
Deflated CG Method for Modelling
Groundwater Flow Near Faults

Interim Report

L.A. Ros

Delft, Utrecht

January 2008

Delft University of Technology | Deltares

Supervisors: Prof.dr.ir. C. Vuik (TU Delft)
Dr. M. Genseberger (Deltares)
Ir. J. Verkaik (Deltares)

ii

Preface

This report is written as a result of the literature study of my Masters Thesis project for
the study of Applied Mathematics at the Delft University of Technology. The Masters
project is being carried out at Deltares.

Deltares is a new Dutch institute for Delta Technology, starting on 1 January
2008. Deltares is formed from parts of Rijkswaterstaat /DWW, RIKZ and RIZA,
WL | Delft Hydraulics, GeoDelft, and a part of TNO Built Environment and
Geosciences. Together, they work on problems in the field of water, soil and the
subsurface. Deltares works for and cooperates with Dutch government, provinces and
water boards, international governments, knowledge institutes and market parties.
The institute is located in two cities: Delft and Utrecht.

Since September 2007 I am working on a groundwatermodel for Limburg, IBRAHYM,
developed by the former TNO. My goal is to improve the convergence behavior of the
solver near faults. This can probably be done by using a deflation based preconditioner.

Lennart Ros,

Delft, Utrecht, December 2007.

iv Preface

Contents

Preface iii

1 Introduction 1

1.1 Subsurface, Groundwater and Faults . 1

1.1.1 Geology . 1

1.1.2 Hydrology . 1

1.1.3 Geohydrology . 2

1.1.4 Faults . 3

1.2 MODFLOW . 3

1.3 IBRAHYM . 7

1.4 Problem Description . 8

2 The Governing Equation for Porous Media Flow 9

2.1 Darcy’s Law . 9

2.2 Steady-state Flow . 10

2.2.1 Boundary Conditions . 12

2.3 Time-variant Problems . 12

3 Finite Volume Method in MODFLOW 15

3.1 Finite Volume Equation for our Governing Equations in MODFLOW . . . 15

3.1.1 Discretization Convention in MODFLOW 16

3.1.2 Finite-Volume Equation . 17

3.1.3 External Sources . 19

3.1.4 Discretization in Time . 20

3.1.5 System of Equations . 21

3.2 Simulation of Boundaries in MODFLOW 22

3.2.1 Stress Packages . 23

3.3 Faults in MODFLOW . 26

4 Iterative Solvers for Linear Systems 31

vi CONTENTS

4.1 Basic Iterative Methods . 31

4.2 Projection Methods . 32

4.2.1 Matrix Representation . 33

4.3 The Krylov Subspace . 34

4.4 Preconditioned Conjugate Gradient Methods 35

4.4.1 The basic algorithm . 35

4.4.2 Incomplete Cholesky Decomposition 37

4.4.3 Modified ICCG . 38

4.5 Convergence, Starting Vectors and Stopping Criteria 38

5 Deflation Techniques 41

5.1 Basic Idea of Deflation . 41

5.1.1 Preconditioning, Starting Vectors and Deflated CG method 42

5.2 Eigenvalue Deflation . 44

5.2.1 Deflation with Exact Eigenvectors 44

5.2.2 Deflation with Inexact Eigenvectors 46

5.3 A Priori Deflation Vectors . 46

5.3.1 Subdomain Deflation . 46

5.3.2 Deflation based on Physics . 46

6 Testproblems, First Results and Research Questions 49

6.1 First Test Problem . 49

6.2 MATLAB . 49

6.3 First Results . 50

6.3.1 Results for our First Test Problem 50

6.3.2 More Results . 50

6.4 Research Questions . 51

A LU Factorization Algorithms 53

B MICCG in MODFLOW 55

C Figures for Chapter 6: Testproblems, First Results and Research Questions 57

C.1 Figures for Section 6.1: First Testproblem 57

C.2 Figures for Section 6.2: Matlab . 58

C.3 Figures for Section 6.3: First Results . 58

C.3.1 Results for First Testproblem . 58

C.3.2 More Results . 59

Chapter 1

Introduction

In densely populated areas, land use and planning are closely related to demands
on water management of, for example, natural, agricultural and recreational areas.
It is therefore important to base management of both groundwater and surfacewater
systems on these demands.

Modelling groundwater flow can be done by the finite-volume code named MODFLOW
[5], designed by the USGS [15], that is commonly used in the world. The equations used
for solving groundwater flow are based on Darcy’s Law. This code solves the equation
with the conjugate gradient solver using an incomplete Cholesky preconditioning.
However, this preconditioner seems to fail for applications with large contrasts in
medium parameters, resulting in poor convergence behavior. This happens, for
example, near faults such as the Peelrandbreuk in Limburg. A possible technique to
improve convergence is to use a deflation-based preconditioner.

In this chapter a short overview is given about the geology and hydrology basics for
modelling groundwater flow. The last paragraph gives a short overview for the rest of
the report.

1.1 Subsurface, Groundwater and Faults

1.1.1 Geology

The subsurface consist of different layers of alternating sand and clay. Directly under
the surface we have an unconfined aquifer. An aquifer is a sediment that is sufficiently
porous and permeable to store and transmit groundwater. In an aquifer water can move
in all directions, but usually the flow is horizontal. After an aquifer we find an aquitard.
An aquitard is a sediment that is not permeable enough to let water flow easily, but
it can supply water to the underlying or overlaying aquifer. In an aquitard we assume
water to flow vertically only. An example of an aquitard is a package of clay. After some
of those aquifers and aquitards we find the aquiclude or the so called geo-hydrological
base. This is an impermeable body of rock that may absorb water slowly, but does not
transmit it. A simple overview is given in Figure 1.1.

1.1.2 Hydrology

Hydrology describes the movement of water in all it forms. The cycle is shown in Figure
1.2. It can be seen that a lot of processes deal with groundwater.

2 Introduction

Figure 1.1: Schematization of the subsurface and the possible directions of the
groundwater flow.

1.1.3 Geohydrology

Geohydrology describes the groundwater flow. Almost everywhere in the Netherlands
groundwater can be found upto a couple of meters beneath the surface. In the lower
parts of the Netherlands it can even be found within a meter. Groundwater moves
through the pores of the aquifers. Not every type of ground has the same porosity.
Porosity is defined as the volume of the pores divided by the volume of the material.
See also Figure 1.3. Conductivity K is a measure for the possibility of movement of a
liquid through the pores of a sediment.

To separate the effect of the medium and the liquid we define the intrinsic permeability,
k, as:

k =
Kµ

γ
,

where:

µ dynamic viscosity [ML−1T−1],
γ specific weight (ρ g) [ML−2T−2],
ρ specific density [ML−3]
g force of attraction [LT−2]

The driving force for groundwater flow are the differences in height and pressure.
To represent these differences we introduce the concept of hydraulic heads, h [L].
This groundwater potential equals the sum of the kinetic energy, the pressure and the
potential energy heads:

h =
v2

2g
+

p

ρg
+ z, (1.1)

where ρg is the specific weight of the liquid. The term h is sometimes called the
groundwater head or the piezometric head. The first term, the kinetic energy, is in practice
negligible. So Equation (1.1) reduces to:

1.2 MODFLOW 3

Figure 1.2: Overview of the hydrology cycle.

h =
p

ρg
+ z.

We can use a piezometer to determine the hydraulic head (see Figure 1.8).

1.1.4 Faults

A fault can have big consequences for the groundwater flow. A fault is a planar rock
fracture, which shows evidence of relative movement. The largest examples are at
tectonic plate boundaries but many faults occur far from active plate boundaries. Faults
do not usually consist of a single, clean fracture, so sometimes the term fault zone is used.
There are different types of faults, as shown in Figure (1.5). The main property about
faults is that they have a low permeability and we have to deal with large contrasts in
medium parameters.

1.2 MODFLOW

MODFLOW is a software package which calculates hydraulic heads, developed by the
U.S. Geological Survey. Since it is an open-source code everyone can use and improve
this program. A complete manual can be found on the internet, [5], but we will discuss
only some important properties.

MODFLOW works with a rectangular grid and uses a cell-centered variables. In Section
3.1.1 is described how we set up this grid. The cells we use have three dimensions
and they are numbered using an (i, j, k) grid. The i stands for the number of the
column, the j is for the number of the row and k is the number of the layer. Since

4 Introduction

Figure 1.3: Low and high porosity.

Figure 1.4: Connected pores give a rock permeability.

in real applications the groundstructure is not rectangular, you have to specify in every
cell the transmissivity. This is some measure for permeability, corrected for the real
dimension represented by the cell. This value is also called kD-value, since you multiply
the conductivity with the thickness (Dutch: dikte) of the layer. The conductance for a
cell is now calculated as the transmissivity (TR) times the width of the cell divided by
its length. The volumetric flow, Q, now is defined by

Q = C(h1 − h2). (1.2)

Conductance is defined for a particular prism of material and for a particular direction
of flow. If a prism of porous material consists of two or more subprisms in serie and
for all the subprisms the conductance is known, then the conductance representing the
entire prism can be calculated. We know that we have:

C =
Q

hA − hb
.

If we assume that the heads across each subprism is continuous, we get the identity:

n∑
i=1

∆hi = hA − hb.

1.2 MODFLOW 5

Figure 1.5: Overview different types of faults [16].

Substituting Equation (1.2) gives:

n∑
i=1

qi
ci

= hA − hB .

where:

qi is the flow across subprism i, and
ci is the conductance of subprism i.

Since we consider flow in one direction and we assume no accumulation or depletion
in storage, each qi is equal to the total flow Q and therefore:

Q

n∑
i=1

1
ci

= hA − hB and
hA − hB

Q
=

n∑
i=1

1
ci
. (1.3)

Comparing Equation (1.3) and Equation (1.2), one can conclude that:

1
C

=
n∑
i=1

1
ci
,

which is called the harmonic mean. So if we only have two subprisms the equivalent
conductance reduces to:

6 Introduction

C =
c1c2
c1 + c2

. (1.4)

If we look into the row-direction (see also Figure 3.1 in Section 3.1.1), we get for the
conductance between cell (i, j, k) and cell (i, j + 1, k) (see also Figure 1.6):

CRi,j+1/2,k =
TRi,j,kDELCi

(1/2)DELRj
× TRi,j+1,kDELCi

(1/2)DELRj+1

TRi,j,kDELCi

(1/2)DELRj
+ TRi,j+1,kDELCi

(1/2)DELRj+1

, (1.5)

where the R stands for row-direction. Simplification of Equation (1.5) gives the final
equation:

CRi,j+1/2,k = 2DELCi
TRi,j,kTRi,j+1,k

TRi,j,kDELRj+1 + TRi,j+1,kDELRj
. (1.6)

Figure 1.6: Calculation of conductance between two cells using transmissivities.

The same process can be applied to the calculation of CCi+1/2,j,k (C for column) giving:

CCi+1/2,j,k = 2DELRj
TCi,j,kTCi+1,j,k

TCi,j,kDELCi+1 + TCi+1,j,kDELRi
. (1.7)

Vertical conductance can also be calculated in the same way as the horizontal
conductances. We only give the result:

CVi,j,k+1/2 =
DELRjDELCi

(1/2)DELVk

V Ki,j,k
+ (1/2)DELVk+1

V Ki,j,k+1

. (1.8)

where V K is the vertical (hydraulic) conductivity between layers.

MODFLOW is a quasi-3D model since it models the aquitards as a vertical flux between
layers. So it does not calculate anything inside an aquitard. Because of this we have to
adapt Equation (1.8). An exact derivation can be found in [5]. We only give the result:

1.3 IBRAHYM 7

CVi,j,k+1/2 =
DELRjDELCi

(1/2)DELVk

V Ki,j,k
+ ∆vCB

V KCBi,j,k
+ (1/2)DELVk+1

V Ki,j,k+1

, (1.9)

where:

V KCBi,j,k is the hydraulic conductivity of the aquitard between (i,j,k) and (i,j,k+1), and
∆vCB is the thickness of the aquitard.

