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Abstract

HARES is a model to determine the wave motion in harbours and at the shore. The effects of
diffraction, reflection, refraction, shoaling and the dissipation caused by wave breaking and bottom
friction are all taken into account in the calculation. The equation that includes these effects is the
non-linear Mild-Slope equation. To discretize the non-linear Mild-Slope equation Picard iteration
is performed and the spatial discretization is based on the Ritz-Galerkin finite element method.
This discretization results in a linear system of equations which is iteratively solved with the Krylov
subspace method Bi-CGSTAB preconditioned with the incomplete LU decomposition. The time
to compute the solution is undesirably long for the current version of HARES. In this thesis we
address several methods to reduce the computing time of this implementation. As an improvement
we propose to implement a suitable stopping criterion for the non-linear loop, such that we only
perform the necessary amount of iterations. We replace Picard iteration by inexact Picard iteration
to reduce the number of matrix-vector products and hence the time to compute the non-linear
solution. The iterative solution method is improved by changing the current implementation into
IDR(s) preconditioned with a complex shifted Laplace preconditioner. These improvements result
in a programme which is upto 58 times faster than the original implementation. Furthermore a
direct method for solving the system of equations is tested, which gives very good results.
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this project.

Furthermore I would like to thank my father Jan van de Sande for his input on my English writing,
my boyfriend Jurriaan Versendaal for his support and patience, Linda Crapts, Frank Tabak and
Jacob de Zoete for the nice conversations during the lunch breaks and Joost van Zwieten for the
implementation of MUMPS and his thoughts on the project.

Utrecht, the Netherlands Gemma van de Sande
May 2012

iii



iv



Contents

Abstract i

Preface iii

Table of Contents vii

List of Figures ix

List of Tables xi

1 Introduction 1

2 The Mild-Slope equation 3
2.1 The linear Mild-Slope equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Derivation of the linear Mild-Slope equation . . . . . . . . . . . . . . . . . . 3
2.1.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Summary of the linear Mild-Slope equation . . . . . . . . . . . . . . . . . . 9

2.2 The non-linear Mild-Slope equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Derivation of the non-linear Mild-Slope equation . . . . . . . . . . . . . . . 9
2.2.2 Dissipation of wave energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.4 Summary of the non-linear Mild-Slope equation . . . . . . . . . . . . . . . . 12

3 Discretization of the non-linear Mild-Slope Equation 15
3.1 Picard iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Newton’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Choosing the forcing sequence ηk . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Stopping criterion for the non-linear loop . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Weak formulation for the Mild-Slope equation . . . . . . . . . . . . . . . . . . . . . 19
3.6 Newton’s method for the Mild-Slope equation . . . . . . . . . . . . . . . . . . . . . 20
3.7 Summary of the discretization of the non-linear Mild-Slope equation . . . . . . . . 22

4 Spatial Discretization of the Mild-Slope Equation 23
4.1 Ritz-Galerkin Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Finite Element Method combined with Picard iteration . . . . . . . . . . . . . . . 24

4.2.1 Internal elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.2 Boundary elements on the open boundary . . . . . . . . . . . . . . . . . . . 25
4.2.3 Boundary elements on the closed boundary . . . . . . . . . . . . . . . . . . 26

4.3 Newton’s method and FEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.1 Internal elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.2 Boundary elements on the open boundary . . . . . . . . . . . . . . . . . . . 28
4.3.3 Boundary elements on the closed boundary . . . . . . . . . . . . . . . . . . 28

4.4 Summary of the spatial discretization . . . . . . . . . . . . . . . . . . . . . . . . . 28

v



vi CONTENTS

5 Solving a system of equations 29
5.1 Direct methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1.1 MUltifrontal Massively Parallel Solver - MUMPS . . . . . . . . . . . . . . . . 29
5.2 Iterative methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.1 Bi-CGSTAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2.2 IDR(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3 Preconditioners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3.1 Incomplete LU decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3.2 Shifted Laplace preconditioner . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.4 Summary of the methods to solve the system of equations . . . . . . . . . . . . . . 37

6 Bounds on the eigenvalue range 39
6.1 Element matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.1.1 Internal elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.1.2 Boundary elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2 Field of values of a matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.3 Bound on the field of values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.4 Eigenvalue estimate for the Mild-Slope equation . . . . . . . . . . . . . . . . . . . . 43

6.4.1 Internal elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.4.2 Boundary elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.5 Choosing the coefficient ω in IDR(s) . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.5.1 Chebyshev polynomial on a disk . . . . . . . . . . . . . . . . . . . . . . . . 50

6.6 Summary of the eigenvalue estimate . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7 Numerical experiments 53
7.1 Test cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.1.1 Harbour of Scheveningen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.1.2 Maasvlakte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.1.3 The harbour of Marsaxlokk . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.2 Current implementation of HARES . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.3 Stopping criterion for the outer loop . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.4 Using the incoming wave for a value of W (x, y, ζ̃) . . . . . . . . . . . . . . . . . . . 58
7.5 The modified wave number p̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.6 Bi-CGSTAB versus IDR(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.6.1 Choosing the initial space G0 . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.7 Shifted Laplace preconditioner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.8 Newton’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.9 Inexact Picard iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.9.1 Choice 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.9.2 Choice 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.9.3 Choice 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.9.4 Choice 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.9.5 Choice 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.10 The direct method MUMPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.11 Summary of the numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . 72

8 Conclusion 75

A Derivation of the Mild-Slope equation 79
A.1 Left out steps in the derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.2 Leibniz integral rule for variable limits . . . . . . . . . . . . . . . . . . . . . . . . . 80

A.3 Integral
∫ 0

−h Z
2 dz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

B Determining the eigenvalues 83



CONTENTS vii

C Numerical results 85
C.1 Input files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

C.1.1 Scheveningen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
C.1.2 Maasvlakte - Bottom topography A . . . . . . . . . . . . . . . . . . . . . . 85
C.1.3 Maasvlakte - Bottom topography B . . . . . . . . . . . . . . . . . . . . . . 86
C.1.4 Malta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

C.2 Detailed numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87



viii CONTENTS



List of Figures

2.1 Closed boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Open boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

6.1 Bounding boxes for internal elements. . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.2 Bounding boxes for internal and boundary elements using a non-Hermitian precon-

ditioner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.3 Bounding boxes for internal and boundary elements using a Hermitian preconditioner. 49

7.1 Overview of the harbour of Scheveningen . . . . . . . . . . . . . . . . . . . . . . . 54
7.2 Overview of the Maasvlakte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.3 Initial guess and solution for the Maasvlakte - bottom topography A . . . . . . . . 55
7.4 Initial guess and solution for the Maasvlakte - bottom topography B . . . . . . . . 56
7.5 Overview of the harbour of Marsaxlokk - Malta . . . . . . . . . . . . . . . . . . . . 56
7.6 The relative decrease in the non-linear residual for the test case Scheveningen . . . 59
7.7 The convergence behaviour of IDR(s) and Bi-CGSTAB . . . . . . . . . . . . . . . 61
7.8 Number of matrix-vector products per outer iteration . . . . . . . . . . . . . . . . 62
7.9 Matrix-vector products when the initial space ∆Xs is chosen in IDR(s) . . . . . . 63
7.10 The convergence behaviour of the shifted Laplace preconditioner . . . . . . . . . . 66
7.11 Overview of the decrease in computing time . . . . . . . . . . . . . . . . . . . . . . 72
7.12 Overview of the decrease in matrix-vector products . . . . . . . . . . . . . . . . . . 73

C.1 Geometry of wave motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

ix



x LIST OF FIGURES



List of Tables

3.1 Picard iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Inexact Picard iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Inexact Newton’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.1 Bi-CGSTAB algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 IDR(s) algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3 Incomplete LU factorization algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.1 Eigenvalue range for internal elements. . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.2 Eigenvalue range for internal and boundary elements using a non-Hermitian pre-

conditioner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.3 Eigenvalue range for internal and boundary elements using a Hermitian preconditioner 49

7.1 Initial time measurement of the current implementation of HARES . . . . . . . . . 57
7.2 Convergence behaviour of the test cases . . . . . . . . . . . . . . . . . . . . . . . . 58
7.3 Implementing the stopping criterion for the outer loop . . . . . . . . . . . . . . . . 58
7.4 Using the initial incoming wave to determine a value for W (x, y, ζ̃) . . . . . . . . . 58
7.5 Implementing the modified wave number p̂ . . . . . . . . . . . . . . . . . . . . . . . 59
7.6 The change in the non-linear solution when the modified wave number p̂ is included 59
7.7 The change in the solution for a decreasing water depth . . . . . . . . . . . . . . . 60
7.8 Computing time for IDR(s) with the ILU(0) preconditioner . . . . . . . . . . . . . 60
7.9 Computing time for one iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.10 Computational time for IDR(s) when the initial space ∆Xs is chosen . . . . . . . 64
7.11 Computational time for four types of shifted Laplace preconditioners . . . . . . . . 65
7.12 Computing time for Newton’s method . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.13 Computing time for Newton’s method - changed stopping criterion . . . . . . . . . 67
7.14 Computational time for the forcing sequence based on choice 1 . . . . . . . . . . . 68
7.15 Computational time for the forcing sequence based on choice 2 . . . . . . . . . . . 69
7.16 Computational time for the forcing sequence based on choice 3 . . . . . . . . . . . 69
7.17 Computational time for the forcing sequence based on choice 4 . . . . . . . . . . . 70
7.18 Computational time for the forcing sequence based on choice 5 . . . . . . . . . . . 71
7.19 Computational time for the direct method MUMPS . . . . . . . . . . . . . . . . . . . 72
7.20 Percentage of the computational time and matrix-vector products of initial imple-

mentation needed in the improved version . . . . . . . . . . . . . . . . . . . . . . . 73

xi



xii LIST OF TABLES



Chapter 1

Introduction

The subject of this thesis is suggested by the company Svašek Hydraulics1, a specialist consultant
in coastal, harbour and river engineering. Advanced numerical models are used to determine
water dynamics, i.e. currents and waves, and sediment transport caused by water dynamics. The
majority of the models are developed by the employees of Svašek Hydraulics and mainly based on
the finite element method. One of these models is HARES, which stands for HArbour RESonance.
HARES calculates the wave penetration and is especially useful in harbour and breakwater studies.
With the outcome of HARES the natural frequency of the studied domain can be determined and
therefore also the sensitivity for resonance.

HARES incorporates the effects of diffraction, reflection, refraction and shoaling, which influences
the shape of the water waves. The equation that includes these four effects is the two dimensional
linear Mild-Slope equation. The latest addition to HARES is the inclusion of energy dissipation
caused by bottom friction and wave breaking. This leads to a non-linear term in the Mild-Slope
equation. The non-linear Mild-Slope equation is very similar to the damped Helmholtz equation.
More advance numerical methods are necessary to obtain the wave motion in the considered area.

The current programme has the following structure: An outer loop is performed to deal with
the non-linearity of the equation, which results in a sequence of linear systems of equations. In
the inner loop we determine the solution of this system of equations. This procedure is repeated
25 times, without knowing whether convergence has been reached and whether the desired non-
linear solution is obtained. In HARES Picard iteration is implemented to discretize the non-linear
Mild-Slope equation and for the spatial discretization the Ritz-Galerkin finite element method is
used. The resulting system of equations is solved with the Krylov subspace method Bi-CGSTAB
preconditioned with the incomplete LU decomposition. For large domains, when the number of
unknowns is large, the computing time becomes undesirably lengthy. The goal of this thesis is to
accelerate HARES.

Research objectives & Outline of the report

The overall objective of this thesis is the acceleration of the model HARES, which is divided into
several research objectives.

We start in chapter 2, The Mild-Slope equation, with the derivation of the linear and non-linear
Mild-Slope equation and the boundary conditions when the considered area is a harbour.

The first research objective is to improve the solver for the non-linear Mild-Slope equation. In
the current programme Picard iteration is used and 25 outer iterations are performed. In chapter
3, Discretization of the non-linear Mild-Slope equation, we present Picard iteration as used in
HARES. The first improvement that we propose regarding the non-linear implementation, is to

1http://www.svasek.com/index.html
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2 CHAPTER 1. INTRODUCTION

use a suitable stopping criterion for the non-linear outer loop, to determine when and whether the
non-linear convergence is reached. To obtain a faster non-linear convergence we describe Newton’s
method which usually obtains quadratic convergence. Both Picard iteration and Newton’s method
result in a sequence of systems of equations, which need to be solved. To accelerate this procedure
we present inexact Picard iteration and inexact Newton’s method. For inexact Picard iteration,
respectively inexact Newton’s method, the computing time is reduced by relaxing the condition
of solving the obtained system of equations exactly each outer iteration. We need a sequence of
forcing terms for this relaxation, therefore we discuss several choices.

In chapter 4, Spatial discretization of the Mild-Slope equation, we describe the Ritz-Galerkin finite
element method as used in HARES. We distinguish between the case when Picard iteration is
applied as the discretization of the non-linear Mild-Slope equation or when Newton’s method is
used.

We describe in chapter 5, Solving a system of equations, the current method Bi-CGSTAB and
the preconditioner incomplete LU decomposition. To improve the computing time we present the
Krylov subspace method IDR(s) and the shifted Laplace preconditioner.The direct method MUMPS

is also proposed, since a direct method can give good results for two dimensional problems.

There are elements of the IDR(s) algorithm and the shift in the shifted Laplace preconditioner that
can be chosen freely. The second research objectives is how these elements should be chosen for
the non-linear Mild-Slope equation. In chapter 6, Bounds on the eigenvalue range, we investigate
how these elements can be chosen by determining a range on the eigenvalues of the preconditioned
system of equations. Using this estimate an optimal shift can be determined for good convergence
behaviour. Knowing a bound on the eigenvalue range, we can choose the coefficient ω in the
IDR(S) algorithm based on Chebyshev polynomials for a disk in the complex plane.

In chapter 7, Numerical experiments, we present the performed experiments on the four test cases
provided by Svašek Hydraulics, in order to answer the main research question. We investigate
which implementation gives the best results regarding the computing time.

Finally in chapter 8, Conclusion, we give the conclusion of this thesis and do some recommenda-
tions for further research.



Chapter 2

The Mild-Slope equation

The four main physical phenomena in a harbour or in the neighbourhood of the shore which
influence the shape of water waves are diffraction, reflection, refraction and shoaling. Diffraction
is the bending and spreading of a wave around an edge of an object and reflection is the return
of all or part of the wave energy due to a boundary. Diffraction and reflection occur due to the
interaction of the waves with objects in the area and occur simultaneously. Refraction is the
change in wave direction and wave length and shoaling is the change in wave height, both caused
by a wave moving from deep to shallow water. The equation that combines these four effects is
the (linear) Mild-Slope equation, assuming only gentle changes of the ocean bottom. The Mild-
Slope equation has been derived by J.C.W. Berkhoff in 1976 in his dissertation at the Technical
University of Delft. In section 2.1 we present the linear version of the the Mild-Slope equation, as
derived by J.C.W. Berkhoff, and the boundary conditions for a harbour. The effects of bottom
friction and wave breaking lead to the non-linear term in the (non-linear) Mild-Slope equation. In
section 2.2 we discuss the non-linear Mild-Slope equation, derived by Dingemans (1997), and its
boundary conditions.

2.1 The linear Mild-Slope equation

In this section we describe the linear Mild-Slope equation as presented by Berkhoff (1976). Section
2.1.1 contains the derivation of the linear Mild-Slope equation and in section 2.1.2 we discuss the
boundary conditions for a harbour.

2.1.1 Derivation of the linear Mild-Slope equation

The derivation of the linear Mild-Slope equation starts with the assumption that it is valid to use
the linearised small-amplitude wave equations. To be able to derive the linearised small-amplitude
wave equations from the Navier-Stokes equations one has to make the following assumptions
(Dingemans (1997)):

� Water is an ideal fluid, i.e., homogeneous, inviscid, irrotational and incompressible flow;

� The pressure at the free surface is constant and uniform;

� The wave slope εs = 2πA
L is small, where A denotes the amplitude of the wave and L the

wave length;

� The wave motion is harmonic in time;

� The surface tension and the Coriolis effect can be neglected.

3



4 CHAPTER 2. THE MILD-SLOPE EQUATION

Furthermore we assume that the changes in bottom topography are small or, as put into formula
by Mei (1989),

∇h
k0h
� 1,

where ∇h denotes the change in the ocean bottom, h(x, y) the water height and k0 the wave
number. The stationary linearised equations for small-amplitude waves, the starting point for the
derivation of the linear Mild-Slope equation, are given by Berkhoff (1976)

∂2Φ

∂x2
+
∂2Φ

∂y2
+
∂2Φ

∂z2
= 0 ; − h ≤ z ≤ 0, (2.1.1)

g
∂Φ

∂z
− ω2Φ = 0 ; z = 0, (2.1.2)

∂Φ

∂z
+
∂Φ

∂x

∂h

∂x
+
∂Φ

∂y

∂h

∂y
= 0 ; z = −h. (2.1.3)

Where Φ(x, y, z) denotes the velocity potential in the spatial coordinates x, y and z, g the gravi-
tational acceleration and ω the wave frequency. The ocean bottom is denoted as z = −h and the
free surface with z = 0. Using the assumption of a gradual change in bottom topography, we can
scale the horizontal coordinates x and y with σ/h̄, i.e.

(x̄, ȳ) =
σ

h̄
(x, y),

with σ the mean slope over a distance D and h̄ the average water depth in the domain. For the
variation in water depth ∇h = (∂h/∂x, ∂h/∂y)T this scaling results in

∇h =

(
∂h

∂x
,
∂h

∂y

)T
=
σ

h̄

(
∂h

∂x̄
,
∂h

∂ȳ

)T
=
σ

h̄
∇h with ∇ =

(
∂

∂x̄
,
∂

∂ȳ

)T
.

The variables x, y, z and h are made dimensionless with the free surface characteristic l0 = g/ω2,
hence

(x′, y′, z′, h′) =
1

l0
(x, y, z, h).

Substituting these dimensionless variables into equations (2.1.1) - (2.1.3), while omitting the
primes, results in the dimensionless time-independent linearised equations for small-amplitude
waves

∂2Φ

∂x2
+
∂2Φ

∂y2
+
∂2Φ

∂z2
= 0 ; − h ≤ z ≤ 0, (2.1.4)

∂Φ

∂z
− Φ = 0 ; z = 0, (2.1.5)

∂Φ

∂z
+ ε

(
∂Φ

∂x

∂h

∂x̄
+
∂Φ

∂y

∂h

∂ȳ

)
= 0 ; z = −h, (2.1.6)

with ε = σl0/D. We define the vertical structure Z(h, z) of the wave motion as

Z(h, z) =
cosh(κ(h+ z))

cosh(κh)
. (2.1.7)

A common assumption, Dingemans (1997), in the derivation of the Mild-Slope equation is that the
vertical structure of the wave motion can be given beforehand by the function Z(z, h), expression
(2.1.7). The dependence of Z(h, z) on the horizontal coordinates x and y is only weak through
the presence h(x, y). We can write the three-dimensional velocity potential Φ(x, y, z) as

Φ(x, y, z) = Z(z, h)ϕ(x, y, z) =
cosh(κ(h+ z))

cosh(κh)
ϕ(x, y, z), (2.1.8)
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where κ, the dimensionless wave number, can be determined by the dimensionless dispersion
relation 1 = κ tanh(κh). Substitution of expression (2.1.8) into equations (2.1.4) - (2.1.6) gives

Z∇2ϕ+ 2∇Z · ∇ϕ+ ϕ∇2Z + ϕ
∂2Z

∂z2
+ 2

∂Z

∂z

∂ϕ

∂z
+ Z

∂2ϕ

∂z2
= 0 ; − h ≤ z ≤ 0, (2.1.9)

∂ϕ

∂z
= 0 ; z = 0, (2.1.10)

Z
∂ϕ

∂z
+ ε
[
(∇Z · ∇h̄)ϕ+ (∇ϕ · ∇h̄)Z

]
= 0 ; z = −h. (2.1.11)

The derivatives of Z with respect to x and y are given by

∇Z =

(
∂Z

∂h

∂h

∂x
,
∂Z

∂h

∂h

∂y

)
= ε

(
∂Z

∂h

∂h

∂x̄
,
∂Z

∂h

∂h

∂ȳ

)
= ε

∂Z

∂h
∇h.

The second derivatives of Z with respect to x, y and z result in

∇2Z = ε2
(
∂2Z

∂h2
∇h · ∇h+

∂Z

∂h
∇2
h

)
and

∂2Z

∂z2
= κ2Z.

Substitution of these expressions into equations (2.1.9) - (2.1.11) gives

ε2
[
ϕ

(
∂2Z

∂h2
∇h · ∇h+

∂Z

∂h
∇2
h

)]
+ ε

[
2
∂Z

∂h
∇h · ∇ϕ

]
+ Z∇2ϕ+ κ2ϕZ + 2

∂Z

∂z

∂ϕ

∂z
+ Z

∂2ϕ

∂z2
= 0 ; − h ≤ z ≤ 0, (2.1.12)

∂ϕ

∂z
= 0 ; z = 0, (2.1.13)

ε2
[
ϕ
∂Z

∂h
∇h · ∇h

]
+ ε
[
∇ϕ · ∇hZ

]
+ Z

∂ϕ

∂z
= 0 ; z = −h. (2.1.14)

Multiplying equation (2.1.12) with Z and integrating it over the total water depth, from z = −h
until z = 0, while using the boundary conditions (2.1.13) and (2.1.14), gives (see Appendix, A.1)

ε2
[∫ 0

−h
z

(
∂2Z

∂h2
∇h · ∇h+

∂Z

∂h
∇2
h

)
ϕ dz

]
+ ε

[∫ 0

−h

∂Z2

∂h
∇h · ∇ϕ dz

]

+

∫ 0

−h
Z2
(
∇2ϕ+ κ2ϕ

)
dz + ε

[
Z2∇ϕ · ∇h

]
z=−h + ε2

[
Zϕ

∂Z

∂h
∇h · ∇h

]
z=−h

= 0. (2.1.15)

The dependency of the velocity potential Φ with respect to the vertical coordinate z has largely
been taken into account by the term Z(h, z). This indicates that ϕ(x, y, z) is only weakly depending
on z. Therefore we can expand ϕ(x, y, z) in a Taylor series with respect to the coordinate σz. The
symmetry boundary condition (2.1.13), states that the expansion does not contain the term σz.
This results in the following Taylor series

ϕ(x, y, z) = ϕ0(x, y) + σ2z2ϕ1(x, y) + σ3z3ϕ2(x, y) + . . . .

Substitution of this Taylor series into equation (2.1.15), while noting that ϕ0 is independent of z,
gives
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ε2
[
ϕ0∇h · ∇h

∫ 0

−h
Z
∂2Z

∂h2
dz + ϕ0∇

2
h

∫ 0

−h

1

2

∂Z2

∂h
dz

]
+ ε∇h · ∇ϕ0

∫ 0

−h

∂Z2

∂h
dz

+ (∇2ϕ0 + κ2ϕ0)

∫ 0

−h
Z2 dz + ε∇h · ∇ϕ0 Z

2
∣∣
z=−h

+ ε2ϕ0∇h · ∇h
1

2

∂Z2

∂h

∣∣∣∣
z=−h

+O (εnσm) = 0,

with n ≥ 0 and m ≥ 2. Using the Leibniz integral rule (see Appendix A.2), the integral
∫ 0

−h
∂Z2

∂h dz
can be written as ∫ 0

−h

∂

∂h
Z2 dz =

∂

∂h

∫ 0

−h
Z2 dz − Z2

∣∣
z=−h .

Neglecting the O(ε2) and O(εnσm), n ≥ 0,m ≥ 2 terms gives

ε∇h · ∇ϕ0

[
∂

∂h

∫ 0

−h
Z2 dz − Z2

∣∣
z=−h

]
+
(
∇2ϕ0 + κ2ϕ0

) ∫ 0

−h
Z2 dz + ε∇h · ∇ϕ0 Z

2
∣∣
z=−h = 0.

Rewriting gives

ε∇h · ∇ϕ0

[
∂

∂h

∫ 0

−h
Z2 dz

]
+
(
∇2ϕ0 + κ2ϕ0

) ∫ 0

−h
Z2 dz = 0. (2.1.16)

After some manipulations (see Appendix, A.1) equation (2.1.16) can be written as

∇ ·
∫ 0

−h
Z2 dz∇ϕ0 + κ2ϕ0

∫ 0

−h
Z2 dz = 0. (2.1.17)

This equation includes the term∫ 0

−h
Z2 dz with Z(z, h) =

cosh(κ(z + h))

cosh(κh)
, (2.1.18)

which equals n0

κ2 (see Appendix A.3), or n0ω
2

gk0
in dimensional form. The coefficient n0 denotes the

relation between the wave speed c = ω/k0 and the group velocity cg, i.e. cg = n0c. Returning
to the dimensional form and substituting the obtained expression for the integral of (2.1.18) into
equation (2.1.17) gives the linear Mild-Slope equation.

∇ ·
(
n0ω

2

gk2
0

∇ϕ0

)
+ k2

0

n0ω
2

gk2
0

ϕ0 = 0, ⇐⇒

∇ ·
(
n0

k2
0

∇ϕ0

)
+ n0ϕ0 = 0, ⇐⇒

∇ · (ccg∇ϕ0) + ω2 cg
c
ϕ0 = 0. (2.1.19)

Equation (2.1.19) is known as the linear Mild-Slope equation which combines the effects of
diffraction-reflection and refraction-shoaling.
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2.1.2 Boundary conditions

We cannot solve the linear Mild-Slope equation without the appropriate boundary conditions for
the considered domain. In a harbour there are two distinct boundaries, i.e.

� The open boundary (Γ1), where a prescribed incoming wave from outside the domain and an
outgoing wave from the interior are present. The open boundary is not a physical boundary,
therefore approaching waves will completely pass it and no reflection occurs.

� The closed boundary (Γ2), where complete reflection, or partial reflection or no reflection of
the wave energy occurs.

The condition for the closed boundary is discussed first and then we present the condition for the
open boundary.

Closed boundary
The situation at the closed boundary is sketched in figure 2.1.

x = 0
closed boundary

y

x

ϕR

ϕin

θ

Figure 2.1: An incoming wave at an angle θ to an element of the closed boundary, where ϕin denotes
the incoming wave and ϕR the outgoing (reflected) wave.

Suppose that the closed boundary is located at the axis x = 0. At this boundary there is the
incoming wave ϕin at an angle θ and the outgoing reflected wave ϕR leaving at the same angle
θ. The incoming wave is given by ϕin = ϕ̃e−ikxxe−ikyy and the partially reflected wave by
ϕR = Rϕ̃eikxxe−ikyy, where ϕ̃ denotes the wave height, R the reflection coefficient (0 ≤ R ≤ 1)
and i =

√
−1 the imaginary unit. If R = 0 there is no reflection and all the wave energy

goes through the boundary, if R = 1 full reflection occurs and no wave energy goes through the
boundary, and if 0 < R < 1 partial reflection takes place. The wave which is present at the closed
boundary is given by the summation of the waves ϕin and ϕR, i.e.

ϕ = ϕin + ϕR = ϕ̃
(
e−ikxx +Reikxx

)
e−ikyy.

The amount of wave potential that crosses the boundary is determined by ∂ϕ
∂n , or in this simplified

case ∂ϕ
∂x , which is given by

∂ϕ

∂n
= −ikxϕ̃

(
e−ikxx −Reikxx

)
e−ikyy.

At the closed boundary, where x = 0, we have the following two expressions

∂ϕ

∂n

∣∣∣∣
x=0

= −ikxϕ̃ (1−R) e−ikyy and ϕ|x=0 = ϕ̃ (1 +R) e−ikyy. (2.1.20)

Combining these two expressions gives the boundary condition at the closed boundary

∂ϕ

∂n
= −ikx

(
1−R
1 +R

)
ϕ. (2.1.21)
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The term kx depends on the angle θ of the incoming wave, i.e. kx = k0 cos(θ), which is not known
a priori. It is possible to approximation the cos(θ) term with the first order Taylor series

cos(θ) =

√
1− sin2(θ) ≈ 1− 1

2
sin2(θ) = 1 +

1

2

∂2ϕ/∂s2

k2
0ϕ

,

where s denotes the direction parallel to the boundary. The expression for the sin(θ) term, in
the last step, is obtained using ky = k0 sin(θ) and the second derivative of the right-hand-side
of expression (2.1.20) with respect to y. The reflection coefficient R is an unknown parameter
depending on many (non-linear) processes. However, its value can be determined experimentally
by matching the outcome of the model to the measurements on the domain. These measurements
will contain errors, hence the value of R will not be very accurate. Within this accuracy it
is assumed that the first order Taylor series of the cos(θ) term is sufficient. Substituting this
approximation into equation (2.1.21) gives the boundary condition as used in HARES for the
closed boundary

∂ϕ

∂n
= −i

(
1−R
1 +R

){
k0ϕ+

1

2k0

∂2ϕ

∂s2

}
. (2.1.22)

Open boundary
At the open boundary we have the sketched situation of figure 2.2

open boundary

y

x

ϕout

θ

ϕin

Figure 2.2: An element of the open boundary with a prescribed incoming wave ϕin and an outgoing wave
ϕout at an angle θ. Since no reflection occurs both the incoming and the outgoing wave cross the boundary
without loss of wave energy.

