
AN ACCURATE AND ROBUST FINITE VOLUME METHOD

FOR THE ADVECTION DIFFUSION EQUATION

BY

PAULIEN VAN SLINGERLAND

Delft University of Technology
Faculty of Electrical Engineering, Mathematics, and Computer Science

Delft Institute of Applied Mathematics

AN ACCURATE AND ROBUST FINITE VOLUME METHOD

FOR THE ADVECTION DIFFUSION EQUATION

A thesis submitted to the
Delft Institute for Applied Mathematics
in partial fulfillment of the requirements

for the degree

MASTER OF SCIENCE
in

APPLIED MATHEMATICS

by

PAULIEN VAN SLINGERLAND

Delft, The Netherlands,
June 2007

Thesis Committee:

Prof.dr.ir. C. Vuik (Delft University of Technology)
Ir. L. Postma (WL | Delft Hydraulics)

Dr. M. Genseberger (WL | Delft Hydraulics)
Dr. J.L.A. Dubbeldam (Delft University of Technology)

Acknowledgements

Although there are many people that contributed to this M.Sc. project, I would like to take this
oppertunity to acknowledge the kind support, reasonable criticism, and endless patience of my
supervisors in particular. First of all, I would like to thank Kees Vuik for his valuable comments
on a large number of concept versions of this thesis. I am very glad that the end of this thesis does
not mean the end of our cooperation. Furthermore, I would like to give thanks to Leo Postma
for giving me the oppertunity to study the interesting topic of water quality in the inspiring
environment that WL | Delft hydraulics is. More than once, his different point of view gave
me new insights in the problem. In addition, I would like to express my sincere gratitude to
Menno Genseberger for his daily input and advise, that demonstrates an eye for perfectionism.
His analytical thinking has helped me through many frustrating moments involving Fortran and
mathematical proofs. He also introduced me to Mart Borsboom, who soon became my fourth
supervisor. I owe Mart much gratitude, as his creative ideas eventually led to the local-theta
scheme, which forms the key to the main problem that is considered in this thesis. It has been a
great pleasure to listen to his sensible suggestions in a room filled with stuffed animals.

ii Acknowledgements

Contents

Acknowledgements i

1 Introduction 1

I Constructing the numerical model 3

2 Modeling water quality 5

2.1 Physical water quality model . 5

2.1.1 Transport . 5

2.1.2 Water quality processes . 6

2.2 Mathematical water quality model . 6

2.3 Summary . 7

3 Finite Volume Method 9

3.1 Grid . 9

3.2 Integral form . 10

3.3 Finite volume method . 13

3.4 The quality of a finite volume method . 14

3.4.1 Accuracy . 14

3.4.2 Robustness . 15

3.5 Summary . 17

4 Accurate explicit schemes 19

4.1 Local extremum diminishing flux functions . 19

4.2 Explicit schemes . 21

4.3 Flux corrected transport . 22

4.4 Summary . 27

5 Robust implicit theta schemes 29

5.1 Theta scheme . 29

5.2 Theta FCT scheme . 32

5.3 Summary . 38

6 Local-theta scheme 39

6.1 Local-theta scheme . 39

6.2 Flux corrected transport . 43

6.3 Molenkamp problem . 47

6.4 Revisiting Hong Kong . 48

6.5 Final implementation in WAQ . 51

6.6 Summary . 51

iv CONTENTS

7 Summary & Recommendations 55
7.1 Recommendations . 56

II Solving the numerical model 57

8 Solution methods for linear systems 59
8.1 Direct methods . 59

8.1.1 Triangular matrices . 59
8.1.2 General square matrices . 60

8.2 Iterative Methods . 61
8.2.1 Linear fixed point iteration . 61
8.2.2 Krylov methods . 63

8.3 Summary . 67

9 Preconditioning 69
9.1 Basic preconditioning . 69
9.2 Preconditioners based on matrix splitting . 70
9.3 Preconditioners based on an incomplete LU factorisation 71

