
A Fast Neural
Network-Based
Computational

Framework for the
Prediction of Skin

Contraction.
M. W. Schaaphok

D
el
ft
U
ni
ve
rs
ity

of
Te
ch
no
lo
gy

A Fast Neural
Network-Based
Computational
Framework for
the Prediction of
Skin Contraction.

by

M. W. Schaaphok
to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Thursday November 5th at 10:00 AM.

Student number: 4355822
Project duration: February 10, 2020 – November 5, 2020
Thesis committee: Prof. Dr. ir. F. J. Vermolen, TU Delft/UHasselt, supervisor

Dr. ir. M. B. van Gijzen, TU Delft
Dr. ir. F. H. van der Meulen, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface
This thesis is written as part of completing the master program Applied Mathematics at the Delft Uni-
versity of Technology. It is part of a larger research project, supported by the Dutch Burns Foundation,
which is focused on developing a mathematics-based application for predicting skin contraction for burn
patients. Specifically, over the last nine months, I have focused on the application of neural networks to
provide a computationally cheap alternative for the expensive predictions of the mathematical models.

I was drawn to this topic by one of my personal experiences. In 2019, one of my friends sustained
a burn injury that required medical care in one of the burn centers in the Netherlands. My friend had
been lucky and did not suffer from long-term effects, but the accident did make me aware of the con-
sequences of burn injuries. Having this experience motivated me to work on this topic and to find
methods to increase the applicability of mathematical models in burn care. In the end, I believe that
this technology can lead to an application that will help medical staff and will improve the life of severe
burn victims.

Moreover, I enjoyed working on this topic as it challenged me to discover the world of machine
learning. Over the course of this research, I have learned a lot about machine learning, its challenges,
pitfalls, and the endless possibilities.

I am grateful to all the wonderful people surrounding me, who supported me during this project
and who gave me advice on many different topics. In particular, I want to give special thanks to my
supervisor, Fred Vermolen, for his guidance during this research, his optimism, and for our enjoyable
Skypemeetings. Furthermore, I want to thankGinger Egberts for allowingme to use her implementation
of the one-dimensional model, for helping me navigate through the web of skin parameters and for her
feedback. Likewise, I am grateful to Antonio Barion for providing me with his implementation of the
two-dimensional model. I also want to thank Kees Lemmens for giving me access to the computer
cluster for a few weeks to generate the datasets, which made it possible to generate data for the two-
dimensional model as well. Lastly, I want to thank my boyfriend for making working at home more fun,
for the lovely lunch walks and for his unwavering support.

M. W. Schaaphok
Delft, October 2020

iii

Abstract
Burn injuries occur daily and can have severe physical and mental effects both in short and long term,
such as disabilities due to severe skin contraction. Even though the mortality rate has decreased over
the years, the need for a higher quality of life after severe burns remains. Decreasing the probability
of a severe contraction is essential for increasing the quality of life. Mathematical models have been
developed to predict skin contraction over time. However, the computations are time-expensive and not
suitable for applications that require many simulations, for example, when considering input uncertainty
for patient-based predictions.

To that end, the application of neural network surrogates is studied to accelerate the computations
of a morphoelastic numerical model for the prediction of skin contraction. Two datasets are generated
from a one- and two-dimensional model respectively and are used to train the neural networks. It
is shown that a feedforward neural network can accurately learn the nonlinear mapping between the
input parameters and the outputs of the considered morphoelastic models. The trained neural network
provides fast and accurate predictions on skin contraction and strain energy. Furthermore, a first step
is taken towards a hybrid model where a neural network is applied as a surrogate for computationally
expensive time-stepping in the numerical model.

The added value of fast neural network surrogates is demonstrated in two clinical case studies. It is
shown that the surrogate can be used to perform input parameter studies by comparing an age study
with the morphoelastic model with the age study using the neural network. The neural network can
reproduce the age study with high accuracy in just a fraction of the time. Secondly, a concept application
is designed to demonstrate patient-based predictions using Monte-Carlo simulations to cope with input
parameter uncertainty. The application provides predictions for skin contraction and the strain energy,
based on the age of the patient and the wound size.

v

Contents

Acronyms ix

1 Introduction 1
1.1 Introduction & Motivation . 1
1.2 Related work . 2
1.3 Approach & Contribution . 3
1.4 Outline . 4

2 Morphoelastic Model for Burn Injuries 5
2.1 One-dimensional morphoelastic model for burn injuries 5

2.1.1 Mathematical framework . 5
2.1.2 Relative surface area wound. 8
2.1.3 Strain energy . 8
2.1.4 Numerical methods. 9

2.2 Two-dimensional morphoelastic model for burn injuries 9
2.2.1 Differences mathematical framework . 9
2.2.2 Relative surface area wound. 10
2.2.3 Strain energy . 10

3 Machine Learning Methods 13
3.1 Designing a neural network . 13

3.1.1 Design process . 13
3.1.2 Challenges . 15

3.2 Neural networks . 16
3.2.1 Feedforward neural networks . 16
3.2.2 Convolutional neural networks . 17
3.2.3 Parameter-sharing neural networks . 18
3.2.4 Activation functions. 18
3.2.5 Initialization . 19

3.3 Training . 19
3.3.1 Forward propagation . 19
3.3.2 Loss functions . 20
3.3.3 Back-propagation. 21
3.3.4 Optimization algorithms . 22
3.3.5 Regularization . 23

3.4 Validation & Testing. 24
3.4.1 Cross-validation . 25

3.5 Data generation. 25
3.6 Data processing . 26

3.6.1 Scaling . 26
3.6.2 Principal Component Analysis . 26

3.7 Performance measures . 28

4 Surrogate Model 29
4.1 Dataset - 1D morphoelastic model. 29
4.2 RSAW prediction- 1D morphoelastic model . 31

4.2.1 Neural network . 31
4.2.2 PCA . 34
4.2.3 Training size . 35
4.2.4 Final network & Test set evaluation . 37
4.2.5 Exceptional test cases . 38

vii

viii Contents

4.2.6 RSAW prediction from displacement 𝑢 . 39
4.3 Strain energy prediction - 1D morphoelastic model. 41

4.3.1 Training . 42
4.3.2 Test . 44
4.3.3 Combined predictions . 44
4.3.4 Strain energy from mechanical values . 46

4.4 Two-dimensional morphoelastic model . 49
4.4.1 Dataset . 49
4.4.2 RSAW prediction . 51
4.4.3 Strain energy prediction . 52
4.4.4 Wound edge prediction. 54

4.5 Conclusion . 55

5 Hybrid Model 57
5.1 Dataset . 57
5.2 Network & Results . 58

5.2.1 Performance measures . 58
5.2.2 Network . 58
5.2.3 Results 15% training data . 59
5.2.4 Results 30% training data . 60

5.3 Conclusion . 62

6 Clinical Case Studies 63
6.1 Age study . 63

6.1.1 Parameters . 63
6.1.2 Spatially constant parameters . 65
6.1.3 Spatially varying parameters. 67
6.1.4 Parameters outside training range. 68
6.1.5 Conclusion . 70

6.2 Medical application . 70
6.2.1 Inserting input values. 70
6.2.2 Predictions & Visualization . 71

7 Conclusion & Discussion 73
7.1 Conclusion . 73

7.1.1 Surrogate model . 73
7.1.2 Hybrid model . 75
7.1.3 Clinical case studies . 75

7.2 Discussion . 75

Bibliography 79

A Input parameter values 85

B Implementation 89

C Hyperparameter tuning 93

Acronyms
ANN Artificial Neural Network.

aRRMSE average Relative Root Mean Squared Error.

CNN Convolutional Neural Network.

GPU Graphics Processing Unit.

LSTM Long Short-Term Memory.

MAE Mean Absolute Error.

MLP Multilayer Perceptron.

MSE Mean Squared Error.

NN Neural Network.

PCA Principal Components Analysis.

ReLU Rectified Linear Unit.

RMSE Root Mean Squared Error.

RNN Recurrent Neural Network.

RSAW Relative Surface Area Wound.

SGD Stochastic Gradient Descent.

SVD Singular Value Decomposition.

ix

1
Introduction

1.1. Introduction & Motivation
Burn injuries are common injuries that can cause severe physical and mental effects both in the short
and long term. The WHO estimates around 180 000 deaths a year from burns and nearly 11 million
burn injuries worldwide that require medical care [1]. More specifically, in the Netherlands every year
92 000 people need to be treated for burn injuries of whom 9000 require direct first aid and 900 need
hospitalization [2]. Burn injuries are associated with substantial morbidity and decrease the quality
of life long term [43]. Even though prevention campaigns have reduced the number of burn injuries
the last couple of years, burn injuries still occur daily [69, 88]. Over the years better treatments have
improved the terms of survival following a burn injury, but the effects on a patient’s life after a burn injury
remain severe. Therefore finding methods to improve the quality of life after severe burns is essential.
To achieve this, more developments on burn treatments are needed to further improve the outcome of
burns, acutely, and in the long term [43].

One of the main long-term effects caused by severe burns is reduced mobility in the burned area
due to contraction and hypertrophic scarring. During wound contraction, a biomechanical interaction
causes the edges of the wound to pull inwards, reducing the area and deforming the wound. If long-
term reduced mobility occurs, it is commonly named a contracture. The severity of the contracture
depends on wound size, location on the body, and the extent of the contraction. Contraction causes
much pain and discomfort to the patient and can result in life-long disabilities affecting the patient’s
future.

Improving burn injury treatments is an active research topic, with developments in the used dress-
ings [41], the application of skin grafts [5, 38], cell therapies [56], methods to improve self-care of burn
patients [9], and more. However, it is a time expensive and difficult task to obtain good experimental
data for new treatments, where ethical questions should also be taken into account. Combining data
from different studies and experiments can lead to new discoveries, though these studies are often
limited due to differences in data collection, environments and documented variables [90].

Mathematical modeling can provide an alternative method to research the effects of individual ele-
ments as it allows the user to experiment more freely andmore focused on specific effects and relations.
The application of mathematical models has gained much interest in the past decades and has become
more adopted in the industry and our everyday life. Mathematical models that capture the physical and
biological processes can increase our understanding of the underlying biological systems and can as-
sist in medical procedures such as diagnosis and radiation therapy [79]. In the case of burn injuries,
these detailed models can give insight into which elements of the healing process have a major influ-
ence on the contraction. Over the years various mathematical models have been developed to predict
the behavior of wound healing and contraction, such as Koppenol [50], Murphy et al. [63], Olsen et al.
[68], Sherrat and Murray [85], Tranquillo and Murray [92], and Egberts et al. [23]. For overviews of the
developed mathematical models for burn injuries we refer to Buganza Tepole and Kull [16], Sheratt and
Dallon [84] and Vermolen [94].

Furthermore, there is a growing interest in personalized healthcare, an approach focused on tools
for delivering patient-centered, predictive care [89]. Here mathematical models can provide a solution,

1

2 1. Introduction

since the parameters can be tuned relatively easily to achieve patient-based predictions. The patient-
based predictions can assist medical staff in making the optimal treatment choices for each patient.
The predictions can also increase the knowledge and manage the expectations of the patients about
future contraction and pain, which might also improve their self-care. It should be noted that there
is often much uncertainty regarding the values of parameters for individual patients. To cope with
these uncertainties and to predict the probability of success (no contracture) or failure (contracture) it is
necessary to perform Monte-Carlo type simulations, requiring many model-based predictions for one
patient [98] .

The requirement of many model-based predictions can be problematic, considering that a downside
of high-dimensional mathematical models is that they are often time-consuming. Modeling biological
processes results in very large systems as biological systems are complex and often consist of many
different interconnected layers. The studies by Noble [67] and Reed [77] provide interesting views of
mathematical biology and the challenges of modeling biological phenomena. Noble predicts that this
century mathematical biology will become the most intensive science from a computational point of
view. Hence applications of the models are and will be limited by the available computational resources.
To increase the applicability of the mathematical models, researching methods to reduce or avoid these
computer-intensive computations is essential. In the context of predicting contractures for burn wounds,
it is not feasible for medical staff to wait days or weeks for predictions on the probability of a contracture
for a single patient. For a solution we look to Artificial Neural Networks (ANNs), which are known for
their ability to approximate complex relations with relatively high accuracy and within short evaluation
time after sufficient training [27].

The application of neural networks and deep learning in the medical society has increased over the
past few years especially for identification purposes. Computer vision has been used to identify the
degree of skin burns [42] and to identify tumors in MRI scans [60]. Neural networks have been also
been applied to identify diseases, such as COVID-19, in blood samples [15]. There is an increased
interest in the combination of mathematical physics-based models and machine/deep learning to utilize
the advantages of both techniques. The review by Alber et al [6] gives an overview of the opportunities
and challenges of combining these techniques for applications in the biomechanical and social fields.
One of the opportunities they name is to use neural network surrogates to accelerate slow numerical
models. In this approach, a neural network is trained to predict the nonlinear mapping between inputs
and outputs of a slow mathematical model. There exists the possibility to provide predictions with
high accuracy and fast evaluation, which increases the applicability of the mathematical model for
personalized healthcare and treatment research. In this research computationally cheap methods,
using surrogate neural networks, are studied for skin contraction models developed by Egberts et al.
[23] and Barion [12]. The application of the surrogate neural networks is studied in two clinical cases.

1.2. Related work
In this section, related research on the application of surrogate neural networks for accelerating compu-
tational expensive models is discussed. The integration of neural networks and numerical models can
be done in multiple ways. For example, they can be used as a surrogate or proxy for a complete model
based on simulations by the model, or as a replacement for one (repeated/iterative) time-expensive
computation within the model. The integration of numerical models and neural networks can also be
used for the approximation of difficult parameters estimations/parameterizations [17, 28], for model
reduction [57, 97] or they can be used as a replacement of numerical methods and learn to solve
systems of differential equations [36, 46, 55, 75]. Note that this is not an extensive list and other meth-
ods for combining neural networks and numerical models have been developed as well, for instance by
[11, 18, 37]. In the next paragraphs, a small overview is given of the work that has been done relating to
a surrogate approach for a complete numerical model and for an iterative time-expensive computation.

The first approach employs a neural network as a surrogate for a numerical model, this neural
network is trained to learn the nonlinear mapping between the inputs and outputs of the numerical
model. This surrogate approach is applied by C.Yang et al. [20], where a Convolutional Neural Network
(CNN) is used to accelerate the approximation of the stress-strain curve for materials, using Principal
Components Analysis (PCA) to reduce the dimension. Following a similar approach, Wang et al. [95]
considered a Long Short-Term Memory (LSTM) neural network to accelerate mechanical models used
for studying the dynamics of biological systems. The trained surrogate allowed them to scan through

1.3. Approach & Contribution 3

a large parameter space which would have been unfeasible with the original model. Furthermore,
Navratil et al. [65] have shown that a neural network can outperform other, non-intelligent, acceleration
techniques on both acceleration and accuracy. A neural network embedded Monte Carlo approach is
studied by Zou et al. [98], where the neural networks functions as a surrogate for a numerical water
quality model. They showed that this approach has the potential for efficient analysis of the input un-
certainty. The neural network surrogate approach has also been applied for environmental numerical
models by Krasnopolsky and Chevallier [52], who illustrated four different applications of simple neural
networks in environmental numerical models, and for urban wastewater systems by Ráduly et al. [81],
where a mechanistic model for a wastewater treatment plant was replaced by a neural network. More-
over, the use of neural networks has been studied for high complexity systems in oil reservoir modeling
[59, 65] and computational fluid dynamics [8, 24, 35].

We can conclude from these researches that neural networks can be used as fast surrogates for
mathematical models, although the accuracy of the trained networks varies dependent on the difficulty
of the task and available data.

The second approach where a neural network is used as a surrogate for a computationally ex-
pensive step has also been studied. In Grzeszezuk et al. [33] the control and emulation of multiple
physics-based graphics models were replaced by a neural network to accelerate the simulations and
reduce computational demand. The authors trained a neural network to approximate the function 𝜙:
𝑥(𝑡 + Δ𝑡) = 𝜙(𝑥(𝑡)), which could then be applied repeatedly to accelerate the computations. They
also showed that the neural networks can take larger time steps compared to the original models with-
out serious loss of accuracy. Meister et al. [58] explore the use of deep learning to accelerate the
time-integration of Total Lagrangian Explicit Dynamics with neural networks that are generic enough
to handle various geometries, motion and materials. Furthermore, Krasnopolsky and Fox-Rabinovitz
[53] have shown conceptual and practical possibilities to develop hybrid models that combine machine
learning components for time-consuming physical components and deterministic components. They
showed that the hybrid approach produced very similar results in significantly less time.

It is evident that the combination of neural networks and mathematical-physics based models is
an active research topic with many variations. Therefore, it is interesting to study to what extent this
combination can accelerate the finite element models for skin contraction and improve their applicability.

1.3. Approach & Contribution
The objective of this research is to find a computationally cheaper method using neural networks to re-
produce expensive numerical models for skin contraction after severe burns. The new method should
increase the applicability of the skin contraction model for parameter studies and healthcare by reduc-
ing computation time and maintaining accuracy. In this section, the approach to solving this problem is
discussed. The common approach using a numerical model for the prediction of biological processes is
as follows. First, a mathematical description of the biological process is developed in terms of (partial)
differential equations and characteristics. The solutions to the derived system of equations are approx-
imated using numerical methods, such as finite difference, finite volume, or the finite element method.
The numerical approximations are then used as the final predictions for the behavior of the biological
process. Solving the systems numerically is often time-expensive and the computations need to be
performed for each new set of inputs for which a prediction is required. These slow predictions take
place ‘online’, i.e. at the time that the user requires the predictions.

A neural network surrogate has the advantage that most of the work can be done ‘offline’, i.e. before
the user needs to compute a prediction. First, the numerical model is used to construct a dataset of
inputs and corresponding predictions. The construction of this dataset is very time-consuming due to
the number of simulations necessary for the training. This construction can fortunately be done offline
and can benefit greatly from parallel programming on servers. The size of the constructed dataset is
dependent on the problem at hand and should be manageable. The dataset is divided into a training
set and a test set. The training set is used to teach the network how to predict the outputs from the
inputs and the test set is used to validate the performance of the network. The time needed to train
the network is highly dependent on the type of network, the type of data, and the amount of data.
However, as both training and validation of the neural network can be performed offline, training time is
not a major concern. Once the neural network has been trained to give accurate predictions, it can be
used to compute new predictions. Note that the accuracy of the neural network is with respect to the

4 1. Introduction

predictions by the numerical model and not with respect to the true solutions. Due to their structure,
neural networks can provide online predictions instantaneously. Hence, instead of the slow online
predictions computed by the numerical model, the surrogate neural network can be used to obtain fast
online (approximations of the) predictions. A downside of the approach is that the use of neural network
surrogate loses the physical interpretation of the mathematical model. The approach is visualized in
Figure 1.1.

Biological
process Mathematical model Predictions

Training &
Test data Neural network

Slow predictions (online)

Slow predictions
(offline)

Training
and

validation
(offline)

Fast predictions
(online)

Figure 1.1: Approach to accelerate the predictions of the biological healing of burn wounds. A neural network surrogate is used
to provide accurate approximations of the predictions made by a slow mathematical numerical model.

In this research, multiple methods are studied to apply the surrogate approach for fast and accurate
predictions of skin contraction models. The study is built on the mathematical models for skin contrac-
tion developed by Egberts et al. [23] and Barion [12]. First, the neural network is used as a full surrogate
for the numerical model. In this approach the network is trained to predict the desired outputs, such as
contraction over time, directly from the input parameters. Secondly, a hybrid approach is developed,
where the neural network is used as a surrogate only for the most computationally expensive step. In
the hybrid approach the network is trained to predict all variables at the next time step, based on their
value at the current time step. The applicability of the neural network surrogate is tested in two clinical
case studies. The first case study is a parameter study, where the neural network is used to find the
influence of the patient’s age on the wound contraction. The study with the neural network is compared
to the study with the finite element model for validation. In the second case study a concept application
for medical staff is designed using the neural network to perform fast Monte Carlo simulations. The
clinical case studies provide clear examples of how the neural network surrogates can benefit research
on the effects of parameters and how they can be used for personalized healthcare.

1.4. Outline
The outline of the thesis is as follows. In Chapter 2 the mathematical framework of the morphoelastic
model is discussed. The one-dimensional model is discussed in detail, whereas for the two-dimensional
model only the main differences are highlighted. Chapter 3 describes the applied methods, including
the basic methods for machine learning, the methods for data generation and data processing, and the
applied performance measures. Chapter 4 discusses the results for a full neural network surrogate for
the one- and two-dimensional numerical model. Surrogates for both the prediction of relative surface
area and strain energy are trained and the effect of principal component transforms and training set
size is investigated. The study for the two-dimensional model includes a surrogate for the prediction of
the wound edge movement as well. Chapter 5 discusses the second approach for the one-dimensional
model where a surrogate is trained for the most expensive computational step only, i.e. the finite el-
ement prediction of one time step. Chapter 6 discusses two clinical case studies. First, a parameter
study is performed using the neural network surrogate to investigate the influence of age on skin con-
traction. The neural network-based study is compared to the study with the morphoelastic model for
validation. Secondly, this chapter introduces a concept application for medical staff providing patient-
based predictions on the contractures. Chapter 7 provides the conclusion and the discussion of the
study and gives recommendations for future research.

2
Morphoelastic Model for Burn Injuries

In this research, neural network surrogates are studied for both the one- and two-dimensional version of
a morphoelastic model, developed and implemented by Egberts et al. [22] and Barion [12]. respectively.
The main part of the study is built upon simulations of the one-dimensional model. Therefore, this
chapter explains the mathematical framework of the one-dimensional morphoelastic model in detail.
For the two-dimensional model only the main differences are highlighted as the two models are based
on the same mathematical principles.

2.1. One-dimensional morphoelastic model for burn injuries
Themathematical framework of this model is based on the general morphoelastic model for burn wound
contraction, developed by Koppenol [50]. The derivation and implementation of the one-dimensional
model are done by Egberts et al. [23]. Firstly, the mathematical framework of the model is discussed,
considering the differential equations, constitutive relations, and initial and boundary conditions. Next,
the computations of relevant output variables as the relative surface area of the wound and the strain
energy in the wound are explained and the applied numerical methods are mentioned.

2.1.1. Mathematical framework
The model considers four biological constituents and three mechanical components. The four biolog-
ical constituents are the fibroblasts (𝑁), the myofibroblasts (𝑀), a generic signaling molecule (𝑐), and
collagen (𝜌). The considered mechanical components include displacement of the dermal layer (𝑢),
the displacement velocity of the dermal layer (𝑣) and the effective strain in the dermal layer (𝜖). The
model is described by Equations (2.1), (2.2), and (2.3).

𝜕𝑧
𝜕𝑡 +

𝜕(𝑧 𝑣)
𝜕𝑥 = −𝜕𝐽𝜕𝑥 + 𝑅 , (2.1)

𝜌 (𝜕𝑣𝜕𝑡 + 2𝑣
𝜕𝑣
𝜕𝑥) =

𝜕𝜎
𝜕𝑥 + 𝑓, (2.2)

𝜕𝜖
𝜕𝑡 + 𝑣

𝜕𝜖
𝜕𝑥 + (𝜖 − 1)

𝜕𝑣
𝜕𝑥 = −𝐺. (2.3)

Equation (2.1) is the conservation of the cell density/concentration for each of the constituents. Here
𝑧 represents each of the constituents, 𝑖 ∈ {𝑁,𝑀, 𝜌, 𝜀}, 𝐽 is the flux of the constituent 𝑖 per unit area
and 𝑅 represents the chemical kinetics of constituent 𝑖. Equation (2.2) is the conservation equation of
linear momentum, where 𝜌 is the total mass density of the dermal layer, 𝜎 is the stress tensor, and 𝑓
is the body force. Lastly, Equation (2.3) shows the evolution equation of the strain in the skin, where 𝐺
is the growth tensor.

5

6 2. Morphoelastic Model for Burn Injuries

The constituents
First, the fluxes and chemical kinetics in Equation (2.1) are described for each of the constituents. In
the remainder of this chapter, 𝑧 is replaced by 𝑖, so 𝑧 is represented by 𝑁, 𝑧 by 𝜌 etc. The fluxes
𝐽 in the equation for the (myo)fibroblasts describe both their random movement and their directed
movement due to chemotaxis. We define 𝐹 = 𝑀+𝑁, 𝐷 as the random diffusion parameter and 𝜒 as
the chemotaxis, such that the fluxes 𝐽 and 𝐽 are given by Equations (2.4) and (2.5), respectively.

𝐽 = −𝐷 𝐹𝜕𝑁𝜕𝑥 + 𝜒 𝑁
𝜕𝑐
𝜕𝑥 , (2.4)

𝐽 = −𝐷 𝐹𝜕𝑀𝜕𝑥 + 𝜒 𝑀
𝜕𝑐
𝜕𝑥 . (2.5)

Equation (2.1) also includes a reaction term that describes the proliferation of the cells. It includes the
differentiation of myofibroblasts into fibroblasts and the removal of these cells due to apoptosis (cell
death). The chemical kinetics for the (myo)fibroblasts 𝑅 and 𝑅 are given by Equations (2.6) and
(2.7), respectively.

𝑅 = 𝑟 [1 + 𝑟max𝑐
𝑎 + 𝑐] [1 − 𝜅 𝐹]𝑁 − 𝑘 𝑐𝑁 − 𝛿 𝑁, (2.6)

𝑅 = 𝑟 [[1 + 𝑟
max]𝑐

𝑎 + 𝑐] [1 − 𝜅 𝐹]𝑀 − 𝑘 𝑐𝑁 − 𝛿 𝑀. (2.7)

The main difference between both equations is that myofibroblasts only proliferate in the presence of
the signaling molecules, while fibroblasts also proliferate without the signaling molecules. The parame-
ter 𝑟 is the cell division rate, 𝑟max the maximum factor of the cell division rate enhancement due to the
signaling molecules, 𝑎 the concentration of signaling molecule that causes half-maximum enhance-
ment of the cell division rate, 𝜅 represents the reduction in the cell division rate due to crowding, 𝑘
is the signaling molecule-dependent cell differentiation rate of the fibroblasts into myofibroblasts, and
𝛿 , 𝛿 are the apoptosis rates of the fibroblasts and myofibroblasts, respectively.

Next, the flux and the reaction term for the signaling molecules are considered. The flux 𝐽 only
includes the random movement of the signaling molecules and is given in Equation (2.8), where 𝐷 the
random diffusion coefficient.

𝐽 = −𝐷 𝜕𝑐
𝜕𝑥 . (2.8)

The proliferation of the signaling molecules, and hence the reaction term, depends on both the lo-
cal density of the (myo)fibroblasts that secrete and consume the signaling molecules and a generic
metalloproteinase (MMP) that removes the signaling molecules through a proteolytic breakdown. The
concentration of MMP is proportional to the cell density of the (myo)fibroblasts and the concentration
of collagen and signaling molecules, and is given in Equation (2.9).

𝑔(𝑁,𝑀, 𝑐, 𝜌) = [𝑁 + 𝜂 𝑀]𝜌
1 + 𝑎 𝑐 . (2.9)

Note that Equation (2.9) is based on the assumption that the MMP concentration follows instanta-
neously from the presence of (myo)fibroblasts, collagen, and the generic growth factor. Here 𝜂 is the
ratio of myofibroblasts to fibroblasts in the secretion rate of the MMPs and 𝑎 is the concentration of
the signaling molecule that causes inhibition of the secretion of the generic MMP. The proliferation of
the signaling molecule 𝑅 is then given by Equation (2.10).

𝑅 = 𝑘 [𝑐
𝑎 + 𝑐] [𝑁 + 𝜂 𝑀] − 𝛿 𝑔(𝑁,𝑀, 𝑐, 𝜌)𝑐. (2.10)

Here 𝑘 is the maximum net secretion rate of the signaling molecule, 𝜂 is the ratio of myofibroblasts
to fibroblasts in the maximum secretion rate of the signaling molecule, 𝑎 is the concentration of the
signaling molecule that causes half-maximum net secretion rate of the signaling molecule, and 𝛿 is
the proteolytic breakdown rate of the signaling molecules.

2.1. One-dimensional morphoelastic model for burn injuries 7

For collagen we assume no active transport, and therefore the flux is equal to zero, i.e. 𝐽 = 0. The
proliferation of collagen by the (myo)fibroblasts is described in the reaction term 𝑅 . The secretion
rate of collagen 𝑘 is enhanced by the presence of signaling molecules, where the maximum factor
of secretion rate enhancement due to the signaling molecules is given by 𝑘max. Furthermore, 𝑎 is
the concentration of signaling molecules that causes the half-maximum enhancement of the secretion
rate. The proteolytic breakdown of collagen is analogous to the breakdown of signaling molecules and
𝛿 gives the degradation rate of collagen. Equation (2.11) combines this information and gives the
reaction term 𝑅 .

𝑅 = 𝑘 [1 + [
𝑘max𝑐
𝑎 + 𝑐]] [𝑁 𝑀] − 𝛿 𝑔(𝑁,𝑀, 𝑐, 𝜌)𝜌. (2.11)

The mechanical components
Next, the mechanical components of the model are considered. The Cauchy stress tensor 𝜎, the body
force 𝑓 and the growth tensor 𝐺 are given in Equation 2.12, where 𝜇 is the viscosity and 𝐸√𝜌 the Young’s
modulus.

𝜎 = 𝜇𝜕𝑣𝜕𝑥 + 𝐸√𝜌𝜖, 𝑓 = 𝜕𝜓
𝜕𝑥 , 𝐺 = 𝛼𝜖, 𝛼 ∈ ℝ, (2.12)

The total stress 𝜓 is generated by the myofibroblasts and is given by Equation (2.13).

𝜓 = [𝜉𝑀𝜌
𝑅 + 𝜌] . (2.13)

Here 𝜉 is the generated stress per unit cell density and the inverse of the unit collagen concentration
and 𝑅 is a constant. Equations (2.2) and (2.3) model the conservation of mass and linear momentum.
A tensor based approach, commonly used in the context of tissue growth, is used to incorporate a
permanent contraction. The growth factor in this case models the contraction of the tissue and is
assumed to be proportional to the product of the cell density of (myo)fibroblasts and a function of
the collagen density. Moreover, it is assumed that the contraction term depends on the product of the
concentration of MMPs, the concentration of the signaling molecules, and the reciprocal of the collagen
density. The growth rate 𝛼𝜖 is given in Equation (2.14), where 𝜁 denotes the rate of morphoelastic
change.

𝛼𝜖 = 𝜁 {[𝑁 + 𝜂 𝑀]𝑐
1 + 𝑎 𝑐 } 𝜖. (2.14)

Initial and boundary conditions
The domain of the computation is defined by Ω = [−𝐿 , 𝐿], with boundary 𝜕Ω = {−𝐿 , 𝐿 }. The initial
wound area is defined by the subdomain Ω = [−𝐿 , 𝐿], where 𝐿 < 𝐿 and the boundary of the wound
is defined by 𝜕Ω = {−𝐿 , 𝐿 }. The steepness of the boundary, which also defines the slopes of the
components, is defined by 𝑠. The dimension of 𝑥 is in cm and 𝑡 is in days. The initial cell density for
the fibroblasts is given by Equation (2.15), where �̄� is the initial fibroblast cell density in healthy dermal
tissue and �̃� is the initial fibroblast cell density in the wounded area.