The condition at the open boundary is determined by a superposition of the influences of the
incoming wave ϕin and the outgoing wave ϕout. The incoming wave ϕin is given by ϕin =
ϕ̃ine

−ik·x. The contribution of the incoming wave at the boundary is then given by

∂ϕin
∂n

= −i(k · n)ϕin.

The contribution of the outgoing wave is prescribed by equation (2.1.22) with R = 0, since no
reflection occurs. Therefore we obtain

∂ϕout
∂n

= −i
{
k0ϕout +

1

2k0

∂2ϕout
∂s2

}
.

The outgoing wave ϕout is equal to the difference between the wave present in the interior ϕ and
the incoming wave ϕin, i.e. ϕout = ϕ − ϕin. Combining the contributions of the incoming and
outgoing wave gives the boundary condition for the open boundary
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∂ϕ

∂n
=
∂ϕout
∂n

+
∂ϕin
∂n

= −i
{
k0ϕout +

1

2k0

∂2ϕout
∂s2

+ k0(ein · n)ϕin

}
= −i

{
k0(ϕ− ϕin) +

1

2k0

(
∂2ϕ

∂s2
− ∂2ϕin

∂s2

)
+ k0(ein · n)ϕin

}
(2.1.23)

2.1.3 Summary of the linear Mild-Slope equation

In this section we derived the linear Mild-Slope equation, for convenience the resulting equations
are repeated here. The linear Mild-Slope equation is given by

∇ ·
(
n0

k2
0

∇ϕ
)

+ n0ϕ = 0. (2.1.24)

Where n0 denotes the relation between the wave speed c and the group velocity cg, i.e. cg = n0c,
k0 the wave number and ϕ the unknown velocity potential.

At the closed boundary Γ2 we use the following boundary condition

∂ϕ

∂n
= −i

(
1−R
1 +R

){
k0ϕ+

1

2k0

∂2ϕ

∂s2

}
, (2.1.25)

with R the reflection coefficient with 0 ≤ R ≤ 1 and i =
√
−1. The boundary condition for the

open boundary (Γ1) is given by

∂ϕ

∂n
= −i

{
k0(ϕ− ϕin) +

1

2k0

(
∂2ϕ

∂s2
− ∂2ϕin

∂s2

)
+ k0(ein · n)ϕin

}
, (2.1.26)

with ϕin a prescribed incoming wave from outside the domain.

2.2 The non-linear Mild-Slope equation

In the derivation of the linear Mild-Slope equation it is assumed that no loss of wave energy
occurs. However, this assumption does not hold if more effects, such as bottom friction and wave
breaking, are taken into account. Including energy dissipation into the Mild-Slope equation leads
to a non-linear term. In section 2.2.1 we discuss the non-linear Mild-Slope equation, in section
2.2.2 the coefficients for the loss of wave energy and finally in section 2.2.3 the boundary conditions
for the non-linear Mild-Slope equation.

2.2.1 Derivation of the non-linear Mild-Slope equation

The non-linear Mild-Slope equation, as presented by Dingemans (1997), is given by

∇ · (ccg∇ϕ) + ω2 cg
c
ϕ−W ∂ϕ

∂t
= 0, (2.2.1)

where W the dissipation of wave energy, represents the summation of the energy dissipation due
to wave breaking and bottom friction. Note the relation between equation (2.1.24) and expression
(2.2.1), the term −W∂ϕ/∂t is added to equation (2.1.24) to obtain equation (2.2.1). Similarly,
the non-liear Mild-Slope equation for the elevation of the free surface ζ(x, y, t) with W (x, y, ζ) is
obtained by

∇ · (ccg∇ζ) + ω2 cg
c
ζ −W ∂ζ

∂t
= 0. (2.2.2)
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The assumption of time harmonic wave motion still holds, hence the expression ζ = R
(
ζ̃eiωt

)
is substituted into equation (2.2.2). This results in the time independent form of the non-linear
Mild-Slope equation

∇ ·
(
ccg∇ζ̃

)
+ ω2 cg

c
ζ̃ − iωWζ̃ = 0, (2.2.3)

which can also be written as

∇ ·
(
n0

k2
0

∇ζ̃
)

+

(
n0 −

iW

ω

)
ζ̃ = 0. (2.2.4)

Expression for p
Including the dissipation of wave energy does not only influence the Mild-Slope equation but also
the expression for the general shape of the wave motion. The general shape of the wave motion
for the linear Mild-Slope equation ζ̃ = e−ik·x changes to ζ̃ = e−p·x for the non-linear Mild-Slope
equation. The coefficient p is denoted as the modified wave number due to the presence of energy
dissipation. The expression for p is easily derived using the one dimensional version of equation
(2.2.4). The one dimensional form, with constant coefficients, is given by

n0

k2
0

∂2ζ̃

∂x2
+

(
n0 −

iW

ω

)
ζ̃ = 0 ⇐⇒ ∂2ζ̃

∂x2
+ k2

0

(
1− iW

ωn0

)
ζ̃ = 0.

Substitution of the general solution ζ̃ = ζ̃0e
px into this equation results in the following expression

for p

p = ±ik0

√
1− iW

ωn0
.

2.2.2 Dissipation of wave energy

Since shallow-water waves interact with the bottom, energy losses due to bottom friction will be
present. The bottom topography is assumed to have a decreasing water depth towards the shore,
which causes an increasing wave height. If no energy dissipation is present waves will become
infinitely high. However, in reality this is not possible and waves will break after reaching a
maximal height. Both effects lead to dissipation of wave energy. First we derive the expression
for the amount of energy dissipated due to bottom friction, then the expression for the amount of
energy dissipated due to wave breaking is discussed.

Bottom friction coefficient Wf

For the derivation of the bottom friction coefficient Wf we follow the approach as described by
Visser (1984) and Dingemans (1997). The coefficient Wf is determined by dividing the dissipation
of wave energy due to bottom friction 〈Df 〉 by the wave energy per unit length Ē, i.e.

Wf =
〈Df 〉
Ē

.

The wave energy per unit length is given by

Ē =
ρgH2

8
,

with ρ the water density and H = 2|ζ(x, y, t)|. We can determine the dissipation of wave energy
in the bottom boundary layer with the following expression

〈Df 〉 =
〈
τ b · ub

〉
with τ b = cfρ

∣∣ub∣∣ub, (2.2.5)
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where τ b denotes the instantaneous stress exited by the water on the bottom, 〈 · 〉 the mean over
one wave period, cf the bottom friction coefficient and ub the horizontal velocity near the bottom.
Visser (1984) states that linear wave theory for the horizontal velocity ub can be used, which
yields that ub can be expressed as

ub =
aω

sinh(k0h)
cos(ωt),

with a(x, y, t) = |ζ(x, y, t)|. Substituting this expression for ub into equation (2.2.5) gives

〈Df 〉 =

〈
cfρ

∣∣∣∣aω cos(ωt)

sinh(k0h)

∣∣∣∣ (aω cos(ωt)

sinh(k0h)

)2
〉

= cfρ

(
aω

sinh(k0h)

)3 〈
| cos(ωt)|3

〉
.

With
〈
| cos(ωt)|3

〉
= 4

3π this results in

〈Df 〉 =
4

3π
cfρ

a3ω3

sinh3(k0h)
.

Hence we obtain the following expression for the bottom friction coefficient Wf

Wf =
〈Df 〉
Ē

=
8

3π
cf

aω3

sinh3(kh)
.

Wave breaking coefficient Wb

To determine an expression for the wave breaking coefficient Wb we follow the derivation of Battjes
and Janssen (1978). Similarly as for the bottom friction coefficient, we obtain the wave breaking
coefficient Wb by dividing the wave energy dissipation due to wave breaking Db by the wave energy
per unit length Ē. This results in

Wb =
Db

Ē
.

The characteristic breaker height, as described by Southgate (1993), is defined as

γs =

(
H

h

)
b,shallow

and γd =

(
H

L

)
b,deep

,

with H the wave height, h the water depth and L the wave length. Shallow-water waves break
due to limitations on the water depth while for deep-water waves the steepness of the wave is
crucial. The maximal value for γd is by default 0.14. The well-known Miche’s criterion, Battjes
and Janssen (1978), for the maximal possible wave height Hm is given by

Hm =
2πγd
k

tanh

(
γs

2πγd
k0h

)
=

0.88

k
tanh

( γs
0.88

k0h
)
.

The probability that at a given point a height is associated with a breaking or broken wave is
specified by Qb and can be determined from

1−Qb
lnQb

= −
(
Hrms

Hm

)2

,

where Hrms denotes the root mean square wave height. The power dissipation in the bore of the
wave per unit span is given by

D′b =
1

4
ρg(h2 − h1)3

√
g(h1 + h2)

2h1h2
,
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with h1 and h2 the water heights at both sides of the bore. We make the following estimates

h2 − h1 ≈ H and

√
g(h1 + h2)

2h1h2
≈
√
g

h
.

Which results in

D′b ∼
1

4
ρgH3

√
g

h
.

If the waves are periodic with frequency f = 1
T and wave period T , the average power dissipation

per unit length for shallow-water waves in the breaking process is given by

Db =
D′b
L

=
fD′b
c
∼ fD′b√

gh
=

1

4
fρg

H3

h
. (2.2.6)

For shallow water the ratio H/h is approximately 1, hence Db ∼ 1
4fρgH

2. For random waves the
expected value of the dissipated power per unit area is of interest. Hence we need to multiply
equation (2.2.6) by Qb and H set to Hm. This results in

Db =
α

4
fρgQbH

2
m.

The wave breaking coefficient Wb is then determined by

Wb =
Db

Ē
=

2α

T
Qb

H2
m

H2
rms

=
2α

T
Qb

H2
m

4a2
.

2.2.3 Boundary conditions

The boundary conditions for the non-linear Mild-Slope equation are very similar to the boundary
conditions of the linear Mild-Slope equation. The only difference is that the incoming wave is now
prescribed by ϕin = ϕ̃e−ip̂xxe−ip̂yy and the complete derivation can be repeated using this form
of the incoming wave. For the closed boundary we obtain the following boundary condition

∂ζ̃

∂n
= −i

(
1−R
1 +R

){
p̂ζ̃ +

1

2p̂

∂2ζ̃

∂s2

}
, (2.2.7)

and for the open boundary this results in

∂ζ̃

∂n
= −i

{
p̂(ζ̃ − ζ̃in) +

1

2p̂

(
∂2ζ̃

∂s2
− ∂2ζ̃in

∂s2

)
+ p̂(ein · n)ζ̃in

}
, (2.2.8)

with p̂ = k0

√
1− iW

ωn0
the modified wave number.

2.2.4 Summary of the non-linear Mild-Slope equation

In this section we described the non-linear Mild-Slope equation as presented by Dingemans (1997).
In the non-linear Mild-Slope equation not only the effects of diffraction-reflection and refraction-
shoaling are included, but also energy dissipation caused by wave breaking and bottom friction is
present. Including energy dissipation leads to a non-linear term in the Mild-Slope equation. The
non-linear Mild-Slope is given by equation (2.2.4)

∇ ·
(
n0

k2
0

∇ζ̃
)

+

(
n0 −

iW

ω

)
ζ̃ = 0, (2.2.9)

with n0 the relation between the wave speed c and the group velocity cg, i.e. cg = n0c, k0 the
wave number, W the coefficient for the energy dissipation, ω the wave frequency, i =

√
−1 the
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imaginary unit and ζ̃(x, y) the unknown elevation of the free surface. The energy source W (x, y, ζ̃)
is given by

W (ζ̃) = Wf +Wb =
8

3π
cf

|ζ̃|ω3

sinh3(k0h)
+

2α

T
Qb

H2
m

4|ζ̃|2
. (2.2.10)

Equation 2.2.9 is a non-linear equation since the energy dissipation coefficient W depends on the
elevation of the free surface ζ̃.

The condition for the open boundary (Γ1) with an incoming wave is given by

∂ζ̃

∂n
= −i

{
p̂(ζ̃ − ζ̃in) +

1

2p̂

(
∂2ζ̃

∂s2
− ∂2ζ̃in

∂s2

)
+ p̂(ein · n)ζ̃in

}
, (2.2.11)

and for the closed boundary (Γ2) we obtain the boundary condition

∂ζ̃

∂n
= −i

(
1−R
1 +R

){
p̂ζ̃ +

1

2p̂

∂2ζ̃

∂s2

}
. (2.2.12)

With the modified wave number p̂

p̂ = k0

√
1− iW

ωn0
. (2.2.13)
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Chapter 3

Discretization of the non-linear
Mild-Slope equation

The first step in the discretization of the non-linear Mild-Slope equation is to determine a suitable
method to deal with the non-linearity of the Mild-Slope equation. In this chapter we discuss
two methods to discretize a non-linear equation. The two most frequently used methods are
Picard iteration and Newton’s method. In the current version of HARES Picard iteration is
implemented. In section 3.1 we discuss Picard iteration and in section 3.2 Newton’s method. The
implementation of Picard iteration is usually much easier than Newton’s method, however, Picard
iteration converges linearly while Newton’s method can obtain quadratic convergence.

3.1 Picard iteration

Picard iteration, as implemented in HARES, uses the previous solution ζ̃k−1 to compute a value for
the energy dissipation term W (x, y, ζ̃). The next iterate ζ̃k is then determined with the following
set of equations for the non-linear Mild-Slope equation

∇ ·
(
n0

k2
0

∇ζ̃k
)

+

(
n0 −

iW (ζ̃k−1)

ω

)
ζ̃k = 0 on Ω, (3.1.1)

∂ζ̃k

∂n
= −i

{
p̂(ζ̃k − ζ̃in) +

1

2p̂

(
∂2ζ̃k

∂s2
− ∂2ζ̃in

∂s2

)
+ p̂(ein · n)ζ̃in

}
on Γ1, (3.1.2)

∂ζ̃k

∂n
= −i

(
1−R
1 +R

){
p̂ζ̃k +

1

2p̂

∂2ζ̃k

∂s2

}
on Γ2. (3.1.3)

Spatial discretization of equation (3.1.1), with corresponding boundary conditions (3.1.2) and
(3.1.3), results after discretization in a system of linear equations Sζk = b (see section 4.1). The
matrix S depends on the previous solution ζk−1. In the first iteration of HARES the non-linear
contribution of W (ζ0) is set equal to zero. However, the initial guess could also be used to
determine a value for W (ζ0). The algorithm for Picard iteration is given by algorithm 3.1

15
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Picard iteration

1. Determine a value for W (ζ0)

2. for k = 1, 2, . . . until convergence do

3. Solve ζk from S(ζk−1)ζk = b

4. k = k + 1
5. end

Alg. 3.1: Picard iteration

The weak formulation of the system of equations (3.1.1) - (3.1.3) is written as a function F (ζ̃) = 0,
see section 3.5. Using Picard iteration, the discretization of the weak formulation results in a
system of equations S(ζk−1)ζk = b. Therefore, the non-linear residual of Picard iteration is given
by

F (ζk) = S(ζk)ζk − b.
The non-linear residual is needed to determine whether the method converges to the solution of
the non-linear equation. Using Picard iteration we solve in each iteration the system of equations
Sζk = b exactly. However, this is not always necessary, especially in the first couple of iterations
when the iterative solution is far away from the desired non-linear solution. Hence we want to
relax the condition of finding for each iteration the exact solution with the following stopping
criterion

‖S(ζk−1)ζk − b‖ ≤ ηk‖b‖,
where ηk ∈ [0, 1) is denoted as the forcing term. The obtained method, when using such a
stopping criterion, is denoted as inexact Picard iteration. The forcing term should have the
following properties: Far away from the solution, i.e. S(ζk)ζk − b � 0, or when the change in
solution is large, i.e. ‖ζk − ζk−1‖ � 0, ηk should be large and close to the solution ηk should be
small. The algorithm for inexact Picard iteration is given by Alg. 3.2.

Inexact Picard iteration

1. Determine a value for W (ζ0)

2. for k = 1, 2, . . . until convergence do

3. Find some ηk ∈ [0, 1) and ζk such that

4. ‖S(ζk−1)ζk − b‖ ≤ ηk‖b‖

5. k = k + 1
6. end

Alg. 3.2: Inexact Picard iteration

There are many ways of choosing the forcing sequence ηk, in section 3.3 some examples are
discussed.

3.2 Newton’s method

Application of Newton’s method to the equation F (ζ̃) = 0 is based on its first order Taylor
expansion. The Taylor series of F (ζ̃ + ε) around ζ̃ + ε is given by

F (ζ̃ + ε) = F (ζ̃) + F ′(ζ̃)ε+ higher order terms. (3.2.1)
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Keeping the first order terms and setting F (ζ̃ + ε) equal to zero gives

F (ζ̃) + F ′(ζ̃)ε = 0.

Now let ε denote the difference between two successive solutions, i.e. ε = ζ̃k+1 − ζ̃k. We use the
known iterate ζ̃k to obtain a value for F (ζ̃) and F ′(ζ̃), hence Newton’s method is given by

F (ζ̃k) + F ′(ζ̃k)(ζ̃k+1 − ζ̃k) = 0. (3.2.2)

The non-linear residual of Newton’s method is determined by F (ζ̃k). The spatial discretization of
equation (3.2.2) results in a system of equations. The discretized solution ζk+1 can be obtained
by first solving the system

F ′(ζk)δζk = −F (ζk), (3.2.3)

with δζk = ζk+1−ζk and then performing the computation ζk+1 = ζk+δζk. Equation (3.2.3) can
be solved exactly at each step, but as in the case of Picard iteration, the first couple of iterations
this condition can be relaxed. The approximated Newton step δζk has to satisfy the inexact
Newton criterion

‖F (ζk) + F ′(ζk)δζk‖ ≤ ηk‖F (ζk)‖, (3.2.4)

where ηk is denoted as the forcing term (see section 3.3) which satisfies ηk ∈ [0, 1). The inexact
Newton’s method is given by algorithm 3.3, see Dembo et al. (1982).

Inexact Newton’s method

1. Let ζ0 be given.

2. for k = 1, 2, . . . until convergence do

3. Find some ηk ∈ [0, 1) and δζk that satisfy

4.
∥∥∥F (ζk) + F ′(ζk)δζk

∥∥∥ ≤ ηk ∥∥∥F (ζk)
∥∥∥

5. Set ζk+1 = ζk + δζk.
6. end

Alg. 3.3: Inexact Newton’s method

3.3 Choosing the forcing sequence ηk

A lot of research has been done for a good choice of the forcing sequence ηk in inexact Picard
iteration and inexact Newton’s method. However, no optimal forcing term is known which gives the
best results in every situation. Therefore we present five choices and implement these to test which
one gives the fastest computing time to achieve the desired convergence for the implementation of
the non-linear Mild-Slope equation.

An important property of the forcing term is to prevent oversolving, i.e. imposing an accurate
linear solution to an inaccurate non-linear correction. Hence it may take a considerable amount of
computing time to obtain the solution of the linear system, but the improvement in the non-linear
residual is small.

Choice 1
The first forcing term, for Newton’s method, is presented by Eisenstat and Walker (1996).
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Choose η0 ∈ [0, 1), the next forcing term is then given by

ηk =

∣∣∣‖F (ζk)‖ − ‖F (ζk−1) + F ′(ζk−1)δζk−1‖
∣∣∣

‖F (ζk−1)‖
, k = 1, 2, . . . . (3.3.1)

This forcing term represents the relative difference between the non-linear residual F (ζk) and
its value based on the local linear model at the previous step. Making the translation from the
Newton’s method to Picard iteration gives the following expression for forcing term 1.
Choose η0 ∈ [0, 1), the next forcing term is then given by

ηk =

∣∣∣‖F (ζk)‖ − ‖rk−1‖
∣∣∣

‖F (ζk−1)‖
, k = 1, 2, . . . , (3.3.2)

with rk−1 = S(ζk−1)ζk − b.

Choice 2
The second choice for the forcing sequence ηk is again presented by Eisenstat and Walker (1996).
Choose η0 ∈ [0, 1), the forcing sequence is obtained by

ηk = 0.5

(
‖F (ζk)‖
‖F (ζk−1)‖

)2

, k = 1, 2, . . . . (3.3.3)

This forcing term represents the relative change in the non-linear residual within two iterations.

Choice 3
The third choice is presented by Dembo et al. (1982)

ηk = min

(
1

k + 2
, ‖F (ζk)‖

)
, k = 1, 2, . . . . (3.3.4)

Using this forcing term, each iteration the system of equations is solved more accurately, due
to the presence of the term 1

k+2 . In the first couple of iterations, when the non-linear residual

‖F (ζ̃
k
)‖ is large, the quotient 1

k+2 will determine the value of the forcing term ηk, but when a

significant drop of the non-linear residual is obtained ‖F (ζ̃
k
)‖ will determine the forcing term.

Choice 4
The fourth choice is presented in the work of Brown and Saad (1990), they propose the following
forcing sequence ηk

ηk =
1

2k+1
, k = 1, 2, . . . . (3.3.5)

This forcing sequence has no information about the non-linear residual incorporated and only
depends on the number of outer iterations. Hence for a very slow convergence of the non-linear
residual this may lead to oversolving.

Choice 5
Choose η0 ∈ [0, 1), the fifth forcing sequence is given by

ηk =
‖ζk − ζk−1‖
‖ζ0‖

· TOL, k = 1, 2, . . . , (3.3.6)

with TOL ∈ [0, 1) and usually small. This forcing term has no information about the non-linear
residual incorporated, but unlike all the other forcing terms depends only on the difference between
two successive iterative solutions.



3.4. STOPPING CRITERION FOR THE NON-LINEAR LOOP 19

3.4 Stopping criterion for the non-linear loop

The current version of HARES does not have a stopping criterion for the non-linear outer loop
implemented. The programme performs 25 outer iterations, without knowing whether the itera-
tions converge or not. Therefore it is necessary to implement a suitable stop criterion, such that
when convergence is reached the calculations are stopped. Two commonly used stopping criteria,
see Knoll and Keyes (2004), are

‖F (ζk)‖
‖F (ζ0)‖

≤ TOLresidual and
‖ζk+1 − ζk‖
‖ζk‖

≤ TOLupdate

The first stopping criterion is based on a required drop in the norm of the non-linear residual and
the second stopping criterion on a sufficiently small change between two successive solutions.

It can occur that for consecutive iterations the difference between the solutions is small, while the
non-linear residual F (ζk) is not close to zero yet. This means that if the second stopping criterion
is used the outer iteration is terminated while the desired solution is not reached. Therefore we
incorporate the first stopping criterion into HARES.

3.5 Weak formulation of the non-linear Mild-Slope equa-
tion

To be able to apply Newton’s method and the Ritz-Galerkin finite element method to the non-
linear Mild-Slope equation, its weak formulation is needed. In this section we determine the weak
formulation of the non-linear Mild-Slope equation.

The weak formulation of the non-linear Mild-Slope equation is obtained by multiplying equation
(2.2.9) by a test function η(x, y) and integrating equation over the domain Ω∫

Ω

{
∇ ·
(
n0

k2
0

∇ζ̃
)

+

(
n0 −

iW

ω

)
ζ̃

}
η dΩ = 0 ∀η.

Application of Gauss divergence theorem results in

−
∫

Ω

n0

k2
0

∇ζ̃ · ∇η dΩ +

∫
Ω

(
n0 −

iW

ω

)
ζ̃η dΩ +

∫
Γ

n0

k2
0

η
∂ζ̃

∂n
dΓ = 0 ∀η, (3.5.1)

where the boundary of the domain Ω is denoted by Γ. The boundary Γ consist of a part Γ1, for
the open boundary, and a part Γ2, for closed boundary. Substitution of the boundary conditions
(2.2.11) and (2.2.12) into equation (3.5.1) gives

∫
Ω

{(
n0 −

iW

ω

)
ζ̃η − n0

k2
0

∇ζ̃ · ∇η
}
dΩ− i

∫
Γ2

n0

k2
0

(
1−R
1 +R

){
p̂ζ̃ +

1

2p̂

∂2ζ̃

∂s2

}
η dΓ

− i
∫

Γ1

{
n0

k2
0

(
p̂ζ̃in(ein · n) + p̂(ζ̃ − ζ̃in) +

1

2p̂

(
∂2ζ̃

∂s2
− ∂2ζ̃in

∂s2

))}
η dΓ = 0 ∀η. (3.5.2)

Both boundary conditions contain the term 1
2p̂
∂2ζ̃
∂s2 η, integration of this expression by parts gives

1

2p̂

∫
Γi

∂2ζ̃

∂s2
η dΓ =

1

2p̂

{
η
∂ζ̃

∂s

∣∣∣∣∣
Γi

−
∫

Γi

∂η

∂s

∂ζ̃

∂s
dΓ

}
.
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Where it is assumed that
1

2p̂

{
η
∂ζ̃

∂s

∣∣∣∣∣
Γ1

+ η
∂ζ̃

∂s

∣∣∣∣∣
Γ2

}
= 0

since Γ = Γ1 + Γ2 is a closed curve. The term 1
2p̂
∂2ζ̃in
∂s2 is only present at the open boundary,

integration by parts leads to the term 1
2p̂η

∂ζ̃in
∂s

∣∣∣
Γ1

. In the implementation in HARES it is assumed

that this term equals zero, since it only gives a contribution at the two ends of the open boundary.
Applying integration by parts to equation (3.5.2) gives the weak formulation of the non-linear
Mild-Slope equation∫

Ω

{(
n0 −

iW

ω

)
ζ̃η − n0

k2
0

∇ζ̃ · ∇η
}
dΩ− i

∫
Γ2

n0

k2
0

(
1−R
1 +R

){
p̂ζ̃η − 1

2p̂

∂ζ̃

∂s

∂η

∂s

}
dΓ

− i
∫

Γ1

n0

k2
0

{
p̂ζ̃in (ein · n) η + p̂(ζ̃ − ζ̃in)η − 1

2p̂

(
∂ζ̃

∂s

∂η

∂s
− ∂ζ̃in

∂s

∂η

∂s

)}
dΓ = 0. (3.5.3)

If Picard iteration is used to discretize the non-linear Mild-Slope equation, equation (3.1.1) is
multiplied by a test function η(x, y) and integrated over the domain Ω. The computations as
described in this section can be repeated, using the boundary conditions (3.1.2) and (3.1.3), to
obtain the weak formulation for Picard iteration.

3.6 Newton’s method for the non-linear Mild-Slope equa-
tion

The weak formulation, expression (3.5.3), of the non-linear Mild-Slope equation is of the form
F (ζ̃) = 0, hence Newton’s method can be applied to it. Newton’s method is given by

F ′(ζ̃k)δζk = −F (ζ̃k), (3.6.1)

with δζk = ζ̃k+1 − ζ̃k. We approximate the term F ′(ζ̃k)δζk by

F ′(ζ̃k)δζk = lim
ε→0

F (ζ̃k + εδζk)− F (ζ̃k)

ε
. (3.6.2)

Since F (ζ̃k) = F (ζ̃k, ζ̃kx , ζ̃
k
y , ζ̃

k
s ), equation (3.6.2) can be written as (while omitting the superscript

k),

F ′(ζ̃)δζ = lim
ε→0

F
(
ζ̃ + εδζ, ζ̃x + ε(δζ)x, ζ̃y + ε(δζ)y, ζ̃s + ε(δζ)s

)
− F

(
ζ̃, ζ̃x, ζ̃y, ζ̃s

)
ε

. (3.6.3)

With the following manipulation, subtracting and adding the same terms, the right-hand-side of
equation (3.6.3) can be written as

lim
ε→0

1

ε

{
F
(
ζ̃ + εδζ, ζ̃x + ε(δζ)x, ζ̃y + ε(δζ)y, ζ̃s + ε(δζ)s

)
− F

(
ζ̃, ζ̃x + ε(δζ)x, ζ̃y + ε(δζ)y, ζ̃s + ε(δζ)s

)

+ F
(
ζ̃, ζ̃x + ε(δζ)x, ζ̃y + ε(δζ)y, ζ̃s + ε(δζ)s

)
− F

(
ζ̃, ζ̃x, ζ̃y + ε(δζ)y, ζ̃s + ε(δζ)s

)

+ F
(
ζ̃, ζ̃x, ζ̃y + ε(δζ)y, ζ̃s + ε(δζ)s

)
− F

(
ζ̃, ζ̃x, ζ̃y, ζ̃s + ε(δζ)s

)

+ F
(
ζ̃, ζ̃x, ζ̃y, ζ̃s + ε(δζ)s

)
− F

(
ζ̃, ζ̃x, ζ̃y, ζ̃s

)}
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Taking the limit ε→ 0 results in

F ′(ζ̃)δζ =
∂F

∂ζ̃
δζ +

∂F

∂ζ̃x
δζx +

∂F

∂ζ̃y
δζy +

∂F

∂ζ̃s
δζs.

