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1 Introduction
Existing traffic light causes numerous issue such as delays, accidents, noise and
air pollution and monetary losses. According to a CNN report, a 2012 study
by Washington University in St. Louis noted that long commutes eat up exer-
cise time. Thus, long commutes are associated with higher weight, lower fitness
levels, and higher blood pressure—all strong predictors of heart disease, dia-
betes [20]. Non Smart traffic light leads to non-optimised and inefficient traffic
flow.

In some recent research work [30], reinforcement learning (RL) is being used
in order to control the traffic light by treating the problem as a sequential deci-
sion making problem. In RL, the agent learns from trial and error by interacting
with the environment and the goal of the agent is to maximise the reward in the
long term. In case of application of RL in traffic flow problems, Markov Decision
Process is used to model the problem, where the states represent the different
configurations of the traffic light at the intersection, actions are the changing of
the traffic lights, rewards are formulated using factors like waiting time, delays,
teleports(specific to SUMO [3] simulator), emergency stops etc. A Deep neural
network or Deep Q-Learning is used to find an optimal policy which chooses
action in order to maximise the total cumulative reward of the state. After
learning to optimise the traffic flow for a single intersection, the same idea can
be extrapolated to multi-agent system, where the number of intersection is more
than one. This can be done using the idea of transfer planning [19] for training
the agent for smaller sub-problems i.e global coordination is decomposed into
local coordination using the theory of coordination graphs to find a joint global
optimal action using max-plus algorithm [13].

2 Deep Reinforcement Learning

2.1 Reinforcement Learning.
Reinforcement Learning is a type of learning in which the states are mapped
to actions in order to maximise a numerical reward signal. The action taker is
known as the agent. It observes the environment either fully or partially and
takes some action in order to land in a different state and receives a reward for
taking that particular action. This action not only effects the current reward
but also all subsequent rewards. The agent is not told which action to take
instead it must learn which action yields most reward through a process of trial
and error.

2.2 Markov Decision Process
Markov Decision process (MDP) is the mathematical framework of sequential
decision making, where actions influence immediate reward, and subsequent
future rewards. In this process, the agent observes the environment at each
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time steps t = 0, 1, 2, 3..., in the form of state St selects some action At. One
time step later, it receives a numerical reward Rt+1, and ends up in state St+1.

Figure 1: The agent–environment interaction in a Markov decision process [25]

MDP is formally represented as:

• S is the space of possible states;

• A is the space of possible actions;

• p(s′, r
⏐⏐s, a) .

= Pr{St = s′, Rt = r | St−1 = s,At−1 = a},
the transition probability of ending up in state s′ and obtaining reward r
from previous state s by taking an action a

The agent’s goal is to maximize total reward it receives over time, this means
maximising not just immediate reward but cumulative reward in the long run.
This can be represented as the following:

Gt
.
= Rt+1 + γRt+2 + γ2Rt+3 + · · · =

∞∑
k=0

γkRt+k+1 (1)

where γ is the discounted rate such that 0 ≤ γ ≤ 1.

γ determines the present value of future rewards. If γ = 1, then every reward
is weighed equally, whereas when it equals 0, then the agent is myopic and is
concerned only with maximising immediate rewards.

It can also be represented as:

Gt
.
= Rt+1 + γGt+1 (2)

Policy is a mapping from state to probabilities. If an agent follows a policy
π at time t, then π(a|s) is the probability of taking an action At = a when in
state St = s at time t. In Reinforcement Learning, this policy is updated from
experience in order to attain maximum cumulative reward.

Value function is an estimate of how good it is for an agent to be in a
particular state, which implies the expected future reward. It is the expected
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cumulative reward when starting in state s and following a policy π.

vπ(s)
.
= Eπ[Gt|St = s] = Eπ

[ ∞∑
k=0

γkRt+k+1|St = s

]
, (3)

for all s ∈ S.

Action-value function denoted as qπ(s, a), as the expected return starting
from state s, taking the action a, and thereafter following policy π:

qπ(s, a)
.
= Eπ[Gt|St = s,At = a] = Eπ[

∑
γkRt+k+1|St = s,At = a] (4)

where
∑
s′∈S

∑
r∈R

p(s′, r
⏐⏐s, a) = 1, for all s ∈ S, a ∈ A(s).

In RL, the values of vπ(s) and qπ(s, a) can be learned from experience. If
one maintains the average of return that follow a particular state, for each time
the state has been encountered then this value converges to the Vπ(s), since the
number of times the state is encountered is infinity. If average is kept for each
action taken when in a particular state, then this will converge to the action
value function qπ(s, a).

Bellman Equation: It is a representation of the value of the state, assuming
one takes the best possible action now and at each subsequent step. Below,
the recursive relationship between the value function of a state with respect to
other state is shown. This is also known as the Bellman Equation.

vπ(s) = Eπ[Gt|St = s]

=
∑
a

π(a | s)
∑
s′

∑
r

p(s′, r | s, a)
[
r + γEπ

[
G≈+⊮ | S≈+⊮ = ∼′]]

=
∑
a

π(a | s)
∑
s′,r

p(s′, r | s, a)
[
r + γvπ(s

′)
] (5)

for all s ∈ S.