The term ∆vCB

V KCBi,j,k
compensates for the conductance in the aquitard between layer k

and k + 1.

MODFLOW uses an iterative method to solve a system of equations obtained from the
finite-element discretization as carried out in Chapter 3. The method which is used in
MODFLOW is a preconditioned conjugate gradient method to improve convergence.
As a preconditioner, the incomplete Cholesky Factorization is used.

1.3 IBRAHYM

IBRAHYM is a groundwater model that is developed for several waterboards in
Limburg. Limburg is a province in the Netherlands that has a large variety of faults in
the subsoil. Such faults cause the model to suffer from bad convergence behavior of the
solver. IBRAHYM uses at most 19 layers to model the groundwater flow in that area.
Furthermore it uses grid cells of 25 times 25 meter to get detailed information.

The most famous fault in Limburg is ”de Peelrandbreuk”.

Figure 1.7: The Peelrandbreuk in Limburg [17].

8 Introduction

1.4 Problem Description

Deltares uses MODFLOW to simulate groundwater flow in the Netherlands. In
Limburg the process converges very slowly by several impermeable faults. In this
report the model is decribed in more detail and possible strategies are given to solve
the problem in the next months.

In Chapter 2 the governing equation for porous media flow is derived. We start by
explaining Darcy’s Law (Section 2.1) and derive the steady-state flow equation (Section
2.2). After that we derive the equation for time variant problems (Section 2.3).

Chapter 3 starts with the derivation for the finite volume equation. In Secion 3.2 an
overview is given of how MODFLOW deals with boundary conditions. The last section
is about how MODFLOW deals with faults in the subsoil.

In Chapter 4 we look at iterative solvers for linear systems. Section 4.1 describes the
basic iterative methods. Section 4.2 deals with projection methods, where Section 4.3
introduces the Krylov subspace. After that the Preconditioned Conjugate Gradient
Method is introduced in Section 4.4. The last section, Section 4.5, is about convergence,
starting vectors and stopping criteria.

In Chapter 5 the deflation technique is explained. Section 5.1 explains the basics of
deflation. Section 5.2 uses the eigenvalues of the coefficientmatrix to deflate and Section
5.3 gives alternative techniques.

The last chapter, Chapter 6, gives an overview of the first testcases and the first
conclusions. In Section 6.4 the research questions are stated for the upcoming six
months of my Master’s Thesis.

Figure 1.8: A piezometer [18].

Chapter 2

The Governing Equation for
Porous Media Flow

Groundwater flow is three dimensional in space and it is also a function of time. The
velocity of the flow is a function of x, y, z and t.

The flow can be evaluated quantitively when the velocity, pressure, density,
temperature, and viscosity of the water flowing through the ground are known.
If these variables are only functions of space, then the flow is defined as being steady. If
the variables are also functions of time, then the flow is defined as being unsteady or
time-dependent.

In this section we will derive the fundamental equation based on Darcy’s Law. The
derivation can also be found in chapter 2 of [9].

2.1 Darcy’s Law

The flow through the porous media is a slow frictional flow governed by Darcy’s law
which we can write as:

v = K · i. (2.1)

Here:

v = Darcy’s velocity [LT−1],
K = matrix with hydraulic conductivities of medium [LT−1],
i = hydraulic gradient.

The tensor K is given by:

K =

 Kxx Kxy Kxz

Kyx Kyy Kyz

Kzx Kzy Kzz

 . (2.2)

Each element of K is defined as: K = kγ
µ , where:

10 The Governing Equation for Porous Media Flow

k = intrinsic permeability [L2],
γ = specific weight (ρg) [ML−2T−2],
µ = dynamic viscosity [ML−1T−1].

From a macroscopic point of view it can be shown that K is symmetric and positive
definite. Symmetric means that we have kxy = kyx, kzx = kxz, kyz = kzy and positive
definite means we have kxx, kyy, kzz > 0. This assures that energy is always dissipated
during flow. MODFLOW assumes a quasi 3D-flow, i.e. the head gradient does not
vary vertically within aquifers and does not vary horizontally within aquitards. These
kind of flows are also know as Dupuit-Forchheimer flows. As a consequence of this, the
components kxz = kzx = kyz = kzy = 0 and so will the corresponding K’s [13]. In
MODFLOW we also assume that kxy = kyx = 0, so we only model anisotropy along the
main axes. If the material is isotropic we have Kxx = Kyy = Kzz , but if the material is
anisotropic these values can differ.

The hydraulic gradient i results from a difference in groundpotential across an element
of the medium. If ∆h represents the total potential loss of the fluid over a distance ∆s,
then in the limit we have:

i = −dh
ds
. (2.3)

If we now substitute Equations (2.2) and (2.3) into Equation (2.1), then we end up with
the following equations:

vx = −Kxx
∂h
∂x ,

vy = −Kyy
∂h
∂y ,

vz = −Kzz
∂h
∂z ,

(2.4)

where Kxx,Kyy,Kzz are the values of hydraulic conductivity along x, y and z
coordinate axes. We assume axes to be parallel to the major axes of hydraulic
conductivity. The lowercase x, y and z at the v’s mean that it is the velocity in that
direction.

Note that these equations only hold when the x, y, and z axes coincide with principal
permeability axes. Darcy’s Law is not sufficient to solve the problem of groundwater
flow. We now have only three equations, but we have four unknowns. These unknowns
are the three components of the velocity and the groundwater potential. So we need a
fourth equation, which we obtain by realizing that the flow has to satisfy the principle
of the conservation of mass. No matter what kind of flow we are looking at, we cannot
gain or loose mass. This will lead to a continuity equation.

2.2 Steady-state Flow

Consider a small elementary volume. Assume that the fluid filters in such a manner
that the porous ground is incompressible. We can use the conservation of mass law.
So the sum of mass flow entering the three faces is equal to the sum of the mass flow
leaving by the opposite faces. Since we are working with water, with a constant density,
the conservation principle can be fullfilled by ensuring that the volume entering equals
the volume that leaves the volume. We also assume the water to be incompressible.

Now let P be the center point of such an element and let for the moment x = y = z = 0.
At this point, the velocities are given by vx, vy and vz . So on x = −dx2 , the flow in

2.2 Steady-state Flow 11

Figure 2.1: Flow for an elementary volume of fluid.

the x-direction will be vx (x− dx/2) ≈ vx − ∂vx

∂x
dx
2 . We use here a first order Taylor

approximation. If we multiply this by the area, which is dy dz, we end up with the
volume entering the plane through this area. So in the x-direction the following volume
will enter the element:

(
vx −

∂vx
∂x

dx

2

)
dy dz.

For the other area in the x-direction fluid will leave the element. The volume leaving
the element will be:

(
vx +

∂vx
∂x

dx

2

)
dy dz.

So the net flow, which is outflow minus inflow, in the x-direction will be:

(
∂vx
∂x

)
dx dy dz.

Similarly we have a net flow in the y-direction of
(
∂vy

∂y

)
dx dy dz and in the z-direction

of
(
∂vz

∂z

)
dx dy dz. So the volume of the flow through the elementary volume will then

be:

(
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

)
dx dy dz.

According to the conservation principle this must be equal to 0, so we must have:

∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

= 0. (2.5)

We call this the steady-state continuity equation.

12 The Governing Equation for Porous Media Flow

If we now substitute equation (2.4) into (2.5) we end up with:

∂

∂x

(
Kxx

∂h

∂x

)
+

∂

∂y

(
Kyy

∂h

∂y

)
+

∂

∂z

(
Kzz

∂h

∂z

)
= 0, (2.6)

which describes basic steady-state flow without source and sink terms.

2.2.1 Boundary Conditions

Boundary conditions are needed to derive a unique solution for a partial differential
equation. Various types of boundary conditions are possible in a steady state flow:

1. Known values of the groundwater potential are given on the boundary (Dirichlet
condition).

2. If the magnitude of the flow crossing through the boundary is known we can
set: ∂h

∂n = φ, where φ is the velocity normal to the boundary divided by the
permeability normal to the boundary (inhomogenous Neumann condition).

3. At an impermeable boundary we do not have a flow through this boundary. So
we set: ∂h

∂n = 0, where n is the direction normal to the boundary (homogenous
Neumann condition).)

4. Head-dependent boundary conditions. These are described in more detail in
Section 3.2.1 (Cauchy conditions).

2.3 Time-variant Problems

Most groundwater problems are also time dependent. If we look also at the dependence
of time, we must determine if we have a confined or an unconfined aquifer. We call
groundwater flow confined when all the boundaries or bounding surfaces of the space
through which the flow goes are fixed in space for different states of the flow. See the
left picture of Figure 2.2. If the groundwater potential goes a little bit up or down, our
aquifer is still completely filled with water. Groundwater flow is unconfined when it
possesses a free surface, so if the position of the boundary varies with the state of the
flow. See also the right picture in Figure 2.2. Since the groundwater potential lies within
our aquifer we are facing a moving boundary here.

For this project we restric ourself to a confined aquifer. A drop in the groundwater
potential of ∆h results in a reduction in pressure. The volume of water released per
unit volume of aquifer due to a unit decrease in head will be named the specific storage
coefficient Ss. If we look at the mass balance for a saturated element in a confined aquifer,
we see that both the compressibility of the water and the change in pore volume due to
the vertical compression of the aquifer contribute to the specific storage. So we conclude
that the specific storage is a function of the density of water, the porosity, the pore
volume compressibility and the compressibility of water. Although we can set up an
expression for the specific storage, usually it is determined from field measurements. In
general Ss is within the range of 10−5 to 10−7. The dimension of the specific storage is
[L−1].

We can extend the steady-state continuity equation (2.5) from section 2.2 to obtain
a differential equation including the effect of the specific storage. The effects of the
compressibility and density are included in the specific storage, so we are allowed to
work in terms of the conservation of volume.

2.3 Time-variant Problems 13

Figure 2.2: A confined (left) and an unconfined (right) aquifer.

If we do the same derivation as in section 2.2 we see that the net volume leaving the
element during a time δt due to changing velocities equals:

dx dy dz

(
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

)
δt.

During the time δt, the groundwater potential at point P increases by δh. So the volume
of water taken into storage in groundwater potential due to this increase is

dx dy dz Ss δh.

Since we have the continuity principle these two equations must sum to zero, so we end
up with:

∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

= −Ss
∂h

∂t
.

If we now substitute equation (2.4) again, we end up with the following differential
equation, which holds for any element within the saturated aquifer:

∂

∂x

(
Kxx

∂h

∂x

)
+

∂

∂y

(
Kyy

∂h

∂y

)
+

∂

∂z

(
Kzz

∂h

∂z

)
= Ss

∂h

∂t
. (2.7)

In the next chapter we are going to discretize this equation by using a finite volume
method.

14 The Governing Equation for Porous Media Flow

Chapter 3

Finite Volume Method in
MODFLOW

3.1 Finite Volume Equation for our Governing Equations
in MODFLOW

In chapter 2 we derived that the three-dimensional movement of groundwater
of constant density through porous media can be described by partial-differential
equation (2.7). Since we want to study effects of sources and sinks of water, we add the
term W to the equation. We then have the following equation:

∂

∂x

(
Kxx

∂h

∂x

)
+

∂

∂y

(
Kyy

∂h

∂y

)
+

∂

∂z

(
Kzz

∂h

∂z

)
+W = Ss

∂h

∂t
, (3.1)

where:

Kxx,Kyy,Kzz the values of hydraulic conductivities along x,y, and z coordinate
axes (we assume them to be parallel to the major axes of hydraulic
conductivity) [LT−1],

h potentiometric head [L],
W volumetric flux per unit volume representing sources and sinks of

water [T−1],
Ss specific storage of porous material [L−1],
t time [T].

For W we define a flow out of the groundwater system as W < 0 and a flow into the
system as W > 0.