Hence equation (3.6.1) can be written as, including the superscript k,

∂F

∂ζ̃k
δζk +

∂F

∂ζ̃kx
(δζ)kx +

∂F

∂ζ̃ky
(δζ)ky +

∂F

∂ζ̃ks
(δζ)ks = −F (ζ̃k). (3.6.4)

The weak formulation of the Mild-Slope equation, equation (3.5.3), is used to determine an ex-
pression for equation (3.6.4). Each individual term of equation (3.6.4) is given below

∂F

∂ζ̃k
δζk =

∫
Ω

{(
n0 −

iW (ζ̃k)

ω

)
ηδζk +

i

ω

∂W (ζ̃k)

∂ζ̃k
ζ̃kηδζk

}
dΩ

− i
∫

Γ2

n0

k2
0

(
1−R
1 +R

)p̂ηδζk +
∂p̂

∂ζ̃k
ζ̃kηδζk − 1

2 ∂p̂

∂ζ̃k

∂ζ̃k

∂s

∂η

∂s

 dΓ

− i
∫

Γ1

n0

k2
0

p̂ηδζk +
∂p̂

∂ζ̃k
ζ̃kηδζk − 1

2 ∂p̂

∂ζ̃k

∂ζ̃k

∂s

∂η

∂s

 dΓ, (3.6.5)

∂F

∂ζ̃kx
(δζ)kx =−

∫
Ω

n0

k2
0

ηx(δζ)kx dΩ, (3.6.6)

∂F

∂ζ̃ky
(δζ)ky =−

∫
Ω

n0

k2
0

ηy(δζ)ky dΩ, (3.6.7)

∂F

∂ζ̃ks
(δζ)ks =i

∫
Γ1

n0

k2
0

(
1−R
1 +R

)
1

2p̂
ηs(δζ)ks dΓ + i

∫
Γ1

n0

k2
0

1

2p̂
ηs(δζ)ks dΓ. (3.6.8)

Equation (3.6.5) contains the derivatives ∂W
∂ζ̃k

and ∂p̂

∂ζ̃k
, but W (x, y, ˜zeta

k
) and therefore also p̂

depend on the absolute value of ζ̃k, see expression (2.2.10). However, the complex derivative ∂|ζ̃|
∂ζ̃

does not exist and thus the derivatives ∂W
∂ζ̃k

and ∂p̂

∂ζ̃k
do not exist. Therefore we cannot include

these terms into the calculations. This makes it doubtful whether Newton’s method will give the
quadratic convergence for the non-linear Mild-Slope equation.

Substituting expressions (3.6.5) - (3.6.8), without the derivatives of W and p̂ with respect to ζ̃k,
into equation (3.6.4) and using that F (ζ̃k) equals the weak derivative gives Newton’s method for
the non-linear Mild-Slope equation.∫

Ω

{(
n0 −

iW (ζ̃k)

ω

)
ηδζk − n0

k2
0

∇η · ∇δζk
}

dΩ− i
∫

Γ2

n0

k2
0

(
1−R
1 +R

){
p̂ηδζk − 1

2p̂

∂η

∂s

∂δζk

∂s

}
dΓ

− i
∫

Γ1

n0

k2
0

{
p̂ηδζk − 1

2p̂

∂η

∂s

∂δζk

∂s

}
dΓ = −

∫
Ω

{(
n0 −

iW (ζ̃k)

ω

)
ζ̃kη − n0

k2
0

∇ζ̃k · ∇η

}
dΩ

+ i

∫
Γ1

n0

k2
0

{
p̂ζ̃in (ein · n) η + p̂(ζ̃k − ζ̃in)η − 1

2p̂

{
∂ζ̃k

∂s

∂η

∂s
− ∂ζ̃in

∂s

∂η

∂s

}}
dΓ

+ i

∫
Γ2

n0

k2
0

(
1−R
1 +R

){
p̂ζ̃kη − 1

2p̂

∂ζ̃k

∂s

∂η

∂s

}
dΓ. (3.6.9)
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3.7 Summary of the discretization of the non-linear Mild-
Slope equation

In this chapter we presented Picard iteration and Newton’s method to discretize the non-linear
Mild-Slope equation. We proposed a stopping criterion for the non-linear outer iteration to de-
termine when and whether the non-linear solution is obtained. To accelerate Picard iteration
and Newton’s method we described inexact Picard iteration and inexact Newton’s method. A
forcing sequence ηk is necessary for an inexact method, therefore we presented five possibilities
for this. We determined the weak formulation of the non-linear Mild-Slope equation to be able to
apply Newton’s method to it. Finally we applied Newton’s method to the non-linear Mild-Slope
equation.



Chapter 4

Spatial discretization of the
Mild-Slope equation

For the spatial discretization of the non-linear Mild-Slope equation we use the method of finite
elements. Berkhoff (1976) states that this is a good discretization method to determine the solution
of the Mild-Slope equation in a harbour for the following two reasons;

� It has an easy way of representing boundaries of an arbitrary shape.

� It is possible to use small elements in areas where a strong variation of the solution can be
expected and large elements in other areas.

4.1 Ritz-Galerkin Finite Element Method

The derivation of the finite element integrals is based on Ritz-Galerkin method as described by
Zienkewicz (1971). The first step is to determine the weak formulation of the considered equation,
depending on the used method to discretize the non-linear equation (e.g. Picard iteration or
Newton’s method). The unknown solution ζ̃(x, y) is approximated by a finite linear combination
of basis functions, i.e.

ζ̃(x, y) ≈
ne∑
j=1

ζjψj(x, y). (4.1.1)

We substitute this approximation into the equation which is obtained after using Picard iteration
or Newton’s method. The test function η(x, y), also present in this equation, is approximated by
one basis function ψm(x, y), i.e.

η(x, y) = ψm(x, y). (4.1.2)

The domain is divided into triangular elements, where the expression for the basis function ψm
depends on the shape of the element. In HARES linear triangular elements are used, whereby the
basis functions have the following properties:

� ψj(x, y) is linear per triangle j = 1, 2, 3,

� ψj(xm, ym) = δjm j,m = 1, 2, 3,

with δjm the Kronecker delta. To be able to substitute the basis function into the weak formulation,
it is necessary to have an explicit expression per element. The linear polynomial is defined by

ψj(x, y) = αj + βjx+ γjy. (4.1.3)
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Where the coefficients αj , βj and γj need to satisfy the following system of equations 1 x1 y1

1 x2 y2

1 x3 y3

 α1 α2 α3

β1 β2 β3

γ1 γ2 γ3

 =

 1 0 0
0 1 0
0 0 1

 .
This system of equations has a solution if the determinant ∆ of the coefficient matrix (first matrix)
never equals zero. The determinant is given by

∆ =

∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣ ,
where |∆| is twice the area of a linear triangle.

Application of the Ritz-Galerkin finite element method to the weak formulation leads to a min-
imization over the unknown parameters ζj . This results in a linear system of equations that we
need to solve efficiently. For more details on solving a linear system of equations see chapter 5.

4.2 Finite element method combined with Picard iteration

The weak formulation of the Mild-Slope equation, when using Picard iteration, is given by (see
section 3.5)∫

Ω

{(
n0 −

iW (ζ̃k−1)

ω

)
ζ̃kη − n0

k2
0

∇ζ̃k · ∇η

}
− i
∫

Γ2

n0

k2
0

(
1−R
1 +R

){
p̂ζ̃kη − 1

2p̂

∂ζ̃k

∂s

∂η

∂s

}
dΓ

− i
∫

Γ1

n0

k2
0

{
p̂ζ̃in(ein · n)η + p̂(ζ̃k − ζ̃in)η − 1

2p̂

(
∂ζ̃k

∂s

∂η

∂s
− ∂ζ̃in

∂s

∂η

∂s

)}
dΓ = 0. (4.2.1)

Note that the modified wave number p̂ also depends on the previous solution ζ̃k−1. Equation (4.2.1)
is linear with respect to ζ̃k(x, y), hence we can apply the Ritz-Galerkin finite element method to
it. The elevation of the free surface ζ̃k(x, y) is approximated by a finite linear combination of basis
functions and the test function η(x, y) by one basis function, see expressions (4.1.1) and (4.1.2).
Substitution into the weak formulation (4.2.1) results in

nel∑
j=1

ζj

{∫
Ω

[(
n0 −

iW (ζ̃k−1)

ω

)
ψjψm −

n0

k2
0

∇ψj · ∇ψm

]
dΩ

}

− i
nbel1∑
j=1

ζj

{∫
Γ1

n0

k2
0

(
p̂ψjψm −

1

2p̂

∂ψj
∂s

ψm
∂s

)
dΓ

}

− i
nbel2∑
j=1

ζj

{∫
Γ2

n0

k2
0

(
1−R
1 +R

)(
p̂ψjψm −

1

2p̂

∂ψj
∂s

∂ψm
∂s

)
dΓ

}

= i

∫
Γ1

n0

k2
0

(
p̂ζ̃in(ein · n)ψm − p̂ζ̃inψm +

1

2p̂

∂ζ̃in
∂s

∂ψm
∂s

)
dΓ. (4.2.2)

Since only the parameters ζj are unknown, we can write expression (4.2.2) as the matrix-vector
notation Sζ = b. Note that the only contribution to the right-hand-side b is given by the incoming
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wave ζ̃in. The domain Ω is divided into nel internal elements and the boundary Γ into nbel
boundary elements, with ne = nel + nbel. On each element the coefficients n0, k0, ω, W (ζ̃k−1), R
and p̂ are considered as constants. As mentioned in section 4.1, in HARES the internal elements
are shaped as linear triangles and the boundary elements as linear line segments. For the boundary
we make the distinction between the open boundary Γ1 and the closed boundary Γ2. The open
boundary is divided into nbel1 elements and the closed boundary into nbel2 elements. The global
matrix S and global vector b are determined by the summation over all the contributions from
the internal and boundary elements. This results in

Sjm =

nel∑
l=1

Seljm +

nbel1∑
l=1

Sbel1jm +

nbel2∑
l=1

Sbel2jm , (4.2.3)

bm =

nel∑
l=1

belm +

nbel1∑
l=1

bbel1m +

nbel2∑
l=1

bbel2m . (4.2.4)

The integrals are determined exactly using Gaussian integration.

4.2.1 Internal elements

The contribution of the internal elements is determined by the integral over the domain Ω in
expression (4.2.2). Which is given by

Sjm =

∫
Ω

{(
n0 −

iW (ζ̃k−1)

ω

)
ψjψm −

n0

k2
0

∇ψj · ∇ψm

}
dΩ and bm = 0

Using the assumption of constant coefficients on each element and the expression for the linear
basis functions (4.1.3) gives for each internal element

Seljm =

(
n0 −

iW (ζ̃k−1)

ω

)∫
el

ψjψm dΩ− n0

k2
0

(βjβm + γjγm)

∫
el

1 dΩ and belm = 0. (4.2.5)

4.2.2 Boundary elements on the open boundary

On the open boundary Γ1 we obtain the following equations

Sjm = −i
∫

Γ1

n0

k2
0

(
p̂ψjψm −

1

2p̂

∂ψj
∂s

∂ψm
∂s

)
dΓ,

bm = i

∫
Γ1

n0

k2
0

(
p̂ζ̃in(ein · n)ψm − p̂ζ̃inψm +

1

2p̂

∂ζ̃in
∂s

∂ψm
∂s

)
dΓ.

Inserting the basis function (4.1.3) into the equations for Sjm and bm gives the following integrals
for the element matrix and vector for an element on the open boundary.

Sbel1jm = −in0

k2
0

{
p̂

∫
bel1

ψjψm dΓ− 1

2p̂

∫
bel1

∂ψj
∂s

∂ψm
∂s

dΓ,

}
(4.2.6)

bbel1m = i
n0

k2
0

{
p̂

∫
bel1

{
ζ̃in(ein · n)− ζ̃in

}
ψm dΓ +

1

2p̂

∫
bel1

∂ζ̃in
∂s

∂ψm
∂s

dΓ

}
. (4.2.7)
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4.2.3 Boundary elements on the closed boundary

For the elements on the closed boundary Γ2 we find the following expressions for Sjm and bm

Sjm = −i
∫

Γ2

n0

k2
0

(
1−R
1 +R

)(
p̂ψjψm −

1

2p̂

∂ψj
∂s

∂ψm
∂s

)
dΓ and bm = 0.

Which results in the following contribution per element to the global matrix S and global vector
b,

Sbel2jm = −in0

k2
0

(
1−R
1 +R

){
p̂

∫
bel2

ψmψj dΓ− 1

2p̂

∫
bel2

∂ψj
∂s

∂ψm
∂s

dΓ

}
and bbel2m = 0. (4.2.8)

4.3 Finite element method combined with Newton’s method

Application of Newton’s method to the weak formulation of the non-linear Mild-Slope equation
results in expression (3.6.9), which for convenience is repeated here.

∫
Ω

{(
n0 −

iW (ζ̃k)

ω

)
ηδζk − n0

k2
0

∇η · ∇δζk
}

dΩ− i
∫

Γ2

n0

k2
0

(
1−R
1 +R

){
p̂ηδζk − 1

2p̂

∂η

∂s

∂δζk

∂s

}
dΓ

− i
∫

Γ1

n0

k2
0

{
p̂ηδζk − 1

2p̂

∂η

∂s

∂δζk

∂s

}
dΓ = −

∫
Ω

{(
n0 −

iW (ζ̃k)

ω

)
ζ̃kη − n0

k2
0

∇ζ̃k · ∇η

}
dΩ

+ i

∫
Γ1

n0

k2
0

{
p̂ζ̃in (ein · n) η + p̂(ζ̃k − ζ̃in)η − 1

2p̂

{
∂ζ̃k

∂s

∂η

∂s
− ∂ζ̃in

∂s

∂η

∂s

}}
dΓ

+ i

∫
Γ2

n0

k2
0

(
1−R
1 +R

){
p̂ζ̃kη − 1

2p̂

∂ζ̃k

∂s

∂η

∂s

}
dΓ. (4.3.1)

Equation (4.3.1) is a linear equation with respect to the update δζk, given by δζk = ζ̃k+1 − ζ̃k.
Using the update δζk we can determine the next iterative solution ζ̃k+1. The Ritz-Galerkin finite
element method is applied to equation (4.3.1). Hence the update δζk(x, y) is approximated by
a finite linear combination of basis functions ψj(x, y) and the test function η(x, y) by the basis
function ψm(x, y). This results in the following discretized version of equation (4.3.1)
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nel∑
j=1

ζkj

∫
Ω

{(
n0 −

iW (ζ̃k)

ω

)
ψjψm −

n0

k2
0

∇ψj · ∇ψm

}
dΩ

− i
nbel2∑
j=1

ζkj

∫
Γ2

n0

k2
0

(
1−R
1 +R

){
p̂ψjψn −

1

2p̂

∂ψj
∂s

∂ψn
∂s

}
dΓ

− i
nbel1∑
j=1

ζkj

∫
Γ1

n0

k2
0

{
p̂ψjψm −

1

2p̂

∂ψj
∂s

∂ψm
∂s

}
dΓ

= −
∫

Ω

{(
n0 −

iW (ζ̃k)

ω

)
ζ̃kψm −

n0

k2
0

∇ζ̃k · ∇ψm

}
dΩ

+ i

∫
Γ1

n0

k2
0

{
p̂ζ̃in (ein · n)ψ + p̂(ζ̃k − ζ̃in)ψm −

1

2p̂

{
∂ζ̃k

∂s

∂ψm
∂s
− ∂ζ̃in

∂s

∂ψm
∂s

}}
dΓ

+ i

∫
Γ2

n0

k2
0

(
1−R
1 +R

){
p̂ζ̃kψm −

1

2p̂

∂ζ̃k

∂s

∂ψm
∂s

}
dΓ. (4.3.2)

Note that ζkj are the unknown coefficients to determine the update δζk and ζ̃k the previous
solution. As in the case for Picard iteration, expression (4.3.2) can be written in matrix-vector
notation Sζ = b. Note that the contribution to the global matrix S is exactly the same as in
the case of Picard iteration. However, Picard iteration determines the next solution directly while
for Newton’s method only the update to the previous solution is obtained. Different from Picard
iteration is that the contribution to the right-hand-side b is not only due to the incoming wave

ζ̃in but also to the previous solution ζ̃
k
. The interior domain Ω is divided into nel triangular

elements and the open boundary, respectively the closed boundary, into nbel1, resp. nbel2, linear
line segments, with ne = nel+nbel1+nbel2. The global matrix S and global vector b are determined
by the summation over all the elements, given by expressions (4.2.3) and (4.2.4).

4.3.1 Internal elements

Using Newton’s method and the linear basis functions gives the following integrals for the internal
elements, see also (4.3.2). Again we assume that the coefficients n0, W (ζ̃k), ω and k0 are constant
on each element.

Seljm =

(
n0 −

iW (ζ̃k)

ω

)∫
el

ψjψm dΩ− n0

k2
0

(βjβm + γjγm)

∫
el

1 dΩ, (4.3.3)

and

belm = −

(
n0 −

iW (ζ̃k)

ω

)∫
el

ζ̃kψm dΩ +
n0

k2
0

∫
el

∇ζ̃k · ∇ψm dΩ. (4.3.4)

The term ζ̃k is known and can be written as

ζ̃k =

3∑
q=1

ζkq ψq(xq, yq).
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Substituting this into equation (4.3.4) gives

belm = −

(
n0 −

iW (ζ̃k)

ω

)
3∑
q=1

ζkq

∫
el

ψqψm dΩ +
n0

k2
0

3∑
q=1

ζkq (xq, yq)(βqβm + γqγm)

∫
el

1 dΩ. (4.3.5)

4.3.2 Boundary elements on the open boundary

For an element on the open boundary Γ1 we obtain the following expression for the element matrix
Sbel1jm

Sbel1jm = −in0

k2
0

{
p̂

∫
bel1

ψjψm dΓ− 1

2p̂

∫
bel1

∂ψj
∂s

∂ψm
∂s

dΓ

}
, (4.3.6)

and for the element vector bbel1m

bbel1m =i
n0

k0

{
p̂

∫
bel1

{
ζ̃in(ein · n)ψm − ζ̃inψm

}
dΓ +

1

2p̂

∫
bel1

∂ζ̃in
∂s

∂ψm
∂s

dΓ

+p̂

∫
bel1

ζ̃kψm dΓ− 1

2p̂

∫
bel1

∂ζ̃k

∂s

∂ψm
∂s

dΓ

}
. (4.3.7)

4.3.3 Boundary elements on the closed boundary

The contribution to the global matrix S and the global vector b for an element on the closed
boundary Γ2 is given by

Sbel2jm = −in0

k2
0

(
1−R
1 +R

){
p̂

∫
bel2

ψjψm dΓ− 1

2p̂

∫
bel2

∂ψj
∂s

∂ψm
∂s

dΓ

}
, (4.3.8)

and

bbel2m = i
n0

k2
0

(
1−R
1 +R

){
p̂

∫
bel2

ζ̃kψm dΓ− 1

2p̂

∫
bel2

∂ζ̃k

∂s

∂ψm
∂s

dΓ

}
. (4.3.9)

4.4 Summary of the spatial discretization

In this chapter we presented the spatial discretization of the non-linear Mild-Slope equation, when
Picard iteration or Newton’s method has been used for the non-linear discretization. The spatial
discretization results in the system of equations Sζ = b. We used the Ritz-Galerkin finite element
method where we divided the domain into triangular elements with piecewise linear basis functions.
After the discretization we obtained for each element an integral for the element matrix Sjm and
the element vector bm. These integrals are determined by Gaussian integration. Using the element
matrices and vector we can determine the contribution to the global matrix S and the global vector
b. Both Newton’s method and Picard iteration combined with the Ritz-Galerkin finite element
method result in the same global matrix S, but in a different global vector b. A suitable method
to solve the system of equation depends on the properties of matrix S. In chapter 6 we present
the element matrices for an internal element and an element on the boundary. There we conclude
that matrix S is a symmetric, non-Hermitian, sparse matrix.



Chapter 5

Solving a system of equations

Application of the Ritz-Galerkin finite element method to the non-linear Mild-Slope equation
leads to a system of equations Sζ = b, as described in chapter 4,. In chapter 6 we discuss that
S ∈ CN×N is a symmetric, non-Hermitian, sparse matrix. There are various methods to solve a
system of equations; two major classes of solution methods are the direct methods and the iterative
methods. In section 5.1 we discuss the direct methods briefly, with a focus on MUMPS, a state-of-
the-art direct method. In section 5.2 we describe the iterative methods, especially the Krylov
subspace methods. To accelerate the iterative methods it is possible to apply a preconditioner
to the system of equations, in section 5.3 we present the incomplete LU decomposition and the
Shifted Laplace preconditioner.

The current version of HARES uses the Krylov subspace method Bi-CGSTAB and the incomplete
LU decomposition as a preconditioner.

For convenience the notation Ax = b is used throughout this chapter, with A an N ×N -matrix
and x and b vectors of dimension N .

5.1 Direct methods

A direct method is conceptually a very straightforward method. The LU factorization of matrix
A is computed and the right-hand-side b is multiplied by it. Hence we obtain the solution x of
the system of equations in one iteration by

x = U−1L−1b,

with L a lower triangular matrix and U an upper triangular matrix. If the dimension of matrix A
becomes larger, the process of computing the complete LU decomposition gets (mostly undesirably)
lengthy. However, nowadays software packages exist, which smartly deal with computing the LU
factorization resulting in a short computing time. Especially for two dimensional problems, the
state-of-the-art direct solvers are on average faster than a well-preconditioned iterative method.
An example of a fast direct method is MUMPS - MUltifrontal Massively Parallel Solver, see Amestoy
et al. (2001) and Amestoy et al. (2006).

5.1.1 MUltifrontal Massively Parallel Solver - MUMPS

MUMPS is a package for solving a system of linear equations of the form Ax = b. Matrix A is a
square sparse matrix, which can either be non-symmetric, symmetric positive definite, or general
symmetric. Matrix A obtained after the non-linear and spatial discretization of the Mild-Slope
equation is a complex non-Hermitian matrix, hence MUMPS handles it as a non-symmetric matrix.
The computation of the LU factorization of matrix A is performed in the following three main
steps:

29
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1. Analysis
During the analysis phase a preprocessing is performed, which include an ordering based
on the symmetrized pattern A + AT and a symbolic factorization. After analysis, the
preprocessed matrix Apre is obtained by the following factorization

Apre = PDrAQcDcP
T .

Where P is a permutation matrix, Qc a column permutation and Dr and Dc diagonal
matrices for (respectively row and column) scaling.

2. Factorization
A direct factorizationApre = LU is computed, where L is a lower triangular andU an upper
triangular matrix. During the factorization multiple fronts are processed simultaneously, this
approach is called a multifrontal approach. After factorization, the matrices L and U are
kept distributed and used at the solution phase.

3. Solution
The solution of LUxpre = bpre is obtained, where xpre and bpre are the transformed
solution x and right-hand-side b. Firstly a forward elimination step

Ly = bpre

is performed, which is followed by a backward elimination step

Uxpre = y.

The obtained solution xpre is then post-processed to receive the solution x.

MUMPS is written in Fortran 90 and available in a sequential and parallel version.

5.2 Iterative methods

There are three main classes of iterative methods, i.e. the basic iterative methods, the Krylov
subspace methods and the multigrid methods. Contrary to a direct method, the solution of the
system of equations is obtained by performing several iterations. Iterative methods are a good
alternative to the direct method in one of the following cases; not many iterations are required,
matrix A is sparse or has a special structure, or a good initial guess for the solution x is available.
In this section we will limit ourselves to the Krylov subspace methods, which give good results for
general matrices.

The measure for the correctness of the iterate xi is the residual, which is given by ri = b−Axi.

Krylov subspace methods
Krylov subspace methods are based on the idea that the solution of the system of equations can
be approximated by a polynomial in A, i.e.

x = A−1b ≈ P (A)b.

If a good initial guess x0 is available, then the equivalent system of equations A(x − x0) =
b − Ax0 = r0 can be solved. The method starts with a polynomial of degree zero and every
iteration, to increase the accuracy, a degree is added to this polynomial

xi = x0 + P i−1(A)r0.

The iterates xi are contained in the subspace x0 + Ki(A; r0), where Ki(A; r0) is denoted as the
Krylov subspace of dimension i

Ki(A; r0) = span
{
r0,Ar0, . . . ,Ai−1r0

}
.

The ideal Krylov subspace method satisfies the following properties:
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� The error, x−xi, is minimal in the some norm, which is denoted as the optimality property;

� Short recurrences, only the results of some foregoing steps are necessary to compute the next
iterate.

However, it is shown that for a general matrix A, e.g. A is not symmetric (Hermitian) positive
definite, these properties cannot all be satisfied. The Krylov subspace methods Bi-CGSTAB and
IDR(s) are presented here, which are both based on the short recurrences property. The work by
Sonneveld and van Gijzen (2008) shows that the IDR(s) algorithm outperforms Bi-CGSTAB for
a three-dimensional Helmholtz problem. Therefore, IDR(s) is proposed as an acceleration of the
currently implemented Bi-CGSTAB algorithm.

5.2.1 Bi-CGSTAB

The Bi-CGSTAB method is in 1992 derived by van der Vorst as an improvement of the Conjugate
Gradient Squared (CG-S) method presented by Sonneveld (1989). CG-S was on its turn an
improvement of the Bi-Conjugate Gradient (Bi-CG) method.

Bi-CG
Bi-CG uses a basis r0, . . . ri−1 which is constructed forKi(A; r0) such that rj ⊥ span{r∗0, . . . , r∗j−1}
with (j ≤ i) and r∗0, . . . , r

∗
i−1 forms a basis for Ki(AT ; r∗0) such that r∗j ⊥ span{r0, . . . , rj−1} with

(j ≤ i). The Bi-CG method is derived by Fletcher (1976) where he assumes that the residuals ri
and r∗i can be written as

rBi−CGi = Pi(A)r0 and r∗Bi−CGi = Pi(A
T )r∗0,

where Pi(A) is a polynomial of degree at most i. The bi-orthogonality of the residuals ri and r∗j
can also be written as (

Pi(A)r0, Pj(A
T )r∗0

)
= 0 for j < i. (5.2.1)

With this expression ri as well as r∗j need to be constructed, therefore the matrix-vector products

with both A and AT need to be determined.

CG-S
The CG-S method is introduced by Sonneveld (1989), where he used that equation (5.2.1) are
written as (

Pi(A)r0, Pj(A
T )r∗0

)
= (Pj(A)Pi(A)r0, r

∗
0) = 0 for j < i.

CG-S constructs residuals that can be written as

rCG−Si = Pi(A)rBi−CGi = P 2
i (A)r0.

The benefit of the CG-S algorithm is that r∗j does not need to be formed. Hence we do not have to

compute the matrix-vector products with AT , but we do need twice the amount of matrix-vector
products with A. The downside of this method is that its convergence behaviour is not very
smooth and the square in the residual polynomial may lead to a build-up of rounding errors.

Bi-CGSTAB
To improve the convergence behaviour of the CG-S method van der Vorst (1992) derived the more
smoothly converging variant of CG-S called Bi-CGSTAB. The Bi-CGSTAB residual is written as

rBi−CGSTABi = Qj(A)rBi−CGi = Qj(A)Pj(A)r0,

with
Qj(A) = (I − ω1A)(I − ω2A) . . . (I − ωjA). (5.2.2)
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Bi-CGSTAB

1. x0 is an initial guess; r0 = b−Ax0;
2. r∗0 is an arbitrary vector, such that (r0, r

∗
0) 6= 0, e.g. r∗0 = r0;

3. ρ0 = α = ω0 = 1;
4. v0 = p0 = 0;

5. for i = 1, 2, . . . until convergence do
6. ρi = (r∗0, ri−1); β = (ρi/ρi−1)(α/ωi−1);
7. pi = ri−1 + β(pi−1 − ωi−1vi−1);
8. vi = Api;
9. α = ρi/(r

∗
0,vi);

10. s = ri−1 − αvi−1;
11. t = As;
12. ωi = (t, s)/(t, t);
13. xi = xi−1 + αpi + ωis;
14. if xi is accurate enough then quit
15. ri = s− ωit;
16. end

Alg. 5.1: Bi-CGSTAB algorithm.