Optimal Policies and Optimal Value Function:

Optimal policies are the policies that secure maximum rewards in the long
term (cumulative reward). A policy π is better or equal to another policy π′ if
its expected return is greater than or equal to that of π′ for all states s ∈ S.

Therefore, π ≥ π′ if and only if vπ(s) ≥ vπ′(s). This policy π is often known
as optimal policy, and often written as π∗.

Optimal State-Value Function:

v∗(s)
.
= max

π
vπ(s) (6)

for all s ∈ S.
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Optimal Action-Value Function:

q∗(s, a)
.
= max

π
qπ(s, a) (7)

for all s ∈ S and A ∈ A(s).

Its the expected reward when in state s and taking an action a and thereafter,
following an optimal policy. Therefore, the optimal action-value function can
be represented as a function of the optimal state-value function in the following
way:

q∗(s, a) = E[Rt+1+γv∗(St+1 ) | St = s,At = a]] (8)

Bellman Optimality equation:

According to this, the value of a state under an optimal policy must equal
the expected return for the best action from that state.

v∗(s)
.
= max

a∈A(s)
qπ∗(s, a)

= max
a

Eπ∗ [Gt|St = s,At = a]

= max
a

E[Rt+1 + γv∗(St+1) | St = s,At = a]

= max
a

∑
s′,r

p(s′, r | s, a)
[
r + γv∗(s

′)
] (9)

q∗(s, a) = E[Rt+1+γmax
a′

q∗(St+1), a
′) | St = s,At = a]

=
∑
s′,r

p(s′, r | s, a)[r + γmax
a′

q∗(s
′, a′)]

(10)

The Bellman Equation can be explained better with Figure 2. This diagram
is also called the backup diagram. Here, the open circle represent the state,
while the solid circle represent the state-action pair. The agent is in state s,
representing the root node at the top and based on a policy, takes a certain
action a, then the environment responds and lands the agent in any of the
next probable state s′ securing a reward r. The Figure 3 represents the backup
diagram for the optimality equations.

If the state of the environment is well defined or in other words if the transi-
tion probability is known, then dynamic programming methods can be used to
find the optimal solution using the recursive definition. One of these method is
Value Iteration, in which the value function is updated for all states by updating
each q-value and then using the maximum q-value to update the value function.

Explicitly solving the Bellman optimality equation provides one route to
finding an optimal policy, and thus to solving the reinforcement learning prob-
lem. However, this solution is rarely directly useful. This is so because it is
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Figure 2: Backup Diagram for vπ [25]

Figure 3: Backup Diagram for v∗ and q∗ [25]

based on the following three assumptions, which are rarely met: (1)the envi-
ronment is accurately known, (2)Markov Property, (3)sufficient computational
power.

Therefore, in many cases the transition probability is unknown. Under such
scenario, the agent uses RL algorithms, the agent learns a mapping from state
to actions from interacting with the environment and receiving feedback.

There are two types of Reinforcement Learning:
1. Model-based: Agent samples from the environment to estimate the transition
probability, then uses planning algorithm to find an optimal policy,
2. Model-Free: Agent directly estimates the state-action value function from
experience.

2.3 Tabular Q-Learning
Q-learning is a model-free reinforcement learning algorithm. That is, it does
not build its own model of the environment’s transition functions, but rather
directly estimates the so-called Q-value of the s,a-pair, q(s, a). Specifically, Q-
learning is an off-policy algorithm, which is a class of algorithms that uses a
different policy for estimating Q-values than for action-selection. That is, Q-
learning updates the Q-values of the current s,a-pair using the greedy policy to
estimate the Q-value of the optimal policy of the next s,a-pair.
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In traditional Q-learning, the agent employs a lookup table of s,a-pairs and
iteratively updates the Q-value estimates using:

qt+1(s, a) = qt(s, a) + α[Rt + γ[max
a′

qt(st+1, a
′; θt)]− qt(s, a)] (11)

In words, the difference between the current estimate of the s,a-pair, and
the actual value of the s, a-pair. However, since the true value of the s, a-pair
is not known upfront, the agent instead uses the current reward signal and the
maximizing Q-value of the next state as a proxy for the true value.This is called
tabular Q-learning, and it has the nice property that it converges given infinite
samples.

2.4 Q learning with Function Approximation
Extending reinforcement learning to function approximation also makes it ap-
plicable to partially observable problems, in which the full state is not available
to the agent.A solution to the problem of continuous S is function approxima-
tion, where supervised machine learning algorithms are used to approximate
the Q-function. Q-value is a function parameterised by weight θ. These weights
can be updated using gradient descent methods, minimizing the mean squared
error between the current estimate of q(s, a) and the target, which is defined as
the true Q-value of the s, a-pair under policy qπ(s, a).

The gradient descent update can be derived by taking the derivative of the
mean squared error (MSE):

MSE(θ) =
∑
s∈S

P (s)
[
qπ(s, a; θ

∗)− qt(s, a; θt)
]2 (12)

where P (s) is the sampling distribution, or the probability of visiting state
s under policy π.

