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Chapter 1 Introduction 
Nucleus for European Modeling of the Ocean (NEMO) is a 3-dimensional ocean model that is used for 

oceanography, climate modeling as well as operational ocean forecasting. It includes submodels that 

describe sea-ice and biochemistry. Many processes are parameterized, e.g. convection and 

turbulence. NEMO is developed in France and the UK by the NEMO development team and is used by 

hundreds of institutes all over the world. 

NEMO is composed of “engines” nested in an “environment”. The “engines” provide numerical 

solutions of ocean, sea-ice, tracers and biochemistry equations. The “environment” consists of the 

pre- and post- processing tools, the interface to the other components of the Earth System, the user-

interface, etc.  

The open-source code consists of 100k lines of code fully written in Fortran 90. The MPI (Message 

Passing Interface) paradigm is used to parallelize the code and depending on the configuration of the 

model, it can run on a single processor or scale up to 1000 or more processors. 

 

1.1 Model description 
NEMO is a finite- difference model with a regular domain decomposition and a tripolar grid to 

prevent singularities. 

 

Figure 1: grid of NEMO-model. 

The model calculates the incompressilble Navier-Stokes equations on a rotating sphere. The 

prognostic variables are the three-dimensional velocity, temperature and salinity and the surface 

height. The top of the ocean is implemented as a free surface, which requires the solution of an 

elliptic equation: 
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For this purpose, it uses either a successive overrelaxation or a preconditioned conjugate gradient 

method. Both methods require the calculation of global variables, which incurs a lot of 

communication (both global and with nearest neighbors) when multiple processors are used. 

 

1.2 Problem description 
Both methods to calculate the free surface are of iterative nature, and are implemented as single 

subroutines of less than 200 lines. Their convergence rate is very slow and on average they need 

hundreds or even thousands of iterations to reach a satisfactory tolerance. At this moment, the 

scalability of NEMO is limited by the communication overhead of the free surface solver. As new 

computer architectures will consist of many more cores (100k+), it is imperative to improve scaling of 

NEMO. 

The goal is to find new algorithms or to change the existing algorithms that improve the scalability of 

the NEMO model.   

In numerical terms, this goal is dual: the algorithms should be changed in such a way that parallelism 

is improved, and algorithms should improve the convergence rate. 
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Chapter 2 Definitions and preliminary results 
Here, an overview is given of relevant definitions, concepts and theorems used in later chapters. 

 

2.1 Matrices 
Consider the complex valued matrix A, with m rows and n columns, thus of size m x n. The element 

on the i-th row an j-column is denoted by 𝑎𝑖𝑗 . 

The i-th row is denoted by: 

𝑎𝑖∗ = (𝑎𝑖1,𝑎𝑖2 , … , 𝑎𝑖𝑛 ). 

The j-th row is similarly denoted by:  

𝑎∗𝑗 =  

𝑎1𝑗

𝑎2𝑗

⋮
𝑎𝑚𝑗

  

The transpose of matrix A is a matrix C whose elements are 𝑐𝑖𝑗 = 𝑎𝑗𝑖 , i =1, …, m, j =1, …, n. It is 

denoted by 𝐴𝑇 . 

A matrix is square if its size is n ×n. An important square matrix is the Identity matrix I, with ones at 

the main diagonal, i.e. 𝐼𝑖𝑖 = 1, 𝑖 = 1,… , 𝑛 and 𝐼𝑖𝑗 = 0, if 𝑖 ≠ 𝑗. 

The inverse of a matrix A, if it exists, is a matrix C such that: 𝐴𝐶 = 𝐶𝐴 = 𝐼. Denote the inverse of A by 

𝐴−1. 

The determinant of A can be defined by the following recursive definition: 

det 𝐴 =  (−1)𝑗+1𝑎1𝑗 det 𝐴1𝑗 ,

𝑛

𝑗=1

 

where 𝐴1𝑗  is an  𝑛 − 1 × (𝑛 − 1) matrix obtained by deleting the first row and the j-th column of A. 

Matrix A is said to be singular  when det 𝐴 = 0. Otherwise it is nonsingular. 

Eigenvalues 

A complex scalar 𝜆 is called an eigenvalue of the square matrix A if a nonzero vector u of ℂ𝑛  exists 

such that 𝐴𝑢 = 𝜆𝑢. The vector u is called an eigenvector of A associated with 𝜆. The set of all 

eigenvalues of A is called the spectrum of A and denoted by 𝜎(𝐴). 

It can be shown that a matrix is singular if zero is an eigenvalue. Otherwise, a matrix is nonsingular if 

and only if it has an inverse. That is why a nonsingular matrix is also called an invertible matrix. 

Thus, the determinant of a matrix determines whether or not the matrix has an inverse. The 

maximum modulus of the eigenvalues is called the spectral radius and is denoted by 𝜌(𝐴) 

𝜌 𝐴 = max
𝜆∈𝜎(𝐴)

 𝜆  
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Types of matrices 

- Symmetric matrix: 𝐴𝑇 = 𝐴. 

- Hermitian matrix: 𝐴𝐻 = 𝐴. Where 𝐴𝐻 = 𝐴 𝑇 = 𝐴𝑇    . 

- Diagonal matrix: 𝑎𝑖𝑗 = 0 for 𝑗 ≠ 𝑖. Notation: 𝐴 = diag(𝑎11 , 𝑎22 , … , 𝑎𝑛𝑛 ). 

- Upper triangular matrix: 𝑎𝑗𝑗 = 0 for 𝑖 > 𝑗. 

- Lower triangular matrix: 𝑎𝑗𝑗 = 0 for 𝑖 < 𝑗. 

- Tridiagonal matrix: 𝑎𝑖𝑗 = 0 for any pair 𝑖, 𝑗 such that  𝑗 − 𝑖 > 1.  

Notation: 𝐴 = tridiag 𝑎𝑖,𝑖−1 , 𝑎𝑖𝑖 , 𝑎𝑖,𝑖+1 . 

- Column Permutation matrix: the columns of A are a permutation of the columns of the 

identity matrix. 

- Block diagonal matrix: generalizes the diagonal matrix by replacing each diagonal entry by a 

matrix. Notation: 𝐴 = diag(𝐴11 , 𝐴22 , … , 𝐴𝑛𝑛 ). 

- Block tridiagonal matrix: generalizes the tridiagonal matrix by replacing each nonzero entry 

by a square matrix. Notation: 𝐴 = tridiag 𝐴𝑖,𝑖−1 , 𝐴𝑖𝑖 , 𝐴𝑖,𝑖+1 . 

- Positive Definite:  𝐴𝑥, 𝑥 > 0,    ∀𝑥 ∈ ℂ𝑛 , 𝑥 ≠ 0. Defined the same way for negative definite. 

- Positive semidefinite:  𝐴𝑥, 𝑥 ≥ 0,    ∀𝑥 ∈ ℂ𝑛 , 𝑥 ≠ 0. The same for negative semidefinite. 

- Reducible: if there is a permutation matrix P such that 𝑃𝐴𝑃𝑇  is block upper triangular. 

Otherwise, it is irreducible. 

Matrix norms 

For a general matrix A in ℂ𝑛×𝑚 , we define the following special set of norms 

 𝐴 𝑝 = max
𝑥∈ℂ𝑚 ,𝑥≠0

 𝐴𝑥 𝑝
 𝐴 𝑝  

= max
 𝑥 𝑝=1

 𝐴𝑥 𝑝         𝑝 ≥ 1. 

 

2.2 Orthogonal vectors 

A set of vectors 𝐺 = {𝑎1 , 𝑎2 , … , 𝑎𝑟} is said to be orthogonal if  𝑎𝑖 , 𝑎𝑗  = 0 when 𝑖 ≠ 𝑗. Where (. , . ) is 

an inner product. The set is called orthonormal if, in addition:   𝑎𝑖 2 = 1,    𝑖 = 1,… , 𝑟. 

Every subspace admits an orthonormal basis which is obtained by taking any basis and 

“orthonormalizing” it. Given a linearly independent set of vectors {𝑥1, 𝑥2 , … , 𝑥𝑟}, the 

orthonormalization can be achieved by an algorithm known as the Gram-Schmidt procedure. This 

procedure consists of taking the first vector 𝑥1, normalizing it to get 𝑞1, and orthogonalize the vector 

𝑥2 against it. Then the second vector is normalized to 𝑞2, then 𝑥3 is orthogonalized against 𝑞1 and 𝑞2. 

This gives the following algorithm: 

Algorithm 1: Gram Schmidt 

1. Compute 𝑟11 ≔  𝑥1 2. If 𝑟11 = 0 Stop, else compute 𝑞1 ≔
𝑥1

𝑟11
. 

2. For 𝑗 = 2,… , 𝑟 Do: 

3.      Compute 𝑟𝑖𝑗 ≔ (𝑥𝑗 , 𝑞𝑖), for 𝑖 = 1, 2, … , 𝑗 − 1 

4.      𝑞 ≔ 𝑥𝑗 −  𝑟𝑖𝑗
𝑗−1
𝑖=1 𝑞𝑖  

5.      𝑟𝑗𝑗 ≔  𝑞  2, 
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6.      If 𝑟𝑗𝑗 = 0 Stop, else 𝑞𝑗 ≔
𝑞 

𝑟𝑗𝑗
 

7. End Do 

This is the standard Gram-Schmidt process. There are alternative formulations of the procedure that 

have better numerical properties. The best known is the Modified Gram Schmidt, which can be found 

in Saad, Section 1.7, Algorithm 1.2.      
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Chapter 3 Basic Iterative Methods 
Let  

Au b   (1) 

be a linear system with an invertible matrix A. 

Iterative methods of linear systems of equations are useful, if the number of iterations necessary is 

not too big, if A is sparse, or A has a special structure, or if a good guess for u is available. 

We use the following general iteration: 

1 ,i iu Qu s      ( 0,1,2,...)i   (2) 

so that the system u Qu s  is equivalent to the original problem. Here Q is the iteration matrix. It 

is, however, not computed explicitly. It is possible to rewrite the process (2) as follows: 

𝑢𝑖+1 = 𝑄𝑢𝑖 + 𝑠 

𝑢𝑖+1 − 𝑄𝑢𝑖 = 𝑠 

Then let 𝑖 → ∞ 

 𝐼 − 𝑄 𝑢 = 𝑠 

𝑢 =  𝐼 − 𝑄 −1𝑠 = 𝐴−1𝑏 

The iterative process (2) is called consistent, if matrix I Q  is not singular and if 1 1( )I Q s A b   . 

If the iteration is consistent, the equation 1( )I Q u s   has exactly one solution iu u  . 

The simplest iterative scheme is the Richardson iteration 

1 ( ) ( )i i i iu u b Au I A u b              ( 0,1, )i   

with some acceleration parameter 0  . In this case, Q I A   and s b  in (1). 

A usual way of constructing Q is to start with a splitting 

ˆA A R    

and to use the iteration 

1
ˆ

i iAu Ru b   . 

Here 

1 1ˆ ˆ( ) ( )Q A R I A A    . 
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3.1 Jacobi and Gauss- Seidel 
Two well-known examples for a splitting are the Jacobi and the Gauss-Seidel method.  

Let 𝐴 ∈ ℝ𝑁×𝑁  be a regular matrix, ( ),mnA a  , 1,m n N  with 0mma   (𝑚 = 1,2,… ,𝑁), 

𝑏 ∈ ℝ𝑁. 

In the Jacobi method, we compute, starting with initial guess 
0u  recursively the components of the 

(i+1)-th vector are computed the following way: 

1

1( )

1 N
i i

m m mn k

k k mmm

u b a u
a



 

 
  

 
 ,    ( 1, , )m N . 

In Gauss-Seidel’s method one uses, different from Jacobi’s method, during the computation of 1i

mu   

the components computed previously in this iteration 1 1

1 1, ,i i

mu u 


 instead of 

1 1, ,i i

mu u 
. 

Herewith, the approximations iu  should reach an exact solution u faster, if the process converges at 

all, 

1
1 1

1 1

1 m N
i i i

m m mk k mk k

k k mmm

u b a u a u
a


 

  

 
   

 
  ,     ( 1, , )m N  

The iteration matrix Q for Jacobi is found by splitting A into the following form A D C  , with a 

diagonal matrix D, which is equal to the main diagonal of A.  

Here,  

1 1,JACQ D C s D b    

In the Gauss-Seidel method, C is split into: 1 2C C C  , with a lower triangular matrix 1C  and an 

upper triangular matrix 2C . Then the iteration matrix GSQ  for Gauss-Seidel becomes: 

 
1

1 2 ,GSQ D C C


    𝑠 =  𝐷 − 𝐶1 
−1𝑏. 

Overrelaxation is based on the splitting  

1 2( ) ( (1 ) )A D C C D         

And the corresponding Successive Over Relaxation (SOR) method is given by the recursion 

 1 1 2( ) (1 )i iD C u C D u b             

Note that when 𝜔 = 1 we get Gauss-Seidel. 

 

3.2 Convergence results for Jacobi and Gauss-Seidel 

An iteration is called convergent, if the sequence 0 1 2, , ,u u u  converges to a limit u.  
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The iterative method 
1i iu Qu s   ( 0,1, )i   converges if ( ) 1Q   [see Saad, Theorem 4.1, p. 

104]. Here ( )Q  is the spectral radius of Q. 

Since it is very expensive to compute the spectral radius of a matrix, sufficient conditions that 

guarantee convergence can be useful in practice. One such sufficient condition could be obtained by 

utilizing the inequality, ( )Q Q   for any matrix norm. Thus for convergence, it is sufficient to 

have  𝑄 < 1. 

Here we state the most important theorems about convergence for Jacobi, Gauss-Seidel and SOR. 

Definition 1 

Let A, M, N be three given matrices satisfying A = M - N. The pair of matrices M, N is a regular 

splitting of A, if M is nonsingular and 𝑀−1 and N are nonnegative. 

We associate a regular splitting with the above splitting for Jacobi and Gauss-Seidel. 

Theorem 1 

Let M, N be a regular splitting of a matrix A. Then 𝜌 𝑀−1𝑁 < 1  if and only if A is nonsingular and 

𝐴−1 is nonnegative. 

 Proof: see Saad, p. 107-108 

Definition 2 

A matrix A is strictly column diagonally dominant if 

 𝑎𝑗𝑗  >   𝑎𝑖𝑗  

𝑖=𝑛

𝑖=1
𝑖≠𝑗

,    𝑗 = 1,… , 𝑛 

A is irreducibly diagonally dominant if A is irreducible, and 

 𝑎𝑗𝑗  ≥  𝑎𝑖𝑗  

𝑖=𝑛

𝑖=1
𝑖≠𝑗

,    𝑗 = 1,… , 𝑛 

with strict inequality for at least one j. 

Theorem 2 

If A is a strictly diagonally dominant or an irreducibly diagonally dominant matrix, then the associated 

Jacobi and Gauss-Seidel iterations converge for any 𝑢0. 

Proof: see Saad, p. 111 

Theorem 3 

If A is symmetric with positive diagonal elements and for  0 < 𝜔 < 2, SOR converges for any 𝑢0 if and 

only if A is positive definite. 
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Stopping criteria  

An iterative method should be stopped if the approximate solution is accurate enough. A good 

termination criterion is very important for an iterative method, because if the criterion is too weak, 

the approximate solution is useless, whereas if the condition is too severe the iterative method never 

stops or costs too much work.  

