macropahge derived GF enhancement of capillary tip growth 1 -

λ3 Rate at which two capillary tips meet 0.83 day−1

λ4 Rate at which a capillary tip meets another capillary 0.85 day−1

λ0
6 Endothelial cell proliferation rate 1 day−1

τend Half-maximal macropahge derived GF enhancement of endothelial cell proliferation 1 -

a Determines, with χ and u1
end, the equilibrium endothelial cell density 0.25 -

χ Determines, with a and u1
end, the equilibrium endothelial cell density 0.3 -

u1
end Determines, with a and χ, the equilibrium endothelial cell density 10 -

λ5 Capillary tip to capillary proportionality factor 0.25 -
τfib Half-maximal fibroblast enhancement of capillary growth and endothelial cell proliferation 1 -

Table A.4: Parameters related to angiogenesis.
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