With the q-function approximation represented as a function with learnable
parameters, a regular supervised learning method can be used to approximate
the true Q-function.

2.5 Deep Learning
2.5.1 Neural Network

A neural network is a machine learning model parameterised by a set of pa-
rameters θ that maps an M-dimensional input vector, x⃗ through a series of
hidden layers and activations, to a K-dimensional output vector, y⃗. It is used
as a non-linear function approximator. Specifically, a neural network consists
of interconnected layers, where each layer computes a linear mapping between
the input x and its weights w, adding a bias term b and mapping the result
through a non-linear activation function - needed to introduce non-linearity
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into the model, e.g. a rectified linear unit. For example, mapping input vec-
tor x⃗ through one hidden layer with weights W0 ∈ θ, bias term b0 ∈ θ and
non-linearity h0 results in the following equation:

x⃗′ = h0(W0x⃗+ b0) (13)

The output x⃗′′ can be used as input to the next layer, with e.g. weights
W1 ∈ θ, bias b1 ∈ θ and non-linearity h1:

x⃗′′ = h1(W1h0(W0x⃗+ b0) + b1) (14)

And so on. As the network grows deeper, the model can approximate more
complex functions, but it also becomes harder to train. For that reason, much
of the field of deep learning is dedicated to solving problems such as finding
more reliable and faster methods of training neural networks and escaping local
minima.

2.5.2 Convolution Network

Convolution Neural Networks(CNN) are analogous to Artificial Neural Networks
(ANN) but with a difference. CNN is primarily used in the field of pattern
recognition within images. This allows us to encode image-specific features into
the architecture, making the network more suited for image-focused tasks-whilst
further reducing the parameters required to set up the model [21]. In ANN the
input layer is fully connected to a series of hidden layers which ultimately is
connected to the output layer as shown in Figure 4. Whereas in CNN, only
small regions of the input neurons are connected to the neurons in the hidden
layer, these regions of the input layer are known as the local receptive fields.
The local receptive field is translated across an image to create a feature map
from input layer to the hidden layer.

Like a typical ANN, CNN also have neurons with weights and biases. The
model learns these values during the training process and it continuously up-
dates them with each new training example. However in CNN, the weights and
biases are same for all neurons in a given hidden layer. This means all neurons
are detecting the same feature such as an edge or blob in different regions of
an image. Then the output of each neuron is transformed using an activation
function. This can be further transformed by applying a pooling step for reduc-
ing the dimensionality of the feature map. Finally, in the last hidden layer each
neuron is fully connected to the output layer, this produces the final output.

The architecture of the CNN can be divided into the following subdivisions
as shown in Figure 5 [21]:

• As found in other forms of ANN, the input layer will hold the pixel values
of the image.

• The convolutional layer will determine the output of neurons of which
are connected to local regions of the input through the calculation of the
scalar product between their weights and the region connected to the input
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volume. The rectified linear unit (or ReLu) aims to apply an ’elementwise’
activation function such as sigmoid function to the output of the activation
produced by the previous layer.

• The pooling layer will then simply perform downsampling along the spa-
tial dimensionality of the given input, further reducing the number of
parameters within that activation.

• The fully connected layers will then perform the same duties found in
standard ANNs and attempt to produce class scores from the activations,
to be used for classification. It is also suggested that ReLu may be used
between these layers, as to improve performance.

Figure 4: ANN [31].

Figure 5: A typical CNN [1].
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In the Convolutional layer of the network, features are extracted form the
images. It performs basic matrix multiplication between the matrix representing
the pixels in the image and the kernel matrix. The Kernel matrix is a random
matrix which slides over the image matrix and performs an element-wise matrix
multiplication and adds the result in order to produce a feature map. This can
be better explained by the Figure 6 below.

Figure 6: Convolutional Operation: The matrix in blue represents the Kernel
matrix and it slides over the input matrix(bigger matrix) to produce an output.

Usually, the real world data has non-linearity in them whereas the convolu-
tional operation is linear in nature and therefore in order to take into account
the non-linearity, we usually add another operation after the convolutional oper-
ation, this is Rectified Linear Unit(ReLU). It can be mathematically represented
as follows:

Output = Max(0, x) (15)

Then comes the pooling step, in pooling the dimensionality of the feature
map in reduced but the important information is not disregarded. One of the
ways to do this, is by using the Max Pooling function. Max Pooling function
defines a window over the feature map and replaces the window by a single value
which is the maximum in that particular window and it slides over the entire
feature map in order to perform this action as shown by the Figure 7.
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Figure 7: Max Pooling Operation.

2.5.3 Training the Neural Network

At the beginning of training of the neural network, we randomise the weights.
But in order to produce optimum results we have to updates the weights so that
our final result is as close as possible to the target weights. In order to do this,
we define a Loss function or an error function and minimise it. There are various
methods used in order to update the weights to reach an optimum result. These
are known as the Optimisation Algorithms, which help us minimise the Loss or
Objective function and are based on certain learnable parameters of the model.