9.3.1 Incomplete LU threshold . 71
9.3.2 Incomplete LU . 72

9.4 Summary . 74

10 Reordering 75
10.1 Symmetric permutation . 75
10.2 Renumbering the adjacency graph . 76

10.2.1 Level-set orderings . 76
10.2.2 Independent set ordering . 78
10.2.3 Multicolor orderings . 79

10.3 Summary . 79

11 Storage of sparse matrices 81
11.1 Coordinate format . 81
11.2 Compressed sparse row format . 82
11.3 Summary . 83

12 Summary 85

A Current schemes of WAQ 87

Chapter 1

Introduction

At present, plans are being made for the construction of Liquefied Natural Gas pipes in the sea
bed off the coast of Hong Kong. To this end, dredging is necessary which causes plumes of silt
in the water. The silt particles float in the water for a relatively long period of time, until they
settle on the sea bed eventually. Unfortunately, both phenomena are harmful to coral reefs and
Chinese white dolphins, two protected species that live in the sea near to Hong Kong. For this
reason, before the plans can be carried out, it is necessary to determine how much of the ocean
may be affected by those plumes.

Water is indispensable for all organisms. People use it for drinking, fishing, bathing, irrigating,
shipping, and so on. As a consequence, it is very important that its quality is maintained. The
quality of water is determined by the concentrations of the substances it contains, such as oxygen,
salts, silt and bacteria. From the example above it is clear that it could easily be diminished. The
question is: could this be foreseen?

Figure 1.1: Forecast by Delft3D-WAQ of silt plumes near Hong Kong

Fortunately, software is already available for this purpose. Delft3D-WAQ, a simulation program
that has been developed by WL | Delft Hydraulics, is a useful tool in forecasting water quality.
In particular, it is able to predict the size of silt plumes caused by dredging (see Figure 1.1).
Basically, the software approximates the solution of the advection diffusion reaction equation by
means of the finite volume method. Since it is often necessary to predict one or two years ahead,
large time steps are preferred in order to have limited computing time.

However, there are two aspects that need improvement. First of all, the current schemes are either

2 Introduction

0

5

10

15

20

25

30

35

(a) Accurate explicit scheme (Scheme 12, see Ap-
pendix A), computational time ≈ 176 min.

0

5

10

15

20

25

30

35

(b) Robust implicit scheme (Scheme 16, see Ap-
pendix A), computational time ≈ 9 min.

Figure 1.2: Simulation by Delft3D-WAQ of salinity in an estuary near Hong Kong. The colors of
the cicles indicate measured values.

explicit higher order schemes that are not robust (see Figure 1.2(a)), or implicit first order schemes
that are inaccurate (see Figure 1.2(b)). Moreover, the convergence speed of the present iterative
solver for linear systems is unsatisfactory for diffusion dominated problems. In other words, in
this report, answers to the following question will be sought:

1. Is it possible to construct a finite volume scheme for the advection diffusion equation that is
both accurate and robust?

2. Can the convergence speed of the present iterative solver for linear systems be increased for
diffusion dominated problems?

In other words: can the damage done to dolphins and coral reefs be estimated better and faster?

The first part of this thesis, in which the numerical model is constructed, provides an answer to
the first question. In Chapter 2, a physical water quality description is translated into a math-
ematical model that is based on the advection diffusion reaction equation. The solution to this
model can be approximated by means of the finite volume method, which is discussed in Chapter
3. Chapter 4 considers accurate explicit flux correcting transport schemes. Robust theta schemes
are considered in Chapter 5. In Chapter 6, the local-theta scheme is considered, which attempts
to combine the advantages of the previous methods, to obtain a scheme that is both accurate and
robust. A summary and recommendations can be found in Chapter 7.

The second part of this thesis describes some basic theory for solving the numerical model, which
forms a first step towards the answer of the second question. Implicit variants of the finite volume
method require the solution of many large linear systems. In order to solve these systems efficiently,
iterative solvers are considered in Chapter 8. Useful tools in improving the performance of iterative
schemes are preconditioning (Chapter 9) and reordering of the matrix (Chapter 10). Chapter 11
discusses storage schemes for sparse matrices that can save both memory and time. A summary
is given in chapter 12.