In general Ss, Kxx, Kyy , and Kzz are functions of space where W may be a function
of space and time. If we specify the flow and/or head conditions at the boundaries of
an aquifer system and we specify the initial-head conditions, we have a mathematical
representations of a groundwater flow system. Except for very simple systems it is
rarely possible to determine analytic solutions for such a problem. So we must use
numerical methods to obtain an approximate solution. For this purpose we use the
finite volume method.

We want to simplify the mathematical treatment and explain the computational
procedure in terms of familiar physical concepts regarding the flow system.

16 Finite Volume Method in MODFLOW

3.1.1 Discretization Convention in MODFLOW

Figure 3.1: Three-dimensional grid.

In Figure 3.1 we see a three-dimensional spatial discretization of an aquifer system as
used in MODFLOW (see section 1.2). We have a grid of blocks, which we will call cells
from now on. The location of such a cell is described in terms of rows, colums, and
layers. We use an i, j, k indexing system, where i = 1, 2, . . . , NROW is the row index,
j = 1, 2, . . . , NCOL is the column index and k = 1, 2, . . . , NLAY is the layer index. The
convention followed in this model is to number the layers from top to bottom. So, an
increase in k means a decrease in z. Rows are considered parallel to the x-axis, such that
an increase in i corresponds with a decrease in y. Columns are considered to be parallel
to the y-axis, such that an increase in j corresponds to an increase in x.

Within each cell there is a point in which head must be calculated. This point is called
node. We will use a cell-centered formulation in which the nodes are in the centre of the
cells.

If we use the conventions used in Figure 3.1 we see that the width in the row direction at
a given column j is denoted by ∆rj . The width of a given row i in the column direction
is denoted ∆ci. The thickness of cells in an given layer k is denoted ∆vk. So the cell with
coordinates (i, j, k) has a volume of ∆rj ∆ci ∆vk. We assume that the grid is rectangular
both in horizontal and vertical direction.

3.1 Finite Volume Equation for our Governing Equations in MODFLOW 17

3.1.2 Finite-Volume Equation

We use the continuity equation to develop the finite-volume form of the groundwater
flow equation. The sum of all flow into and out of the cell must equal the rate of storage
within the cell. We multiply Equation (3.1) by the volume of a cell (∆V). If we assume
the density to be constant we have for a cell:

∑
Qi = SS

∆h
∆t

∆V, (3.2)

where:

Qi flow rate into the cell [L3T−1],
SS specific storage, the volume of water that can be injected per unit of

volume of aquifer material per unit of change in head [L−1],
∆V volume of the cell [L3],
∆h change in head over a time interval of length ∆t [L].

The right hand term is equivalent to the volume of the water taken into storage over a
time interval ∆t given a change in head of ∆h. Outflows and loss are represented in
Equation (3.2) by defining outflow as negative inflow and loss as negative gain.

Figure 3.2: Indices for the six cells surrounding cell (i, j, k).

In Figure 3.2 we see the six aquifer cells adjacent to cell (i, j, k). For simplification we
consider flow positive if they enter a cell. The negative sign usually incorporated in
Darcy’s Law has been dropped from all terms. If we now follow these conventions, the
flow into cell (i, j, k) in the row direction from cell (i, j − 1, k) is given by Darcy’s Law
as (see also Figure 3.3):

qi,j−1/2,k = KRi,j−1/2,k∆ci∆vk

(
hi,j−1,k − hi,j,k

∆rj−1/2

)
, (3.3)

18 Finite Volume Method in MODFLOW

where:

hi,j,k head at node i, j, k,
qi,j−1/2,k volumetric flow rate through the face between cells

(i, j, k) and (i, j − 1, k) [L3T−1] (blue area in Figure 3.3),
KRi,j−1/2,k hydraulic conductivity along the row between nodes

i, j, k and i, j − 1, k [LT−1],
∆ci∆vk area of the cell faces normal to the row direction,
∆rj−1/2 distance between nodes i, j, k and i, j − 1, k [L].

Figure 3.3: Flow into cell (i, j, k) from cell (i, j − 1, k).

Now Equation 3.3 gives the exact flow in one dimension for the steady-state case. In
this equation it is the flow through a block of aquifer from node i, j − 1, k to node
i, j, k, having a cross sectional area ∆ci∆vk. The conductivityKRi,j−1/2,k of the material
between nodes i, j, k and i, j − 1, k is the effective hydraulic conductivity for the entire
region between the nodes. It is normally calculated as a harmonic mean. The term 1/2
is used to indicate the region between nodes.

In the same way we can derive equations for the flow in the five other faces of the cell
(i, j, k). So we have for the flow in the row direction through the face between cells
(i, j, k) and (i, j + 1, k):

qi,j+1/2,k = KRi,j+1/2,k∆ci∆vk
(hi,j+1,k − hi,j,k)

∆rj+1/2
. (3.4)

In the column direction we have for the flows through the front and rear face:

qi+1/2,j,k = KCi+1/2,j,k∆rj∆vk
(hi+1,j,k − hi,j,k)

∆ci+1/2
, (3.5)

qi−1/2,j,k = KCi−1/2,j,k∆rj∆vk
(hi−1,j,k − hi,j,k)

∆ci+1/2
. (3.6)

For the vertical direction we have for the inflow through the bottom an upper face:

3.1 Finite Volume Equation for our Governing Equations in MODFLOW 19

qi,j,k+1/2 = KVi,j,k+1/2∆rj∆ci
(hi,j,k+1 − hi,j,k)

∆vk+1/2
, (3.7)

qi,j,k−1/2 = KVi,j,k−1/2∆rj∆ci
(hi,j,k−1 − hi,j,k)

∆vk−1/2
. (3.8)

The six equations, (3.3) - (3.8), express the flow through a boundary in terms of
heads, grid dimensions, and hydraulic conductivity. We simplify the notation by
combining hydraulic conductivity and grid dimensions into one single constant
hydraulic conductance:

CRi,j−1/2,k =
KRi,j−1/2,k∆ci∆vk

∆rj−1/2

So, we define conductance as the product of hydraulic conductivity and cross-sectional
area of flow divided by the length of the flowpath, which is here the distance between
two nodes. For the other equations we can do the same and we end up with the
following six equations:

qi,j−1/2,k = CRi,j−1/2,k (hi,j−1,k − hi,j,k) , (3.9)

qi,j+1/2,k = CRi,j+1/2,k (hi,j+1,k − hi,j,k) , (3.10)

qi−1/2,j,k = CCi−1/2,j,k (hi−1,j,k − hi,j,k) , (3.11)

qi+1/2,j,k = CCi+1/2,j,k (hi+1,j,k − hi,j,k) , (3.12)

qi,j,k−1/2 = CVi,j,k−1/2 (hi,j,k−1 − hi,j,k) , (3.13)

qi,j,k+1/2 = CVi,j,k+1/2 (hi,j,k+1 − hi,j,k) . (3.14)

The values CR, CC and CV are the conductances along rows and colums and between
layers, respectively. They are calculated the same way as in Equation (1.5)

3.1.3 External Sources

The flow into cell (i, j, k) from the six adjacent cells are governed by the equations (3.9)-
(3.14). To account for boundary conditions extra terms need to be added. These flows
can depend on the head in the cell, but are independent of the head in the adjacent cells.
It is also possible that they are completely independent of the head in the cell. We may
represent the flow from outside the aquifer by the expession:

ai,j,k,n = pi,j,k,nhi,j,k + qi,j,k,n,

where:

ai,j,k,n flow from the nth external source into cell (i, j, k) [L3T−1],
pi,j,k,n and qi,j,k,n constants ([L2T−1] and [L3T−1] respectively).

If a source is independ of the head, we can set pi,j,k.n equal to zero. If we haveN external
sources or stresses, then we can express the general external flow for cell (i, j, k) as:

N∑
n=1

ai,j,k,n = Pi,j,khi,j,k +Qi,j,k,

20 Finite Volume Method in MODFLOW

with:

Pi,j,k =
N∑
n=1

pi,j,k,n,

Qi,j,k =
N∑
n=1

qi,j,k,n.

If we now apply the continuity equation (3.2) to cell (i, j, k), we get:

qi,j−1/2,k + qi,j+1/2,k + qi−1/2,j,k + qi+1/2,j,k

+qi,j,k−1/2 + qi,j,k+1/2 + Pi,j,khi,j,k +Qi,j,k

= SSi,j,k (∆rj∆ci∆vk) ∆hi,j,k

∆t ,

(3.15)

where:

∆hi,j,k/∆t finite difference approximation for the derivative of head
with respect to time [LT−1],

SSi,j,k the specific storage of cell (i, j, k) [L−1],
∆rj∆ci∆vk volume of cell (i, j, k) [L3].

Now we can substitute Equations (3.9) - (3.14) into Equation (3.15) which gives the finite
volume approximation for cell (i, j, k) as:

CRi,j−1/2,k (hi,j−1,k − hi,j,k) + CRi,j+1/2,k (hi,j+1,k − hi,j,k)

+CCi−1/2,j,k (hi−1,j,k − hi,j,k) + CCi+1/2,j,k (hi+1,j,k − hi,j,k)

+CVi,j,k−1/2 (hi,j,k−1 − hi,j,k) + CVi,j,k+1/2 (hi,j,k+1 − hi,j,k)

+Pi,j,khi,j,k +Qi,j,k = SSi,j,k (∆rj∆ci∆vk) ∆hi,j,k

∆t .

(3.16)

More on the external sources can be found in Paragraph 3.2

3.1.4 Discretization in Time

We still need to express the finite-difference approximation for the time derivative of
head in terms of heads and times. Let tm and tm−1 denote the current and past time,
respectively. An approximation to the time derivative of head at time tm is given by:

∆hi,j,k
∆t

'
hmi,j,k − h

m−1
i,j,k

tm − tm−1
.

This method is called the Euler backwards method. The term hmi,j,k denotes the head value
at cell (i, j, k) at time tm. We can approximate the time derivative of head in other ways,
but the Euler backwards method is unconditionally numerically stable. Stability means
that a small pertubation in the initial conditions does not effect the solution much. So
we prefer the backward-difference approach even though this leads to large systems of
equations that must be solved simultaneously for each time step. The advantage of a
stable method is that we can take bigger time steps without caring about stability.

3.1 Finite Volume Equation for our Governing Equations in MODFLOW 21

We can rewrite Equation (3.16) in a backwards-difference form. We must specify flow
terms at tm, the end of a time interval, and approximate the derivative of the head over
the time interval from tm−1 to tm. So we get:

CRi,j−1/2,k

(
hmi,j−1,k − hmi,j,k

)
+ CRi,j+1/2,k

(
hmi,j+1,k − hmi,j,k

)
+CCi−1/2,j,k

(
hmi−1,j,k − hmi,j,k

)
+ CCi+1/2,j,k

(
hmi+1,j,k − hmi,j,k

)
+CVi,j,k−1/2

(
hmi,j,k−1 − hmi,j,k

)
+ CVi,j,k+1/2

(
hmi,j,k+1 − hmi,j,k

)
+Pi,j,khmi,j,k +Qi,j,k = SSi,j,k (∆rj∆ci∆vk)

hm
i,j,k−h

m−1
i,j,k

tm−tm−1 .

(3.17)

Since we can write down for each active cell an equation of this type, we are left with a
system of “n” equations in “n” unknowns. Such a system can be solved simultaneously.

We start by taking m = 1 and calculate the values of h1
i,j,k for each active cell. Of

course we need to specify the initial head distribution h0
i,j,k, the boundary conditions,

the hydraulic parameters and the external sources. If we found all the values for h1
i,j,k

we can go on to calculate the values of h2
i,j,k by using h1

i,j,k as an “initial” condition.
This process is continued for as many time steps as necessary to cover the time range of
interest.