𝑁(𝑥, 0) =

⎧
⎪⎪

⎨
⎪⎪
⎩

�̄� if 𝑥 ≤ −𝐿 ,
̄ ̃ + ̄ ̃

sin((𝑥 + 𝑠)) if − 𝐿 ≤ 𝑥 ≤ −𝐿 + 𝑠,
�̃� if − 𝐿 + 𝑠 ≤ 𝑥 ≤ 𝐿 − 𝑠,
̄ ̃ + ̄ ̃

sin((𝑥 + 𝑠)) if 𝐿 − 𝑠 ≤ 𝑥 ≤ 𝐿 ,
�̄� if 𝑥 ≥ 𝐿 ,

(2.15)

For the initial concentration of the signaling molecules, the function in Equation (2.16) is used, where
�̄� is the concentration in healthy dermal tissue and �̃� is the concentration in the wounded area.

𝑐(𝑥, 0) =

⎧
⎪⎪

⎨
⎪⎪
⎩

�̄� if 𝑥 ≤ −𝐿 ,
̄ ̃ + ̄ ̃ sin((𝑥 + 𝐿 − 𝑠)) if − 𝐿 ≤ 𝑥 ≤ −𝐿 + 𝑠,
�̃� if − 𝐿 + 𝑠 ≤ 𝑥 ≤ 𝐿 − 𝑠,
̄ ̃ + ̄ ̃ sin((𝑥 + 1 𝑠 − 𝐿)) if 𝐿 − 𝑠 ≤ 𝑥 ≤ 𝐿 ,
�̄� if 𝑥 ≥ 𝐿 .

(2.16)

8 2. Morphoelastic Model for Burn Injuries

The initial concentration of the concentration of collagen is defined by Equation (2.17), where �̄� is the
concentration in healthy dermal tissue and �̃� is the concentration in the wounded area.

𝜌(𝑥, 0) =

⎧
⎪⎪

⎨
⎪⎪
⎩

�̄� if 𝑥 ≤ −𝐿 ,
̄ ̃ + ̄ ̃ sin((𝑥 + 𝑠)) if − 𝐿 ≤ 𝑥 ≤ −𝐿 + 𝑠,
�̃� if − 𝐿 + 𝑠 ≤ 𝑥 ≤ 𝐿 − 𝑠,
̄ ̃ + ̄ ̃ sin((𝑥 + 𝑠)) if 𝐿 − 𝑠 ≤ 𝑥 ≤ 𝐿 ,
�̄� if 𝑥 ≥ 𝐿 .

(2.17)

Furthermore, it is assumed that initially no myofibroblast cells are present, and that the displacement
of the dermal layer, the displacement velocity and the initial strain are zero. These initial conditions are
given in Equation (2.18).

𝑀(𝑥, 0) = �̄� = 0, 𝑢(𝑥, 0) = 0, 𝑣(𝑥, 0) = 0, 𝜖(𝑥, 0) = 0, ∀𝑥 ∈ Ω , . (2.18)

The boundary conditions for all 𝑥 ∈ 𝜕Ω , and 𝑡 ≥ 0 are given by Equation (2.19).

𝑁(𝑥, 𝑡) = �̄�, 𝑀(𝑥, 𝑡) = �̄� = 0, 𝑐(𝑥, 𝑡) = �̄� = 0, 𝑣(𝑥, 𝑡) = 0. (2.19)

The boundary condition for the displacement velocity stems from the assumption that the boundary of
the computation is sufficiently far away from the boundary of the wounded area, and hence remains
zero at all times. There is no boundary condition on the concentration of collagen, the displacement of
the dermal layer, and the effective strain.

2.1.2. Relative surface area wound
From the mechanical model part, the displacement-field over the domain is obtained, and from the
displacement, the relative wound area is determined. The Relative Surface Area Wound (RSAW) is
important as it provides information about skin contraction. The surface area at time 𝑡 is derived by
adding the displacement of the wound edge at time 𝑡 to the initial wound size. The relative surface area
is computed using Equation (2.20).

RSAW(𝑡) = 𝐿 + 𝑢(𝑡, 𝑥)
𝐿 , (2.20)

where 𝐿 is the initial length of the wound and 𝑥 is the grid point at the edge of the wound.
The relative surface area provides information about the maximum contraction during healing, the

number of days until maximum contraction, the final contraction, and the number of days until final con-
traction, which is shown in Figure 2.1. The minimum of the relative surface area predicts the maximum
contraction, and the asymptotic value determines the final contraction. This is valuable information
as it describes the area of the scar over time and hence provides interpretable information about the
probability of a contracture.

2.1.3. Strain energy
The contraction of wounds and scars causes stress and strain in the skin, and it is imaginable that
the stress on the skin can cause pain or discomfort to the patient. Although to our knowledge it has
not been thoroughly studied, it possible that the total amount of strain energy at a certain moment is
related to the discomfort a patient experiences. If this is the case, the strain energy could prove to be
a valuable tool for research as well as for medical staff.

Assuming linear elasticity, the strain energy can be calculated from the Young’s Modulus and the
effective strain using Equation 2.21.

𝐸strain(𝑥, 𝑡) =
1
2𝑌𝜀(𝑥, 𝑡) . (2.21)

Here it needs to be taken into account that the elasticity of the skin is dependent on the amount of
collagen, which changes during the healing process, and hence the Young’s Modulus is dependent on
the collagen density 𝜌(𝑥, 𝑡):

𝑌 = 𝐸√𝜌(𝑥, 𝑡). (2.22)

2.2. Two-dimensional morphoelastic model for burn injuries 9

Figure 2.1: Example typical RSAW distribution over time with maximum and final contraction highlighted.

The effective strain 𝜀(𝑥, 𝑡) is dependent on both space and time. As we are interested in the total
strain energy that the patient experiences at a certain time, the strain energy is integrated over the
domain. Due to the symmetry of the domain, we can integrate over half the domain and multiply by
two. Therefore, the strain energy can be computed by Equation (2.23).

𝐸strain(𝑡) = 2∫
1
2𝐸√𝜌(𝑥, 𝑡)𝜀(𝑥, 𝑡) 𝑑𝑥 = ∫ 𝐸√𝜌(𝑥, 𝑡)𝜀(𝑥, 𝑡) 𝑑𝑥. (2.23)

2.1.4. Numerical methods
The system of differential equations is solved using the finite element method with linear basis func-
tions. For the time integration, the backward Euler method is applied, using a monolithic approach
with inner Picard iterations. Further derivations of the numerical methods are omitted as they are not
essential for this study and can be found in [22]. The numerical model is implemented in Matlab. As the
effective strain and the collagen density are given at discrete points in space, the strain energy integral
is approximated numerically using the Simpsons rule.

2.2. Two-dimensional morphoelastic model for burn injuries
The two-dimensional morphoelastic model is based on the same mathematical framework as the one-
dimensional model with a few differences. To prevent repetition, only the main differences in the math-
ematical framework are discussed. For a detailed derivation of the two-dimensional model we refer to
the work of Barion [12].

2.2.1. Differences mathematical framework
The general conservation equations for mass and linear momentum are equal to the generalizations
of Equations (2.1) and (2.2). The first main difference is the evolution equation of the effective strain
which is shown in Equation (2.24) for two dimensions. Here 𝐿 is displacement velocity gradient tensor,
𝐿 = ∇𝑣, and it should nog be confused with the length L in the one-dimensional model.

𝐷𝜖
𝐷𝑡 + 𝜖skw(𝐿) − skw(𝐿)𝜖 + [tr(𝜖) − 1]sym(𝐿) = −𝐺. (2.24)

The second main difference is the mathematical description of the relation between the Cauchy
stress tensor, the effective strains and displacement velocities, which is Equation (2.12) in one di-
mension. In two dimensions, the Poisson effect must be taken into account and both shear and bulk
viscosity must be considered. The relation for the two-dimensionsal model is shown in Equation (2.25).

10 2. Morphoelastic Model for Burn Injuries

𝜎 = 𝜇 sym(𝐿) + 𝜇 [tr(sym(𝐿))𝐼] + [𝐸√𝜌1 + 𝜈] {𝜖 + tr(𝜖) [𝜈
1 − 2𝜈] 𝐼} . (2.25)

Here 𝜇 is the shear viscosity, 𝜇 is the bulk viscosity, 𝜈 is the Poisson ratio, 𝐸√𝜌 is the Young’s modulus,
and 𝐼 is the second-order identity tensor.

Furthermore, the domain of computation and the initial conditions are slightly different. A square
domain with area of 64 cm , i.e. Ω = [−4, 4]× [−4, 4] cm is considered, with a centered squared wound
of initial area of 4 cm , i.e. Ω = [−1, 1] × [−1, 1] cm. Due to symmetry, only a quarter of the domain is
considered resulting in the domain Ω = [0, 4] × [0, 4], with the wound domain Ω = [0, 1] × [0, 1].

The initial conditions for 𝑐, 𝑁 and 𝜌 change as well. The initial condition for the myofibroblasts 𝑀
remains 𝑀 = 0 across the complete domain. The initial conditions are constructed using an indicator
function 𝐼 for the wound area. The initial conditions with the indicator function are shown in Equations
(2.26) - (2.28).

𝑁(𝑥, 0) = �̄� − (�̄� − �̃�)𝐼 , (2.26)
𝑐(𝑥, 0) = �̃�𝐼 , (2.27)
𝜌(𝑥, 0) = �̄� − (�̄� − �̃�)𝐼 . (2.28)

We use the following function, based on the tanh, to approximate the indicator function:

𝐼 = (0.5 + 0.5 tanh(𝑘(𝑥 + 1))) ⋅ (0.5 − 0.5 tanh(𝑘(𝑥 − 1))), 𝑘 ≥ 0. (2.29)

This function is exactly one on the wound domain and zero outside for 𝑘 → ∞ and can easily be
extended to the defined two-dimensional domain. An advantage of the function is that the gradient
through the wound edge can be varied by the adapting the value of 𝑘. The value 𝑘 = 50 for the initial
conditions.

The boundary conditions for the velocity field are homogeneous Dirichlet conditions and the bound-
ary conditions for the constituents are their equilibrium values in healthy skin, i.e. 𝑀 = �̄�,𝑁 = �̄�, 𝑐 = �̄�.
The problem is solved using the finite element method with bilinear elements. More information on the
numerical approach can be found in [12].

2.2.2. Relative surface area wound
As explained for the one-dimensional model, the relative surface area of the wound is an important
measure that can give information about the maximum and the final contraction. To determine the
relative surface area of the wound, the movement of the boundary grid points is derived from the
computed velocities. At each day the area of the convex hull, determined by the boundary grid points,
is computed. This area is divided by the original area to obtain the relative surface area of the wound
over time.

The relative area of the wound or scar is a measure of contraction, though, it does not indicate any
localized contractions of the scarred skin. It might be of interest to define localized contractions as well,
especially when considering spatially varying input parameters.

2.2.3. Strain energy
In two dimensions, the derivation of the strain energy becomes slightly more complicated due to shear
stress. In general, the energy integral is given by Equation (2.24) [82].

𝐸strain(𝑡) = ∫ 𝑈(𝑥, 𝑦, 𝑡) 𝑑Ω = ∫ 1/2 [𝜖 𝜎 + 2𝜖 𝜎 + 𝜖 𝜎] 𝑑Ω. (2.30)

Here 𝑈 is the strain energy at a given point and Ω is the domain. The stress and strain components
are related through Hooke’s Law for plain stress, which can be found in Equation (2.31).

[
𝜎
𝜎
𝜎

] = 1
1 − 𝜈 [

𝐸 𝜈𝐸 0
𝜈𝐸 𝐸 0
0 0 𝐺(1 − 𝜈)

] [
𝜖
𝜖
2𝜖

] , (2.31)

Here 𝐸 and 𝐸 are the Young’s modulus in 𝑥 and 𝑦 direction respectively, and 𝐺 is the shear modulus
of elasticity.

2.2. Two-dimensional morphoelastic model for burn injuries 11

It is assumed that the elasticity of the skin is not dependent on direction, but on the concentration of
collagen in the skin and hence 𝐸 = 𝐸 = 𝐸 = �̃�√𝜌(𝑥, 𝑦, 𝑡). Furthermore, the shear modulus of elasticity
can be written as a function of Poisson ratio and Young’s modulus for isotropic material, which is shown
in Equation (2.32) [91].

𝐺 = �̃�√𝜌
2(1 + 𝜈) . (2.32)

Combining Equations (2.30), (2.31), and (2.32 gives the following expression for the total strain energy
in the domain:

𝐸strain(𝑡) = ∫ 1/2 [𝜖 𝜎 + 2𝜖 𝜎 + 𝜖 𝜎] 𝑑Ω (2.33)

= ∫ [𝜖 (𝜖 𝐸 + 𝜈𝐸𝜖) + 2𝜖 ()𝜖 + 𝜖 (𝜈𝐸𝜖 + 𝐸𝜖)] 𝑑Ω (2.34)

= ∫ () [�̃�√𝜌 [𝜖 + 2𝜈𝜖 𝜖 + 𝜖 + 𝜖]] 𝑑Ω. (2.35)

Since a square domain is used, and the problem is symmetric along the 𝑥- and 𝑦-axis, the integral
can be reduced to a quarter of the domain. The strain energy can therefore be computed by Equation
(2.36), where 𝐿 is half of the length of each side of the domain.

𝐸strain(𝑡) = ∫ ∫ 2
(1 − 𝜈) [�̃�√𝜌 [𝜖 + 2𝜈𝜖 𝜖 + 1

1 + 𝜈𝜖 + 𝜖]] 𝑑𝑥𝑑𝑦. (2.36)

3
Machine Learning Methods

This chapter covers the applied methods in this research. The first part of this chapter gives a basic
understanding of machine learning and is largely based on the book ‘Deep learning’ by Goodfellow et al.
[31]. In Section 3.1, the process of designing a neural network and its main challenges are discussed.
Following this outline, Sections 3.2 and 3.3 discuss the theory of feedforward and convolutional neural
networks and neural network training. Section 3.4 discusses the importance of and difference between
validation and testing. Furthermore, the methods regarding data generation and data processing are
discussed in Sections 3.5 and 3.6, respectively. Lastly, Section 3.7 explains the applied performance
measures.

3.1. Designing a neural network
In short, a machine learning model is an algorithm that performs a certain task, e.g. prediction of a
value or label, based on known input data. The main difference with a common numerical model is that
it is not specified how to predict the output from the input. Instead, the model contains a neural network
which consists of connected layers of so-called neurons. Each neuron has learnable parameters that
are trained to give a prediction based on the inputs. The training is performed by feeding the network
a dataset containing inputs and the corresponding desired outputs. An optimization algorithm then
updates the values of the learnable parameters such that they minimize a predefined loss function.
After training, validation and testing are necessary to prove if the model has been trained correctly. In
this section, the process of designing a neural network and its challenges are discussed.

3.1.1. Design process
Designing a well-functioning neural network can be challenging because of its large dependence on the
data and the objective. There is no universally best type of network or architecture, no best optimization
algorithm, and no best parameter combination. This means that often much of the design comes
down to trial and error and tuning parameters to find a combination that works well for the given task
and dataset. To guide this process and to prevent losing track of what has already been done, it is
important to follow a structured design process and to document the performed trials and experiments.
The design process of a neural network is explained below and is visualized in Figure 3.1.

1. Task definition: First, it is important to define the task or objective of the neural network. The task
can, for example, be the prediction of values or the classification of images. Defining the objective
also includes choosing a method to determine the performance of the network. In classification
tasks, this can be the percentage of correct predictions. It is advised to have the performance
measure return a single number, which makes it easier to compare different networks. Defining
the desired performance in advance can provide a guideline through the process.

13

14 3. Machine Learning Methods

2. Data processing: For the dataset, it is assumed that the generated dataset fits the requirements
for the specified task. It is important that the data has a structure in which for each sample the
input and output values are easily accessible. Furthermore, the data needs to be split into a
training, validation, and testing set to ensure proper evaluation of the network. This is discussed
in more detail in Section 3.4.
To prepare the data for training, task-specific preprocessing is necessary. Examples are cropping
for images, zero-padding for sequences, and scaling for numeric values. Especially the scaling
of values is essential for the learning process. Training the weights of a model will be hard if the
input values have large variations in magnitude. This is explained in more detail in Section 3.6.

3. Initialization: The next step is to choose a starting point: a baseline neural network. The choice
of the type of neural network is related to the task and it is advised to choose a network that is
common for similar problems. For example, one might choose a Multilayer Perceptron (MLP)
for function approximation, a Recurrent Neural Network (RNN) for time-series prediction and a
Convolutional Neural Network (CNN) for image recognition. The architecture of the network is not
only defined by the type, but also by the number of layers, the number of neurons per layer, the
topology, and the activation functions. These are the hyperparameters of the network architec-
ture, i.e. parameters that need to be specified in advance and can not be learned by the neural
network. Different classes of networks often have different hyperparameters. Besides the archi-
tecture, the training algorithm has hyperparameters as well, such as the optimization algorithm,
loss function, learning rate, batch size, number of passes through the dataset (epochs), and reg-
ularization. All these values need to be initialized with a certain value. Often the first initialization
includes commonly used values for each of the parameters. The hyperparameters are discussed
in more detail in Section 3.3.

4. Training: Using the chosen parameters and network architecture, the network is trained. During
training, the data is fed to the network, which predicts the output based on the input. Next the
loss, or error, between the prediction and the target is computed. Based on this loss, a gradient-
based optimization algorithm updates the learnable parameters of the neural network, such that
it minimizes the loss. The details of the training algorithms are discussed in Section 3.3.

5. Validation: The trained model is then validated on the validation set, which contains samples
the network has not used during training. Based on these predictions and the targets, the perfor-
mance of the trained network is computed. The performance on the validation set is the measure
that is used for the next step: hyperparameter tuning.

6. Hyperparameter tuning: Often, the baseline network does not reach the desired performance.
Based on the results of the validation set, the hyperparameters can be changed after which steps
3, 4, and 5 are repeated. The model is reinitialized, retrained, and re-evaluated resulting in a
new performance. This process is repeated until a satisfactory performance is reached on the
validation set. Note here that proper monitoring of the training process and the worst fits in the
validation step can help when tuning the parameters. Tuning the parameters can be done by trial
and error and therefore proper documentation of each trial is essential.
There are hyperparameter optimization packages available as hyperparameter tuning can be
seen as optimizing the performance of the validation set with respect to the hyperparameters.
Using these optimization packages is often computationally expensive, and the ranges in which
to search still need to be chosen. Experimenting with trial and error can give some insight into
the behavior of the network and might already lead to a good set of hyperparameters. Tuning the
hyperparameters to achieve the desired performance is one of the challenging tasks of neural
network design.

7. Testing: Lastly, the trained model from the best hyperparameters is chosen and evaluated on
the test set to find its final performance. The test set should contain samples independent from
both the training and validation set. Networks of different classes, with their optimized hyperpa-
rameters, can be compared based on their performance on the test set. When the performance
on the test set fulfills the requirements, the design process is finished.

3.1. Designing a neural network 15

Define task Preprocess
data

Initialize NN
&

hyperparameters
Training Validation Testing

Tuning parameters

Figure 3.1: Design process of a neural network.

3.1.2. Challenges
As discussed in Section 3.1.1, tuning the hyperparameters is one of the most challenging tasks as
there is no universally best combination of parameters, and every problem requires its own approach.
Furthermore, one has to deal with the two central challenges in learning algorithms:

1. Making the training error small. When themodel is not able to get the training error below a certain
threshold, we speak of underfitting. The model is not able to capture the relations between input
and output in the data set.

2. Reducing the gap between training and validation error. When the training error is much smaller
than the validation error, we speak of overfitting. In this case the model is not able to cope with
data that has not been dealt with in the training set.

In Figure 3.2 the general shape of the training and validation error are shown over the capacity of the
model. In the figure the regions of underfitting and overfitting are shown in terms of capacity. The
capacity of the network is defined by its configuration, such as the number of layers and the number of
nodes in the network. The green area shows a suitable capacity, where the training error is low enough
such that the model can capture the relations between input and output and the generalization gap is
small enough such that the model can generalize well to unknown examples. It should be noted that
in practice both validation and training error show more oscillations due to randomness in training on
batches.

capacity

error

Generalization gap

Underfitting Overfitting
Validation error
Training error

Figure 3.2: General shape of training error and validation error over the capacity of the network. On the left side of the graph
the training and testing error are both large, here we speak of underfitting. On the right side the gap between training and

validation error increases, which we call overfitting. The green area shows a suitable capacity, the optimal capacity is reached
when validation error is minimal. Reproduced from [31].

16 3. Machine Learning Methods

Underfitting can be recognized by a high training error and can often be resolved by increasing the
capacity of the network, such as adding more layers or adding more neurons per layer. As there will
always be a slight gap between the validation loss and the training loss, it is more difficult to determine
when the model starts overfitting. Overfitting needs to be resolved by decreasing the capacity of the
network. One can reduce the capacity by decreasing the number of layers or number of neurons, or
by changing the topology. Often, more effective ways to reduce the capacity is to give a preference
towards certain solutions, by means of regularization. Regularization techniques are further discussed
in Section 3.3.5. Adding more samples to the dataset can also decrease the chance of overfitting.

It must be noted that finding the right capacity does not guarantee a good neural network. Other
problems can arise due to the optimization algorithm getting stuck, inconsistent data, wrong data pro-
cessing, or an implementation error. In order to tackle these challenges, it is important to get a working
pipeline as soon as possible with a baseline neural network and to monitor its behavior in terms of
training and validation loss. Furthermore, investigating the samples that return the highest error can
provide useful insights. Monitoring closely for a simple network increases the chance of finding these
types of issues.

In the next sections the neural networks and their training are explained in more detail. We dis-
cuss the feedforward neural network architecture and its initialization, the training and optimization
algorithms and validation and testing.

3.2. Neural networks
3.2.1. Feedforward neural networks
Feedforward neural networks or Multilayer Perceptrons (MLP) are basic neural networks and many
advanced models are derived from an MLP. These networks are used to approximate a mapping f
from inputs x to outputs y: y = f(x). MLP’s are proven to be universal function approximators, which
means that they are able to approximate a function or mapping arbitrarily well as long as the number
of hidden units is large enough [27].

An MLP consists of an input layer with a number of nodes equal to the number of inputs, a number
of hidden layers with a specified number of nodes, and an output layer with a number of nodes equal
to the desired number of outputs. The feedforward network is actually a mapping f̃(x,p) that tries to
learn the values of the parameters p such that f̃(x,p) ≈ f(x). In Figure 3.3 the architecture of a simple
MLP with an input layer, one hidden layer containing five neurons, and an output layer is shown. The
feedforward aspect of the network is clearly illustrated in the figure; the information flows from the input
to the hidden layer to the output without any recurrences or feedback.

Input 𝑥

Input 𝑥

Input 𝑥

Input 𝑥

Output 𝑦

Output 𝑦

Hidden
layer

Input
layer

Output
layer

Figure 3.3: Feedforward neural network with four inputs, one hidden layer with five nodes and two outputs.

Before the mathematics is explained in more detail, some terminology of neural networks is dis-
cussed. A hidden layer is called fully-connected or dense if each neuron in a layer is connected to all
neurons in the next layer. The number of layers is called the depth of the model and hence the name
deep learning often refers to networks with multiple hidden layers. The width of the network is defined
by the dimensionality or number of neurons in the hidden layers.

3.2. Neural networks 17

For the mathematical derivation, the inputs are represented as a vector x and the outputs are rep-
resented as vector y. To be able to approximate both linear and nonlinear mappings, a neural network
uses a combination of an affine transformation and a nonlinear activation function. The affine transfor-
mation by a hidden unit is defined by 𝑓(x,p) = 𝑓(x,w, 𝑏) = w x+𝑏, where w is a vector of the weights
of each input and 𝑏 is the bias. If these weights and biases are collected in a matrix 𝑊 and vector b
respectively for all neurons in the hidden layer, the transformed vector x̃ can be computed by Equation
(3.1).

x̃ = 𝑊 x+ b. (3.1)

The values are then passed through a fixed nonlinear activation function 𝑔(𝑥) to get the hidden values,
which is shown in Equation (3.2).

h = 𝑔(x̃) = 𝑔(𝑊 x+ b). (3.2)

Examples of frequently used activation functions are the Rectified Linear Unit (ReLU), the sigmoid, or
the tanh function. The activation functions are discussed in more detail in Section 3.2.4. The output
layer takes as input the hidden vector h and again applies an affine transformation and in some cases
a nonlinear activation function. The prediction �̂� is then given by Equation (3.3).

ŷ = 𝑔(𝑊 h+ b) = 𝑔(𝑊 𝑔 (𝑊 x+ b) + b). (3.3)

The weights𝑊 , 𝑊 , and the biases b , b , are the learnable parameters of the neural network. These
learnable parameters are trained such that ŷ ≈ y. The training of the learnable parameters is discussed
in Section 3.3 and can be seen as solving a least-squares problem using gradient-based optimization.

3.2.2. Convolutional neural networks
CNN’s are neural networks specialized in processing structured input data, e.g. data with a grid-like
topology such as time-series data or image data. The main building block for the CNN is the convolu-
tional layer, which uses the mathematical convolution operator instead of the standard matrix multipli-
cation. The discrete convolution operator 𝑠(𝑡) is given by Equation (3.4).

𝑠(𝑡) = (𝑥 ∗ 𝑤)(𝑡) = ∑ 𝑥(𝑎)𝑤(𝑡 − 𝑎). (3.4)

In neural network application, 𝑥 is the input and𝑤 is the kernel or feature map. We focus the explanation
on one-dimensional convolution for an input sequence of length L with a number of channels 𝐶 . The
kernel is moved over the input sequence with a specified stride. In case the kernel and stride do not
fit the length of the sequence, padding can be considered to ensure that all values in the sequence
are used. For each output channel 𝑐 the resulting sequence is given in Equation (3.5), where * is
the cross-correlation operator, b(𝑐) is the bias for the related output channel and𝑊(𝑐 , 𝑘) are the
weights of the kernel with respect to the respective input and output channel.

c = b(𝑐) + ∑ 𝑊(𝑐 , 𝑘) ∗ x . (3.5)

The bias and the weights are the learnable parameters of the neural network.
Similarly to the dense linear layers, the outputs from the convolutional layer are fed through a nonlin-

ear activation function. The convolution layer is often combined with pooling layers and standard dense
linear layers to form a complete network. The pooling layers are used to reduce the dimension and
extract only the main features and are often applied after the nonlinear activation of the convolutional
output. Well-known pooling layers are max pooling and average pooling, where for a small cluster
of nodes in one layer the maximum or average value is sent to the next layer. For a more detailed
description and visualization of the convolution layer, we refer to [31].

18 3. Machine Learning Methods

3.2.3. Parameter-sharing neural networks
Neural Networks can easily be extended to multi-target problems, i.e. the prediction of multiple contin-
uous targets from a set of input variables, by adding more output neurons. However, most multi-target
problems need to cope with the existence of dependencies between targets, trying to exploit the inter-
targets relationships while also being able to map the individual input-target relations. It has been
researched whether the architecture of the network can assist in learning both between-target and
inter-target dependencies [80].

Furthermore, learning related tasks can add information to the network, which can improve the
training of the original task. Multi-task learning can originate from the desire to perform multiple tasks
at the same time or from the desire to improve the performance of one specific task by training on
auxiliary tasks. In [80] an overview of multi-task learning in deep neural networks is given, discussing
both predicting multiple tasks as well as choosing auxiliary tasks. Multi-task learning is often done using
either hard-parameter sharing or soft-parameter sharing. Hard-parameter sharing utilizes architectures
where the first few layers are shared among all tasks and the last layers are task-specific. An example
of a hard-parameter sharing network can be found in Figure 3.4. The disadvantage of this method is
that it is not robust for loosely related tasks. In soft-sharing networks, each task has its own network,
but the distance between the parameters of the different networks is regularized to encourage them to
be similar for the different tasks.

𝑥

𝑥

𝑥
… … … ……

…
…

…
…

…
…

…

…
…

…
…

…
…

…

�̂�

�̂�

…

Input layer
Shared layer

Non-shared layers
Output layer

Figure 3.4: Architecture of a hard-parameter sharing based neural network with an input layer, shared hidden layer, non-shared
hidden layers and an output layer. Note that each sequence of non-shared layers could also output multiple targets.

3.2.4. Activation functions
As mentioned in Section 3.2.1, the outputs of a hidden layer are often fed through a nonlinear activation
function before being sent to the next layer. These nonlinear activations ensure that nonlinear functions
can be approximated by the neural network. Without activation functions, the result would always be a
linear combination of the inputs, which would greatly restrict the usability of neural networks.

The most commonly used activation functions are the ReLU, the sigmoid function, and the tanh
function, which can be seen in Figure 3.5. The sigmoid function has the advantages that it has a smooth
gradient, it normalizes the outputs of the hidden layer and it enables clear predictions. A large downside
is that the gradient may vanish if the values of |𝑥| are large which can slow down or even prevent the
network from learning. Furthermore, the output values are not zero-centered and the function is more
computationally expensive. The tanh has the same properties as the sigmoid function, except that it is
zero-centered, making it more suitable for inputs with strongly negative, neutral, and strongly positive
values.

The ReLU function has the advantage that it is computationally efficient as it allows the network to
converge quickly. A disadvantage is that it can suffer the ‘dying ReLU’ problem, which occurs when 𝑥
approaches zero or becomes negative causing the gradient to become zero. This blocks the learning
as backpropagation is not possible anymore. ReLU is a piecewise linear function and for 𝑥 > 0 it is
linear.

3.3. Training 19

𝑥-4 -2 0 2 4

1

2

(a) tanh

𝑥-4 -2 0 2 4

-1

1

2

(b) Sigmoid ()

𝑥-4 -2 0 2 4

2

4

(c) ReLU =max{ , }

Figure 3.5: Three common activation functions

A disadvantage is that when 𝑥 > 0, ∀𝑥 ReLU loses its ability to introduce nonlinearity and the
solution will be linear. In practice, this is unlikely to occur and ReLU is a good choice for introducing
nonlinearity.

Small adaptions have been made, such as Leaky ReLU (max{0.1𝑥, 𝑥}) to prevent the ‘dying ReLU’
problem, but this does not give consistent results. There is not a best choice for an activation function
and different functions should be used to find the best performing one for that specific task.

3.2.5. Initialization
The learnable parameters need to be initialized to compute the first prediction and loss. The values
of the initialization are important for the learning process, especially for neural networks with many
layers. Stacked hidden layers result in the multiplication of the weight matrices. Due to the number
of matrix multiplications, bad initialization of the weights can cause vanishing activation outputs when
sent through many layers, which causes vanishing gradients and prevents the network from learning.
Keeping the standard deviation of the activation outputs normalized makes it possible to stack many
layers without vanishing or exploding gradients.

Initialization methods are developed in such a way that they achieve this standard deviation of ap-
proximately one. A commonly used initialization technique is Xavier initialization, introduced as normal-
ized initialization in [30]. With Xavier initialization the weights are drawn from the uniform distribution:

𝑊 ∼ 𝑈(−√6
𝑛 + 𝑛 , √6

𝑛 + 𝑛) ,

where 𝑛 is the number of inputs of the 𝑖th layer and 𝑛 the number of outputs of the 𝑖 + 1st layer.
This causes the activation outputs to have mean 0 and standard deviation 1 and prevents vanishing
gradients. It works especially well for activation functions that have outputs between -1 and 1, such as
the tanh. For ReLU activation functions, the Kaiming initialization method has been developed [40].
For Kaiming initialization weights are chosen from the standard normal distribution and then multiplied
by √

√ and the biases are initialized to zero.