Part I

Constructing the numerical model

Chapter 2

Modeling water quality

2.1 Physical water quality model

The quality of water is determined by the concentrations of the substances it contains, such as
oxygen, algae, salts, bacteria, viruses, toxic heavy metals, pesticides, and silt. These concentrations
can be affected in two ways. Firstly, particles can be transported through the water in several
ways. Moreover, water quality processes play an important role. Both phenomena will be discussed
briefly below.

2.1.1 Transport

A substance can be transported by diffusion, advection, and by an own movement that is inde-
pendent of the preceding types of transport.

t

t
t

t
t
t

t

t
t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

Figure 2.1: Molecular diffusion

Molecular diffusion is the spontaneous spreading of matter due to the random movement of
molecules. Figure 2.1 displays a schematic visualisation of this mixing process.

Advection is the transport of a substance due to the motion of the fluid. The flow carries the
particles in the downstream direction. Figure 2.2 illustrates how turbulent flow can lead to what
is called turbulent mixing . Although turbulent mixing is a result of advection, it is often modeled
as diffusion. For this reason, it is sometimes referred to as turbulent diffusion.

Own movement is any movement that is not caused by advection or diffusion. This kind of
movement could be forced by gravity, the substance itself, or the wind. Gravitational movement
arises when there is a difference between the density of the substance and that of the water. Silt,
for example, is heavier than water. Therefore, it will generally have an extra downward motion.
Active movement only applies to organisms that can ‘swim’ in some sense. Examples are shrimps,
fish, and certain algae that can propel themselves through the water. Floating movement is the

6 Modeling water quality

Figure 2.2: Turbulent mixing

motion that a floating substance obtains from the wind. As a result, its concentration is generally
higher on the downwind water surface side of the area.

2.1.2 Water quality processes

Apart from transport, water quality processes can have a great effect on the concentration of a
substance. These processes involve the interaction between the substances. Examples are photo-
synthesis, mineralisation, sedimentation, nitrification, and the mortality of bacteria. For a detailed
description of these processes, see e.g. [man05, Chapter 8] or [Pos05].

2.2 Mathematical water quality model

According to the physical description above, water quality is affected by transport and water qual-
ity processes. Transport due to advection and own movement can be modeled by one advection
term. Adding the molecular diffusion and the water quality processes to the model, the mathe-
matical water quality model boils down to the advection diffusion reaction equation, one for each
substance that needs to be modeled.

Model 2.1 (Water quality model): Consider a substance that is dissolved in flowing water. Let
c(x, t) denote its (unknown) concentration, d(x, t) its molecular diffusion coefficient, and u(x, t)
its velocity due to advection1 and own movement. Let p(x, t) represent all relevant water quality
processes. p may also depend on c or on the concentration of other substances. For this substance,
the water quality model reads:

∂c
∂t

(x, t) + ∇ ·
(
u(x, t)c(x, t) − d(x, t)∇c(x, t)

)
= p(x, t),

c(x, 0) =
◦
c (x),

c|x∈∂D1
= c̆(x, t),

(∇c · n)|x∈∂D2
= 0.

(2.1)

Here, t ∈ [0, T] and x ∈ D ⊂ R
m (m=1,2,3).

◦
c (x) is the initial condition. The boundary of D is

partitioned according to ∂D = ∂D1 ∪ ∂D2. Here, ∂D2 is the part of the boundary through which
no transport takes place (the shore) which is modeled with the help of a homogeneous Neumann
boundary condition. On ∂D1, a Dirichlet boundary condition is imposed.2 n is the outward normal
unit vector on ∂D. y

1In general the velocity due to advection is conform the velocity profile of the water. However, it is possible
that a substance is not being advected, but e.g. lying on the bottom.

2Of course, there are other types of boundary conditions, but these are not considered in this report.

2.3 Summary 7

2.3 Summary

The quality of water is determined by the concentrations of the substances it contains. These
concentrations can be affected by transport and water quality processes. The corresponding math-
ematical model is the advection diffusion reaction equation, one for each substance that needs to
be simulated.