3.1.5 System of Equations

By reordering the terms of Equation (3.17) we can make a system of equations of the
form Ah = q. All terms that are independent of head at the end of the current timestep
we put on the right-hand side (RHS). All terms of hmi,j,k that has nothing to do with the
conductance between nodes we put into a single term (HCOF). We then write Equation
(3.17) as:

CRi,j−1/2,kh
m
i,j−1,k + CRi,j+1/2,kh

m
i,j+1,k + CCi−1/2,j,kh

m
i−1,j,k

+CCi+1/2,j,kh
m
i+1,j,k + CVi,j,k−1/2h

m
i,j,k−1 + CVi,j,k+1/2h

m
i,j,k+1

+
(
−CRi,j−1/2,k − CRi,j+1/2,k − CCi−1/2,j,kh

m
i−1,j,k − CCi+1/2,j,k−

CVi,j,k−1/2 − CVi,j,k+1/2 +HCOFi,j,k
)
hmi,j,k = RHSi,j,k,

(3.18)

where:

HCOFi,j,k = Pi,j,k − SSi,j,k∆rj∆ci∆vk

tm−tm−1 ,

RHSi,j,k = −Qi,j,k − SSi,j,k∆rj∆ci∆vk
hm−1

i,j,k

tm−tm−1 .

Now this entire system of equations, which includes one equation for each variable
head cell in the grid, may be written in matrix form as

Ah = q,

where:

22 Finite Volume Method in MODFLOW

A A matrix of the coefficients of head, for all the active nodes in the grid,

h vector of head values at the end of time step m for all active nodes in the grid,

q vector of the constant terms, RHS, of all active nodes in the cell.

The matrix A now has the form as shown in Figure 3.4. The diagonal are the elements
corresponding to hmi,j,k in Equation (3.18). The first off-diagonal are exactly the CR-
values, the second off diagonal are the CC-values and the last off-diagonal are the CV -
values. When you only have one layer (2D-problem) then the third off-diagonal will not
appear.

Figure 3.4: Form of system matrix A.

3.2 Simulation of Boundaries in MODFLOW

In MODFLOW we do not need to formulate an equation of the form of Equation (3.17)
for every cell in a model grid. The status of certain cells is specified in advance to
simulate the boundary conditions of the problem. We group the cells that simulate the
boundary conditions into two categories:

• contstant-head cells,

• no-flow cells.

A constant-head cell is used if for that cell the head is specified for each time. The
head values do not change as a result of solving the flow equations. The no-flow
cells are those for which no flow into or out of the cell is permitted. We will call
the remaining cells variable head cells. These cells are characterized by heads that are
unspecified and free to vary in time. For each variable-head cell in the grid we must
formulate an equation of the form of Equation (3.17). The resulting system must be
solved simultaneously for each time step in the simulation.

We can use constant-head cells and no-flow cells to represent conditions along various
hydraulic boundaries inside the grid. To explain this, we can for example look at Figure
3.5. It shows a configuration of an aquifer boundary superimposed onto a grid of cells
generated for the model.

Although the aquifer is of irregular shape, our model grid is always rectangular in
outline. If the boundary of the aquifer coincide with the outside edge of the grid, we
do not need special designations since MODFLOW does not compute inter-cell flow

3.2 Simulation of Boundaries in MODFLOW 23

Figure 3.5: Discretized aquifer showing boundaries and cell designations.

through the outside edges of the grid, including top and bottom. Within the grid we use
no-flow cells to delete the part of the grid beyond the aquifer boundary. The constant-
head cells can be used, for example, if at that place the aquifer is in direct contact with
major surface water features.

Other boundary conditions can be simulated by using external source terms possible in
combination with no-flow cells. In MODFLOW this is done by stress packages. These
packages are called stress packages because in MODFLOW we define stress periods.
These stress periods are time intervals in which the input data for all external sources
are constant. These stress periods are subdevided into time steps. See also Figure 3.6

Figure 3.6: Division of simulation time into stress periods and time steps.

3.2.1 Stress Packages

The stress in MODFLOW adds terms to the flow equation representing inflow and
outflow. Mathematically, these are boundary conditions. There are two types of
important boundary conditions. First we have the constant flux conditions, or the
so called Neumann conditions. The WEL and the RCH packages simulate such
conditions. Furthermore we have the so called Cauchy boundary conditions. These

24 Finite Volume Method in MODFLOW

are head-dependent boundary conditions. The GHB, RIV and DRN packages simulate
such conditions.

The finite-volume flow equation for MODFLOW is Equation (3.18). The equation
is formulated such that the inflows are added to the left side, with the outflows
represented as negative inflows. Stresses are added to the equation by adding terms to
HCOF and RHS. A stress term that is a coefficient of head, hi,j,k, is added to HCOF .
A constant stress term is subtracted from RHS.

Well Package (WEL)

With the Well Package we can simulate features such as wells that withdraw water
from or add water to the aquifer at a constant rate during a stress period. The rate is
independent on both the cell area and the head in the cell. Mostly the package is used
to simulate wells, either discharge or recharge. However, the package can also be used
to simulate any features for which the recharge or discharge can be specified directly.
The dimension of recharge or discharge is [L3T−1].

The user has to specifiy the flow rate, Q, for a well and a fluid volume per unit time at
which water is added to an aquifer. Negative values are used to indicate well discharge
(pumping). The user can specify the location of the well by specifying the row, column
and layer number of the well. The value of Q for each well is subtracted from the RHS
of Equation (3.18) for the cell containing that well. Figure 3.9 shows the initial condition
near a well in one of the layers.

Recharge Package (RCH)

The Recharge Package is designed to simulate areally distributed recharge to the
ground-water system. Most commonly, recharges occurs as a result of precipitation that
enters to the ground-water system and evaporation leaving the system. These processes
occur normally at the surface, but also processes in other layers can be simulated. The
recharge applied to the model is defined as:

QRi,j = Ii,j ∆rj ∆ci,

where:

QRi,j the recharge flow rate applied to the model at horizontal cell location (i, j)
expressed as a fluid volume per time [L3T−1],

Ii,j the recharge flux applicable to the map area of the cell [LT−1],
∆rj dimension of cell allong the row direction,
∆ci dimension of cell allong the collumn direction.

The recharge flow rate, QRi,j , associated with a given horizontal cell location (i, j)
and a vertical location, k, is subtracted from the value of RHSi,j,k. Since recharge is
independent of the aquifer head, nothing is added to the coefficient of head, HCOFi,j,k.

General-Head Boundary Package (GHB)

The General-Head Boundary Package simulates flow into or out of a cell (i, j, k,), from
an external source in proportion to the difference between the head in the cell and head
assigned to the external source. The constant of proportionality is called the boundary

3.2 Simulation of Boundaries in MODFLOW 25

conductance. We have the following linear relation between flow into the cell and head
in the cell:

QBn = CBn (HBn − hi,j,k) , (3.19)

where:

n boundary number
QBn flow into cell (i, j, k) from the boundary [L3T−1],
CBn the boundary conductance [L2T−1],
HBn the head assigned to the external source [L],
hi,j,k the head in cell (i, j, k) [L].

A graph of the inflow from a general-head boundary and head in the cell containing the
boundary as given by Equation (3.19) is shown in Figure 3.10.

River Package (RIV)

Rivers and streams contribute water to or drain water from the ground-water system.
This depends on the head gradient between the river and the ground-water regime. The
River Package simulates the effects of flow between surface-water features and ground-
water systems. The River Package does not simulate surface-water flow in the river, but
only the river/aquifer seepage.

By assumption, measurable head losses between the river and the aquifer are limited
to those across the riverbed layer itself. Another assumption is that the water level
does not drop below the bottom of the riverbed layer. Under these assumptions, flow
between the river and the ground-water system for each n is given by:

{
QRIVn = CRIVn (HRIVn − hi,j,k) hi,j,k > RBOTn,
QRIVn = CRIVn (HRIVn −RBOTn) hi,j,k ≤ RBOTn,

(3.20)

where:

QRIVn flow between the river and the aquifer, taken positive if it is directed into
the aquifer [L3T−1],

HRIVn the water level (stage) in the river [L],
CRIVn the hydraulic conductance of the river-aquifer interconnection [L2T−1],
RBOTn bottom of riverbed layer [L],
hi,j,k the head at the node in the cell underlying the river reach [L].

The graph of the flow from a river as a function of the head in the corresponding cell as
calculated in Equation (3.20) is shown in Figure 3.11. Figure 3.12 shows how the river
“De Maas” is implemented in the IBRAHYM model.

Drain Package (DRN)

The effects of features as agricultural drains are simulates with the Drain Package.
Drains remove water from the aquifer at a rate proportional to the difference between
the head in the aquifer and some fixed head or elevation, called the drain elevation. The
drain works as long as the head in the aquifer is above the elevation. If the aquifer head

26 Finite Volume Method in MODFLOW

falls below the drain elevation, then the drain has no effect on the aquifer. The constant
of proportionality is called the drain conductance. A mathematical statement of this
situation is:

{
QDn = CDn (HDn − hi,j,k) hi,j,k > HDn,
QDn = 0 hi,j,k ≤ HDn,

(3.21)

where:

QDn flow from aquifer into the drain [L3T−1],
CDn drain conductance [L],
HDn Drain elevation [L],
hi,j,k the head in the cell containing the drain [L],
n number of the drain.

Figure 3.13 shows a graph of flow from a drain and head in the cell containing the drain
as defined by Equation (3.21). Figure 3.14 shows where drains are constructed in and
around Eindhoven which are implemented in the IBRAHYM model.

3.3 Faults in MODFLOW

A fault in the subsoil effects the system matrix as defined in section 3.1.5. In MODFLOW
a fault is always translated to a fault on the cell boundaries as shown in Figure 3.7.
Faults are modelled in MODFLOW as a change in the CR and the CC values between
two grid-points. So a fault causes a change in the system matrix.

In MODFLOW when a fault occurs it is modelled between two cells. So we have to
adapt the conductance between two cells. The formula for the conductance between
two cells is given by Equation (1.5). In case of a fault we use the following formula:

CRi,j+1/2,k =
CRoriginali,j+1/2,k × Cbarrier
CRoriginali,j+1/2,k + Cbarrier

.

Here:

Cbarrier =
Kbarrier∆vbarrierDELCi

Lbarrier

where:

Kbarrier is hydraulic conductivity of the barrier,
∆vbarrier is the vertical thickness of the barrier,
Lbarrier is the distance across the barrier in the flow direction.

3.3 Faults in MODFLOW 27

Figure 3.7: Fault as modelled by MODFLOW.

Figure 3.8: Heads in the 19th layer in the IBRAHYM model.

28 Finite Volume Method in MODFLOW

Figure 3.9: Example of the heads near a well.

Figure 3.10: Plot of flow, QB, from a general-head boundary source into a cell as function
of head.

3.3 Faults in MODFLOW 29

Figure 3.11: Plot of flow, QRIV, from a river into a cell as function of head.

Figure 3.12: Example of a river, de Maas, in MODFLOW.

30 Finite Volume Method in MODFLOW

Figure 3.13: Plot of flow, QD, into a drain as a function of head.

Figure 3.14: Overview of a drain system (Eindhoven) in MODFLOW.

Chapter 4

Iterative Solvers for Linear
Systems

The iterative solvers we discuss here are used to solve linear algebraic systems of
equations [4, 8, 10]. Given an n × n real matrix and a real vector b ∈ Rn, the problem
considered is: find a vector y ∈ Rn such that:

Ay = b. (4.1)

This equation is a linear system. We call the matrixA the coefficient matrix, b the right-hand
side vector and y the vector of unknowns. We assume A to be invertible, i.e. A−1b can be
computed.

Iterative methods for the solution of linear system of equations are useful in the
following cases:

• if the number of iterations necessary is not too big,

• if A is large and sparse,

• if A has a special structure,

• if a good initial guess for y is available, as in time-stepping methods,

• if A is, for example, not known explicitly.

In other cases it is more advantageous to use direct methods.