For iterative methods that have a super linear convergence behavior most stopping criteria are based 

on the norm of the residual  𝑟𝑖 = 𝑏 − 𝐴𝑢𝑖 . Some examples of these stopping criteria are: 

 

1)  𝑏 − 𝐴𝑢𝑖 2 ≤ 𝜀 
 

2) 
 𝑏−𝐴𝑢 𝑖 2

 𝑏−𝐴𝑢0 2
≤ 𝜀 

 

3) 
 𝑏−𝐴𝑢 𝑖 2

 𝑏 2
≤ 𝜀 

 

4) 
 𝑏−𝐴𝑢 𝑖 2

 𝑢 𝑖 2
≤ 𝜀/ 𝐴−1 2 

 

The main disadvantage of the first one is that it is not scaling invariant. This implies that if 

 𝑏 − 𝐴𝑢𝑖 2 ≤ 𝜀 this does not hold for  100(𝑏 − 𝐴𝑢𝑖) 2. The second criterion is widely used, but 

may never be satisfied if the initial estimate is very good due to round off errors. The third criterion is 

a good one, while the fourth is in many cases useless since in general 𝐴 2 and  𝐴−1 2 are not 

known. 
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Chapter 4 Krylov subspace methods 
Recall the linear system:  

𝐴𝑢 = 𝑏 

Define the subspace: 

𝐾𝑚  𝐴, 𝑟0 = 𝑠𝑝𝑎𝑛 𝑟0, 𝐴𝑟0 , 𝐴2𝑟0 , … , 𝐴𝑚−1𝑟0  

Where 𝑟𝑖 = 𝑏 − 𝐴𝑢𝑖  is called the residual. 𝐾𝑚  𝐴, 𝑟0 is called the Krylov subspace of dimension m 

corresponding to matrix A and initial residual 𝑟0. 

Solutions computed by basic iterative methods follow the recusion  

𝑢𝑖+1 = 𝑢𝑖 + 𝐵−1 𝑏 − 𝐴𝑢𝑖 = 𝑢𝑖 + 𝐵−1𝑟𝑖  

The generated 𝑢𝑖 ’s are elements of 𝑢0 + 𝐾𝑚  𝐵
−1𝐴, 𝐵−1𝑟0 . 

 

4.1 Arnoldi’s Method 
Arnoldi’s procedure is an algorithm for building an orthogonal basis of the Krylov subspace 𝐾𝑚 . In the 

algorithm, the vectors are orthogonalised by a standard Gram-Schmidt procedure. In exact 

arithmetic, one variant of the algorithm is as follows: 

Algorithm 2: Arnoldi 

1. Choose a vector 𝑣1 such that  𝑣1 2 = 1 

2. For 𝑗 = 1,2,… ,𝑚 Do: 

3.      Compute 𝑕𝑖𝑗 =  𝐴𝑣𝑗 , 𝑣𝑖  for 𝑖 = 1,2, … ,𝑚 

4.      Compute 𝑤𝑗 ≔  𝐴𝑣𝑗 −  𝑕𝑖𝑗 𝑣𝑖
𝑗
𝑖=1    

5.      𝑕𝑗+1,𝑗 =  𝑤𝑗 2
 

6.      If 𝑕𝑗+1,𝑗 = 0 then stop 

7.      𝑣𝑗+1 = 𝑤𝑗/𝑕𝑗+1,𝑗  

8. EndDo 

With the Modified Gram-Schmidt alternative the algorithm takes the following form: 

Algortihm 3: Arnoldi- Modified Gram-Schmidt 

1. Choose a vector 𝑣1of norm 1 

2. For 𝑗 = 1,2,… ,𝑚 Do: 

3.      Compute 𝑤𝑗 ≔  𝐴𝑣𝑗   

4.      For 𝑖 = 1,2, … , 𝑗 Do: 

5.           𝑕𝑖𝑗 = (𝑤𝑗 , 𝑣𝑖) 

6.           𝑤𝑗 ≔ 𝑤𝑗 − 𝑕𝑖𝑗 𝑣𝑖  

7.      EndDo 

8.      𝑕𝑗+1,𝑗 =  𝑤𝑗 2
. If 𝑕𝑗+1,𝑗 = 0 Stop 

9.      𝑣𝑗+1 = 𝑤𝑗/𝑕𝑗+1,𝑗  
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10. EndDo 

In practice, much can be gained by using Modified Gram-Schmidt or the Householder algorithm, 

which is from numerical point of view one of the most reliable orthogonalization techniques. For 

more details see Saad, page 149. Although the Householder algorithm is numerically more viable 

than Gram-Schmidt and Modified Gram-Schmidt, it is also more expensive.  

When solving linear systems, the Modified Gram-Schmidt orthogonalization with a 

reorthogonalization strategy based on a measure of the level of cancellation [see Saad, page 148] is 

more than adequate in most cases.  

 

4.2 The Symmetric Lanczos Algorithm 
The symmetric Lanczos Algorithm can be viewed as a simplification of Arnoldi’s method for the 

particular case when the matrix A is symmetric. 

Denote by 𝐻  𝑚  the (m+1) × m Hessenberg matrix  whose nonzero entries 𝑕𝑖𝑗  are defined by Algorithm 

2, and by 𝐻𝑚  the matrix obtained from 𝐻 𝑚  by deleting its last row. 

Theorem 4 

Assume that Arnoldi’s algorithm is applied to a real symmetric matrix A. Then the coefficients 𝑕𝑖𝑗  

generated by the algorithm are such that: 

𝑕𝑖𝑗 = 0      for 1 ≤ 𝑖 ≤ 𝑗 − 1,  and 

𝑕𝑗 ,𝑗+1 = 𝑕𝑗+1,𝑗 , 𝑗 =  1,2,… ,𝑚 

In other words, the matrix 𝐻𝑚  obtained from the Arnoldi process is tridiagonal and symmetric. 

 Proof: see Saad, page 173 

The standard notation used to describe the Lanczos algorithm is obtained by setting 

𝛼𝑗 ≡ 𝑕𝑖𝑗  ,       𝛽𝑗 ≡ 𝑕𝑗−1,𝑗  . 

And if 𝑇𝑚  denotes the resulting 𝐻𝑚  matrix, it is of the form, 

𝑇𝑚 =

 

 
 
 

𝛼1 𝛽2        

𝛽2 𝛼2 𝛽3      
 . .   .   
  .   . .  

       𝛽𝑚−1 𝛼𝑚−1 𝛽𝑚
        𝛽𝑚 𝛼𝑚  

 
 
 

 

This leads to the following form of the Modified Gram-Schmidt variant of Algorithm 3. 

Algorithm 4: The Lanczos Algorithm 

1. Choose an initial vector 𝑣1 of norm unity. Set 𝛽1 ≡ 0, 𝑣0 ≡ 0 

2. For  𝑗 = 1,2,… ,𝑚Do: 
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3.      𝑤𝑗 ≔  𝐴𝑣𝑗 − 𝛽𝑗𝑣𝑗−1 

4.      𝛼 ≔ (𝑤𝑗 , 𝑣𝑗 ) 

5.      𝑤𝑗 ∶=  𝑤𝑗 − 𝛼𝑗𝑣𝑗  

6.      𝛽𝑗+1 =  𝑤𝑗 2
. If 𝛽𝑗+1 = 0 Stop 

7.      𝑣𝑗+1 = 𝑤𝑗/𝛽𝑗+1 

8. EndDo 

In reality, exact orthogonality of these vectors is only observed at the beginning of the process. At 

some point the 𝑣𝑖 ’s start losing their orthogonality rapidly.  

The major differences with Arnoldi’s method are that the matrix 𝐻𝑚  is tridiagonal, and thus only 

three vectors must be stored in memory. 

 

4.3 The Conjugate Gradient  Algorithm 
The Conjugate Gradient Algorithm is one of the best known iterative techniques for solving sparse 

Symmetric Positive Definite linear systems. Described in one sentence, the method is a realization of 

an orthogonal projection technique onto the Krylov subspace 𝐾𝑚  𝐴, 𝑟0  where 𝑟0 is the initial 

residual. Because A is symmetric, some simplifications resulting from the Lanczos recurrence will lead 

to more elegant results. 

Given an initial guess 𝑢0 to the linear system 𝐴𝑢 = 𝑏 and the Lanczos vectors 𝑣1 =
𝑟0

 𝑟0 2
 , 𝑣𝑖 , 

𝑖 = 2,… ,𝑚 together with the tridiagonal matrix 𝑇𝑚 , the approximate solution obtained from an 

orthogonal projection method onto 𝐾𝑚 , is given by  

𝑢𝑚 = 𝑢0 + 𝑉𝑚𝑦𝑚 ,   𝑦𝑚 = 𝑇𝑚
−1 𝛽𝑒1  

Where 𝑉𝑚  is the n × m matrix with column vectors 𝑣1 , … , 𝑣𝑚 , and 𝛽 =  𝑟0 2. 

First write the LU factorization of 𝑇𝑚  as 𝑇𝑚 = 𝐿𝑚𝑈𝑚 . This factorization is of the form: 

𝑇𝑚 =

 

 
 
 

1         

𝜆2 1        
 . .   .   
  .   . .  

       𝜆𝑚−1 1  
        𝜆𝑚 1  

 
 
 

×

 

 
 
 

𝜂1 𝛽2        

 𝜂2 𝛽3      
 . .   .   
  .   . .  

        𝜂𝑚−1 𝛽𝑚
         𝜂𝑚  

 
 
 

 

Then it can be shown that 𝑢𝑚  can be updated at each step as 

𝑢𝑚 = 𝑢𝑚−1 + 𝜁𝑚𝑝𝑚  

where 𝜁𝑚 = −𝜆𝑚𝜁𝑚  , 𝜁1 =  𝑟0 2 and  𝑝𝑚 = 𝜂𝑚
−1 𝑣𝑚 − 𝛽𝑚𝑝𝑚−1 , 𝑝0 = 0. 

This gives rise to the direct version of the Lanczos algorithm for linear systems. This algorithm 

computes the solution of the tridiagonal system 𝑇𝑚
 𝑦𝑚 = 𝛽𝑒1 progressively by using Gaussian 

elimination without pivoting, which may be more prone to breakdown than the version with partial 

pivoting. For more details, see Saad, page 175 – 177. 



18 
 

The following proposition tells us that the residual vector for these algorithms is in the direction of 

𝑣𝑚+1, and also that the vectors 𝑝𝑖  are A-orthogonal, or conjugate. 

Proposition 1 

Let 𝑟𝑚 = 𝑏 − 𝐴𝑣𝑢𝑚 , 𝑚 = 0, 1, 2, … , be the residual vectors produced by the Lanczos and the Direct 

Lanczos algorithms and 𝑝𝑚 , 𝑚 = 0, 1, 2, … , the auxiliary vectors produced by the Direct Lanczos 

Algorithm. Then, 

1. Each residual vector 𝑟𝑚  is such that 𝑟𝑚 = 𝜎𝑚𝑣𝑚+1 where 𝜎𝑚  is a certain scalar. As a result 

the residual vectors are orthogonal to eacht other. 

2. The auxiliary vectors 𝑝𝑖  form an A-conjugate set, i.e.,  𝐴𝑝𝑖 , 𝑝𝑗  = 0, for 𝑖 ≠ 𝑗. 

Proof: see Saad, page 177. 

A consequence of the above proposition is that a version of the algorithm can be derived by imposing 

the orthogonality and conjugacy conditions. This gives the Conjugate Gradient algorithm. For the 

detailed derivation see Saad, page 177-178. 

Algorithm 5: Conjugate Gradient 

1. Compute  𝑟0 ≔ 𝑏 − 𝐴𝑥0, 𝑝0 ≔ 𝑟0. 

2. For 𝑗 = 0, 1, … , until convergence Do: 

3.      𝛼𝑗 ≔  𝑟𝑗 , 𝑟𝑗  / 𝐴𝑝𝑗 , 𝑝𝑗   

4.      𝑥𝑗+1 ≔ 𝑥𝑗 +  𝛼𝑗𝑝𝑗  

5.      𝑟𝑗+1 ≔ 𝑟𝑗 − 𝛼𝑗𝐴𝑝𝑗  

6.      𝛽𝑗 ≔  𝑟𝑗+1 , 𝑟𝑗+1 / 𝑟𝑗 , 𝑟𝑗   

7.      𝑝𝑗+1 ≔ 𝑟𝑗+1 +  𝛽𝑗𝑝𝑗  

8. EndDo 

It is important to note that the scalars 𝛼𝑗 , 𝛽𝑗  in this algorithm are different from those of the Lanczos 

algorithm. The vectors 𝑝𝑗  are multiples of the 𝑝𝑗 ’s of the Direct Lanczos. 

In terms of storage, matrix A and the vectors x, p, Ap, and r must be stored. 
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Chapter 5 Preconditioning Techniques 
Lack of robustness is a widely recognized weakness of iterative solvers, relative to direct solvers. This 

drawback hampers the acceptance of this type of methods in industrial applications despite their 

intrinsic appeal for very large linear systems. Both efficiency and robustness of iterative techniques 

can be improved by using preconditioning.  

Preconditioning is a simple means of transforming the original linear system into one which had the 

same solution, but which is likely to be easier to solve with an iterative solver. When dealing with 

various applications, the reliability of iterative techniques depends much more on the quality of the 

preconditioner than on the particular Krylov subspace accelerators used. 

First we will discuss the preconditioned version of the Conjugate Gradient algorithm without being 

specific about the particular preconditioner used. Later on we will discuss standard preconditioning 

techniques. 

 

5.1 Preconditioned conjugate gradient method 
Consider a matrix A that is Symmetric and Positive Definite (SPD) and assume that a preconditioner 

M is available. M approximates A in some sense, and is also SPD. Because the preconditioned 

algorithms will all require a linear system solution with the matrix M at each step, the only 

requirement on M is that it is inexpensive to solve the linear system 𝑀𝑥 = 𝑏. Then, for example the 

following preconditioned system could be solved: 

𝑀−1𝐴𝑥 = 𝑀−1𝑏 

or 

𝐴𝑀−1𝑢 = 𝑏,  𝑥 = 𝑀−1𝑢 

Note that these two systems are no longer symmetric in general. The question here is, how to 

preserve symmetry? 

One method to preserve the symmetry of the original system, is to have M available in the form of an 

incomplete Cholesky factorization, i.e., when 𝑀 = 𝐿𝐿𝑇. The splitting the preconditioner between left 

and right, and solve: 

𝐿−1𝐴𝐿−𝑇𝑢 = 𝐿−1𝑏,    𝑥 = 𝐿−𝑇𝑢 

which involves a SPD matrix. 

Define the M-inner product:  𝑥, 𝑦 𝑀 ≡  𝑀𝑥, 𝑦 =  𝑥,𝑀𝑦 .  

An alternative method is to replace the usual Euclidian inner product in the Conjugate Gradient 

algorithm by the M-inner product or the A-inner product, since the matrix 𝑀−1𝐴 is self-adjoint for 

both the M-inner product and A-inner product: 

(𝑀−1𝐴𝑥, 𝑦)𝑀 =  𝐴𝑥, 𝑦 =  𝑥, 𝐴𝑦 =  𝑥,𝑀 𝑀−1𝐴 𝑦 = (𝑥,𝑀−1𝐴𝑦)𝑀  

It can be shown that the iterates are identical. For more details see Saad, page 245 – 247. 
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The Preconditioned Conjugate Gradient algorithm becomes as follows: 

Algorithm 6: Precondtioned Conjugate Gradient 

1. Compute  𝑟0 ≔ 𝑏 − 𝐴𝑥0, 𝑧0 = 𝑀−1𝑟0, 𝑝0 ≔ 𝑧0. 

2. For 𝑗 = 0, 1, … , until convergence Do: 

3.      𝛼𝑗 ≔  𝑟𝑗 , 𝑧𝑗  / 𝐴𝑝𝑗 , 𝑝𝑗   

4.      𝑥𝑗+1 ≔ 𝑥𝑗 +  𝛼𝑗𝑝𝑗  

5.      𝑟𝑗+1 ≔ 𝑟𝑗 − 𝛼𝑗𝐴𝑝𝑗  

6.      𝑧𝑗+1 ≔ 𝑀−1𝑟𝑗+1 

7.      𝛽𝑗 ≔  𝑟𝑗+1 , 𝑧𝑗+1 / 𝑟𝑗 , 𝑧𝑗   

8.      𝑝𝑗+1 ≔ 𝑧𝑗+1 +  𝛽𝑗𝑝𝑗  

9. EndDo 

 

5.2 Preconditioning techniques 
Consider the preconditioned system associated with the splitting A = M – N 

𝑀−1𝐴𝑥 = 𝑀−1𝑏  (3) 

and the iteration of the form: 

𝑥𝑘+1 = 𝐺𝑥𝑘 + 𝑓 

Where 𝑓 = 𝑀−1𝑏 and 𝐺 = 𝐼 −𝑀−1𝐴 (see Chapter 3). 