2.5.4 Gradient Descent

Gradient is a multi variate generalisation of a derivative. It has a direction
and points to the direction of steepest increase of the function. Our job is to
minimise the loss function, therefore we take a step in the negative direction of
the gradient. If we compute the gradient of the loss function with respect to our
weights and take a step in the negative gradient and update the new weights,
eventually our loss function will decrease and converge to some local minima [4].
The idea is to choose a optimum step in the negative direction. If the step is
too big, then the algorithm diverges and we jump over the minima. And if it
is too small, we might converge to the local minima. Mathematically, it can be
represented as the following:

w(i+1) = w(i) − η∇E(w(i)), (16)

where,
E : loss function
w : weight
η : learning rate.

In machine learning, the error function is generalised in the form of sums as
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follows:

E(w) =
1

n

n∑
i=1

Ei(w) (17)

There are various types of Gradient Descent method. The important ones are
Mini-Batch Gradient Descent(MBGD) and Stochastic Gradient Descent(SGD).
In Mini-Batch, we approximate the derivative on some small batch of the dataset
and use it to update the weights as shown in equation (18), whereas in Stochastic
approach we update the weights for each training example as shown in equation
(19).

Mini-Batch GD:

w(i+1) = w(i) − η
n∑

i=1

∇Ei(w)/n, (18)

Stochastic GD:
w(i+1) = w(i) − η∇Ei(w), (19)

In Mini-Batch updates can be really slow and memory can be an issue for
large datasets. While in SGD, there can be fluctuations.

2.5.5 Momentum

Momentum [24] was invented to accelerate the SGD and soften the fluctuations.
It does so by adding a fraction of the past update vector to the current one. It
can be mathematically represented as follows:

v(t) = γv(t− 1) + η

n∑
i=1

∇Ei(w)/n, (20)

w(t+1) = w(t) − v(t) (21)

where γ is the momentum term.

2.5.6 AdaGrad

AdaGrad [7] is a method used to adapt the hyper-parameters accordingly. It
makes big updates for infrequent parameters and small updates for frequent
parameters. It uses different learning rates for every parameter w at every
time step. If we consider g(t, i) to be the gradient of the loss function w.r.t to
parameter wi at the time step t, then the update is given by:

wt+1,i = wt,i −
η√

Gt,ii + ϵ
gt,i (22)

where Gt is a diagonal matrix where each of the diagonal element i, i is the
sum of the squares of the gradient with respect to wi up to time step t, while ϵ is
a smoothing term that avoids division by zero. If past gradients for parameter i
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were large, the learning rate for i is small. On the other hand, if past gradients
for i have been small/sparse, the learning rate for i is large.
Thus, it eliminates the need to upgrade the learning rate manually. AdaGrad’s
main weakness is the accumulation squared gradient term in the denominator
and this leads to a continuous decrease in the learning rate, thereby making the
learning process very slow.

2.5.7 RMSProp

RMSProp [27] is used to modify the AdaGrad and solve the problem of de-
caying learning rate. It does so by changing the gradient accumulation with a
exponentially weighted moving average.

Gt+1,ii = γGt,ii + (1− γ)(gt,i)
2 (23)

In contrast to the AdaGrad, here we weigh recent past more heavily when
compared to the distant past.

2.5.8 ADAM

ADAM (Adaptive Moment Estimation) [12] is a variant of combination of Ada-
Grad and RMSProp [27].
It makes use of both the average first moment(mean)and the average second
moment(variance) of the gradient.

mt+1 = β1 ·mt + (1− β1).∇E (24)

vt+1 = β2 · vt + (1− β2) · ∇E2 (25)

where, β1 and β2 are hyperparameters.

2.5.9 Batch Normalisation

Batch Normalisation [11] is a pre-processsing method, which helps in speeding
up the neural network by incorporating higher learning rates. It is used in order
to fix the problem of internal co-variance shift. As described in the paper [11],
the internal layers of a neural network have to adapt during training because
the distribution of the activations are constantly changing in every layer which
slows down the training process, therefore each layer has to learn to adapt to
the new distribution. This is known as internal covariance shift [11]. Batch
Normalisation solves this problem by normalising the input to the next layer as
following:

xi =
x

i
− µB√
σ2
B + ϵ

(26)
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where ϵ is a smoothing term that avoids division by zero, µB is the batch
mean and σ2

B is the batch variance and B is the batch as shown below,

µB =
1

m

m∑
i=1

xi (27)

σ2
B =

1

m

m∑
i=1

(xi − µB)
2 (28)

Finally, the output is represented as:

yi = γxi + β (29)

As mentioned in the original paper by Ioffe and Szegedy [11], simply nor-
malizing each input of a layer may change what the layer can represent. For
instance, normalizing the inputs of a sigmoid would constrain them to the linear
regime of the nonlinearity. To address this, we make sure that the transforma-
tion inserted in the network can represent the identity transform. In order to do
this, two parameters γ and β are introduced, these parameters are learned along
with the original model parameters, and restore the representation power of the
network. In a nutshell, Batch Normalisation helps in speeding the learning pro-
cedure, by allowing for higher learning rates and also makes more activation
function viable.