4.1 Basic Iterative Methods

From equation (4.1), we construct a splitting A = M −N , such that M is easy invertible.
Note that we have that N = M −A. We can now write:

My −Ny = b, (4.2)

which is still exact. We now use the following iteration:

My(k+1) −Ny(k) = b, (4.3)

32 Iterative Solvers for Linear Systems

or if we rewrite it:

y(k+1) = M−1Ny(k) +M−1b
= M−1 (M −A) y(k) +M−1b
= y(k) −M−1Ay(k) +M−1b
= y(k) +M−1

(
b−Ay(k)

)
.

(4.4)

In general we use the following iteration:

y(k+1) = Gy(k) + f, (k = 0, 1, 2, . . .) , (4.5)

so that the system y = Gy + f is equivalent to the original problem (4.1). G is called the
iteration matrix.

If we look at equation (4.5) then we see that for a basic iterative method we have:

G = M−1N = M−1 (M −A) = I −M−1A, f = M−1b.

This recurrence is also called a linear fixed-point iteration. If we take M = D, where D
contains the diagonal elements of A on its diagonal and all other elements are zero, we
have the Jacobi-method. If we take M = D − E, where −E is the strict lower part of A,
we have the forward Gauss-Seidel-method.

We can view the iteration y(k+1) = Gy(k) + f as a technique to solve the system

(I −G)y = f

Since G has the form G = I −M−1A, we can rewrite this system as

M−1Ay = M−1b

This system has the same solution as the original system and is called left preconditioned
system, where M is the preconditioning matrix or preconditioner. There also exist right
preconditioned systems. Preconditioning is used to speed up the convergence. The
idea is that M is more or less similar to A, but easy to invert.

4.2 Projection Methods

The idea of projection techniques is to extract an approximate solution to the problem
in Equation (4.1) from a subspace of Rn. Let Km ⊂ Rn be this subspace of candidate
approximants, or search subspace. Let m be the dimension of Km, then, in general,
m constraints must be imposed to be able to extract such an approximation from Km.
Sometimes one imposes m (independent) orthogonality conditions. Specifically, the
residual vector b−Ay is constrained to be orthogonal tom linearly independent vectors.
These constraints define another subspace of dimension m. This subspace of constraints
we denote with Lm. In many different mathematical methods this simple framework is
known as the Petrov-Galerkin condition.

Let A be an n× n real matrix and Km and Lm two m-dimensional subspaces of Rn. We
want to have a projection technique onto the subspace Km and orthogonal to Lm. It
should be a process which finds an approximate solution ỹ to (4.1) where we impose
that ỹ belongs to Km and that the new residual vector b−Aỹ is orthogonal to Lm:

find ỹ ∈ Km, such that b−Aỹ ⊥ Lm.

4.2 Projection Methods 33

If we have the knowledge of an initial guess y0 and we want to exploit that, then we
look for our approximation in the affine space y0 +Km. So our problem then becomes:

find ỹ ∈ y0 +Km, such that b−Aỹ ⊥ Lm. (4.6)

If we write ỹ in the form ỹ = y0 + δ and we define the initial residual vector as:

r0 := b−Ay0,

then Equation (4.6) becomes b−Aỹ ⊥ Lm, or:

r0 −Aδ ⊥ Lm.

Now we can find the approximate solution ỹ by using that:

{
ỹ = y0 + δ , δ ∈ Km

(rnew,w) = 0 ,∀w ∈ Lm
(4.7)

where rnew is defined as r0 −Aδ (see also figure 4.1).

Figure 4.1: Interpretation of the orthogonality condition.

This is a projection method in its most general form. Typically, a new projection step
uses a new pair of subspaces Km and Lm and a new initial guess y0 equal to the most
recent approximation obtained from the previous step.

4.2.1 Matrix Representation

We define V = [v1 · · · vm] to be an n ×m matrix whose column-vectors form a basis of
Km and, similarly, W = [w1 · · ·wm] an n×m matrix whose column-vectors form a basis
of Lm. Now write the approximate solution as:

y = y0 + V z.

If z would be known, then we would have:

34 Iterative Solvers for Linear Systems

Ay = Ay0 +AV z,
Ay −Ay0 = AV z,
b−Ay0 = AV z,

r0 = AV z.

Since we still have to determine z we use the orthogonality relation, which states:

span {W} ⊥ r0 −AV z.

Therefore we have:
WT r0 = WTAV z.

If we assume the matrix WTAV to be non-singular we can conclude that

z =
(
WTAV

)−1
WT r0,

and we end up with:

ỹ = y0 + V
(
WTAV

)−1
WT r0.

4.3 The Krylov Subspace

In Equation (4.4) we compute the iterates by the recursion:

y(k+1) = y(k) +M−1
(
b−Ay(k)

)
= y(k) +M−1r(k)

If we write out the first terms of this process we obtain:

y(0),
y(1) = y(0) +M−1r(0),
y(2) = y(1) +M−1r(1)

= y(1) +M−1
(
b−Ay(1)

)
,

= y(1) +M−1
(
b−Ay(0) −AM−1r(0)

)
,

= y(1) +M−1
(
r(0) −AM−1r(0)

)
,

= y(1) +M−1r(0) −M−1AM−1r(0),
= y(0) +M−1r(0) +M−1r(0) −M−1AM−1r(0),
= y(0) + 2M−1r(0) −M−1AM−1r(0),

y(3) = y(2) +M−1r(2),
= y(2) +M−1

(
b−Ay(2)

)
,

= y(2) +M−1
(
b−A

(
y(0) + 2M−1r(0) −M−1AM−1r(0)

))
,

= y(2) +M−1r(0) − 2
(
M−1A

)
M−1r(0) +

(
M−1A

)2
M−1r(0),

= y(0) + 3M−1r(0) − 3
(
M−1A

)
M−1r(0) +

(
M−1A

)2
M−1r(0),

...

which implies that:

y(k) = y(0) + span
{
M−1r(0),

(
M−1A

)
M−1r(0), . . . ,

(
M−1A

)k−1
M−1r(0)

}
.

The subspace Kk
(
A; r(0)

)
:= span

{
r(0), Ar(0), . . . , Ak−1r(0)

}
is called the Krylov

subspace of dimension k corresponding to the matrix A and the initial residual
vector r(0). Now a y(k) calculated by the basic iterative method is an element of
y(0) +Kk

(
M−1A;M−1r(0)

)

4.4 Preconditioned Conjugate Gradient Methods 35

4.4 Preconditioned Conjugate Gradient Methods

4.4.1 The basic algorithm

To explain the basics of the Conjugate Gradient Method we first make some
assumptions. We assume:

• M = I,

• y(0) = 0,

• r(0) = b,

• A is symmetric, i.e. AT = A,

• A is positive definite, i.e. xTAx > 0, ∀x 6= 0.

The first three assumptions are only needed to facilitate the formula’s, but are not
necessary for the CG method itself. The last two assumptions are necessary for the
CG method to work.

Our first idea would be to construct

y(i) ∈ Ki(A; r(0)) such that ‖y − y(i)‖2 is minimal.

If we look at the first iterate, y(1), we see that it can be written as y(1) = α0 r
(0), where

α0 is a constant which has to be choosen such that ‖y − y(i)‖2 is minimal. Now:

‖y − y(i)‖22 =
(
y − α0r

(0)
)T (

y − α0r
(0)
)

= yT y − 2α0(r(0))T y + α2
0(r(0))T r(0).

This is minimal if:

α0 =
(r(0))T y
(r0)T r(0)

,

but since we do not know y this choice cannot be determined and we have to look for
another solution. We can define the A-inner product and the A-norm to be:

(y, z)A = yTAz,

‖y‖A =
√

(y, y)A =
√
yTAy,

respectively. If A is a Symmetric Positive Definite (SPD) matrix, then (y, z)A and ‖y‖A
statisfy the rules for inner product and norm respectively. We now want to construct:

y(i) ∈ Ki(A; r(0)) such that ‖y − y(i)‖A is minimal.

Now:

‖y − y(i)‖2A = yTAy − 2α0(r(0))TAy + α2
0(r(0))TAr(0),

which is minimal if:

36 Iterative Solvers for Linear Systems

α0 =
(r(0))TAy

(r(0))TAr(0)
=

(r(0))T b
(r(0))TAr(0)

.

We now have a new inner-product which leads to a minimization problem, which is
easily solved. In the iterations we compute y(i) such that:

‖y − y(i)‖A = min
x∈Ki(A;r(0))

‖y − x‖A

The solution of this minimization problem leads to the Conjugate Gradient Method.
This algorithm can be found, for example, in [4] or in [8].

If we now also use a preconditioner, then we end up with the Preconditioned Conjugate
Gradient Method, or the PCG method. The idea behind it is that we solve a transformed
system Ãỹ = b̃, where:

Ã = P−1AP−T ,
ỹ = PT y,

b̃ = P−1b.

We assume P to be a nonsingular matrix. We now define M to be M := PPT to be the
preconditioner. We now write down the algorithm such that the tildes do not appear. A
complete derivation can be found, for example, in [4].

Algorithm 4.1 (PCG)

k = 0; y(0) initialization
r(0) = b−Ay(0)

while
(
r(k) 6= 0

)
do terminial criterion

s(k) = M−1r(k) preconditioning
k := k + 1

if (k = 1) do
p(1) = s(0)

else
βk = (r(k−1))T s(k−1)

(r(k−2))T s(k−2) update of p(k)

p(k) = s(k−1) + βkp
(k−1)

end if

v(k) = Ap(k)

αk = (r(k−1))T s(k−1)

(pk)T v(k)

y(k) = y(k−1) + αkp
(k) update iterate

r(k) = r(k−1) − αkv(k) update residual
end while

For this algorithm we have that the denominator (r(k−2))T s(k−2) = (s(k−2))TMs(k−2)

never becomes zero while r(k−2) 6= 0, becauseM is a symmetric positive definite matrix.

The PCG method solves the following minimization problem:

‖y − y(i)‖A = min
x∈Ki(M−1A;M−1r(0))

‖y − x‖A.

4.4 Preconditioned Conjugate Gradient Methods 37

4.4.2 Incomplete Cholesky Decomposition

To explain these kinds of preconditioners we assume A ∈ Rn×n to be a matrix with
at most 5 non-zero elements per row. Furthermore we assume A to be symmetric and
positive definite. This matrix can, for example, represent a discretization of a partial
differential equation on a 2 dimensional grid. If we assume that we have a 5-point
stencil and m = n2, then A is of the form:

A =

a1 b1 c1
b1 a2 b2 c2 ∅
...

. ∅
. . .

c1 ∅ bm am+1 bm+1 cm+1

∅
.

 . (4.8)

In order to be optimal with respect to the convergence we take a lower triangular matrix
L such that A = LTL and we take P = L. L is called the Cholesky factor. It is known
that we have to deal with so called fill-in. If we observe the fill-in, we see a decrease in
size if the ’distance’ to the non zero element of A increases. This decrease motivates to
discard the fill-in elements entirely. This will lead to an incomplete Cholesky decomposition
of A.

Now we have to construct L first, before we can use it in the PCG algorithm (Algorithm
4.1). Inside the algorithm we need multipications with L−1 and L−T . Since it is
expensive to calculate these matrices we do not calculate them. If we for example have
to calculate s = L−1r, we compute s by solving the linear system Ls = r. Since L is a
lower triangular matrix this is can be done with low effort using Gaussian eliminations.

We now want to compute the incomplete Cholesky decompostion: A = LD−1LT −N .
The elements of L and D have to satisfy the following rules:

• lij = 0 for all (i, j) where aij = 0 i > j,

• lii = dii,

• (LD−1LT)ij for all (i, j) where aij 6= 0 i ≥ j.

If the elements of L are given as follows:

L =

d̃1

b̃1 d̃2

. ∅
c̃1 b̃m d̃m+1

. . . ∅
.