In theory, any general splitting in which M is non-singular can be used. Ideally, M should be close to A 

in some sense. Because a linear system with the matrix M must be solved at each step of the iterative 

procedure, a practical requirement is that these solution steps should be inexpensive. In general, a 

Krylov subspace method can be used to solve a preconditioned system like (3). 

One of the simplest ways of defining a preconditioner is to perform an incomplete factorization of 

the original matrix A. This entails a decomposition of the form A = LU – R where L and U have the 

same nonzero structure as the lower and upper parts of A respectively, and R is the residual or error 

of the factorization. This incomplete factorization is known as ILU(0). Next we will discuss the general 

class of incomplete factorization techniques which are discussed in the next section. 

 

5.3 ILU factorization preconditioners 
A general Incomplete LU (ILU) factorization process computes a sparse lower triangular matrix L and 

an upper triangular matrix U such that the residual R = LU – A satisfies certain constraints, such as 

having zero entries in some locations. Such an algorithm can be derived by performing Gaussian 

elimination and dropping some elements in predetermined nondiagonal positions.  

Theorem 5 

Let A be an M-matrix and let 𝐴1 be the matrix obtained from the first step of Gaussian elimination. 

Then 𝐴1 is an M-matrix. 
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Proof: see Saad, page 269. 

The elements to drop can be specified by choosing some non-zero pattern in advance. The only 

restriction on the zero pattern is that it should exclude diagonal elements because this assumption 

was used in the proof of Theorem 5. 

Hence, for any zero pattern P, such that  

𝑃 ⊂   𝑖, 𝑗 | 𝑖 ≠ 𝑗; 𝑖, 𝑗 ≤ 𝑛        (4) 

an ILU factorization, ILU𝑃 can be computed as follows. 

Algorithm 7: General Static Pattern ILU, KIJ Version 

1. For 𝑘 = 1,… , 𝑛 − 1 Do 

2.      For 𝑖 = 𝑘 + 1,… , 𝑛 and if  𝑖, 𝑘 ∉ 𝑃  Do 

3.           𝑎𝑖𝑘 ≔ 𝑎𝑖𝑘/𝑎𝑘𝑘  

4.           For 𝑗 = 𝑘 + 1 , …  , 𝑛 and for  𝑖, 𝑗 ∉ 𝑃 Do 

5.                𝑎𝑖𝑗 ≔ 𝑎𝑖𝑗 − 𝑎𝑖𝑘𝑎𝑘𝑗   

6.           End Do 

7.      End Do 

8. End Do 

The following result can be proved: 

Theorem 6 

Let A be an M-matrix and P a given zero pattern defined as in (4). Then Algorithm 7 is feasible and 

produces an incomplete factorization, 

𝐴 = 𝐿𝑈 − 𝑅 

which is a regular splitting of A. 

Proof: see Saad, page 270. 

A more practical version of this algorithm but an equivalent one is the next: 

Algorithm 8 General ILU factorization, IKJ Version 

1. For 𝑖 = 2,… , 𝑛 Do: 

2.      For 𝑘 = 1,… , 𝑖 − 1 and if  𝑖, 𝑘 ∉ 𝑃,  Do: 

3.           𝑎𝑖𝑘 ≔ 𝑎𝑖𝑘/𝑎𝑘𝑘  

4.           For 𝑗 = 𝑘 + 1 , …  , 𝑛 and for  𝑖, 𝑗 ∉ 𝑃, Do: 

5.                𝑎𝑖𝑗 ≔ 𝑎𝑖𝑗 − 𝑎𝑖𝑘𝑎𝑘𝑗  

6.           End Do 

7.      End Do 

8. End Do 

The following proposition assures us that Algorithm 7 and 8 are indeed equivalent: 
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Proposition 2 

Let P be a zero pattern satisfying the condition (4). Then the ILU factors by the KIJ-based Algorithm 7 

and the IKJ-based Algorithm 8 are identical if they can both be computed. 

Proof: see Saad, page 272. 

Above proposition is only true for static pattern ILU. If the pattern is dynamically determined as the 

Gaussian elimination algorithm proceeds, the patterns obtained with different versions of Gaussian 

elimination can be different. 

Our incomplete factorization is about A = LU – R. The following proposition describes how matrix R 

looks like. 

Proposition 3 

Algorithm 8 produces factors L and U such that A = LU – R in which –R is the matrix of the elements 

that are dropped during the incomplete elimination process. When  𝑖, 𝑗 ∈ 𝑃, an entry 𝑟𝑖𝑗  of R is equal 

to the value of −𝑎𝑖𝑗  obtained at the completion of the k loop in Algorithm 8. Otherwise, 𝑟𝑖𝑗 = 0. 

Zero Fill-in (ILU(0)) 

The incomplete LU factorization technique with no fill-in, denoted by ILU(0), consists of taking the 

zero pattern P to be precisely the zero pattern of A. in general terms: construct any pair of matrices L 

and U so that the elements of A - LU are zero in the locations of the nonzero elements of A (NZ(A)). 

The standard ILU(0) is defined constructively using Algorithm 8 with P the pattern equal to the zero 

pattern of A. 

 

5.4 Incomplete Cholesky Conjugate Gradient 
A specific form of an incomplete factorization with no fill-in elements is the Incomplete Cholesky 

factorization. Combined with the Preconditioned Conjugate Gradient Algorithm we get ICCG(0). A 

more detailed description of this algorithm is found in [2], p. 68-70. 

When calculating the Cholesky factorization, the zero elements in de band of A become non zero 

elements in the band of L. These elements are called fill-in elements. The Cholesky factorization used 

for preconditioning is called incomplete because these fill-in elements are discarded. 

Define the set of all pairs of off-diagonal matrix entries denoted by: 

𝑄𝑁 =   𝑖, 𝑗  𝑖 ≠ 𝑗, 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑁} 

where N denotes the dimension of matrix A: 𝐴 ∈ ℝ𝑁×𝑁 . 

Then the subset Q of 𝑄𝑁  are the places  𝑖, 𝑗  where L should be zero. Knowing this, the following 

theorem can be proved: 

Theorem 7 

If A is a symmetric M-matrix, there exists for each 𝑄 ⊂ 𝑄𝑁  (with the property that  𝑖, 𝑗  implies 

 𝑗, 𝑖 ∈ 𝑄), a uniquely defined lower triangular matrix L and a symmetric nonnegative matrix R with 

𝑙𝑖𝑗 = 0 if  𝑖, 𝑗 ∈ 𝑄 and 𝑟𝑖𝑗 = 0 if  𝑖, 𝑗 ∉ 𝑄 , such that the splitting 𝐴 = 𝐿𝐿𝑇 − 𝑅  leads to a 
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convergent iterative process 

𝐿𝐿𝑇𝑢𝑖+1 = 𝑅𝑢𝑖 + 𝑏  for each choice 𝑢0 , 

where 𝑢𝑖 → 𝑢 = 𝐴−1𝑏 . 

Proof: see[2]; p 69. 

After the matrix L is constructed, it is used in Algorithm 2. When in this algorithm multiplications 

with 𝐿−1 and 𝐿−𝑇 are necessary, this is never done by forming 𝐿−1 or 𝐿−𝑇, since these are full 

matrices. Since L is a lower triangular matrix, it is easy to see that solving the linear system 𝐿𝑧 = 𝑟 is 

cheaper than calculating 𝑧 = 𝐿−1𝑟. 

In this case we compute a slightly adapted incomplete Cholesky factorization which is cheaper 

because less memory is used. This variant is mathematically equivalent to the described one. 

Consider the following decomposition:  

𝐴 = 𝐿𝐷−1𝐿𝑇 − 𝑅 

where the elements of the lower triangular matrix L and diagonal matrix D satisfy the following rules: 

1) 𝑙𝑖𝑗 = 0 for all (𝑖, 𝑗) where 𝑎𝑖𝑗 = 0 𝑖 > 𝑗, 

2) 𝑙𝑖𝑖 = 𝑑𝑖𝑖 , 
3) (𝐿𝐷−1𝐿𝑇)𝑖𝑗 = 𝑎𝑖𝑗  for all (𝑖, 𝑗)  where 𝑎𝑖𝑗 ≠ 0 𝑖 ≥ 𝑗. 

 
Let m be the number of grid points in x-direction. Then A has the following form: 

 𝐴 =

 

 
 
 

𝑎1

𝑏1

𝑐1
  

𝑏1

𝑎2

⋱

⋱

  

𝑏2

⋱
𝑏𝑚

  

𝑐1

⋱
𝑎𝑚+1

⋱

  

𝑐2

𝑏𝑚+1

⋱

  ⋱

⋱

  
𝑐𝑚+1

  

⋱

  

 

 
 
 

 

 

If the elements of L are given as follows: 

𝐿 =

 

 
 
 
 

𝑑 1
𝑏 1

𝑐 1
  

𝑑 2
⋱

⋱

  
⋱
𝑏 𝑚

  
𝑑 𝑚+1

⋱

  

∅

⋱

  

 

 
 
 
 

 

then the elements of L can be calculated by the following expressions: 

 
𝑑 𝑖 = 𝑎𝑖 −

𝑏𝑖−1
2

𝑑 𝑖−1

−
𝑏𝑖−𝑚

2

𝑑 𝑖−𝑚
𝑏 𝑖 = 𝑏𝑖
𝑐 𝑖 = 𝑐𝑖  

 
 

 
 

  𝑖 = 1,… ,𝑁. 
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Elements that are not defined are replaced by zeros. 

Using this Cholesky decomposition as preconditioner M in the Preconditioned Conjugate Gradient 

algorithm is called the Incomplete Cholesky Conjugate Gradient (0) (ICCG(0)). The 0 stands for zero 

extra diagonals allowed with fill-in. 
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5.4 Level of fill in and ILU(P) 
The accuracy of the ILU(0) incomplete factorization may be insufficient to yield an adequate rate of 

convergence. More accurate incomplete LU factorizations are often more efficient as well as more 

reliable. These factorizations will differ from ILU(0) by allowing some fill-in. For example, ILU(1) 

results from taking P to be the zero pattern of the product LU of the factors L, U obtained from 

ILU(0). 

This construction can be extended to general sparse matrices by introducing the concept of level of 

fill. A level of fill is attributed to each element that is processed by Gaussian elimination and dropping 

will be based on the value of the level of fill. 

Definition 3 

The initial level of fill of an element aij  of a sparse matrix A is defined by  

levij =  
0;  if aij ≠ 0, or i = j

∞;               otherwise.
  

Each time this element is modified in line 5 of Algorithm 8, its level of fill must be updated by 

levij = min⁡{levij , levik + levkj + 1}   (5) 

Using the definition of zero patterns introduces earlier, the zero pattern for ILU(p) is the set  

𝑃𝑝 =   𝑖, 𝑗   𝑙𝑒𝑣𝑖𝑗 > 𝑝} 

where 𝑙𝑒𝑣𝑖𝑗  is the level of fill value after all updates (5) have been performed. 

Here follows a practical implementation of the ILU(p) factorization.  

Algorithm 9:  ILU(p) 

1. For all nonzero elements 𝑎𝑖𝑗  define 𝑙𝑒𝑣(𝑎𝑖𝑗 ) = 0 

2. For 𝑖 = 2,… , 𝑛, Do: 

3.      For each 𝑘 = 1,… , 𝑖 − 1  and for 𝑙𝑒𝑣(𝑎𝑖𝑘 ) ≤ 𝑝, Do 

4.           Compute 𝑎𝑖𝑘 ≔ 𝑎𝑖𝑘/𝑎𝑘𝑘  

5.           Compute 𝑎𝑖∗ ≔ 𝑎𝑖∗ − 𝑎𝑖𝑘𝑎𝑘∗ 

6.           Update the levels of fill of the nonzero 𝑎𝑖𝑗 ’s using (5) 

7.      End Do 

8.      For any 𝑎𝑖𝑗  ∈  𝑎𝑖∗ with 𝑙𝑒𝑣(𝑎𝑖𝑗 ) > 𝑝: 𝑎𝑖𝑗 = 0 

9. End Do 

 

5.5 Threshold strategies and ILUT 
Incomplete factorizations which rely on level of fill do not take into account the numerical value of 

the elements that are dropped, since the structure of A is only what matters. This can cause some 

difficulties for realistic problems that arise in many applications. There are a few methods available 

which do drop elements according to their magnitude rather than their locations. With these 
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techniques the zero pattern P is determined dynamically. The following algorithm describes the ILUT 

approach. ILU(0) is a special case of this strategy. 

Algortihm 10: ILUT 

1. For 𝑖 = 2,… , 𝑛, Do 

2.      𝑤 ≔ 𝑎𝑖∗ 

3.      For 𝑘 = 1,… , 𝑖 − 1 and when 𝑤𝑘 ≠ 0, Do 

4.           𝑤𝑘 ≔ 𝑤𝑘/𝑎𝑘𝑘  

5.           If ‘dropping rule’ satisfied set 𝑤𝑘 = 0 

6.           If 𝑤𝑘 ≠ 0 then  

7.                𝑤 ≔ 𝑤 −𝑤𝑘 ∗ 𝑢𝑘∗ 

8.           End If 

9.      End Do 

10.      Apply a ‘dropping rule’ to row 𝑤  

11.      𝑙𝑖𝑗 ≔ 𝑤𝑗  for 𝑗 = 1,… , 𝑖 − 1 

12.      𝑢𝑖𝑗 ≔ 𝑤𝑗  for 𝑗 = 𝑖, … , 𝑛 

13.      𝑤 ≔ 0 

14. End Do 

In the factorization ILUT(𝑝, 𝜏) the follwing dropping rules are used: 

- In line 5: 𝑤𝑘 = 0 if 𝑤𝑘 < 𝜏𝑖 , where 𝜏𝑖 = 𝜏 𝑎𝑖∗ 2 

- In line 10: First apply the first dropping rule, then keep only the p largest elements in the L 

part of the row and the p largest elements in the U part of the row in addition to the 

diagonal element, which is always kept. 

Roughly speaking, p can be viewed as a parameter that helps control memory usage, while 𝜏 helps to 

reduce computational costs. 
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5.6 Approximate inverse preconditioners 
Consider the following incomplete LU factorization of sparse matrix A: 

𝐴 = 𝐿𝑈 + 𝐸 

where E is the error. The preconditioned matrices associated with the different forms of 

preconditioning are similar to 

𝐿−1𝐴𝑈−1 = 𝐼 + 𝐿−1𝐸𝑈−1 

When the matrix A is diagonally dominant, then L and U are well-conditioned and the size of 

𝐿−1𝐸𝑈−1 remains confined within reasonable limits. Its eigenvalues are nicely clustered around the 

origin. 