3 Multi-Agent Coordination
When the number of agents increases, the common goal of these multiple agents
together is to find a joint optimal action such that the common reward is max-
imised. The joint optimal action is represented as the following:

a⃗∗ = (a1, a2, ..., aN ) (30)

where ai is the local action taken by the agent i. Using a centralised approach
to finding the joint optimal action is not feasible since the joint action space
increases exponentially as the number of agents increase.

In case of Multi-agent traffic light control problem, Van der Pol [28] describes
each intersection as a single agent. A two agent traffic light problem can be
shown as in the Figure 8.
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Figure 8: Two Agent Traffic Light Scenario.

3.1 Coordination Graph
Coordination graph is a graphical representation of the decomposition of the
global payoff function(reward function) g into set of smaller local factors fi,j ,
where each factors is a smaller function(function with less variables), depending
on the subset of the agents in the Figure 9 and the graph as shown below:

CG(a1, a2, a3, a4) = f1,2(a1, a2) + f2,3(a2, a3) + f3,4(a3, a4) (31)

where fi,j are the factored components of the graph and depend on the
actions of their respective agents.

Figure 9: Examples of Multi Agent systems represented as a Cyclic(right) and
Acyclic(left) Coordination Graphs.

The joint optimal action that maximises the global payoff function g:

a⃗∗ = arg max
a⃗

g(⃗a) (32)
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Equation 31 above can be decomposed into the following form:

max
a⃗

g(⃗a) = max
a1

... max
aN

g(⃗a) (33)

Using the distributive law for the max operator, sums and maximizations
can be switched to find a more computationally efficient order and replacing the
global payoff by its factored parts:

max
a⃗

g(⃗a) = max
a1

[max
a2

[ f12(·) + [ ... max
aN

fN−1,N (·)]]] (34)

The above problem representation can be solved using coordination algo-
rithms like Variable Elimination and Max-Plus algorithm.

3.1.1 Variable Elimination

Variable Elimination [10] is an algorithm used to solve the coordination graphs
by eliminating agents one at a time and maximising over that agent, that is find-
ing the best action of the eliminated agent for each action of the non-eliminated
agents. This is an exact inference algorithm, but for large scale agents the prob-
lems scales exponentially and since it is not a anytime algorithm(an algorithm;
which can be stopped anytime during running and get approximate results), it
cannot be run for fewer iterations to get an approximate answer.

3.1.2 Max-Plus Algorithm

Max-Plus [13] is an inference algorithm based on message passing, used to find
the maximum a posteriori (MAP) state in graphical models. It converges to an
exact solution for acyclic graphs but cannot guarantee convergence for cyclic
graphs. It is based on a message passing parameter as shown:

µij(j) = max
ai

[
fij(s, ai, aj) +

∑
k∈ne(i)\j

µki(i)

]
(35)

Message containing information over locally optimal actions are sent between
agents to iteratively find the optimal joint action. Thus, a message from i to j is
as shown above, where ne(i)\j is the set of i′s neighbours, excluding j. In short,
i sends a message to j that consists of a maximization over i and j′s factor and
the messages i has received from its neighbours that are not j. By iteratively
sending messages, max-plus converges to the maximal joint action in acyclical
graphs. Moreover, the algorithm has an anytime solution, meaning that it can
be run using fewer iterations, and still get an approximate solution.

3.2 Transfer Planning
Based on the previous work by Oliehoek et al. [28] [29] [19], transfer planning can
be a good approach for solving Multi-agent systems. In Transfer Planning [19],
Q-function is learnt for a subproblem of a larger multi-agent problem. Training
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on the source problem results in an approximation of its Q-function. Provided
that the source problem and other subproblems are similar, we can then re-use
the source problem’s Q-function for each subproblem in the larger multi-agent
problem, rather than training a Q-function for each separate subproblem. in the
environment introduced by multiple agents learning and acting simultaneously.

This transfer planning approach circumvents two problems present in multi-
agent reinforcement learning. The first is the non stationarity in the environ-
ment introduced by multiple agents learning and acting simultaneously. By
training on a source problem. the environment dynamics do not change during
learning. The second is the cost of training many agents simultaneously. Be-
cause the source problems are independent, they can be solved independently
(e.g. sequentially). Moreover, exploiting symmetries of our source further re-
duces the computational cost.

Transfer Planning can be formalised in the following way:

•
∑

the set of source problems σ ∈
∑

;

• Dσ = {1σ, ...,nσ}, the agent set for source problem σ;

• E maps each Q-value component e to a source problem E(e) = σ ∈
∑

;

• Aσ : A(e) → DE(e) maps agent indices i ∈ A(e) in the target task to indices
Ae(i) = jσ ∈ Dσin the source task σ for that particular component σ =
E(e).