∅

, (4.9)

then we have:
d̃i = ai −

b2i−1

d̃i−1
− c2i−m

d̃i−m

b̃i = bi
c̃i = ci

 i = 1, . . . , N. (4.10)

If we now define the preconditioner M to be LD−1LT and we use this M in Algorithm
4.1, we have the Incomplete Cholesky Conjungate Gradient Method or ICCG. More
information can be found in, for example, [8].

38 Iterative Solvers for Linear Systems

4.4.3 Modified ICCG

The modified incomplete Cholesky preconditioner is constructed by slightly adapted
rules. We again split A = LD−1LT −N , but L and D must now satisfy:

• lij = 0 for all (i, j) where aij = 0 i > j,

• lii = dii,

• rowsum(LD−1LT) = rowsum(A) for all rows and (LD−1LT)ij for all (i, j) where
aij 6= 0 i ≥ j.

The consequence of the third point is that we have:

LD−1LT

 1
...
1

 = A

 1
...
1

⇒ (LD−1LT)−1A

 1
...
1

 =

 1
...
1

 . (4.11)

We can conclude that if Ay = b and x and/or b are slowly varying vectors, then this
modified incomplete Cholesky decomposition is a very good approximation for the
inverse of A with respect to x and/or b. We now end up with:

d̃i = ai − (bi−1 + ci−1) bi−1

d̃i−1
− (bi−1 + ci−1) ci−m

d̃i−m

b̃i = bi
c̃i = ci

 i = 1, . . . , N. (4.12)

MODFLOW uses a different MICCG method, with relaxation. In appendix B you can
read how this is implemented.

4.5 Convergence, Starting Vectors and Stopping Criteria

Convergence

The rate of convergence of the conjugate gradient method is bounded as a function of
the condition number of the system matrix to which it is applied. We let A ∈ Rn×n be
a symmetric positive definite matrix and we assume the vector b ∈ Rn to represent a
discrete function on a grid Ω. We are searching for the vector y ∈ Rn on Ω which solves
the linear system

Ay = b.

If we use a finite volume method to discretize a partial differential equation, then we
end up with such a system which we have to solve.

We denote the spectrum of A by σ(A) and the ith eigenvalue in nondecreasing order
by λi(A), or simply λi if it is clear to which matrix we refer. It is known that after k
iterations of the conjugate gradient method, the error is bounded by:

‖y − y(i)‖A ≤ 2‖y − y(0)‖A
(√

κ− 1√
κ+ 1

)k
. (4.13)

4.5 Convergence, Starting Vectors and Stopping Criteria 39

The proof can be found, for example, in [3] or [8]. Here, κ = κ(A) = λn/λ1 is the spectral
condition number of A and the A-norm of y is given by ‖y‖A =

(
yTAy

)1/2. In [7] one
can find the following bound for the preconditioned conjugate gradient method,

‖y − y(i)‖A ≤ 2‖y − y(0)‖A

(√
κ(MA)− 1√
κ(MA) + 1

)k
. (4.14)

Starting Vectors

All iterative solution methods to solve Ay = b start with a given vector y(0). Choosing a
good starting vector can decrease the number of iterates that are needed. The choice you
make is dependent on the problem and the information you have. If you do not have
any information then one typically starts with y(0) = 0. In case of a nonlinear problem,
the solution is approximated by the solution of a number of linear systems. One can use
the solution of a given outer iteration as a starting vector for the next iterative method
used to solve the next linear system.

Sometimes starting vectors can also be obtained by the solution of a related problem.
One can use the analytic solution of a simplified problem or a solution which is obtained
by using a coarser grid.

The better the starting vector approximates the solution, the lesser iterations are needed.

Stop Criterion

It is also very important to define a good criteria to stop. If the criterion is too weak, then
the approximate solution is useless. But if the criterion is too severe, then the iterative
solution method might never stop or simply costs too much work.

An iterative method is linearly convergent if it satisfies:

‖y(k) − y(k−1)‖2 ≈ ρ̄‖y(k−2) − y(k−1)‖2, ρ̄ < 1,

and y(k) → A−1b for k → ∞. This criterion is easily checked during the iteration.

Initially, this relation will not hold, but after some iterations the quantity ‖y(k)−y(k−1)‖2
‖y(k−2)−y(k−1)‖2

will converge to ρ̄. Theorem 4.1 from [8] states that we have the following inequality:

‖y − y(k)‖2 ≤
ρ̄

1− ρ̄
‖y(k) − y(k−1)‖2.

This result can be used to define the following stopping criterion for linear convergent
methods:

Stop if:
ρ̄

1− ρ̄
‖y(k) − y(k−1)‖2
‖y(k)‖2

≤ ε.

If this condition holds, then you can show that the relative error is smaller than ε:

‖y − y(k)‖2
‖y‖2

∼=
‖y − y(k)‖2
‖y(k)‖2

≤ ρ̄

1− ρ̄
‖y(k) − y(k−1)‖2
‖y(k)‖2

≤ ε.

For iterative method that have a different convergence behavior most stopping criteria
are based on the norm of the residual. Now we list some possible criteria with some
comments.

40 Iterative Solvers for Linear Systems

Criterion 1 ‖b−Ay(k)‖2 ≤ ε

Criterion 2 ‖b−Ay(k)‖2
‖b−Ay(0)‖2

≤ ε

Criterion 3 ‖b−Ay(k)‖2
‖b‖2 ≤ ε

Criterion 4 ‖b−Ay(k)‖2
‖y(k)‖2

≤ ε/‖A−1‖2

Criterion 1 is not scaling invariant. If ‖b − Ay(k)‖2 ≤ ε, then it does not hold for
‖100(b−Ay(k))‖2, while the accuracy of y(k) remains the same. In criterion 2 the number
of iterates is now dependent on the initial estimate y(0). So a better initial estimate will
not lead to a decrease in the number of iterations. If the initial estimate is very good, then
it is possible that the method never stops due to round-off errors. The third criterion is
a good one. The norm of the residual should be small with respect to the norm of the
right-hand side. If we replace ε by ε/κ2(A), then we can show that the error in y is less
than ε, where κ2(A) is the condition number: κ2(A) = ‖A‖2‖A−1‖2. In general ‖A‖2
and ‖A−1‖2 are not known, but some iterative methods give approximations of these
quantities. Criterion 4 is related to criterion 3 and in many cases this criterion implies
that the relative error is smaller that ε.

It is also possible that a stopping criterion come from physical relations. This can
happen when the residuals have a physical meaning.

Chapter 5

Deflation Techniques

It is known that the rate of convergence is dependent on the condition number of A.
The condition number is defined as λn/λ1. In order to improve convergence we can
try to increase the smallest eigenvalue or to decrease the biggest. In [14] it is proven
that if we have large contrasts in our coefficients, for example due to a fault in the
subsoil, that we have some extreme small eigenvalues. The idea of deflation now is
to define a deflation subspace, which approximates the eigenspace belonging to those
small eigenvalues. Then we can project these eigenvalues out of the residual in order to
improve convergence.

We start by explaining the basic idea of deflation in section 5.1. In section 5.2 and 5.3
we list some known possible deflation techniques. This chapter is mostly based on
[3, 11, 12, 14].

5.1 Basic Idea of Deflation

Again we look at a general linear system of the form

Ay = b, (5.1)

where we assume A to be symmetric positive definite. Let Z ∈ Rn×m be a matrix
where m ≤ n. Furthermore we assume that the rank of Z is m, i.e. Z has linear
independent columns. We call the columns of Z the deflation vectors and they span
the deflation subspace. The deflation subspace is the space that approximates the
eigenspace belonging to the smallest eigenvalues and which is to be projected out of
the residual. For this purpose we define the projector

P = I −AZE−1ZT , (5.2)

where we define the m × m matrix E = ZTAZ. Note that we have the following
expressions:

E−T = (ZTAZ)−T = (ZTATZTT)−1 = (ZTAZ)−1 = E−1,

PT = (I −AZE−1ZT)T = IT − ZTTE−TZTAT = I − ZE−1ZTA.

If we now want to solve system (5.1) using deflation, we can write y = (I−PT)y+PT y.
Since we have:

42 Deflation Techniques

(I − PT)y = Z(ZTAZ)−1ZTAy = ZE−1ZT b, (5.3)

which can be computed immediately, we only need to compute PT y. Because we have
that APT = PA we can solve the system

PAỹ = Pb, (5.4)

for ỹ, and simply add PT ỹ to Equation (5.3). The system (5.4) is called the deflated system.

Note that we have

PAZ = (I −AZE−1ZT)AZ,
= AZ −AZE−1ZTAZ,
= AZ −AZE−1E,
= AZ −AZ,
= 0,

and therefore the system is singular, so there is no unique solution. However it can be
shown that PT y is unique. A proof for the case that A is symmetric positive definite can
be found in [14].

Since we want to use an iterative solution method we need an initial guess ỹ(0). When
y(0) is given we solve:

Au = f,

where u ≡ y − y(0) and f ≡ b−Ay(0). To do this we solve the deflated system

PAũ = Pf,

for ũ and we construct:

y =
(
I − PT

)
u+ PT ũ+ y(0)

5.1.1 Preconditioning, Starting Vectors and Deflated CG method

It is also possible to combine deflation with preconditioning. If M is a suitable
preconditioner of A, then Equation (5.4) can be replaced by:

M−1PAỹ = M−1Pb,

and we have to solve ỹ from it. After that we have to form Qỹ again. This is called left
preconditioning. We can also use right preconditioning, then we must solve ỹ from

PAM−1ỹ = Pb

and form QM−1ỹ.

Both systems can be solved by a Krylov subspace method. Since A is a symmetric
positive definite matrix we can use for example a CG method. If we use deflation we
have to determine expressions as f = E−1g. To do this efficiently we solve the system
Ef = g instead of calculating E−1 directly. To solve such a system we use an LLT

factorization which involves the following steps:

5.1 Basic Idea of Deflation 43

• compute E = LLT ,

• solve Lq = g,

• solve LT f = q.

The algoritms for evaluating these steps are given in appendix A, by respectively
Algorithms A.1, A.2 and A.3.

Furthermore, for deflation to work correctly we must solve the system involving E
with high accuracy. We can use preconditioning, for example, an modified incomplete
Cholesky decomposition as given in Algorithm 5.1. The algorithm is written such that
it follows closely the implementation of [6]. The method is called the Deflated Incomplete
Cholesky Conjugate Gradient Method, or simply DICCG. The succes of the DICCG method
is related to the choices of Z.

Algorithm 5.1 (DICCG) Given an n × n symmetric positive definite matrix A, a vector b,
the modified Cholesky preconditioner LD−1LT where L is lower diagonal and D−1 the inverse
diagonal of L, the projector P as in Equation(5.2), and an initial guess y(0). This algorithm
solves the linear system Ay = b.

r(0) = b−Ay(0);
if deflation do /* deflation pre-processing phase

ỹ(0) = y(0);
y(0) = 0;
Decompose ZTAZ = L̃Ũ

Solve Ũ q̃1 = ZT r(0); L̃q1 = q̃1

r(0) := r(0) −AZq1

end if
for k = 0, 1, . . . , convergence do

Solve Ls̃ = r(k);D−1LT s(k) = s̃;
if k = 0 do

p(0) = s(0);
else

β = (s(k))T r(k)

(r(k−1))T s(k−1) ;
p(k) = s(k) + βp(k−1);

end if
v(k) = Ap(k);
if deflation do /* deflation run-time phase

Solve Ũ q̃2 = ZT v(k); L̃q2 = q̃2;
v(k) := v(k) −AZq2;

end if
α = (r(k))T s(k)

(p(k))T v(k) ;
y(k+1) = y(k) + αp(k);
r(k+1) = r(k) − αv(k);

end for
if deflation do /* deflation post-processing phase

Solve Ũ q̃2 = ZTAy(k+1); L̃q2 = q̃2;
y(k+1) := y(k) + ỹ(0) + Z(q1 − q2);

end if

44 Deflation Techniques

5.2 Eigenvalue Deflation

Eigenvalue deflation means that we take exact or perturbated eigenvectors,
corresponding to the small eigenvalues, to build our deflation matrix Z. First we
look at deflation with exact eigenvectors and after that we look at perturbated
eigenvectors.