3.3. Training
During training, the training data is passed through the network multiple times to adapt or train the
learnable parameters in the neural network. The training consists of three important phases: forward
propagation (computing prediction and loss), backward propagation (computing gradients), and opti-
mization (updating learnable parameters). First, the forward propagation algorithm is discussed after
which the loss functions are considered in more detail. In Section 3.3.3, the backpropagation algorithm
is explained, and in Section 3.3.4 two gradient-based optimization algorithms are discussed. Section
3.3.5 explains commonly used regularization techniques.

3.3.1. Forward propagation
Forward propagation is the computation of the prediction ŷ = 𝑓(x,p), the loss 𝐿(ŷ,y) and total costs
𝐽(ŷ,y,p) during the training process. The total costs are a sum of the loss 𝐿 and a regularization term Γ,
which are discussed in Section 3.3.2 and Section 3.3.5 respectively. During forward propagation, the

20 3. Machine Learning Methods

input values are fed to the first layer, multiplied by its weights and added to its bias, and then passed
through a nonlinear activation function before being passed to the next layer. This process is repeated
until the output layer is reached giving the prediction. This prediction and the target are used to com-
pute the loss and the total costs. Algorithm 1 shows the process for one single sample (x,y). We note
that in practice the algorithm is performed using sample (mini)batches.

Algorithm 1: Forward propagation. Shows forward propagation for a standard full MLP with ℓ
hidden layers and the computation of the total cost incorporating both loss L and a regulariza-
tion term Γ, discussed in Section 3.3.2 and 3.3.5 respectively. The algorithm only takes into
account a single sample (x,y).
Result: ŷ, 𝐽(ŷ,y,p)
Input: Network depth (ℓ), weights (W()), biases (b()), input (x), target (y) ;
h = x;
for k = 1,...,ℓ do

a() =W()h() + b();
h() = 𝑔(a());

end
ŷ = h(ℓ);
𝐽 = 𝐿(ŷ,y) + 𝜆Γ(p);

3.3.2. Loss functions
The training of the parameters is based on the optimization of the loss function. The loss function
gives an error metric on the prediction value with respect to the true value or target. Using the target to
compute the loss is called supervised training. When the loss function is combined with a regularization
term we commonly speak of the total costs 𝐽 instead of the loss. In this subsection, different loss
functions and regularization techniques are discussed. The chosen loss function must fit the structure
of the output and the task. Some loss functions are useful for regression problems whereas others are
more specialized for classification tasks.

A well known error metric for regression tasks is the Mean Squared Error (MSE). For two general
vectors x,y ∈ ℝ the MSE is defined by Equation (3.6).

𝐿 (x,y) = 1
𝑛 ∑(𝑥 − 𝑦) . (3.6)

The MSE is a standard type loss function for optimization of neural network weights. Other well known
loss functions for regression type problems are the Root Mean Squared Error (RMSE) and the Mean
Absolute Error (MAE) or L1-loss. These loss functions are shown in Equation (3.7) and (3.8), respec-
tively.

𝐿 (x,y) = √ ∑ (𝑥 − 𝑦) , (3.7)

𝐿 (x,y) = ∑ |𝑥 − 𝑦 |. (3.8)

The loss function also provides the possibility to incorporate preferences on the solution in the
training of the network. For example, if the solution is expected to be smooth a penalty can be added
for large variations, or a weighted loss can be used to put more attention on important parts of the
solution. Adding information on the solution can improve the networks performance and limit overfitting
of the data. However, care must be taken when choosing the weight of the additional condition, such
that it does not stop the network from learning from the data. It should also be taken into account that
the added condition must be differentiable for the gradient based optimization to work.

To assist the learning of the network and to reduce overfitting, it is also possible to add a regulariza-
tion term on the learnable parameters to the loss function. The network is then trained by optimizing
the total costs instead of only the loss function:

𝐽(ŷ,y,p) = 𝐿(ŷ,y) + 𝛾Γ(p).

3.3. Training 21

Regularization on the learnable parameters is often performed by adding the L1 or L2-norm to the costs
to reduce the size of the weights. Reducing the size of the weights can prevent co-adaptation where
some weights have large predictive capabilities and others very small. It is important to choose a value
for 𝛾 that provides a good trade-off between minimizing the loss and minimizing the regularization term.
If chosen too large it will prevent learning from the data, whereas if chosen too small it might not per-
form any regularization. Other well-known regularization techniques for machine learning include early
stopping and dropout. However, as these techniques do not use the loss function they are explained
later in Section 3.3.5.

3.3.3. Back-propagation
The learning of the parameters is often performed by a gradient-based optimization algorithm that tunes
each parameter based on the gradient of the total costs 𝐽 with respect to that parameter, i.e. ∇p𝐽(p).
Remember here that the learnable parameters p are the weights 𝑊 and biases b. The numerical
evaluation of a gradient expression can be computationally expensive and needs to be donemany times
when training a neural network. The backpropagation algorithm provides an easy and computationally
cheap solution, making efficient use of the chain rule for differentiation. Assume p ∈ ℝ , y ∈ ℝ , 𝐽 ∈ ℝ
and further it holds that y = 𝑔(p) and 𝐽 = 𝐽(y), which includes no regularization term. The chain rule
of differentiation is given by Equation (3.9), where y

p denotes the Jacobian matrix of function 𝑔.

𝜕𝐽
𝜕𝑝 =∑ 𝜕𝐽

𝜕𝑦
𝑦
𝑝 = (𝜕y𝜕p) ∇y 𝐽. (3.9)

The idea of obtaining the gradient with respect to parameters p by multiplying the Jacobian matrix
with the gradient, is the backbone of the backpropagation algorithm. For every operation performed, the
backprop algorithm constructs the Jacobian matrix and adds it as a node to the computational graph.
When arriving at the total costs 𝐽, this computational graph can be traversed backwards starting with
= 1 to obtain the desired gradients. This evaluation can be done with a generic graph evaluation

engine and is therefore efficient.
For illustration purposes, we consider a very simple MLP with one input 𝑥 ∈ ℝ, one hidden layer

consisting of one neuron with weight 𝑤, bias 𝑏, activation function 𝑔, one output �̂�, and loss function
𝐿(�̂�, 𝑦). Here we assume that no regularization term is added in the total costs, hence there is no direct
dependence on p and 𝐽 = 𝐿. In Figure 3.6 the forward propagation and the computational graph of the
gradients is illustrated. The backprop algorithm constructs this computational graph for the derivatives.
Each of the values can then easily be evaluated as soon as it parents are known.

Most current software packages have a general back-propagation algorithm implemented that can
back-propagate through graphs constructed from all general operations like matrix multiplication, ex-
ponents, and logarithms. For a full MLP, the backward propagation algorithm, corresponding to the
forward propagation in Algorithm 1, is shown in Algorithm 2.

Algorithm 2: Backward propagation for standard MLP with ℓ layers and total cost 𝐽 incorpo-
rating both loss L and a regularization term Γ. Computation starts at the output layers and
works back to the first layer, computing first the gradients on the activations a(𝑘) and then the
gradients w.r.t. learnable parameters.
Result: g
g = ∇ŷ 𝐽(ŷ,y,p) = ∇ŷ𝐿(ŷ,y);
for 𝑘 − 𝑙, 𝑙 − 1, ..., 1 do

g = ∇a() 𝐽 = g⨀𝑔 (a());
∇b() 𝐽 = g+ 𝜆∇b()Γ(p) ;
∇W() 𝐽 = gh() + 𝜆∇W()Γ(p);
g = ∇h()𝐿 =W() g;

end

22 3. Machine Learning Methods

x

h

�̂�

𝐿y

̂

̂

ℎ = 𝑤𝑥 + 𝑏

�̂� = 𝑔(ℎ)

𝐿(�̂�, 𝑦)

×

×

×

×

Figure 3.6: Computational graph of and for a MLP with one-dimensional input and output, one hidden layer of one
neuron, activation function () and loss function (̂ ,). The blue circles represent the forward propagation through the

network and the light blue circles represent the computational graph constructed by the backward propagation.

3.3.4. Optimization algorithms
After forward and backward propagation the gradient of the total costs 𝐽 with respect to each learnable
parameter is known. The computed gradients can directly be applied in a gradient-based optimization
method such as Stochastic Gradient Descent (SGD) or the Adam algorithm [49] to update the param-
eters. Similar to the forward and backward propagation, we consider the unregularized case where
𝐽(ŷ,y,p) = 𝐿(ŷ.y).

In machine learning, the training is commonly performed using minibatches of samples of the train-
ing set. The reason to use these minibatches stems from the properties of the gradient-based optimiza-
tion algorithms. Considering each sample individual would give large variations in the gradients and
would require a very small learning rate to prevent the large variations from interrupting the learning.
Using the complete set at once is often not possible or not desired in terms of runtime or memory.
It can be shown that the average gradient over a minibatch gives an unbiased estimate of the true
gradient when the samples are drawn independently. Note here that as soon as we pass through the
same sample another time the samples are not independent anymore and the estimate is no longer
unbiased. Another advantage of using minibatches is that each update keeps the same runtime when
the size of the training set is increased.

The minibatch SGD or more commonly named stochastic gradient descent performs the standard
gradient descent on each minibatch of random samples. The standard gradient descent method is
an optimization method that uses the fact that the gradient shows the direction of the largest increase
of a function. When considering the function 𝑓(x) that we want to minimize, computing the gradient
g = ∇x𝑓(x) gives the direction of the largest increase. Since we want to minimize, a step into the
opposite direction of the gradient is taken:

x ← x− 𝜆g = x− 𝜆∇x𝑓(x).

The size of the step 𝜆, called the learning rate, is an essential parameter for the performance of the algo-
rithm. Choosing the learning rate too large may result in the algorithm jumping over the minimum, while
taking it too small may result in a very long run time or never reaching the minimum. Hence the learning
rate is one of the important hyperparameters in machine learning. In theory, the learning rate can be
a fixed number as the gradient decreases until it is zero, However, in practice with stochastic gradient
descent, the learning rate needs to be decaying. The necessity arises from the noise introduced by
the random sampling in the gradient estimation which prevents the gradient from vanishing completely.
Unfortunately, there are no fixed guidelines on how to choose these parameters. In practice, proper
initial values can be found by monitoring the learning curves of the objective function.

3.3. Training 23

The SGD algorithm is shown in Algorithm 3. A disadvantage of SGD is that it can be slow to
converge, solutions for this disadvantage can be found in the acceleration technique using the method
of momentum. This technique accelerates the convergence at the cost of introducing an additional
parameter that needs to be initialized. For more information about SGD with momentum, we refer to
[31]. Also, conjugate gradient methods have been used to obtain faster convergence [44],[66].

Algorithm 3: Stochastic gradient descent (SGD) update at training iteration 𝑘.
Result: Updated parameters p
Input: Learning rate 𝜆 , parameters p
while stopping criterion not met do

Sample a minibatch of 𝑚 samples from training set {(x ,y), ..., (x ,y)}
Compute gradient estimate: ĝ ← ∇p ∑ 𝐽(ŷ(),y()).
p ← p− 𝜆 ĝ.

end

The learning rate is a parameter that is essential for machine learning algorithms, but that is difficult
to initialize. To make the initialization easier, methods with adaptive learning rates have been devel-
oped. These new, minibatched-based, optimization methods adapt the learning rate of each model
parameter individually. Examples are AdaGrad, RMSProp and Adam of which we only discuss Adam
in more detail. Adam is derived from adaptive moments and can be considered as a variant on RM-
SProp. More details about AdaGrad and RMSProp can be found in [31].

Both RMSProp and Adam are effective and popular optimization algorithms for neural networks.
Adam has the advantages that momentum is directly incorporated as an estimate of the first-order
moment of the gradient and it includes bias corrections to both first- and second-order moments. It
can be found in Algorithm 4. The Adam algorithm is considered to be fairly robust to the choice of
hyperparameters, which is a preferable property. Often, the suggested defaults of 𝜆 = 0.001, 𝜌 =
0.9, 𝜌 = 0.999, 𝛿 = 10 work properly, although in some cases it is necessary to further tune the
learning rate 𝜆. The learning rate 𝜆 provides here a maximum for all individual learning rates for the
parameters as these are adapted throughout the process. A decaying learning rate is therefore often
not necessary for Adam, although it can be used to force the individual learning rates to decrease.

There does not seem to be a best optimization technique for machine learning. In research by
Schaul et al. [83] many optimization techniques were compared for different learning tasks. Although
they did find that adaptive learning rate algorithms seem to be more robust than other algorithms, a
winner did not arise. Hence choosing the optimization algorithm is left to the designer and different
algorithms can be compared to find which works best for the task. Many current machine learning
packages include the named optimization algorithms.

3.3.5. Regularization
It is essential to prevent overfitting as much as possible in order to achieve good generalization proper-
ties of the model. One of the main tools to prevent this is regularization, in Section 3.3 we have already
seen the L - and L -regularization on the parameters of the model. With regularization on the model
parameters, the L or L -norm of the learnable weights is added to the loss function. The total costs
with loss function and regularization are shown in Equation (3.10).

𝐽(ŷ,y,p) = 𝐿(ŷ,y) + 𝛾Γ(p). (3.10)

The optimization algorithm then also requires the norm of the weights to be small, which can prevent
the sizes of the weights becoming too large.

Two other common methods that achieve regularization, without changing the loss function, are
early stopping and dropout. Early stopping is an intuitive approach based on the situation in Figure
3.2. When using early stopping, one keeps track of the validation loss and stops the training when the
validation loss starts to increase again. In practice, the validation loss will show oscillations due to the
use of batches and gradient approximation. Hence the training is stopped if the validation loss has
not decreased within a fixed number of passes. Often the model parameters that have given the best
validation set performance are saved before continuing training. It is advised to incorporate at least
early stopping as a regularization technique in the training algorithm.

24 3. Machine Learning Methods

Algorithm 4: The Adam algorithm
Result: Updated parameters p.
Input: Learning rate coefficient 𝜆, initial parameters p, 𝛿 > 0 (required for numerical
stabilization), exponential decay rates for moment estimates 𝜌 and 𝜌 in [0, 1).
Initialize 1st and 2nd moment variables s = 0, r = 0 and timestep 𝑡 = 0.
while stopping criterion not met do

Sample a minibatch of 𝑚 samples from training set {(x ,y), ..., (x ,y)}.
Compute gradient: g ← ∇p ∑ 𝐽(ŷ,y)
𝑡 ← 𝑡 + 1
Update biased first moment estimate: s ← 𝜌 s+ (1 − 𝜌)g
Update biased second moment estimate: r ← 𝜌 r+ (1 − 𝜌)g⨀g
Correct bias in first moment: ŝ ← s

Correct bias in second moment: r̂ ← r

Compute update: Δp = −𝜆 ŝ
√r̂ (operations applied element-wise)

Apply update: p ← p+ Δp.
end

The other frequently used regularization technique is dropout. During each training pass, certain
nodes are dropped out with probability 𝑝, i.e. their outputs are replaced by 0, meaning that they are not
used for prediction or training for that pass. Each batch different nodes will be dropped out, changing
the network architecture slightly. This technique prevents co-adaptation where some weights will have
large predictive capabilities and others have low predictive capabilities. The application of dropout
makes it possible to use the full potential of large and deep neural networks. Common values of 𝑝 are
0.1, 0.2 or 0.5. During evaluation on the validation or test set, dropout probability is always 0, ensuring
that all nodes are used when evaluating.

3.4. Validation & Testing
In this section, the importance of validation and testing and the difference between these two are dis-
cussed. When the network has been trained, it is important to know how well it performs on samples it
has not seen before to get an idea of how accurate its future predictions will be. To this end, the data
is split in advance into a training and test set. The division ratio can vary depending on the amount of
data, commonly used splits are 90%-10%, 80%-20%, or 70%-30% of the total set. The model is trained
solely on the samples in the training set and can afterward be tested on the test set. The performance
measure assists in deciding whether the network can perform the task accurately enough. Testing on
unseen samples shows whether the network has learned the relations in the data or whether it has
simply memorized the outputs.

Choosing a performance measure that fits the goal you want to achieve is important. Sometimes the
loss function can be used as a performance measure, although the loss function and the performance
measure should not be confused. As explained the loss function gives a measure for the difference
in predicted and true output and is used for the optimization of the learnable parameters. However,
often the objective is to optimize a specific performance measure on the test set. This measure can be
completely different and can be unsuitable for optimization purposes. For illustration purposes consider
a neural network with the goal to detect a rare disease. The loss function can be minimized when
predicting every case to be ‘healthy’. For a good performance, we need the model to actually capture
the rare disease and not just minimize the loss function. Even when the same functional is used for
both the loss function and the performance measure there might arise differences as the performance
measure is computed on a separate test set.

The hyperparameters are tuned in order to improve the performance of the trained model on the
test samples. However, by using the performance on the test set to tune the parameters these samples
are indirectly seen by the network. The test set is no longer independent from the trained model as
part of its information is contained in the tuned hyperparameters and hence in the trained model, which
is called data or information leakage. The performance measure on the test set does not give the true

3.5. Data generation 25

generalization performance of the model and it can be that the model performs worse in real life than
the performance on the test set tells us. To prevent this and to still be able to tune the hyperparameters
the training set is further split into a training-training set and a training-validation set (80%-20% or
90%-10%) or in short training and validation set.

Note that datasets are often organized or ordered and therefore it is important to shuffle the data
before splitting into the training and test sets to prevent unwanted biases arising during learning.

3.4.1. Cross-validation
For small datasets, it is unwanted or not feasible to keep the test set completely separated until the end
and use a validation set for tuning the hyperparameters. In that case, cross-validation can be used.
This technique allows using all data samples while still acquiring an approximation of the generalized
performance of the trained model [31].

In the common 𝑘-fold cross-validation, the dataset is split into 𝑘 disjoint sets of almost equal size.
These disjoint sets should be constructed randomly to prevent unwanted bias. The training of the
network is performed 𝑘 times, each time training on 𝑘 − 1 subsets and validating on the 𝑘th subset
such that each subset is once the validation set and 𝑘−1 times in the training set. This process results
in 𝑘 performance measures, the average of which gives the cross-validated performance. Common
used values for 𝑘 are 𝑘 = 5 or 𝑘 = 10 [14, 29]. In cases where a test set can be kept aside for the
final performance, cross-validation can be useful to achieve more generalized performance results for
tuning the parameters. In Figure 3.7 an example of 10-fold cross-validation is given, where a test set
is held aside.

Fold 1

Test Validation Training

Fold 2 …

Fold 10

Figure 3.7: Example of -fold cross-validation with with separate test set. The dataset is split in a separate testing set
and a training set divided in 10 random, equally sized subsets. The neural network is trained on subsets and validation

on the remaining subset. The final performance is the average over all folds.

As a last remark, it can be helpful for the designer to consider if there are special cases that the
network might come across during application, that aren’t present in the (current) training set. Testing
specifically on these special cases can give valuable information about the generalizing properties and
performance of the model.

3.5. Data generation
The dataset is an important aspect of machine learning as it is the core ingredient of the learning
process. The network only learns the relations that the data describes, which means that if the data
is biased or unbalanced it is likely that the network will be biased or unbalanced. If the dataset is
not large enough, it might not be possible for the network to learn all the relations in the data. In this
section, important criteria for a machine learning dataset are discussed. In Section 3.6 data processing
techniques such as scaling and principal component analysis are explained.

The dataset for training the neural network is generated by a numerical model. Using a numerical
model to generate the data gives us control over the dataset. To the end of generating a proper dataset
for machine learning purposes, the following criteria are taken into account:

26 3. Machine Learning Methods

• Relevancy: Naturally, the data should be relevant and the inputs must have a relevant correlation
with the targets. The task of our neural network is to predict the output of the numerical model,
hence as inputs and targets for the neural network we use the inputs and outputs of the numerical
model respectively.

• Variability: The dataset must have enough variability in the input and target values in order for
the network to find the correct relations and to prevent overfitting. Important criteria are that the
parameter values are realistic and give stable solutions.

• Formatting: The data should be in a format that can be handled by the neural network. Often
in machine learning, data is handled as tensors. An advantage is that the tensor datatype can
easily be transferred to the GPU for fast computations.

• Accessibility: During training, the data needs to be accessed every epoch, and hence it should
be easily accessible. In order to achieve this, a custom Dataset class is developed that contains
the proper transforms and the input and target tensors. If input and target tensors are formatted
with one of the axes for sample definition, the samples can easily be accessed by indexing.

• Size: The number of samples is important as the network needs to experience enough examples
to learn proper generalizations. The minimum size needed for a good performance is highly de-
pendent on the complexity of the task. In advance, it is unsure how many samples are necessary
to achieve a good performance. Data generated by a numerical model has the advantage that
more samples can be generated relatively easily, with available time and computational resources
as the only restrictions. However, it must be noted that using more samples than necessary is not
preferred, especially for the two- and three-dimensional model as computational time per sample
increases rapidly.

• Scaling: For efficient learning, it is necessary to scale the values to a fixed range, e.g. between
0 and 1 or -1 and 1. One can imagine that it is hard to find proper weights during training when
some input values are of order 10 and others of 10 . The scaling of the values is considered
after the generation of the set. Furthermore, the input values also affect the computed step size
in gradient-based optimization algorithms.

3.6. Data processing
3.6.1. Scaling
Scaling of the input and output values is necessary for the learning process to ensure all values are of
the same order. Large variations in the order of the values can make it hard for the network to learn the
right weights. Well known scalers are MinMax scaling, scaling between 0 and 1, and standardization,
scaling such that mean = 0 and std = 1. Both scalers are shown in Equation (3.11).

𝑥minmax =
𝑥 − 𝑥min

𝑥max − 𝑥min
, 𝑥standard =

𝑥 − 𝜇
𝜎 . (3.11)

Standardization actually computes the Z-score with respect to the sample mean and sample standard
deviation. It is important to note that each input and output feature are separately scaled over all
samples. Furthermore, the scalers should be fitted on the training set only, otherwise the scaling would
already contain information on the validation samples. Lastly, one should not forget to inverse transform
the predictions made by the network to obtain the original predicted values.

3.6.2. Principal Component Analysis
Principal Components Analysis (PCA) has been proven to be an effective method to reduce the dimen-
sionality of a problem and increase interpretability without much loss of information [45]. In this section,
the mathematical basics of PCA are explained and its application in machine learning is discussed.

Mathematical background
PCA computes an orthonormal basis for the data, which is used to project the data into a lower dimen-
sion. The orthonormal basis is defined by the principal component vectors and the largest principal

3.6. Data processing 27

components provide the dimensions on which to project. First, the data is normalized to prevent un-
wanted influence from the order of each dimension, see Equation (3.12). Here 𝜇 is the column-wise
mean of 𝑋.

�̃� = 𝑋 − 𝜇 . (3.12)

PCA then uses the Singular Value Decomposition (SVD), see Equation (3.13) to determine the principal
components.

𝑋 = 𝑈Σ𝑉 (3.13)

The SVD is a matrix decomposition method that contains the singular values 𝜎 in the diagonal matrix
Σ, the left singular vectors u in matrix 𝑈 and the right singular vectors v in matrix 𝑉. We note that it is
always possible to determine an SVD with the singular values in descending order in matrix Σ. Since
𝑋 is a real matrix, the matrices 𝑈 and 𝑉 are real and each provides an orthonormal basis for the matrix
𝑋. The singular values describe the explained variance by each principal component and hence can
be used to determine how many components or dimensions are necessary to capture the necessary
information in the data. The orthonormal basis along which to project is determined by the singular
vectors corresponding to the chosen singular values.

Utilizing the explained variance ratio of the singular values, it is easy to determine how many com-
ponents are needed in order to contain a specific amount of information. The explained variance ratio
of each principal component is computed by:

𝐸𝑉 = 𝜎
∑ 𝜎

(3.14)

The number of components can be then be determined by adding principal components until the
total explained variance is above a certain threshold. The data matrix 𝑋 is then projected on the lower-
dimensional space, described by an orthonormal basis corresponding to the chosen principal compo-
nents.

Application in machine learning
The application of PCA in machine learning can contribute to a lower computational expense and a
higher performance of the model. The reduction of dimensionality can make it easier for the network
to learn the representation. Furthermore, a lower dimensionality increases the speed of the network
during training and can prevent memory overload for large datasets. Often these advantages can be
obtained without much loss of information. However, there are also some limitations when using PCA
in machine learning algorithms [45]:

1. Model performance: Although the application of PCA can lead to an increase in performance and
efficiency of a neural net, it can also lead to a reduction of performance for datasets that have low
feature correlation or do not satisfy the linearity assumption. Care should be taken that enough
information is preserved in the lower dimension.

2. Classification accuracy: Classification might be harder to learn if the information that distincts two
classes is contained in the small principal components.

3. Outliers: PCA is sensitive to outliers, which can decrease learning performance.

4. Interpretability: The interpretability of the loss function decreases. For example the magnitude of
the MSE of the (weighted) principal components gives us less information than the MSE between
prediction and target directly.

In terms of training and validation, it is important to fit the PCA transform on the training set to
prevent information-leakage from the validation set. Fitting on both training and validation data could
allow information from the validation set in the fitted transform which would decrease reliability and
representability of the validation set with respect to the test set.

By definition, transforming through principal components provides information on which parts of the
data are most important. This knowledge can be used to enhance the learning of the neural network
by adapting the loss function [20]. The loss function can be adapted to a weighted loss function by
multiplying each component with its explained variance ratio, described in Equation (3.14).

28 3. Machine Learning Methods

The weighted MSE loss function, described in [20], is shown in Equation (3.15), where 𝑁 is the number
of chosen components, M is the total number of components, 𝑦 [𝑗] and �̂� [𝑗] are the respective true and
predicted value of the 𝑗 feature of the 𝑖 sample.

𝜎-weighted MSE =
samples

∑ ∑ 𝜎
∑ 𝜎

(𝑦 [𝑗] − �̂� [𝑗]) . (3.15)

Utilizing this knowledge ensures that the network puts more focus on learning the largest principal
components.

3.7. Performance measures
In this section, the performance measures used to determine whether one network is better than the
other, are described. The performance measures include the 𝑅 −score, the average relative error, the
average L -norm and the average Relative Root Mean Squared Error (aRRMSE).

One of the reported measures is the coefficient of determination 𝑅 , also called 𝑅 −score. This
score gives the proportion of variance in the output variables that is predictable from the independent
input variables and hence is a measure for the goodness of fit. The 𝑅 -score commonly returns a value
between zero and one, where one indicates perfect prediction and zero indicates that the model always
returns the expected value. The score can return a negative value, which shows the prediction of the
model is worse than always returning the expected value. When dealing with multiple output values the
uniform average of their scores is given. The 𝑅 -score is given in Equation (3.16), where 𝑦 denoted
the true output, �̂� the predicted output and �̄� denotes the average true output for 𝑖 = 1, ..., 𝑁 samples.

𝑅 = 1 − 𝑆𝑆𝑆𝑆 = 1 −
∑ (𝑦 − �̂�)
∑ (𝑦 − �̄�) . (3.16)

Frequently used performance measures for (multi-target) regression problems include the average
relative error, the Mean Squared Error (MSE) and the average Relative Root Mean Squared Error
(aRRMSE) [4]. Although the average relative error is an easily interpretable performance measure it is
not suitable for all targets. Some target values cross zero with a high gradient, resulting in high relative
errors, while the prediction can prove to be accurate. The average relative error is given in Equation
(3.17), where 𝑑 is the total number of targets and 𝑁 is the total number of samples.

𝑎𝛿 = 1
𝑁 ∑𝛿 = 1

𝑁 ∑
1
𝑑 ∑

|𝑦() − �̂�()|
𝑦()

. (3.17)

The aRRMSE is a relative performance measure that can be used in cases where the relative error
is not suitable and is given by Equation (3.18). According to Despotovic et al. [21], the performance of
the model is excellent when the RRMSE is smaller than 0.1, good when the RRMSE is between 0.1
and 0.2, fair if it is between 0.2 and 0.3 and poor if it is above 0.3.

𝑎𝑅𝑅𝑀𝑆𝐸 = 1
𝑑 ∑𝑅𝑅𝑀𝑆𝐸 = 1

𝑑 ∑√
∑ (𝑦() − �̂�())

∑ (𝑦() − �̄�)
. (3.18)

The average L -norm gives an estimate of the average total distance between the predictions and
the targets for each sample and is given in Equation (3.19). It should be kept in mind that the aL -norm
is dependent on the magnitude of the simulations and the number of target values for each sample.

𝑎𝐿 = 1
𝑁 ∑||y() − ŷ()|| = 1

𝑁 ∑
√∑|𝑦() − �̂�()| . (3.19)

4
Surrogate Model

In this chapter, neural network surrogate models are trained for prediction of relevant outputs of the
morphoelastic models. It is assumed that the simulations from the numerical model are the true values
and inaccuracies in these solutions are not taken into account. In Sections 4.1 - 4.3, surrogate models
are developed for the one-dimensional model and in Section 4.4, a preliminary study is performed for
the two-dimensional model. The neural networks are trained for the prediction of the relative surface
area of the wound and the strain energy over time. Different approaches are considered and tested
on the test set. Firstly, the chosen parameters values and the constructed dataset are discussed.
Subsequently, the results for the prediction of the RSAW and the strain energy are discussed. For the
two-dimensional model, a surrogate is trained for the movement of the wound edge over time to find
localized contractions. Lastly, Section 7.1.1 gives the conclusion on the performance of neural network
surrogates for the morphoelastic models.

4.1. Dataset - 1D morphoelastic model
In order to train the neural network, a dataset needs to be generated from the simulations performed
by the one-dimensional morphoelastic model. The inputs for the neural network are equal to the input
parameters that vary between simulations. The targets or outputs for the neural network are the outputs
of the morphoelastic model. The model has 25 input parameters that can vary over the domain or
between patients/simulations. All other constant input values are ignored as the neural network is able
to learn these implicitly. To achieve a well-varied dataset, a range of acceptable values is defined for
each of the input parameters. For each simulation, the parameters are drawn uniformly from these
ranges. The advantage of drawing from a uniform distribution is that a larger variance in the dataset
is achieved as all combinations of parameter values can be considered. The disadvantage is that
drawing from a uniform distribution can result in unrealistic combinations since certain parameters can
be correlated in real life. For some combinations of parameters, the finite element simulations were
no longer stable and when this occurred the simulation was discarded and the parameter combination
was saved separately. When generating future datasets, it should be ensured that the parameters
fit the stability conditions derived in [23]. Table 4.1 shows the ranges for the parameters that varied
between simulations. For means of reproducibility, the fixed parameters are displayed in Table 4.2. In
Appendix A the meaning of the parameters and the choices for the parameters ranges are explained.
The choices for the parameters are based on a literature study performed by Egberts et al. [22].

Each simulation computes the results on a domain of 10 cm, i.e. Ω = [−10, 0], with a uniform spatial
grid of 202 grid points. We simulate 365 days with a time step of one day. The initial wound has length
𝐿 , i.e. Ω = [−𝐿, 0]), with initial conditions as described in Section 2.1. As discussed in Chapter 2 the
numerical model computes four constituents (𝑁,𝑀, 𝜌, 𝑐), three mechanical values (𝑢, 𝑣, 𝜖), the relative
surface area (RSAW), and the strain energy (𝐸strain). We consider the relative surface area and the
strain energy to be the important outputs of the model as these values provide direct information on
skin contraction.