Given a set of source problems and some (heuristic) Q-value functions for
them, the transfer planning Q-value function QTP is defined as:

Qe
TP(θ⃗

t
e, ae) = Qσ(θ⃗tAe(e), aAe(e)), σ = E(e)

Thus, we only have to define the source problems, define the correspond-
ing mapping Ae for each component e, and find a heuristic Q-value function
Qσ(θ⃗t, a) for each source problem. Since the source problems are typically cho-
sen to be small, we can treat them as non-factored and use the heuristic QMDP ,
QPOMDP , QBG even the true Dec-POMDP value functions.

4 Deep Reinforcement Learning for Traffic Light
Control

Traffic flow problem can be visualised as a Single or Multi Agent problem,
which can be trained in order to optimise the traffic flow. In terms of traffic
light control, the agent can be modeled as the traffic signal itself, which takes
certain actions like changing the traffic light and receives rewards based on
these actions and tries to maximise the cumulative long term reward effectively
leading to smoothh flow without any delays. The simulation of the traffic flow
can be performed in one of the simulation softwares known as SUMO(Simulation
of Urban MObility) [14]. It is discussed further in the section 3.0.1
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4.1 SUMO(Simulation of Urban MObility)
SUMO [14] is a free, open source software that allows for a realistic simulation of
different traffic networks. It comes with plethora of tools which can be used for
visualisation, emission calculations, network importing and finding the route.
It allows to import maps from OpenStreetMap, VISUM, VISSIM etc. It can be
used to model multimodal traffic like vehicles, pedestrians, public transport as
well as cyclists. SUMO is implemented in C++ and only uses portable libraries.

4.2 Single Agent
One of the earliest work done in the application of Deep Reinforcement Learning
in the field of traffic flow problem was done by Li et al [15] which used Deep
Q-Learning to control a single intersection. Several other researches started
exploring this area and came up with different ways to define the states, rewards
fucntions and action for modelling the traffic flow problem.

4.2.1 States

The states in terms of traffic flow problem is usually defined in terms of vehicle’s
position and velocity. Similar approach is taken by Liang et al. [16]. The idea
proposed is to divide the intersection in network of grids such that each element
of the grid can contain maximum of one vehicle. The smallest element of the
grid are small-sized square shaped. Depending on the presence of vehicle the
grid is assigned binary values, either 1 or 0. Value is 1 when the vehicle is present
or 0 when there is no vehicle in the grid. This can be quantified in terms of
matrices, where corresponding to the cell of the grid, there is an element in the
matrix, with binary values. This is more clear in the Figure 10 & 11 below.
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Figure 10: Snapshot of traffic intersection at a particular time [16].

Figure 11: Corresponding position matrix on the road [16].

The value of vehicle’s speed can be represented in the similar fashion, the
cells contains the velocity of the vehicle when it resides inside the cell or else it
is 0. Similar approach was taken by Van der Pol in her master thesis [28] and
others researchers [8] [9].
However Rijken [23] in his PhD. thesis, proposes this very same method but
argues that it can be computationally inefficient. He also suggests that when
the size of the bianry matrix is chosen too large, one might encounter a situation
in which a car seems to ‘disappear’. This phenomenon occurs when the centres
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of two different cars fall within the same cell. In that case, the cell will be
denoted by a 1, but we will be unable to tell how many cars there are in that
cell. Therefore he suggests an alternative approach for state representation, he
represents the traffic situation as a vector of length n, where n is the number
of lanes approaching the junction as shown below. This vector represents the
number of vehicles in the different incoming lanes in the traffic network, i.e. it is
vector that keeps a count of the number of vehicles. Only vehicles in "upstream"
lanes are counted. That is, the vehicles that have passed the traffic light already
are not counted.

NumberofLanes

{⎡⎢⎢⎢⎢⎣
6
5
0
1
2

⎤⎥⎥⎥⎥⎦ (36)

In other works, one of them being by Lin et al. [17], the data regarding the
state of the intersection is collected by the sensors installed at traffic lights,
this data is formatted into a triple < C,H,W >, where C is the number of
channels, H is the height of input tensor, and W the width of input tensor. A
series of intersections is divided into 3x3 grid containing 9 intersections. Each
intersection has 4 arms whose length is 500 meters. Eight sensors are placed
on each traffic light to monitor the halting vehicle number and the mean speed.
Since two types of information: the halting vehicle number and the mean speed
are collected in each intersection, the substate can then be formatted into a
2x4x4 tensor as shown in Figure 12. Therefore, the complete state st agent
received is in a shape of (2, 12, 12).

Figure 12: Traffic grid and corresponding formatted tensor [17].

In a different approach by Liu et al. [18], they make use of the length of
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the waiting queues to be states for both vehicles and pedestrians in each traffic
direction at an intersection, as expressed by:

St
i,d = {qt1i,d, qt2i,d, ..., qtji,d,mt

1i,d,L,m
t
1i,d,R, ...,m

t
ji,d,L,m

t
ji,d,R} (37)

where i, j are IDs of intersections and j ∈ Ni; Ni is neighborhood intersec-
tions of i; St

i,d is the state at intersection i, at day d and time t; qtji,d is the
queue length from intersection j to intersection i, at day d and time t; mt

ji,d,L

is the queue length for pedestrians at the left side from intersection j to i, at
day d and time t; and mt

ji,d,R is the queue length for pedestrians at the right
side from intersection j to i, at day d and time t.