8 Modeling water quality

Chapter 3

Finite Volume Method

In general, it is impossible to obtain the analytical solution of the water quality model (Model 2.1).
Fortunately, a numerical approximation can be computed by means of the finite volume method.
The two main ingredients of the finite volume method are an integral form and a subdevision of the
spatial domain into ‘finite volumes’. Roughly speaking, the finite volume method approximates
the integral form for each of those volumes. After that, the resulting system is solved to obtain an
approximation of the solution of the original model. Good references on the finite volume method
are, for instance, [BO04], [God96, Chapter 4], and [Krö97, Chapter 3].

3.1 Grid

The first step towards a finite volume approximation is the subdivision of the spatial domain into
smaller volumes. These volumes will be referred to as grid cells, although they need not be stacked
in any regular way. In each grid cell, the average concentration of a substance is considered, which
forms a good approximation for the concentration at the center of the volume.

Definition 3.1 (Cell centered grid): A cell centered grid of a spatial domain D ⊂ R
d consists

of a set of closed control volumes V = {Vi ⊂ D : i = 1, ..., I} and a set of storage locations
X = {xi ∈ D : i = 1, ..., I} such that

1. xi is at the center of mass of Vi;

2. the volumes cover the entire spatial domain:

D =

I⋃

i=1

Vi;

3. the volumes do not overlap in the sense that, for all i 6= j, either

Vi ∩ Vj = ∅,

or, if the volumes are adjacent,

Vi ∩ Vj = ∂Vi ∩ ∂Vj ,

where ∂Vi denotes the boundary of Vi.

The grid is denoted as G = (V,X). In the one-dimensional case, the grid is chosen so that
x1 < x2 < ... < xI . y

10 Finite Volume Method

Remark 3.2 (Grid in WAQ): WAQ often receives the velocity profile from Delft3D-FLOW,
another simulation program that has been developed by WL | Delft Hydraulics. This program
simulates water flow by computing an approximate solution of the shallow water equations. FLOW
can handle two types of structured grids, which are both curvilinear and staggered in the hor-
izontal direction. Figure 3.1 illustrates the different approaches in the vertical direction. The
σ-grid uses a fixed number of time dependent boundary-fitted layers. The top layer fits the water
surface, whereas the bottom layer fits the sea bed. A z-grid uses time-independent horizontal
layers. Unlike the σ-grid, the number of (active) cells per column may vary.

WAQ’s grid results from aggregating adjacent cells of the mesh that is used by FLOW. From
the example in Figure 3.2 it becomes clear that this generally leads to an unstructured grid.
Some schemes in WAQ require some structure though. In practice, the grid is usually strongly
non-uniform. Moreover, the cells may be a thousand times as wide as they are high. y

Figure 3.1: Side view of the structured grid types of FLOW: σ-grid (left) and z-grid (right)

3.2 Integral form

The second main component of the finite volume method is an integral form of the model, which
basically results from integrating the model equation.

Definition 3.3 (Integral formulation of the water quality model): Consider Model 2.1.
Let

G = ({V1, ...,VI}, {x1, ...,xI})

be a (time-dependent) cell-centered grid for the (time-dependent) space domain D. If K grid cells
are adjacent to the open boundary ∂D1, introduce K adjacent virtual cells VI+1, ...,VI+K . Let Ji
contain the indices of the neighbors of grid cell Vi:

Ji = {j ∈ {1, ..., I +K} : Vi ∩ Vj 6= ∅}.

Let Sij denote the joint boundary of neighboring grid cells Vi and Vj :

Sij = ∂Vi ∩ ∂Vj .

Let nij be the unit normal vector on Sij that points in the direction of Vj . The integral form of
Model 2.1 reads

d

dt

∫

Vi

c dx +
∑

j∈Ji

∫

Sij

(

uc− d∇c
)

· nij dx =

∫

Vi

p dx. (3.1)

y

3.2 Integral form 11

Figure 3.2: An example of a grid in WAQ (bottom), resulting from the aggregation of grid cells
of the grid used by FLOW (top)

12 Finite Volume Method

WAQ works with average values of the velocity on the faces of the grid cells. For this reason, below,
the integral form is rewritten in terms of these average velocities, by expressing the velocity as
the sum of the average velocity and the deviation of this mean value. After separating these two
components in the model, it is assumed that the remaining pure deviation terms can be modeled
as an additional diffusion term.