When the original matrix A is not diagonally dominant, 𝐿−1 and 𝑈−1 may have very large norms, 

causing the error 𝐿−1𝐸𝑈−1 to be very large and thus adding large perturbations to the identity 

matrix. 

This can be remedied by trying to find a preconditioner that does not require solving a linear system. 

For example, preconditioning the original system by a matrix M which is a direct approximation to 

the inverse of A. 

This can be translated to the minimizing problem: 

Find M that minimizes: 

𝐹 𝑀 =  𝐼 − 𝐴𝑀 𝐹
2 =   𝑒𝑗 − 𝐴𝑚𝑗 2

2
𝑛

𝑗=1

 

where  .  𝐹 is the Frobenius norm defined as: 

 𝐴 𝐹
2 =    𝑎𝑖𝑗  

2
𝑛

𝑗=1

𝑚

𝑖=1

 

in which A is a m x n-matrix, and 𝑒𝑗  and 𝑚𝑗  are the j-th columns of the identity matrix and of the 

matrix M. 

Finding M can be done in two different ways: 

1) Minimizing the function 𝐹 𝑀 =  𝐼 − 𝐴𝑀 𝐹
2   globally as a function of a sparse matrix, e.g. by 

a gradient-type method. 

2) Minimizing the individual functions  𝑒𝑗 − 𝐴𝑚𝑗 2

2
,   𝑗 = 1, 2, … , 𝑛. 

Although the second approach is more appealing to parallel computers, parallelism can also be 

exploited in the first one.  For more details on the solutions, see Saad, p.298-301. 
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5.7 Block preconditioners 
For block-tridiagonal matrices arising from the discretization of elliptic problems, block 

preconditioning is a popular technique. 

Consider a block-tridiagonal matrix blocked in the form 

𝐴 =

 

  
 

𝐷1

𝐹2

 
 
 
 

   

𝐸2

𝐷2

⋱
 
 
 

   

 
𝐸3

⋱    ⋱
𝐹𝑚−1

 
 

   

 
 
 

𝐷𝑚−1

𝐹𝑚
 

   

 
 
 
𝐸𝑚
𝐷𝑚

  

  
 

 

Let D be the block-diagonal matrix consisting of the diagonal blocks 𝐷𝑖 , L the block strictly-lower 

triangular matrix consisting of the sub-diagonal blocks 𝐹𝑖 , and U the block strictly-upper triangular 

matrix consisting of the super-diagonal blocks 𝐸𝑖 . Then:  

𝐴 = 𝐿 + 𝐷 + 𝑈. 

A Block ILU preconditioner is defined by  

𝑀 =  𝐿 + Δ Δ−1 Δ + 𝑈 , 

where L and U are the same as above, and Δ is a block diagonal matrix whose blocks Δ𝑖  are defined 

by the recurrence: 

Δ𝑖 = 𝐷𝑖 − 𝐹𝑖Ω𝑖−1𝐸𝑖 , 

in which Ω𝑗  is some sparse approximation to Δ𝑗
−1, since using explicit inverses of the block diagonal 

matrix can cause some difficulties because the diagonal structure is lost. 

An important particular case is when the diagonal blocks 𝐷𝑖  of the original matrix are tridiagonal, 

while the co-diagonal blocks 𝐸𝑖  and 𝐹𝑖  are diagonal. Then, only the tridiagonal part of the inverse 

must be kept in the recurrence above: 

Δ1 = 𝐷1, 

Δ𝑖 = 𝐷𝑖 − 𝐹𝑖Ω𝑖−1
(3)
𝐸𝑖 ,   𝑖 = 1,… ,𝑚, 

where Ω𝑘
(3)

= (Δ𝑘
−1)𝑖,𝑗   for  𝑖 − 𝑗 ≤ 1 is the tridiagonal part of Δ𝑘

−1. 

The inverse of a tridiagonal matrix can easily be obtained via the Cholesky factorization. Let Δ be a 

tridiagonal matrix of dimension l in the form: 

Δ =

 

 
 

𝛼1

−𝛽2

 
 
 

   

−𝛽2

𝛼2

⋱
 
 

   

 
−𝛽3

⋱
−𝛽𝑙−1

 

   

 
 
⋱
𝛼𝑙−1

−𝛽𝑙

   

 
  
 

−𝛽𝑙
𝛼𝑙  

 
 

 

With its Cholesky factorization: Δ = 𝐿𝐷𝐿𝑇 , with 𝐷 = diag{𝛿𝑖} and 
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𝐿 =

 

 
 

1
−𝛾2

 
 
 

   

 
1
⋱
 
 

   

 
 
⋱

−𝛾𝑙−1

 

   

 
 
 
1
−𝛾𝑙

   

 
 
  
 
1 

 
 

 

The inverse is: Δ−1 = 𝐿−𝑇𝐷−1𝐿−1. 

It can be shown that the columns of 𝐿−𝑇 can be obtained by the following recurrence: 

𝑐1 = 𝑒1 

𝑐𝑗 = 𝑒𝑗 + 𝛾𝑗 𝑐𝑗−1 , for  𝑗 ≥ 2 

Then the inverse of Δ becomes: 

Δ−1 = 𝐿−𝑇𝐷−1𝐿−1 =  
1

𝛿𝑗
𝑐𝑗 𝑐𝑗

𝑇

𝑙

𝑗=1

. 
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Chapter 6 Parallel Implementations 
Parallel computing is fast becoming an inexpensive alternative to the standard supercomputer 

approach for solving large scale problems that arise in scientific and engineering applications. 

Because of the increased importance of three-dimensional models, iterative methods are starting to 

play a major role in many application areas, since sparse direct methods for solving these problems 

are associated with high costs. Another advantage of iterative techniques above direct methods is 

that they are far easier to implement on parallel computers because they only require a small set of 

computational kernels. Currently, there is a large effort to develop new practical iterative methods 

that are efficient in parallel environments and are also robust. However, these two requirements 

seem to be in conflict.  

There are two traditional approaches for developing parallel iterative techniques: 

1. Extract parallelism whenever possible from standard algorithms. These methods are in 

general easier to understand since the underlying structure did not change. 

2. Develop alternative algorithms which have enhanced parallelism. 

First we describe two methods of the first kind. After that we pass to the second approach.  

 

6.1 Multiprocessing and Distributed Computing 
The six major forms of parallelism are (1) multiple functional units; (2) pipelining; (3) vector 

processing; (4) multiple vector pipelines; (5) multiprocessing; and (6) distributed computing. Here we 

describe the latter two. 

A multiprocessor system is a computer, or a set of several computers, consisting of several 

processing elements (PE’s), each consisting of a CPU, a memory, etc. These PE’s are connected to one 

another with some communication medium, either a bus or a multi-storage network. There are 

numerous of possible configurations, like the Distributed Memory Architectures. A more general 

form of multiprocessing is Distributed Computing, in which the processors are actually linked by 

some Local Area Network. In heterogeneous networks of computers, the processors are separated by 

relatively large distances and that had a negative impact on the performance of distributed 

applications. This approach is cost effective only for large applications, in which a high volume of 

computation can be performed before more data has to be exchanged. 

Distributed Memory Architectures 

A Distributed Memory System consists of a large number of identical processors which have their 

own memories and which are interconnected in a regular topology where processors are linked to 

other neighboring processors which in turn are linked to neighboring processors, etc.  

In ‘Message Passing’ models, there is no global synchronization of the given parallel tasks. Instead, 

computations are data driven because a processor performs a given task only when the operands it 

requires become available. The programmer must program all the data exchanges explicitly between 

processors. 
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Chapter 7 Parallel preconditioners 
The methods described in this chapter are suitable when the desired goal is to maximize parallelism. 

When developing parallel preconditioners, one should be aware that the benefits of increased 

parallelism are not outweighed by the increased amount of computations. The main goal is to find 

preconditioning techniques that have a high degree parallelism, as well as good intrinsic qualities. 

 

7.1 Introduction 
Specifically for parallel environments, a number of alternative preconditioning techniques is 

developed. Here we will discuss three types of these techniques. The first and simplest one is the 

Jacobi or block Jacobi approach. This preconditioner is often not very useful, since the number of 

iterations of the resulting iteration tends to be much larger than the more standard preconditioners 

such as ILU. To enhance performance a second level of preconditioning is applied called polynomial 

preconditioning. The second technique discussed is ‘Multicoloring’. The idea is to color the nodes 

such that two adjacent nodes do not have the same color. Doing this, we are able to determine 

nodes with the same color simultaneously. The third strategy is ‘Domain Decomposition’ which is a 

generalization of ‘partitioning’ techniques. 

In the algorithms described, we roughly distinguish two types: those which can be termed coarse-

grain and those which can be termed fine-grain. In coarse-grain algorithms, the parallel tasks are 

relatively big and may involve solution of small linear systems. In fine-grain parallelism, the subtasks 

can be elementary floating-point operations.  

 

7.2 Block Jacobi 
A generalization of the “point” relaxation schemes are the block relaxation schemes which update a 

subvector containing a set of unknowns in one time step. 

The matrix A and the right-hand side and solution vectors are partitioned as follows: 

𝐴 =

 

  
 

𝐴11 𝐴12 𝐴13

𝐴21 𝐴22 𝐴23

𝐴31 𝐴32 𝐴33

   

⋯ 𝐴1𝑝

⋯ 𝐴2𝑝

⋯ 𝐴3𝑝

⋮ ⋮ ⋮
𝐴𝑝1 𝐴𝑝2 𝐴𝑝3

   
⋱ ⋮
⋯ 𝐴𝑝𝑝 

  
 

, 𝑥 =

 

 
 

𝜉1

𝜉2

𝜉3

⋮
𝜉𝑝 

 
 

, 𝑏 =

 

 
 

𝛽1

𝛽2

𝛽3

⋮
𝛽𝑝 

 
 

 

in which the partitionings of b and x into subvectors 𝛽𝑖  and 𝜉𝑖  are identical and compatible with the 

partitioning of A. The diagonal block in A are square and assumed nonsingular. 

Generalizing the scalar case, define the splitting: 

𝐴 = 𝐷 − 𝐸 − 𝐹 

with 
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𝐷 =  

𝐴11  
 𝐴22

   
  

   
               

⋱  
 𝐴𝑝𝑝

 , 𝐸 = − 

𝑂  
𝐴21 𝑂

    
  
  

⋮ ⋮ 
𝐴𝑝1 𝐴𝑝2

  
⋱  
⋯ 𝑂

 , 𝐹 = − 

𝑂 𝐴12

 𝑂
  
⋯ 𝐴1𝑝

⋯ 𝐴2𝑝
  
    

⋱ ⋮
 𝑂

  

Then at each block Jacobi iteration, the updates are defined by 

𝜉𝑖
(𝑘+1)

= 𝐴𝑖𝑖
−1( 𝐸 + 𝐹 𝑥𝑘)𝑖 + 𝐴𝑖𝑖

−1𝛽𝑖 ,     𝑖 = 1,… , 𝑝 

With finite difference approximates of PDE’s it is standard to block the variables and the matrix by 

partitioning along whole lines of the mesh. A block can also correspond with a few consecutive lines 

of the mesh. In this case corresponding matrices 𝐴𝑖𝑖  are block-tridiagonal instead of tridiagonal. As a 

result, solving linear systems with 𝐴𝑖𝑖  may be much more expensive. On the other hand, the number 

of iterations required to achieve convergence often decreases rapidly as the block-size increases.  

 

7.3 Polynomial preconditioning 
When handling a problem that is solved by 10 000 up to 100 000 processors, polynomial 

preconditioning is a good technique to improve the convergence rate, by reducing the inner products 

calculated. For relatively a little amount of processers (0 – 1000) this method is not interesting 

enough. 

In polynomial preconditioning the matrix M is defined by 

𝑀−1 = 𝑠(𝐴) 

where s  is a polynomial, typically of low degree. Thus, the original system is replaced by the 

preconditioned system 

𝑠 𝐴 𝐴𝑥 = 𝑠 𝐴 𝑏 

which is then solved by a conjugate gradient-type technique. Note that s(A) and A commute and, as 

a result, the preconditioned matrix is the same for right of left preconditioning. In addition, the 

matrix s(A) or As(A) does not need to be formed explicitly since As(A)v can be computed for any 

vector v from a sequence of matrix-by-vector products. 

The polynomial s can be selected to be optimal in some sense, and leads to the use of Chebychev 

polynomials. The criterion that is used makes the preconditioned matrix s(A)A as close as possible to 

the identity matrix in some sense. If we want to make the spectrum of the preconditioned matrix as 

close as possible to that of the identity we have to solve a minimizing problem with use of Chebyshev 

polynomials.  For A is Symmetric Positive Definite and some interval  𝛼, 𝛽  which contains the 

eigenvalues of A , this leads to the Chebyshev acceleration algorithm. 

Let 𝜃 ≡
𝛽+𝛼

2
 be the center and 𝛿 ≡

𝛽−𝛼

2
 be the mid-width of interval  𝛼, 𝛽 . 

Algorithm 11: Chebyshev Acceleration 

1. 𝑟0 = 𝑏 − 𝐴𝑥0; 𝜎1 = 𝛿/𝜃; 
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2. 𝜌0 = 1/𝜎1; 𝑑0 =
1

𝜃
𝑟0; 

3. For 𝑘 = 0,…, until convergence Do: 

4.      𝑥𝑘+1 = 𝑥𝑘 + 𝑑𝑘  

5.      𝑟𝑘+1 = 𝑟𝑘 − 𝐴𝑑𝑘  

6.      𝜌𝑘+1 =  2𝜎1 − 𝜌𝑘 
−1; 

7.        𝑑𝑘+1 = 𝜌𝑘+1𝜌𝑘𝑑𝑘 −
2𝜌𝑘+1

𝛿
𝑟𝑘+1 

8. End Do 

If the estimates α and 𝛽 are obtained by Greshgorin, it is possible that 𝛼 ≤ 0 although A is SPD. In 

this case the Least Squares polynomials approach is applied. For more details see Saad, p. 359 – 361. 

 

7.4 Multicoloring 
The problem addressed by multicoloring is to determine a coloring of the nodes of the adjacency 

graph of a matrix such that any two adjacent nodes have different colors. For a 2-dimensional finite 

difference grid (5-point operator), this can be achieved with two colors, typically referred to as red-

black-ordering. 

 

Figure 2:  Red-black coloring and labeling of the nodes of a 6 x 4 grid. 

Assume that the unknowns are labeled by listing the red unknowns first together, followed by the 

black ones, as in the figure above. Since the red nodes are not coupled with other black ones and vice 

versa, the system that results from this ordering will have the structure: 

 
𝐷1 𝐹
𝐸 𝐷2

  
𝑥1

𝑥2
 =  

𝑏1

𝑏2
         (6)  

In which 𝐷1 and 𝐷2 are diagonal matrices. The reordered matrix is shown below. 
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Figure 3:  Matrix associated with the red-black ordering of figure 2. 

Solution of Red-Black Systems 

The easiest way to exploit red-black ordering is to use ILU(0) preconditioners for solving the block 

system (6). It appears that the number of iterations to achieve convergence can be much higher with 

red-black ordering than with natural ordering. 

A second method solves the reduced system which involves only the black unknowns: 

 𝐷2 − 𝐸𝐷1
−1𝐹 𝑥2 = 𝑏2 − 𝐸𝐷1

−1𝑏1. 