The coefficients ωj in the polynomial Qj(A) are chosen such that the residual is minimized. The
Bi-CGSTAB algorithm, see van der Vorst (1992), is given by algorithm 5.1.

Bi-CGSTAB is a finite method, which means that after at most n iterations the exact solution x in
finite precision arithmetic is obtained. As mentioned earlier a common choice for the coefficients
ωj is to minimize the residual ri. However, other choices for ωj are possible and this choice should
depend on the specific problem that is solved. There are three cases where the Bi-CGSTAB
algorithm breaks down. It can happen when ρi = (r∗0, ri−1) = 0 with ri−1 6= 0, when (r∗0,vi) = 0
or when (t, s) = 0.

5.2.2 IDR(s)

The IDR(s) method, see Sonneveld and van Gijzen (2008), is a Krylov subspace type method for
which the residuals rn = b−Axn are in the Krylov subspace Kn(A; r0). The residuals of a Krylov
method satisfy the following recursion method

rn+1 = rn − αAvn −
l̂∑
l=1

γl∆rn−l,

where vn is any computable vector in Kn(A; r0)\Kn−1(A; r0) and ∆rn = rn+1−rn. The IDR(s)
method is based Theorem 1.

Theorem 1. (IDR theorem) Let A be any matrix in CN×N , let v0 be any non-zero vector in
CN , and let G0 be the full Krylov space KN (A,v0). Let S denote any (proper) subspace of CN
such that S and G0 do not share a non-trivial invariant subspace of A, and define the sequence
Gj, j = 1, 2, . . . as

Gj = (I − ωjA)(Gj−1 ∩ S),

where the ωj’s are non-zero scalars. Then

(i) Gj ⊂ Gj−1 for all Gj−1 6= {0}, j > 0.

(ii) Gj = {0} for some j ≤ N .
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Proof. See Sonneveld and van Gijzen (2008).

The IDR(s) algorithm is based on generating residuals rn which are forced to be in the subspace Gj ,
where j is non-decreasing with increasing n. According to Theorem 1 ultimately rn ∈ GM = {0}
with M ≤ N . The residual rn+1 is in the space Gj+1 if

rn+1 = (I − ωj+1A)vn, (5.2.3)

with vn ∈ Gj ∩ S. The main problem becomes finding vn. The following expression is chosen for
vn

vn = rn −
s∑
l=1

γl∆rn−l.

Let there be a N × s matrix P = (p1 p2 . . . ps) such that S is the left null-space of P , i.e.

S = N
(
PH

)
. Since vn is contained in S it also holds that

PHvn = PH (rn − c∆Rn) = 0 ⇒ PH∆Rnc = PHrn,

with ∆Rn = (∆rn−1 ∆rn−2 . . . ∆rn−s) and c ∈ Cs contains the coefficients γl. We obtain an
s × s linear system for the coefficients γl which generally is uniquely solvable. Vector c can be
determined and hence we are able to compute vn and rn+1 ∈ Gj+1. By Theorem 1 it follows
that Gj+1 ⊂ Gj , therefore it also holds that rn+1 ∈ Gj . Using rn+1 we can compute ∆Rn+1,
vn+1 ∈ (Gj ∩ S) and hence rn+2 ∈ Gj+1. This needs to repeated s + 1 times such that all the
elements of ∆Rn are in Gj+1. Then we have that vn+(s+1) ∈ (Gj+1∩S) and therefore the computed
residual rn+(s+1) is contained in the subspace Gj+2 of Gj+1.

The IDR(s) algorithm is given in algorithm 5.2. From the algorithm we can see that for the
first residual in Gj+1 the coefficient ω can be chosen freely. But for the computations of the
other residuals in Gj+1 the value of ω cannot be changed. In the presented algorithm we use a
minimization of the norm of rn+1 for the computation of ω. Also matrix P can be chosen freely
in the beginning of the algorithm.

In the current algorithm the initialization is done using a simple Krylov method. However, as
long as the ∆xi, i = 0, . . . , s− 1 are in the complete Krylov subspace, they can be chosen freely.
Contrary to what is presented in algorithm 5.2, the choice of the coefficient ω in the current
implementation of IDR(s) is not based on minimizing the residual, but on a strategy proposed by
Sleijpen and van der Vorst (1995).

The IDR theorem states that dimension reduction takes place but not how large this reduction is.
Theorem 2 describes the rate of dimension reduction.

Theorem 2. (Extended IDR theorem) Let A be any vector in CN×N , let p1, p2, . . ., ps ∈ CN
be linearly independent, let P = (p1,p2, . . . ,ps), let G0 = KN (A; r0) be the full Krylov space
corresponding to A and the vector r0, and let the sequence of spaces {Gj , j = 1, 2, . . .} be defined
by

Gj = (I − ωjA)
(
Gj−1 ∩N

(
PH

))
,

where ωj are non-zero numbers, such that I − ωjA is non-singular. Let dim(Gj) = dj; then the
sequence {dj , j = 0, 1, 2, . . .} is monotonically non-increasing and satisfies

0 ≤ dj − dj+1 ≤ dj−1 − dj ≤ s.

Proof. See Sonneveld and van Gijzen (2008).

According to the extended IDR theorem the dimension reduction per step is between 0 and s. If
the dimension reduction is precisely s it is called the generic case, otherwise the non-generic case.
The extended IDR theorem leads to Corollary 1 for the generic case.
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IDR(s)

1. Require: A ∈ CN×N ; x0, b ∈ CN ; P ∈ CN×s; TOL ∈ (0, 1); MAXIT > 0
2. Ensure: xn such that ‖b−Axn‖ ≤ TOL
3. {Initialization.}
4. Calculate r0 = b−Ax0;

5. {Apply s minimum norm steps, to build enough vectors in G0}
6. for n = 0, 1, . . . , s− 1 do
7. v = Arn; Select ω;
8. ∆xn = ωrn; ∆rn = −ωv;
9. rn+1 = rn + ∆rn; xn+1 = xn + ∆xn;
10. end
11. ∆Rn+1 = (∆rn . . .∆r0); ∆Xn+1 = (∆xn . . .∆x0);

12. {Building Gj spaces for j = 1, 2, 3, . . .}
13. n = s
14. {Loop over Gj spaces}
15. while ‖rn‖ > TOL and n < MAXIT do
16. {Loop inside Gj space}
17. for k = 0, 1, . . . , s do

18. Solve c from PH∆Rnc = PHrn;
19. v = rn −∆Rnc;
20. if k = 0 do
21. {Entering Gj+1}
22. t = Av;
23. Select ω;
24. ∆rn = −∆Rnc− ωt;
25. ∆xn = −∆Xnc+ ωv;
26. else
27. {Subsequent vectors in Gj+1}
28. ∆xn = −∆Xnc+ ωv;
29. ∆rn = −A∆xn;
30. end
31. rn+1 = rn + ∆rn;
32. xn+1 = xn + ∆xn;
33. n = n+ 1;
34. ∆Rn = (∆rn−1 . . .∆rn−s);
35. ∆Xn = (∆xn−1 . . .∆xn−s);
36. end
37. end

Alg. 5.2: IDR(s) algorithm

Corollary 1. In the generic case IDR(s) requires at most N + N
s matrix-vector multiplications

to compute the exact solution in finite precision arithmetic.

IDR(s)-biortho
It is possible to make some adjustments to the IDR(s) algorithm as presented in algorithm 5.2.
The residual of equation (5.2.3) can also be written as

rn+1 = rn − ωj+1Avn −Gnc with Gn = ∆Rn.



5.3. PRECONDITIONERS 35

The corresponding recursion for the iterate is obtained by multiplying the equation above by A−1,
hence

xn+1 = xn + ωj+1vn +Unc with Un = A−1Gn = ∆Xn.

For un+1 = xn+2 − xn+1 and gn+1 = −(rn+2 − rn+1) we find the following iterates

un+1 = ωj+1vn+1 +Un+1c and gn+1 = Aun+1.

The next residual and iterate can be determined by

rn+k+1 = rn+k − gn+k and xn+k+1 = xn+k + un+k,

with rn+k+1, rn+k, gn+k ∈ Gj+1. To compute a new residual in Gj+1 we could also use a more
general linear combination of vectors in Gj+1

rn+k+1 = rn+k −
k∑
i=1

βign+i.

And for the vector gn+k we can use

gn+k = ḡ −
k−1∑
i=1

αign+i with ḡ = −(rn+k+1 − rn+k) = −∆rn+k.

The values of αi and βi are chosen such that intermediate residuals and gn+k have desirable
properties. Analogous xn+k+1 and un+k can be determined with a linear combination using the
same parameters αi and βi. In IDR(s)-biortho αi is chosen such that the vector gn+k is orthogonal
to p1, . . . ,pk−1 and βi such that the intermediate residual rn+k+1 is orthogonal to p1, . . . ,pk.

5.3 Preconditioners

Applying an iterative method directly to a system of equations Ax = b may lead to convergence
which is not fast enough. Therefore one can apply a preconditioner K to the system of equations,
such that the preconditioned system of equations has better properties than the original system of
equations. Due to the better properties of the preconditioned system less iterations are needed for a
good approximation of the solution x. As described by van der Vorst (1992) a good preconditioner
K satisfies the following properties

� K is a good approximation to A in some sense.

� The cost of the construction of K is not prohibitive.

� The system Ky = z is much easier to solve than the original system.

One can use left preconditioning
K−1Ax = K−1b,

right preconditioning
AK−1y = b with y = Kx,

or a combination of both.

In this section we present the incomplete LU decomposition and the Shifted Laplace precondi-
tioner. Erlangga et al. (2004) showed for a Helmholtz problem that replacing the incomplete
LU decomposition of A as a preconditioner by the the incomplete LU decomposition of some
shifted Helmholtz matrix K leads to less iterations to reach convergence. This shifted matrix K
is denoted as the shifted Laplace preconditioner.
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5.3.1 Incomplete LU decomposition

In HARES the incomplete LU factorization (ILU) is used as a preconditioner of matrix S, ILU
is a variant of Gaussian elimination where some elements in the LU factorization are discarded.
Gaussian elimination of a matrix results in a LU factorization, where L is a lower triangular matrix
and U an upper triangular matrix. The LU decomposition without fill-in (ILU(0)) preserves the
zero pattern of A in the matrices L and U , i.e. if ai,j = 0 (1 ≤ i, j ≤ N) for a certain combination
(i, j) then ui,j = li,j = 0 and if ai,j 6= 0 then ui,j 6= 0 and li,j 6= 0. The diagonal of L is set equal
to one, i.e. li,i = 1, and the diagonal of U is determined in the ILU(0) algorithm. In general it
is impossible to match A with LU when L and U have the same zero-pattern as A. The extra
elements of LU are called the fill-in elements. Matrix A can be written as

A = LU −R,

where matrix R is the residual of the factorization. The residual matrix R contains the fill-in
elements and the ILU(0) preconditioner is given by K = LU .

The ILU preconditioner K = LU is available in factored form, therefore in general the precondi-
tioner is applied as a combination of left and right preconditioning. The preconditioned system of
Ax = b is given by

L−1AU−1y = L−1b with y = Ux.

Denote the set of non-zero elements of matrix A as NZ(A), i.e. the set of pairs (i, j), 1 ≤ i, j ≤ N
such that ai,j 6= 0. The incomplete factorization of matrix A is determined such that the elements
of A−LU are zero in the elements of NZ(A). The algorithm of the incomplete LU factorization
is given in algorithm 5.3.

ILU(0)

1. for i = 1, 2, . . . , n do
2. for k = 1, . . . , i− 1 and for (i, k) ∈ NZ(A) do
3. aik = aik/akk;
4. for j = k + 1, . . . , n and for (i, j) ∈ NZ(A) do
5. aij = aij − aikakj ;
7. end
8. end
9. end

Alg. 5.3: Incomplete LU factorization algorithm.

5.3.2 Shifted Laplace preconditioner

Erlangga et al. (2004) presented the shifted Laplace preconditioner as a suitable preconditioner
for the Helmholtz equation. The standard form of the Helmholtz equation is given by

−∆u− k2u = f,

on a certain domain Ω and with suitable boundary conditions. With ∆ = ∂2/∂x2 + ∂2/∂y2, the
Laplace operator, and k the wave number. Discretization of this Helmholtz equation leads to the
system of equations of the form

Ax = (L− k2M +C)x = b.

Matrix L is the discretization of −∆u, C corresponds to the boundary conditions and M the
mass matrix. The shifted Laplace preconditioner K is obtained by the discretization of the
shifted Helmholtz equation

−∆u+ ξ2u = f.
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Where ξ2 is denoted as the shift parameter and can be chosen freely, both real and complex. This
results in the following matrix

K = L+ ξ2M +C.

The preconditioned system of equations is now given by

(L+ ξ2M +C)−1(L− k2M +C)x = (L+ ξ2M +C)−1b.

The preconditioner K has the same sparsity pattern as global matrix A, hence computing the
complete LU decomposition can be very expensive. Therefore its incomplete LU decomposition is
often determined, which can be easily computed.

The shifted Laplace preconditioner for the Mild-Slope equation

The non-linear Mild-Slope equation is very similar to the damped Helmholtz equation, which
suggests that the shifted Laplace preconditioner is a suitable choice for the Mild-Slope equation.
Application of the Ritz-Galerkin finite element method to the non-linear Mild-Slope equation
results in the linear system of equations Sζ = b, see chapter 4. The contribution of an internal
element to the global matrix S is given by the following element matrix

Sei = −n0

k2
0

Le +

(
n0 −

iW

ω

)
M e.

For details on matrices Le and M e we refer to chapter 6. Note that the coefficients n0, k0 and W
are not constant on the domain. Matrices Le and M e have a different value per element, since
their expressions depend on the coefficients of the basis functions in the finite element method.
The contribution of a boundary element to the global matrix S is given by

Seb = − in0

k2
0

(
1−R
1 +R

)
Ce.

Since the coefficients in the Mild-Slope equation are not constant, it does not seem reasonable
to choose a constant shift for all the elements. Hence we propose the following shifted element
matrix for the internal elements

Ke
i = −n0

k2
0

Le − ξ2M e.

The contribution from the boundary elements to the preconditioner can, for instance, be computed
by

Ke
b = Seb = − in0

k2
0

(
1−R
1 +R

)
Ce.

However, a different choice can also be made. From these shifted element matrices Ke
i and Ke

b

we can compute the global preconditioner K.

5.4 Summary of the methods to solve the system of equa-
tions

In this chapter we presented three methods for solving the linear system of equations Sζ = b
obtained after the discretization of the non-linear Mild-Slope equation. The direct method MUMPS,
the Krylov subspace methods Bi-CGSTAB and IDR(s) and the incomplete LU decomposition and
the shifted Laplace preconditioner has been discussed. The current implementation of HARES
uses Bi-CGSTAB preconditioned with the incomplete LU decomposition. To improve the com-
putational time for solving the system of equations we propose the direct method MUMPS and the
Krylov subspace method IDR(s) preconditioned with the shifted Laplace preconditioner.



38 CHAPTER 5. SOLVING A SYSTEM OF EQUATIONS



Chapter 6

Bounds on the eigenvalue range
using element-by-element
estimates

In chapter 5 we proposed the Krylov subspace method IDR(s) combined with the shifted Laplace
preconditioner as an improvement of the current implementation Bi-CGSTAB preconditioned with
the incomplete LU decomposition.

The element shift coefficient ξ2 in the shifted Laplace preconditioner, see section 5.3.2, can be
chosen freely. We would like to choose it such that the fastest convergence for the iterative method
is obtained. Estimating the eigenvalues of the preconditioned system K−1S is necessary to be
able to say something about the convergence. A bound on the eigenvalues is not only interesting
for the convergence of the iterative method. But we might also be able to smartly choose the
coefficient ω in the IDR(s) algorithm using Chebyshev polynomials.

In this chapter we determine a bound on the eigenvalues of the preconditioned system, using an
element-by-element technique as presented by Loghin et al. (2006). In section 6.1 we present the
element matrices that are obtained using the Ritz-Galerkin finite element method and Gaussian
integration. In sections 6.2 and 6.3 we describe the theory needed to compute a bound for the
eigenvalue estimate. Section 6.4 discusses the eigenvalue estimate for the non-linear Mild-Slope
equation using the shifted Laplace preconditioner. In section 6.5 we present the theory of choosing
the coefficient ω based on Chebyshev polynomials.

6.1 Element matrices

6.1.1 Internal elements

Applying the Ritz-Galerkin finite element method to the non-linear Mild-Slope equation and using
exact integration gives the following element matrix for an internal element, see equation (4.2.5)
in section 4.2.1 and equation (4.3.3) in section 4.3.1.

Sei = −n0

k2
0

Le +

(
n0 −

iW

ω

)
M e, (6.1.1)

with n0 > 0, k0 > 0 and

Le =
|∆|
2

 β2
1 + γ2

1 β1β2 + γ1γ2 β1β3 + γ1γ3

β1β2 + γ1γ2 β2
2 + γ2

2 β2β3 + γ2γ3

β1β3 + γ1γ3 β2β3 + γ2γ3 β2
3 + γ2

3

 and M e =
|∆|
2

 1
6

1
12

1
12

1
12

1
6

1
12

1
12

1
12

1
6

 .
39
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Where |∆|2 denotes the size of the triangular element and βj and γj are the coefficients of basis
function ψj (j = 1, 2, 3). These coefficients are given by

β1 =
1

∆
(y2 − y3) , β2 =

1

∆
(y3 − y1) , β3 =

1

∆
(y1 − y2)

γ1 =
1

∆
(x3 − x2) , γ2 =

1

∆
(x1 − x3) , γ3 =

1

∆
(x2 − x1)

(6.1.2)

With these expressions for Le and M e it is easily checked that Sei is a symmetric but not an
Hermitian matrix.

6.1.2 Boundary elements

For the boundary elements (both the closed and open boundary) we get the following expression
for the element matrices

Seb = − in0

k2
0

(
1−R
1 +R

)
Ce, (6.1.3)

with R = 0 for the elements on the open boundary and 0 ≤ R ≤ 1 for the elements on the closed
boundary. Element matrix Ce is given by

Ce = k0

√
1− iW

ωn0
‖∆x‖2

[
1
3

1
6

1
6

1
3

]
− 1

2k0

√
1− iW

ωn0
‖∆x‖2

[
1 −1
−1 1

]
.

The term
√

1− iW
ωn0

can also be written as

√
1− iW

ωn0
=

√√√√√
√

1 +
(
W
ωn0

)2

+ 1

2
− i

√√√√√
√

1 +
(
W
ωn0

)2

− 1

2
= a− ib, (6.1.4)

with a, b ∈ R. Rewriting the expression for Ce gives

Ce = k0(a− ib)‖∆x‖2
[

1
3

1
6

1
6

1
3

]
− a+ ib

2k0(a2 + b2)‖∆x‖2

[
1 −1
−1 1

]
. (6.1.5)

6.2 Field of values of a matrix

The spectrum of a matrix A is contained in its field of values. Hence knowing a bound on the field
of values automatically results in a bound on the spectrum. The location of the eigenvalues of a
(preconditioned) matrix is important for the choice of numerical method and we can determine
an upper bound for the needed iterations until convergence.

Let A be a general square matrix of order N . The field of values of matrix A is defined as

FOV (A) =

{
xHAx

xHx
, x ∈ CN , x 6= 0

}
. (6.2.1)

The generalized field of values for a matrix pair A, B with B non-singular is given by

FOV (A,B) =

{
xHAx

xHBx
, x ∈ CN , x 6= 0

}
. (6.2.2)

The set of eigenvalues λA,B of the generalized problem Ax = λBx is contained in the field of
values FOV (A,B), which follows by taking x to be an eigenvector of the generalized problem. A
bound on the generalized field of values of the matrix pair A, B is also a bound on the spectrum of
the generalized problem. When the preconditioner B is Hermitian positive definite (or Hermitian
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negative definite) its Cholesky decomposition exists such that B = CCH . The generalized field
of values FOV (A,B) can then be written as

FOV (A,B) = FOV (C−1AC−H).

The generalized Rayleigh quotient RA,B for A Hermitian and B Hermitian positive definite (neg-
ative definite) is defined as

RA,B(x) =
xHAx

xHBx
, ∀x 6= 0,

with the property
λA,Bmin ≤ R

A,B ≤ λA,Bmax , ∀x 6= 0.

Using the relation between the Rayleigh quotient and the field of values we have

λA,Bmin ≤ z ≤ λ
A,B
max ∀ z ∈ FOV (A,B),

if A is Hermitian and B Hermitian positive definite.

6.3 Bound on the field of values

Applying the finite element method to the Mild-Slope equation results in a dense element matrix
Ae ∈ Cne×ne

of element e which has to be mapped into the global matrix A ∈ CN×N . Let N e

denote an ne ×N boolean matrix that maps the global vector x of variables into the vector xe of
variables associated with element e, i.e.

xe = N ex. (6.3.1)

The global matrix A can be determined with the following mapping

A =

ne∑
e=1

N eTAeN e, (6.3.2)

where ne denotes the number of elements. Using expressions (6.3.1) and (6.3.2) we get

xHAx = xH

(
ne∑
e=1

N eTAeN e

)
x =

ne∑
e=1

xe
H

Aexe. (6.3.3)

To be able to determine a bound on the field of values we need two theorems presented by Loghin
et al. (2006). Theorem 3 gives the relation between the largest (resp. smallest) eigenvalue of
all the preconditioned element matrices and the largest (resp. smallest) eigenvalue of the global
generalized eigenvalue problem.

Theorem 3. Let Ae, e = 1, 2, . . . , ne be Hermitian and Be, e = 1, . . . , ne be Hermitian positive
definite element matrices and let A and B be the global matrices that are assembled from these
element matrices. Let ω be the smallest eigenvalue of all element matrix pairs Ae, Be, i.e.

ω = min
e
λA

e,Be

min ,

and let Ω be the largest eigenvalue, i.e.

Ω = max
e
λA

e,Be

max .

Then the following bounds hold for the eigenvalues λA,B of the global eigenvalue problem
Ax = λBx:

ω ≤ λA,B ≤ Ω.



42 CHAPTER 6. BOUNDS ON THE EIGENVALUE RANGE

Proof. By the Rayleigh quotient property for element matrices we have

ω ≤ xe
H

Aexe

xeHBexe
≤ Ω ∀ e, xe 6= 0,

and hence also
ωxe

H

Bexe ≤ xe
H

Aexe ≤ Ωxe
H

Bexe, ∀ e, xe. (6.3.4)

This bounds holds for any xe (even xe = 0), hence also for element vectors generated from any
global vector x through xe = N ex. Substituting this into expression (6.3.4) gives

ωxHN eTBeN ex ≤ xHN eTAeN ex ≤ ΩxHN eTBeN ex ∀ e, x.

Applying the assembly operator (6.3.3) gives

ωxHBx ≤ xHAx ≤ ΩxHBx ∀ x.

Since it is assumed that B is positive definite we can divide by xHBx, which results in

ω ≤ xHAx

xHBx
≤ Ω ∀ x 6= 0.

By the Rayleigh quotient property for global matrices we get the desired result.

Theorem 4 gives a bound on the generalized eigenvalue problem when the element matrices are
possibly non-Hermitian.

Theorem 4. Let Ae, e = 1, . . . , ne be (possibly non-Hermitian) element matrices and Be, e =
1, . . . , ne be Hermitian positive definite element matrices and let A and B be the global matrices
that are assembled from these element matrices. Let ωR (resp. ωI) be the smallest eigenvalue of
all the element matrix pairs <(Ae),Be, (resp. =(Ae),Be), i.e.

ωR = min
e
λ
<(Ae),Be

min , ωI = min
e
λ
=(Ae),Be

min ,

and let ΩR (resp. ΩI) be the largest eigenvalue

ΩR = max
e
λ<(Ae),Be

max , ΩI = max
e
λ=(Ae),Be

max .

Then the following bounds hold for z ∈ FOV (A,B):

ωR ≤ Re(z) ≤ ΩR,

ωI ≤ Im(z) ≤ ΩI .

Proof. Any non-Hermitian matrix Ae can be split into two Hermitian matrices, i.e.

Ae =
1

2

(
Ae +AeH

)
+ i

1

2i

(
Ae −AeH

)
= <(Ae) + i=(Ae).

For the generalized field of values we obtain

FOV (Ae,Be) = FOV (<(Ae) + i=(Ae),Be).

Since <(Ae), =(Ae) and Be are Hermitian matrices, it holds that both FOV (<(Ae),Be) and
FOV (=(Ae),Be) are real. Therefore the following projection property holds

Re(FOV (Ae,Be)) = FOV (<(Ae),Be),

Im(FOV (Ae,Be)) = FOV (=(Ae),Be).

Applying theorem 3 to the generalized eigenvalue problems <(Ae),Be and =(Ae),Be gives the
desired result.
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6.4 Eigenvalue estimate for the Mild-Slope equation

Using the theory presented in section 6.3 we are able to determine a bound on the field of values
of the Mild-Slope equation. In this section we propose the preconditioners for an internal and a
boundary element. Using the element-by-element technique presented in Theorem 4, we determine
a bound on the eigenvalues of the generalized eigenvalue problem.

6.4.1 Internal elements

Preconditioner

The shifted Laplace preconditioner, presented by Erlangga et al. (2004), gives good results for
both the Helmholtz and the damped Helmholtz equation. The Mild-Slope equation with energy
dissipation has the same properties as the damped Helmholtz equation. Therefore it seems a
reasonable choice to apply the shifted Laplace preconditioner to the Mild-Slope equation.

The shifted Laplace preconditioner for the non-linear Mild-Slope equation is of the form

Ke
i = −n0

k2
0

Le − ξ2M e = −
(
n0

k2
0

Le + ξ2M e

)
, (6.4.1)

with ξ ∈ R. Comparing expression (6.1.1) with expression (6.4.1) we see that only the coefficient
in front of the mass matrix M e is changed, which is denoted as the shift ξ2. To apply Theorem 4
to the shifted Laplace preconditioner (6.4.1) it has to be an Hermitian positive definite (or negative
definite) matrix. Matrices Le and M e are symmetric and contain only real elements, therefore is
matrix Ke

i symmetric and Hermitian. It rests to show that matrix Ke
i is positive (or negative)

definite.

For the matrix n0

k20
Le + ξ2M e to be positive definite, it must hold that

xT
(
n0

k2
0

Le + ξ2M e

)
x > 0,

⇒ n0

k2
0

xTLex+ ξ2xTM ex > 0,

⇒ xTLex ≥ 0 and xTM ex > 0, ∀x 6= 0, x ∈ R3.

Matrix M e has the eigenvalues λ1 = 1
12 , λ2 = 1

12 and λ3 = 1
3 . Hence it is a symmetric positive

definite matrix. We continue with demonstrating that matrix Le is positive semi-definite, i.e.
its eigenvalues are larger than or equal to zero. This can be done using the Gerschgorin circle
theorem, see Theorem 5.

Theorem 5. (Gerschgorin circle theorem) Let A be an (real or complex) n × n-matrix let
ri denote the sum of the absolute values of the off-diagonal entries in the ith row of A; i.e.
ri =

∑
j 6=i |aij |. Then every eigenvalue of A is contained within a Gerschgorin disk with center

aii and radius ri.

Proof. See Gerschgorin (1931).

Applying Gerschgorin circle theorem to matrix Le we obtain three circles with center β2
i + γ2

i and
radius |βiβj + γiγi|+ |βiβk + γiγk| with i, j, k = 1, 2, 3 and j 6= k 6= i. The center of each circle is
located in the first quadrant, hence it is necessary to show that aii − ri ≥ 0 for Le to be positive
semi-definite. We do this by the following computation

aii − ri = β2
i + γ2

i − (|βiβj + γiγj |+ |βiβk + γiγk|)
≥ β2

i + γ2
i − |βiβj + βiβk + γiγj + γiγk|

= β2
i + γ2

i − | − β2
i − γ2

i |
= β2

i + γ2
i − | − 1||β2

i + γ2
i |

= β2
i + γ2

i − (β2
i + γ2

i ) = 0.
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Concluding aii − ri ≥ 0, thus matrix Le is positive semi-definite. Hence it is shown that n0

k20
Le +

ξ2M e is symmetric positive definite and thus the shifted Laplace preconditioner Ke
i is symmetric

(Hermitian) negative definite.