In total 6120 simulations are computed, of which nine were unstable. Therefore, the final dataset
contains 6111 samples. Table 4.3 shows the data that is saved in the dataset with the respective

29

30 4. Surrogate Model

formats. Here the attribute ‘Inputs’ contains the 25 parameter values shown in Table 4.1. In Section
3.4 the importance of a validation and test set is discussed. For the one-dimensional dataset, we chose
to use the common 80%-20% train-test split to ensure a large enough test set. Hence the training set
contains 4889 samples and the test set contains 1222 samples. For the validation, 10-fold cross-
validation is performed using a 90%-10% split of the training data.

Parameter Range
𝐷 7.6167 ⋅ 10 - 1.86624 ⋅ 10
𝜒 (2 − 3) × 10
𝐷 (2.22 − 3.2) × 10
𝑟 0.832 − 0.924
𝑟max 2 − 3
𝑘 5.4 × 10 − 1.08 × 10
�̄� (1 − 2.5) × 10
�̄� 0.0975 − 0.1200
𝛿 0.0119 − 0.0231
𝛿 0.06 − 0.0885
𝛿 (0.354 − 0.693) × 10
𝛿 (4 − 6.075) × 10
𝜅 10 − 10
�̃� (1 − 5) × 10
𝑎 (0.9 − 1.1) × 10
𝑎 (0.98 − 1.02) × 10
𝑎 (2 − 2.5) × 10
𝑎 (0.8 − 1.2) × 10
𝑘 (0.5 − 0.6)𝛿 �̄�𝑎
𝜌 0.89 − 1.29
𝜇 10 − 1000
𝐸 350-300

√�̄�
𝜉 (4.38 − 4.42) × 10
𝜁 (1 − 9) × 10
𝐿 3 − 5

Table 4.1: Ranges for the parameters that vary per patient in
the one-dimensional dataset. Explanation of the parameters

and ranges can be found in Appendix A.

Parameter Value
𝑘max 10
�̄� 0
�̄� 0
𝑞 [log() log((̄)]

log(̄)
𝜂 2
𝜂 0.5
�̃� 0.2�̄�
�̃� 0
𝑘 𝛿 �̄�
𝑅 0.995

Table 4.2: Parameter values that are fixed for all patients in the
one-dimensional simulations. Explanation of the parameters

and values can be found in Appendix A.

Key Size
Inputs 𝑁samples × 25
RSAW 𝑁samples × 366
StrainEnergy 𝑁samples × 366
N 𝑁samples × 366 × 202
M 𝑁samples × 366 × 202
c 𝑁samples × 366 × 202
𝜌 𝑁samples × 366 × 202
u 𝑁samples × 366 × 202
v 𝑁samples × 366 × 202
𝜖 𝑁samples × 366 × 202
x 𝑁samples × 366 × 202

Table 4.3: One-dimensional dataset - keys and sizes.

4.2. RSAW prediction- 1D morphoelastic model 31

4.2. RSAW prediction- 1D morphoelastic model
The Relative Surface Area Wound (RSAW) is one of the main outputs from the model, and therefore
we start by training a network to predict this output from the 25 input parameters. It is important to keep
in mind that minimum RSAW, i.e. maximum contraction, and the asymptotic/final value of RSAW, i.e.
final contraction, are important values of the RSAW distribution. All simulations are run with 10-fold
cross-validation. Using cross-validation ensures that all samples, including outliers, are considered in
one of the validation sets. The cross-validation allows us to compute mean and standard deviations of
the performance measures which can indicate how well the model can generalize. In case the standard
deviation over the performance of all validation sets is small, this shows that the network can predict
all samples equally well. A large deviation indicates that the network has difficulty predicting certain
samples leading to a lower performance when these samples are in the validation set.

The choice of hyperparameters is important for the performance of the model, and multiple combi-
nations have been tested to find a suitable combination. As the goal of this research is to investigate the
possibilities of a neural network surrogate the hyperparameters are not fully optimized, but merely tuned
to a good performance. To the end of tuning the hyperparameters, different loss functions, optimizers,
architectures, and learning rates are used and compared on their performance. More information on
the experimental training runs for the hyperparameter tuning can be found in Appendix C.

In this section, the results are shown from training the network to predict the RSAW over 365 days
based on a suitable choice of hyperparameters. Furthermore, the use of Principal Components Analy-
sis (PCA) is investigated to reduce the dimension of the output. In Section 4.2.3 the effect of the size of
the training set is investigated to find if the current dataset contains enough samples. A final network
is trained on both training and validation data and tested on the test set and nine unstable samples. A
second approach to predict RSAW is studied by training a neural network to predict the displacement.

4.2.1. Neural network
First, we train a neural network to predict the RSAW for all 365 days. The neural network that gives
a good performance consists of a two-layer MLP with 100 nodes in each layer and ReLU activation
units. The network is trained with MSE loss function and the Adam optimizer, using a learning rate
0.01 with decay factor 0.99 every epoch. The network is trained for max 150 epochs, using early
stopping as a default regularization technique. This regularization technique stops the training when
the validation loss has not decreased to prevent overfitting. This network is trained on the standardized
one-dimensional-dataset processing the data in batches of 64 samples. The training of the network
is performed on the Graphics Processing Unit (GPU) to decreases the run time. An overview of the
chosen hyperparameters can be found in Table 4.4.

Type NN MLP
No. neurons 100/100
Activation function ReLU
Loss function MSE
Optimization Adam
Learning rate 0.01
Learning rate decay 0.99
Max #epochs 150
Regularization Early stop (20)
Data processing Standardization

Table 4.4: Neural network hyperparameters for RSAW prediction.

The overall results for this network are shown in Figures 4.1, 4.2, and in Table 4.5. Figure 4.1
shows the best and the worst prediction in terms of the MSE, the relative error at each point for the
worst prediction, and the relation between the predicted and target values for all samples in one of the
10 cross-validation sets. In case of perfect predictions, this scatter plot would show exactly the 𝑦 = 𝑥
- graph, which is shown for comparison. In Figure 4.1 it can be seen that in the best case scenario
the prediction is almost indistinguishable from the target. The worst prediction in the validation set
is higher than the target value after 50 days, but it predicts the minimum value at the correct day.
We find that the relative error increases to 15% and converges to about 6% for the final contraction.

32 4. Surrogate Model

Figure 4.1: Results Neural Network (NN) for RSAW prediction. Upper two graphs show predictions and targets for the best and
the worst prediction in terms of MSE. Left bottom graph shows the relative error for the worst prediction and right bottom graph

shows the relation between the predictions and the targets, the line ‘y = x’ for comparison and the score.

Figure 4.2: Random chosen RSAW samples from the validation set and the corresponding predictions from the neural network.

The distribution of the predictions and targets is close to the 𝑦 = 𝑥 line, which shows that in general
the predicted values are close to the true values and therefore the predictions are accurate. Figure
4.2 shows nine random samples from the validation set and the network predictions. For these nine
samples, the neural network prediction is close to the target value. To substantiate our observations,
Table 4.5 shows the performance measures as well as training and validation time. The 𝑅 -score is a
measure of the goodness of fit and gives a measure of how well the variation in the output is described
by the variation in the input. A 𝑅 -score often returns a value between 0 and 1, where 1 indicates
perfect predictions. However, the 𝑅 -score can give negative results when the predictions are worse
than always returning the expected value. The cross-validation trials return a mean 𝑅 -score of 0.9941
with a standard deviation 0.0004. The result is close to one and therefore shows that the predictions
are accurate. The standard deviation of 0.0004 shows that the 10 validation sets all return a similar
𝑅 -score all close to one. The aRRMSE is 0.0525, which is smaller than 0.1 and therefore the results

4.2. RSAW prediction- 1D morphoelastic model 33

Performance measure Value
𝑅 0.9941 ± 0.0004

aL norm 0.084 ± 0.004
aRRMSE 0.0525 ± 0.0024
aRelErr 0.45% ± 0.03%

Training time 230 s
Validation time 0.0008 s

Table 4.5: General performance of neural network for RSAW (Table 4.4) on the standardized one-dimensional dataset. The
mean and standard deviation of the performance measures over all 10 cross-validation sets.

are very good, as is explained in Section 3.7. The average relative error of the predictions of only
0.45% is low, which supports our claim that the neural network can accurately predict the RSAW.

Besides the overall performance, it is interesting to consider the performance of the network on the
prediction of the minimum and the final value of the relative surface area as these are important charac-
teristics of skin contraction. Considering the performance on these characteristics has the advantage
that the values are easier to interpret than the overall performance. To that end, Table 4.6 contains the
Mean Absolute Error (MAE) and the 𝑅 -score for both minimum and final RSAW over the validation
sets. To place the MAE in context also the general characteristics of the distributions are shown.

The Mean Absolute Error (MAE) of 0.0051 on the minimum RSAW is less than 0.6% of the range of
values and less than 0.75% of the average value. The MAE shows that the predictions of the minimum
are on average close to the true value and the fact that it is only 0.6% of the total range shows that
the network can distinguish well where in this range the minimum is located for each sample. We
visualize this concept in Figure 4.3(a) where the target minimum values are ranked from low to high
and the predictions are shown for each target. The predictions in the figure follow the ranking of the
target values closely showing that the network can accurately predict where in the range of values the
minimum is located. For the final RSAW the MAE of the final RSAW is 0.43% of the range of values
and 0.30% of the average value. Using the same arguments we conclude that the network can predict
the final contraction well. The small standard deviation on the performance measures show that the
generalization of the model is good, reaching similar performance on all validation sets.

(a) Minimum RSAW (b) Final RSAW

Figure 4.3: Distribution of RSAW minima and final values ranked on the size of the true values.

MAE 𝑅 Min Max Range Average
Min RSAW 0.0051 ± 0.00025 0.9976 ± 0.00028 0.090 0.958 0.868 0.689
Final RSAW 0.0026 ± 0.0001 0.9976 ± 0.00034 0.390 0.992 0.602 0.88

Table 4.6: Results for the minimum value of RSAW (max contraction) and the final value of RSAW (final contraction) averaged
over the 10 cross-validation trials. Distribution of the values is provided for context of the Mean Absolute Error.

From the good overall performance measures, the small standard deviations, and the good per-
formance on the minimum and final RSAW predictions, we conclude that the trained network can ac-
curately predict the relative surface area of the wound. Lastly, it is noted that validation time is only
0.0008 seconds in which the network predicts approximately 480 samples. This is significantly faster
than the numerical model, which takes 90 seconds for one simulation.

34 4. Surrogate Model

4.2.2. PCA
The network trained in the previous section needs to predict 365 values as output. Since many of these
values are closely related, using only the larger principal components can reduce the dimension without
reducing much of the information in the data. Predicting fewer values can improve the training and the
performance as long as the important information is captured in the lower-dimensional components
[20]. Furthermore, using lower dimensional targets and predictions reduces the required memory and
the computational time.

To determine the number of principal components we consider the explained variance ratio, which
shows how much of the variance of the data is described by the number of used principal components.
An explained variance ratio of one means that all variance in the data is explained by the used compo-
nents. In Figure 4.4 the explained variance ratio is shown against the number of principal components
for the first 22 components of RSAW. The figure shows that the first component captures more than
80% of the total variance, the first five components capture over 95% of the variance and that the ex-
plained variance converges rapidly to one. The fast convergence to one indicates that the dimension
can be reduced by only considering the largest components, though it should be checked what type
of information is lost by ignoring the smaller components. As mentioned in Section 3.6.2 when dis-
cussing the limitations, important information for training a neural network can be found in the smaller
components.

To that end, the effect of the transforms with a different number of components has been studied by
transforming and inverse transforming the samples to find the loss of information. Figure 4.5 shows two
representative samples that have been transformed and inverse transformed for PCA-transforms with
an increased number of components. For the transforms with only two or five components, the RSAW
distributions after transforming and inverse transforming have a different minimum and a different shape
and therefore important information is lost. For the first sample, the transform with 14 components
gives a small overshoot at the beginning and at the minimum, and the transform with 22 components
results in a RSAW distribution that is almost indistinguishable from the original distribution. For the
second sample, the transform with 14 components results in small oscillations around the true shape
and the transform with 22 components gives a close to perfect resemblance of the original distribution.
Based on these results, it is decided to use 22 components, or a 22-dimensional PCA-transform, before
training.

Figure 4.4: Explained variance ratio for increasing number of principal components for the RSAW distribution. Only the first 22
components of 365 are depicted.

To determine the effect of the PCA-transform on the performance of the neural network, a new neural
network is trained to predict the transformed RSAW distributions. Here the same hyperparameters from
the previous section are used, as shown in Table 4.4. The PCA-transform is fitted on the training set
and the PCA target values are standardized over all the samples before training. The network is then
trained to predict the PCA-components of the samples. The network is trained both with standard MSE

4.2. RSAW prediction- 1D morphoelastic model 35

(a) Sample 1 (b) Sample 2

Figure 4.5: Inversely transformed - transformed RSAW distributions for fitted PCA-transforms with different number of
components.

loss function and the dynamically weighted loss function based on the importance of each component
as described in Section 3.6.2. The performance measures for training with both loss functions, can be
found in Table 4.7.

Performance measure MSE-loss 𝜎−weighted MSE
𝑅 0.9544 ± 0.011 0.9930 ± 0.0005

aL norm 0.3016 ± 0.0264 0.0804 ± 0.0035
aRRMSE 0.2049 ± 0.0261 0.0569 ± 0.0037
aRelErr 1.8% ± 0.15% 0.43% ± 0.02%

MAE minimum 0.0188 ± 0.002 0.0046 ± 0.00028
MAE asymptotic 0.0128 ± 0.001 0.0025 ± 0.0002
Training time 154 s 100 s
Validation time 0.0007 s 0.0007 s

Table 4.7: Performance measures for training a neural network with 22-dimensional PCA-transform on two different loss
functions for hyperparameters defined in Table 4.4 over 10-fold cross validation.

In the table, it can be seen that the 𝑅 -score for the 𝜎−weighted loss function increases from 0.9544
to 0.9930, aRRMSE decreases from 0.231 to 0.057, and the average relative error decreases from 1.8%
to 0.44%. For the predictions of the minimum and the final area, the MAE is approximately four times
smaller if the 𝜎−weighted MSE is used. In the table, it can also be seen that the standard deviations
of the performance measures for the different cross-validations is lower for the model trained with the
𝜎−weighted MSE loss, which indicates the model can generalize better. Since the average relative
error, the aRRMSE and the aL norm are 3-4 times higher for the MSE loss function and the 𝑅 -score
and standard deviations are significantly lower, it is concluded that it is better to use the 𝜎−weighted
MSE.

To determine the effect of applying the PCA-transform on the performance of the neural network,
the performance is compared to the results of the neural network trained on the original data without
the PCA-transforms in Table 4.5. The mean performance of both networks is similar and the standard
deviations are of the same order, hence the use of the PCA-transform does not seem to lose valuable
information. The PCA-transform does not improve the results, but this is not unreasonable as the
original prediction was already very accurate. Lastly, we find that using the transform reduces the
training time with a factor of 3 and reduces the required memory. Therefore, the PCA-transform is
applied in the remainder of this chapter.

4.2.3. Training size
The size of the training set is important for the amount of variation the network can learn and hence
how well it can generalize. In the ideal situation, the network would have a unlimited supply of samples
such that all samples are independent and the model can stop training whenever the stopping criteria
is met. However, achieving a dataset that approximates unlimited supply is unfeasible for almost every
machine learning problem as it is expensive, time-consuming, or simply impossible to get such large

36 4. Surrogate Model

amounts of samples. It has been shown that the networks can be trained to achieve high accuracy
by re-using the same samples multiple times, meaning that adding more samples might not lead to an
improvement [31]. Since the generation of data from the numerical model is in general time consuming it
is useful to investigate whether the current amount of data is sufficient or whether adding more samples
can significantly improve the result.

To that end, the full training set is loaded and split using a 10-fold cross-validation. The network
parameters from Table 4.4 and the 22-dimensional PCA-transform are used. The network is trained for
each fold using an increasing number of samples, i.e. [500, 1000, 1500, 2000, 2500, 3000, 3500, 4000,
4320], and then evaluated on the respective cross-validation set. The results are combined for each
size of the training set over all the folds. Figure 4.6 shows the learning curves, i.e. average training
and validation loss, against the size of the training set. Figures 4.7 and 4.8 show box plots of the
aRRMSE and the average relative error over the 10 folds for each size of the training set. The spread
and average of the box plots give an indication of the generalization properties of the network for each
size of the training set. A large spread shows that the performance of the validation set is dependent
on the samples in that set, meaning the network does not generalize well to all types of samples.

(a) Full scale (b) Zoomed version

Figure 4.6: Averaged training and validation loss for increasing number of training samples.

(a) Full scale (b) Zoomed version

Figure 4.7: Boxplots of cross-validation aRRMSE values for increasing number of training samples.

In Section 3.1.2 it has been explained how to interpret the learning curves. For 600 training samples,
the training MSE loss is approximately 0.025 network, whereas the validation loss is above 0.8. The
large gap, with training loss far lower than the validation loss, shows that the network is overfitting the
samples in the training set. It has only learned to interpret the training values and can not generalize
to the unseen samples in the validation set. As expected, the gap between training and validation loss
decreases by adding more samples to the training set. In the zoomed figure it can be seen that if 3000
samples or more are used, the gap is between the losses is smaller than 0.001, which shows that the
network does not overfit and has learned to generalize to the samples in the validation set. The low
MSE of approximately 0.003 indicates that the network is not underfitting. The decrease in training
loss shows that not only generalization improved, but also the fit on the training set. The boxplots show
the spread of the aRRMSE and the mean relative error for the 10 different cross-validation sets. Again
using a few samples gives a large spread for the different validation sets, showing that the performance

4.2. RSAW prediction- 1D morphoelastic model 37

(a) Full scale (b) Zoomed version

Figure 4.8: Boxplots of cross-validation mean relative errors for increasing number of training samples.

network depends more on the samples in the validation set and therefore has lower generalization
properties. After 3000 samples the boxplots have a larger overlap, from which we conclude that the
performance measures do not improve significantly due to the added samples. Therefore, we can
conclude that our training set is large enough to capture the current variation in the RSAW samples. It
should be noted that the results from the training set size study are problem-specific and for a different
problem the test needs to be repeated.

4.2.4. Final network & Test set evaluation
Different architectures and hyperparameters have been tested on the validation set, and we have found
that the network with parameters from Table 4.4 with the 22-dimensional PCA-transform performs well
on the validation set. The network is trained on both training and validation set for 150 epochs and
it is tested on the test set to find the performance. First, the trained network is tested on the original
constructed test set. Secondly, the network is used to predict the RSAW distribution for a small test set
that contains input combinations that gave numerical instabilities. This last test is to verify how well the
model is able to generalize to input combinations that gave stability issues in the morphoelastic model.

The test set contains 1226 samples. The trained network and fitted scalers are loaded and used
to compute predictions on RSAW for all inputs in the test set. The general results are shown in Table
4.8 and Figure 4.9. The results for the minimum and final RSAW values are shown in Table 4.9 and in
Figure 4.10a and 4.10b, respectively.

Figure 4.9: Results for the prediction of RSAW on the test set. Upper two graphs show predictions and targets for the best and
the worst prediction in terms of MSE. The left bottom graph shows the relative error for the worst prediction and the right bottom

graph shows the relation between the predictions and the targets, the line ‘y = x’ for comparison, and the score.

38 4. Surrogate Model

The performance on the test set is good with a high 𝑅 -score of 0.9932, a low average relative error
of 0.39% and average 𝐿 -norm of 0.073. Comparing the results to the performance on the validation
sets in Table 4.7, shows that the 𝑅 -score and the aRRMSE are within one standard deviation of the
respective mean values on the validation sets, which indicates that performance on validation and
training set is similar. The average L norm and the average relative error are slightly better than the
validation set.

Performance measure Value
𝑅 0.9932

aL norm 0.073
aRRMSE 0.055
aRelErr 0.39%

Table 4.8: General performance of the RSAW prediction on the test set

Considering the minimum and asymptotic value separately shows that the predictions are accurate
with MAE less than 1% of the range, which is good, as is explained in the previous sections. The
good performance indicates that the network has learned the characteristics and can generalize well
to provide accurate predictions for unseen samples. The similar performance confirms the conclusion
that the size of the training set was large enough to accurately learn the generalizations and that adding
more data does not significantly improve the results, since the network has now been trained on both
the training and the validation set.

(a) Minimum RSAW (b) Final RSAW

Figure 4.10: Distribution of RSAW minima and final values for the test set, ranked on the size of the true values.

MAE 𝑅 Min Max Range Average
Min RSAW 0.0038 0.999 0.116 0.944 0.829 0.686
Final RSAW 0.0023 0.998 0.389 0.944 0.555 0.886

Table 4.9: Results for the minimum value of RSAW (max contraction) and the final value of RSAW (final contraction) for the test
set. Distribution of the values in the test set is provided for context of the Mean Absolute Error.

4.2.5. Exceptional test cases
During dataset generation, nine combinations of input values were encountered for which the mor-
phoelastic model could not find a full solution due to numerical issues. The matrices during simulations
become close to singular resulting in complex values and consequently NaN. It is likely that this is
caused by the parameters not satisfying the stability conditions derived in [23]. For the first 100-150
simulated days, the numerical model gives results, though it is unsure whether these are accurate. It
is interesting to see if the neural network can generalize well enough to provide predictions where the
numerical model is not able to. Note that these samples can not be considered full test samples as
there are no full targets available and it is therefore not possible to provide performance measures on
the complete predictions. The predictions are compared to the stable beginning of the solution by the
numerical model.

The neural network predictions for RSAW of these nine samples are shown in Figure 4.11, here the
stable part of the results from the morphoelastic model are shown for validation. For samples 4, 6, 7,

4.2. RSAW prediction- 1D morphoelastic model 39

and 8 the neural network prediction is close to the target and the prediction continues smoothly where
the target stops. For samples 1, 2, 5, and 9 the neural network predicts the minimum at approximately
the correct day, though the predicted minimum is approximately 0.03 to 0.05 lower than the expected
minimum of the targets. From the observations, it seems that the model can give reasonable predic-
tions even when the morphoelastic model encounters problems.

Figure 4.11: Predictions for inputs that gave incomplete results with the morphoelastic model.

4.2.6. RSAW prediction from displacement 𝑢
Besides training a neural network to predict the relative surface area directly, a different approach is
studied using the displacement of the wound. In the morphoelastic model, the RSAW computation is a
post-processing step using the initial size of the wound and the computed displacement 𝑢. Instead of
learning the distribution of RSAW the network can be trained to predict the displacement 𝑢 which can
be used to perform the same post-processing step to obtain RSAW, which is shown in Equation (4.1),
where 𝐿 is the original size of the wound and 𝑥 is the grid point that is on the edge of the wound.

RSAW (𝑡) = | − 𝐿 + 𝑢(𝑡, 𝑥)|
𝐿 . (4.1)

Using the displacement for the RSAW prediction instead of the direct prediction might have mul-
tiple advantages. When considering the future extension to two dimensions, the displacement can
give more detailed information about the movement of the wound and therefore localized contractions.
Furthermore, comparing the direct prediction with the prediction by the displacement can give an indi-
cation of the accuracy of the predictions. If the two predictions differ largely, the error in the prediction
might be larger than when the two predictions are very similar. It is investigated whether the two differ-
ently trained neural networks could be formed into an ensemble of neural networks providing both an
improved prediction and a measure of uncertainty.

The dimension of the displacement values is larger than the RSAW as it varies both over the place
and in time, hence the dimension is 366 × 202 per sample. The larger dimension might make it more
difficult for the neural network to give accurate predictions. Analogously to Section 4.2.2, a study on
the explained variance and the effect on the sample is used to decide the number of components.
From this study, it was chosen to use a 35-dimensional PCA-transform for the displacement values.
We have chosen to train a three-layer MLP with 150 nodes in each layer for 150 epochs at most,
using a learning rate of 0.008 with decay factor 0.99. The predicted displacement is used to determine
the relative surface of the wound by considering the movement of the wound edge. The performance
measures for the prediction of 𝑢 are shown in Table 4.10. Figure 4.12 shows the displacement of the

40 4. Surrogate Model

wound on days 5, 25, 50, 150, and 365 for the best and worst prediction of 𝑢 in the validation set. The
figure shows that the prediction of the neural network follows the increase and decrease of the targets
well over the days. In the worst prediction, the neural network predicts a lower maximum than the
target, which is most clear on day 50. Even the differences for the worst prediction are still reasonable.
The 𝑅 -score of 0.9976 and the aRRMSE of 0.0426 support the observations that the predictions of
the network are accurate. The average relative error of 5.67% is higher than expected based on the
best and worst prediction and the other performance measures. The higher relative error is caused by
the values of 𝑢 close to zero the first few days and therefore does not give an accurate representation
of the performance. Therefore, we can conclude that a neural network can also learn to predict the
displacement well in time and over space.

Figure 4.12: Worst and best prediction for in terms of MSE at day 25,50,100,150, and 365.

The trained network is used to computed predictions for 𝑢 on the test set and subsequently, the
predictions of 𝑢 are used to compute RSAW. The predictions of RSAWusing the predicted displacement
are named RSAW . The performance results for the prediction of RSAW are given in the third column
of Table 4.10. For comparison, the results for the test set predictions of RSAW by the neural network
from Section 4.2.2, named RSAW , are repeated in the table as well. The prediction of RSAW
is slightly worse as it has a higher relative error of 0.46% compared to 0.39%, a higher aRRMSE of
0.0639 compared to 0.0552, and a higher average L norm of 0.083 compared to 0.073. The 𝑅 -
score on the other hand is slightly better. The differences in performance are small and it is unknown
whether a better-trained network on 𝑢 can improve the results of RSAW to achieve the same accuracy
as RSAW . Based on these observations, no conclusions can be given on whether one method is
significantly better than the other, though it can be concluded that both methods provide accurate
predictions of skin contraction.

Performance measure u RSAW RSAW Average RSAW
𝑅 0.9976 0.9936 0.9931 0.9936

aL norm 2.0 0.083 0.073 0.061
aRRMSE 0.0426 0.0639 0.0552 0.0492
aRelErr 5.67% 0.46% 0.39% 0.33%

Table 4.10: General performance for the prediction of displacement , the prediction of RSAW using the prediction of , the
prediction of RSAW directly by the NN, and the averaged prediction on the test set.

Figure 4.13 shows nine random samples with the predictions of both methods and the 𝑅 −score of
the predictions, which indicates how well the two predictions fit each other. From the random samples,
it is observed that both methods provide an accurate prediction. Furthermore, it can be observed that in

4.3. Strain energy prediction - 1D morphoelastic model 41

the right middle sample, the RSAW prediction is better, and in the right bottom sample the RSAW
prediction is better. In the middle top figure, one prediction method underestimates, while the other
method overestimates the minimum RSAW. It is investigated whether combining the two methods in
an ensemble by averaging their predictions improves the performance.

Figure 4.13: Nine random samples of the validation set with predictions RSAW and RSAW . The score of the two
predictions is shown for each sample.

The results for the averaged predictions are shown in the last column of Table 4.10. The perfor-
mance measures for the averaged prediction are better than for the individual predictions, with a lower
average relative error, aRRMSE, and aL norm. The 𝑅 -score is equal to the score of RSAW . The
improved performance measures show that in this case a better prediction can be obtained by combin-
ing the two predictions. Figure 4.14 shows the relation between the mean absolute difference of the
two predictions and the true MAE of the respective predictions. The Pearson correlation coefficient is
reported, indicating to what extend the values show a linearity relation. The correlation coefficients of
0.4363, 0.585 and 0.3464 show that there is a moderate positive correlation between the mean abso-
lute difference and true errors. This means that a higher mean absolute difference indicates, to some
extent, a higher true error, though the correlation is not strong enough for good estimates of the uncer-
tainty. It is concluded that using an ensemble of two differently trained neural networks can improve
the predictions, though it cannot be concluded that this always leads to better performance. It might
be possible to obtain the same results with the individual methods by using a different architecture or
training.

4.3. Strain energy prediction - 1D morphoelastic model
Besides the relative surface area of the wound, the strain energy might give useful insight into the dis-
comfort a patient experiences during the contraction process. High strain energy could indicate that
the patient experiences a lot of pain or discomfort due to the forces on the skin. If there is remaining
strain energy, it could indicate that the patient will experience long-term discomfort in the burned area.
The strain energy is computed from the effective strain and the concentration of collagen as described
in Section 2.1.3. First, a neural network is trained on strain energy data only and tested on the test set.
Secondly, it is investigated whether one neural network can predict RSAW and strain energy simulta-
neously as these two distributions are related. Lastly, networks are trained to predict the effective strain
and the collagen concentration, such that the strain energy can be computed from these predictions.
The different prediction methods are combined in an ensemble to find if it can improve the prediction
of the strain energy. It is studied whether the difference between the two predictions can give an indi-
cation of the uncertainty of the prediction.

42 4. Surrogate Model

Figure 4.14: Correlations between mean absolute difference, |RSAW - RSAW | and the true MAE of the individual
predictions.

4.3.1. Training
Analogously to the prediction of RSAW, the dimension of the strain energy vector is reduced using the
largest principal components using the 25-dimensional PCA-transform. The choice for the number of
components is based on the explained variance, the influence of the transform on the samples, and
the influence on the training of the network. It was found that using 25 components hardly reduces the
amount of information in the data. In order to find a suitable combination of hyperparameters, multiple
combinations of hyperparameters have been tested, more information on hyperparameter testing can
be found in Appendix C. Based on the hyperparameter experiments, it was chosen to train a two-layer
network with 150 nodes in each layer and ReLU activation units. The main hyperparameters can be
found in Table 4.11.

Type NN MLP
No. neurons 150/150
Activation function ReLU
Loss function MSE
Optimization Adam
Learning rate 0.005
Learning rate decay 0.99
Max #epochs 150
Regularization Early stop (20)
Data processing Standardization

Table 4.11: Neural network hyperparameters for the prediction of the strain energy

The general results are shown in Figures 4.15 and 4.16 and the general performance measures
are shown in Table 4.12. It was decided not to show the average relative error as it does not provide
relevant information on the performance. The relative error is high due to the beginning of the target
curves being close to zero, 10 or lower. For example, an error of 0.01, which is accurate considering
the range of values of the strain energy, leads to a very high relative error for the values close to zero.
Hence the figure shows the absolute error instead. The distribution between targets and predictions
in the right bottom figure shows that in general, the distribution resembles the 𝑦 = 𝑥 -graph. It can
be observed, though, that there is one sequence of points showing a larger deviation. This sequence
consists of the predictions and targets from the worst prediction. The best and the worst prediction show
that the network has learned the general shape of the strain energy over time. The large maximum

4.3. Strain energy prediction - 1D morphoelastic model 43

absolute error of 335 for the worst prediction is caused by the steep gradient after the maximum and the
prediction reaching the maximum a few days later. The 𝑅 -score of 0.9797 is close to one, which shows
that the model has a good fit. The aRRMSE is 0.1219 is below 0.2 and therefore shows that the fit of
the network is good. Figure 4.16 shows the predictions and targets of nine samples. These samples
show that the predictions can predict the order of the strain energy well, giving accurate predictions of
samples with a maximum of 600 and a maximum of 45. It is observed that the predictions of smaller
strain energies are less smooth, though absolute differences are small.