5.2.1 Deflation with Exact Eigenvectors

We order the eigenvalues of A such that λ1 ≤ λ2 ≤ . . . ≤ λn and we choose
their corresponding eigenvectors vj such that vTj vi = δij . Furthermore we define
Z := [v1v2 . . . vm]. We will show that the spectrum of PA satisfies:

σ(PA) = {0, . . . , 0, λm+1, . . . , λn}

Note that we can denote AZ as:

AZ = [Av1 Av2 · · · Avn] = [λ1v1 λ2v2 · · · λnvn] ,

so that we have:

E = ZTAZ =

vT1
vT2
...

vTm

 [λ1v1 λ2v2 · · · λmvm
]

=

λ1vT1 v1 λ2vT1 v2 · · · λmvT1 vm
λ1vT2 v1 λ2vT2 v2 · · · λmvT2 vm

...
...

. . .
...

λ1vTmv1 λ2vTmv2 · · · λmvTmvm

=

λ1 ∅

λ2

. . .
∅ λm

 = diag (λ1, λ2, . . . , λm) .

Now look at the following:

E−1ZT =

1
λ1

∅
. . .

∅ 1
λm

 vT1

...
vTm

 =

1
λ1

vT1
...

1
λm

vTm

 ,

AZE−1ZT =
[
λ1v1 · · · λmvm

]
1
λ1

vT1
...

1
λm

vTm

 = v1vT1 + . . .+ vmvTm, (5.5)

ZZT =
[

v1 · · · vm
] vT1

...
vTm

 = v1vT1 + . . .+ vmvTm. (5.6)

5.2 Eigenvalue Deflation 45

From Equation (5.5) and Equation (5.6) we can conclude that AZE−1ZT = ZZT and
therefore it holds that:

P = I −AZE−1ZT = I − ZZT , (5.7)

and we can write:

PAvj =
(
I − ZZT

)
λjvj . (5.8)

If we now denote Z as:

Z =

v1

1 v1
2 · · · v1

m

v2
1 v2

2 · · · v2
m

...
...

. . .
...

vn1 vn2 · · · vnm

 ,
then:

ZZT =

(v1

1v
1
1 + . . .+ v1

mv
1
m) (v1

1v
2
1 + . . .+ v1

mv
2
m) · · · (v1

1v
n
1 + . . .+ v1

mv
n
m)

(v2
1v

1
1 + . . .+ v2

mv
1
m) (v2

1v
2
1 + . . .+ v2

mv
2
m) · · · (v2

1v
n
1 + . . .+ v2

mv
n
m)

...
...

. . .
...

(vn1 v
1
1 + . . .+ vnmv

1
m) (vn1 v

2
1 + . . .+ vnmv

2
m) · · · (vn1 v

n
1 + . . .+ vnmv

n
m)

 .

Now we are going to calculate ZZTvj for j = 1, . . . ,m,m + 1, . . . , n. Herefore we look
at the kth column. That column is given by:

{
vk1v

1
1v

1
j + . . .+ vkmv

1
mv

1
j

}
+
{
vk1v

2
1v

2
j + . . .+ vkmv

2
mv

2
j

}
+ . . .+

{
vk1v

n
1 v

n
j + . . .+ vkmv

n
mv

n
j

}
,

which can be rewritten as:{
vk1v

1
1v

1
j + vk1v

2
1v

2
j + . . .+ vk1v

n
1 v

n
j

}
+
{
vk2v

1
2v

1
j + vk2v

2
2v

2
j + . . .+ vk2v

n
2 v

n
j

}
+

· · ·+
{
vkmv

1
mv

1
j + vkmv

2
mv

2
j + . . .+ vkmv

n
mv

n
j

}
= vk1

(
vT1 vj

)
+ vk2

(
vT2 vj

)
+ · · ·+ vkm

(
vTmvj

)
.

=
{
vkj if j = 1, 2, . . . ,m
0 if j = m+ 1, . . . , n

where the last step is a consequence of vTi vj = δij . So we can draw the following
conclusion:

ZZTvj =
{

vj if j = 1, 2, . . . ,m
0 if j = m+ 1, . . . , n (5.9)

If we now substitute expression (5.9) into Equation (5.8) we can conclude that:

PAvj =
{

0 if j = 1, 2, . . . ,m
λjvj if j = m+ 1, . . . , n

This shows that eigenvector deflation cancels the smallest m eigenvalues of the
spectrum of A, leaving the rest of the spectrum untouched. Although deflation with
exact eigenvectors leads to fast convergence, such a choice will be inefficient in practice.
This is because it is relatively expensive to compute and use them.

46 Deflation Techniques

5.2.2 Deflation with Inexact Eigenvectors

It is also possible to use perturbated or approximated eigenvectors, such as Ritz vectors
(see, for example, [4] or [8]). This means that we define Z̄ := [v̄1v̄2 . . . v̄m], where each
v̄i is an approximation of the exact eigenvector v̄i. So:

v̄i := vi + δi, δi ∈ Rn

It would be convenient that deflation with V̄ has the same favorable features as deflation
with V . In [11] the author states that, as far as he knows, in the literature no results are
given on how to choose the δ̄i such that V̄ has such features.

5.3 A Priori Deflation Vectors

Since it is expensive to calculate eigenvalues and eigenvectors of a (large) matrix we
have to find other types of a priori deflation vectors. We list some possibilities.

5.3.1 Subdomain Deflation

In section 5.2 it is mentioned that deflation of an eigenspace cancels the corresponding
eigenvalues without affecting the rest of the spectrum. Calculating the eigenvectors and
eigenvalues of a (large) system is expensive and therefore not feasible. This motivates to
deflate with ”nearly invariant” subspaces obtained during the iteration. We can make a
specific choice for the subspace Z, based on the decomposition of the domain Ω into m
disjunct sets Ωj such that

⋃m
j=1 Ωj = Ω. The division in subdomains can be motivated,

for example, by jumps in the coefficients.

Since MODFLOW uses a cell-centered grid we look at possible deflation techniques for
this discretization. Since in a cell-centered grid the unknowns are located in the interior
of a finite volume, domain decomposition is straightforward. The algebraic deflation
vectors zj are uniquely defined as:

zj(xi) =
{

1, for xi ∈ Ωj
0, for xi ∈ Ω\Ωj .

So now the question remains how we are going to choose the domains. If we do not
have any information we can just cut the domain into squares (2D) or cubes (3D) and
make the corresponding deflation vectors, see also Figure 5.1. This method is straight
forward to implement on a computer.

Note that is is also possible to use linear vectors instead of constant vectors. See also
Figure 5.2. The red and the blue one are constant vectors, where the green and the
magenta ones are linear.

5.3.2 Deflation based on Physics

In our case it is possible to define the subdomain by using the geographical places of
the faults. Since MODFLOW defines the fault to be exactly on the border of a cell,
theoretically this is possible. For this kind of deflation we have two options.

The first option is to divide the domain into subdomains as in subsection 5.3.1, but now
using the faults as boundaries. A second option could be to define the vectors such that

5.3 A Priori Deflation Vectors 47

an element next to the fault has value 1 and the rest value 0. We can make for each fault
a vector. But we have to think about what to do with the elements that are next to two
or more faults.

Figure 5.1: Random decomposion for a cell centered discretization.

Figure 5.2: 4 possible deflation vectors in a 1-D case.

48 Deflation Techniques

Chapter 6

Testproblems, First Results and
Research Questions

In this chapter results are given for several test problems in MATLAB. In Section 6.1 we
explain the most simple test case. This one is mainly to give us insight in the algorithms
that are being used. In Section 6.2 the test problem is described that is exported from
MODFLOW to MATLAB, Section 6.3 gives the results. In Section 6.4 a research proposal
is given for the next six months.

All the figures belonging to this chapter are in Appendix C to keep this chapter
conveniently arranged.

6.1 First Test Problem

The first test case consists of a rectangular area containing of 15 rows, 15 colums and
only one layer. On the east side of the domain we defined constant head cells with
h = 0. On the other boundaries we defined the so called no-flow cells. There also is
a recharge on the whole area of 7 · 10−4 meters per day. To make it a realistic problem
we also added drains to the whole domain. The last thing we added was a horizontal
flow barrier to simulate the faults. This barrier is located vertically on one thirth of
the domain. So in this case it was located between the fifth and sixth column. The
conductance of the barrier was set at 10−9.

We build this testcase in MODFLOW to see what the outcome was. We defined the
cells to be 25 meters times 25 meters. This is the same scaling as used in the IBRAHYM
model. MODFLOW gives for this testcase the solution as showed in Figure C.1. It is
clear that the barrier causes a big jump in the calculated heads. This is due to the big
contrast in the conductance. On the left part of the domain we see heads around the 44
meters and at the right side of the fault we see heads between 0.1 and 0 meters.

6.2 MATLAB

The first goal was to make sure we could use exactly the system of equations as used in
MODFLOW in Matlab. During the run in MODFLOW we made sure that MODFLOW
gave all the coefficients needed to rebuild our system of equations as given in Equation
(3.18). With the coefficients CC, CR, CV, HCOF and RHS we were able to rebuild the
system.

50 Testproblems, First Results and Research Questions

Now that we have the right system implemented in Matlab we have to rebuild the PCG
solver in Matlab. This algorithm can be found in Algorithm 4.1. In the MATLAB code
you are able to choose between no preconditioning or the ICCG preconditioning as
given in Section 4.4.2. After we have a good PCG solver we want to build in deflation
also. We use the most common deflation vectors, namely the vectors which divide the
area into two parts. The first domain is left of the fault and the second is the domain
right of the fault.

Our stop criterion is now based on the residual. The 2-norm of the residual divided by
the 2-norm of the righthand side should be smaller than a given tolerance. MODFLOW
uses a different stop criterion. Actually it uses two criteria. The maximum of the
difference between two calculated heads should be small enough and the difference
between two residuals should also be small enough. This still has to be implemented in
our matlab program to match matlab with MODFLOW.

6.3 First Results

6.3.1 Results for our First Test Problem

For our simple test case as described in section 6.1 we found results that are expected.
The values of the heads using matlab correspond to those calculated by MODFLOW.
So this shows that the MATLAB code works correctly. If we now look at the number of
iterates used by MATLAB for the two runs (using deflation and not using deflation) we
already see an improvement. The results are given in Figure C.2.

We can also look at the spectrum of the matrices M−1A and M−1PA, see Figure C.3.
We see that the eigenvalues are almost the same, but if we zoom in to the smallest
eigenvalue (Figure C.4), we see that by using deflation this one is zero. So the smallest
eigenvalue has been cancelled and therefore the condition of the deflated matrix is
better.

6.3.2 More Results

Enlarging the number of cells

After we had the first test results we decided to enlarge the problem. We now used the
same setup but we used a bigger area. Instead of a 15 x 15 grid we used a 30 x 30 grid
and a 45 x 45 grid. Also for this cases we found that the number of iterations drops
when using deflation. The results are showed in Figure C.5 and Figure C.6. We see that
the number of iterates grows as the number of cells grows.

Variation of the conductance of the fault

If we keep the dimensions at 45 x 45 and we only vary the conductance of the fault we
see the following results. The solution changes, but the number of iterates does not. The
solutions using a conductance of 10−3, 10−6, 10−9 and 0 are given in Figures C.7, C.9,
C.11 and C.13 respectively. The number of iterates are given in Figures C.12, C.10, C.8
and C.14 respectively.

This is not in agreement with the problems they find at Deltares. If they make the
conductance lower, than they see that they need more iterates. It could be that our test
case is simply to small to see this problem.