Eigenvalue estimate

Using the two theorems presented in section 6.3 we are able to determine a bound on the eigenvalues
of the generalized eigenvalue problem Sx = λS,KKx. This bound, however, depends on the choice
of the shift parameter ξ2. Smartly choosing this shift can improve the rate of convergence of the
system of equations. Knowing the influence of the shift on the field of values, it is possible to
determine an optimal value for the shift ξ2. Hence we need to determine the eigenvalues of the
generalized problem Seix

e = λS
e
i ,K

e
iKe

ix
e. As noted in section 6.1.1 matrix Sei is not an Hermitian

matrix, but it can be written in a Hermitian real and imaginary part, i.e. Sei = <(Sei ) + i=(Sei ).
For details see the proof of Theorem 4). The expressions for <(Sei ) and =(Sei ) are given by

<(Sei ) = −n0

k2
0

Le + n0M
e and =(Sei ) = −W

ω
M e.

Hence we need to solve the following two element eigenvalue problems(
−n0

k2
0

Le + n0M
e

)
xe = λ<(Se

i ),Ke
i

(
−n0

k2
0

Le − ξ2M e

)
xe, (6.4.2)

and

−W
ω
M exe = λ=(Se

i ),Ke
i

(
−n0

k2
0

Le − ξ2M e

)
xe. (6.4.3)

To determine the eigenvalues of the generalized eigenvalue problem (6.4.2) we look at its Rayleigh
quotient, i.e.

xe
T<(Sei )x

e

xeTKe
ix

e
=
xe

T

Ke
ix

e

xeTKe
ix

e
+
xe

T

(<(Sei )−K
e
i )x

e

xeTKe
ix

e

= 1 +
(
n0 + ξ2

) xeTM exe

xeTKe
ix

e
.

Hence only the eigenvalues of the generalized problem M exe = λM
e,Ke

iKe
ix

e need to be deter-
mined to obtain the eigenvalues of both the element eigenvalue problems (6.4.2) and (6.4.3). The
largest and smallest eigenvalue of the generalized eigenvalue problem are given by (see Appendix
B)

λ
Me,Ke

i
max =

∆2k2
0

(
−6n0α− ξ2k2

0 + 12n0

√
α2

4 −
3

∆2

)
ξ4k4

0∆2 + 432n2
0 + 12n0ξ2k2

0∆2α
and λ

Me,Ke
i

min = − 1

ξ2
, (6.4.4)

with α = β2
1 + β2

2 + β2
3 + γ2

1 + γ2
2 + γ2

3 . Since matrices M e and Ke
i are both symmetric positive

(resp. negative) definite the eigenvalues of the generalized eigenvalue problem are real. Hence it

must hold that α2

4 −
3

∆2 > 0. We obtain the following bounds for the eigenvalues λ
Me,Ke

i
max and

λ
Me,Ke

i
min

−1 < λ
Me,Ke

i
max < 0 and −∞ < λ

Me,Ke
i

min < 0. (6.4.5)

Eigenvalues of equation (6.4.2)
Using the expression found in equation (6.4.4) the minimal and maximal eigenvalue of the gener-
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alized eigenvalue problem (6.4.2) are given by

λ
<(Se

i ),Ke
i

max = 1 + (n0 + ξ2)λ
Me,Ke

i
max

= 1 + (n0 + ξ2)

∆2k2
0

(
−6n0α− ξ2k2

0 + 12n0

√
α2

4 −
3
∆

)
ξ4k4

0∆2 + 432n2
0 + 12n0ξ2k2

0∆2α
(6.4.6)

λ
<(Se

i ),Ke
i

min = 1 + (n0 + ξ2)λ
Me,Ke

i

min

= −n0

ξ2
(6.4.7)

Using the bounds given in expression (6.4.5), we obtain the following bounds for the eigenvalues
of <(Sei )xe = λ<(Se

i ),Ke
iKe

ixe

0 < λ
<(Se

i ),Ke
i

max < 1 and −∞ < λ
<(Se

i ),Ke
i

min < 0. (6.4.8)

These bounds show that the preconditioned version of <(Sei ) is indefinite, since the minimal and
maximal eigenvalues do not have the same sign.

Eigenvalues of equation (6.4.3)
The minimal and maximal eigenvalue of the generalized eigenvalue problem (6.4.3) are given by

λ
=(Se

i ),Ke
i

max = −W
ω
λ
Me,Ke

i

min

=
W

ωξ2
(6.4.9)

λ
=(Se

i ),Ke
i

min = −W
ω
λ
Me,Ke

i
max

= −W
ω

∆2k2
0

(
−6n0α− ξ2k2

0 + 12n0

√
α2

4 −
3
∆

)
ξ4k4

0∆2 + 432n2
0 + 12n0ξ2k2

0∆2α
(6.4.10)

Again the bound of these eigenvalues can be determined using the bounds found in expression
(6.4.5), hence we obtain

0 < λ
=(Se

i ),Ke
i

max <∞ and 0 < λ
=(Se

i ),Ke
i

min <
W

ω
. (6.4.11)

Both eigenvalues are larger than zero, hence the preconditioned matrix =(Sei ) is positive definite.

Note that the coefficients W , n0, ∆, k0 and α differ for every element, hence it is not directly
clear for which elements these eigenvalues are minimal or maximal. But since all coefficients are
known for each element, it is easily verified numerically.

To check whether the theory holds we determine the bounding box and the eigenvalues of the the
internal elements. We use the test case “The harbour of Scheveningen”, see section 7.1. For the
shift ξ in the shifted Laplace preconditioner we choose ξ = 0.5k0 and ξ = k0. Using these values we

obtain the following values for ωR = mine λ
<(Se),Ke

min , ωI = mine λ
=(Se),Ke

min , ΩR = maxe λ
<(Se),Ke

max

and ΩI = maxλ
=(Se),Ke

max presented in table 6.1.
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Shift ξ = 0.5k0 Shift ξ = k0

ωR -482.2996 ωR -120.5749

ΩR 0.9979 ΩR 0.9979

ωI 7.9933e-7 ωI 7.9931e-7

ΩI 18.2997 ΩI 4.5749

Table 6.1: The values of the eigenvalues that determine the boundaries of the bounding box for two
different values of the shift parameter ξ. This is for the internal elements only.

Table 6.1 shows that the values for ωR and ΩI differ significantly for different values of the shift ξ.
While the values of ΩR and ωI almost do not change. It is interesting to check whether the actual
eigenvalues of the generalized eigenvalue problem Sx = λKx are located inside the bounding
box as the theory describes. Therefore we determine the 100 largest and smallest eigenvalues, the
results are shown in figure 6.1.
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Figure 6.1: The bounding box and the corresponding eigenvalues for the internal elements for two values
of the shift parameter ξ.

Figure 6.1 shows that the eigenvalues of the matrix S, assembled from the element matrices
Sei , preconditioned with matrix K, assembled from the element preconditioner matrices Ke

i , are
located inside the bounding box.

6.4.2 Boundary elements

Preconditioner

The boundary conditions are taken into account in the shifted Laplace preconditioner. It is
common to use the same contribution of the boundary conditions in the shifted Laplace matrix K
as in the global matrix S. However, this is not necessary and the contribution for the boundary
conditions can be chosen freely. In our case we need it to be Hermitian positive (negative) definite.
We like to preserve the properties of the preconditioned internal element matrices. That is the
positive definiteness of the imaginary part of the element matrix and the bounds of the eigenvalues.

Combining the expressions (6.1.5) and (6.1.3) we easily see that matrix Seb is not an Hermitian
matrix, hence we spilt it into its real <(Seb) and imaginary =(Seb) part.

<(Seb) = −n0

k2
0

(
1−R
1 +R

)
b

{
k0‖∆x‖2

[
1
3

1
6

1
6

1
3

]
+

1

2k0(a2 + b2)‖∆x‖2

[
1 −1
−1 1

]}
, (6.4.12)

and

=(Seb) = −n0

k2
0

(
1−R
1 +R

)
a

{
k0‖∆x‖2

[
1
3

1
6

1
6

1
3

]
− 1

2k0(a2 + b2)‖∆x‖2

[
1 −1
−1 1

]}
.
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It is easily verified that <(Seb) is symmetric negative definite since the first matrix is positive
definite (eigenvalues 1

6 and 1
2 ) and the second matrix is positive semi-definite (eigenvalues 0 and

2). The expression for =(Seb) is symmetric, however it is in general indefinite. For the internal
elements we have the opposite situation, i.e. <(Sei ) is indefinite and =(Sei ) negative definite.
Therefore we like to choose a preconditioner which switches the properties of <(Seb) and =(Seb).
We propose the following preconditioner

Ke
b = −i

(
−n0

k2
0

(
1−R
1 +R

)
a

{
k0‖∆x‖2

[
1
3

1
6

1
6

1
3

]
+

1

2k0(a2 + b2)‖∆x‖2

[
1 −1
−1 1

]})
,

= −i · a
b
· <(Seb). (6.4.13)

This results in the following generalized eigenvalue problem

Sebx
e = λS

e
b ,K

e
bKe

bx
e,

= −iλS
e
b ,K

e
b · a

b
· <(Seb)x

e,

iSebx
e = λS

e
b ,K

e
b · a

b
· <(Seb)x

e. (6.4.14)

Now we can apply the theory presented in section 6.3 since matrix <(Seb) is symmetric negative
definite.

Eigenvalue estimate

Seb,i = iSeb is not Hermitian, hence we determine the expressions for <(Seb) and =(Seb). This gives

<(Seb,i) =
n0

k2
0

(
1−R
1 +R

)
a

{
k0‖∆x‖2

[
1
3

1
6

1
6

1
3

]
− 1

2k0(a2 + b2)‖∆x‖2

[
1 −1
−1 1

]}
,

and

=(Seb,i) = −n0

k2
0

(
1−R
1 +R

)
b

{
k0‖∆x‖2

[
1
3

1
6

1
6

1
3

]
+

1

2k0(a2 + b2)‖∆x‖2

[
1 −1
−1 1

]}
.

We need to determine the eigenvalues of the following two generalized eigenvalue problems

<(eb,i)x
e = λ<(Se

b,i),K
e
b · a

b
· <(Seb)x

e, (6.4.15)

and

=(Seb,i)x
e = λ=(Se

b,i,K
e
b · a

b
· <(Seb)x

e. (6.4.16)

Due to the resemblance of the preconditioner and the matrices <(Seb,i) and =(Seb,i) the eigenvalues
are easily determined. For expression (6.4.15) we obtain

λ
<(Se

b,i),K
e
i

max = − (a2 + b2)k2
0‖∆x‖22 − 6

(a2 + b2)k2
0‖∆x‖22 + 6

and λ
<(Se

b,i),K
e
b

min = −1.

For λ
<(Se

b,i),K
e
i

max this expression results in the following bound

−1 < λ
<(Se

b,i),K
e
i

max < 1.

However, with the possible values of the coefficients k0, a, b and ‖∆x‖2 it holds that λ
<(Se

b,i),K
e
i

max >
0. These bounds for the eigenvalues of the preconditioner matrix <(Sep) indicate that indeed it is
an indefinite matrix.
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The eigenvalues of expression (6.4.16) are given by

λ
=(Se

b,i),K
e
b

max = λ
=(Se

b,i),K
e
b

min =
b

a
.

To derive a bound on this eigenvalue we look at the expression for a and b, see equation (6.1.4).
It holds that a, b > 0 and b < a, hence we obtain the following bound

0 < λ
=(Se

b,i),K
e
b

max , λ
=(Se

b,i),K
e
b

min < 1.

Using this preconditioner for the boundary elements and the shifted Laplace preconditioner for
the internal elements, the theory of section 6.3 seems applicable. Even though the actual precon-
ditioner Ke

b is not an Hermitian matrix. However, computing the bounding box, see table 6.2,
and the eigenvalues, see figure 6.2, shows that this is not the case. The smallest eigenvalues are
located inside the bounding box, but the largest eigenvalues are not included in the bounding box.
This indicates that the theory is only applicable when the preconditioner is an Hermitian matrix
at the start of the computation and not, after some manipulations, becomes Hermitian.

Shift ξ = k0 Shift ξ = 5k0

ωR -120.5749 ωR -4.8230

ΩR 0.9979 ΩR 0.9975

ωI 7.9931e-7 ωI 7.9892e-7

ΩI 4.5749 ΩI 0.1830

Table 6.2: The values of the eigenvalues that determine the boundaries of the bounding box for two
different values of the shift parameter ξ. This is the combination of both the internal and boundary
elements.

Note that the bounds on the eigenvalues are completely determined by the eigenvalues of the
internal elements, see table 6.1 for ξ = k0. This indicates that if this preconditioner is used for the
boundary elements, the bound on the eigenvalues of the boundary elements lies inside the bound
on the eigenvalues of the internal elements.
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(b) Shift ξ = k0, zoomed in

−6 −5 −4 −3 −2 −1 0 1 2

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Real

Im
ag

Shift=5k
0

 

 
Eigenvalues
Bounding box

(c) Shift ξ = 5k0

Figure 6.2: The bounding box and the corresponding eigenvalues for both the preconditioned internal
elements and boundary elements for two values of the shift parameter ξ.

This result indicates that it is not possible to obtain either a positive definite <(S) or a positive
definite =(S) after preconditioning.

Hermitian preconditioner Ke
b

To determine whether the theory holds if the preconditioner of the boundary elements is Hermitian
positive definite, we choose the preconditioner Ke

b to be of the same form as <(Seb), see expression
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6.4.12. We propose the following preconditioner

Ke
b =

a

b
<(Seb), (6.4.17)

which clearly is Hermitian negative definite. The eigenvalues of the generalized eigenvalue problem
<(Seb)x

e = λ<(Se
b),Ke

bKe
bx

e are given by

λ
<(Se

b),Ke
b

min = λ
<(Se

b),Ke
b

max =
a

b
.

The eigenvalues of the generalized eigenvalue problem =(Seb)x
e = λ=(Se

b),Ke
bKe

bx
e are given by

λ
=(Se

b),Ke
b

min =
(a2 + b2)k2

0‖∆x‖22 − 6

(a2 + b2)k2
0‖∆x‖22 + 6

and λ
=(Se

b),Ke
b

max = 1.

Table 6.3 shows the values of the bounding box for the shifts ξ = k0 and ξ = 5k0. Figure 6.3
shows the location of the eigenvalues, both the internal and boundary elements, and the bounding
box for this choice of preconditioner.

Shift ξ = k0 Shift ξ = 5k0

ωR -120.5749 ωR -4.8230

ΩR 0.9979 ΩR 0.9975

ωI -0.9500 ωI -0.9500

ΩI 4.5749 ΩI 1.0000

Table 6.3: The extreme values of the eigenvalues that determine the boundaries of the bounding box for
two different values of the shift parameter ξ. For both the internal and boundary elements.
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Figure 6.3: The bounding box and the corresponding eigenvalues for both the preconditioned internal
elements and boundary elements for two values of the shift parameter ξ.

Figure 6.3 shows that the theory of section 6.3 does hold when the preconditioner Ke
b is Hermitian

positive (negative) definite from the beginning of the computation. The value for ωI in table 6.3 is
now determined by the eigenvalues of the boundary elements, for ΩI its value depends on the choice
of the shift parameter ξ. For ξ sufficient large, i.e. when ΩI from the internal elements becomes
smaller than one, its value is determined by the eigenvalues of the boundary elements. However,
since neither the <(S) nor the =(S) part is positive (or negative) definite it is not possible to
determine an optimal value of the shift as presented by van Gijzen and Erlangga (2006).
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6.5 Choosing the coefficient ω in IDR(s) using Chebyshev
polynomials

Chebyshev polynomials are named after the Russian mathematician Pafnuty Lvovich Chebyshev
(1821 - 1894) and are of great importance in approximation theory. Let B be an arbitrary, bounded
and closed set in the complex plane, then the polynomial deviating least from zero on B is called
the Chebyshev polynomial for B. The roots of the Chebyshev polynomial are called Chebyshev
nodes and can be taken as points of interpolation. The nth Chebyshev polynomial is a polynomial
of degree n with the leading coefficient equal to one.

The generalized problem of finding the nth Chebyshev polynomial for the set B is given by, see
Smirnov and Lebedev (1968).
Among the polynomials Pn(z) = zn+c1z

n−1+. . .+cn (n ≥ 1) find the polynomial whose maximum
absolute value on the set B is minimal, that is if we set

µn = inf
Pn(z)

sup
z∈B
|Pn(z)|

then we have to find a polynomial Πn(z) = zn+c
(0)
1 zn−1+c

(0)
n for which the value of µn is attained,

i.e. such that
sup
z∈B
|Πn(z)| = µn.

6.5.1 Chebyshev polynomial on a disk

Suppose that B is a disk in the complex plane, i.e. |z| ≤ R, and we like to determine the nth
Chebyshev polynomial on this region. Smirnov and Lebedev (1968) derived Theorem 6, which
state that the nth Chebyshev polynomial on a disk |z| ≤ R is given by zn.

Theorem 6. For the polynomials Pn(z) = zn + c1z
n−1 + . . .+ cn of degree n ≤ 1, we have

µn = inf
Pn(z)

sup
|z|≤R

|Pn(z)| = Rn,

and µn is attained only for the polynomial Πn(z) = zn.

Proof. Write the polynomial Pn(z) as

Pn(z) = zn + c1z
n−1 + . . .+ cn

= zn
(

1 +
c1
z

+ . . .+
cn
zn

)
= znϕ(z). (6.5.1)

Note that the function ϕ(z) is an analytic function on the region |z| ≥ R. Applying twice the
maximum principle (the maximum of a function in a domain is to be found on the boundary of
that domain, otherwise the function is constant) the following result is obtained

sup
|z|≤R

|Pn(z)| = sup
|z|=R

|Pn(z)| = sup
|z|=R

Rn|ϕ(z)| = Rn sup
|z|≥R

|ϕ(z)| ≥ Rn|ϕ(∞)| = Rn.

The equality holds if and only if the function ϕ(z) is a constant, i.e., if and only if ϕ(z) = ϕ(∞) = 1.
Substituting this result for ϕ(z) into expression 6.5.1 gives the desired result for the nth Chebyshev
polynomial on the disk |z| ≤ R.

Faber et al. (2010) generalise this result for a disk with center γ ∈ C in a complex plane. Hence
we are looking for the nth Chebyshev polynomial in the region |z − γ| ≤ R, which is given by
Πn(z) = (z − γ)n. The proof that this is the nth Chebyshev polynomial of the disk |z − γ| ≤ R
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is analogous to the proof of Theorem 6 by substituting (z − γ)n for zn. The Chebyshev nodes for
this Chebyshev polynomial are given by z = γ.

We can apply this theory to minimize the polynomial Qj(A) in the residuals of IDR(s). The
residuals of IDR(s) can be written as

rn = Ωj(A)Ψn−j(A)r0,

with Ωj(t) = (1−ωjt)(1−ωj−1t) . . . (1−ω1t) and Ψn−j(A) such that pHk Ωl(A)Ψn−j(A)r0 = 0 for
k = 1, 2, . . . , s and l = 0, 1, . . . , j− 1. The roots tj of Ωj(t) are given by tj = 1/ωj , hence choosing
ωj = 1/γ results in the polynomial Ωj(t) with the same roots as the jth Chebyshev polynomial
on a disk in the complex plane.

The residuals of IDR(s) are very similar to the residuals in Richardson iteration, see van der Vorst
(2003). The Richardson residual are given by

‖rk+1‖ = ‖(I − ωA)rk‖ ≤ ‖I − ωA‖‖rk‖.

The method converges if ‖I − ωA‖ ≤ 1 or |1− ωλj | ≤ 1, where λj is an eigenvalue of matrix A.
Suppose that the eigenvalues are contained in a disk in the complex plane with center γ and radius
Rγ , i.e. we know that λj ∈ (Reit + γ) with i =

√
−1 and t ∈ [0, 2π]. We choose the coefficient

ω = 1/γ. Now we can make the following estimate∣∣∣∣1− 1

γ
(Reit + γ)

∣∣∣∣ =

∣∣∣∣1− R

γ
eit − 1

∣∣∣∣ =

∣∣∣∣Rγ eit
∣∣∣∣ ≤ ∣∣∣∣Rγ

∣∣∣∣ .
We have convergence when |R/γ| < 1 or R < |γ|. This indicates that the origin cannot be
contained in the eigenvalue range of matrix A, since then we would have that R > |γ|.

We have implemented this choice for ω and determined the solution of the system of equations Sζ =
b using IDR(s). However, the results were not an improvement to the current implementation of
the coefficient ω. This can be explained since the origin is contained in the eigenvalues estimate
obtained is section 6.4.

6.6 Summary of the eigenvalue estimate

In this chapter we presented a method to determine a bounding box around the eigenvalues
using an element-by-element technique. The bound on the eigenvalues of the global matrix S
of the non-linear Mild-Slope equation preconditioned with the shifted Laplace preconditioner has
been determined. Using this bound one can determine an optimal shift ξ in the shifted Laplace
preconditioner. Unfortunately, the preconditioned matrix S does not have a positive (negative)
definite real part or a positive (negative) definite imaginary part. Hence we were not able to
determine an optimal shift for the non-linear Mild-Slope equation. However, we have obtained
a bounding box around the eigenvalues. Using this bounding box we were able to test whether
choosing the coefficient ω in the IDR(s) algorithm based on Chebyshev polynomials will improve
the computational time to solve the system of equations.
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Chapter 7

Numerical experiments

In the previous chapters we presented several methods to improve the current implementation
of HARES. In this chapter we discuss the results of these changes. In every section we change
one part of the implementation and compare this with the original implementation of HARES. In
section 7.1 we discuss the properties of the four test cases on which these methods are tested. In
section 7.2 we present the initial time measurement of the current implementation of HARES. For
a non-linear problem it is important to implement a suitable stopping criterion, this is discussed in
section 7.3. In the following two sections we describe a different choice for the dissipation of energy
term W (x, y, ζ̃) in the first outer iteration and the implementation of the modified wave number
p̂ in the boundary conditions. In the current version of HARES the modified wave number is not
taken into account, instead the original wave number k0 is used. In section 7.6 we replace the
Krylov subspace method Bi-CGSTAB with IDR(s) and in section 7.7 the results for the shifted
Laplace preconditioner are presented. As a possible improvement for the convergence of the non-
linear residual we propose Newton’s method, the results are discussed in section 7.8. We describe
the results for the five different forcing sequences for inexact Picard iteration. in section 7.9. In
section 7.10 we present the results of the direct method MUMPS. Finally is section 7.11 we give an
overview of the obtained results and improvements.

In this chapter we present an overview of the results, in Appendix C.2 the results of all performed
tests can be found. HARES is written in FORTRAN 90. The English notation for numbers is
used throughout this chapter.

7.1 Test cases

The numerical methods are tested on three harbours, i.e. the harbour of Schevenigen, the
Maasvlakte and the harbour of Marsaxlokk in Malta, all provided by Svašek Hydraulics. The
test case the Maasvlakte is divided into two sub-problems where the bottom topography differs.
Hence we have four test cases to consider. Further on in this chapter we will use the shorter names
Scheveningen, Maasvlakte A, Maasvlakte B and Malta. For each test case we present a satellite
image of the harbour, the considered geometry, the initial guess of the incoming wave and the
solution of the non-linear Mild-Slope equation as obtained by HARES. Details on the input files
for these test cases can be found in Appendix C.1.

7.1.1 Harbour of Scheveningen

Figure 7.1 shows the harbour of Scheveningen. The incoming wave has a height of 2 meters, a
period of 8 seconds and an incoming direction of 315°(based on the unit circle with a counter
clockwise orientation).The maximal depth in the domain is 13.87 meters and the minimal depth
of 5.00 meters. The domain is divided into 126,504 elements, with 2,213 boundary elements and
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124,291 internal elements. The number of unknowns N is 63,253 and matrix S ∈ CN×N has
438,339 non-zero elements.

(a) The harbour of Scheveningen from
Google�earth.

(b) The considered geometry of the harbour of
Scheveningen.

(c) The initial guess for the harbour of
Scheveningen.

(d) Solution for the harbour of Scheveningen
obtained using HARES.

Figure 7.1: Overview of the harbour of Scheveningen.

7.1.2 Maasvlakte

In figure 7.2 we see the Maasvlakte. Note that the considered geometry, figure 7.2(b), only contains
the entrance of the Maasvlakte and not the whole area as shown in the satellite image 7.2(a). We
make the distinction between the bottom topographies A and B, which results in two test cases.
The difference between bottom topography A and bottom topography B is the interior depth
at the embankment (northern boundary in figure 7.2(a)). In case B the interior depth at the
embankment is much larger than for case A. A wave coming over the embankment, e.g. during
a storm, behaves numerically oddly when the interior depth is small, therefore a larger depth is
necessary. The wave motion in the entrance of the Maasvlakte is determined by combining the
outcome of case A and case B.

For both bottom topographies the minimal and maximal depth is the same, namely a minimum
of 3.00 meters and a maximum of 35.03 meters. The domain is divided into 347,224 elements with
2,967 boundary elements and 344,257 internal elements. This results in a system of equations with
N = 173, 612 unknowns, where matrix S has 1,209,350 non-zero elements.

Bottom topography A

For bottom topography A there is an incoming wave with a height of 1.0 meter, a period of 10
seconds and an incoming direction of 313°. Figure 7.3 shows the initial guess and the non-linear
solution for bottom topography A.
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(a) The Maasvlakte from
Google�earth.

(b) The considered geometry for the
Maasvlakte.

Figure 7.2: Overview of the Maasvlakte.

(a) The initial guess for the Maasvlakte - bot-
tom topography A.

(b) The solution for the Maasvlakte - bottom
topography A obtained using HARES.

Figure 7.3: Initial guess and solution for the Maasvlakte - bottom topography A.

Bottom topography B

For bottom topography B we use a wave with incoming height 1.0 meter, period 10 seconds and
an incoming direction of 300°. Figure 7.4 shows the initial guess and the wave motion for the
Maasvlakte with bottom topography B. Note the difference between figures 7.3(b) and 7.4(b)
while the initial guesses, figures 7.3(a) and 7.4(a), for both topographies are comparable. This is
due to the increased interior water depth at the embankment in bottom topography B.
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(a) The initial guess for the Maasvlakte - bot-
tom topography B.

(b) The solution of the Maasvlakte - bottom
topography B obtained using HARES.

Figure 7.4: Initial guess and solution for the Maasvlakte - bottom topography B.

7.1.3 The harbour of Marsaxlokk

The harbour of Marsaxlokk is located in the south-east of the island Malta. In figure 7.5 we see the
harbour of Marsaxlokk. The incoming wave is a wave with height 1.0 meter, period 9 seconds and
incoming direction 130°. The maximal depth is 44.66 meter and the minimal depth 6.00 meter.
The domain is divided into 340,848 elements with 2,910 boundary elements and 337,938 internal
elements. Matrix S is of dimension N = 170, 423 with 1,187,147 non-zero elements.

(a) The harbour of Marsaxlokk
from Google�earth.

(b) The considered geometry of the harbour of
Marsaxlokk.

(c) The initial guess for the harbour of
Marsaxlokk.

(d) Solution of the harbour of Marsaxlokk ob-
tained using HARES.

Figure 7.5: Overview of the harbour of Marsaxlokk - Malta.
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7.2 Current implementation of HARES

The current implementation of HARES performs 25 outer iterations where the system of linear
equations Sζ = b is solved using Bi-CGSTAB preconditioned with the incomplete LU decompo-
sition. In the first outer iteration the dissipation of wave energy W (x, y, ζ̃) is set equal to zero.
In the other outer loops the previous solution is used to compute a value for W . In the boundary
conditions the wave number k0 is used instead of the modified wave number p̂. Table 7.1 gives
the initial time measurement of the current implementation of HARES. The second column gives
the total time in seconds for HARES to complete the calculations. The third column gives the
number of outer iterations and the fourth column the total time in seconds needed to solve the
system of equations. In the fifth column we find the time needed to build matrix S 25 times and
in the last column the total amount of iterations performed for solving the system of equations 25
times.

Test case Total time # outer Solve Sζ = b Build S # matvecs

Scheveningen 994.81 25 934.17 58.26 60,206
Maasvlakte A 6700.50 25 6543.40 150.81 148,610
Maasvlakte B 6898.30 25 6741.20 150.35 156,066
Malta 5851.20 25 5697.50 146.78 132,222

Table 7.1: Initial time measurement of the current implementation of HARES.