4.2.2 Rewards

Several factors should be taken into account while formulating the reward func-
tion. One way to do is by penalising the agent every time the car stops which
is commonly known as the waiting time. Other ways of penalising the agent is
when the average speed of the vehicles in a lane is below the maximum allowed
speed, well established as delay.

In a paper by Lin et al. [17], it is defined as the absolute negative difference
between queue length in north-south/south-north direction and those in east-
west/west-east direction, i.e.

rTLSi
t = − | maxqWE

t −maxqNS
t | (38)

For each intersection TLSi, qWE
t is the number of halting vehicles in lanes

from west to east or vice-versa. Similarly, qNS
t is that from north to south or

vice-versa.
In other works, Liang et al. [16] defines the rewards as the change of the

cumulative waiting time between two neighboring cycles. Let it denote the ith

observed vehicle from the starting time to the starting time point of the tth cycle
and Nt denote the corresponding total number of vehicles till the tth cycle. The
waiting time of vehicle i till the tth cycle is denoted by wit,t, (1 ≤ it ≤ Nt). The
reward in the tth cycle is defined by the following equation,

rt = Wt −Wt+1 (39)

Wt =

Nt∑
it=1

wit,t (40)

Similar approach is used by Gao et al. [8] and Calvo et al. [5]. Whereas, Liu
et al. [18] represents the reward function in the following way by taking into
account the pedestrian waiting time as well:
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Rt
i,d(a

t
i,d, a

t
j,d, S

t
i,d, S

t
j,d,W

t
i,d) = −

(
wt

1,d

| Ni |
∑
j∈Ni

qtji,d+
wt

2,d

| NiNj |
∑
j∈Ni

∑
k∈Nj

qtkj,d+

+
wt

3,d

2 | Ni |
∑
j∈Ni

(mt
ji,d,L +mt

ji,d,R)

)
(41)

where Rt
i,d is the reward at intersection i, at day d and time t; ati,d is the ac-

tion at intersection i, at day d and time t; wt
1,d is the weight to present the local

vehicular queues at intersection i, wt
2,d is the weight to present the neighbour-

hood vehicular queues at the neighbours of intersection i; wt
3,d is the weight to

present the total pedestrian queues at intersection i and W t
d = {wt

1,d, w
t
2,d, w

t
3,d}.

The sum of these weights equals 1.∑
j∈Ni

qtji,d is the incoming vehicular queues from intersection j to intersec-
tion i; 1

|Nj |
∑

j∈Ni

∑
k∈Nj

qtkj,d is the total vehicular queues at all neighbouring
intersection js, including the outgoing vehicular traffic from intersection i to
intersection j.

Noe [6] introduces another term called speed score, that is defined for detec-
tor i as:

speed_scorei = min(
Vavg,i

Vmax,i
, 1.0) (42)

where Vavg,i refers to the average of the speeds measured by traffic detector i
and Vmax,i refers to the maximum speed in the road where detector i is located.
Finally, the reward function is defined as:

rewardi = α · counti · (speed_scorei − baselinei) (43)

4.2.3 Actions

Actions in case of traffic control problem are defined as the different combina-
tions of traffic light signal at the intersection. It is usually expressed as different
phases and the agent selects one of these phases or actions to maximise the long
term cumulative reward. Liang et al. [16] defines the action to be taken by the
traffic lights at the intersection in the following four phases: north-south green,
east-north & west-south green, east-west green, and east-south & west-north
green, while the other unmentioned directions are red by default. Let a four-
tuple < t1, t2, t3, t4 > denote the duration of the four phases in current cycle. It
is best described by the Figure 13 where each circle means the duration of the
four phases in one cycle. Time change from current cycle to succeeding cycle is
discretised to 5 seconds. The duration of one and only one phase in the next
cycle is the current duration added or subtracted by 5 seconds. This idea can be
extended to more complex intersections with more than four streets meeting at
a junction. The more complex the intersection, more are the number of phases.
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Figure 13: The action space [16].

Yellow signal is important for switching between two phases as it guarantees
safety by allowing speeding vehicles to stop by providing them with enough
time when the switch is being made between green and red signals. It can be
formulated either as a fixed time for yellow light when switching between two
actions or it can be selected as an action itself. The time duration of the yellow
light is defined by Liang [16] as the ratio of the maximum speed and the most
commonly seen deceleration as follows:

Tyellow =
vmax

adec
(44)

This provides enough time for the traffic to come to a halt safely.
In the paper by Lin et al. [17], yellow light phase lasts for 3 seconds, while

they use the similar approach of phases for defining the action space as shown
in the Figure 14.
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Figure 14: The four phases of traffic lights [17].

Similar phase approach is being used by Gendera et al. [9], Van der Pol [28]
and other researchers [18] [5] [6].