Figure 4.15: Results of the strain energy predictions for one of the validation sets. Upper two graphs show predictions and
targets for the best and the worst prediction in terms of MSE. Left bottom graph shows the absolute error for the worst

prediction and right bottom graph shows the relation between the predictions and targets, the line ‘y = x’ for comparison and the
score.

Performance measure Value
𝑅 0.9797 ± 0.0019

aL norm 76.32 ± 5.20
aRRMSE 0.1219 ± 0.0078

Training time 98 s
Validation time 0.0007 s

Table 4.12: General performance for the strain energy predictions.

For the strain energy, the maximum strain energy and the final strain energy are important values
and hence the performance for their predictions is considered in more detail in Table 4.13 and Figure
4.17. Figure 4.17a shows the target maxima ranked from smallest to largest and their predictions for all
samples in one of the validation sets. In the figure, it can be observed that the maximum values below
400 are more common than above. It is also observed that for higher maxima the prediction varies
slightly more. The network reports an MAE of 6.45 which is 0.5% of the full range of maximum values
and 3% of the average value. This shows that the network can distinguish well between samples with
high and low maximum values. For the final strain energy the same holds, where the network can
accurately predict the final values, though it has more difficulty predicting the higher values as they are
less common. The MAE of the final strain energy is approximately 0.4% of the range of values and 7%
of the average final value. These observations combined with the high 𝑅 -scores above 0.99 for the
maximum and final strain energy show that the network can accurately predict the maximum and final
strain energy of the samples.

44 4. Surrogate Model

Figure 4.16: Random chosen strain energy samples from the validation set and the corresponding predictions from the neural
network.

(a) Maximum strain energy (b) Final strain energy

Figure 4.17: Distribution of strain energy maxima and final values ranked on the size of the true values.

MAE 𝑅 Min Max Range Average
Max strain energy 6.45 ± 0.41 0.9966 ± 0.001 5.59 1353.19 1347.60 217.2
Final strain energy 1.01 ± 0.11 0.9911 ± 0.002 0.042 233.8 233 13.92

Table 4.13: Results for the maximum and final value of the strain energy averaged over the 10 cross-validation trials.
Distribution of the values is provided for context of the Mean Absolute Error.

4.3.2. Test
To the end of finding the final performance of the network, the neural network is trained on both training
and validation data and tested on the independent test set. We only report the performance measures
as the figures are similar to the performance of the validation set. The general performance measures
are similar to the performance of the validation set are close to or within one standard deviation from the
mean performance measures for the cross-validation sets. The 𝑅 −score is 0.981 and the aRRMSE
of 0.113 show that the fit of the network is good. The low values of the MAE and the high 𝑅 -scores
for the maximum and final strain energy with respect to their ranges show that the network can provide
accurate predictions. From the performance measures, we conclude that the network has been trained
well and can generalize to unseen samples.

4.3.3. Combined predictions
The previous networks have been trained to predict RSAW or strain energy separately. However, the
two distributions are similar in the sense that the minimum RSAW is located at approximately the same

4.3. Strain energy prediction - 1D morphoelastic model 45

Performance measure Value
𝑅 0.981

aL norm 70.69
aRRMSE 0.113

Validation time 0.007s

Table 4.14: Performance for strain energy predictions on the test set.

MAE 𝑅 Min Max Range Average
Max strain energy 5.68 0.9973 6.96 1362 1355 220.4
Final strain energy 0.89 0.9940 0.046 149.29 149.25 13.82

Table 4.15: Results for the maximum and final value of the strain energy on the test set. Distribution of the values is provided
for context of the Mean Absolute Error.

day as the maximum strain energy. Figure 4.18 illustrates this relation for one sample of the training
set. The process over time shows many similarities which can be explained by the direct relation
between contraction and strain in the skin. We investigate whether utilizing this relation, by predicting
both RSAW and strain energy simultaneously, can further improve the prediction of the strain energy.
Training one network to predict both outputs, can also save training time and memory requirements as
only one network needs to be trained and saved. Two different approaches are studied for simultaneous
prediction. In the first approach the two distributions are transformed by one PCA-transform to combine
the information directly. The second approach transforms both distributions separately and uses a
parameter-sharing network, which is explained in Section 3.2.3, to utilize the relation.

For the first approach, the values for RSAW and strain energy are concatenated and transformed
with a 40-dimensional PCA-transform which can capture the variations in both distributions. A two-
layer MLP with 100 neurons in each layer is trained to predict the transformed targets. For the second
approach RSAW and strain energy are reduced using a 22- and 25-dimensional PCA-transform, re-
spectively. A parameter-sharing network with one shared layer of 100 neurons and one private layer
of 100 neurons for each is used to predict the PCA-targets. The use of shared and private parameters
allows the network to learn both inter-target relations and target specific relations. The results from
both networks are compared with the individual predictions from the previous sections. In Table 4.16
the performance measures from the predictions of previous sections, the performance of the combined
predictions, and the shared-network predictions can be found.

Figure 4.18: Strain energy and RSAW for one sample of the training set. RSAW is scaled by factor 100 for visualization
purposes.

46 4. Surrogate Model

Measure RSAW RSAW (comb.) RSAW (sh.) 𝐸strain 𝐸strain (comb.) 𝐸strain (sh.)
𝑅 0.9930 0.8723 0.9926 0.9797 0.9771 0.9807

aL norm 0.0804 0.499 0.0834 76.32 83.57 74.36
aRRMSE 0.0569 0.3501 0.0601 0.1219 0.1313 0.1175
aRelErr 0.43 % 3.06 % 0.46% - - -

MAE min/max 0.0046 0.0322 0.0048 6.45 7.04 6.24
MAE asymp 0.0025 0.0211 0.0027 1.01 1.088 0.9566

Table 4.16: Performance of the combined predictions for RSAW and strain energy strain using a neural network to predict full
combination of RSAW and strain energy (comb) and one using shared and non-shared layers (sh.). Performance measures

are based on the validation set. For ease of comparisons the results from Section 4.2.2 and 4.3.1 are repeated.

The combined approach using the 40-dimensional PCA-transform reports a 𝑅 -score for RSAW of
0.8723 which is significantly lower than the score 0.9939 obtained in Section 4.2.2. The other perfor-
mance measures for RSAW are significantly worse as well, being 6-7 times as high for the combined
approach as for the individual prediction. The prediction of the strain energy on the other hand is rel-
atively similar to the individual prediction in Section 4.3.1, reporting only slightly lower performance
values. Based on these observations, it is concluded that by combining the two distributions with
one PCA-transform, important information is lost on the characteristics of RSAW. For the parameter-
sharing network, the performance for the RSAW is slightly worse and the performance for 𝐸strain is
slightly higher. However, these differences are within the variation of the 10 cross-validation sets and
not significant. Therefore, we conclude that the performance for the shared approach is similar to the
separate approaches and both can be trained together, though it does not lead to improvements on
the performance.

4.3.4. Strain energy from mechanical values
In this section, a similar approach to Section 4.2.6 is used, where the RSAWwas computed using a neu-
ral network to predict the displacement. Similarly, the strain energy is computed as a post-processing
step from the effective strain 𝜖 and the concentration collagen 𝜌 computed by the morphoelastic model
using Equation (4.2).

𝐸strain(𝑡) = ∫ 𝐸√𝜌(𝑥, 𝑡)𝜖(𝑥, 𝑡) 𝑑𝑥. (4.2)

Neural networks are trained to predict the strain 𝜖 and the concentration collagen 𝜌 separately. To
this end, the dimension of the data is reduced using a 55-dimensional PCA-transform for 𝜌 and a 35-
dimensional transform for 𝜖. The choice for the number of components is based on the explained
variance ratio’s and a study of the effects on the samples, as is explained in Section 4.2.2. A two-layer
network with 200 nodes in each layer is trained using the Adam optimizer with a learning rate of 0.006
with decay factor 0.99 every epoch. Table 4.17 shows the general performance results for the networks
for 𝜖 and 𝜌 in the second and third columns. The 𝑅 -scores for both 𝜌 and 𝜖 are close to one and the
aRRMSE values are below 0.1, which shows the network has learned the distributions well. From both
𝑅 -score and the aRRMSE it can be seen that the predictions of 𝜖 are more accurate than 𝜌. Figures
4.19 and 4.20 show the best and worst prediction for 𝜌 and 𝜖 in terms of MSE at days 5, 25, 50, 150, and
365. For 𝜖 both the best and worst predictions are close to the target values. For 𝜌 the best prediction
is very accurate as well, although the worst prediction shows oscillations especially at days 25 and 50.

In Figure 4.21, nine random samples are shown with both prediction of the strain energy by the
network in Section 4.3.1, which we call 𝐸strain, and the prediction using neural networks to predict
the strain and concentration collagen, which we call 𝐸 ,

strain. To study if the similarity of the prediction
can give information on the error, the 𝑅 −score of the two predictions is shown. The performance
measures for both predictions are shown in columns four and five of Table 4.17, respectively. The
performance of 𝐸 ,

strain is slightly worse than 𝐸strain for all measures, though the 𝑅 -score of 0.9729, the
aRRMSE of 0.01183, and the MAE of the maximum and the final contraction of 7.62 and 0.56 indicate
that the network does give accurate predictions. Since the networks for 𝜖 and 𝜌 have been tuned less
extensively, it can not be concluded that the direct approach is significantly better. Next, it is studied
whether there is a relation between the 𝑅 -score of both predictions and their accuracy. The samples
in the third row of Figure 4.21 show predictions that are almost indistinguishable from the target, the
𝑅 -scores above 0.99 indicate that indeed the predictions are very accurate. The second sample in the

4.3. Strain energy prediction - 1D morphoelastic model 47

Figure 4.19: Worst and best prediction in terms of MSE for collagen concentration at days 5, 25, 50, 150, and 365.

Figure 4.20: Worst and best prediction in terms of MSE for the effective strain at days 5, 25, 50, 150, and 365.

Performance measure 𝜌 𝜖 𝐸 ,
strain 𝐸strain Average 𝐸strain

𝑅 0.9892 0.9939 0.9729 0.9811 0.9847
aL norm 1.62 1.11 86.90 78.33 63.92
aRRMSE 0.0872 0.0553 0.1183 0.1178 0.0957
MAE max - - 7.62 6.41 5.32
MAE final - - 0.56 0.76 0.63

Table 4.17: General performance for the prediction of and , the prediction of the strain energy using the prediction of ,
(,

strain), the prediction of the strain energy directly by the NN (strain), and the averaged prediction on the test set.

first column and the first sample in the third column have lower scores of 0.9169 and 0.9177 respectively
and for these samples it can be seen that the two predictions vary more in shape. However, it should be
noted that these two samples have low maximum values and therefore a lower MSE and MAE. From
this it can be concluded that the 𝑅 score can give an indication of how well the prediction approximates

48 4. Surrogate Model

the shape of the strain energy, though, no conclusions can be drawn on the actual error of the prediction
using the 𝑅 -score. From Figure 4.21 it is also observed that although both methods for prediction are

Figure 4.21: Random samples from the test set with the prediction of the strain energy by the neural network directly and by
using a neural network to predict and . The score between the two predictions is shown as well.

relatively accurate, in some cases they are very similar and in some cases one prediction overestimates
where the other underestimates. It is interesting to find if the information from both predictions combined
can lead to a better prediction. To that end, the two networks are combined in an ensemble, which
provides a new prediction based on the average of the two individual predictions. The results of this
prediction are shown in the last column of 4.17. We find that except for the MAE of the final strain
energy all performance measures improve when combining the two predictions. We are interested to

Figure 4.22: Relation between mean absolute difference of the predictions and true mean absolute errors for the predictions
strain ,

,
strain, and for the average prediction. Results are for all samples in the test set. The Pearson correlation coefficient is

shown to give an indication of linearity.

find if the similarity of the two separate predictions can give an indication of the true error. To that
end, we compute the mean absolute difference between the two predictions 𝐸strain and 𝐸

,
strain and the

4.4. Two-dimensional morphoelastic model 49

mean absolute errors with respect to the targets. Figure 4.22 shows the distribution with the mean
absolute difference on the x-axis and the respective true errors on the y-axis. The Pearson correlation
coefficient is shown indicating to what extent the values show a linearity relation. The results indicate a
relatively strong correlation, hence the mean absolute difference between the two predictions can give
an indication of the true error of the solution. We note that the correlation for the average prediction is
less than for the individual predictions.

From this study, it is concluded that a neural network can be trained to predict the effective strain and
the collagen concentration over time and in space accurately. These predictions can be used to provide
accurate predictions of the strain energy over time. Furthermore, it is concluded that combining these
predictions with the direct surrogate for the strain energy in an ensemble can lead to better predictions.
It must be noted that it can not be concluded that the ensemble prediction is always better.

4.4. Two-dimensional morphoelastic model
From the results for the one-dimensional model in the previous sections, it is evident that neural net-
works can predict the outcomes accurately and can be used as a computationally cheap alternative.
However, a one-dimensional model has large restrictions when modeling a three-dimensional wound
and higher dimensional models are currently being developed to increase the accuracy of the simula-
tions. In this section, the two-dimensional morphoelastic model is used. This model is implemented
by Barion [12] and elaborates on the morphoelastic framework developed by Koppenol [50]. The ad-
dition of a second dimension increases the number of grid points and the size of the linear systems
leading to a large increase in the computation time. The application of a neural network surrogate can
prove to be especially useful for these expensive simulations. A new dataset needs to be generated
for the two-dimensional model, which is discussed in Section 4.4.1. In Sections 4.4.2 - 4.4.4 surrogate
are discussed for the relative surface area of the wound, the strain energy, and the movement of the
wound edge.

4.4.1. Dataset
For the generation of the dataset for the two-dimensional morphoelastic model, the same approach
is used as for the one-dimensional case in Section 4.1. For each of the input parameters that vary
between simulations, a suitable range of values is defined. At the start of each simulation, all the input
parameters are drawn uniformly from their respective range. Most of the input parameters are used in
both models. However, the two-dimensional model has an additional parameter 𝜈 which accounts for
the Poisson effect. This means that the range for 𝐸 needs to change as it implicitly incorporated the
Poisson effect for the one-dimensional model. In two dimensions the parameter 𝜇 can vary between
the directions and 𝜇 and 𝜇 are used for 𝑥- and 𝑦-direction, respectively. We have assumed that there
is no difference in viscosity between 𝑥- and 𝑦-direction, i.e. 𝜇 = 𝜇 .

Even though most parameters are the same for both models, for some parameters the ranges
needed to be adapted to prevent unstable or unrealistic results. It was observed that the two-dimensional
model is especially sensitive to the values of 𝐷 , 𝑟max, 𝑘 , �̄�, 𝛿 , 𝛿 and 𝑘 , causing a larger variation
in the relative surface area than changes in the other parameters. It must be noted that only individual
parameter sensitivity has been studied and no interaction between parameters has been considered.
The ranges of the sensitive parameters were adapted to prevent instabilities and are highlighted in
bold in Table 4.18. It has to be noted that a thorough study of the parameter and model sensitivity and
their interaction is necessary to improve the ranges for future studies. The sensitivity results for the
parameters obtained by Egberts et al. [22] can be extended to the two-dimensional model.

Parameters that are fixed for all patients are given in Table 4.19 for reproducibility reasons. Note
that 𝐿 is a fixed parameter for the two-dimensional model. Explanation and references for the pa-
rameter ranges can be found in Appendix A. Since the simulations of the two-dimensional model are
computationally more expensive, fewer simulations are run and each simulation is computed until 100
days instead of 365 days. For the simulations, the results are computed on the quarter of the domain,
i.e. Ω = [0, 4] × [0, 4], where the wound is defined by the domain Ω = [0, 1] × [0, 1]. The domain is
discretized using uniform bilinear elements generated by a grid of 20x20 grid points with a time step of
0.1 day. As discussed in Chapter 2, the two-dimensional model computes four constituents (𝑁,𝑀, 𝜌, 𝑐),
five mechanical values (𝑣 , 𝑣 , 𝜖 , 𝜖 , 𝜖), the relative surface area (RSAW), and the strain energy
(𝐸strain). Furthermore, the dataset includes the movement of the edge of the wound and the location

50 4. Surrogate Model

Parameter Range
DF 7.6167 ⋅ 10 - 1.2 ⋅ 10
𝜒 (2 − 3) × 10
𝐷 (2.22 − 3.2) × 10
𝑟 0.832 − 0.924
rmax
F 2 − 2.3
kF 8 × 10 − 1.08 × 10
�N (1 − 1.5) × 10
�̄� 0.0975 − 0.1200
𝛿N 0.0119 − 0.02
𝛿M 0.055 − 0.065
𝛿 (0.354 − 0.693) × 10
𝛿 (5.5 − 6.075) × 10
𝜅F 0.5 ⋅ 10 − 1.6 ⋅ 10
�̃� (1 − 5) × 10
𝑎 (0.9 − 1.1) × 10
𝑎 (0.98 − 1.02) × 10
𝑎 (2 − 2.5) × 10
𝑎 (0.8 − 1.2) × 10
kc (0.8 − 0.9)𝛿 �̄�𝑎
𝜌 0.89 − 1.29
𝜇 60 − 1000
𝜇 𝜇
E 28 − 34
𝜉 (4.4 − 4.8) × 10
𝜁 (4 − 9) × 10

Table 4.18: Parameter values which are varied for each patient
in the two-dimensional dataset. For the bold parameters, the
ranges are changed with respect to the one-dimensional

dataset.

Parameter Value
𝑘max 10
�̄� 0
�̄� 0
𝑞 [log() log((̄)]

log(̄)
𝜂 2
𝜂 0.5
�̃� 0.2�̄�
�̃� 0
𝑘 𝛿 �̄�
𝑅 0.995
𝜈 0.49
L 1

Table 4.19: Parameter values that are fixed for all patients in
the two-dimensional dataset. The bold parameters have been

changed with respect to the one-dimensional dataset.

of the grid points over time. The keys and sizes of the values in the dataset are given in Table 4.20.
The simulations are computed on a server of 27 nodes, where each node has four or eight cores. The
simulations are computed in parallel on the cores of each node. An average simulation needs four
hours to finish on a node with four cores.

Key Size
Inputs 𝑁samples × 26
RSAW 𝑁samples × 100
StrainEnergy 𝑁samples × 100
𝑁 𝑁samples × 100 × 441
𝑀 𝑁samples × 100 × 441
𝑐 𝑁samples × 100 × 441
𝜌 𝑁samples × 100 × 441
𝑣 𝑁samples × 100 × 441
𝑣 𝑁samples × 100 × 441
𝜖 𝑁samples × 100 × 441
𝜖 𝑁samples × 100 × 441
𝜖 𝑁samples × 100 × 441
𝑥 𝑁samples × 100 × 441
𝑦 𝑁samples × 100 × 441
bnd 𝑁samples × 100 × 21

Table 4.20: Two-dimensional dataset - keys and sizes.

During the generation of the two-dimensional dataset, the numerical instabilities were not all caught,

4.4. Two-dimensional morphoelastic model 51

resulting in a polluted dataset. In most cases, the numerical instabilities caused exploding strain en-
ergy computations and unrealistic behaviour of the wound edge and these samples were filtered from
the dataset. It should be noted that in hindsight an implementation error was found in the numerical
model, such that some of the simulations might not be accurate. This could have led to more numerical
instabilities. The final dataset contains 900 samples and due to this limited number of samples, it has
been decided to use 10-fold cross-validation only to validate the performance of the model and to leave
out the independent test set.

4.4.2. RSAW prediction
Analogously to the one-dimensional case, a network is trained to predict RSAW over time, using the
direct surrogate approach. As the data type and information are similar, the same type of network
can be used. In Section 4.2.3, it was found that the predictions of the relative surface area could be
improved by adding more data until the training set contained approximately 3200 samples. Since there
are only 900 samples in the two-dimensional dataset, the results are expected to be less accurate than
for the one-dimensional dataset. The chosen network hyperparameters can be found in Table 4.21.

Type NN MLP
No. neurons 100/100
Activation function ReLU
Loss function MSE
Optimization Adam
Learning rate 0.008
Learning rate decay 0.99
Max #epochs 150
Regularization Early stop (20)
Data processing Standardization

Table 4.21: Neural network parameters RSAW prediction for the two-dimensional model.

Figure 4.23 shows the best and worst predictions and the distribution between predictions and tar-
gets for one of the cross-validation sets. In the figure, it is observed that the best prediction is accurate
and closely resembles the target. For the worst sample, retraction starts too early and a maximum
relative error of 6.26% is obtained. The distribution between targets and predictions resembles the
𝑦 = 𝑥 -line and shows that the predictions are close to the target values. Table 4.22 gives the general
performance measures for the network. As expected, the performance on the two-dimensional dataset
is lower than the performance on the one-dimensional dataset. The 𝑅 -score is 0.9577 compared to
0.9930 and the aRRMSE is 0.167 compared to 0.05 for the one-dimensional dataset. However, the
average relative error of 0.74% and the aRRMSE, which is below 0.2, show that the overall perfor-
mance is still good. Figure 4.24a shows the prediction for nine random samples, from which it can be
observed that the neural network predictions are a good approximation of the targets.

Performance measure Value
𝑅 0.9577 ± 0.0062

aL norm 0.070 ± 0.007
aRRMSE 0.167 ± 0.0179
aRelErr 0.74 ± 0.07%

Training time 18 s
Validation time 0.0006 s

Table 4.22: General performance for RSAW predictions on the two-dimensional dataset.

MAE 𝑅 Min Max Range Average
Min RSAW 0.0078 ± 0.0007 0.979 ± 0.005 0.532 0.933 0.401 0.753

Table 4.23: Results for the minimum RSAW values averaged over the 10 cross-validation trials for the two-dimensional dataset.
Distribution of the values is provided for context of the Mean Absolute Error.

52 4. Surrogate Model

Figure 4.23: Results RSAW prediction for the two-dimensional model. Upper two graphs show predictions and targets for the
best and the worst prediction in terms of MSE. Left bottom graph shows the relative error for the worst prediction and right

bottom graph shows the relation between predictions and targets, the line ‘y = x’ for comparison and the score.

(a) Targets and predictions for nine random chosen samples of the
validation set. (b) Minimum RSAW

Figure 4.24: Results for the RSAW prediction of the two-dimensional model on one of the cross-validation sets.

Since the simulations are run for 100 days only, the process is still in the retraction phase and there
is no final contraction. In most cases, the minimum RSAW has been reached and the results for the
minima can be found in Figure 4.24b and Table 4.23. The predictions of the maximum contraction are
accurate with a mean absolute error which is 1.9% of the range of the values. This shows that the
neural network can distinguish well between the magnitudes of the different samples, which is also
visualized in Figure 4.24b. From Table 4.23, it is noted that the range of values is smaller than for the
one-dimensional model, showing less variation in the maximum contraction. The lower variation can be
caused by the adapted ranges for the parameters and by the smaller dataset. From the observations, it
is concluded that the network can learn the distribution quite well and that it is expected that the results
will improve if more training samples are added.

4.4.3. Strain energy prediction
Similarly to the one-dimensional dataset, a surrogate approach for the strain energy is studied for the
two-dimensional model as well. The strain energy is computed as described in Section 2.2.3. A two-
layer MLP network is used with 100 nodes in each layer and ReLU activation units. The network is
trained with the Adam optimizer using a learning rate of 0.008 with an exponential learning rate decay
factor 0.99 every epoch. The network is trained for at most 150 epochs.

The general results are shown in Table 4.24 and Figure 4.25. Analogously to the one-dimensional

4.4. Two-dimensional morphoelastic model 53

case, the absolute error is shown instead of the relative error for the strain energy. Both the higher
aRRMSE value of 0.3586 and the lower 𝑅 −score of 0.8426 indicate that the neural network prediction
is significantly worse than for the one-dimensional predictions. Furthermore, the two right figures in
Figure 4.25 show that the neural network has difficulty predicting the right shape. The distribution of
predictions and targets shows larger deviations from the 𝑦 = 𝑥 -line, indicating the fit is less accurate.
Figure 4.26a shows the predictions and targets of nine random samples. For these nine samples, the
predictions are fairly close to the targets.

Figure 4.25: Results strain energy prediction for the two-dimensional model. Upper two graphs show predictions and targets
for the best and the worst prediction in terms of MSE. Left bottom graph shows the absolute error for the worst prediction and
right bottom graph shows the relation between the prediction and targets, the line ‘y = x’ for comparison and the score.

Performance measure Value
𝑅 0.8426 ± 0.0231

aL norm 22.24 ± 3.10
aRRMSE 0.3586 ± 0.0299

Average training time 15 s
Validation time 0.005 s

Table 4.24: General performance for strain energy predictions on the two-dimensional dataset over the 10 cross-validation
trials.

Similarly to the relative surface area, the strain energy has not reached a final state in all the samples
and only the performance on the maximum strain energy can be considered. The performance on the
maximum strain energy is reported in Table 4.25 and Figure 4.26b. In the figure, it can be seen that
the predictions of samples with a higher maximum are less accurate than for samples with a lower
maximum. From Table 4.25 it is noted that the range of values for the strain energy is much lower
than for the one-dimensional model where the maximum strain energy could reach values over 1000.
The smaller range is likely caused by the more limited ranges for sensitive parameters and the smaller
dataset. The mean absolute error of the maximum strain energy is below 5% of the range of values
which shows that a reasonable indication of the maximum intensity of the strain energy can be given.
Though, from Figure 4.26b it can be observed that the network has more difficulty predicting higher
maxima. From the observations, it is concluded that the overall performance of the network is not very
good and has difficulty generalizing to samples with a higher minimum. For the samples with a lower
minimum, the network can give reasonable predictions. More samples should be added to the training
set to find whether the performance can be improved.

54 4. Surrogate Model

(a) Random chosen samples from the validation set and the
corresponding predictions from the neural network.

(b) True values and predictions for the maximum strain energy for all
samples in the validation set.

Figure 4.26: Results for the strain energy predictions of the two-dimensional model.

MAE 𝑅 Min Max Range Average
Max strain energy 2.37 ± 0.49 0.832 ± 0.0767 2.67 80.61 77.94 21.35

Table 4.25: Results for the maximum strain energy values averaged over the 10 cross-validation trials. Distribution of the
values is provided for context of the Mean Absolute Error.

4.4.4. Wound edge prediction
In two dimensions the geometry of the wound becomes more important and for the two-dimensional
model the relative surface area only gives information about general contraction and not about localized
contractions. Using the displacement of the wound edge, it can also be shown how the wound contracts
and retracts. Furthermore, a visualization of the wound movement is intuitively easier to interpret than
numeric values. In this section a neural network is trained to predict the movement of the wound edge
over time. We note that the initial wound size and shape are equal for all samples in the dataset.

The dimension of the boundary outputs is reduced using a 20-dimensional PCA-transform and stan-
dardized to improve the training. A two-layer network is trained with 40 neurons in each layer. The
network is trained for 150 epochs with learning rate 0.007 and learning rate decay factor 0.99. For
visualization purposes, the target and the prediction are displayed at day 0, 25, 50, 75, and 99. These
days are shown for the best and the worst prediction in terms of the L -norm in Figure 4.27. From
the timestamps in the figure, the contraction and start of retraction of the scar can be seen. For the
best sample, the prediction is very accurate. For the worst sample, the prediction is very accurate
until 50 days, after which a slight deviation occurs. The performance measures are reported in Table
4.26. Here the average relative error is only considered on boundary points unequal to zero on both
axes, such that the results remain valid. The 𝑅 -score of 0.9614 and the aRRMSE of 0.19 indicate a
fairly good fit of the model. From the observations, it is concluded that the network can provide fairly
accurate predictions of the movement of the wound edge. Similarly to the prediction of RSAW and the
strain energy, the performance of the model will likely increase when it is trained on more samples.
Therefore, the neural network can be used to provide visualizations of the wound contraction.

Performance measure Value
𝑅 0.9614 ± 0.0054

aL norm 0.1751 ± 0.0171
aRRMSE 0.1901 ± 0.0185
aRelErr* 3.78 ± 0.04%

Average training time 63 s
Validation time 0.0006 s

Table 4.26: General performance for wound edge prediction on the two-dimensional dataset. *Average relative error taken over
all values unequal to zero on both axis.

4.5. Conclusion 55

Figure 4.27: Worst and best prediction of the validation set for the wound edge movement shown at days 0, 25, 50, 75 and 99.
The blue line shows the true movement and the red dashed line the neural network prediction.

4.5. Conclusion
In this chapter, we studied the use of neural network surrogates for both the one- and two-dimensional
morphoelastic models. We conclude that neural network surrogates can be trained to predict the RSAW
and the strain energy for the one-dimensional model very accurately. Furthermore, it is shown that the
surrogate approach achieves a large acceleration in computation time as it can predict all simulations
in the test set (1222 samples) in approximately 0.007 seconds, where the numerical model needs
approximately 90 seconds to compute one simulation. It is shown that the PCA-transform can be
valuable in reducing dimension without losing the essential information for training the network. It
is found that an explained-variance weighted loss function is necessary to ensure proper training for
the PCA-targets. We considered approaches where the neural networks were trained to predict the
displacement of the wound, the collagen concentration, and the effective strain. From these predicted
constituents and mechanical values, the RSAW and the strain energy can be derived. It was shown
that these methods are effective as well in predicting the RSAW and the strain energy. These methods
were combined with the direct surrogate predictions to function as an ensemble, which led to a slight
improvement with respect to the individual predictions. Moreover, for the strain energy, it was shown
that the mean absolute difference between the two predictions is correlated with the true mean absolute
error and hence can provide a means for uncertainty estimation.

The preliminary study of the two-dimensional model showed that the neural networks can provide
a significant acceleration as well, although the results are less accurate than for the one-dimensional
model. The lower accuracy is likely caused by the smaller training set, 600 vs 4200 samples. The
two-dimensional model has the advantage that the movement of the wound edge can be predicted,
which can be valuable for visualization purposes. It can be concluded that even for the small training
set a neural network can be used to predict this movement fairly accurately. Therefore, it is concluded
that a neural network surrogate can be valuable in providing fast predictions for the wound area and
the movement of the scar. The prediction time for the two-dimensional model is decreased from four
hours for one simulation to 0.008 seconds for 85 simulations. It is noted that increasing the number of
samples in the training set is necessary to further improve the performance of the surrogate models.

5
Hybrid Model

In the previous chapters, the neural network is used as a surrogate for the complete morphoelastic
model, i.e. to find the prediction for the desired output variable directly from the input parameters.
However, this approach limits the user’s choices compared to the morphoelastic model. In the mor-
phoelastic model the user can choose, for example, how many days to predict ahead, which type of
initial conditions to use, and whether to make adaptations after a certain number of time steps. The
neural networks in the surrogate approach were trained to predict a fixed number of days ahead. To
maintain the flexibility of the morphoelastic model a hybrid approach is developed. In this approach,
only the computationally expensive steps of the morphoelastic model are replaced by a neural network.
The computationally expensive task is the computation of the constituents and mechanical values for
the discretized time step. This computation can be seen as a nonlinear mapping of the values at time
step t and the input parameters to the values at time step 𝑡 + Δ𝑡. Hence, it is possible by the universal
approximation theorem to approximate this mapping with a neural network [27]. Combining the mor-
phoelastic model and the neural network into a hybrid model would get the fast computations of the
neural network with the flexibility of the morphoelastic model.