This is again a sparse linear system with half as many unknowns. For easy problems, the reduced 

system can often be solved efficiently with only diagonal preconditioning. The computation of the 

reduced system is a highly parallel and inexpensive process. It is not necessary to form the reduced 

system, especially when 𝐷1 is not diagonal, such as in Domain Decomposition methods. For example, 

applying the matrix to the vector x, can be performed using nearest-neighbor communication, and 

this can be more efficient than the standard approach of multiplying the vector with the Schur 

complement matrix 𝐷2 − 𝐸𝐷1
−1𝐹  and it can save storage. 

 

7.5 Multi-elimination ILU 
Here we will discuss a parallel algorithm for the Gaussian elimination for a general sparse matrix. 

Paralellism is obtained by finding unknowns that are independent of each other. A set of unknowns 

of a linear system which are independent is called an independent set. A few algorithms for finding 

independent set orderings of a general sparse graph are discussed in Saad, Chapter 3. Given this 

independent set, we permute our original matrix in such a way that we get the following structure: 

 
𝐷 𝐸
𝐹 𝐶

  

Where D  is a diagonal matrix and C  is arbitrary. 

The rows associated with an independent set can be used as pivots simultaneously. When such rows 

are eliminated, we have reduces our system to a smaller one, which is again a sparse one. We call 

this the first-level reduces system. Then we repeat the process of reduction a few times again. As the 

level of reduction increases, the reduced systems gradually lose sparsity. 
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 Let 𝐴𝑗  be the matrix obtained at the j-th step of the reduction, j = 0, …, n, where n is the number of 

reduction steps taken and 𝐴0 = 𝐴. Assume that an independent set ordering is applied to 𝐴𝑗  and that 

the matrix is permuted accordingly as follows: 

𝑃𝑗𝐴𝑗𝑃𝑗
𝑇 =  

𝐷𝑗 𝐹𝑗
𝐸𝑗 𝐶𝑗

  

Where 𝐷𝑗  is a diagonal matrix. When the unknowns of the independent set are eliminated, we get 

the next reduces matrix, 

𝐴𝑗+1 = 𝐶𝑗 − 𝐸𝑗𝐷𝑗
−1𝐹𝑗 . 

If we write:  𝐶𝑗 = 𝐴𝑗+1 + 𝐸𝑗𝐷𝑗
−1𝐹𝑗 ,  this results in a block LU factorization: 

𝑃𝑗𝐴𝑗𝑃𝑗
𝑇 =  

𝐷𝑗 𝐹𝑗
𝐸𝑗 𝐶𝑗

 =  
𝐼 𝑂

𝐸𝑗𝐷𝑗
−1 𝐼  ×  

𝐷𝑗 𝐹𝑗
𝑂 𝐴𝑗+1

  

Thus, in order to solve a system with the matrix 𝐴𝑗 , both a forward and backward substition need to 

be performed with the block matrices on the right –hand side of the above system. The backward 

solution involves solving a system with the matrix 𝐴𝑗+1. This block factorization approach can be 

used recursively until a system results that is small enough to be solved with a standard method. 

 

 

7.6 ILUM 
The successive reduction steps described above will give rise to matrices that become more and 

more dense due to the fill-in introduced by the elimination process. The fill-in elements will be 

dropped by using a simple dropping strategy. Here, an approximate version of the successive 

reduction steps can be used to provide an approximate solution 𝑀−1𝑣 to 𝐴−1𝑣 for any given 𝑣. This 

can be used to precondition the original linear system. The reduced matrix can then be written as: 

𝐴𝑗+1 =  𝐶𝑗 − 𝐸𝑗𝐷𝑗
−1𝐹𝑗  − 𝑅𝑗  

in which 𝑅𝑗  is the matrix with the dropped elements in this reduction step.  

The ILU block factorization becomes like: 

𝑃𝑗𝐴𝑗𝑃𝑗
𝑇 =  

𝐷𝑗 𝐹𝑗
𝐸𝑗 𝐶𝑗

 =  
𝐼 𝑂

𝐸𝑗𝐷𝑗
−1 𝐼  ×  

𝐷𝑗 𝐹𝑗
𝑂 𝐴𝑗+1

 +  
𝑂 𝑂
𝑂 𝑅𝑗

  

It is not necessary to save the successive 𝐴𝑗  matrices but only the last one that is generated. We need 

to store the sequence of sparse matrices: 

𝐵𝑗+1 =  
𝐷𝑗 𝐹𝑗

𝐸𝑗𝐷𝑗
−1 𝑂

  

We refer to this incomplete factorization as ILUM (ILU with Multi-Elimination). We distinguish a 

preprocessing phase and a backward and forward solution phase. The preprocessing phase consists 

of a succession of 𝑛 (number of reduction steps taken) applications of the following three steps: 
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(1) Finding the independent set ordering 

(2) Permuting the matrix 

(3) Reducing it 

Algorithm 12: ILUM: Preprocessing Phase 

1. Set 𝐴0 = 𝐴. 

2. For 𝑗 = 0, 1, … , 𝑛 − 1 Do 

3.      Find an independent set ordering permutation 𝑃𝑗  for 𝐴𝑗 ; 

4.      Apply 𝑃𝑗  to 𝐴𝑗  to permute it into the form 𝑃𝑗𝐴𝑗𝑃𝑗
𝑇 =  

𝐷𝑗 𝐹𝑗
𝐸𝑗 𝐶𝑗

 ; 

5.      Apply 𝑃𝑗  to 𝐵1 , … , 𝐵𝑗 ; 

6.      Apply 𝑃𝑗  to 𝑃1 , … , 𝑃𝑗−1; 

7.      Compute the matrices 𝐴𝑗+1 and 𝐵𝑗+1. 

8. End Do 

In the backward and forward solution phase, the last reduced system must be solved but not 

necessary with high accuracy. It can be solved according to the level of tolerance allowed in the 

dropping strategy during the preprocessing phase. First, some notation is introduced: 

We start by applying the product 𝑃𝑛−1, 𝑃𝑛−2 , … , 𝑃1 to the right-hand side. We overwrite the result on 

the current solution N-vector 𝑥0. Now partition this vector into: 

𝑥0 =  
𝑦0

𝑥1
  

According to the partitioning 𝑃𝑗𝐴𝑗𝑃𝑗
𝑇 =  

𝐷𝑗 𝐹𝑗
𝐸𝑗 𝐶𝑗

 . The forward step consists of transforming the 

second component of the right-hand side as 

𝑥1 ≔ 𝑥1 − 𝐸0𝐷0
−1𝑦0 . 

As a result, 𝑥1 is partitioned in the same manner as 𝑥0 and the forward elimination is continued the 

same way. Thus at each step: 

𝑥𝑗 =  
𝑦𝑗
𝑥𝑗+1

 . 

A forward elimination step defines the new 𝑥𝑗+1 using the old 𝑥𝑗+1 and 𝑦𝑗  for 𝑗 = 0,… , 𝑛 − 1 while a 

backward step defines 𝑦𝑗  using the old 𝑦𝑗  and 𝑥𝑗+1 for 𝑗 = 𝑛 − 1,… , 0. 

Above gives the following algorithm: 

Algorithm 13: ILUM: Forward and Backward Solutions 

1. Apply global permutation to right-hand side 𝑏 and copy into 𝑥0. 

2. For 𝑗 = 0,… , 𝑛 − 1 Do: [forward step] 

3.      𝑥𝑗+1 ≔ 𝑥𝑗+1 − 𝐸𝑗𝐷𝑗
−1𝑦𝑗  

4. End Do 

5. Solve with a relative tolerance 𝜖: 



37 
 

6.      𝐴𝑛𝑥𝑛 ≔ 𝑥𝑛 . 

7. For 𝑗 = 𝑛 − 1,… , 0 Do: [backward sweep] 

8.      𝑦𝑗 ≔ 𝐷𝑗
−1(𝑦𝑗 − 𝐹𝑗𝑥𝑗+1). 

9. End Do 

10. Permute the resulting solution vector back to the original ordering to obtain the solution 𝑥. 

 

7.7 Distributed ILU and SSOR 
Here we describe parallel variants of the Block Succesive Over-Relaxation (BSOR) and ILU(0) 

preconditioners which are suitable for distributed memory environments. First, a distributed matrix 

is a matrix whose entries are located in the memories of different processors in a multiprocessor 

system. 

In the ILU(0) factorization, the LU factors have the same nonzero patterns as the original matrix, so 

that the references of the entries belonging to the external subdomains in the ILU(0) factorizations 

are identical with those of the matrix-by-vectors product operation with the matrix A. This is not the 

case for ILU(p) when p>0.  Here we first define a global ordering, which is an ordering for the 

subdomains (subgraphs). This is based on the graph which describes the coupling between the 

subdomains: Two subdomains are coupled if and only if they contain at least a pair of coupled 

unknowns, one from each subdomain. Then, within each subdomain, define a local ordering. In those 

subdomains, we distinguish between points that are not coupled with nodes belonging to other 

subdomains, these are the interior points, and between interface points. These are local nodes that 

are coupled with at least one node which belongs to another processor. Each subdomain is mapped 

to the same processor. 

Consider the rows associated with the interior nodes. Because the unknowns associated with these 

nodes are not coupled with variables from other processors, these nodes can be eliminated 

independently in the ILU(0) process. After this process, the interface nodes can be eliminated in a 

certain order. There are two natural choices for this order. The first one is based on the global 

ordering of the subdomains, but this is somewhat unnatural. A proper order can also be defined by 

replacing the PE -numbers with any labels, provided that any two neighboring processors have a 

different label. The most natural way to do this is by performing a multicoloring of the subdomains. 

Define 𝑙𝑎𝑏𝑗  as the label of Processor number j. 

Algorithm 14: Distributed ILU(0) factorization 

1. In each processor 𝑃𝑖 , 𝑖 = 1,… , 𝑝 Do: 

2.      Perform the ILU(0) factorization for interior local rows. 

3.      Receive the factored rows from the adjacent processors j with 

4.           𝐿𝑎𝑏𝑗 < 𝐿𝑎𝑏𝑖  

5.      Perform the ILU(0) factorization for the interface rows with 

6.           pivots received from the interior rows completed in step 2. 

7.      Send the completed interface rows to adjacent processors j with  

8.           𝐿𝑎𝑏𝑗 > 𝐿𝑎𝑏𝑖  

9. End Do 
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In above algorithm, step 2 can be performed parallel. Once this ILU(0) factorization is completed, the 

preconditioned Krylov subspace algorithm will require a forward and backward sweep at each step. 

The distributed forward/ backward solution based on this factorization can be implemented as 

follows: 

Algorithm 15: Distributed Forward and Backward Sweep 

1. In each processor 𝑃𝑖 , 𝑖 = 1,… , 𝑝 Do: 

2.      Forward solve: 

3.           Perform the forward solve for the interior nodes. 

4.           Receive the updates values from the adjacent processors j 

5.                with 𝐿𝑎𝑏𝑗 < 𝐿𝑎𝑏𝑖 . 

6.           Perform the forward solve for the interface nodes. 

7.           Send the updated values of boundary nodes to the adjacent  

8.                processors j with 𝐿𝑎𝑏𝑗 > 𝐿𝑎𝑏𝑖 . 

9.      Backward solve: 

10.           Receive the updated values from the adjacent processors j 

11.               with 𝐿𝑎𝑏𝑗 > 𝐿𝑎𝑏𝑖 . 

12.           Perform the backward solve for the boundary nodes. 

13.           Send the updated values of boundary nodes to the adjacent  

14.                processors j with 𝐿𝑎𝑏𝑗 < 𝐿𝑎𝑏𝑖 . 

15.      Perform the backward solve for the interior nodes. 

16. End Do. 

In this algorithm, lines 3 and 15 can be computed parallel. 

 

7.8 Incomplete Poisson Preconditioning 
As shown in before, there is a price to pay for this parallelism in terms of convergence speed. Note 

that a simpler form of the equation we want to solve for the NEMO model, is the Poisson equation.  

In [4] a description of a preconditioner for the Poisson equation can be found. This preconditioner 

depends on the sum decomposition of A into its lower triangular part L and its diagonal D. The 

approximation of the inverse then is: 

𝑀−1 =  𝐼 − 𝐿𝐷−1 (𝐼 − 𝐷−1𝐿𝑇) 

Applying this preconditioner to the PCG algorithm requires that the modified system is still 

symmetric positive definite, which in turn requires that the preconditioner is a symmetric real-valued 

matrix. 

It can be shown that the preconditioner M can be written as: 

𝑀 = 𝐾𝐾𝑇  

where 

𝐾 = 𝐼 − 𝐿𝐷−1       and      𝐾𝑇 = 𝐼 − 𝐷−1𝐿𝑇.        (6) 
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In the case of a two-dimensional regular discretization, focusing on an inner grid cell, the stencil of 

the i-th row of A is: 

𝑟𝑜𝑤𝑖 𝐴 =  𝑎𝑗−1 , 𝑎𝑖−1 , 𝑎, 𝑎𝑖+1 , 𝑎𝑗+1 = (−1,−1,4,−1,−1) 

Hence, the stencils of the i-th row of L, 𝐷−1 and 𝐿𝑇 can be written as: 

𝑟𝑜𝑤𝑖 𝐿 =  −1,−1, 0, 0, 0  

𝑟𝑜𝑤𝑖 𝐷
−1 =  0, 0, 0.25, 0, 0  

𝑟𝑜𝑤𝑖 𝐿
𝑇 = (0, 0, 0, −1,−1) 

After performing the operations for (6): 

𝑟𝑜𝑤𝑖 𝐾 =  0.25,0.25, 0, 0, 0  

𝑟𝑜𝑤𝑖 𝐾
𝑇 = (0, 0, 1, 0.25, 0.25) 

Taking the matrix product 𝑀 = 𝐾𝐾𝑇  results in: 

𝑟𝑜𝑤𝑖 𝑀
−1 =  𝑚𝑗−1 ,  𝑚𝑖+1,𝑖−1 ,𝑚𝑖−1 ,𝑚,  𝑚𝑖+1 ,𝑚𝑖−1,𝑗+1 ,𝑚𝑗+1 

= (0.25, 0.0625, 0.25, 1.125, 0.25, 0.0625, 0.25) 

Observe that there are two fill-in elements. In the three-dimensional case the stencil enlarges from 7 

non-zero elements up to 13 non-zero elements for each row, which would almost double the 

computational effort. By looking again, note that the additional non-zero values are rather small 

compared to the rest of the coefficients. This nice property remains true in three dimensions. So the 

fill-in elements are discarded: 

𝑟𝑜𝑤𝑖 𝑀
−1 = (0.25, 0.25, 1.125, 0.25, 0.25) 

What about the parallelism of this preconditioner? Since we can compute the non-zero elements of 

each row separately, the degree of parallelism of this preconditioner is N, where N is the number of 

unknowns or dimension of A. 
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Chapter 8 Domain Decomposition Methods 
Domain decomposition methods refer to a collection of techniques which revolve around the 

principle of divide-and-conquer. Reasons why such techniques can be advantageous are various. 

First,  the problem can become simpler because of the geometric forms of the subdomains. Second, 

the physical problem can sometimes be split naturally into a small number of subregions where the 

modeling equations are different. Third, Domain Decomposition makes parallel computing possible. 

We will introduce the basic concepts of domain decomposition through an example from Partial 

Differential Equations. 

 

8.1 Introduction 
Consider the Laplace Equation on an L-shaped domain Ω partitioned as shown in the figure below. 

 
∆𝑢 = 𝑓 in Ω

𝑢 = 𝑢Γ  on Γ = ∂Ω
  

 

Figure 4  A L-shaped domain subdivided into three subdomains. 