Note that the total time presented in the second column is not completely determined by the
sum of the time to solve the system of equations and to build matrix S. At the start of the
programme the mesh and the bottom topography is loaded into HARES to be able to make
matrix S and determine the non-linear solution. This process takes some seconds, depending on
the size of the mesh. Building matrix S per outer iterations costs around 2.3 seconds for the test
case Scheveningen, 6.0 seconds for the test cases Maasvlakte A & B and 5.9 seconds for the test
case Malta.

7.3 Stopping criterion for the outer loop

The current version of HARES does not contain a stopping criterion for the outer loop. For every
geometry 25 outer iterations are performed without knowing when and whether convergence has
been reached or not. In section 3.4 we describe the stopping criterion

‖F (ζk)‖2
‖F (ζ0)‖2

≤ TOLresidual,

which is implemented in HARES to determine the required number of outer iterations. A suitable
value for TOLresidual depends on the geometry and the convergence behaviour. Table 7.2 contains
some details on the convergence behaviour of the four test cases. The second column contains
the initial non-linear residual ‖F (ζ0)‖, the third column the number of outer iterations until the
non-linear residual is of the order O(10−9). The fourth column gives the relative decrease of the
non-linear residual, after the number of outer iterations presented in the third column.

The only test case where the non-linear residual is not of the orderO(10−9) after 25 outer iterations
is Scheveningen. We obtain a relative decrease of the non-linear residual of 1.2094E-05. Therefore
for the test case Scheveningen we choose the value of 10−5 for TOLresidual. For the other three
test cases it is not reasonable to perform 25 outer iterations, since the non-linear residual is already
very small after 10 iterations. For these test cases we use the tolerance of 10−6, since using this
value already gives a significant drop in the non-linear residual. These tolerance bounds are used
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Test case ‖F (ζ0)‖2 # outer Rel. decrease

Scheveningen 964.12 25 1.2094E-5
Maasvlakte A 2104.18 22 4.7524E-12
Maasvlakte B 2314.09 12 1.2964E-11
Malta 1584.47 17 6.3113E-12

Table 7.2: Convergence behaviour of the test cases

in all the experiments presented in this chapter. The results of implementing the stopping criterion
for the non-linear residual are shown in table 7.3.

Test case Total time # outer Solve Sζ = b Build S # matvecs

Scheveningen 1045.92 26 982.89 60.63 62,560
Maasvlakte A 2719.23 10 2654.50 60.16 60,490
Maasvlakte B 1776.98 6 1763.70 36.06 39,612
Malta 1916.61 8 1865.40 46.95 43,159

Table 7.3: Implementing the stopping criterion for the outer loop.

The results in table 7.1 and table 7.3 show that implementing the stopping criterion already
leads to a significant improvement of the computational time for the test cases Maasvlakte A,
Maasvlakte B and Malta. For Scheveningen we need one outer iteration more until we satisfy the
stopping criterion.

7.4 Using the incoming wave for a value of W (x, y, ζ̃)

The current implementation uses the incoming wave only as an initial guess for iteratively solving
the system of equations. However, we could also use it to compute a value for the dissipation of
energy term W (x, y, ζ̃) in the first outer loop. Table 7.4 gives the results of this implementation.

Test case Total time # outer Solve Sζ = b Build S # matvecs

Scheveningen 868.98 22 818.52 48.23 53,002
Maasvlakte A 2729.67 10 2664.70 60.35 60,360
Maasvlakte B 1759.80 6 1719.60 36.14 39,096
Malta 1904.41 8 1852.90 47.24 42,786

Table 7.4: Using the initial guess to determine a value for W (x, y, ζ̃).

For the test case Scheveningen the number of outer iterations has decreased from 26 to 22
and a decrease of almost 10,000 matrix-vector products for solving the system of equations.
This is not caused by a decrease in the initial non-linear residual. Figure 7.6 shows the rate
‖F (ζk+1)‖2/‖F (ζk)‖2, when the initial guess is used to determine a value for W and when the
initial value of W is set equal to zero. We see that the relative drop of the non-linear residual
is much smoother when the incoming wave is used and therefore a more steady decrease in the
non-linear residual is obtained.

The number of outer iterations did not decrease for the other test cases, however, we need some
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Figure 7.6: The relative decrease in the non-linear residual F (ζ) for the test case Scheveningen.

iterations less to solve Sζ = b. From now on we will use the incoming wave to determine the
value of W (x, y, ζ̃) in the first outer loop.

7.5 The modified wave number p̂

The current implementation of HARES does not take the modified wave number p̂ in the boundary
conditions into account. However, the modified wave number is needed to determine the wave
motion accurately. Table 7.5 shows the results, regarding the computational time and the number
of iterations, when the modified wave number p̂ is implemented instead of the wave number k0.

Test case Total time # outer Solve Sζ = b Build S # matvecs

Scheveningen 849.31 21 800.78 46.29 50,944
Maasvlakte A 2640.63 10 2575.60 60.50 58,476
Maasvlakte B 1762.87 6 1722.50 36.31 39,061
Malta 1913.73 8 1862.20 47.26 42,886

Table 7.5: Implementing the modified wave number p̂.

There is a slight decrease in the number of iterations needed to solve the linear systems of equations
for all the test cases. More important is to know whether the solution changes and where this
change occurs. The difference between the solution ζk0 for the wave number k0 and the solution
ζ p̂ for the modified wave number p̂ is given in table 7.6.

Scheveningen Maasvlakte A Maasvlakte B Malta

‖ζk0
−ζp̂‖2
‖ζp̂‖2

0.0031 0.0041 0.0010 5.3277E-4

‖ζk0 − ζ p̂‖∞ 0.0429 0.0560 0.0039 0.0033

Table 7.6: The change in the non-linear solution when the modified wave number p̂ is included.

For the current bottom topographies of the test cases the implementation of the modified wave
number p̂ does not significantly change the solution. The changes that did occur are present
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around the boundary of the domains, since the modified wave number is present in the boundary
conditions. The dissipation of wave energy is included in the modified wave number p̂, see ex-
pression 2.2.13. Hence we expect that for a decreasing depth, the influence of the modified wave
number increases. We changed the water level for the test case Maasvlakte to 1.00 meter resp.
2.00 meter, which results in a minimal depth of 1.00 meter resp. 2.00 meter.

MSA - level 1.00 m MSA - level 2.00 m MSB - level 1.00 m MSB - level 2.00 m

‖ζk0
−ζp̂‖2
‖ζp̂‖2

0.0028 0.0037 0.0022 0.0014

‖ζk0 − ζ p̂‖∞ 0.0510 0.0640 0.0088 0.0058

Table 7.7: The change in the solution of the Maasvlakte for a decreasing water depth. Where MSA stands
voor Maasvlakte A and MSB for Maasvlakte B.

The results in table 7.7 show that the decrease in water depth did not lead to a significant change
in the solution between the two implementations compared to the water depth of 3.00 meters. It
is possible that the minimal water depth of 1.00 meter is still not small enough, such that the
dissipation of wave energy in the boundary conditions significantly influence the behaviour of the
wave motion.

7.6 Bi-CGSTAB versus IDR(s)

In chapter 5 we have presented the Krylov subspace method IDR(s) as an improvement over Bi-
CGSTAB. The behaviour of IDR(2), IDR(4) and IDR(8) preconditioned with the incomplete LU
decomposition of matrix S is discussed in this section. Table 7.8 contains the computing time
and the number of matrix-vector products for IDR(2), IDR(4) and IDR(8) applied to the four test
cases.

Test case Total time # outer Solving Sζ = b Build S # matvecs

IDR(2)

Scheveningen 263.78 21 215.31 46.27 13,839
Maasvlakte A 733.45 10 668.33 60.60 14,920
Maasvlakte B 624.13 6 583.66 36.38 13,013
Malta 607.77 8 566.23 47.27 12,496

IDR(4)

Scheveningen 269.78 21 221.35 46.18 12,823
Maasvlakte A 713.28 10 648.15 60.53 12,680
Maasvlakte B 590.63 6 550.15 36.29 10,750
Malta 617.26 8 565.65 47.30 11,276

IDR(8)

Scheveningen 312.74 21 264.19 46.33 12,370
Maasvlakte A 726.77 10 661.61 60.62 10,453
Maasvlakte B 603.58 6 562.30 37.18 8,911
Malta 728.05 8 676.52 47.27 10,729

Table 7.8: Computing time for IDR(s) combined with the ILU(0) preconditioner

The results in table 7.8 show that when we increase the value of s the number of matrix-vector
products decreases. However, the computing time to determine the solution of the system of
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equation does not decrease. This indicates that for a higher value of s an iteration becomes more
expensive. This is confirmed by the results in table 7.9, where also the time for half an iteration
performed with Bi-CGSTAB is showed.

Test case Bi-CGSTAB IDR(2) IDR(4) IDR(8)

Scheveningen 0.0157 0.0153 0.0172 0.0212
Maasvlakte A & B 0.0440 0.0450 0.0515 0.0632
Malta 0.0434 0.0443 0.0502 0.0640

Table 7.9: Computing time for one iteration of IDR(s) and half an iteration of Bi-CGSTAB.

IDR(2) and IDR(4) give overall the best performance regarding the computing time for solving
the systems of equations. Figure 7.7 shows the convergence behaviour of IDR(s) and Bi-CGSTAB
in the first outer iteration of the test case Scheveningen. The initial residual for IDR(s) and
Bi-CGSTAB differ since for IDR(s) right preconditioning is used, while for Bi-CGSTAB left pre-
conditioning is used. However, comparing the convergence behaviour of IDR(s) and Bi-CGSTAB
we conclude that the residual decreases faster for IDR(s) than for Bi-CGSTAB. Looking at figure
7.7(a) we see that after the first 500 matrix-vector product the difference between IDR(2), IDR(4)
and IDR(8) is small. After more matrix-vector products the difference in convergence behaviour
increases, where IDR(8) gives the fastest convergence.
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Figure 7.7: The convergence behaviour of IDR(s) and Bi-CGSTAB for the first outer iteration of the
test case Scheveningen.

Figure 7.8 shows the comparison between the number of matrix-vector products per outer iteration
and the four iterative methods. A very noticeable difference between IDR(s) and Bi-CGSTAB is
that the number of matrix-vector products decreases for IDR(s) and not for Bi-CGSTAB. This
is caused by the stopping criterion that is used in Bi-CGSTAB. The Bi-CGSTAB algorithm in
HARES uses the stopping criterion

‖b− Sζkl ‖2
‖b− Sζk0‖2

≤ TOL, (7.6.1)

with ζkl the iterative solution after the lth iteration and kth outer iteration, and ζk0 the initial
guess. Every loop of solving the system of equations the stopping criterion has the initial value
one and the residual has to decrease significantly before the Bi-CGSTAB algorithm converges.
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However, for Picard iteration, as described in section 3.1, the non-linear residual is given by
the denominator of stopping criterion (7.6.1). The non-linear residual decreases if the non-linear
problem converges. This means that using this stopping criterion and a tolerance 10−6 each inner
loop the residual, which for instance can already be of the order O(10−2), has to decrease a factor
106. Therefore, the algorithm has no benefit of the already small initial residual. The implemented
stopping criterion in IDR(s) is given by

‖b− Sζkl ‖2
‖b‖2

≤ TOL. (7.6.2)

Using Picard iteration, the right-hand-side b does not change each outer iteration. Therefore, this
stopping criterion does benefit an already good initial residual.

For the smaller problem Scheveningen the difference in matrix-vector products between IDR(2),
IDR(4) and IDR(8) is small, while for the larger problem Maasvlakte A & B the difference is
for the first couple of outer iterations larger. Towards the last outer iterations, this difference
decreases.
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(b) Maasvlakte A
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(c) Maasvlakte B
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Figure 7.8: Number of matrix-vector products per outer iteration

Note that there are several differences between the implementation of Bi-CGSTAB in HARES
and the IDR(s) algorithm used for these results. The two differences are the stopping criterion
and the way of preconditioning. In the literature study of this thesis, see van de Sande (2011),
we have tested Bi-CGSTAB and IDR(s) without these differences. There we obtained that the
results regarding the number of matrix-vector products and the computing time are significantly
better for IDR(s).
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7.6.1 Choosing the initial space G0
As mentioned is section 5.2.2 we can choose the initial vector ∆Xs as long as its elements are in
the complete subspace. After s outer loops we are able to choose the initial vector ∆Xs such that
it contains the iterative solutions of the s previous outer iterations. The results of choosing the
initial vector this way is given by table 7.10 and figure 7.9.
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Figure 7.9: Matrix-vector products when the initial space ∆Xs is chosen in IDR(s) for the test cases
Scheveningen and Maasvlakte A

Figure 7.9(a) shows that for the test case Scheveningen the number of matrix-vector products
decrease faster when the initial space is chosen. During the first s outer iterations the number of
matrix-vector products is exactly the same. Then for IDR(4) and IDR(8) the number of matrix-
vector products decreases immediately after 4 resp. 8 outer iterations. However, for IDR(2) the
number of matrix-vector products is larger when the initial space is chosen. In the first couple of
outer iterations the change in the iterative solution is quite large. Using these previous iterative
solutions to build the initial space ∆Xs does not benefit the algorithm. When the relative change
in solution is of the order O(10−2) it becomes beneficial. As of the seventh outer iteration the
number of matrix-vector products is smaller when ∆Xs is chosen. The decrease in matrix-vector
products is much larger and therefore in the complete process the number of matrix-vector products
decreases.

From table 7.10 and figure 7.9(b) we conclude that for the test case Maasvlakte A choosing the
initial space does not reduce the number of matrix-vector products as much as for the test case
Scheveningen. For IDR(2) the number of matrix-vector products has even increased compared to
not choosing the initial space. For IDR(4) and IDR(8) it is beneficial, however, since only 10 outer
iterations are needed the influence is not that large.

For the test cases Maasvlakte B and Malta the computational time is decreased for IDR(2) and
IDR(4). Since only 6 resp. 8 outer iterations are needed for these test cases, it is not possible
for IDR(8) to choose the initial space this way. Hence no change in the number of matrix-vector
products has occurred.
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Test case Total time # outer Solving Sζ = b Build S # matvecs

IDR(2) - ∆Xs

Scheveningen 192.36 21 143.82 46.31 9,257
Maasvlakte A 872.29 10 807.11 60.60 18,040
Maasvlakte B 603.55 6 563.14 36.31 12,570
Malta 534.93 8 483.25 47.36 10696

IDR(4) - ∆Xs

Scheveningen 183.22 21 134.56 46.38 7,558
Maasvlakte A 705.07 10 639.85 60.59 12,241
Maasvlakte B 537.87 6 497.33 36.33 9,777
Malta 518.26 8 466.75 47.22 9,246

IDR(8) -∆Xs

Scheveningen 203.13 21 154.67 46.23 7,280
Maasvlakte A 721.51 10 656.35 60.54 10,370
Maasvlakte B 603.03 6 562.60 36.28 8,911
Malta 730.41 8 671.05 55.09 10,729

Table 7.10: Computational time for IDR(s) when the initial space ∆Xs is chosen.

7.7 Shifted Laplace preconditioner

In this section we consider four versions of the shifted Laplace preconditioner, all are approx-
imated by the incomplete LU decomposition. Three versions are based on the shifted Laplace
preconditioner as presented in section 5.3.2, i.e.

K = L+ ξ2M +C,

with the shifts

ξ2
1 = i

∣∣∣∣n0 −
iW

ω

∣∣∣∣ , ξ2
2 = k2

0 and ξ2
3 = k2

0 + i

∣∣∣∣n0 −
iW

ω

∣∣∣∣ .
van Gijzen et al. (2007) proposed the complex shift ξ2

1 , the real shift ξ2
2 = k2

0 is derived based on
the work of van Gijzen and Erlangga (2006) and the third shift is a combination of the first two
shifts, presented by Erlangga et al. (2006). Note that for each element the value of the shift ξ2

changes. The fourth version of the shifted Laplace preconditioner is based on the shifted Laplace
preconditioner presented in section 6.4.2 with the Hermitian positive definite preconditioner for the
boundary elements, expression (6.4.17). For the internal elements we use the shift ξ2

2 = k2
0. Table

7.11 shows the results regarding the computing time and the number of matrix-vector products
for the four types of the shifted Laplace preconditioner on the test cases. Only the results for
IDR(2) are shown.

When the shifted Laplace preconditioner is used a second matrix needs to be computed, hence
the building time increases slightly. For one outer loop it takes approximately 2.3 seconds for
the test case Scheveningen and 6.2 seconds for the other test cases. The complex shift and the
real-complex shift give the best results and their computational time and the number of matrix-
vector products is very similar. The fourth type of the shifted Laplace preconditioner performs
the poorest. However, its results are considerably better than the case with only the incomplete
LU decomposition of matrix S. We conclude that for the shifted Laplace preconditioner it is good
to fully include the contribution of the boundary conditions. The results in the upcoming sections
include the shifted Laplace preconditioner with the complex shift.
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Total time # outer Solve Sζ = b Build S & K # matvecs

Scheveningen

Complex - SL 207.27 21 157.33 47.85 10,091
Real - SL 231.69 21 181.98 47.59 11,589
RealComplex - SL 209.07 22 156.89 50.05 10,181
Hermitian - SL 255.42 21 205.80 47.52 13,289

Maasvlakte A

Complex - SL 341.87 10 274.63 62.63 6,074
Real - SL 406.56 10 422.51 62.52 9,187
RealComplex - SL 336.81 10 269.68 62.56 6,023
Hermitian - SL 489.70 10 422.51 62.52 9,187

Maasvlakte B

Complex - SL 276.40 6 234.73 37.53 5,227
Real - SL 333.61 6 292.22 37.27 6,475
RealComplex - SL 277.68 6 235.92 37.63 5,255
Hermitian - SL 399.10 6 357.62 37.40 7,978

Malta

Complex - SL 401.26 8 348.13 48.84 7,901
Real - SL 460.68 8 407.64 48.68 8,937
RealComplex - SL 405.78 8 352.62 48.88 7,934
Hermitian - SL 474.47 8 421.35 48.72 9,417

Table 7.11: Computational time for four types of shifted Laplace preconditioners for IDR(2).
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Figure 7.10 shows the convergence behaviour of the four types of the shifted Laplace preconditioner
on the test case Scheveningen. We compare the incomplete LU decomposition of matrix S (blue
line) with the incomplete LU decomposition of the shifted Laplace preconditioner (black line), both
for the first outer iteration. The convergence behaviour of the shifted Laplace preconditioner with
the complex shift and the real-complex shift is very similar. For the shifted Laplace preconditioners
with only a real shift the convergence behaviour is less smooth than for the other two choices.
This suggests that when the shift has a complex part the convergence is faster and smoother.
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Figure 7.10: The convergence behaviour of the four types of shifted Laplace preconditioners and a com-
parison with the incomplete LU decomposition for the test case Scheveningen and IDR(2).

7.8 Newton’s method

In section 3.2 we have presented Newton’s method as a possible improvement to Picard iteration.
However, it is not possible to include the derivatives of W (x, y, ζ̃) and p̂ with respect to ζ̃ in
Newton’s method. The results for Newton’s method with the IDR(2) and the shifted Laplace
preconditioner are shown in table 7.12

Test case Total time # outer Solve Sζ = b Build S & K # matvecs

Scheveningen 713.22 22 659.12 52.36 40,770
Maasvlakte A 1486.96 10 1417.60 63.64 30,465
Maasvlakte B 924.81 6 882.32 39.86 18,877
Malta 1559.95 8 1505.90 50.84 33,381

Table 7.12: Computing time for Newton’s method.

The number of outer iterations did not decrease for any of the test cases. This indicates that
the usually quadratic convergence property of Newton’s method is not obtained. Hence not being
able to include the derivatives gives the same convergence rate as Picard iteration. However,
it takes much longer to reach the desired non-linear solution. In the case of Newton’s method
the implemented stopping criterion in IDR(s), expression (7.6.2), is not suitable. For Newton’s
method the non-linear residual, given by the right-hand-side b, will decrease towards zero. Hence
it is better to implement the stopping criterion (7.6.1) when Newton’s method is used. The results
for this stopping criterion can be found in table 7.13. Using this stopping criterion clearly improves
the computing time, however the total time is about twice as high as for Picard iteration.
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Test case Total time # outer Solve Sζ = b Build S & K # matvecs

Scheveningen 432.51 22 376.20 51.92 24,283
Maasvlakte A 945.28 10 875.84 65.04 19,516
Maasvlakte B 596.91 6 553.41 39.11 12,353
Malta 931.22 8 876.13 50.69 19,722

Table 7.13: The computing time for Newton’s method with the modified stopping criterion.

7.9 Inexact Picard iteration

In section 3.3 we have proposed five choices for the forcing sequence ηk in inexact Picard iteration.
In this section we discuss the results for these choices. In the choices 1, 2 and 5 we have to choose
the initial forcing term η0. Two values of this initial forcing term have been tested, however, we
only present the best results regarding the computing time here. The other results can be found
in Appendix C.2. The forcing sequence based on the fifth choice also has a tolerance incorporated,
which can be chosen freely. Two choices of this tolerance bound are tested.

We make the distinction between the two stopping criteria (7.6.1) and (7.6.2). Stopping criterion
(7.6.1) is denoted as ST1 and stopping criterion (7.6.2) as ST2. We present the results of IDR(2)
and IDR(2) - ∆Xs both preconditioned with the shifted Laplace preconditioner with a complex
shift. Where IDR(2) - ∆Xs indicates that the initial space ∆Xs is chosen as presented in section
7.6.1. At most 49 outer iterations are performed. If the non-linear solution has not been obtained
after 49 outer iterations, only the number 49 is present in the third column. In case we did not
obtain convergence for the test case Scheveningen, it also did not occur for the other three test
cases. Therefore, these results are not present for the other test cases.

7.9.1 Choice 1

Choose η0 ∈ [0, 1), the next forcing term is given by

ηk =

∣∣∣‖F (ζk)‖2 − ‖rk−1‖2
∣∣∣

‖F (ζk−1)‖2
, k = 1, 2, . . . .

The results presented in table 7.14 are obtained using the initial forcing term η0 = 0.5.

With stopping criterion (7.6.2) we did not obtain the non-linear solution after 49 outer iterations.
The non-linear residual decreases slightly after the first outer iteration. The second forcing term is
then already larger than the quotient r2

0/b. With r2
0 the initial residual of the system of equations

in the second outer loop. The IDR(2) algorithm does not perform any iterations, since the stopping
criterion is already satisfied. This leads to no change in the non-linear residual, hence the next
forcing term will also be quite large. This results in no convergence to the non-linear solution.
Using stopping criterion (7.6.1) do lead to convergence, since then the relative residual will equal
one at the start and the IDR(2) algorithm does perform some iterations.

The results in table 7.14 indicate that choosing the initial space ∆Xs does not improve the
computational time. Since the system of equations is solved less accurately using inexact Picard
iteration, the difference between two successive iterative solutions is larger than for standard
Picard iteration. Hence the algorithm can only benefit from a small range between the solutions
after many outer iterations.
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Total time # outer Solve Sζ = b Build S & K # matvecs

Scheveningen

IDR(2) - ST1 66.22 17 25.81 38.62 1,431
IDR(2) - ∆Xs - ST1 125.09 29 56.91 65.86 3,228
IDR(2) - ST2 49
IDR(2) - ∆Xs - ST2 49

Maasvlakte A

IDR(2) - ST1 202.86 11 129.79 68.89 2,376
IDR(2) - ∆Xs - ST1 339.86 12 249.96 85.62 4,787

Maasvlakte B

IDR(2) - ST1 264.25 9 165.78 94.01 3,066
IDR(2) - ∆Xs - ST1 493.71 15 392.42 96.67 7,494

Malta

IDR(2) - ST1 234.04 11 162.57 67.29 3,104
IDR(2) - ∆Xs - ST1 317.73 9 258.86 54.92 5,027

Table 7.14: Computational time for the forcing sequence based on choice 1.

7.9.2 Choice 2

Choose η0 ∈ [0, 1), the forcing sequence is obtained by

ηk = 0.5

(
‖F (ζk)‖2
‖F (ζk−1)‖2

)2

, k = 1, 2, . . . .

The initial forcing term η0 = 0.5 is used, the results of choice 2 for the forcing sequence are
presented in table 7.15.

As for choice 1 of the forcing sequence, the stopping criterion (7.6.2) did not result in the non-
linear solution. The same kind of stagnation occurred, but for this choice all the forcing terms
were equal to 0.5. Stopping criterion (7.6.1) did give good results regarding the convergence to
the non-linear solution. Using this forcing sequence we needed less outer iterations, however, more
matrix-vector products in the inner loop than for the first choice. Building matrix S costs quite
some time, hence it is not directly necessary to decrease the number of matrix-vector products if
more outer iterations are necessary to reach convergence.

Choosing the initial space ∆Xs does not improve the computational time. However, the difference
between IDR(2) and IDR(2) - ∆Xs is smaller than for the forcing sequence based on choice 1. Each
inner loop more matrix-vector products are performed, hence the system of equations is solved
more accurately and the difference between two successive iterative solution decreases faster than
for choice 1.
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Total time # outer Solve Sζ = b Build S & K # matvecs

Scheveningen

IDR(2) - ST1 76.80 17 36.73 38.47 2,368
IDR(2) - ∆Xs - ST1 109.31 22 57.69 49.82 3,714
IDR(2) - ST2 49
IDR(2) - ∆Xs - ST2 49

Maasvlakte A

IDR(2) - ST1 227.06 11 154.77 68.55 3,445
IDR(2) - ∆Xs - ST1 331.96 11 259.66 68.54 5,794

Maasvlakte B

IDR(2) - ST1 304.63 8 251.47 49.76 5,590
IDR(2) - ∆Xs - ST1 422.13 8 368.93 49.81 8,260

Malta

IDR(2) - ST1 355.61 8 304.00 48.22 6,879
IDR(2) - ∆Xs - ST1 424.70 8 372.62 48.67 8,454

Table 7.15: Computational time for the forcing sequence based on choice 2.

7.9.3 Choice 3

The forcing sequence is given by

ηk = min

(
1

k + 2
, ‖F (ζk)‖2

)
, k = 1, 2, . . . .

Table 7.16 present the results for the third choice of the forcing sequence. The results of IDR(2)
- ∆Xs are from now on left out, since this is not an improvement for inexact Picard iteration.

Total time # outer Solve Sζ = b Build S & K # matvecs

Scheveningen

IDR(2) - ST1 118.05 22 65.90 50.36 4,244
IDR(2) - ST2 49

Maasvlakte A

IDR(2) - ST1 260.07 11 187.21 69.07 4,174

Maasvlakte B

IDR(2) - ST1 243.59 9 183.61 56.48 4,085

Malta

IDR(2) - ST1 365.54 11 292.57 69.21 6,632

Table 7.16: Computational time for the forcing sequence based on choice 3.

Although we did not obtain convergence within 49 outer iterations using stopping criterion (7.6.2),
the non-linear convergence did not stagnate as for the choices 1 and 2. Each outer iteration the
IDR(2) algorithm performs so little matrix-vector products that the non-linear residual decreases
very slowly. Such a slow convergence rate leads to many outer iterations where each time the
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matrices S and K need to be build. Hence the total process will take a long time, even though
the time for solving the system of equations is quite short.

The convergence using the third choice is slower than for the first and second choice. For the test
cases Scheveningen and Maasvlakte A more matrix-vector product are needed. For the first couple
of outer iterations the number of matrix-vector products is lower than for choices 1 and 2. But
when the decrease in the non-linear residual is small the forcing terms prescribed by choices 1 and
2 are of the order O(10−1), while the forcing terms of choice 3 are of the order O(10−3). Hence
in the last part of the computation the number of matrix-vector products is much higher than for
choices 1 and 2. For the test cases Maasvlakte B and Malta more outer iterations are needed and
less matrix-vector products. Until the seventeenth outer loop the forcing sequence is determined
by the quotient 1

k+2 for the test case Scheveningen. After seventeen outer iterations the non-linear

residual ‖F (ζk)‖2 determines the forcing terms. For the other test cases the non-linear residual
defines the forcing sequence as of the eight outer iteration.

7.9.4 Choice 4

The next forcing term is given by

ηk =
1

2k+1
, k = 1, 2, . . . .

Table 7.17 shows the results for the forcing sequence based on choice 4.

Total time # outer Solve Sζ = b Build S & K # matvecs

Scheveningen

IDR(2) - ST1 463.01 26 401.49 59.36 22,117
IDR(2) - ST2 71.22 19 25.88 43.35 1,651

Maasvlakte A

IDR(2) - ST1 355.47 11 282.46 68.90 5,418
IDR(2) - ST2 266.15 20 114.78 145.65 2,530

Maasvlakte B

IDR(2) - ST1 321.53 8 267.27 50.56 5,052
IDR(2) - ST2 271.96 20 140.96 125.39 3,115

Malta

IDR(2) - ST1 530.89 10 465.58 61.32 9,216
IDR(2) - ST2 269.54 20 141.52 122.34 3,169

Table 7.17: Computational time for the forcing sequence based on choice 4.