In this section, a preliminary study is performed on training a neural network to predict the con-
stituents and mechanical values for the next time step based on their values at the current time step.
The neural network predictions can be applied iteratively until the required day is reached. Section 5.1
describes the data format and data processing and Section 5.2 discusses the network architecture and
the results.

5.1. Dataset
The data, generated for the one-dimensional dataset in Chapter 4, can be used for training the hybrid
model as well. More details on the generation of the dataset and the parameter values can be found
in Section 4.1 and Appendix A, respectively. Although the data itself can be used, a different format for
the data is required. To find the required format, the inputs and outputs of the nonlinear mapping that
we want to approximate must be considered. The morphoelastic model computes the new constituents
andmechanical values,𝑀 ,𝑁 , 𝜌 , 𝑐 , 𝑢 , 𝑣 , 𝜖 , from the old constituents andmechanical
values. In these computations, the input parameters 𝑝 are used as well. Therefore, the inputs of the
neural network must be 𝑀 ,𝑁 , 𝜌 , 𝑐 , 𝑢 , 𝑣 , 𝜖 and 𝑝 and the outputs of the neural networks must be
𝑀 ,𝑁 , 𝜌 , 𝑐 , 𝑢 , 𝑣 , 𝜖 . The constituents and mechanical values are all vectors with
length 202, equal to the number of grid points in the original simulations. To summarize, a neural
network is taught to reproduce a nonlinear mapping ℱ ∶ ℝ × × ℝ → ℝ × :

[𝑀 ,𝑁 , 𝜌 , 𝑐 , 𝑢 , 𝑣 , 𝜖] = ℱ(𝑀 ,𝑁 , 𝜌 , 𝑐 , 𝑢 , 𝑣 , 𝜖 , 𝑝). (5.1)

The previously constructed dataset in Section 4.1 contains the values for all time steps per sample.
To process the data for training, all samples are split along the time axis. As shown by Grzeszezuk
et al. [33] the neural network does not need to satisfy the time step stability criteria of the numerical
model and larger time steps can be considered. It is chosen to split the dataset such that each sample
predicts five days ahead, which decreases the number of total steps and still ensures that the minimum

57

58 5. Hybrid Model

RSAW can be captured properly. With this approach, the number of available samples is increased
with factor 360 as each original sample in the dataset is now split into 360 separate samples. The
constituents and mechanical values at the input time step are combined with the input parameters to
form the input for the neural network. The output consists of the constituents and mechanical values
five days later. Furthermore, the true RSAW and strain energy distributions over 365 days and the
initial conditions (𝑡 = 0) are saved for means of evaluation.

For training and validation, an 80:20% split of the obtained samples is used. Due to the splitting of
each sample into 360 separate samples and the random distribution between training and validation
set, these two sets have an overlap in terms of the 25 input parameters. To ensure that the test set
contains samples that are different from the training set regarding the 25 input parameters, the test
set is constructed from original samples that have not been used for the generation of the training and
validation set. This results in a training set of 1.9 million samples, a validation set of 190 000 samples,
and a test set of 298 080 samples.

Before training the inputs and targets need to be standardized. The inputs, except for the input
parameters 𝑝, and the targets are from the same distribution and can be standardized using the same
transform. This is an advantage for performing iterative predictions as the prediction at time step 𝑡 can
directly be used as input for the predictions of time step 𝑡+1. The input parameters 𝑝 are standardized
using a separate transform. The transformed data is used to train the network.

5.2. Network & Results
In this section the performance measure, the network architecture, and the preliminary results are dis-
cussed. Due to limited computational resources and limited time, only a small study could be performed.
The following approach is taken to demonstrate the concept and the possibilities of the method. First,
a network is trained on 15% of the training data and evaluated on validation and test set. Then the
training set size is increased to 30% of all training samples and the network is retrained. The perfor-
mance of both trained networks on the test set is compared. A positive effect of more training samples
on the performance can show, to some extent, whether the performance will improve by increasing the
number of samples to the complete training set.

5.2.1. Performance measures
In order to evaluate the performance of the neural networks, two different methods are used. The
general performance of the predictions for the constituents and the mechanical values is computed on
the validation set using the goodness of fit 𝑅 , the aRRMSE, and the average 2-norm as described in
Section 3.7. The performance on the validation set shows how well the network can predict the next
time step. It is more interesting to know how well the model is able to predict RSAW and the strain
energy in the future. To that end, the inputs of test samples at 𝑡 = 0 are used to initiate 73 consecutive
predictions (365 days in total), each using the previous prediction as new input. From the obtained
predictions of the constituents and mechanical values for 365 days the RSAW and strain energy can
be computed. These predictions are compared to the true RSAW distribution for each sample. The
performance is evaluated using the goodness of fit 𝑅 , aRRMSE, and the average L -norm.

5.2.2. Network
The constituents and mechanical values inherit the same spatial structure of the mesh in the numer-
ical model. This spatial structure can be utilized by a Convolutional Neural Network (CNN), which is
specialized in recognizing spatial structures. Based on this property, it is chosen to train a CNN for the
hybrid model. The constituents and mechanical values at the time step 𝑡 represent the channels in the
input for the convolutional layer. Two convolution layers of seven input and seven output channels with
kernel size three are used to extract the important features of the constituents and mechanical values.
The outputs of the convolutional layers are passed to a MaxPool layer with kernel two and stride two, to
reduce the dimension. The input parameters 𝑝 do not have a spatial structure and cannot be passed to
the convolution layers. Therefore, these inputs are concatenated to the outputs of the MaxPool layer.
The combined values are passed through two linear layers with ReLU activations of 250 neurons, and
an output layer of size 7*202. The outputs from the output layer represent the constituents and me-
chanical values at the next time step. The network is trained using the Adam optimizer with learning
rate 0.0005 and is trained for only 15 epochs, due to the time limitations.

5.2. Network & Results 59

5.2.3. Results 15% training data
First, the CNN is trained on 15% of the training data, i.e. approximately 228 000 samples. Although
the number of samples is significantly higher than for the surrogate networks, this dataset contains
approximately 720 input parameter combinations from the original dataset. The results of a 200 sample
batch of the validation set are shown in Table 5.1 for the constituents. The performance on the validation
set is for the predictions of the next time step for all constituents and mechanical values. It is noted that
the results on the validation set are for a batch of 200 samples only and therefore are not necessarily
the performance on the complete validation set. These values are only used as an indication of how
well the network is trained, the general performance of the hybrid approach is determined based on
the predictions on the test set. For the given batch, the performance is good with 𝑅 -scores close to
one and low aRRMSE scores, which are below 0.1 except for 𝑣. The aL -norms are dependent on the
magnitude of the values and therefore it is expected that the values for 𝑀 and 𝑁 are higher.

Performance M N c 𝜌 u v 𝜖
𝑅 0.9916 0.9981 - 0.9969 0.9889 0.9752 0.9980

aRRMSE 0.0547 0.0423 - 0.0525 0.0336 0.1211 0.0403
aL 1057 2800 - 0.1045 0.1195 0.0081 0.0561

Table 5.1: Performance measures for the constituents and mechanical values on a 200 sample batch of the validation set,
using a CNN network trained on 15% of the training data. Due to an error the values of were not saved correctly.

It is more interesting to find the results on the test set. For 240 samples in the test set the initial
conditions, i.e. the constituents and mechanical values at 𝑡 = 0, are passed to the neural network.
Iteratively, the predictions for days 0 to 365 with a time step of five days are computed. The predictions
for the constituents and mechanical values are used to predict the relative surface area and the strain
energy over time. Figure 5.1 shows the best and the worst prediction for 𝑢, 𝜌, 𝜖 in the test set at days
5, 50, 100, 250, and 365. Note that the network also predicts the values of𝑀,𝑁, 𝑐, and 𝑣, which are not
shown here as they are not needed for the computation of RSAW and the strain energy. It is observed
that the best prediction is close to the targets for 𝜌 and 𝜖 and 𝑢, showing some deviation on maximum
and minimum values only. For the worst sample, it is observed that the predictions for 𝑢 and 𝜖 are too
low and seem to converge too fast to a final value. The prediction for 𝜌 shows a different distribution
over space for day 50 and 100. From these observations, it is clear that in the best case the predictions
are fairly accurate and in the worst case the predictions are wrong.

Figure 5.1: Best and worst predictions in terms of MSE for the displacement of the wound , the concentration of collagen
and the effective strain at days 5, 50, 100, 250, and 365 for the test set. Predictions are computed by the CNN trained on

15% of the training data.

The distributions of RSAW and strain energy are computed from the predicted constituents and nine

60 5. Hybrid Model

samples are shown in Figures 5.2a and 5.2b. In the figures, it can be observed that the predictions
capture the process of contraction, retraction, and to some extent convergence to a final RSAW. Though
it is noted that in five of the samples the relative surface area starts to increase after 200-250 days again.
In the figures, it can be seen that the prediction of the minimum RSAW is not accurate for the samples.
The same holds for the strain energy with respect to the maximum. For the test set, the performance
results for RSAW and the strain energy are shown in Table 5.2. The 𝑅 -score of the RSAW and the
strain energy distributions are negative, which means that the predictions are worse than reporting the
average value. The aL -norms of 0.99 for RSAW and 534 for the strain energy also indicate that the
overall error between the prediction and target is large. Therefore, it is concluded that for training on
15% of the data, the network has not learned the mapping of the time-step well enough to provide
accurate predictions for RSAW and the strain energy over time. Even though the results on the batch
of validation samples were good, it is clear that the errors for the prediction of the next time-step have
a large effect when using iterative predictions.

(a) RSAW (b) Strain energy

Figure 5.2: Prediction for the RSAW and strain energy over 365 days using CNN, trained on 15% of the data, to predict
constituents and mechanical values at each time step.

Performance RSAW 𝐸strain
𝑅 -0.91 -0.04
aL 0.99 534

aRelErr 14.2% -

Table 5.2: Performance measures for prediction RSAW and strain 365 days ahead using iterative predictions with the trained
CNN on 15% of the data.

5.2.4. Results 30% training data
To improve the performance, the network is trained on 30% of the training data, which results in a
training set of approximately 457 000 samples. The performance on a 200 sample batch of the valida-
tion set is shown in Table 5.3. Since any differences in the performance could be due to validating on
different samples, the results for the validation set are not compared to the results for training on 15%
of the data. The 𝑅 -scores for all constituents and mechanical values are above 0.98, which shows
that the neural network has learned the distribution of these values quite accurately. The aRRMSE
values below 0.1 indicate that the network can predict the next time step quite well. The aL -norms
are dependent on the magnitude of the values and therefore it is expected that the values for 𝑀 and 𝑁
are higher. The reported performance on the validation batch indicates that the network is trained well.
Again, it is more interesting to find the performance on the test set and to see whether the performance
has improved.

For 240 samples in the test set the initial conditions, i.e. the constituents and mechanical values at
𝑡 = 0, are passed to the neural network. The network is used iteratively to compute the predictions up
and until day 365. Figure 5.3 shows the prediction and the target for the displacement 𝑢, the collagen
concentration 𝜌 and the strain 𝜖 at days 5, 50, 100, 250, and 365 for the best and worst sample in
the test set. The predictions of RSAW and 𝐸strain for nine random samples of the test set are shown
in Figure 5.4. Table 5.4 reports the performance measures for the predictions of 240 samples in the
test set. In Figure 5.3 it can be observed that the best predictions are accurate for almost all days,

5.2. Network & Results 61

Performance M N c 𝜌 u v 𝜖
𝑅 0.9913 0.9935 - 0.9942 0.9886 0.9822 0.9977

aRRMSE 0.0598 0.0782 - 0.0705 0.0381 0.0890 0.04588
aL 1364 4981 - 0.1067 0.1369 0.0125 0.0586

Table 5.3: Performance measures for the constituents and mechanical values on the validation set, using a trained CNN
network on 30% of the data. Due to an error the values of were not saved correctly.

although an increase for 𝑢 can be observed on day 365. For the worst predictions, the prediction of
𝑢 is slightly better, but the predicted values are still far off the targets. From this figure, it can not be
concluded whether the performance has increased significantly. In Figure 5.4a it can be seen that for
seven out of nine samples, the prediction shows contraction, retraction, and convergence to a final
value. The convergence to the final value has improved with respect to training on 15% of the data, as
in seven of the nine cases RSAW converges and does not increase at the end. This is promising as it
shows that the network has learned the general long-term behavior better by training on more samples.
Furthermore, it is observed that the network predictions on samples with slow contraction and retraction
have improved as well. This shows that the network has captured more varying distributions. The fact
that the final value is relatively accurate in five of the samples, whereas the minimum is not, indicates
that the error does not necessarily accumulate due to the iterative predictions. The overall performance
of RSAW distribution has increased significantly, reporting a 𝑅 -score of 0.4014 instead of -0.91, a L -
norm of 0.4535 instead of 0.99 and a relative error of 5.66% compared to 14.2%. These performance
measures and the observations on the nine samples support the claim that the predictions of RSAW
have improved. The 𝑅 -score for the strain energy is still negative, though the average L -norm has
decreased from 534 to 364, which shows that the predictions are closer to the targets.

Figure 5.3: Best and worst predictions in terms of MSE for the displacement of the wound , the concentration of collagen
and the strain at different time stamps for the test set.

Performance RSAW 𝐸strain
𝑅 0.4014 -0.2569
aL 0.4535 364.1

aRelErr 5.66% -

Table 5.4: Performance measures for prediction RSAW and the strain 365 days ahead using iterative predictions with the
trained CNN on 30% of the data.

62 5. Hybrid Model

(a) RSAW (b) Strain energy

Figure 5.4: Prediction for the RSAW and strain energy over 365 days using CNN to predict constituents and mechanical values
at each time step.

To summarize, the main observations are that the performance on the validation set is good, that
the network can capture the process of contraction, retraction, and convergence for 73 iterative predic-
tions, and that the prediction of the RSAW and 𝐸strain distributions are not accurate enough in terms of
minimum and final values. From these observations, we reason that the network has learned the gen-
eral mapping but not the effect of the 25 input parameters, which determine the specific distributions
of RSAW and 𝐸strain. Based on these observations and the fact that the performance has increased by
adding more training samples, we believe that the hybrid method is promising. To improve the perfor-
mance, the network should be trained on more data for a longer period of time and the hyperparameters
should be tuned.

5.3. Conclusion
In this chapter, a first step is taken towards a hybrid approach, where a neural network learns to predict
one time step ahead. In the hybrid approach, the trained network can be used iteratively to provide
predictions for the next 365 days. A CNN is trained on 15% and 30% of the training data, respectively.
It is found that the performance of the network on the test set is increased significantly by the increase
in training data. It was observed that although the predictions of RSAW and the strain energy are not
accurate yet, the iterative predictions capture long-term effects as contraction, retraction, and conver-
gence to a final value. From these observations, we derive that the network has not learned to the
correct effects of the 25 input parameters, though it has learned the general mapping of one time step.
This supports the claim that the hybrid approach seems promising. More research needs to be done
to improve training. It needs to be studied what performance can be reached when more training data
or different architectures are used.

6
Clinical Case Studies

The main advantage of using a neural network as a surrogate for the morpho-elastic model is the option
to provide fast simulations. In this chapter, two possible applications are discussed that demonstrate the
usability of neural networks and support the claim that fast simulations are essential. First, the possibility
for the neural network to (re)produce a parameter study is studied. There is large uncertainty in the
values of the input parameters, e.g. how they differ per patient and their effect on the contraction. Being
able to perform fast parameter studies can give more insight into the parameters and their behavior.
In this chapter specifically the influence of age on the parameters and skin contraction is studied. For
the sake of validation, the study with the neural network is compared to the same study performed with
the morpho-elastic model. Secondly, we show a basic concept of an application that can be used to
assist medical staff when treating patients with burn wounds. It applies the neural network to compute
fast predictions on the healing process and the probabilities of contractures. The application uses
Monte-Carlo simulation to account for the uncertainty in the input parameters for the patient.

6.1. Age study
Egberts et al. [22] performed an age study to find the influence of the patient’s age on skin contraction.
To this end parameters, dependent on age, were chosen for four different age groups. Performing
these studies requires a significant number of simulations per group and is therefore computationally
intensive. It is interesting to find if the neural network, trained on the one-dimensional dataset, can
reproduce this study. The fast simulations of the neural network would allow for much more thorough
parameter studies within less time. It is noted that the study by Egberts et al. [22] uses spatially vary-
ing parameters, whereas the neural network has been trained on spatially constant parameters. The
reproducibility test with the neural network can also show whether using spatially constant instead of
spatially varying parameters for the neural network changes the results. First, spatially constant param-
eters are considered for both the morpho-elastic model and the neural network to replicate the study
as close as possible.

To maintain a clear distinction we call the study directly based on the simulations from the morpho-
elastic model for each of the groups the ‘simulation-based study’ and the study with the neural network
surrogate the ‘NN-based study’. Since this research is based on a preliminary version of [22], parameter
choices and results are slightly different.

6.1.1. Parameters
To investigate the influence of age on the parameters, four groups based on age were defined and the
parameters were divided based on whether they depend on age or not. For the different groups, a
basic Monte Carlo simulation is performed to assess the uncertainty in the input data. Based on these
simulations, conclusions were drawn on the effect of age on the contraction of the wound. First, the
chosen parameter values are reported after which the results are discussed.

In the study by Egberts et al. [22], the parameters are divided into five categories: parameters not
dependent on patient or space, only dependent on patient, only dependent on space, dependent on
both the patient and space and parameters dependent on other parameters. The parameters that are

63

64 6. Clinical Case Studies

Group Age
1 0-10
2 11-40
3 41-70
4 71+

Table 6.1: Age groups

Parameter 𝜇 Dimension
�̄� 0 cells/cm
�̄� 0 g/cm
�̃� 10 g/cm
𝛿 0.06 /day
𝑟max 2 -
𝜂 2 -
𝜂 0.5 -
𝑘max 10 -
𝜒 2 ⋅ 10 cm /(cells day)

Table 6.2: Values for the parameters that not
dependent on patient or space.

Parameter 𝜇 𝜎 Dimension
𝑎 10 5 ⋅ 10 g/cm
𝑎 10 10 g/cm
𝑎 10 10 g/cm
𝜉 0.044 10 (N g)/(cells cm)
𝛿 5 ⋅ 10 10 cm /(cells g day)
𝑘 3 ⋅ 10 10 g/(cells day)
𝜌 1.09 0.1 g/cm

Table 6.3: Values for the parameters that not dependent on patient, but vary
over the domain.

space-dependent are drawn using a lognormal distribution with a Karhunen-Loeve expansion, giving a
smooth variation over the domain. The initial mean and standard deviation for the lognormal distribution
are specified for each of the groups. It should also be noted that the parameter values should be within
(or close to) the ranges of parameters the network has been trained on. All the parameter values can
be found in Tables 6.2 - 6.5 and the description of the parameters and the references can be found in
Appendix C.

Furthermore, three parameters are dependent on other parameters:

𝜇 = 112
√�̄�

≈ 350 N

(g cm) /
, (6.1)

𝑞 = log(𝛿) − log(𝑟 [1 − 𝜅 �̄�])
log(�̄�) , (6.2)

𝑘 = 𝛿 �̄� . (6.3)

For each simulation, parameters are drawn from the respective age group and a simulation for 365
days with a time step of one day was performed on a domain of 10 cm (Ω = [−10, 0]) with an initial
wound of 4 cm (Ω = [−4, 0]).

Since the network is trained using spatially constant parameters, for the NN-based study the input
parameters can not vary over the domain. Hence for these parameters the values are varied between
simulations/patients only and are constant on the domain. The parameters are varied between simula-
tions using the normal distribution with mean 𝜇 and standard deviation 𝜎. Although all means are within
the range of the parameters the network has been trained on, drawing from the normal distribution with
the given standard deviations could result in some of the values being outside the training range when
the mean is close to the range boundary.

Parameter 𝜇 𝜇 𝜇 𝜇 Dimension
�̄� 1.8 ⋅ 10 1. ⋅ 10 1.1 ⋅ 10 10 cells/cm
�̄� 0.1200 0.1125 0.1050 0.0975 g/cm

Table 6.4: Parameters that vary along patients but are not varied over the domain.

6.1. Age study 65

Parameter 𝜇 𝜇 𝜇 𝜇 𝜎 Dimension
𝐷 1.1 ⋅ 10 1 ⋅ 10 0.9 ⋅ 10 0.8 ⋅ 10 10 cm /(cells day)
𝑟 0.914 0.898 0.868 0.832 0.0369 cm /(cells day)
𝜅 3 ⋅ 10 6 ⋅ 10 8 ⋅ 10 9 ⋅ 10 5 ⋅ 10 cm /cells
𝛿 0.0149 0.02 0.021 0.0215 10 /day
𝑘 1.09 ⋅ 10 1.08 ⋅ 10 1.07 ⋅ 10 1.06 ⋅ 10 1.09 ⋅ 10 cm /(g day)
𝐷 3.1 ⋅ 10 2.88 ⋅ 10 2.66 ⋅ 10 2.44 ⋅ 10 10 cm /day
𝑎 2.3 ⋅ 10 2.2 ⋅ 10 2.1 ⋅ 10 2 ⋅ 10 5 ⋅ 10 cm /g
𝛿 6.05 ⋅ 10 6 ⋅ 10 5.95 ⋅ 10 5.9 ⋅ 10 1 ⋅ 10 cm /(cells g day)
𝜇 100 100 140 180 40 (N day)/cm
𝜁 100 300 450 600 30 cm /(cells g day)

Table 6.5: Parameters that vary both along patients and along the domain.

6.1.2. Spatially constant parameters
First, we study the reproducibility using spatially constant parameters for both the simulation- and NN-
based study to ensure that both receive the same type of inputs. Hence input parameters that do
not depend on space are kept constant over all simulations and parameters that do depend on space
are drawn from a normal distribution with mean 𝜇 and standard deviation 𝜎 for each sample and kept
constant over space. For the simulation-based study, a dataset is generated containing 500 simulations
per group. The computation of the 2000 simulations takes 13-14 hours using four cores in parallel.
For the NN-based study likewise 500 input combinations are drawn per group and fed to the neural
network. Here the trained neural network from Section 4.2.4 is used. Computing the 2000 predictions
takes approximately 0.02 seconds using the neural network.

Figure 6.1: Mean RSAW for each of the four age groups. The results are shown for the simulation- and NN-based study (with
spatially constant parameters from Tables 6.2- 6.5).

Group MAE min RSAW Rel err min RSAW [%] MAE final RSAW Rel err final RSAW [%]
1 0.0165 2.43% 0.0013 0.13%
2 0.0016 0.26% 0.0040 0.43%
3 0.00004 0.07% 0.00002 0.03%
4 0.0113 2.11% 0.0090 1.11%

Table 6.6: Performance on the minimum and final mean RSAW value for the four different groups in the age study with spatially
constant parameters. (Using parameters from Tables 6.2- 6.5)

66 6. Clinical Case Studies

Figure 6.1 shows the mean RSAW for each group for both simulation-based and NN-based study.
Table 6.6 shows the MAE and the relative error for the minimum and final values of the mean RSAW.
Both Figure 6.1 and Table 6.6 show that results from the NN-based study are close to the results from
the simulation-based study. For groups 1 and 4, the minimum RSAW it a little higher, and for groups 3
and 4 the minimum occurs slightly earlier. From the small MAE and relative errors it is evident that the
results for groups 2 and 3 are very accurate. The relative error on the minimum values is below 2.5%
for all groups and even below 0.3% for groups 2 and 3. For the final contraction, the relative errors are
below 0.5% for group 1,2 and 3 and approximately 1% for group 4. Hence the neural network is able
to reproduce the mean predictions of the age study accurately.

In terms of the age study itself, it can be observed that based on the predictions there is a distinction
between the groups. As the age of the patient increases the contraction process takes more time, the
maximum contraction is higher and there is less retraction resulting in a larger final contraction. For
children, we find that the scar retracts almost completely leaving a small final contraction. For more
detailed conclusions on the effects of age on skin contraction, we refer to the results in [22].

(a) Histogram (b) Estimate cumulative distribution

Figure 6.2: Results for the minimum RSAW for the four groups. Results from the simulations by the numerical model and the
neural network are shown in the same figure. (Using parameters from Tables 6.2- 6.5)

(a) Histogram (b) Estimate cumulative distribution

Figure 6.3: Results for the final RSAW for the four groups. Results from the simulations by the numerical model and the neural
network are shown in the same figure. (Using parameters from Tables 6.2- 6.5)

In Figures 6.2 and 6.3 histograms and estimates of the cumulative distributions are shown for the
minimum RSAW and final RSAW respectively. These show the variations between simulations for
both simulation- and NN-based studies. The estimated cumulative distributions can give an estimate
of the probability that the maximum or final contraction is above a certain threshold and therefore the
probability of a contracture. From the histograms and the cumulative distributions, it can be observed
that the histograms of the simulation- and NN-based study show the same spread, and the estimated
cumulative distributions have approximately the same slope. This shows that both simulation-based
and NN-based studies show the same variability in the results. Furthermore, for groups 1 and 2 we find
a clear distinction for the minimum RSAW with only minimal overlap. Between groups 2 and 3 there
is some small overlap and between 3 and 4 there is a larger overlap, meaning the distinction between
these groups in terms of the minimum RSAW is less evident. Conclusions on the significance of these
distinctions between the groups can be found in [22]. For the final RSAW values, the groups are distinct
for all four groups and the cumulative distributions are accurate.

6.1. Age study 67

From this study it can be concluded that the neural network is able to reproduce the parameter age
study using spatially constant parameters with high accuracy. From both studies, the same conclusions
can be drawn about the effect of age on the contraction. This shows that the neural network surrogate
can be used for fast parameter studies. We do find that the results are more accurate for groups 2 and
3 than for groups 1 and 4. This could be caused by the fact that the mean parameter values for groups
1 and 4 are closer to the edge of the intervals the network was trained on.

6.1.3. Spatially varying parameters
Next, spatially varying parameters for the simulation-based study are considered. For each sample the
input parameters are varied over space using a lognormal distribution with Karhunen-Loeve expansion.
For each group, the mean and standard deviation from Tables 6.2 - 6.5 is used. For the neural network,
the input parameters are also drawn from the same distribution to maintain the same variance. It must
be noted that for the NN-based study the parameters can not be space-dependent and are varied along
patients instead.

Figure 6.4: Mean RSAW for each of the four age groups. The results are shown for the simulations by the numerical model
(with spatially varying parameters from Tables 6.2- 6.5) and the simulations by the neural network.

Group MAE min RSAW Rel err min RSAW [%] MAE final RSAW Rel err final RSAW [%]
1 0.0101 1.44 0.0007 0.07
2 0.0014 0.22 0.0032 0.34
3 0.0019 0.31 0.0016 0.18
4 0.0075 1.34 0.0050 0.61

Table 6.7: Performance on the minimum and final mean RSAW value for the four different groups in the age study with
parameters with spatially varying parameters. (Using parameters from Tables 6.2- 6.5)

Figure 6.4 shows the mean RSAW for each group for both simulation-based and NN-based study.
Table 6.7 shows the MAE and the relative error for the minimum and final values of the mean RSAW.
Both Figure 6.4 and Table 6.7 show that results from the NN-based study are close to the results
from the simulation-based study. For groups 1 and 4, the result is even 1% more accurate than for
the spatially constant variation. Comparing to Figure 6.1, it can be observed that the minima of the
simulation-based mean RSAW are slightly higher for group 1 and 4, and that the mean distributions for
group 2 and 3 are very similar. This shows that using spatially varying parameters instead of spatially
constant parameters does not significantly change the mean distribution.

In Figures 6.5 and 6.6 histograms and the estimated cumulative distributions are shown for the
minimum RSAW and final RSAW, respectively. These show the variations between simulations for

68 6. Clinical Case Studies

(a) Histogram (b) Estimate cumulative distribution

Figure 6.5: Results for the minimum RSAW for the four groups. Results from the simulations by the numerical model and the
neural network are shown in the same figure. (Using parameters from Tables 6.2- 6.5)

both simulation- and NN-based studies. It can be observed that the spread of the histograms for the
simulation-based study is much smaller and the slope for the estimated cumulative distribution is much
steeper. This shows that the variance for the simulation-based study is much smaller than for the
NN-based study. The difference in variation can be explained due to the different variations in the
parameters. In the simulation-based study, parameters are varied over space around the mean, such
that each individual simulations has the same mean value over the domain. In the NN-based study, all
parameters are constant over the domain and hence vary between simulations/samples, hence each
individual simulation has a slightly different mean over the domain for each parameter. Using 0.5𝜎 as
the standard deviation for the NN-based study gives a similar variation as the simulation-based study.
Hence we find that in case the Monte-Carlo predictions are only performed by varying the input parame-
ters over space, a smaller variance should be chosen for the spatially constant neural network to obtain
the same variance. However, if we vary the mean input parameters between patients/simulations, the
spatial variance seems to be captured in the variance between simulation. For a more detailed study,
one can compare the NN-based study to a simulation-based study with both patient and space variance.

(a) Histogram (b) Estimate cumulative distribution

Figure 6.6: Results for the final RSAW for the four groups. Results from the simulations by the numerical model and the neural
network are shown in the same figure. (Using parameters from Tables 6.2- 6.5)

6.1.4. Parameters outside training range
The previous values were chosen such that all parameters are drawn within the ranges the network
has been trained on. However, it is interesting to find how well the network can give predictions when
some of the values are outside the range. To that end another dataset of 500 simulations per group
has been used to test this. In this set the values of �̄�, 𝑟 , 𝜅 and 𝑎 are changed such that for some of
the groups they are drawn outside the training range. The values for group 2 are located on the edge
of the training range, hence the variation causes some simulations to be within the training range and
others to be outside the training range.

6.1. Age study 69

Parameter 𝜇 𝜇 𝜇 𝜇 𝜎 Training range
𝑟 1.222 0.924 0.816 0.611 0.0369 0.832 − 0.924
𝜅 0.8 ⋅ 10 1.5 ⋅ 10 6 2 ⋅ 10 6 3 ⋅ 10 6 5 ⋅ 10 10 − 10
𝑎 2.01 ⋅ 10 2 ⋅ 108 1.99 ⋅ 108 1.98 ⋅ 108 5 ⋅ 10 (2 − 2.5) × 10
�̄� 1.5 ⋅ 10 104 0.9 ⋅ 104 0.8 ⋅ 104 0 (1 − 2.5) × 10

Table 6.8: Parameters that have a different range with some values outside or on the edge the training range of the neural
network. The bold values are outside or on the edge of the training range. The training ranges for the network are shown for

comparison.

For the simulation-based study, 500 simulations were performed for each of the four age groups
using the parameters from Table 6.8. The other parameters are equal to the previous section. For the
NN-based study, likewise 500 inputs are drawn and fed to the trained neural network. Here the trained
network described in Section 4.2.4 is used. Figure 6.7 shows the group means for both studies and

Figure 6.7: Mean RSAW for each of the four age groups with some parameters outside the training range. The results are
shown for the simulations by the numerical model (with parameters from Tables 6.2, 6.3) and the simulations by the neural

network.