Domain decomposition methods are implicitly or explicitly based on different ways of handling the 

unknown at the interfaces. From PDE point of view, If the value of the solution is known at the 

interfaces, these values could be used in Dirichlet-type boundary conditions and we will obtain s 

uncoupled Poisson Equations. When we solve these equations, we obtain the value at the interior 

points. 

Assume that the problem above is discretized with central differences. We can label the nodes as 

shown in the figure below; the interface nodes are labeled last. 
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Figure 5: interface nodes are numbered last. 

 For a general partitioning into s subdomains, the linear system associated with the problem has the 

following structure: 

 

 
 
 

𝐵1  
 𝐵2

  
     

  𝐸1

  𝐸2

⋱  ⋮
  
  
𝐹1 𝐹2

     
 𝐵𝑠 𝐸𝑠
   
⋯ 𝐹𝑠 𝐶  

 
 
 

 

  
 

𝑥1

𝑥2

⋮
𝑥𝑠
 
𝑦  

  
 

=

 

 
 
 

𝑓1

𝑓2

⋮
𝑓𝑠
 
𝑔 

 
 
 

 

Each 𝑥𝑖  here represents the subvector of unknowns that are interior to subdomain Ω𝑖  and y 

represents the vector of all interface unknowns. It is useful to express the above system in the 

simpler form: 

𝐴  
𝑥
𝑦 =  

𝐵 𝐸
𝐹 𝐶

  
𝑥
𝑦 =  

𝑓
𝑔
  

Here E represents the subdomain to interface coupling seen from the subdomains, while F 

represents the interface to subdomain coupling seen the interface nodes. 

We distinguish two types of partitionings: 

1. Vertex-based,  

2. Element-by-element based 

At the first one, works by dividing the origin vertex set into subsets of vertices. This means that each 

subset of vertices is mapped to the same processor. In the second one we map all the information 

that is related to an element to the same processor. The only restriction in this case is that no 

element should be split between two subdomains.  

The figure below shows us an example for each type.  
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Figure 6:  (a) Vertex-based, (b) element-based partitioning of a 4 x 3 mesh into two subregions. 

 

8.2 Types of Techniques 
Once we have a partitioning, the interface values can be obtained by block-Gaussian elimination 

which may be too expensive for large problems, and thus for most applications. 

Another options are the Schwarz Alternating Procedures, methods that alternate between the 

subdomains, solving a new problem each time with boundary conditions updated from the most 

recent solutions.  

The subdomains may overlap. This means that the Ω𝑖 ’s are such that 

Ω =  Ω𝑖
𝑖=1,𝑠

, Ω𝑖⋂Ω𝑗 ≠ ∅ 

where Ω𝑖  and Ω𝑗  are neighbouring domains. 

It is typical to quantify the extent of overlapping by the number of mesh-lines that are common to 

the two subdomains.  

We can distinguish domain decomposition techniques by four features: 

1. Type of partitioning. For example, should it occur along edges, or along vertices or by 

elements. 

2. Overlap. Should sub-domains overlap or not, and if yes, how much? 

3. Processing of interface values. Is the Schur complement approach (explained later) used? 

Should there be successive updates to the interface values? 

4. Subdomain solution. Should the subdomain problems be solved exactly or approximately by 

an iterative method? 

We classify the methods we discuss here in four distinct groups: 

1. Direct methods and the substructuring approach are useful for introducing some definitions 

and for providing practical insight. 

2. The Schwarz Alternating Procedures, a class of the simplest and oldest techniques. 

3. Methods based on preconditioning the Schur Complement. 
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4. Solving 𝐴𝑥 = 𝑏 using preconditioning derived from domain decomposition concepts.  

 

8.3 Direct solution and the Schur complement 
Recall the system that we obtained after applying domain decomposition an reordering the 

unknowns: 

 
𝐵 𝐸
𝐹 𝐶

  
𝑥
𝑦 =  

𝑓
𝑔
  

Assuming B is non-singular, we are allowed to write x as: 𝑥 = 𝐵−1 𝑓 − 𝐸𝑦 . Substituting this back 

gives:  

𝐹𝐵−1 𝑓 − 𝐸𝑦 + 𝐶𝑦 = 𝑔 

𝐹𝐵−1𝑓 − 𝐹𝐵−1𝐸𝑦 + 𝐶𝑦 = 𝑔 

 𝐶 − 𝐹𝐵−1𝐸 𝑦 = 𝑔 − 𝐹𝐵−1𝑓        (7) 

The matrix  

𝑆 =  𝐶 − 𝐹𝐵−1𝐸  

is called the Schur complement matrix associated with the y variable. If this matrix can be formed, 

the system (7) can be solved, all the interface variables y  will become available. Then the remaining 

unknowns can be computed via 𝑥 = 𝐵−1 𝑓 − 𝐸𝑦 . Recall that the matrix B is a block diagonal matrix 

of s blocks. Thus, parallelism arises naturally from the structure of B, which with its particular 

structure decouples every linear system into s separate systems. 

By defining the following matrices, one linear system solution can be saved, when Algorithm 16 is 

applied. 

Define: 𝐸′ =  𝐵−1𝐸 and 𝑓 ′ = 𝐵−1𝑓. Then for x we can write: 𝑥 = 𝐵−1𝑓 − 𝐵−1𝐸𝑦 = 𝑓 ′ − 𝐸′𝑦, and 

we get the following algorithm: 

Algorithm 16: Block Gaussian Elimination 

1. Solve 𝐵𝐸′ = 𝐸, and 𝐵𝑓 ′ = 𝑓 for E’ and f’, respectively 

2. Compute 𝑔′ = 𝑔 − 𝐹𝑓′ 

3. Compute 𝑆 = 𝐶 − 𝐹𝐸′ 

4. Solve 𝑆𝑦 = 𝑔′ 

5. Compute 𝑥 = 𝑓 ′ − 𝐸′𝑦. 

In practice, all the 𝐵𝑖  matrices are factored and then the systems 𝐵𝑖𝐸′𝑖 = 𝐸𝑖  and 𝐵𝑖𝑓′𝑖 = 𝑓𝑖  are 

solved. In general, many columns of 𝐸𝑖  will be zero. Therefore any efficient code based on the above 

algortihm should start by identifying the nonzero columns. 

The following proposition tells us something about the properties of the Schur complement matrix. 
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Proposition 4 

Let 𝐴 =  
𝐵 𝐸
𝐹 𝐶

  be a nonsingular matrix and be such that the submatrix B is nonsingular.  

Let 𝑅𝑦  
𝑥
𝑦 = 𝑦 be the restriction operator onto the interface variables. 

Then the following properties are true: 

1. The Schur complement matrix 𝑆 = 𝐶 − 𝐹𝐵−1𝐸 is nonsingular 

2. If A is Symmetric Positive Definite, then so is S. 

3. For any y, 𝑆−1𝑦 = 𝑅𝑦𝐴
−1  

0
𝑦
 . 

A consequence of the second property is that when A is positive definite, an algorithm such as 

Conjugate Gradient can be used to solve the reduced system 

 𝐶 − 𝐹𝐵−1𝐸 𝑦 = 𝑔 − 𝐹𝐵−1𝑓 

The third property allows preconditioners for S to be defined based on solution techniques with the 

matrix A. 

 

8.4 The Schur complement for vertex-based partitionings 
For vertex-based partitioning the matrix A has a different structure from what we just have seen 

because of the numbering of the unknowns. Since there are no interface nodes, there is no 

renumbering. As a result, the Schur complement system also has a different structure. For vertex-

based partitionings the Schur matrix S is assembled from local Schur complement matrices and 

interface-to-interface information. For more details see Saad, page 390-392. 

 

8.5 Schwarz Alternating Procedures 
The next procedure we will discuss is called the Multiplicative Schwarz procedure and it consists of 

three parts: alternating between two overlapping domains, solving the Dirichlet problem on one 

domain at each iteration, and taking boundary conditions based on the most recent solution 

obtained from the other domain. 

Multiplicative Schwarz Procedure 

Assume that each pair of neighboring subdomains has a non-empty overlapping region like in the 

figure below. The boundary of subdomain Ω𝑖  that is contained in subdomain j is denoted by Γ𝑖,𝑗 . 
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Figure 7: An L-shaped domain subdivided into three overlapping subdomains. 

 

Call Γ𝑖  the boundary of Ω𝑖  consisting of its original boundary which is denoted by Γ𝑖,0 and the Γ𝑖,𝑗 ’s. 

Denote by 𝑢𝑗𝑖  the restriction of the solution 𝑢 to the boundary Γ𝑗𝑖 .  

The following algorithm describes the Schwarz Alternating Procedure (SAP). 

Algorithm 17: SAP- Multiplcative Schwarz Sweep-Matrix form 

1. Choose an initial guess 𝑢 to the solution 

2. Until convergence Do: 

3.      For 𝑖 = 1,… , 𝑠 Do: 

4.           Solve 𝐴𝑖𝛿𝑖 = 𝑟𝑖  

5.           Compute 𝑥𝑖 ≔ 𝑥𝑖 + 𝛿𝑥,𝑖 , 𝑦𝑖 ≔ 𝑦𝑖 + 𝛿𝑦,𝑖 , and set 𝑟𝑖 ≔ 0 

6.           For each 𝑗 ∈ 𝑁𝑖  Compute 𝑟𝑦,𝑗 ≔ 𝑟𝑦,𝑗 − 𝐸𝑗𝑖 𝛿𝑦,𝑖  

7.      End Do 

8. End Do 

Here 𝑟𝑖  is the local part of the most recent global residual vector 𝑏 − 𝐴𝑥, and 𝐴𝑖  is the local matrix 

that is associated with the subdomain Ω𝑖 . The structure of 𝐴𝑖  is as follows:  

𝐴𝑖 =  
𝐵𝑖 𝐸𝑖
𝐹𝑖 𝐶𝑖

  

Finally we write: 

𝑢𝑖 =  
𝑥𝑖
𝑦𝑖
 ,   𝛿𝑖 =  

𝛿𝑥,𝑖

𝛿𝑦,𝑖
 ,    𝑟𝑖 =  

𝑟𝑥,𝑖

𝑟𝑦,𝑖
 , 

Here 𝐸𝑗𝑖  represents the coupling from internal subdomain j to external subdomain i. For more details 

on splitting up the Schur complement see Saad, page 391. 
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8.6 Schur complement Approaches 
Schur complement methods are based on solving the reduced system: 

 𝐶 − 𝐹𝐵−1𝐸 𝑦 = 𝑔 − 𝐹𝐵−1𝑓 

by some preconditioned Krylov subspace method. The first step in this solution procedure is getting 

the right-hand side 𝑔′ = 𝑔 − 𝐹𝐵−1𝑓. Then we solve the reduced system 𝑆𝑦 = 𝑔′ via an iterative 

method, and we back-substitute the solution 𝑦 to compute 𝑥 = 𝐵−1(𝑓 − 𝐸𝑦). 

In order to solve the reduced system by a direct method, S needs to be formed explicitly. But the full 

matrix S is often not available. 

For matrix-by-vector operations 𝑤 = 𝑆𝑣 this problem can be solved by the following procedure 

which only requires matrix-by-vector multiplications and one linear system solution: 

1. Compute 𝑣 ′ = 𝐸𝑣, 

2. Solve 𝐵𝑧 = 𝑣′ 

3. Compute 𝑤 = 𝐶𝑣 − 𝐹𝑧. 

Note that a linear system involving B translates into s independent linear systems which must be 

solved exactly by a direct solution method or an iterative method with high accuracy. 

Preconditioning the matrix S is hard to do. Here, we discuss some preconditioners that can be used in 

this situation. 

 

8.7 Induced Preconditioners 
Proposition 4 tells us that a preconditioning operator M to S can be defined from the (approximate) 

solution obtained with A. 

It can be shown that, if a preconditioner 𝑀𝐴  to A is obtained, the preconditioning operator 𝑀𝑆  can be 

induced from it as follows: 

𝑀𝑆 = (𝑅𝑦𝑀𝐴
−1𝑅𝑦

𝑇)−1      (8) 

Where 𝑅𝑦  represents the restriction operator on the interface variables defined in Proposition 4. 

In the special case where 𝑀𝐴 = 𝐿𝐴𝑈𝐴  the following proposition holds: 

Proposition 5 

Let 𝑀𝐴 = 𝐿𝐴𝑈𝐴  be an ILU preconditioner for A. then the preconditioner 𝑀𝑆  for S induced by 𝑀𝐴  as 

defined by (8), is given by 

𝑀𝑆 = 𝐿𝑆𝑈𝑆, with 𝐿𝑆=𝑅𝑦𝐿𝐴𝑅𝑦
𝑇,  𝑈𝑆 = 𝑅𝑦𝑈𝐴𝑅𝑦

𝑇. 

An important consequence of this proposition is that the parallel Gaussian elimination can be 

exploited for deriving an ILU preconditioner for S by using a general purpose ILU factorization. 
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Suppose we have an incomplete LU factorization of A, then we can approximate the local Schur 

complement matrices 𝑆𝑖  by: 

𝑆𝑖 = 𝐶𝑖 − 𝐹𝑖𝑈𝑖
−1𝐿𝑖

−1𝐸𝑖 , 

Since an incomplete factorization is performed, some drop strategy is applied to the elements in 𝑆𝑖 . 

Let 𝑇𝑖 = 𝑆𝑖 − 𝑅𝑖  be the matrix after the drop strategy is applied. 

Finally, the ILU factorization of the matrix below can be computed. 

 

 
 
 

𝑇1 𝐸12 𝐸13

𝐸21 𝑇2 𝐸23

⋮  ⋱
   
⋯ 𝐸1𝑠

⋯ 𝐸2𝑠

 ⋮ 
 

⋮   
𝐸𝑠1 𝐸𝑠2 𝐸𝑠3

   
⋱ ⋮
⋯ 𝑇𝑠  

 
 
 

. 

where the  𝐸𝑖𝑗 ’s are like described before. 

 

8.8 Full matrix methods 
Recall: 

𝐴  
𝑥
𝑦 =  

𝐵 𝐸
𝐹 𝐶

  
𝑥
𝑦 =  

𝑓
𝑔
  

Any technique that iterates this system is called a full matrix method. Preconditioners for A can be 

derived from approximating interface values in the same way that preconditioners for the Schur 

complement were derived from the LU factorization of A. 

First we state a few simple relations between iterations involving A and S. After that we discuss 

preconditioning techniques. 

Proposition 6 

Let  

𝐿𝐴 =  
𝐼 𝑂

𝐹𝐵−1 𝐼
 ,     𝑈𝐴 =  

𝐵 𝐸
𝑂 𝐼

  

and assume that a Krylov subspace method is applied to the original system 

 

 
 
 

𝐵1  
 𝐵2

  
     

  𝐸1

  𝐸2

⋱  ⋮
  
  
𝐹1 𝐹2

     
 𝐵𝑠 𝐸𝑠
   
⋯ 𝐹𝑠 𝐶  

 
 
 

 

  
 

𝑥1

𝑥2

⋮
𝑥𝑠
 
𝑦  

  
 

=

 

 
 
 

𝑓1

𝑓2

⋮
𝑓𝑠
 
𝑔 

 
 
 

 

with left preconditioning 𝐿𝐴  and right preconditioning 𝑈𝐴 , and with initial guess of the form 

 
𝑥0

𝑦0
 =  

𝐵−1(𝑓 − 𝐸𝑦0)
𝑦0

 . 
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then this preconditioned Krylov iteration will produce iterates of the form  

 
𝑥𝑚
𝑦𝑚
 =  

𝐵−1(𝑓 − 𝐸𝑦𝑚 )
𝑦𝑚

  

In which the sequence 𝑦𝑚  is the result of the same Krylov subspace method applied without 

preconditioning to the reduced linear system 𝑆𝑦 = 𝑔′ with 𝑔′ = 𝑔 − 𝐹𝐵−1𝑓 starting with the vector 

𝑦0. 