The first observation from table 7.17 is that the number of outer iterations is the same for the
test cases Maasvlakte A, Maasvlakte B and Malta when the stopping criterion (7.6.2) is used.
But when complete Picard iteration is applied the different test cases need a different amount of
outer iterations. Using this forcing sequence, the non-linear residual decreases by the same rate
for every test case. Hence only the size of the initial non-linear residual determines the number
of outer iterations. The value of the forcing terms based on choice 4 decreases fast as k increases
and thus the IDR(2) algorithm will perform enough matrix-vector products to converge to the
non-linear solution within the maximal amount of outer iterations. For stopping criterion (7.6.1),
the number of outer iterations corresponds to the results of Picard iteration regarding the number
of outer iterations. Since the value of the forcing term decreases fast, the number of matrix-vector
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products increases for each outer iteration. For the forcing sequence based on choice 4 the original
stopping criterion in IDR(s), expression (7.6.2), gives the best results.

7.9.5 Choice 5

Choose η0 ∈ [0, 1), the forcing sequence is given by

ηk =
‖ζk − ζk−1‖2
‖ζ0‖2

· TOL, k = 1, 2, . . . .

We need to choose an initial forcing term η0 and a tolerance TOL for the forcing sequence based
on choice 5. Since the convergence behaviour of the different test cases is different, there was not
one unique choice which gave the best results. For the test case Scheveningen we use η0 = 0.5 and
TOL = 10−2, for the test cases Maasvlakte A & B and Malta we use η0 = 0.1 and TOL = 10−2.
The results for these values are given in table 7.18.

Total time # outer Solve Sζ = b Build S & K # matvecs

Scheveningen

IDR(2) - ST1 450.80 26 389.52 59.30 24,426
IDR(2) - ST2 57.76 11 31.32 25.08 2,008

Maasvlakte A

IDR(2) - ST1 650.08 10 583.78 62.64 13,023
IDR(2) - ST2 188.98 11 116.24 68.93 2,592

Maasvlakte B

IDR(2) - ST1 464.17 7 417.04 43.85 9,321
IDR(2) - ST2 183.21 10 117.43 62.18 2,615

Malta

IDR(2) - ST1 696.04 8 643.68 48.96 14,598
IDR(2) - ST2 196.18 9 137.58 55.08 3,113

Table 7.18: Computational time for the forcing sequence based on choice 5.

The results for the test case Scheveningen in table 7.18 for stopping criterion (7.6.2) is very
remarkable, the number of outer iterations is much lower than for all the other forcing sequences.
The relative difference between the obtained non-linear solution and the solution of Picard iteration
is of the order O(10−5), hence we do obtain the non-linear solution.

Stopping criterion (7.6.2) performs better than stopping criterion (7.6.1), since the value of the
forcing terms decreases fast. The forcing sequence based on choice 5 gives overall the best perfor-
mance of the presented forcing sequences.

7.10 The direct method MUMPS

The direct method MUMPS is available in a sequential version and a parallel version. We have
implemented the sequential version, the results for the test cases are presented in table 7.19.
The time to solve the system of equation depends on its dimension, for the test case Scheveningen
it takes around 1 second and for the other test cases more or less 4.3 seconds. The initialization
for MUMPS has to be done only once, since the structure of matrix S does not change during the
process. The time for the initialization is shown in the sixth column of table 7.19. Only having
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Test case Total time # outer Solve Sζ = b Build S Init. time

Scheveningen 69.48 21 21.36 46.13 0.62
Maasvlakte A 108.46 10 43.25 60.53 1.78
Maasvlakte B 66.84 6 25.95 36.31 1.78
Malta 90.38 8 37.11 46.67 1.80

Table 7.19: Computational time for the sequential version of the direct method MUMPS.

to perform the initialization once and not every inner loop is very beneficial, for the test case
Scheveningen this results in a decrease of 60 percent and for the other test cases a decrease of 40
percent in the computational time for solving the system of equations.

7.11 Summary of the numerical experiments

In this chapter we presented the results of the improvements to the current version of HARES.
Firstly we implemented a stopping criterion for the non-linear residual. Secondly Bi-CGSTAB
preconditioned with the incomplete LU decomposition of matrix S is replaced by IDR(2) precon-
ditioned with the incomplete LU decomposition of the shifted Laplace preconditioner. Thirdly
inexact Picard iteration is applied as the last improvement to decrease the number of matrix-
vector products and the computational time. In addition to the iterative solution methods we
tested the direct method MUMPS for its performance. Figure 7.11 gives an overview of the decrease
in computing time for the several improvements.
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Figure 7.11: Overview of the decrease in computing time.

Figure 7.11 shows that we successfully achieved a considerable reduction of the computing time of
HARES. Table 7.20 gives the percentage of the computing time and the matrix-vector products
of the initial implementation needed for the improved iterative solution method and the direct
method.
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Scheveningen Maasvlakte A Maasvlakte B Malta

Iterative solution method

Computational time 5.8% 2.8% 2.7% 3.4%
# matrix-vector products 3.3% 1.7% 1.7% 2.4%

Direct solution method

Computational time 7.0% 1.6% 1.0% 1.5%

Table 7.20: Percentage of the computing time and the matrix vector-products of the initial implementation
needed in the improved version.

Figure 7.12 gives an overview of the decrease in matrix-vector products for the several improve-
ments.
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Figure 7.12: Overview of the decrease in matrix-vector products.
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Chapter 8

Conclusion

In this thesis we have discussed the acceleration of the 2D Helmholtz model HARES. We proposed
several methods to improve the current implementation. In this chapter we will give an overview of
main results and give a recommendation to improve HARES. Finally we will give some suggestions
for further research.

We started with the derivation of the linear and non-linear Mild-Slope equation to gain insight in
the equations. In the non-linear Mild-Slope equation the effects of diffraction, reflection, refraction
and shoaling are included and the energy dissipation caused by wave breaking and bottom friction
is taken into account.

In chapter 3 we discussed the discretization of the non-linear Mild-Slope equation. We proposed a
suitable stopping criterion for the non-linear outer loop, to determine how many outer iterations are
needed to obtain the desired non-linear solution. Implementing this stopping criterion already lead
to a significant drop in the computing time, since too many outer iterations are performed in the
current implementation of HARES. Newton’s method is presented, since this method generally has
a faster convergence than Picard iteration. However, the non-linearity in the Mild-Slope equation
is not handled better by Newton’s method than by Picard iteration. The results regarding the
number of matrix-vector products and the computing time are better for Picard iteration than for
Newton’s method. The computing time of Picard iteration is improved by implementing inexact
Picard iteration. Five different forcing sequences are proposed, the forcing sequence based on the
relative update of the non-linear solution gives overall the best results.

In chapter 5 we proposed to replace the current linear solver, Bi-CGSTAB preconditioned with
the incomplete LU decomposition, by the Krylov subspace method IDR(s) preconditioned with
the shifted Laplace preconditioner. This replacements lead to a significant drop in the number of
matrix-vector products and the computational time. In chapter 6 we determined the bounding
box around the eigenvalues of the preconditioned system of equations. However, since the origin
is contained in this bounding box we were not able to determine an optimal shift for the shifted
Laplace preconditioner. We implemented four different types of the shifted Laplace preconditioner,
where the ones with a complex shift give the best results. For the IDR(s) algorithm we proposed
a choice for the initial space ∆Xs and the coefficient ω. The initial space ∆Xs is build using
the previous s iterative solutions. This gives good results if the difference between two successive
solutions is not too large. In the first couple of outer iterations the update of the solution is
still quite large, hence it is not recommended to use this approach. However, after several outer
iterations the update of the non-linear solution becomes small. Choosing the initial space based
on the previous iterative solution do gives good results. We proposed the choose the coefficient ω
based on Chebyshev polynomials on a disk in the complex plane. Since the origin is contained in
the bounding box of the eigenvalue estimate of the non-linear Mild-Slope equation, this choice for
ω did not give good results.

The best results for an iterative solution method are obtained by using inexact Picard iteration.
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The solution of the system of equations is approximated using IDR(2) preconditioned with the
incomplete LU decomposition of the shifted Laplace preconditioner with a complex shift. This
implementation is around 17 times faster for the small test case Scheveningen and 35 times faster
for the large test problem Maasvlakte A & B. The number of matrix-vector products is reduced
by a factor 30 for the small test cas and a factor 58 for the larger test cases.

In chapter 5 we presented the direct method MUMPS. For two dimensional problems the state-of-
the-art direct methods give good results regarding the computational time. For the considered
test problems we did obtain the fastest results using this direct solver. The non-linear residual
decreases fast for the large test cases and not many outer iterations need to be performed. Using
inexact Picard iteration the decrease of the non-linear residual is often slower. Therefore more
outer iterations are necessary and thus also more computing time for building the matrix.

We propose to Svašek Hydraulics to use a direct method, e.g. MUMPS, to determine the solution of
the system of equations for the cases considered in this thesis. If the dimension of the matrix is
considerably larger the performance of MUMPS will become worse and for these we propose inexact
Picard with a forcing sequence based on the fifth choice. The system of equations can then be
solved using IDR(2) preconditioned with a shifted Laplace preconditioner with a complex shift.
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Suggestions for further research

We propose the following issues for further research:

� We were not able to determine the derivatives of |ζ̃| with respect to ζ̃ in Newton’s method.
Newton’s method presented in section 3.2 is a Jacobian free method, where we approximate
the Jacobian. Therefore we do not have to compute the LU decomposition of the Jacobian to
obtain the next iteration. For the non-linear Mild-Slope equation this Jacobian free method
is not suitable. To improve the non-linear convergence it is recommended to investigate a
different implementation of Newton’s method.

� We approximated the shifted Laplace preconditioner by its incomplete LU decomposition
to be able to apply it to the system of equations. The LU factorization of the shifted
Laplace preconditioner can be determined for example with the software package MUMPS.
Preconditioning the system of equations with the LU factorization will presumably lead to
less matrix-vector products. The current shift of the shifted Laplace preconditioner is based
on a shift found in literature. It is possible that there is an other shift for the non-linear
Mild-Slope equation which gives even faster convergence.

� The forcing sequence based on the fifth choice gives already a fast convergence. But for most
test cases we do need more outer iterations to obtain the non-linear solution. A different
forcing sequence which does not need many more matrix-vector products and less outer
iterations can give even better results. Especially for larger problems, when a direct method
can become slow, this can become very beneficial.

� In section 6.5 we proposed to choose the coefficient ω based on Chebyshev polynomials.
Since the origin is contained in our estimate of the eigenvalue range we were not able to
test whether this choice leads to less matrix-vector products than the choice proposed by
Sleijpen and van der Vorst (1995).

� The state-of-the-art direct method MUMPS is also available in a parallel version. This parallel
version will most likely be faster than the sequential version. In the current implementation
the assembly of the global matrix is the most expensive part of the complete process. Making
this assembly parallel will decrease the computational time even more.
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Appendix A

Calculations for the derivation of
the Mild-Slope equation

A.1 Left out steps in the derivation

Multiplication of equation (2.1.12) with Z and integrating it over the water depth, from z = −h
until z = 0, gives

ε2
[∫ 0

−h
Z

(
∂2Z

∂h2
∇h · ∇h+

∂Z

∂h
∇2
h

)
ϕ dz

]
+ ε

[∫ 0

−h

∂Z2

∂h
∇h · ∇ϕ dz

]

+

∫ 0

−h

[
Z2(∇2ϕ+ κ2ϕ) +

∂Z2

∂z

∂ϕ

∂z
+ Z2 ∂

2ϕ

∂z2

]
dz = 0, (A.1.1)

where we use that 2Z ∂Z
∂h = ∂Z2

∂h . Applying partial integration to the last two terms on the second
line gives∫ 0

−h

[
∂Z2

∂h

∂ϕ

∂z
+ Z2 ∂

2ϕ

∂z2

]
dz = Z2 ∂ϕ

∂z

∣∣∣∣0
−h
−
∫ 0

−h
Z2 ∂

2ϕ

∂z2
dz +

∫ 0

−h
Z2 ∂

2ϕ

∂z2
dz = Z2 ∂ϕ

∂z

∣∣∣∣0
−h

.

Application the boundary conditions (2.1.13) and (2.1.14) gives

Z2 ∂ϕ

∂z

∣∣∣∣0
−h

= Z2 ∂ϕ

∂z

∣∣∣∣
z=0

− Z2 ∂ϕ

∂z

∣∣∣∣
z=−h

= −Z
(
Z
∂ϕ

∂z

)
z=−h

= Z

[
ε2
(
ϕ
∂Z

∂h
∇h · ∇h

)
+ ε
(
∇ϕ · ∇hZ

)]
z=−h

. (A.1.2)

Substitution of the obtained expression (A.1.2) into equation (A.1.1) results in

ε2
[∫ 0

−h
z

(
∂2Z

∂h2
∇h · ∇h+

∂Z

∂h
∇2
h

)
ϕ dz

]
+ ε

[∫ 0

−h

∂Z2

∂h
∇h · ∇ϕ dz

]
∫ 0

−h
Z2
(
∇2ϕ+ κ2ϕ

)
dz + ε

[
Z2∇ϕ · ∇h

]
z=−h + ε2

[
Zϕ

∂Z

∂h
∇h · ∇h

]
z=−h

= 0.

It is not straightforward that equation (2.1.16) and expression (2.1.17) are equivalent. We start
with equation (2.1.17) and do the manipulations to end up with equation (2.1.16).
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∇ ·
∫ 0

−h
Z2 dz∇ϕ0 + κ2ϕ0

∫ 0

−h
Z2 dz

=
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Z2 dz∇2ϕ0 +∇ϕ0∇ ·
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∫ 0

−h
Z2 dz∇2ϕ0 +∇ϕ0

[
∇h Z2

∣∣
z=−h +

∫ 0

−h

∂Z2

∂h
∇h dz

]
+ κ2ϕ0

∫ 0

−h
Z2 dz,

=

∫ 0

−h
Z2 dz∇2ϕ0 +∇ϕ0

[
∇h Z2

∣∣
z=−h +

∂

∂h

∫ 0

−h
Z2 dz∇h−∇h Z2

∣∣
z=−h

]
+ κ2ϕ0

∫ 0

−h
Z2 dz,

=

∫ 0

−h
Z2 dz∇2ϕ0 +

∂

∂h

∫ 0

−h
Z2 dz∇h · ∇ϕ0 + κ2ϕ0

∫ )

−h
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We apply Leibniz rule to the term ∇·
∫ 0

−h z
2 dz on the second line, which results in the expression

on line three. Again using the Leibniz integral rule for the integral
∫ 0

−h
∂Z2

∂h ∇h dz on the third
line gives the fourth line. The expression in the final line equals equation (2.1.16)

A.2 Leibniz integral rule for variable limits

Suppose that the limits of integration a and b and the integrand f(x, α) all are functions of the
parameter α. Then we can apply Leibniz integral rule to obtain

d

dα

∫ b(α)

a(α)

f(x, α) dx =
db(α)

dα
f(b(α), α)− da(α)

dα
f(a(α), α) +

∫ b(α)

a(α)

∂

∂α
f(x, α) dx.

A.3 Integral
∫ 0

−h Z
2 dz

We want to determine and expression for the following integral

∫ 0

−h
Z2 dz =

∫ 0

−h

(
cosh(κ(z + h))

cosh(κh)

)2

dz.

With the following computation we derive the desired expression for the integral.
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∫ 0
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Where we use the dimensionless dispersion relation 1 = κ tanh(κh) and n0 = 1
2

(
1 + 2κh

sinh(2κh)

)
.
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Appendix B

Determining the eigenvalues of
M exe = λM

e,P e
iP e

ix
e

The eigenvalues of the generalized eigenvalue problem M exe = λM
e,P intP exe can be easily

determined using Maple. We obtain the following three eigenvalues

λe1 = − 1

s2
,

λe2 =

∆2k2
0

(
−6n0α− s2k2

0 + 12n0

√
α2

4 −
3

∆2

)
s4k4

0∆2 + 432n2
0 + 12n0s2k2

0∆2α
,

λe3 =
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(
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0 − 12n0

√
α2

4 −
3

∆2

)
s4k4

0∆2 + 432n2
0 + 12n0s2k2

0∆2α
.

All the coefficients are larger than zero and its value depend on the actual location of the element

in the harbour and α2

4 −
3

∆2 > 0 (since M e and P e
i are both Hermitian) it is easily seen that

λe1, λ
e
3 < 0 and λe3 < λe2. We would like to know whether there is an eigenvalue which is the largest

(resp. smallest) for all the element matrices and does not depend on the choice of s whether
one eigenvalue is larger (resp. smaller) than the other eigenvalue. We will show that λe1 < λe3
regardless of the value of the coefficients and then it must always hold that the smallest eigenvalue
is λe1 and the largest eigenvalue λe2. We rewrite eigenvalue λe3 as

λe3 = − 1

s2


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(
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It rests to show that
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0
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0∆2 + 432
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< 1.

The following upper bound for the numerator is determined
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2
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Hence we have showed that λe1 < λe3 and hence that for each element the minimal eigenvalue is
given by λe1 and the maximal eigenvalue of λe2. Using the same approximation one can also show
that λe2 < 0, since

−

(
6n0α+ s2k2

0 − 12n0

√
α2

4
− 3

∆2

)
< −s2k2

0 < 0.



Appendix C

Numerical results

C.1 Input files

For the computation of the numerical results we use the following input files.

C.1.1 Scheveningen

&general
meshfname = ‘mesh huidigesituatie 5m.out’ !Mesh of the geometry
depthfname = ‘bodem huidigesituatie 5m.asc’ !Depth profile of the geometry
globaldepth = 10 !Global depth in the geometry
depthoutside = 10 !Depth outside the geometry
waterlevel = 2 !Waterlevel inside the geometry
cf = 0.01 !Bottom friction coefficient
gamma = 0.73 !Wave breaking coefficient (Miche)
bottomfriction = .TRUE. !Switch bottom friction coefficient on/off
wavebreaking = .TRUE. !Switch wave breaking impact on/off
accelerate iteration = .TRUE. !Switch iteration shortcut on/off
&wave
waveheights = 2.0 !Wave height of the incoming wave
waveperiods = 8.0 !Wave period of the incoming wave
wavedirections = 315 !Wave direction of the incoming wave

C.1.2 Maasvlakte - Bottom topography A

&general
meshfname = ‘mesh 8m.out’
depthfname = ‘bodem A 8m NAP0m.asc’
globaldepth = 25
depthoutside = 25
waterlevel = 3.00
cf = 0.01
gamma = 0.73
bottomfriction = .TRUE.
wavebreaking = .TRUE.
accelerate iteration = .TRUE.
&wave
waveheights = 1.0
waveperiods = 10.0
wavedirections = 313
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C.1.3 Maasvlakte - Bottom topography B

&general
meshfname = ‘mesh 8m.out’
depthfname = ‘bodem B 8m NAP0m.asc’
globaldepth = 17
depthoutside = 17
waterlevel = 3.00
cf = 0.01
gamma = 0.73
bottomfriction = .TRUE.
wavebreaking = .TRUE.
accelerate iteration = .TRUE.
&wave
waveheights = 1.0
waveperiods = 10.0
wavedirections = 300

C.1.4 Malta

&general
meshfname = ‘A huidig mesh 6m.out’
depthfname = ‘A huidig bodem 6m.asc’
globaldepth = 30
depthoutside = 30
waterlevel = 0.0
cf = 0.01
gamma = 0.73
bottomfriction = .TRUE.
wavebreaking = .TRUE.
accelerate iteration = .TRUE.
&wave
waveheights = 1.0
waveperiods = 9.0
wavedirections = 130
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C.2 Detailed numerical results

Total time # outer Solve Sζ = b Build S # matvecs Rel. error

Initial measurement - ILU(0)-Bi-CGSTAB
Scheveningen 994.81 25 934.17 58.26 60206.00 5.6495E-06
Maasvlakte A 6700.50 25 6543.40 150.81 148610.00 3.6439E-07
Maasvlakte B 6898.30 25 6741.20 150.35 156066.00 1.9198E-07
Malta 5851.20 25 5697.50 146.78 132222.00 4.7628E-07

Stopping criterion outer loop - ILU(0) of matrix S
Wave number k0 Scheveningen

Bi-CGSTAB 1328.93 26 982.89 60.63 62560 1.7638E-06
IDR(2) 357.66 26 298.25 56.97 19746 1.9124E-05
IDR(4) 367.79 26 308.20 57.09 17657 1.8203E-05
IDR(8) 397.58 26 338.15 56.99 16672 1.8323E-05

Maasvlakte A
Bi-CGSTAB 2719.23 10 2654.50 60.16 60490 8.5397E-08
IDR(2) 818.75 11 747.94 66.16 16948 2.1647E-06
IDR(4) 788.65 11 717.85 66.14 14290 2.0517E-06
IDR(8) 780.28 10 715.58 60.11 11506 1.5047E-06

Maasvlakte B
Bi-CGSTAB 1776.98 6 1736.70 36.06 39612 1.1028E-07
IDR(2) 665.86 6 625,7791 36.01 14182 1.7702E-06
IDR(4) 611.49 6 571.36 36.01 11380 2.0461E-06
IDR(8) 616.74 6 576.64 36.04 9187 3.3404E-06

Malta
Bi-CGSTAB 1916.61 8 1865.40 46.95 43158 3.4016E-07
IDR(2) 661.81 8 610.64 46.90 13944 4.6274E-06
IDR(4) 672.71 8 621.51 46.91 12484 2.5872E-06
IDR(8) 757.88 8 706.69 46.91 11356 3.7568E-06

Modified wave number p̂ Scheveningen
Bi-CGSTAB 1060.91 26 1001.10 57.37 63508 3.0996E-06
IDR(2) 355.07 26 295.32 57.29 19199 6.0172E-06
IDR(4) 356.85 25 299.31 55.10 17199 2.5433E-05
IDR(8) 396.17 25 338.70 55.09 16058 2.1394E-05

Maasvlakte A
Bi-CGSTAB 2697.33 10 2632.30 60.44 59814 2.8858E-08
IDR(2) 746.64 10 681.65 60.47 15171 1.4231E-06
IDR(4) 736.53 10 671.47 60.47 13197 1.9008E-06
IDR(8) 745.29 10 680.25 60.49 10758 1.2828E-06

Maasvlakte B
Bi-CGSTAB 1776.48 6 1736.10 36.25 39358 1.1279E-07
IDR(2) 657.10 6 616.85 36.13 13796 3.5708E-06
IDR(4) 624.23 6 583.96 36.15 11477 3.5857E-06
IDR(8) 634.88 6 593.70 37.05 9404 3.1277E-06

Malta
Bi-CGSTAB 1932.36 8 1880.90 47.17 43340 3.3841E-07
IDR(2) 659.43 8 607.99 47.19 13709 6.0800E-06
IDR(4) 700.26 9 642.68 53.12 12708 2.7366E-06
IDR(8) 772.74 8 721.27 47.20 11553 3.3059E-06
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Total time # outer Solve Sζ = b Build S # matvecs Rel. error

Using the incoming wave to determine a value of W (x, y, ζ̃) - ILU(0) of matrix S
Wave number k0 Scheveningen

Bi-CGSTAB 868.98 22 818.52 48.23 53002 1.3259E-08
IDR(2) 261.40 22 211.10 48.05 14012 2.8084E-06
IDR(4) 286.41 22 228.06 56.07 13090 4.4698E-06
IDR(8) 308.34 21 259.96 46.16 12479 1.9123E-05

Maasvlakte A
Bi-CGSTAB 2729.67 10 2664.70 60.35 60360 1.3400E-09
IDR(2) 797.25 10 732.73 60.00 16492 2.3995E-06
IDR(4) 776.02 10 711.37 60.06 13933 1.7833E-06
IDR(8) 762.42 10 697.56 60.32 11064 1.2422E-06

Maasvlakte B
Bi-CGSTAB 1759.80 6 1719.60 36.14 39096 4.2010E-09
IDR(2) 624.64 6 584.50 36.07 13215 2.3223E-06
IDR(4) 584.60 6 544.24 36.20 10704 5.5131E-06
IDR(8) 590.55 6 550.34 36.12 8729 4.5855E-06

Malta
Bi-CGSTAB 1904.41 8 1852.90 47.24 42786 4.4012E-09
IDR(2) 614.17 8 562.82 47.04 12738 4.6963E-06
IDR(4) 596.65 8 545.30 47.02 10869 6.0172E-06
IDR(8) 708.54 8 657.17 47.09 10495 2.5247E-06

Modified wave number p̂ Scheveningen
Bi-CGSTAB 849.31 21 800.78 46.29 50944 1.3295E-08
IDR(2) 263.78 21 215.31 46.27 13839 3.8965E-06
IDR(4) 269.78 21 221.35 46.18 12823 5.7965E-06
IDR(8) 312.74 21 264.19 46.33 12370 4.9912E-06

Maasvlakte A
Bi-CGSTAB 2640.63 10 2575.60 60.50 58476 1.0541E-09
IDR(2) 733.45 10 668.33 60.60 14920 2.5974E-06
IDR(4) 713.28 10 648.15 60.53 12680 2.1453E-06
IDR(8) 726.77 10 661.61 60.62 10453 2.0457E-06

Maasvlakte B
Bi-CGSTAB 1762.87 6 1722.50 36.31 39016 4.2052E-09
IDR(2) 624.13 6 583.66 36.38 13013 4.2101E-06
IDR(4) 590.63 6 550.15 36.29 10750 2.7335E-06
IDR(8) 603.58 6 562.30 37.18 8911 3.4382E-06

Malta
Bi-CGSTAB 1913.73 8 1862.20 47.26 42886 4.6396E-09
IDR(2) 607.77 8 556.23 47.27 12496 6.2144E-06
IDR(4) 617.26 8 565.65 47.30 11276 4.4665E-06
IDR(8) 728.05 8 676.52 47.27 10729 2.9225E-06

Shifted Laplace preconditioner - complex shift - version 1
Wave number k0 Scheveningen

Bi-CGSTAB 665.24 22 605.23 57.85 38326 1.3243E-08
IDR(2) 212.56 22 160.45 49.97 10324 5.5793E-06
IDR(4) 231.90 22 179.81 49.91 10332 6.4878E-06
IDR(8) 261.08 21 211.35 47.65 9961 1.7643E-05

Maasvlakte A
Bi-CGSTAB 999.97 10 923.55 71.81 20872 1.0486E-09
IDR(2) 378.18 11 304.82 68.57 6779 1.9571E-06
IDR(4) 401.71 11 328.25 68.66 6424 1.7439E-06
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Total time # outer Solve Sζ = b Build S # matvecs Rel. error

IDR(8) 480.80 11 407.49 68.59 6413 1.2518E-06
Maasvlakte B

Bi-CGSTAB 694.81 6 653.28 37.42 14804 3.5749E-09
IDR(2) 279.78 6 238.24 37.40 5305 5.4257E-06
IDR(4) 311.59 6 269.92 37.47 5284 5.7802E-06
IDR(8) 370.98 6 329.42 37.42 5202 3.7939E-06

Malta
Bi-CGSTAB 1275.12 8 1222.10 48.66 28044 4.0707E-09
IDR(2) 398.14 8 344.63 49.20 7779 4.9593E-06
IDR(4) 464.17 8 411.02 48,7510 8166 4.9847E-06
IDR(8) 544.61 8 491.55 48.75 7855 3.6419E-06

Modified wave number p̂ Scheveningen
Bi-CGSTAB 629.44 21 579.52 47.84 36568 1.3275E-08
IDR(2) 207.27 21 157.33 47.85 10091 9.2227E-06
IDR(4) 228.54 21 178.52 47.87 10116 4.3449E-06
IDR(8) 263.75 21 213.94 47.71 9967 3.5246E-06

Maasvlakte A
Bi-CGSTAB 953.02 10 885.95 62.52 20172 6.2598E-10
IDR(2) 341.87 10 274.63 62.63 6074 2.0153E-06
IDR(4) 365.79 10 298.69 62.46 5858 2.1279E-06
IDR(8) 437.54 10 370.22 62.68 5839 1.8614E-06

Maasvlakte B
Bi-CGSTAB 707.19 6 665.63 37.42 14884 3.4499E-09
IDR(2) 276.40 6 234.73 37.53 5227 6.9247E-06
IDR(4) 300.73 6 259.09 37.54 5075 7.0272E-06
IDR(8) 371.51 6 324.78 42.55 5139 3.4382E-06