Group MAE min RSAW Rel err min RSAW [%] MAE final RSAW Rel err final RSAW [%]
1 0.0151 2.12 0.0063 0.64
2 0.0013 0.19 0.0006 0.06
3 0.0044 0.69 0.0009 0.11
4 0.0060 0.98 0.0032 0.39

Table 6.9: Performance on the minimum and final RSAW values for the four different groups in the age study with parameters
outside the ranges.

Table 6.8 shows the results on the minimum and final RSAW. It is observed that for group 1 the NN-
based prediction of the minimum is 2% higher but on the correct day, which has similar performance
to the spatially constant parameters within the training range. The prediction for group 2 is overall very
accurate, showing little deviation from the simulation-based study. For groups 3 and 4, the predictions
of the minimum RSAW values are accurate, however, they exhibit an earlier contraction and retraction
mechanism, reaching the maximum and final contraction 10-15 days earlier. The prediction of the
final contraction is accurate for all groups, with similar performance to the previous studies. From the
accurate prediction of group 2, it can be concluded that for the chosen parameters drawing values close
to the edge of the training range does not influence the result significantly. For the other groups, it is
observed that the values outside the training range causemore deviation in the timing of contraction and

70 6. Clinical Case Studies

retraction. It is concluded that the results do become less accurate when some parameters are outside
training range, however, the neural network can still provide reasonable generalizations. Though, it
should be verified whether this holds for all input parameters and how far the parameters can be outside
the range for reasonable predictions.

6.1.5. Conclusion
From the age study it can be concluded that the predictions by the neural network are accurate enough
to study the influence of a patient’s age on the surface area of the wound. In the case of the age study
where the parameters means are within the training range, it was found that the resulting predictions of
the minimum RSAW or maximum contraction have a relative error between 0.05-2.5%. The predictions
of the final value have a relative error between 0.03-1.2%. It was also found that variance in the
solutions due to the uncertainty in the input was similar for both simulation- and NN-based study. The
neural network can accurately predict the estimated cumulative distribution for the maximum and final
contraction. Furthermore, the effect of the spatial variance in the input parameters was studied. It can
be concluded that the neural network can accurately predict the groupmean RSAWwithout knowing the
spatial variance. However, predicting the estimated cumulative distribution proved more difficult due
to a larger variance in the NN-based predictions than the simulation-based predictions. The smaller
variance in the simulation-based study can be explained since variation over the domain by Karhunen-
Loeve expansion assumes the same mean for each patient, whereas varying per patient as in the NN-
based study changes the mean. The effect of spatial variance should also be studied when combined
with patient variance.

Lastly, we studied the effect of the parameter means that are outside or on the edge of the training
range. For the four parameters that were varied, it was observed that values close to the edge of the
training range did affect the prediction of the neural network negatively.

The simulation-based study needs 15 hours on four cores to compute 500 simulations per group.
The network takes about 0.02 seconds to predict 500 simulations per group. Hence it can be concluded
that the neural network surrogate can be useful for parameter studies, allowing to studymany parameter
combinations in a short amount of time.

6.2. Medical application
The knowledge about the contraction and the probability of a contracture can be valuable to medical
staff when treating a patient. In case of a large probability that a contracture (that is a severe contrac-
tion) occurs the treatment needs to be different compared to when the likelihood is small. Furthermore,
information on the strain energy in the wound during healing can give an indication of the amount of
discomfort the patient experiences and can hence influence the treatment. Having access to this infor-
mation can assist the medical staff in determining the best suitable treatment for each individual patient.
In this section, an initial design of such an application is developed to conceptually demonstrate the
potential of the neural network surrogate. In essence, the application reads the information from the
patient and the wound and decides the distribution for the input parameters based on this information.
The uncertainty in the input parameters is handled using Monte-Carlo simulation which requires many
individual predictions for different sets of input values. The fast computation by the neural network al-
lows us to compute these simulations in a very short amount of time. The results from the Monte-Carlo
simulation are post-processed and visualized in the application. First, it is described how the distribu-
tions for the input parameters are decided, based on patient and wound information. Subsequently the
post-processing of the results and the visualization are discussed.

6.2.1. Inserting input values
The user is asked to provide information about the patient and the wound, such as patient’s name,
age, wound size, and location. The age of the patient is used to determine mean values for the input
parameters that depend on the age, similar to the age study in Section 6.1. The measured wound size
is used directly as one of the input parameters. Furthermore, the location of the wound can be included
as the elasticity of the skin can differ between locations on the body [47].

As was shown in the age study in Section 6.1, the network predictions are more accurate for input
parameters that are within the ranges it has been trained on. Hence we use the ranges the network
has been trained on as a basis for deciding the distribution of the parameters. For this demonstration,

6.2. Medical application 71

Figure 6.8: The input section of the application

only the effect of age on the parameter values is taken into account, using the information of the age
groups from Section 6.1. When considering the age groups, is it reasonable to say that a 35-year old
has parameter values closer to the group of 41-70-year-olds than a 15-year old, who might be closer
to the group of 0-10-year-olds. This reasoning indicates a certain form of interpolation between the
groups. Although it could be possible that certain parameters behavemore step-like due to, for example
puberty, we assume that the parameters can increase or decrease linearly over their respective ranges
with increasing age. For each parameter a standard deviation is defined, for now these are assumed
equal to Section 6.1. For the Monte-Carlo simulations, the input parameters are drawn from a normal
distribution with the age-specific mean and the given standard deviation. For the age-independent
parameters, the values are drawn from a normal distribution with a fixed mean and standard deviation.
In total 1000 input combinations are drawn for each patient. The inputs are subsequently transformed
with the fitted PCA-transform and scaled before being fed to the neural network.

6.2.2. Predictions & Visualization
For the predictions, two trained networks are used, one for the relative surface area of the wound and
one for the strain energy. The transformed inputs are fed to both networks to obtain the predictions
for RSAW and strain energy, resulting in 1000 predictions for each. Based on these predictions, the
mean RSAW distribution, the 95%-confidence interval of the mean, and the standard deviation of the
simulations from the mean are computed. The mean and its confidence interval are shown in blue in
the application together with the interval (𝜇 − 𝜎, 𝜇 + 𝜎) in red. Furthermore, the estimated cumulative
distribution can be computed from the simulations. Based on the cumulative distribution, an estimate
can be given for the probability of a contracture, i.e. the probability of the final contraction passing a
certain threshold. In the application we show the probabilities of a maximum contraction of more than
30% and the probability of a final contraction of more than 10%. The user can adapt the thresholds
values which recomputes the probabilities. Figure 6.9 shows the visualization of the predictions for
RSAW.

Moreover, the computed strain energy is shown to indicate the amount of discomfort. Analogously
to RSAW, the mean and the 95%-confidence interval of the mean are shown together with the interval
(𝜇 − 𝜎, 𝜇 + 𝜎). As it might be difficult to properly interpret the numerical values of the strain energy
the graph is colored from white (little discomfort) to red (much discomfort) according to a fixed scheme.
This scheme is chosen by the author for illustration purpose only. Figure 6.10 shows the visualization
of the strain energy prediction. The run time of the application from pressing ‘Predict’ button until new
visualizations appear is approximately 1-2 seconds. This proves that neural network surrogates can
improve the applicability of the morphoelastic model for healthcare. Obtaining the same predictions
with Monte-Carlo simulation by the morphoelastic model would have taken 6-7 hours. It is important to
note that these characteristics and visualizations are chosen by the author for the means of illustration
only and have not been tested or discussed with medical professionals.

The application is constructed using the Dash package in Python [3]. Using this package, the
provided figure remains fully interactive, which increases the usability of the application. The application
can be tested on the development server and is accessed via an internet browser. More information
on the implementation can be found in Appendix B.

72 6. Clinical Case Studies

Figure 6.9: Visualization of the RSAW predictions in the application. The figure shows the mean and its 95-% confidence
interval in blue. In red the interval (,) is shown.

Figure 6.10: Visualization of the strain energy predictions. The figure shows the mean and its 95-% confidence interval in blue.
The values of the mean are color coded along a fixed scale to give an indication of the amount of discomfort the patient will

experience. In red the interval (,) is shown.

7
Conclusion & Discussion

In this chapter, the conclusions of the study are presented and discussed. First, a concise summary
of the research objective and the approach is given. Secondly, the conclusions on the direct surrogate
model, the hybrid model and the clinical case studies are presented in Sections 7.1.1, 7.1.2 and 7.1.3
respectively. In Section 7.2, the methods and results of the study are discussed and recommendations
for future research are given.

7.1. Conclusion
Burn injuries occur daily and can have severe physical and mental effects both in the short and long
term, such as disabilities due to severe skin contraction. Even though the mortality rate has decreased
over the years, the need for a higher quality of life after severe burns remains. Decreasing the prob-
ability of a severe contraction is essential for increasing the quality of life. Mathematical models have
been designed to predict skin contraction over time. In these models, skin contraction is modeled by
the use of a set of partial differential equations that involve several biochemical species, as well as
a morphoelastic framework. The obtained systems are solved numerically using the finite element
method. The simulations of the morphoelastic models are computationally expensive and are there-
fore less suited for applications where many simulations are necessary. We aim at a computationally
cheap alternative modeling strategy that is based on neural networks. In the first approach, neural
networks surrogates are trained to reproduce the nonlinear mapping between inputs and outputs of the
morphoelastic models for skin contraction. The fast evaluation of the neural networks after training,
achieves the required computationally cheap alternative. The surrogate approach is tested in varying
scenarios for the prediction of the Relative Surface Area Wound (RSAW) and the strain energy. The
second approach considers a hybrid model, where a CNN is trained to predict the computationally
expensive computation of one time step in the morphoelastic model. The main advantages of the hy-
brid approach are larger model flexibility and access to all the involved biochemical constituents and
mechanical parameters.

The main conclusion of the study is that a neural network surrogate is an effective and computa-
tionally cheap alternative that can reproduce the predictions of the morphoelastic model accurately.
Furthermore, it is concluded that the use of the neural networks surrogate increases the applicability
of the morphoelastic model for parameter studies and patient-based healthcare.

7.1.1. Surrogate model
In the surrogate approach, a neural network acts as a substitute for the complete morphoelastic model
and is taught the entire nonlinear mapping between the inputs of the morphoelastic model and the
desired outputs. The dataset for training and evaluation is generated from the one-dimensional mor-
phoelastic model. It is shown that a two-layer MLP, trained to predict RSAW, can achieve high accuracy,
reporting an average relative error of 0.39% and goodness of fit 𝑅 of 0.9932 on the test set. The im-
portant features of the skin contraction are the minimum RSAW, i.e. the maximum contraction, and the
final RSAW, i.e. the final contraction. These characteristics were predicted accurately by the neural
network, reporting a low MAE and a high 𝑅 −score. The neural network needs only 0.008 seconds to

73

74 7. Conclusion & Discussion

compute the predictions for 480 samples in the validation set. The computation of the original samples
takes approximately 1.5 minutes per sample, which shows the significant acceleration neural networks
can achieve. The trained neural network is also validated for combinations of input parameters that
were unstable in the morphoelastic model. It was shown that the network can generalize well and that
it can provide reasonable predictions for these samples as well.

Furthermore, it was found that the use of principal component analysis to reduce the dimension can
be applied without any loss of information or reducing the accuracy of the prediction. When applying
the PCA-transform, an explained-variance weighted loss function should be used to improve training. A
second scenario for the prediction of RSAW is studied, where the displacement of the wound was pre-
dicted by the neural network and subsequently used to derive the RSAW instead of predicting RSAW
directly. This scenario provided accurate solutions with an average relative error of 0.46% and good-
ness of fit 𝑅 of 0.9936. Combining the two different approaches in an ensemble, by averaging the
two predictions, results in a slightly better prediction. It was shown that the difference between the two
predictions in the ensemble has a weak to moderate correlation with the true error of the predictions,
although we believe this correlation is not strong enough to provide an accurate estimate of the true
error.

Besides the prediction of RSAW, another neural network is trained to predict the strain energy in the
wound. A two-layer MLP reached a good performance with 𝑅 -score of 0.981 and aRRMSE of 0.113.
A second scenario was tested, where two neural networks were trained to predict the concentration of
collagen 𝜌 and the effective strain 𝜖 over time and space. From these predicted values the strain energy
can be computed. Although the network performed slightly worse than the direct surrogate network,
a good performance is achieved. The network performance for 𝜌 and 𝜖 proved that a neural network
can learn to predict the behavior of the constituents both over space and time accurately as well. The
networks from the two scenarios were combined in a simple ensemble, by averaging the predictions.
The network ensemble improved the performance slightly with respect to the individual solutions. It
was also found that there is a moderate to strong correlation between the difference between the two
individual predictions and the true error. Hence, using an ensemble in this scenario can improve the
prediction and provide an estimate of the uncertainty of that prediction.

Furthermore, it was tested whether the RSAW and strain energy could be predicted simultaneously
by one network. It was found that using a network with parameter sharing layers and private layers
could reach similar performance as two separate networks for both outputs. This network performed
better than the scenario where the RSAW and 𝐸strain were combined and predicted by one fully shared
network.

The standard surrogate approach was tested on a smaller dataset, constructed from the two-
dimensional model as well. The performance of the trained networks for RSAW is slightly worse than for
the one-dimensional model, though the predictions are still relatively accurate with 𝑅 -score of 0.9577
and an average relative error of 0.74%. It was found that the network had significantly more difficulty
learning the strain energy for two dimensions. As the number of samples in the dataset was limited, we
believe that higher performance can be reached by increasing the number of samples. A visualization
of wound shape evolution can be valuable for determining localized contractions and therefore a net-
work is trained to predict the movement of the edge of the wound. The study shows that the network
can learn to predict this movement accurately, although a larger number of training samples will further
improve the performance.

From the studies, it can be concluded that neural networks can be used as fast and accurate sur-
rogates for the morphoelastic models for skin contraction. Advantages of the surrogate approach are
that the networks are easily trainable and give very fast predictions. A disadvantage of the surrogate
method with respect to the morphoelastic model is that some of the flexibility and the physical interpre-
tation of the model are lost. Another disadvantage is that the output format is fixed in the sense the
network always predicts from day 0 to day 365. If these disadvantages with respect to the morphoelas-
tic model do not pose a problem for the desired application, the surrogate neural network is an effective
computationally cheap alternative for the simulations of skin contraction.

7.2. Discussion 75

7.1.2. Hybrid model
A preliminary study for a hybrid approach is performed where a CNN is trained to approximate the
non-linear mapping of an individual time step of the morphoelastic model. In the hybrid approach, the
trained network can be applied iteratively to provide predictions for the next 365 days. Due to limited
computational resources and limited time, the CNN is trained on 15% and 30% of the training data
respectively. It is shown that the increase in training data significantly increases the performance of the
model on the test set. From the study, it was observed that the trained network captures the long-term
behavior of contraction, retraction, and convergence to a final contraction. The actual performance on
the test set is not accurate though, with an 𝑅 -score for RSAW of 0.4014. It is reasoned that it is likely
the network has not yet learned the correct effects of the 25 input parameters, which are essential for
the location and magnitude of the minimum and final contraction. To conclude, the proposed hybrid
approach is far less accurate than the direct surrogate, though the results of this limited study show
that the approach has potential. The networks need to be trained on all training data and different
architectures need to be tested to provide well-based conclusions on the performance of the hybrid
approach.

7.1.3. Clinical case studies
The two clinical case studies prove that the applicability of the morphoelastic model is increased sig-
nificantly by using a neural network surrogate for fast prediction. A comparison of the parameter age
study with the neural network to the study with the morphoelastic model proved that the same conclu-
sions can be drawn on the influence of the patient’s age on skin contraction. The results of both studies
were similar and the computation time was decreased from approximately 15 hours to 0.02 seconds.
This proves that the surrogate neural network approach allows us to explore the parameter space and
their influences on the skin contraction much faster. The neural network is trained on spatially constant
input parameters, while the morphoelastic model can handle spatially varying input parameters. It was
shown that the lack of spatial variance for the neural network does not significantly influence the mean
RSAW prediction, when compared to simulations by the morphoelastic model with spatially varying
input parameters. However, the individual simulations of the morphoelastic model show less variance
and a different estimated cumulative distribution, when input parameters are only varied over space
and not between simulations.

In the second clinical case study, a concept application is developed, which demonstrates that the
neural network surrogate can be used to give patient-based predictions based on the age of the patient.
The fast predictions of the network allow for the uncertainty in input parameters to be handled by Monte-
Carlo predictions. The developed application gives a clear example of how the neural network surrogate
can be applied to provide clinicians with immediate access to simulations of skin contraction.

7.2. Discussion
In this section, the methods and results are discussed and directions for future research are provided.

Input parameter values
In order to provide input data for the training set for the neural network, the input parameters were
chosen based on the preliminary results of the stability analysis and parameter sensitivity studies in
[22, 23]. The obtained results on parameter sensitivity from the final study should be applied to improve
the datasets. As mentioned, the values of these parameters are not easy to determine as they are not
easy to measure or detect and can vary largely between individuals. The choice of the input parame-
ters has a large effect on the prediction. Due to this uncertainty of the parameter ranges it is possible
that certain predictions are not realistic. In this study, the input parameters are drawn uniformly from
the defined ranges, which results in the desired variation between samples. However, the values of
different parameters are likely correlated and the uniform distribution can result in unrealistic combina-
tions of parameters and therefore unrealistic results. It should be investigated whether there are more
representative methods of drawing the input values from the ranges.

Besides the ranges of the parameters, more research is needed on relations between different
parameters and influences of factors like skin complexion, age, gender, and location on the body on
the values of the input parameters. When these effects on the parameters are defined, the neural
network surrogate can be used to study their effects on the skin contraction.

76 7. Conclusion & Discussion

In the study for the two-dimensional model, the shape and size of the wound were considered to be
fixed. It should be studied how to fit the shape and size of the wound in two dimensions to the network.
Possible approaches are describing the initial wound as an image, which can be evaluated by a CNN
to extract important features, or describing the wound shape by similarity scores to standard geometric
objects, such as a circle or square.

Morphoelastic model
For this study, the simulations by the morphoelastic model have been taken as the truth. Naturally,
these predictions are an approximation of the true wound behavior and have a certain accuracy as
well. Hence, it is important to study the accuracy of the numerical model in more detail to give more
detailed conclusions on the accuracy of the neural network for real-life applications. Furthermore, we
encountered stability issues in the numerical model which need to be investigated further. The stability
properties of the morphoelastic model studied in [23] should be applied to improve the dataset. The
stability properties should also be investigated for the two-dimensional model.

For more accurate predictions the numerical models can be developed further to achieve more
detail, more stability, and higher accuracy. The two-dimensional model used in this study is currently
being developed and needs to be improved further. Moreover, a three-dimensional model can be
developed to simulate the complete wound and provide more detailed predictions. It should be taken
into account that the computational time of the morphoelastic models should be reasonable enough to
enable generating a dataset for training a neural network within a specified time frame. Therefore, it
is likely that other acceleration techniques need to be studied to achieve a reasonable run time. For
example, utilizing the rotational symmetry can increase the efficiency of the three-dimensional model.

Meshing
The surrogate neural network approach relies heavily on the structure of the data and therefore the
structure of the spatial and time discretization of the numerical model. For the two-dimensional model,
this might become an issue when refined meshes are necessary around the wound edge and wound
shapes show large variations. The application of CNN and pooling layers can provide a solution to
handle the varying grids and extract the main features.

Physical interpretation
A disadvantage of using a neural network as a surrogate is the loss of physical interpretation of the
results. Concentrations, for example, can turn negative in the predictions by a neural network. It should
be studied if this can pose a problem and how it can be handled. It could be valuable to consider
physics-informed or physics-guided neural networks [76] to improve the physical interpretation of the
results.

Network ensemble
For the prediction of RSAW and strain energy, a simple ensemble of two neural networks was con-
structed by averaging the two individual predictions. The results were similar or slightly better than
individual predictions. Therefore, the use of ensembles can be investigated further. In the study, only
one type of ensemble is studied, which averaged the two predictions from different approaches. En-
sembles can also be based on networks trained using the same approach, but different architectures
or training algorithms [95]. Furthermore, it can be studied whether more networks in an ensemble can
improve the prediction and whether there are better techniques to combine individual solutions. In the
study, it was observed that the mean absolute difference between the two predictions gave a moderate
correlation with the true error of the prediction. This correlation should be studied in more detail as it
can provide a method for estimating the error of the prediction.

Hyperparameter optimization
The hyperparameters are the parameters that need to be defined before the training, including param-
eters for the network architecture, optimization algorithm and regularization techniques. The choice of
hyperparameters is important for the final performance of the network. In this study, the hyperparam-
eters have been chosen based on trial and error. More elaborate tuning of the hyperparameters could
improve the performance results of the trained networks.

7.2. Discussion 77

Furthermore, hyperparameter optimization techniques, such as Hyperopt [13], can be used to optimize
the hyperparameters with respect to the validation loss.

Hybrid model
In this study, a first step is taken to develop a hybrid model where a neural network is used as a
surrogate for the most time-consuming step of the model. Due to time and computational constraints,
the performed study was limited and there is still a lot of research to be done on this topic. Firstly, the
networks need to be trained on all the available data to improve the training, and validation should be
performed on the complete validation set. Secondly, the hyperparameters should be tuned as different
architectures and optimization algorithms can improve the performance of the networks. In terms of
network architectures, the use of LSTM cells can be considered to ensure both long term and short
term effects are captured.

The performance of this approach can be improved by following the approach in [33]. Here the
change in state over one time step is approximated by the neural network instead of the full state at
the next time step. Considering only the state change can improve the training as variations between
different samples are smaller.

Furthermore, it can be considered to add physical relations, that the constituents should satisfy, to
the loss function to improve the training. For example, one can add the error of an associated linearized
system to the loss function. The addition of physical relations to the loss function can guide the training
and reduce the risk of unrealistic predictions [48].

Recent studies on physics-informed learning have shown promising results, and it can be fruitful to
investigate this approach for the application of a hybrid model. A physics-informed neural network can
be used to quickly compute the solution to the derived system of equations [24, 76].

The training of the constituents and the mechanical values could be improved by scaling their dis-
tributions to a fixed range and saving the maximum/minimum of the distribution, using the approach
taken in [95]. This method forces the network to learn the maximum and minimum values explicitly,
which can improve the predictions.

Parameter study
In the parameter study, the effect of leaving out the spatial variance of the input parameters for the neural
network was studied. To achieve a more fair comparison of the variance and the estimated cumulative
distribution, the simulation-based study needs to be repeated with input parameters varying over space
and between simulations. In this way, it can be observed whether spatial variance introduces additional
variance that is not found when considering only patient variance. Furthermore, the effect of different
parameters can be studied in more detail to find which parameters are most sensitive to the training
range. The results of the sensitivity study by Egberts et al. [22] can be used to investigate whether the
sensitive parameters in the numerical model are sensitive to the training range as well.

Medical application
In this study, the concept design of a medical application is developed, which provides a prediction of
the contraction of the scar based on the age of the patient and the wound size. The effect of the age on
the input parameters is interpolated linearly over age, which is likely a far too simplistic representation
of this effect. Therefore, research is necessary to find the effect of age and location of the wound on
the individual parameters to improve the choice of parameters for each patient. Furthermore, the un-
certainty in the parameters should be studied to determine how much variation needs to be considered
for a patient. The application should be extended such that it can use more patient and wound input
to determine the distribution for the input parameters, such as degree of the burn, gender, and skin
complexion.

Lastly, we note that the visualizations and displayed information have been chosen by the author
for means of illustration and it should be discussed with medical professionals which information they
need and how it should be visualized.

Bibliography
[1] World health organization. URL https://www.who.int/news-room/fact-sheets/

detail/burns. (Accessed: 23-09-2020).

[2] Nederlandse brandwondenstichting. URL https://brandwondenstichting.nl/
brandwonden/. (Accessed: 23-09-2020).

[3] Plotly Dash. URL https://plotly.com/dash/.

[4] H. Borchani, G. Varando, C. Bielzo, and P. Larranga. A survey on multi-output regresssion. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 5, 2015.

[5] K. Alam and S.L.A. Jeffrey. Acellular fish skin grafts for management of split thickness donor sites
and partial thickness burns: A case series. Military Medicine, 184:16–20, 2019.

[6] M. Alber et al. Integrating machine learning and multiscale modeling - perspectives, challenges,
and opportunities in the biological, biomedical and behavioral sciences. npj Digital Medicine, 2
(115), 2019.

[7] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. Watson. The Molecular Biology of The
Cell. Garland Publishing, 2 edition, 1989.

[8] S. Amini and S. Mohaghegh. Application of machine learning and artificial intelligence in proxy
modeling for fluid flow in porous media. Fluids, 4, 2019.

[9] S.A. Amrei, H. Ayatollahi, and S.H. Salehi. A smartphone application for burn self-care. Journal
for Burn Care & Research, 41:384–389, 2020.

[10] B. Azzarone, C. Failly Crepin, L. Daya Grosjean, C. Chaponnier, and G. Gabbiani. Abnormal
behavior of cultured fibroblasts from nodule and nonaffected aponeurosis of dupuytren’s disease.
Journal of Cellular Physiology, 117:353–361, 1983.

[11] V. Babovic, R. Canizares, H. René Jensen, and A. Klinting. Neural networks as routine for error
updating of numerical models. Journal of Hydraulic Engineering, 127, 2001.

[12] A. Barion. An isogeometric analysis approach for morphoelastic models - application to skin con-
tractures [master thesis]. Master’s thesis, Delft University of Technology, 2020.

[13] J. Bergstra, B. Komer, C. Eliasmith, D. Yamins, and D. Cox. Hyperopt: A python library for model
selection and hyperparameter optimization. Computational Science & Discovery, 8, 2015.

[14] D. Berrar. Encyclopedia of Bioinformatics and Computational Biology. Elsevier, 2019.

[15] D. Brinati, A. Campagner, D. Ferrari, M. Locatelli, G. Banfi, and F. Cabitza. Detection of covid-19
infection from routine blood exams with machine learning: A feasibility study. J.Med Syst., 44,
2020.

[16] A. Buganza Tepole and E. Kull. Systems-based approach toward wound healing. Pediatic Re-
search, 73(4):553–563, 2013.

[17] C. Calderón-Macías, M.K. Sen, and P.L. Stoffa. Artificial neural networks for parameter estimation
in geophysics. Geophysical prospecting, 48:21–47, 2000.

[18] L.H.C. Chua and K.-P. Holz. Hybrid neural networks - finite element river flow model. Journal of
Hydraulic Engineering, 135, 2005.

[19] A. Collette. Python and HDF5. O’Reilly, 2013.

79

https://www.who.int/news-room/fact-sheets/detail/burns
https://www.who.int/news-room/fact-sheets/detail/burns
https://brandwondenstichting.nl/brandwonden/
https://brandwondenstichting.nl/brandwonden/
https://plotly.com/dash/

80 Bibliography

[20] C.Yang, Y. Kim, S. Riyu, and G.X. Gu. Prediction of composite microstructure stress-strain curves
using convolutional neural networks. Materials and Designs, 189, 2020.

[21] M. Despotovic, V. Nedic, D. Despotovic, and S. Cvetanovic. Evaluation of empirical models for
predicting monthly mean horizontal diffuse solar radiation. Renewable and Sustainable Energy
Reviews, 56, 2016.

[22] G. Egberts, F. Vermolen, and P. van Zuijlen. A one-dimensional morphoelastic model for burn
injuries: sensitivity analysis and a feasibility study. arXiv:2010.12902, 2020.

[23] G. Egberts, F. Vermolen, and P. van Zuijlen. A one-dimensional morphoelastic model for burn
injuries: stability, numerical validation and biological interpretation. arXiv:2010.12897, 2020.

[24] M. Eichinger, A. Heinlein, and A. Klawonn. Stationary flow predictions using convolutional neural
networks. Technical Report Series Center for Data and Simulation Science, 12 2019.

[25] F. Strutz et al. Tgf-𝛽1 induces proliferation in human renal fibroblasts via induction of basic fibrob-
last growth factor (fgf-2). Kidney International, 59:579–592, 2001.

[26] M. Farage, K. Miller, and H. Maibach. Degenerative Changes in Aging Skin, pages 1–18. Springer,
Berling, 2015. ISBN 978-3-642-27814-3.

[27] K. Funahashi. On the approximate realization of continuous mappings by neural networks. Neural
Networks, 2:183–192, 1989.

[28] L.A. Garcia and A. Shigidi. Using neural networks for parameter estimation in ground water.
Journal of Hydrology, 318:215–231, 2006.

[29] J. Gareth, D. Witten, T. Hastle, and R. Tibshirani. An Introduction to Statistical Learning: with
applications in R. Springer, 7 edition, 2017.

[30] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks.
Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, 9, 2010.

[31] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. Cambridge: MIT Press, 2017. ISBN
9780262035613.

[32] K. Gosh, Z. Pan, E. Guan, S. Ge, Y.Lio, T. Nakamura, Z. Ren, M. Rafailovich, and R. Clark. Cell
adaptation to a physiologically relevant ecm mimic with different viscoelastic properties. Biomate-
rials, 28:671–679, 2007.

[33] R. Grzeszezuk, D. Terzopoulos, and G. Hinton. Neuroanimator: Fast neural network emulation
and control of physics-based models. Proceedings of SIGGRAPH 98, 1998.

[34] G. Gunin, N. Kornilova, V. Petrov, and O. Vasilyeva. Age changes in the number and proliferation
of fibroblasts in the human skin. Advances in Gerontology, 1:299–303, 2011.

[35] X. Guo, W. Li, and F. Iorio. Convolutional neural networks for steady flow approximation. Pro-
ceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 481–490, 2016.

[36] J. Han, A. Jentzen, and E. Weinan. Solving high-dimensional partial differential equations using
deep learning. ArXiv, 2018.

[37] Y.M.A. Hashash, S. Jung, and J. Ghaboussi. Numerical implementation of a neural network based
material model in finite element analysis. Numerical Methods in Engineering, 59, 2004.

[38] A. Hatzfeld et al. Benefits of cryopreserved human amniotic membranes in association with con-
ventional treatments in the management of full-thickness burns. International Wound Journal, 16:
1354–1364, 2019.

[39] J.M. Haugh. Deterministic model of dermal wound invasion incorporating receptor-mediated signal
transduction and spatial gradient sensing. Biophysical Journal, 90:2297–2308, 2006.

Bibliography 81

[40] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level per-
formance on imagenet classification. arXiv:1502.01852v1, 2015.

[41] A. Heyneman, H. Hoeksema, D. Vandekerckhove, A. Pirayesh, and S. Monstrey. The role of silver
sulphadiazine in the conservative treatment of partial thickness burn wounds: a systematic review.
Burns, 41(7):1377–1386, 2016.

[42] and T.H. Le H.S. Tran and T.T. Nguyen. The degree of skin burns images recognition using
convolutional neural networks. Indian Journal of Science and Technology, 9, 2016.

[43] M.G. Jeschke, M.E. van Baar, M.A. Choudhry, K.K. Chung, N.S. Gibran, and S. Logsetty. Burn
injury. Nat Rev Dis Primers, 6, 2020.

[44] X. Jin, X. Zhang, K. Huang, and G. Geng. Stochastic conjugate gradient algorithm with variance
reduction. IEEE Transactions on Neural Networks and Learning Systems, 2018.

[45] I.T. Jolliffe and J. Cadima. Principal components analysis: a review and recent developments.
Philosophical Transactions A, 374, 2016.