The following extension of this proposition allows S to be preconditioned: 

Proposition 7 

Let 𝑆 = 𝐿𝑠𝑈𝑆 − 𝑅 be an approximate factorization of S and define 

𝐿𝐴 =  
𝐼 𝑂

𝐹𝐵−1 𝐿𝑠
 ,     𝑈𝐴 =  

𝐵 𝐸
𝑂 𝑈𝑆

 . 

Assume that a Krylov subspace method is applied to the original system (see Proposition 6) with left 

preconditioning 𝐿𝐴  and right preconditioning 𝑈𝐴 , and with initial guess of the form 

 
𝑥0

𝑦0
 =  

𝐵−1(𝑓 − 𝐸𝑦0)
𝑦0

 . 

Then the preconditioned Krylov iteration will produce iterates of the form  

 
𝑥𝑚
𝑦𝑚
 =  

𝐵−1(𝑓 − 𝐸𝑦𝑚 )
𝑦𝑚

 . 

Moreover, 𝑦𝑚  is the result of the same Krylov subspace method applied the reduced linear system 

𝑆𝑦 = 𝑔 − 𝐹𝐵−1𝑓, left preconditioned with 𝐿𝑆  and right preconditioned with 𝑈𝑆 , and starting with the 

vector 𝑦0. 

Proof 6-7: see Saad, page 411- 412. 

Also there are two other versions in which S is allowed to be preconditioned from the left to the 

right. Thus, is 𝑀𝑆  is a certain preconditioner for S, use the following factorizations 

 
𝐵 𝐸
𝐹 𝐶

 =  
𝐼 𝑂

𝐹𝐵−1 𝑀𝑆
  
𝐼 𝑂
𝑂 𝑀𝑆

−1𝑆
  
𝐵 𝐸
𝑂 𝐼

  

=  
𝐼 𝑂

𝐹𝐵−1 𝐼
  
𝐼 𝑂
𝑂 𝑆𝑀𝑆

−1  
𝐵 𝐸
𝑂 𝑀𝑆

 , 

to derive the appropriate left or right preconditioners.  

Although the previous results indicate a preconditioned Schur Complement iteration is 

mathematically equivalent to a certain preconditioned full matrix method, the practical benefits in 

iterating with the nonreduced system are that the operation 𝑆𝑥 needs not to be performed explicitly. 
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8.9 Graph partitioning  
One of the first things to do when solving a problem on a parallel computer, is deciding how to map 

the data into the processors. For shared memory and SIMD computers, directives are often provided 

to help the user input a desired mapping. Distributed memory computers require finding good 

mappings by the user. For more details on Graph partitioning techniques see Saad, Chapter 13. 

 

8.10 Deflation 
Deflation reduces the number of iterations for the Preconditioned Conjugate Gradient (PCG) method. 

This is done in [Gupta, p. 16] by treating the bad eigenvalues of the preconditioned matrix 𝑀−1𝐴 in 

the system: 

𝑀−1𝐴𝑥 = 𝑀−1𝑏 

where  𝑀−1 is a symmetric positive definite preconditioner (SPD) and A is the symmetric positive 

definite coefficient matrix. 

The original linear system 𝐴𝑥 = 𝑏 can be solved using the splitting: 

𝑥 =  𝐼 − 𝑃𝑇 𝑥 + 𝑃𝑇𝑥 

This splitting is equivalent with: 

𝑥 =  𝐼 − 𝑃𝑇 𝑥 + 𝑃𝑇𝑥 ⇔ 

𝑥 = 𝑄𝑏 + 𝑃𝑇𝑥 ⇔ 

𝐴𝑥 = 𝐴𝑄𝑏 + 𝐴𝑃𝑇𝑥  ⇔ 

𝑏 = 𝐴𝑄𝑏 + 𝑃𝐴𝑥 ⇔ 

𝑃𝑏 = 𝑃𝐴𝑥 

where 𝐸 ∈ ℝ𝑘×𝑘 , 𝑄 ∈ ℝ𝑛×𝑛 , 𝑍 ∈ ℝ𝑛×𝑘  and  𝑃 ∈ ℝ𝑛×𝑛  which is called the deflation matrix. The 𝑘 

columns of 𝑍 are called the deflation vectors. 

The deflation vectors are chosen in a geometric way. The computational domain is divided into 

several subdomains, where each subdomain corresponds to one or more deflation vectors. The 

deflation vector that corresponds to subdomain Ω𝑖  consists of ones on positions that correspond to 

interior gridpoints of Ω𝑖  and zeroes for other gridpoints. 

Considering the 𝑥 in the last equation: 

𝑃𝑏 = 𝑃𝐴𝑥 

This 𝑥 is not necessarily a solution of the original linear system 𝐴𝑥 = 𝑏, since it might consist of 

components of the null space of 𝑃𝐴. Therefore, this deflated solution is denoted by 𝑥 . The deflated 

system is now:  

𝑃𝐴𝑥 = 𝑃𝑏 

The Deflated Preconditioned Conjugate Gradient method calculates the deflated solution 𝑥  of the 

deflated preconditioned system:  
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𝑀−1𝑃𝐴𝑥 = 𝑀−1𝑃𝑏 

and afterwards the solution 𝑥  is transformed by: 

𝑥 = 𝑄𝑏 + 𝑃𝑇𝑥 

to the solution of the original system 𝐴𝑥 = 𝑏.  

Algorithm 18: Deflated Preconditioned Conjugate Gradient Algorithm 

1. Select 𝑥0. Compute 𝑟0 ≔ 𝑏 − 𝐴𝑥0 and 𝑟 0 = 𝑃𝑟0. Solve 𝑀𝑦0 = 𝑟 0 and set 𝑝0: = 𝑦0. 

2. For  𝑗 = 0, 1,…, until convergence Do: 

3.      𝑤 𝑗 ≔ 𝑃𝐴𝑝𝑗  

4.      𝛼𝑗 ≔
(𝑟 𝑗 ,𝑦𝑗 )

(𝑝𝑗 ,𝑤 𝑗 )
 

5.      𝑥 𝑗+1 ≔ 𝑥 𝑗 + 𝛼𝑗𝑝𝑗  

6.      𝑟 𝑗+1 ≔ 𝑟 𝑗 − 𝛼𝑗𝑤 𝑗  

7.      Solve 𝑀𝑦𝑗+1 = 𝑟 𝑗+1 

8.      𝛽𝑗 ≔
(𝑟 𝑗+1 ,𝑦𝑗+1)

(𝑟 𝑗 ,𝑦𝑗 )
 

9.      𝑝𝑗+1 ≔ 𝑦𝑗+1 + 𝛽𝑗𝑝𝑗  

10. End For 

11. 𝑥𝑖𝑡 ≔ 𝑄𝑏 + 𝑃𝑇𝑥𝑗+1 

The selection of the deflation vectors has influence on the convergence of the algorithm. One can 

divide a simple squared domain into strips of little squares. These different divisions will have 

different convergence rates.  
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Chapter 9 Numerical Experiments 
Like described in the summary of the literature study, it is hard to find good parallel methods that 

have good convergence qualities. 

The goal of this research is finding a method that is parallelizable and has a convergence rate that is 

faster than the preconditioned conjugate gradient method used at this moment. 

Therefore, implementations will be tested on simple test problems. When having good results on the 

simple test problem, we can apply our implementations to a less simple test problem that is more 

likely to the original NEMO-equation (1). 

These test problems consider the equation described in the introduction: 

𝜕

𝜕𝑥
 

1

𝐻

𝜕𝜓𝑡
𝜕𝑥

 +
𝜕

𝜕𝑦
 

1

𝐻

𝜕𝜓𝑡
𝜕𝑦

 =
𝜕𝑀 2

𝜕𝑥
−
𝜕𝑀 1

𝜕𝑦
 

 in simpler forms on the unit square in 2-dimensions.  

 

9.1 Test problems 
In the first case the NEMO equation is simplified as much as possible, getting the Poisson equation. 

For this equation we take a simple, but not trivial, right-hand side. The Poisson equation is shown 

below: 

−
𝜕2𝑢

𝜕𝑥2
−
𝜕2𝑢

𝜕𝑦2
= 1 

The computational domain is also simplified to the unit square. Test results on this first test problem 

can be found in Chapter 10. 

The second test problem will involve the variable H that depends on x and y. The right-hand side of 

this equation will be zero. The computational region is the same as the first test problem: the unit 

square. The equation for the second test problem will be: 

𝜕

𝜕𝑥
 

1

𝐻

𝜕𝜓𝑡
𝜕𝑥

 +
𝜕

𝜕𝑦
 

1

𝐻

𝜕𝜓𝑡
𝜕𝑦

 = 0 

First, H is taken constant, then it will be varied which is more likely in practice. 

In the last case the computational domain is made bigger. 

Results for the second test problem are shown in Chapter 11. 

 

9.2 Numerical Algorithms 
At this moment, the Preconditioned Conjugate Gradient Method with diagonal scaling is applied to 

solve the Nemo equation. We start by applying the Conjugate Gradient Algorithm to our test 

problems. These results will be the basic results with which the other results will be compared. 
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By preconditioning the Conjugate Gradient (CG) Algorithm with an appropriate preconditioner, an 

improvement in convergence rate is expected. We choose the Incomplete Cholesky Decomposition 

to precondition the CG algorithm (ICCG(0)).  

Since ICCG(0) is not parallelizable, an another preconditioner which has good parallel properties is 

applied: the Incomplete Poisson (IP) preconditioner. Here, the price paid for parallelism is clear when 

results are compared to ICCG(0). 

By applying Deflation it is possible to reduce the number of iterations for de Preconditioned 

Conjugate Gradient Algorithm, hence we Deflate the Preconditioned CG, where CG is preconditioned 

by diagonal scaling and by the IP preconditioner. The latter preconditioner is more expensive than 

the first one. So based on the test results one can make a choice between the two preconditioners. 

The original subroutine is fully written in Fortran 90. Our tests are computed in Matlab.  
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Chapter 10 The Poisson Equation 

10.1 From Nemo to the Poisson equation 
Recall the equation mentioned in the first chapter: 

 ∇ ×  
1

𝐻
𝒌 × ∇ 

𝜕𝜓

𝜕𝑡
   

𝑧

=  ∇ ×𝑴  𝑧  

Which should be solved for 
𝜕𝜓

𝜕𝑡
.  

In the equation H denotes the height of the ocean surface (or the depth of the ocean), M represents 

the collected contributions of the Coriolis, hydro-static pressure gradient, nonlinear and viscous 

terms  and k is the unit vector in z-direction. All variables depend only on the x- and y-direction.  

Writing out this equation we get: 

𝜕

𝜕𝑥
 

1

𝐻

𝜕𝜓𝑡
𝜕𝑥

 +
𝜕

𝜕𝑦
 

1

𝐻

𝜕𝜓𝑡
𝜕𝑦

 =
𝜕𝑀 2

𝜕𝑥
−
𝜕𝑀 1

𝜕𝑦
 

On purpose of testing the results of the implementations, the equation is simplified to the Poisson 

equation on the unit square with homogeneous boundary conditions: 

 
−∆𝑢 = −

𝜕2𝑢

𝜕𝑥2 −
𝜕2𝑢

𝜕𝑦2 = 1 on  0,1 ×  0,1 ,

𝑢 = 0   on the boudary

       (8) 

The right hand side of the equation is made as simple as possible, but not trivial.  

 

10.2 Discretization 
Nemo is a finite difference model with a regular domain decomposition. Therefore the Poisson 

equation is discretized in the same way and the unit square is decomposed in a regular grid. This 

means that both the unit intervals in x- and y-direction are subdivided into N subintervals of length 

𝑕 =
1

𝑁
. Thus the whole unit square is subdivided into little squares of 𝑕 × 𝑕. 

The nodes in x-direction are numbered by i, and the nodes in y-direction are numbered by j. Hence 

an internal node 𝑢𝑖,𝑗  has four neighbors, left 𝑢𝑖−1,𝑗 , right 𝑢𝑖+1,𝑗 , down 𝑢𝑖,𝑗−1 and up 𝑢𝑖,𝑗+1. 

By using Taylors formula for sufficiently smooth u, it can be shown that for each internal node 𝑢𝑖,𝑗 , 

the Laplacian can be approximated by: 

−∆𝑢𝑖,𝑗 =
1

𝑕2 [4𝑢𝑖,𝑗 − 𝑢𝑖−1,𝑗 − 𝑢𝑖+1,𝑗 − 𝑢𝑖,𝑗−1 − 𝑢𝑖,𝑗+1]   (9) 

For nodes adjacent to the boundary, some unknowns can be eliminated. For example, an internal 

node adjacent to the lift boundary of the square, has one known neighbor, i.e. the left one 𝑢𝑖−1,𝑗 = 0 

due to the given boundary condition given in (8). 

Thus expression (9) for this node becomes: 
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−∆𝑢𝑖,𝑗 =
1

𝑕2
[4𝑢𝑖,𝑗 − 𝑢𝑖+1,𝑗 − 𝑢𝑖,𝑗−1 − 𝑢𝑖,𝑗+1] 

Putting this together in the discretization matrix A results is a sparse matrix with the following 

pattern: 

𝐴 =
1

𝑕2  

𝑇
−𝐼

  

−𝐼
𝑇
⋱

  ⋱
⋱
−𝐼

  
−𝐼
𝑇

  

where  

𝐼 =  

1

  1   
⋱

  

1

      and    𝑇 =  

4
−1

  

−1
4
⋱

  ⋱
⋱
−1

  
−1
4

  

The dimension of I and T depends on the number of gridpoints in x-direction. If the number of 

gridpoints is n, then the matrix dimensions of I and T are 𝑛 × 𝑛. When having n gridpoints in x-

direction, we have also n gridpoints in y-direction. Hence the total number of gridpoints is 𝑛2, so the 

dimension of A then is  𝑛2 × 𝑛2. For more details see [5] Chapter 3. 

Note that matrix A is not only sparse but also symmetric positive definite. These are important 

properties when implementing iterative solution methods. 

 

10.3 Test Results 
First, we tested the Conjugate Gradient Algorithm, the Incomplete Cholesky Conjugate Gradient and 

the Incomplete Poisson Algorithms on the Poisson equation. The results are shown in the table 

below: 

Dimension CG ICCG(0) IP 

9x9 5 4 5 
100x100 25 9 14 
900x900 64 20 34 

Table 1: number of iterations needed for convergence of CG,  ICCG(0) and IP. 

Observe that both ICCG(0) and IP are doing better than CG. IP is slightly worse than ICCG(0), but that 

is the price paid to improve parallelism. 

Deflation 

Convergence speed can be graded up, with having good parallel qualities by applying Deflation. 

When using the Deflated Preconditioned Conjugate Gradient Algorithm, so called deflation vectors 

should be chosen. The selection of the deflation vectors has influence on the convergence of the 

algorithm. Hence, here the algorithm is tested with several selections of the deflations vectors. First, 

the computational domain is divided into horizontal strips. Each strip contains a few rows of 

gridpoints. Secondly, the (square) computational domain is divided into little squares. 
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Strip subdomains 

For the 9 × 9 problem we divided the squared computational region into 3 strings of 3 rows for each 

string. The Deflated Preconditioned Conjugate Gradient Algorithm needed 6 iterations for 

convergence. Not a very good result. The results for the 100 × 100 and 900 × 900 problems are 

much more better. First the Deflated Preconditioned Conjugate Gradient Algorithm (DPCG) is tested 

with the simple preconditioner 𝑀 = 𝐷, where D is a diagonal matrix that contains the diagonal 

elements of 𝐴. Secondly, the DPCG Algorithm is tested with a different preconditioner, the 

Incomplete Poisson Preconditioner (IPP). With this preconditioner, better results are expected, while 

the degree of parallelism remains the same: 𝑛 for an 𝑛 × 𝑛-matrix. 