Gao [8] divides each of the four lanes meeting at the intersection into four
parts: L0, L1, L1, L3. This is an assumption made by Gao where each lane
consists of four sublanes. The innermost lane (referred to as L0) is for vehicles
turning left, the middle two lanes (L1 and L2) are for vehicles going straight and
the outermost lane (L3) is for vehicles going straight or turning right. Vehicles
at this intersection run under control of traffic signals: green lights mean vehicles
can go through the intersection, however vehicles at left-turn waiting area should
let vehicles going straight pass first; yellow lights mean lights are about to turn
red and vehicles should stop if it is safe to do so; red lights mean vehicles must
stop. The action defined for each lane can be understood by the Figure 15 and
Figure 16.

Rijken [23] defines an admissible traffic light configuration as a D-tuple:

l =< s1, s2, ...., sd > (45)

where D is the number of signals (or the number of links) in the junction
and sd is the state of signal d. A signal can have one of three states: ‘G′ for
priority green, ‘g′ for non priority green, and ‘r′ for red. Each junction has a set
of admissible traffic light configurations S = {l1, l2, ...., lc}. It is best visualised
by the Figure 17, and it has < G,G, g, r, r, r, r,G,G,G > is an admissible traffic
light configuration that allows incoming traffic from the East and West to cross
the junction. The link from East to South has a non-priority green light. As
cars on that link want to turn, they have to give priority to the cars approaching
from the West.
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Figure 15: A four way intersection [8].

Figure 16: Example of traffic signal timing for actions in Fig. 15 [8].
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Figure 17: The T-junction considered here has ten links and three admissible
traffic light configurations. The incoming lane from the South has four links:
two going left and two going right. The other roads have three links each. The
lane that crosses the junction has one link. The lane from which one can turn
South has two links: one to cross the junction and one to turn South.

4.3 Multi Agent Traffic Light
As mentioned in earlier Section 3, when the number of agents increases, the
common goal of these multiple agents together is to find a joint optimal action
such that the common reward is maximised. A good approach will be using the
method of Transfer Planning(TP) [19] (refer to Section 3.2).

In TP, once the joint Q-value function for the two-agent scenario is learned,
this is used as the source problem in transfer planning. To solve the multi-agent
scenarios, this source problem is used for each pair of neighbouring agents.
After finding the local joint Q-value function for the factors in the multi-agent
problem, the Q-function is re-used for all similar factors in the larger multi-agent
problem. For an example regarding a four-agent scenario, see Figure 18, where
the Q-values for two two-agent source problems - Qσ and Qζ , for the rotated
factor are learned separately, and then applied to a coordination algorithm in
the four-agent scenario. For the three-agent scenario, Qσ is re-used for both
factors in the graph. Thus, the two-agent Q-function is re-used to compute a
globally optimal joint action for the three-agent scenario in Figure 19.
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Figure 18: Transfer planning for traffic light control.

Figure 19: Three-agent scenario

As suggested by Abdulhai [2] multiagent situation permits additional state
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information, since communication between agents extends the effective field of
view of individual agents. In contrast to Abdulhai’s work, Prasanth et. al [22]
uses a feature based representation with function approximation in order to
reduce the curse of dimensionality in multi agent systems. The Q-function is
approximated as:

Q(s, a) ≈ θTσs,a

where, σs,a is a d-dimensional feature (column) vector that corresponds to the
state–action tuple (s, a), with s ∈ S, and a ∈ A(s). The dimension d is signifi-
cantly less compared to the cardinality of the set of feasible state–action tuples
(s, a). Here, θ is a tunable parameter whose dimension is the same as in σs,a.
The features are chosen based on the queue lengths(similar to the idea used by
Thorpe [26]) and elapsed times of each signalled lane of the road network as
shown by the equation below:

σsn,an = (σq1
(n), ..., σqN

(n), σt1(n), ..., σtN(n), σa1(n), ..., σam(n))
T (46)

where, σsn,an
is feature vector for the state-action tuple (s, a) at time in-

stance n, qi(n) is the queue length on lane i at time n, and ti(n) is the elapsed
time for the red signal on lane i at time n. σa1(n), ..., σam(n) corresponds to the
actions or sign configurations chosen at each of the m junctions. And finally,
N is the total number of lanes (inclusive of all junctions). This approach as
mentioned in the paper is computationally faster since the number of features
is less compared to the total number of state action tuple. As an example, in
case of a 3x3 intersection grid the number of state-action tuple is 10101 while
the number of features was just 200.

5 Research Question
• How to decide the reward function in order to effectively co-ordinate traffic

and thereby reduce traffic jams?

• How to scale from few agents involving few intersections to a suburb of a
city and finally the entire city?

• Training the agent for different types of intersections which we come across
in the real life scenario and extending it to bigger maps.

• How to exploit the sparsity of the state matrix? Since most of the entries
are null, and therefore computation time is high.

Each of these research questions can be a thesis project in itself, therefore during
the course of thesis work the main problem will be to tackle the extension of
traffic light control to a bigger maps(comprising of multiple intersections) using
the idea of Transfer Planning.
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