6.4 Research Questions 51

6.4 Research Questions

This chapter shows that the deflation method has good potential to improve
convergence behavior in MODFLOW, considering a simple flow model. During
the following six months of the Masters project this method is being implemented in
MODFLOW and suitable deflation vectors are tried to be chosen such that:

• the deflation vectors are easy to construct,

• a priori information is used to construct these vectors,

• the choice of vectors is generic.

Furthermore we do not want to use deflation if we do not have to. So we have to think
of some kind of condition for the computer to decide if deflation is needed or not.

The goal of the research is to reduce the number of iterations used for the PCG solver
and to gain wall-clock times. The resulting new algorithm will be tested for a selected
part of the IBRAHYM model.

52 Testproblems, First Results and Research Questions

Appendix A

LU Factorization Algorithms

Algorithm A.1 (LU Decomposition) Given an n × n matrix A, and the n × n matrices L
andU , containing only zero coefficients. Then this algorithm computes anLU factorization ofA.

for m = 1, . . . , n− 1 do
for i = k + 1, . . . , n do

L(i, k) = A(i,k)
A(k,k) ;

end for
for j = k + 1, . . . , n do

for i = k + 1, . . . , n do
U(i, j) = A(i, j)− L(i, j)A(k, j);

end for
end for
L(k, k) = 1;

end for
L(n, n) = 1;

Algorithm A.2 (Forward Substitution) Given an n × n matrix L which is unit lower
triangular, and a vector b. The this algorithm solves the system Ly = b.

for i = 1, . . . , n do
for j = 1, . . . , i− 1 do

y(i) = b(i)− L(i, j)y(j);
end for

end for

Algorithm A.3 (Backward Substitution) Given an n × n matrix U which is upper
triangular, and a vector b. The this algorithm solves the system Uy = b.

for i = 1, . . . , n do
for j = i+ 1, . . . , n do

y(i) = b(i)−U(i,j)y(j)
U(i,i) ;

end for
end for

54 LU Factorization Algorithms

Appendix B

MICCG in MODFLOW

In MODFLOW a slightly different version of the MICCG method is used. They use a
preconditioner M = UTDU , where U is an upper triangular matrix. U has nonzero
elements along the main diagonal and on the off-diagonal positions where A itself has
nonzero values. D is a diagonal matrix with dii = 1/uii. For a problem with 2 rows, 3
colums and 2 layers, U should be of the following form:

U =

u1 −r1 0 −c1 0 0 −v1 0 0 0 0 0
0 u2 −r2 0 −c2 0 0 −v2 0 0 0 0
0 0 u3 −r3 0 −c3 0 0 −v3 0 0 0
0 0 0 u4 −r4 0 −c4 0 0 −v4 0 0
0 0 0 0 u5 −r5 0 −c5 0 0 −v5 0
0 0 0 0 0 u6 −r6 0 −c6 0 0 −v6

0 0 0 0 0 0 u7 −r7 0 −c7 0 0
0 0 0 0 0 0 0 u8 −r8 0 −c8 0
0 0 0 0 0 0 0 0 u9 −r9 0 −c9
0 0 0 0 0 0 0 0 0 u10 −r10 0
0 0 0 0 0 0 0 0 0 0 u11 −r11

0 0 0 0 0 0 0 0 0 0 0 u12

,

(B.1)

Here, rn, cn and vn are the conductances along rows and colums and between layers,
respectively. They are the same as CR, CC and CV from section 3.1.2. They are exactly
the same as in the matrix A.

The un are defined such that the sum of the elements along a row of M equals the sum
of the elements along the row of A. If we do the calculations we find that:

u1 = a11,

u2 = a22
r21
u1
− r1c1

u1
− r1v1

u1
,

u3 = a33
r22
u2
− r2c2

u2
− r2v2

u2
,

etc.

The general algorithm can now be expressed as:

56 MICCG in MODFLOW

uii = (1 + δ) aii −
i−1∑
k=1

u2
ki

ukk
− α

i−1∑
j=1

fji +
N∑

j=i+1

fij (B.2)

where:

fij =

∑i−1
k=1 ukiukjukk aij = 0

0 aij 6= 0
,

and
uij = 0 for j < i.

The parameter α is a relaxation parameter, defined by the user. It is used to deminish
the value of fij in equation B.2. Using a relaxation parameter value of 0.97, 0.98 or 0.99
instead of 1.00 sometimes improves convergence.

The parameter δ is a overcompensation parameter. It usually equals zero, but when a
value of uii gets zero or negative, δ is increased.

More details can be found in [6]

Appendix C

Figures for Chapter 6:
Testproblems, First Results and
Research Questions

C.1 Figures for Section 6.1: First Testproblem

Figure C.1: Heads for first testproblem as generated by MODFLOW.

58 Figures for Chapter 6: Testproblems, First Results and Research Questions

C.2 Figures for Section 6.2: Matlab

C.3 Figures for Section 6.3: First Results

C.3.1 Results for First Testproblem

Figure C.2: The residuals of the simple testcase.

Figure C.3: The eigenvalues of the simple testcase.

C.3 Figures for Section 6.3: First Results 59

Figure C.4: The smallest eigenvalue is set to zero by using deflation.

C.3.2 More Results

Enlarging the number of cells

Figure C.5: Number of iterates on a 30x30 grid.

60 Figures for Chapter 6: Testproblems, First Results and Research Questions

Figure C.6: Number of iterates on a 45x45 grid.

Variation of the conductance of the fault

Figure C.7: Solution with conductance of 10E-3.

C.3 Figures for Section 6.3: First Results 61

Figure C.8: Residuals with conductance of 10E-3.

Figure C.9: Solution with conductance of 10E-6.

62 Figures for Chapter 6: Testproblems, First Results and Research Questions

Figure C.10: Residuals with conductance of 10E-6.

Figure C.11: Solution with conductance of 10E-9.

C.3 Figures for Section 6.3: First Results 63

Figure C.12: Residuals with conductance of 10E-9.

Figure C.13: Solution with conductance of 0.

64 Figures for Chapter 6: Testproblems, First Results and Research Questions

Figure C.14: Residuals with conductance of 0.

Bibliography

[1] Akker, C. van der, en Savenije, H. (2006), ’Hydrologie’, dictaat Civiele techniek TU
Delft (CT1310).

[2] Dufour, F.C. (1998), ’Grondwater in Nederland’, ISBN: 90 6743 536 8, Van de Rhee,
Rotterdam.

[3] J. Frank and C. Vuik (2001), On the Construction of Deflation-Based Preconditioners.
SIAM J. Sci. Comput., Vol. 23, No. 2, pp. 442-462.

[4] Golub, Gene H. & Van Loan, Charles F. (1996), ’Matrix Computations’, ISBN: 0-8018-
5414-8, Baltimore : Johns Hopkins University Press.

[5] Harbaugh, A.W., ’MODFLOW 2005, the U.S. Geological Survey Modular
Ground-Water Model - The Ground Water Flow Process’. Online document:
http://pubs.usgs.gov/tm/2005/tm6A16/PDF/TM6A16.pdf.

[6] Hill, M.C., Preconditioned Conjugate-Gradient 2 (PCG2), ’A
Computer Program for Solving Ground-Water Flow Equations’. United
States Geological Survey, Report 90-4048. Online document:
http://water.usgs.gov/nrp/gwsoftware/modflow2000/PCG-usgs-
wrir_90-4048-\second_printing.pdf.

[7] Nabben, R. and Vuik, C. (2004), ’A comparison of abstract versions of deflation,
balancing and additive coarse grid correction preconditioners’, SIAM J. Numer. Anal.,
42, pp. 1631-1647.

[8] Oosterlee, C.W. and Vuik, C. (2005), ’Scientific Computing’, lecture notes Applied
Mathematics TU Delft (wi4201).

[9] Rushton, K.R. (1979), ’Seepage and Groundwater Flow’, ISBN: 0 471 99754 4, Wiley,
Chichester.

[10] Saad, Y. (2000), ’Iterative Methods for Sparse linear Systems’ (First edition). Online:
http://www-users.cs.umn.edu/˜saad/books.html.

[11] Tang, J.M. and Vuik, C. (2007), New Variants of Deflation Techniques for Pressure
Correction in Bubbly Flow Problems, Journal of Numerical Analysis, Industrial and
Applied Mathematics.

[12] Verkaik, J. (2003), De flated Krylov-Schwarz Domain Decomposition for the
Incompressible Navier-Stokes Equations on a Colocated Grid, Master’s Thesis.

[13] Vermeulen, Peter (2006), ’Model-Reduced Inverse Modeling’, Ph.D. thesis Delft
University of Technology, Printpartners IPSKAMP B.V. Enschede.

[14] Vermolen, F.J. and C. Vuik (2001), The influence of deflation vectors at interfaces
on the deflated conjugated gradient method. Report of the Department of Applied
Mathematical Analysis, ISSN 1389-6520, Delft University of Technology.

66 BIBLIOGRAPHY

[15] http://water.usgs.gov/.

[16] http://www.gly.uga.edu/railsback/1121SimpleFaults.jpeg.

[17] http://upload.wikimedia.org/wikipedia/commons/thumb/6/68
/Le_Peelhorst,_le_Peelrandbreuk_(faille)_et_le_Slenk_
Central.jpg/250px-Le_Peelhorst,_le_Peelrandbreuk_(faille)_
et_le_Slenk_Central.jpg.

[18] http://www.tucson.ars.ag.gov/salsa/research/research_1997/AMS_Posters/gw-sw_
interactions/gw-sw_f1.html.

List of Figures

1.1 Schematization of the subsurface and the possible directions of the
groundwater flow. 2

1.2 Overview of the hydrology cycle. 3

1.3 Low and high porosity. 4

1.4 Connected pores give a rock permeability. 4

1.5 Overview different types of faults [16]. 5

1.6 Calculation of conductance between two cells using transmissivities. . . . 6

1.7 The Peelrandbreuk in Limburg [17]. 7

1.8 A piezometer [18]. 8

2.1 Flow for an elementary volume of fluid. 11

2.2 A confined (left) and an unconfined (right) aquifer. 13

3.1 Three-dimensional grid. 16

3.2 Indices for the six cells surrounding cell (i, j, k). 17

3.3 Flow into cell (i, j, k) from cell (i, j − 1, k). 18

3.4 Form of system matrix A. 22

3.5 Discretized aquifer showing boundaries and cell designations. 23

3.6 Division of simulation time into stress periods and time steps. 23

3.7 Fault as modelled by MODFLOW. 27

3.8 Heads in the 19th layer in the IBRAHYM model. 27

3.9 Example of the heads near a well. 28

3.10 Plot of flow, QB, from a general-head boundary source into a cell as
function of head. 28

3.11 Plot of flow, QRIV, from a river into a cell as function of head. 29

3.12 Example of a river, de Maas, in MODFLOW. 29

3.13 Plot of flow, QD, into a drain as a function of head. 30

3.14 Overview of a drain system (Eindhoven) in MODFLOW. 30

4.1 Interpretation of the orthogonality condition. 33

68 LIST OF FIGURES

5.1 Random decomposion for a cell centered discretization. 47

5.2 4 possible deflation vectors in a 1-D case. 47

C.1 Heads for first testproblem as generated by MODFLOW. 57

C.2 The residuals of the simple testcase. 58

C.3 The eigenvalues of the simple testcase. 58

C.4 The smallest eigenvalue is set to zero by using deflation. 59

C.5 Number of iterates on a 30x30 grid. 59

C.6 Number of iterates on a 45x45 grid. 60

C.7 Solution with conductance of 10E-3. 60

C.8 Residuals with conductance of 10E-3. 61

C.9 Solution with conductance of 10E-6. 61

C.10 Residuals with conductance of 10E-6. 62

C.11 Solution with conductance of 10E-9. 62

C.12 Residuals with conductance of 10E-9. 63

C.13 Solution with conductance of 0. 63

C.14 Residuals with conductance of 0. 64