For the 100 × 100 problem, where the region contains 10 gridpoints in each direction, the region is 

subdivided into 2 and in 5 strips: 

Number of Strips Iterations 

 M = D IPP 
2 22 11 
5 20 11 

Table 2: Number of iterations with DPCG Algorithm with two different preconditioners for a 10x10 domain subdivided into 

strips. 

For the 900 × 900 problem: 

Number of Strips Iterations 

 M = D IPP 
2 48  
3 47 26 
5 46 25 
6 46 25 

10 46 25 
15 46 25 
30   

Table 3: Number of iterations with DPCG Algorithm with two different preconditioners for a 30x30 domain subdivided into 

strips. 

Observe that when the number of strips is low, thus when the strips are broad, the results are bad. 

Letting the strips become thinner gives better results. In all cases, the IPP preconditioner has faster 

convergence. Compare the best results with the former algorithms shows that the DPCG Algorithm 

with the Incomplete Poisson preconditioner gives the best results in terms of convergence and is 

highly parallel. 

Dimension CG ICCG(0) IP DPCG(D) DPCG(IPP) 

9x9 5 4 5 6  
100x100 25 9 14 20 11 
900x900 64 20 34 46 25 

Table 4: Number of iterations for CG, ICCG(0), IP, DPCG(D) and DPGC(IPP). 

Square subdomains 

The computational domains are now subdivided into little squares. Like in the former case, to 

preconditioners will be tested, the trivial diagonal one and the Incomplete Poisson Preconditioner. 

The 100 × 100 case, with a computational domain contains 10 gridpoints in each direction:   
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Number of Squares Iterations 

 M = D IPP 
4 19 10 

25 10 7 
Table 5: Number of iterations with DPCG Algorithm with two different preconditioners for a 10x10 domain subdivided into 

squares. 

Note that the best case for the diagonal preconditioner, where the domain is divided into 25 squares 

of 2 × 2, is better than the best case of 5 strips with a diagonal preconditioner: the first one needs 10 

iterations, while the second one needs the double: 20 iterations. In the case of the IPP: for strips 11 

iterations needed, while for squares only 7 iterations are good enough for convergence. 

Looking to the 900 × 900 problem where the computational domain contains 30 gridpoints in each 

direction: 

Number of Squares Iterations 

 M = D IPP 
9 36 23 

25 27 16 
100 15 10 
225 11 8 

Table 6: Number of iterations with DPCG Algorithm with two different preconditioners for a 30x30 domain subdivided into 

squares. 

 

10.4 Conclusions 
All test results are shown in the table below. For the deflated algorithm we took the best results, that 

is, when the domain is divided into squares. For the 10 × 10 domain this means the domain is 

divided into 25 squares and for the 900 × 900 domain there are 225 squares. The squares of both 

domains have dimensions 2 × 2. 

Dimension CG ICCG(0) IP DPCG(D) DPCG(IPP) 

9x9 5 4 5 6  
100x100 25 9 14 10 7 
900x900 64 20 34 11 8 

Table 7: all results for several algorithms applied to the Poisson equation. 

The deflated algorithms give very good results. The DPCG with the IP preconditioner is slightly better 

than DPCG with diagonal scaling. But one has to take into account that the IP preconditioner is more 

expensive.  
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Chapter 11 The homogeneous Nemo equation 
For the second test problem we consider the homogeneous Nemo equation on the unit square with 

homogeneous boundary conditions: 

 
 

 
𝜕

𝜕𝑥
 

1

𝐻

𝜕𝜓𝑡
𝜕𝑥

 +
𝜕

𝜕𝑦
 

1

𝐻

𝜕𝜓𝑡
𝜕𝑦

 = 0       on  0,1 ×  0,1 

𝜕𝜓

𝜕𝑡
= 0                                                 on the boundary

  

 

The only difference between this test problem and the first one, the Poisson equation, is that here 

the function H that also depends on x and y is involved. H represents the depth of the ocean. 

 

11.1 Discretization  
It can be shown that the discretization of the unknown 𝜓𝑡  in the node (𝑖, 𝑗)  

 𝜕

𝜕𝑥
 

1

𝐻

𝜕𝜓𝑡
𝜕𝑥

  
𝑖,𝑗

+  𝜕

𝜕𝑦
 

1

𝐻

𝜕𝜓𝑡
𝜕𝑦

  
𝑖,𝑗

=  

1

𝑕2  −  
1

𝐻𝑖−1
2

,𝑗
+  

1

𝐻𝑖+1
2

,𝑗
+  

1

𝐻𝑖,𝑗−1
2

+  
1

𝐻𝑖,𝑗+
1
2

  𝜓𝑖,𝑗 +  

                
1

𝐻𝑖−1
2

,𝑗
𝜓𝑖−1,𝑗 +  

1

𝐻𝑖+1
2

,𝑗
𝜓𝑖+1,𝑗 +  

1

𝐻𝑖,𝑗−1
2

𝜓𝑖,𝑗−1 +  
1

𝐻𝑖,𝑗+
1
2

𝜓𝑖,𝑗+1  

 

The k-th row of A that corresponds with the i-th point on x-direction and with the j-th point on y-

direction is shown below: 

 0 ⋯0,
1

𝐻𝑖,𝑗−1
2

, 0⋯0 ,
1

𝐻𝑖−1
2

,𝑗
, −  

1

𝐻𝑖−1
2

,𝑗
+  

1

𝐻𝑖+1
2

,𝑗
+  

1

𝐻𝑖,𝑗−1
2

+  
1

𝐻𝑖,𝑗+
1
2

 ,  

 
 

                                                                                               
1

𝐻𝑖+1
2

,𝑗

, 0⋯0,  
1

𝐻𝑖,𝑗+
1
2

0⋯0  

 

11.2 Constant Depth H 
Here we start with the simplest form for H. That is when H has a constant value for the whole 

computational domain. Then H will be varied in two different ways. This is done in sections 11.3 and 

11.4. 

In order to compare results, we divide the computational domain again into a 3 × 3,  10 × 10, and a 

30 × 30 grid. This results a before in a 9 × 9, 100 × 100 and a 900 × 900 matrix.  
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Again we apply the AG, ICCG(0), IP and DPCG Algorithms to our problem and compare the number of 

iterations needed to reach the desired convergence with an error 𝜀 = 10−4. The initial solution𝑥0 is 

random since the equation is homogeneous and the solution is the trivial zero solution. 

Suppose 𝐻 = 5250 for every x and y.  

Dimension CG ICCG(0) IP 

9x9 5 3 4 
100x100 19 7 10 
900x900 57 18 31 

Table 8: number of iterations for the homogeneous Nemo equation with constant depth, CG, ICCG(0) and IP. 

Deflation: Strip subdomains 

First we divide the region into strips, afterwards into squares. The Deflated Preconditioned Conjugate 

Gradient Algorithm is tested with two preconditioners, the diagonal scaling and the Incomplete 

Poisson preconditioner. This is only done for the 100 × 100 and the 900 × 900 problems. 

The 100 × 100 case: 

Number of Strips Iterations 

 M = D IPP 
2 14 8 
5 14 8 

10 14 8 
Table 9: number of iterations for the homogeneous Nemo equation with constant depth when dividing the 10 × 10 domain 

into strips and applying DPCG with two preconditioners. 

The 900 × 900 case: 

Number of Strips Iterations 

 M = D IPP 
2 44 24 
3 44 24 
5 43 23 
6 44 24 

10 44 24 
15 43 24 
30 44 24 

Table 10: number of iterations for the homogeneous Nemo equation with constant depth when dividing the 30 × 30 domain 

into strips and applying DPCG with two preconditioners. 

Comparing the results for DPCG with table (..), we see that the IP preconditioner gives better results 

than DPCG with diagonal scaling. Applying the IP preconditioner with DPCG, gives a slightly better 

result, but not very much. Moreover one has to take into account the extra costs for DPCG with IP. 

Square subdomains 

Like the first test case we divide the region into a number of squares and look what happens to the 

number of iterations. 

The 100 × 100 case: 
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Number of Squares Iterations 

 M = D IPP 
4 14 8 

25 7 5 
Table 11: Number of iterations with DPCG Algorithm with two different preconditioners for a 10x10 domain subdivided into 

squares. 

The 900 × 900 case: 

Number of Ssquares Iterations 

 M = D IPP 
9 34 18 

25 25 14 
100 15 9 
225 11 8 

Table 12: Number of iterations with DPCG Algorithm with two different preconditioners for a 30x30 domain subdivided into 

squares. 

The test results for the square subdomains are much more better than the strips. Comparing these 

results with the other algorithms in the table below we see that DPCG given much more better 

results, when choosing the subdomains as squares. 

Dimension CG ICCG(0) IP DPCG(D) DPCG(IPP) 

9x9 5 3 4   
100x100 19 7 10 7 5 
900x900 57 18 31 11 8 

Table ..: all results for several algorithms applied to the homogeneous Nemo equation with constant depth. 

 

11.3 Variable Depth H (1) 
A constant depth of the ocean is not very realistic. Let us vary with H, say, in the middle of the ocean 

there is a deep region. The region close to the boundary is not deep.  

Choosing H is such a way that the square in the middle with corners on the following coordinates: 

(0.3,0.3), (0.3,0.7), (0.7,0.7) and (0.7,0.3) has depth 𝐻 = 5000. The strips at the boundary have 

depth 𝐻 = 100. 

Dimension CG ICCG(0) IP 

9x9 7 5 7 
100x100 56 17 33 
900x900 201 55 108 

Table 13: number of iterations for the homogeneous Nemo equation with variable depth H, CG, ICCG(0) and IP. 

Deflation: Strip subdomains 

Again, DPCG with the two different preconditioners is applied, leading to the following results: 

For the 100x100 problem: 

Number of Strips Iterations 

 M = D IPP 
2 22 28 
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5 21 31 
10 20 29 

Table 14: number of iterations for the homogeneous Nemo equation with variable H when dividing the 10 × 10 domain into 

strips and applying DPCG with two preconditioners. 

The 900x900 problem gives the following results 

Number of Strips Iterations 

 M = D IPP 
2 67 110 
3 65 104 
5 65 104 
6 67 108 

10 66 102 
15 66 91 
30 66 105 

Table 15: number of iterations for the homogeneous Nemo equation with variable H when dividing the 30 × 30 domain into 

strips and applying DPCG with two preconditioners. 

Square subdomains 

The 100x100 problem: 

Number of Squares Iterations 

 M = D IPP 
4 19 30 

25 12 23 
Table 16: number of iterations for the homogeneous Nemo equation with variable H when dividing the 10 × 10 domain into 

squares and applying DPCG with two preconditioners. 

The 900x900 problem: 

Number of Squares Iterations 

 M = D IPP 
9 47 88 

25 37 69 
100 20 45 
225 18 43 

Table 17: number of iterations for the homogeneous Nemo equation with variable H when dividing the 30 × 30 domain into 

squares and applying DPCG with two preconditioners. 

Conclusions 
It may not be surprising that also in this case again the DPCG algorithm with diagonal scaling for 

square subdomains gives the best results: 

Dimension CG ICCG(0) IP DPCG(D) DPCG(IPP) 

9x9 7 5 7   
100x100 56 17 33 12 23 
900x900 201 55 108 18 43 

Table 18: all results for several algorithms applied to the homogeneous Nemo equation with variable H. 
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11.4 Variable Depth H (2) 
One big step in the ocean is also not a very realistic image of the ocean. The second way of varying H 

is making the H going deeper in steps, to make it more realistic. 

Let the square with dimensions (0.2x0.2) in the middle have depth 𝐻 = 5000. The coordinates of the 

corners of this square are: (0.4;0.4), (0.6;0.4), (0.6;0.6) and (0.4;0.6). Around this square we take 

squares with width = 0.1 on each side, so we get four squares. The second square from inside has 

depth 3500, de third one a depth of 2000, then 500 en the outer one has depth 150. 
Because the former test results give a good impression of the behavior of the number of iterations 

through the different results, we look here to the number of iterations for CG, ICCG(0) and IP and 

compare these results with DPCG with diagonal scaling and IP squares with dimensions 2 × 2. For the 

100 × 100 problem this means that there are 25 squares and for the 900 × 900 this means we have 

225 squares. 

Dimension CG ICCG(0) IP DPCG(D) DPCG(IPP) 

9x9 6 3 6   
100x100 46 11 33 10 25 
900x900 180 26 100 15 44 

Table 19: all results for several algorithms applied to the homogeneous Nemo equation with variable H(2). 

Note that these results do not differ very much from the results for the first variable H. 

A 3600x3600 problem 

To test the algorithms on a more realistic problem, the x-direction and y-direction of the unit square 

are divided into 60 subintervals. This results in a 3600x3600 matrix A. What about the number of 

iterations for this problem for the different algorithms used before? See the table below: 

Dimension CG ICCG(0) IP DPCG(D) DPCG(IPP) 

3600x3600 370 49 201 15 53 
Table 20: results for several algorithms applied to the homogeneous Nemo equation with variable H(2) for the 3600x3600 

problem. 

The results are in line with the former ones. DPCG with the diagonal scaling gives the best results. 

 

11.5 Conclusions 
A significant difference is noticed between the constant H and a variable H in general. When trying 

different variants of a variable H, the number of iterations do not vary that much. Compared to the 

Conjugate Gradient Algorithm, deflation can decrease the number of iterations till almost 70%. When 

involving the variable H, note that the diagonal scaling for the DPCG is much more faster that the IP 

preconditioner. 
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Chapter 12 Conclusions 
In order to solve the Nemo equation: 

𝜕
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, the homogeneous variant on the unit square is tested by applying several iterative methods.  

Starting with the Conjugate Gradient (CG) Algorithm, the convergence speed is upgraded by using 

preconditioners. The first one used is the Incomplete Cholesky (ICCG(0)) decomposition. This 

preconditioner gives very good results, but it is not parallelizable. On purpose to perform the 

numerical computations on several computer units, we tried to find algorithms and preconditioners 

that are suitable for parallel computations and have a faster convergence rate as well. The 

Incomplete Poisson Preconditioner is a useful preconditioner for this goal, because the results are 

good and the preconditioner is highly parallel. The degree of parallelism for this preconditioner is 𝑛 

for a 𝑛 × 𝑛 matrix A. The results are not as well as for the ICCG(0), but far more better than the CG 

algorithm. 

Applying Deflation to the Preconditioned Conjugate Gradient Algorithm decreases the number of 

iterations. This is done for the various test problems, for both the diagonal scaling and Incomplete 

Poisson Preconditioner.  

When H is variable, it is observed that the Deflated Conjugate Gradient Algorithm gives the best 

results when diagonal scaling is used for preconditioning. When dividing the computational domain 

into subdomains on purpose to use DPCG, the best way to do this is by dividing into squares. 

Test are done for the homogeneous variant of the Nemo equation, but the results for the non-

homogeneous variant for the real domain are not expected to differ from the results of our test 

problems. 
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Chapter 13 Further Research 
The aim of Nemo is to improve the scalability of Nemo for a large amount of cores (100k+). Since we 

do not have results of the Deflated Preconditioned Conjugate Gradient algorithm for a large amount 

of computational units, the behavior of the algorithm for these kind of architectures should be 

explored.  

Secondly, for this research, variable values for the function H are taken. Maybe more realistic values 

for this function are available for testing the algorithms. 
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