Malta
Bi-CGSTAB 1285.04 8 1232.10 48.64 28306 3.9840E-09
IDR(2) 401.26 8 348.13 48.84 7901 6.4564E-06
IDR(4) 466.33 8 413.11 48.86 8151 3.4616E-06
IDR(8) 544.75 8 491.51 48.92 7851 3.0825E-06

Shifted Laplace preconditioner - real shift - version 2
Wave number k0 Scheveningen

Bi-CGSTAB 833.76 22 780.61 51.01 49444 1.3244E-08
IDR(2) 232.99 22 181.06 49.78 11648 6.9158E-06
IDR(4) 248.25 21 198.64 47.46 11330 2.0306E-05
IDR(8) 288.27 22 236.31 49.81 11131 4.4927E-06

Maasvlakte A
Bi-CGSTAB 1312.60 10 1245.40 62.53 28102 1.2043E-09
IDR(2) 452.56 11 379.49 68.30 8433 2.1450E-06
IDR(4) 472.65 10 405.82 62.10 7924 2.1719E-06
IDR(8) 554.71 10 487.42 62.63 7680 1.1643E-06

Maasvlakte B
Bi-CGSTAB 947.18 6 905.77 37.27 20490 3.5819E-09
IDR(2) 332.50 6 290.91 37.43 6468 7.0499E-06
IDR(4) 368.90 6 321.80 42.92 6289 5.7694E-06
IDR(8) 426.14 6 384.74 37.28 6054 2.9985E-06

Malta
Bi-CGSTAB 947.18 6 905.77 37.27 20490 3.5819E-09
IDR(2) 332.50 6 290.91 37.43 6468 7.0499E-06
IDR(4) 368.90 6 321.80 42.92 6289 5.7694E-06
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IDR(8) 426.14 6 384.74 37.28 6054 2.9985E-06
Modified wave number p̂ Scheveningen

Bi-CGSTAB 805.83 21 754.78 48.92 46952 1.3270E-08
IDR(2) 231.69 21 181.98 47.59 11589 5.6041E-06
IDR(4) 245.25 21 195.51 47.59 11141 4.6869E-06
IDR(8) 287.23 21 237.56 47.59 11159 5.8713E-06

Maasvlakte A
Bi-CGSTAB 1323.12 10 1256.20 62.24 28452 6.7107E-10
IDR(2) 406.56 10 339.58 62.32 7516 2.3816E-06
IDR(4) 440.52 10 373.68 62.15 7323 2.0159E-06
IDR(8) 513.52 11 437.28 71.49 6895 2.0339E-06

Maasvlakte B
Bi-CGSTAB 990.57 6 949.04 37.42 20878 3.4700E-09
IDR(2) 333.61 6 292.22 37.27 6475 5.3631E-06
IDR(4) 361.03 6 313.80 43.08 6133 5.0768E-06
IDR(8) 425.57 6 384.20 37.28 6064 3.0755E-06

Malta
Bi-CGSTAB 1602.45 8 1549.30 48.79 35256 4.1848E-09
IDR(2) 460.68 8 407.64 48.68 8937 5.8951E-06
IDR(4) 493.05 8 439.86 48.74 8507 5.1772E-06
IDR(8) 572.37 8 519.23 48.71 8082 3.0421E-06

Shifted Laplace preconditioner - real-complex shift - version 3
Wave number k0 Scheveningen

Bi-CGSTAB 662.35 22 610.31 49.89 38700 1.3248E-08
IDR(2) 210.47 22 158.62 49.71 10208 5.7735E-06
IDR(4) 232.10 22 180.17 49.74 10267 5.5825E-06
IDR(8) 262.68 21 213.25 47.33 9998 2.1246E-05

Maasvlakte A
Bi-CGSTAB 989.96 10 922.47 62.67 20834 1.0896E-09
IDR(2) 363.30 10 296.48 62.19 6589 2.3367E-06
IDR(4) 399.69 10 332.64 62,3679 6505 2.3288E-06
IDR(8) 469.17 10 402.06 62.48 6350 1.6898E-06

Maasvlakte B
Bi-CGSTAB 701.28 6 659.97 37.19 14944 3.5765E-09
IDR(2) 278.53 6 236.10 38.29 5256 5.9106E-06
IDR(4) 308.78 6 267.32 37.30 5229 5.9490E-06
IDR(8) 363.24 6 321.83 37.28 5084 4,0146E-06

Malta
Bi-CGSTAB 1280.82 8 1227.90 48.57 28200 4.0216E-09
IDR(2) 403.14 8 350.31 48.51 7899 5.5008E-06
IDR(4) 457.25 8 404.37 48.52 8036 3.7228E-06
IDR(8) 536.83 8 484.01 48.49 7737 3.4592E-06

Modified wave number p̂ Scheveningen
Bi-CGSTAB 623.37 21 573.64 47.65 36526 1.3271E-08
IDR(2) 209.07 22 156.89 50.05 10181 1.8389E-05
IDR(4) 230.36 22 178.23 49.98 10218 2.3774E-05
IDR(8) 263.86 21 214.17 47.60 10036 6.0534E-06

Maasvlakte A
Bi-CGSTAB 965.11 10 897.61 62.81 20220 6.5787E-10
IDR(2) 336.81 10 269.68 62.56 6023 2.9615E-06
IDR(4) 377.31 11 300.32 72.35 5896 2.3760E-06
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IDR(8) 447.57 11 374.21 68.63 5900 1.1633E-06
Maasvlakte B

Bi-CGSTAB 698.58 6 656.57 37.89 14888 3.4348E-09
IDR(2) 277.68 6 235.92 37.63 5255 4.4068E-06
IDR(4) 307.84 6 266.12 37.60 5224 7.4859E-06
IDR(8) 371.55 6 329.89 37.56 5191 3.3739E-06

Malta
Bi-CGSTAB 1340.54 8 1287.20 49.06 28662 3.9741E-09
IDR(2) 405.79 8 352.62 48.88 7934 4.8923E-06
IDR(4) 450.90 8 397.76 48.84 7935 4.7053E-06
IDR(8) 544.65 8 491.56 48.83 7902 4.2181E-06

Shifted Laplace preconditioner - Hermitian preconditioner - version 4
Modified wave number p̂ Scheveningen

Bi-CGSTAB 826.95 21 777.26 47.58 48340 1.3278E-08
IDR(2) 255.42 21 205.80 47.52 13289 6.9170E-06
IDR(4) 283.44 22 231.34 49.95 13304 1.9420E-05
IDR(8) 336.73 22 284.66 49.94 13265 1.8646E-05

Maasvlakte A
Bi-CGSTAB 1628.27 10 1561.10 62.54 34682 8.6523E-10
IDR(2) 489.70 10 422.51 62.52 9187 2.4835E-06
IDR(4) 513.96 10 446.93 62.32 8757 1.9060E-06
IDR(8) 597.98 10 530.90 62.43 8184 1.1387E-06

Maasvlakte B
Bi-CGSTAB 1137.70 6 1096.10 37.47 24820 3.5873E-09
IDR(2) 399.10 6 357.62 37.40 7978 4.3999E-06
IDR(4) 413.93 6 372.35 37.47 7287 2.5354E-06
IDR(8) 488.31 6 446.72 37.49 6810 3.5905E-06

Malta
Bi-CGSTAB 1574.13 8 1521.00 48.73 34038 4.1413E-09
IDR(2) 474.47 8 421.35 48.72 9417 5.5631E-06
IDR(4) 562.86 8 501.79 56.65 9802 3.2686E-06
IDR(8) 634.57 8 581.50 48.70 8975 2.8441E-06

Choosing the initial space ∆Xs - ILU(0) of matrix S
Wave number k0 Scheveningen

IDR(2) 187.69 22 137.16 48.26 8844 3.3027E-06
IDR(4) 181.82 22 131.29 48.22 7536 5.2425E-06
IDR(8) 200.70 22 150.34 48.08 7126 3.0016E-06

Maasvlakte A
IDR(2) 967.03 10 902.31 60.18 20112 4.2603E-06
IDR(4) 703.95 10 639.16 60.20 12554 2.9561E-06
IDR(8) 743.24 10 678.46 60,2158 10730 2.0707E-06

Maasvlakte B
IDR(2) 602.39 6 562.18 36.09 12555 6.5738E-06
IDR(4) 541.23 6 500.91 36.18 9817 4.4160E-06
IDR(8) 592.33 6 552.11 36.09 8729 4.5855E-06

Malta
IDR(2) 522.12 8 470.81 47.02 10613 6.9438E-06
IDR(4) 508.30 8 456.95 47.03 9061 7.7771E-06
IDR(8) 709.60 8 656.85 48.46 10495 2.5247E-06



92 APPENDIX C. NUMERICAL RESULTS

Total time # outer Solve Sζ = b Build S # matvecs Rel. error

Modified wave number p̂ Scheveningen
IDR(2) 192.36 21 143.82 46.31 9257 4.5859E-06
IDR(4) 183.22 21 134.56 46.38 7558 4.4634E-06
IDR(8) 203.13 21 154.67 46.23 7280 3.6358E-06

Maasvlakte A
IDR(2) 872.29 10 807.11 60.60 18040 3.2239E-06
IDR(4) 705.07 10 639.85 60.59 12241 3.8050E-06
IDR(8) 721.51 10 656.35 60.54 10370 2.2797E-06

Maasvlakte B
IDR(2) 603.55 6 563.14 36.31 12570 7.9160E-06
IDR(4) 537.87 6 497.33 36.33 9777 5.4035E-06
IDR(8) 603.03 6 562.60 36.28 8911 4.8188E-06

Malta
IDR(2) 534.93 8 483.25 47.36 10696 5.9781E-06
IDR(4) 518.26 8 466.75 47.22 9246 4.2137E-06
IDR(8) 730.41 8 671.05 55.09 10729 2.9225E-06

Choosing the initial space ∆Xs - Shifted Laplace preconditioner version 1
Wave number k0 Scheveningen

IDR(2) 147.04 21 97.38 47.58 6279 2.4054E-05
IDR(4) 156.27 22 104.15 49.95 5977 5.6999E-06
IDR(8) 178.73 22 125.48 51.10 5938 3.9160E-06

Maasvlakte A
IDR(2) 416.86 10 349.89 62.32 7776 3.2060E-06
IDR(4) 365.47 10 298.31 62.48 5842 4.1673E-06
IDR(8) 465.16 10 398.31 62.22 6289 1.3521E-06

Maasvlakte B
IDR(2) 287.43 6 245.96 37.33 5485 4.6321E-06
IDR(4) 289.47 6 247.86 37.39 4859 3.4747E-06
IDR(8) 371.34 6 329.98 37.21 5202 3.7939E-06

Malta
IDR(2) 349.55 8 288.66 56.58 6513 4.4464E-06
IDR(4) 393.68 8 340.64 48.69 6757 2.8024E-06
IDR(8) 546.53 8 492.26 49.94 7855 3.6419E-06

Modified wave number p̂ Scheveningen
IDR(2) 148.49 21 98.58 47.81 6340 1.2000E-03
IDR(4) 156.47 21 106.59 47.72 6103 1.2000E-03
IDR(8) 178.42 21 128.69 47.62 6067 1.2000E-03

Maasvlakte A
IDR(2) 391.70 10 324.48 62.56 7207 1.0746E-05
IDR(4) 348.59 10 281.54 62.37 5500 1.0855E-05
IDR(8) 431.42 10 364.30 62.52 5744 9.5351E-06

Maasvlakte B
IDR(2) 288.53 6 246.88 37.49 5480 6.8395E-05
IDR(4) 288.40 6 246.78 37.47 4822 6.7106E-05
IDR(8) 367.56 6 326.02 37.43 5136 6.7178E-05

Malta
IDR(2) 334.78 8 274.16 56.30 6167 5.5228E-06
IDR(4) 381.14 8 328.07 48.72 6503 4.4813E-06
IDR(8) 550.68 8 497.61 48.75 7938 3.1253E-06
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Newton’s method - IDR(2) - Shifted Laplace preconditioner version 1
Wave number k0 - stopping criterion (7.6.1)

Scheveningen 428.59 22 375.39 51.54 24264 1.2667E-05
Maasvlakte A 948.99 10 880.76 64.72 19579 8.2031E-06
Maasvlakte B 598.26 6 556.36 38.76 12367 5.0466E-06
Malta 920.93 8 867.19 50.50 19561 9.5559E-06

Wave number k0 - stopping criterion (7.6.2)
Scheveningen 684.91 22 631.40 51.83 40727 6.9342E-10
Maasvlakte A 1471.57 10 1402.90 65.04 30019 6.2598E-10
Maasvlakte B 943.01 6 900.50 39.35 18999 7.3955E-10
Malta 1612.74 8 1558.90 50.62 33811 7.4737E-10

Updated wave number p̂ - stopping criterion (7.6.1)
Scheveningen 432.51 22 376.20 51.92 24283 2.2884E-05
Maasvlakte A 945.28 10 875.84 65.04 19516 9.3442E-06
Maasvlakte B 596.91 6 553.41 39.11 12353 5.9935E-06
Malta 931.22 8 876.13 50.69 19722 8.0468E-06

Updated wave number p̂ - stopping criterion (7.6.2)
Scheveningen 713.22 22 659.12 52.36 40770 2.0203E-10
Maasvlakte A 1486.96 10 1417.60 65.64 30465 4.7759E-10
Maasvlakte B 924.81 6 882.32 39.36 18877 9.2263E-10
Malta 1559.95 8 1505.90 50.84 33381 8.6091E-10

Changed water level of the test case Maasvlakte - SL prec. version 1
Wave number k0 Maasvlakte A - water level 1.00 m

IDR(2) 363.73 9 304.46 55.70 6774 -
IDR(4) 400.78 9 341.33 55.84 6686 -

Maasvlakte A - water level 2.00 m
IDR(2) 392.74 11 320.45 68.47 7140 -
IDR(4) 440.08 11 367.80 68.45 7201 -

Maasvlakte B - water level 1.00 m
IDR(2) 577.29 11 505.33 68.24 11278 -
IDR(4) 604.15 11 532.19 68.18 10427 -

Maasvlakte B - water level 2.00 m
IDR(2) 423.11 9 363.53 56.02 8122 -
IDR(4) 465.32 9 405.74 56.03 7953 -

Modified wavenumber p̂ Maasvlakte A - waterlevel 1.00 m
IDR(2) 369.78 9 309.24 56.02 6667 -
IDR(4) 400.64 9 338.73 57.42 6665 -

Maasvlakte A - water level 2.00 m
IDR(2) 381.23 11 307.84 68.66 6856 -
IDR(4) 416.13 11 341.87 69.49 6728 -

Maasvlakte B - water level 1.00 m
IDR(2) 581.57 11 498.35 78.53 11162 -
IDR(4) 594.63 11 521.45 68.47 10281 -

Maasvlakte B - water level 2.00 m
IDR(2) 421.58 9 360.84 56.31 8074 -
IDR(4) 460.26 9 399.63 56.16 7872 -

Inexact Picard - SL prec. version 1 - choice 1 - Updated wave number p̂
η0 = 0.1 Scheveningen

Bi-CGSTAB 105.35 33 27.49 75.34 1500 3.0878E-05
IDR(2) - ST1 64.92 21 26.57 36.55 1439 3.2505E-05
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IDR(2) - ∆Xs - ST1 105.16 25 46.19 56.81 2625 3.2505E-05
IDR(2) - ST2 - 49 - - - -
IDR(2) - ∆Xs - ST2 - 49 - - - -
η0 = 0.5

Bi-CGSTAB 90.29 27 26.47 61.62 1498 3.6518E-05
IDR(2) - ST1 66.22 17 25.81 38.62 1431 2.5385E-05
IDR(2) - ∆Xs - ST1 125.09 29 56.91 65.86 3228 2.5385E-05
IDR(2) - ST2 - 49 - - - -
IDR(2) - ∆Xs - ST2 - 49 - - - -
η0 = 0.1 Maasvlakte A

Bi-CGSTAB 247.38 15 148.57 94.13 2930 1.1898E-06
IDR(2) - ST1 220.65 11 147.35 69.00 2653 1.5988E-06
IDR(2) - ∆Xs - ST1 358.41 14 266.22 87.57 4979 1.5988E-06
IDR(2) - ST2 - 49 - - - -
IDR(2) - ∆Xs - ST2 - 49 - - - -
η0 = 0.5

Bi-CGSTAB 280.48 20 150.00 125.00 2826 2.1177E-06
IDR(2) - ST1 202.86 11 129.79 68.89 2376 1.9451E-06
IDR(2) - ∆Xs - ST1 339.86 12 249.96 85.62 4787 1.9451E-06
IDR(2) - ST2 - 49 - - - -
IDR(2) - ∆Xs - ST2 - 49 - - - -
η0 = 0.1 Maasvlakte B

Bi-CGSTAB 218.68 9 158.34 56.50 3144 7.0369E-07
IDR(2) - ST1 218.79 9 158.45 56.45 2965 3.0564E-07
IDR(2) - ∆Xs - ST1 401.18 8 347.65 49.80 6528 3.0564E-07
IDR(2) - ST2 - 49 - - - -
IDR(2) - ∆Xs - ST2 - 49 - - - -
η0 = 0.5

Bi-CGSTAB 268.38 18 150.49 112.98 2988 3.4929E-06
IDR(2) - ST1 264.25 9 165.78 94.01 3066 7.5100E-07
IDR(2) - ∆Xs - ST1 493.71 15 392.42 96.67 7494 7.5100E-07
IDR(2) - ST2 - 49 - - - -
IDR(2) - ∆Xs - ST2 - 49 - - - -
η0 = 0.1 Malta

Bi-CGSTAB 275.03 11 203.39 67.45 3990 1.6050E-06
IDR(2) - ST1 253.01 9 193.77 55.33 3664 8.1486E-07
IDR(2) - ∆Xs - ST1 365.87 9 298.58 63.41 5620 8.1486E-07
IDR(2) - ST2 - 49 - - - -
IDR(2) - ∆Xs - ST2 - 49 - - - -
η0 = 0.5

Bi-CGSTAB 301.39 18 186.85 109.63 3830 1.7676E-06
IDR(2) - ST1 234.04 11 162.57 67.29 3104 2.2985E-06
IDR(2) - ∆Xs - ST1 317.73 9 258.86 54.92 5027 2.2985E-06
IDR(2) - ST2 - 49 - - - -
IDR(2) - ∆Xs - ST2 - 49 - - - -

Inexact Picard - SL prec. version 1 - choice 2 - Updated wave number p̂
η0 = 0.1 Scheveningen

IDR(2) - ST1 89.93 19 45.22 43.04 2903 3.1000E-03
IDR(2) - ∆Xs - ST1 108.32 21 59.03 47.54 3792 3.1307E-03
IDR(2) - ST2 - 49 - - - -
IDR(2) - ∆Xs - ST2 - 49 - - - -
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η0 = 0.5
IDR(2) - ST1 76.80 17 36.73 38.47 2368 3.1312E-03
IDR(2) - ∆Xs - ST1 109.31 22 57.69 49.82 3714 3.1294E-03
IDR(2) - ST2 - 49 - - - -
IDR(2) - ∆Xs - ST2 - 49 - - - -
η0 = 0.1 Maasvlakte A

IDR(2) - ST1 253.40 11 180.98 68.63 4030 4.0610E-03
IDR(2) - ∆Xs - ST1 347.13 10 281.16 62.32 6284 4.0615E-03
IDR(2) - ST2 - 49 - - - -
IDR(2) - ∆Xs - ST2 - 49 - - - -
η0 = 0.5

IDR(2) - ST1 227.06 11 154.77 68.55 3445 4.0610E-03
IDR(2) - ∆Xs - ST1 331.96 11 259.66 68.54 5794 4.0610E-03
IDR(2) - ST2 - 49 - - - -
IDR(2) - ∆Xs - ST2 - 49 - - - -
η0 = 0.1 Maasvlakte B

IDR(2) - ST1 303.34 7 256.43 43.63 5693 1.0261E-03
IDR(2) - ∆Xs - ST1 401.41 7 354.57 43.56 7914 1.0261E-03
IDR(2) - ST2 - 49 - - - -
IDR(2) - ∆Xs - ST2 - 49 - - - -
η0 = 0.5

IDR(2) - ST1 304.63 8 251.47 49.76 5590 1.0261E-03
IDR(2) - ∆Xs - ST1 422.13 8 368.93 49.81 8260 1.0260E-03
IDR(2) - ST2 - 49 - - - -
IDR(2) - ∆Xs - ST2 - 49 - - - -
η0 = 0.1 Malta

IDR(2) - ST1 411.94 9 353.69 54.73 8004 5.3379E-04
IDR(2) - ∆Xs - ST1 443.21 9 385.20 54.54 8728 5.3381E-04
IDR(2) - ST2 - 49 - - - -
IDR(2) - ∆Xs - ST2 - 49 - - - -
η0 = 0.5

IDR(2) - ST1 355.61 8 304.00 48.22 6879 5.3389E-04
IDR(2) - ∆Xs - ST1 424.70 8 372.62 48.67 8454 5.3396E-04
IDR(2) - ST2 - 49 - - - -
IDR(2) - ∆Xs - ST2 - 49 - - - -

Inexact Picard - SL prec. version 1 - choice 3 - Updated wave number p̂
Scheveningen

Bi-CGSTAB 115.50 20 67.83 45.62 4286 1.0378E-06
IDR(2) - ST1 118.05 22 65.90 50.36 4244 2.2106E-05
IDR(2) - ∆Xs - ST1 141.09 26 80.22 58.89 5080 2.2106E-05
IDR(2) - ST2 - 49 - - - -
IDR(2) - ∆Xs - ST2 - 49 - - - -

Maasvlakte A
Bi-CGSTAB 250.92 11 176.00 70.18 3988 2.8904E-07
IDR(2) - ST1 260.07 11 187.21 69.07 4174 1.0713E-07
IDR(2) - ∆Xs - ST1 372.66 11 300.33 68.51 6588 1.0713E-07
IDR(2) - ST2 - 49 - - - -
IDR(2) - ∆Xs - ST2 - 49 - - - -

Maasvlakte B
Bi-CGSTAB 303.29 10 236.36 62.38 5336 2.1782E-07
IDR(2) - ST1 243.59 9 183.61 56.48 4085 4.2383E-07
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IDR(2) - ∆Xs - ST1 406.90 9 347.43 55.95 7612 4.2383E-07
IDR(2) - ST2 - 49 - - - -
IDR(2) - ∆Xs - ST2 - 49 - - - -

Malta
Bi-CGSTAB 419.93 11 348.02 67.25 7962 9.7642E-07
IDR(2) - ST1 365.54 11 292.57 69.21 6632 1.7695E-07
IDR(2) - ∆Xs - ST1 469.84 11 399.28 66.74 8889 1.7695E-07
IDR(2) - ST2 - 49 - - - -
IDR(2) - ∆Xs - ST2 - 49 - - - -

Inexact Picard - SL prec. version 1 - choice 4 - Updated wave number p̂
Scheveningen

Bi-CGSTAB 487.01 25 427.61 57.15 27134 1.5833E-07
IDR(2) - ST1 463.01 26 401.49 59.36 22117 2.1212E-05
IDR(2) - ∆Xs - ST1 146.03 25 87.22 56.70 4921 2.1212E-05
IDR(2) - ST2 71.22 19 25.88 43.35 1651 8.3543E-06
IDR(2) - ∆Xs - ST2 110.41 21 60.47 47.86 3857 2.2267E-05

Maasvlakte A
Bi-CGSTAB 324.20 11 249.98 69.50 5654 2.5875E-08
IDR(2) - ST1 355.47 11 282.46 68.90 5418 2.4016E-08
IDR(2) - ∆Xs - ST1 397.36 11 324.47 68.73 6118 2.4016E-08
IDR(2) - ST2 266.15 20 114.78 145.65 2530 9.9811E-06
IDR(2) - ∆Xs - ST2 333.52 20 203.05 124.69 4503 7.6041E-06

Maasvlakte B
Bi-CGSTAB 301.15 8 246.62 50.21 5582 2.1232E-07
IDR(2) - ST1 321.53 8 267.27 50.56 5052 2.8671E-07
IDR(2) - ∆Xs - ST1 499.94 9 439.84 56.25 8316 2.8671E-07
IDR(2) - ST2 271.96 20 140.96 125.39 3115 2.8141E-06
IDR(2) - ∆Xs - ST2 533.23 20 402.25 125.33 8946 1.0378E-05

Malta
Bi-CGSTAB 575.67 10 508.07 63.04 11636 1.4418E-06
IDR(2) - ST1 530.89 10 465.58 61.32 9216 1.5142E-07
IDR(2) - ∆Xs - ST1 446.46 10 381.60 60.82 7568 1.5142E-07
IDR(2) - ST2 269.54 20 141.52 122.34 3169 8.6399E-06
IDR(2) - ∆Xs - ST2 366.76 20 238.87 122.12 5358 8.7180E-06

Inexact Picard - SL prec. version 1 - choice 5 - Updated wave number p̂
TOL=1E-2 & η0 = 0.1 Scheveningen

IDR(2) - ST1 431.66 25 369.12 60.65 23840 1.1382E-06
IDR(2) - ST2 144.77 26 83.41 59.40 5371 1.7119E-05

TOL=1E-2 & η0 = 0.5
IDR(2) - ST1 450.80 26 389.52 59.30 24426 -
IDR(2) - ST2 57.76 11 31.32 25.08 2008 1.2744E-05

TOL=5E-2 & η0 = 0.1
IDR(2) - ST1 380.70 25 319.93 58.83 20336 1.1683E-06
IDR(2) - ST2 90.90 19 39.39 49.51 2522 1.2744E-05

TOL=5E-2 & η0 = 0.5
IDR(2) - ST2 117.49 23 63.21 52.45 4076 2.0277E-05

TOL=1E-2 & η0 = 0.1 Maasvlakte
IDR(2) - ST1 650.08 10 583.78 62.64 13023 1.6892E-07
IDR(2) - ST2 188.98 11 116.24 68.93 2592 3.2225E-06

TOL=1E-2 & η0 = 0.5
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Total time # outer Solve Sζ = b Build S # matvecs Rel. error

IDR(2) - ST2 192.66 11 120.06 68.83 2671 1.7453E-06
TOL=5E-2 & η0 = 0.1

IDR(2) - ST1 592.21 10 517.03 71.50 11531 1.6858E-07
IDR(2) - ST2 232.31 14 139.67 87.59 3095 4.5959E-06

TOL=5E-2 & η0 = 0.5
IDR(2) - ST2 249.90 13 164.43 81.47 3668 7.4704E-06

TOL=1E-2 & η0 = 0.1 Maasvlakte B
IDR(2) - ST1 464.17 7 417.04 43.85 9321 5.1961E-08
IDR(2) - ST2 183.21 10 117.43 62.17 2615 4.1483E-06

TOL=1E-2 & η0 = 0.5
IDR(2) - ST2 192.02 9 124.11 64.39 2762 5.6835E-06

TOL=5E-2 & η0 = 0.1
IDR(2) - ST1 395.16 7 347.96 43.85 7772 5.8035E-07
IDR(2) - ST2 246.00 14 153.10 87.93 3397 3.2028E-06

TOL=5E-2 & η0 = 0.5
IDR(2) - ST2 319.33 13 233.65 81.74 5213 6.1330E-06

TOL=1E-2 & η0 = 0.1 Malta
IDR(2) - ST1 696.04 8 643.68 48.96 14598 1.0394E-06
IDR(2) - ST2 196.18 9 137.58 55.08 3113 9.6129E-06

TOL=1E-2 & η0 = 0.5
IDR(2) - ST2 256.58 9 198.06 55.02 4477 1.0237E-05

TOL=5E-2 & η0 = 0.1
IDR(2) - ST1 488.61 7 442.52 42.81 10023 9.7220E-07
IDR(2) - ST2 357.87 16 247.26 105.35 5562 7.0021E-06

TOL=5E-2 & η0 = 0.5
IDR(2) - ST2 357.43 14 267.85 85.49 6058 5.0428E-06

Total time # outer Solve Sζ = b Build S Init. time Rel. error

Direct method MUMPS

Wave number k0

Scheveningen 72.59 22 22.47 48.30 0.62 -
Maasvlakte A 108.81 10 43.27 60.84 1.78 -
Maasvlakte B 66.73 6 25.97 36.20 1.78 -
Malta 88.83 8 37.14 47.05 1.80 -

Modified wave number p̂
Scheveningen 69.48 21 21.36 46.31 0.62 -
Maasvlakte A 108.46 10 43.25 60.53 1.78 -
Maasvlakte B 66.84 6 25.95 36.31 1.78 -
Malta 90.38 8 37.11 48.67 1.80 -
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