[46] A. Joshi, V. Shah, S. Ghosal, B. Pokuri, S. Sarkar, B. Ganapathysubramanian, and C. Hegde.
Generative models for solving nonlinear partial differential equations. NeurIPS, 2019.

[47] A. Kalra, A. Lowe, and A. Al Jumali. An overview of factors affecting the skin’s young’s modulus.
Journal of Ageing Science, 4, 2016.

[48] A. Karpatne, W. Wakins, J. Read, and V. Kumar. Physics-guided neural networks (pgnn): An
application in lake temperature modeling. arXiv:1710.11431v2, 2018.

[49] D.P. Kingma and J.L. Ba. Adam: A method for stochastic optimization. arXiv:1412.6980v9, 2019.

[50] D. Koppenol. Biomedical implications from mathematical models for the simulation of dermal
wound healing [phd thesis]. Master’s thesis, Delft University of Technology, 2017.

[51] D. Koppenol, F. Vermolen, and F. Niessen e.a. A mathematical model for the simulation of the
formation of and the subsequent regression of hypertrophic scar tissue after dermal wounding.
Biomec Model Mechanobiol, 16:15–32, 2017b.

[52] V.M. Krasnopolsky and F. Chevallier. Some neural network applications in environmental sciences.
part ii: advancing computational efficiency of environmental numerical models. Neural Networks,
16:335–348, 2003.

[53] V.M. Krasnopolsky and M.S. Fox-Rabinovitz. Complex hybrid models combining determistic and
machine learning components for numerical climate modeling and weather prediction. Neural
Networks, 19:122–134, 2006.

[54] N. Krueger and S. Luebberding. Age-Related Changes in Skin Mechanical Properties in Textbook
of Aging Skin, pages 309–3167. Springer-Verlag Berin Heidelberg, 2017.

[55] I.E. Lagaris, A. Likas, and D.I. Fotiadis. Artificial neural networks for solving ordinary and partial
differential equations. IEEE Transactions on Neural Networks, 9(5), 1998.

[56] Z. Li and P. Maitz. Cell therapy for severe burn wound healing. Burns & Trauma, 6, 2018.

[57] C. Ma, J. Wang, and E. Weinan. Model reduction with memory and the machine learning of
dynamical systems. arXiv:1808.04258, 2018.

[58] F. Meister, T. Passerini, V. Mihalef, A. Tuysuzoglu, A. Maier, and T. Mansi. Deep learning ac-
celeration of total lagrangian explicit dynamics for soft tissue mechanics. Computer Methods in
Applied Mechanics and Engineering, 358, 2020.

[59] S. Mohaghegh, C. Modavi, H. Hafez, M. Haajizadeh, M. Kenawy, and S. Guruswamy. Develop-
ment of surrogate reservoir models (srm) for fast track analysis of complex reservoirs. Society of
Petroleum Engineers, 2006.

82 Bibliography

[60] H. Mohsen, E.-S. A. El-Dahshan, E.-S. M. El-Horbaty, and A.-B. M. Salem. Classification using
deep learning neural networks for brain tumors. Future Computing and Informatics Journal, 3:
68–71, 2018.

[61] V. Moulin, G. Castilloux, F. Auger, D. Garrel, M. O’Connor-McCourt, and L. Germain. Modulated
response to cytokines of human wound healing myofibroblasts compared to dermal fibroblasts.
Experimental Cell Research, 238:1143–1170, 1998.

[62] V. Moulin, D. Mayrand, A. Laforce-Lavoie, S. Larochelle, and H. Genest. Regenerative Medicine
and Tissue Engineering - Cells and Biomaterials. IntechOpen, 2011.

[63] K.E. Murphy, C.L. Hall, S.W. McCue, and D.L.S. McElwain. A two-compartment mechanochemical
model of the roles of transforming growth factor β and tissue tension in dermal wound healing.
Journal of theoretical biology, 272:145–159, 2011.

[64] K.E. Murphy, C.L. Hall, P. Maini, S. McCue, and D.L.S. MacElwain. A fibrocontractive
mechanochemical model of dermal wound closure incorporating realistic growth factor kinetics.
Bulletin of Mathematical Biology, 74:113–128, 2012.

[65] J. Navratil, A.J. King, J. Rios, G. Kollias, R. Torrado, and A. Codas. Accelerating physics-
based simulations using neural network proxies: An application in oil reservoir modeling. ArXiv,
1906.01510v1, 2019.

[66] N.M. Nawi, M.R. Ransing, and R.S. Ransing. An improved learning algorithm based on the conju-
gate gradient method for back propagation neural networks. Transactions on Engineering, Com-
puting and Technology, 14, 2006.

[67] D. Noble. The rise of computational biology. Nature, 3:460–463, 2002.

[68] L. Olsen, J.A. Sherratt, and P.K. Maini. A mechanochemical model for adult dermal wound con-
traction. Journal of Biological Systems, 3:1021–1031, 1995.

[69] World Health Organization. Burn prevention: Success stories and lessons learned. 2011.

[70] C. Overall, J. Wrana, and J. Sodek. Transcriptional and post-transcriptional regulation of 72-kad
gelatinase/ type iv collagenase by transforming growth factor beta in human fibroblasts. Journal
of Biological Chemistry, 266:14062–14071, 1991.

[71] A. Paszke et al. Pytorch: An imperative style, high-performance deep learning library. In Advances
in Neural Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[72] M. Pawlaczyk, M. Lelonkiewicz, and M. Wieczorowski. Age-dependent biomechanical properties
of the skin. Advances in Dermatology and Allergology, 5:302–306, 2013.

[73] F. Pedregosa et al. Scikit-learn: Machine learning in Python. Journal of Machine Learning Re-
search, 12:2825–2830, 2011.

[74] D. Pond, A. McBride, L. Davids, B. Reddy, and G. Limbert. Microstructurally-based constitutive
modelling of the skin - linking intrinsic ageing to microstructural parameters. Journal of Theoretical
Biology, 444:108–123, 2018.

[75] M. Raissi. Forward-backward stochastic neural networks: Deep learning of high-dimensional
partial differential equations. ArXiv, 1804.07010v1, 2018.

[76] M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics informed deep learning (part i): Data-
driven solutions of nonlinear partial differential equations. ArXiv, abs/1711.10561, 2017.

[77] M.C. Reed. Why is mathematical biology so hard? Notices of the AMS, 51:338–342, 2004.

[78] A. Roberts et al. Transforming growth factor type 𝛽: Rapid induction of fibrosis and angiogenesis
in vivo and stimulation of collagen formation in vitro. Proceedings of the National Academy of
Sciences, 83:4167–4171, 1986.

Bibliography 83

[79] R.C. Rockne et al. The 2019 mathematical oncology roadmap. Physical Biology, 16, 2019.

[80] S. Ruder. An overview of multi-task learning in deep neural networks. arXiv: 1706.05098v1, 2017.

[81] B. Ráduly, A.G. Capodaglio, E. Lindblom, and K. Gernaey. Model reduction using neural networks
applied to the modeling of integrated urban wastewater systems. Proceedings 20th European
Conference on Modelling and Simulation, 2006.

[82] M.H. Sadd. Elasticity: Theory, Applications and Numerics. Elsevier Academic Press, 2009.

[83] T. Schaul, I. Antonoglou, and D. Sivler. Unit tests for stochastic optimization. International Con-
ference on Learning Representations, 2014.

[84] J.A. Sheratt and J.C. Dallon. Theoretical models of wound healing: past successes and future
challenges. Comptes Rendus Biologies, 325:557–564, 2002.

[85] J.A. Sherrat and J.D. Murray. Models of epidermal wound healing. Proceedings of the Royal
Society Biological Sciences, 241, 1990.

[86] A. Sillman, D. Quang, B. Farboud, K. Fang, R. Nuccitelli, and R. Isseroff. Human dermal fibrob-
lasts do not exhibit directional migration on collagen in direct-current electric fields of physiological
strength. Experimental Dermatology, 12:396–402, 2003.

[87] M. Simpson, K. Lo, and Y. Sun. Age-related changes in pericellular hyaluronan organization leads
to impaired dermal fibroblast to myofibroblast differentiation. The American Journal of Pathology,
175:1915–1928, 2009.

[88] C. Smolle, J.Cambiaso-Daniel, A.A. Forbes, P. Wurzer, G. Hundeshagen, L.K. Branski, F. Huss,
and L. Kamolz. Recent trends in burn epidemiology worldwide: A systematic review. Burns, 43:
249–257, 2017.

[89] R. Snyderman. Personalized health care: From theory to practice. Biotechnology Journal, 7:
973–979, 2012.

[90] I. Spronk et al. Recovery of health-related quality of life after burn injuries: An individual participant
data meta-analysis. PLOS ONE, 15, 2020.

[91] S.P. Timoshenko and J.N. Goodier. Theory of elasticity. McGraw-Hill, 1970.

[92] R.T. Tranquillo and J.D. Murray. Continuum model of fibroblast-drive wound contraction:
Inflammation-mediation. Journal of Theoretical Biology, 158:135–172, 1992.

[93] J. Vande Berg, R. Rudolph, W. Poolman, and D. Disharoon. Comparitive growth dynamics and
acting concentration between cultured humanmyofibroblasts from granulating wounds and dermal
fibroblasts from normal skin. Lab Invest, 61:532–538, 1989.

[94] F.J. Vermolen. Chapter 1 - mathematical models of healing of burns. In Innovations and Emerging
Technologies in Wound Care, pages 1 – 20. Academic Press, 2020. ISBN 978-0-12-815028-3.

[95] S. Wang, K. Fan, N. Luo, Y. Cao, F. Wu, C. Zhang, K.A. Heller, and L. You. Massive computational
acceleration by using neural networks to emulate mechanism-based biological models. Nature
Communications, 10, 2019.

[96] L. Wrobel, T. Fray, J. Molloy, J. Adams, M. Armitage, and J. Sparrow. Anex A: Table A.1. Annals
of the ICRP Publication 110, 39:48–51, 2009.

[97] Y. Yu, H. Yao, and Y. Liu. Aircraft dynamics simulation using novel physics-based learning method.
Aerospace Science and Technology, 87:254–264, 2019.

[98] R. Zou, W.-S. Lung, and H. Guo. Neural network embedded Monte Carlo approach for water
quality modeling under input information uncertainty. Journal of Computing in Civil Engineering,
16, 2002.

A
Input parameter values

This appendix describes the values of the input parameters for the morphoelastic model in more detail.
The parameter values are derived from literature by Egberts et al. [22]. Their findings are repeated
here for completeness and extended to the choice of ranges for this study. It is noted that this study is
based on a preliminary version of [22], which can cause values to differ slightly. For the two-dimensional
model, a few parameter ranges had to be adapted to prevent numerical instabilities. For the relevant
parameters, information on the effect of age is included to explain the choices in the age study in Section
6.1.

Symbol Definition and derivation
�̄� The equilibrium concentration of myofibroblasts in healthy skin. In Olsen et al. [68], the

equilibrium concentrations are defined on the onset of the proliferation phase of wound
healing. Therefore the initial myofibroblast concentration is set to zero everywhere: �̄� =
0 cells/cm .

�̄� The equilibrium concentration of signaling molecules in healthy skin. Taking into account
the reaction term of the signaling molecules and the values of the other initial concentra-
tions, �̄� should be equal to zero [50]: �̄� = 0 g/cm .

�̄� The equilibrium concentration of fibroblasts in healthy skin is estimated by Olsen et al. [68]
to be of 𝒪(10). Although other studies estimate a higher value of 𝒪(10), a equilibrium
concentration of 𝒪(10) works better for the morpho-elastic model [22]. Therefore the
range is defined as �̄� = (1 − 2.5) ⋅ 10 cells/cm . Furthermore, Gunin et al. [34] found
that number of fibroblasts in children skin (0-10 years) is nearly twice as high as adult
skin (11+ years).

�̄� The equilibrium collagen concentration in healthy skin is estimated by Olsen et al. [68].
Roughly 75% of the 15% of other substances than water and fat in 1 ml of human dermal
tissue is collagen, which yields �̄� = 0.1125 g ml . Egberts et al. [22] uses a slightly
lower value of �̄� ≈ 0.1 g/cm . Based on these results, the range is defined as �̄� =
0.975− 0.1200 g/cm . Regarding the effect of age, Farage et al. [26] found that collagen
content decreases at about 2% per year.

�̃� Initial concentration of signaling molecules in wounded skin. Due to the supply of growth
factors in the inflammatory phase, the initial concentration of signaling molecules is un-
equal to zero. According to Olsen et al. [68], this value should not exceed 15-50 ng/ml,
which leads to the range �̃� = (1 − 5) ⋅ 10 g/cm

�̃� The initial concentration of fibroblasts in wounded skin is adopted from Koppenol [50],
where it is estimated to be between 1000 and 2000 cells/cm , roughly 20% of the initial
condition. Therefore the initial concentration is set to �̃� = 0.2�̄� cells/cm .

�̃� It is assumed no collagen is left in completely burned skin and therefore �̃� = 0 g/cm .
𝜒 The chemotaxis coefficient is estimated in [64] to be 2 ⋅ 10 . This value is used as the

lower bound for the range, which is defined by 𝜒 = (2 − 3) ⋅ 10 cm /(cells day).

85

86 A. Input parameter values

Symbol Definition and derivation
𝜅 The division rate reduction value of the fibroblasts. Vande Berg et al. [93] approximates

the carrying capacity of fibroblasts to be 10 cm /cells. In this study the value is esti-
mated to be in the range (10 − 10) cm /cells. Since the skin becomes thinner with
increased age, it is assumed that crowding occurs faster in elderly and the value is in-
creased with age [22].

𝜂 The ratio of myofibroblasts to fibroblasts in the maximum secretion rate of the signaling
molecule. Myofibroblasts produce roughly the twice the collagen that is synthesized by
fibroblasts [61, 68]. This value is adopted: 𝜂 = 2.

𝜂 The ratio of myofibroblasts to fibroblasts in the secretion rate of MMPs which is estimated
by Koppenol [50] to be 0.5. The value is adopted in this study.

𝛿 The apoptosis rate of myofibroblasts. A value of 0.06 /day corresponds to normal scars
and 0.002 /day corresponds to hypertrophic scars [51]. This is combined with the study
by Moulin et al. [62] which provides percentages, 8.85% for normal scars and 1.06% for
hypertrophic scars. Combining the two studies leads to the range 𝛿 = 0.06−0.885 /day.

𝛿 The apoptosis rate of fibroblasts. The average fibroblast doubling time (DT) ranges from
18-20h [7, 32] and the average lifespan varies between 40 and 70 population doublings
(PD) [10, 62]. Egberts et al. [22] derived that this leads to the range (0.0119 − 0.0231)
/day, which is adopted. On average, doubling time decreases with age [87], which causes
the apoptosis rate to increase with age.

𝛿 Proteolytic breakdown rate of the signaling molecules. Egberts et al. [22] derived the
range (3.54 − 6.93) ⋅ 10 cm /(cells g day), which is adopted.

𝛿 Koppenol [50] estimates the value to be 6⋅10 cm /(cells g day) and according to Farage
et al. [26] the collagen turnover decreases with age. Therefore the value by Koppenol is
used as an upper bound and the range is defined by 𝛿 = (4− 6.075) ⋅ 10 cm /(cells g
day).

𝑟 Proliferation rate of the fibroblasts. Egberts et al. [22] has derived that the proliferation
rate is between 0.832 and 0.924 cm /(cells day). This range is adopted for the study.
Furthermore, the proliferation rate decreases with age [34].

𝑟max The maximum factor of cell division rate enhancement due to the signaling molecule is
adopted from [25] and can range between 2 and 3.

𝑎 Concentration of signaling molecule that causes half-maximum enhancement of the cell
division rate. Olsen et al. [68] provided experimental evidence which indicates that half-
maximal enhancement corresponds to concentrations about 10 ng per ml. We adopt the
value 10 and vary this value with 10% to get the range (0.9 − 1.1) ⋅ 10 g/cm .

𝑎 Signaling molecule concentration that causes half-maximum net secretion rate of the
signaling molecules. We adopt the value from [68], where the value is related to the initial
concentration of growth factors. Based on this result, the range is defined by (0.98−1.02)⋅
10 g/cm .

𝑎 The value of the secretion rate for the generic MMP is estimated to be between 2 and
2.5) ⋅ 10 cm /g [70]. This range of values is adopted. It is assumed that this factor
decreases with increasing age [22].

𝑎 Concentration of signaling molecules that causes the half-maximum enhancement of the
secretion rate. We adopt the value 10 based on data from Roberts et al [78] and define
the range by a deviation of 2 ⋅ 10 g/cm .

𝑘 The differentiation rate between fibroblasts and myofibroblasts. We adopt the range
5.4 ⋅ 10 − 1.08 ⋅ 10 cm /(g day) computed by Egberts et al. [22]. Furthermore, the
differentiation is decreased with age [87].

𝑘 The maximum net secretion rate of the signaling molecule. From the stability analysis it
followed that 𝑘 ≤ 𝛿 �̄�𝑎 [23]. To this end, the range is define as (0.5−0.6)𝛿 �̄�𝑎 g/(cells
day)

𝑘 The secretion rate of collagen can give a stable reaction for the equilibriumwhen 𝑘 = 𝛿 �̄�
[22]. This result is adopted.

𝑘max The maximum factor of secretion rate enhancement due to the signaling molecules.
Olsen et al. [68] found that the synergistic effects of growth factors may accelerate colla-
gen biosynthesis up to tenfold. Hence we take 𝑘max = 10.

𝐷 The diffusion rate of (myo)fibroblasts. Sillman et al. [86] studied the migratory rates of
fibroblasts. In serum-containing medium the rate was 7.6167 ⋅ 10 and in serum-free
keratinocyte medium the rate was 1.86624 ⋅ 10 . This interval is adopted, i.e. 7.6167 ⋅
10 − 1.86624 ⋅ 10 cm /(cells day).

87

Symbol Definition and derivation
𝐷 We define the range (2.22 − 3.2) ⋅ 10 cm /day for the diffusion rate of the signaling

molecules based on the value derived in Haugh [39]. The assumption that the diffusion
of signaling molecules decreases with age is adopted from Egberts et al. [22].

𝜌 The total mass density of the dermal layer. Table A.1 in Wrobel et al. [96] shows that
𝜌 = 1.09 g/cm for human skin. The standard deviation of 0.1 g/cm is adopted from
Egberts et al. [22].

𝜇 The viscosity is estimated by Koppenol et al. [51] to be of order 𝑂(10) and the stability
analysis in Egberts et al. [23] shows that 𝜇 ≥ √ . Hence values of 𝜇 between 10 and
1000 (N day)/cm are considered safe.

𝑅 A generic constant, which is estimated by Koppenol [50] to be 0.995 g/cm .
𝜉 Generated stress per unit cell density. The value 𝜉 = 4.4 ⋅10 (N g)/(cells cm) from [51]

is used to define the range (4.38 − 4.42) ⋅ 10 .
𝜁 The morpho-elasticity factor is adopted from Koppenol et al. [51] to be between 0 and 900

cm /(cells g day). Krueger and Luebberding [54] showed that the skin’s ability to recover
after stretching decreases over lifetime and therefore the value is increased with age.

𝐸 The parameter in the Young’s modulus 𝑌 = 𝐸√𝜌 is defined based on the equilibrium
value of the collagen density. In Egberts et al. [22] the parameter is computed by √ ̄ .
This value should be above 350 to achieve reasonable contractions. The value increases
with age [72, 74]. The range is defined as 350 − √ ̄ N/((g cm)).

𝐿 The initial length of the wound. The length of the wound is varied between three and five
cm. This ensures the boundary conditions of zero displacement velocity remain valid.

𝑞 The formula for 𝑞 is derived from the fact that a stable chemical reaction is necessary
when cell distributions and molecules are in equilibrium. We adopt the result from [22].

B
Implementation

Dataset
The datasets are constructed using the morphoelastic model, which is implemented in MATLAB. The
implementation of the one- and two-dimensional model is done by Egberts et al. [23] and Barion [12]
respectively and we do not provide further information on their implementation. The generation of the
datasets is performed on a cluster of 27 nodes, where each node contains four or eight cores. For the
one-dimensional model, each core of each node runs 𝑁 simulations using a private seed for the
random generator and a private file for saving the results. The private seed for the random generator is
necessary to ensure all simulations have different input parameters. The cluster used MATLAB version
2015b. The datasets for the age study were run on a private laptop with Intel i7-8550U processor using
four cores with MATLAB version 2018b.

Consecutively, the data is read into Python using the H5PY package which allows for fast access
without the need to load the data into the memory [19]. The files are combined and split into a training
and test set which are saved individually in hdf5 format. This is to ensure that test data is not used
before the final test phase.

In order to efficiently load and access the training data, and to give easy access to the training and
validation set, a Dataset class is constructed. This class opens the correct data file, training or test, and
initializes the attributes. Additional functions are written to fit and save the transforms on the training
set, transform the data and inverse transform the results. The class overwrites the getitem() function
to return transformed inputs and targets, which allows using the dataloader class during training. The
dataloader allows for the effective loading of the batches during training. Furthermore, the class is
developed such that it is easy for the user to define one or multiple desired target variables. Different
classes are developed for the surrogate datasets in Chapter 4 and for the hybrid dataset in Chapter 5.

The preprocessing of the data is done using the sklearn package [73]. Scaling is performed using
the StandardScaler function and the principal components transform is fitted using the PCA function
or the IncrementalPCA function. The IncrementalPCA function allows fitting the transform on batches
of the data, preventing memory overload.

Neural networks
The neural network is implemented in Python 3.7 using the PyTorch library [71]. PyTorch is a high-
level library, based on the Torch library, and is relatively easy to use. All training is performed on a
private laptop with an Intel i7-8550U processor. The training of the neural network is performed on
NVIDIA GeForce MX150 GPU to reduce training time using CUDA V10.2. To the end of organizing
the training experiments, we make use of the Neptune platform and Neptune package for Python. All
relevant values during training such as hyperparameters, training/validation loss, learning rate, and
processor/GPU use, as well as performance measures, figures, and trained networks are saved to
Neptune.

The neural network is implemented using a class that overwrites the standard torch.nn.Module()
class with an initialization function to construct the network and a forward function to compute pre-
dictions for a given input. Algorithm 5 shows the general structure of the implementation performing
cross-validation trials for a given neural network.

89

90 B. Implementation

Algorithm 5: Pseudo-code for the cross-validation implementation.
Result: Performance network
Input: Data file, hyperparameters.
Initialize dataset;
for fold = 1:10 do

Split dataset in training (90%) and validation set (10%);
Fit scalers on inputs and targets of the training set;
Initialize network, data loaders and optimizer;
for i < 𝑁epoch do

for inputs,targets in train loader do
Predictions = Network(inputs);
Loss = Loss(predictions, targets);
Backpropagate the loss;
Adapt weights with optimizer;

end
for inputs,targets in valid loader do

Predictions = Network(inputs);
Loss = Loss(predictions, targets);
if validation error < minimum validation error then

Save network;
Update minimum validation error;

end
else

Check if early stop is reached;
end

end
if Learning rate scheduler exists then

Update learning rate;
end

end
Post-process results validation set;
Compute and save performance measures;

end

Hybrid model
The implementation of the training the neural network for the hybrid approach is similar to the training of
the surrogate, using a different dataset and different network architecture. However, the implementation
of the test set evaluation is different, due to the iterative predictions. Algorithm 6 shows the pseudo-
code for the hybrid model, where trainNN() and EvaluateNN() are functions that train and evaluate the
neural network. More detailed pseudo-code for the training and evaluation can be found in Algorithm
5. For the test set, 73 iterative predictions are used to compute RSAW and the strain energy for the
next 365 days. In the algorithm 𝑝 are the 25 input parameters of the morphoelastic model. The Scale()
functions, apply the standardization scaler that is fitted on the training data.

Medical application
The medical application is implemented using the Dash package [3]. Using this package the lay-out
of the application is designed using HTML and DCC components. The Dash package utilizes Plotly to
maintain the full interactivity of the figures. The ‘predict’ button calls the main callback function which
handles the Monte Carlo simulation, the pseudo-code of the main callback is shown in Algorithm 7.
Furthermore changing the thresholds of the probabilities calls their own functions to update the prob-
ability based on the estimated cumulative distributions. Before the application is started, the networks
and scalers for RSAW and strain energy are loaded.

91

Algorithm 6: Pseudo-code for training and evaluation of the hybrid model.
Result: Performance network
Input: Dataset, test set, hyperparameters.
Load (part of) the training and validation set;
Fit scalers on input parameters p and constituents inputs from training set;
Initialize network;
for i < 𝑁epoch do

TrainNN();
EvaluateNN();

end
for sample i in test set do

InputParam = Scale(𝑝);
InitCond = Scale([𝑀 , 𝑁 , 𝑐 , 𝜌 , 𝑢 , 𝑣 , 𝜖]);
Inputs = Concatenate(InputParam, InitCond);
for day in range(73) do

Preds = [𝑀day , 𝑁day , 𝑐day , 𝜌day , 𝑢day , 𝑣day , 𝜖day] = Network(Inputs);
Inputs = Concatenate(InputParam,Preds);
Inverse transform and save Preds;
Compute and save RSAW (t) and 𝐸strain(𝑡);

end
end
Evaluate performance on the test set;

Algorithm 7: Main callback function application which performs the Monte-Carlo simulation
for specified user input and updates the figures.
Input: 𝑁simul, trained networks, maximum/final contraction thresholds
Read user input;
LoadInputs(𝑁simul, Age, WoundSize); {

Define AgeFactor;
𝜇p, 𝜎p = input parameters(AgeFactor);
inputs ∼ 𝒩(𝜇p, 𝜎p, 𝑁simul) }

Transform(inputs);
RSAW,𝐸strain = Networks(inputs);
Inverse transform predictions;
Approximate cumulative distributions and compute probabilities;
Compute mean and standard deviations;
Update visualizations;

C
Hyperparameter tuning

The performance of a trained network is largely dependent on its hyperparameters, such as the ar-
chitecture of the network, the optimization function, the learning rate, and the loss function. To find
a combination of hyperparameters that gives good results for training, many combinations have been
tested. As the dataset is prone to change due to improvements of the morphoelastic model and the
parameter ranges, the hyperparameters have not yet been fully optimized, but merely tuned for good
results. This appendix contains the conclusions for some of the trials that have been performed. It is
noted that this is just an extract, many more trials have been performed during this study.

Activation functions
Three different activation functions, ReLU, tanh and sigmoid activation were tested. It was found that
the sigmoid activation performs significantly worse than ReLU and tanh. ReLU and tanh activation
gave similar results in terms of final performance, but ReLU activation ensured faster convergence and
thereby faster training. Based on this it was chosen to use ReLU activation units.

Optimization algorithms
Both optimization with SGD and with Adam was tested for different learning rates. From the trials, it
was concluded that using the Adam optimization algorithm gives better results. The SGD algorithm also
proved to be more sensitive to the learning rate, requiring more tuning than Adam. For Adam, multiple
learning rates were tested between 0.001 and 0.01 with different decay factors. The Adam optimizer
gave good results for most tested learning rates. Larger learning rates showed faster convergence,
reaching a good performance within less epochs. The larger learning rate does have the effect that it
can cause the algorithm to jump over the minimum. Adding a small learning rate decay ensured that
the network can continue to learn for later epochs, as well. It is noted that using a smaller learning rate
without learning rate decay can obtain similar performance when training for more epochs. For each
new study, multiple learning rates between 0.001 and 0.01 and learning rate decays were tested.

Loss functions
In terms of loss functions, the MSE, the 𝐿 -norm, and the Root Mean Squared Error (RMSE) were con-
sidered. In the study it was found that the 𝐿 -norm performed worse than the other two loss functions.
MSE and RMSE showed similar results. As the MSE is a built-in loss function in Pytorch and requires
slightly less computations, it was decided to use the MSE loss function. For the MSE loss function it
was studied whether weighted versions could improve the training. For example, by giving additional
weight to the prediction of the minimum and final values, or by giving the loss of samples that are above
a certain threshold a larger weight. These weighted versions did not significantly improve the result
and did result in longer run time, and were therefore discarded. For learning the principal components,
it was found that using an explained variance weighted loss function improved the result significantly.

93

94 C. Hyperparameter tuning

Architectures
For the network architecture of the MLPs, different combinations for one-, two- and three-layer net-
works were considered. Layers consisted either of equal or varying number of neurons per layer. It
was found that one-layer networks could reach reasonable performances, though two-layer networks
performed significantly better in most cases. Using three-layer networks generically resulted in similar
performance to the two-layer networks. For each network that predicted a different target, multiple
architectures were tested.

For the hybrid approach, first a few MLP architectures were considered, though they performed
significantly worse than the CNNs. For the network architecture of the CNNs, only a few architectures
were considered. The considered architectures considered of one or two convolutional layers with
varying number of output channels. Furthermore, architectures with one Maxpool layer after each
convolutional layer and only one after the second convolution layer were considered. It was found that
Maxpool layers after each convolutional layer decreased the dimensionality too much. It is noted that
hyperparameter tuning for the hybrid approach was limited and will need to be done more extensively.

Regularization
For regularization purposes, it was found that early stopping was effective in preventing overfitting,
since the gap between training and validation error remained small. Using dropout with p = 0.1 or p
= 0.2 as regularization technique, lead to a slightly lower performance. Using L or L -regularization
also did not improve the generalization properties of the network with respect to early stopping. Since
early stopping seemed to prevent overfitting, it was chosen only to use early stopping.

	Acronyms
	Introduction
	Introduction & Motivation
	Related work
	Approach & Contribution
	Outline

	Morphoelastic Model for Burn Injuries
	One-dimensional morphoelastic model for burn injuries
	Mathematical framework
	 Relative surface area wound
	Strain energy
	Numerical methods

	Two-dimensional morphoelastic model for burn injuries
	Differences mathematical framework
	Relative surface area wound
	Strain energy

	Machine Learning Methods
	Designing a neural network
	Design process
	Challenges

	Neural networks
	Feedforward neural networks
	Convolutional neural networks
	Parameter-sharing neural networks
	Activation functions
	Initialization

	Training
	Forward propagation
	Loss functions
	Back-propagation
	Optimization algorithms
	Regularization

	Validation & Testing
	Cross-validation

	Data generation
	Data processing
	Scaling
	Principal Component Analysis

	Performance measures

	Surrogate Model
	Dataset - 1D morphoelastic model
	RSAW prediction- 1D morphoelastic model
	Neural network
	PCA
	Training size
	Final network & Test set evaluation
	Exceptional test cases
	RSAW prediction from displacement u

	Strain energy prediction - 1D morphoelastic model
	Training
	Test
	Combined predictions
	Strain energy from mechanical values

	Two-dimensional morphoelastic model
	Dataset
	RSAW prediction
	Strain energy prediction
	Wound edge prediction

	Conclusion

	Hybrid Model
	Dataset
	Network & Results
	Performance measures
	Network
	Results 15% training data
	Results 30% training data

	Conclusion

	Clinical Case Studies
	Age study
	Parameters
	Spatially constant parameters
	Spatially varying parameters
	Parameters outside training range
	Conclusion

	Medical application
	Inserting input values
	Predictions & Visualization

	Conclusion & Discussion
	Conclusion
	Surrogate model
	Hybrid model
	Clinical case studies

	Discussion

	Bibliography
	Input parameter values
	Implementation
	Hyperparameter tuning