Proposition 3.4: Consider the integral form that was defined in Definition 3.3. Define the
following boundary averages and their deviations:

cij(t) =
1

|Sij |

∫

Sij

c(x, t) dx,

uij(t) =
1

|Sij |

∫

Sij

u(x, t) dx,

c̃ij(x, t) = c(x, t) − cij , x ∈ Sij ,
ũij(x, t) = u(x, t) − uij , x ∈ Sij ,

where |Sij | denotes the surface area of Sij. Then, ∀i = 1, ..., I:

d

dt

∫

Vi

c dx +
∑

j∈Ji

(

|Sij |cijuij · nij −
∫

Sij

(

d∇c− c̃ijũij

)

· nij dx
)

=

∫

Vi

p dx. (3.2)

Proof. The advection term can be rewritten according to:
∫

Sij

cu · nij dx =

∫

Sij

cijuij · nij dx +

∫

Sij

c̃ijũij · nij dx

+

∫

Sij

cijũij · nij dx +

∫

Sij

c̃ijuij · nij dx.

Since the average deviation of the average is zero, this reduces to:
∫

Sij

cu · nij dx =

∫

Sij

cijuij · nij dx +

∫

Sij

c̃ijũij · nij dx

= |Sij |cijuij · nij +

∫

Sij

c̃ijũij · nij dx.

Substitution ends the proof. �

Assumption 3.5: The term 1
|Sij |

∫

Sij
c̃ijũij ·nij dx in (3.2) can be interpreted as turbulence on a

sub-grid scale [Pos05, p.27]. It is assumed that this term can be modeled as an additional diffusion
term, i.e. ∃ D̃ : D × [0, T] → R

m×m such that (3.2) is equivalent to:

d

dt

∫

Vi

c dx +
∑

j∈Ji

(

|Sij |cijuij · nij −
∫

Sij

(

D̃∇c
)

· nij dx
)

=

∫

Vi

p dx. (3.3)

Note that the molecular diffusion coefficient d, has been included in D̃ . y

Remark 3.6 (Magnitude of additional diffusion): The order of magnitude of the additional diffu-
sion, that results form the assumption above, depends on size of the grid cells and on the magnitude
of the velocity. Typically, WAQ uses an additional diffusion of the following order of magnitude:

m order of magnitude of the additional diffusion
1 1000m 2 s−1

2 10m 2 s−1

3 1m 2 s−1

Normally, the molecular diffusion coefficient d lies between 0m 2 s−1 and 1m 2 s−1, regardless
of the dimension. Therefore, diffusion dominated problems mainly occur in the one- and two-
dimensional cases. y

3.3 Finite volume method 13

3.3 Finite volume method

The finite volume method uses separate spatial and time discretisation. First, spatial discretisation
is applied to approximate the integral form in terms of cell averages and numerical fluxes. After
that, the time domain is discretised to solve the resulting system of ordinary differential equations.

Method 3.7 (Finite Volume Method (FVM)): The Finite volume method obtains an ap-
proximation of the solution of Model 2.1 in the following manner:

1. Approximate (3.3) by

d|Vi|ci
dt

+
∑

j∈Ji

|Sij |φij(ci, cj) = |Vi|pi, i = 1, ..., I, (3.4)

where |Vi| denotes the volume of Vi, and ci and pi denote the following cell averages:

ci(t) =

{
1

|Vi|

∫

Vi
c(x, t) dx, i = 1, .., I,

1
|Vi∩∂D1|

∫

Vi∩∂D1
c̆(x, t) dx, i = I + 1, .., I +K,

pi(t) =
1

|Vi|

∫

Vi

p(x, t) dx, i = 1, ..., I,

and φij is a so-called numerical flux function1:

φij(ci, cj) ≈ cijuij · nij −
1

|Sij |

∫

Sij

(

D̃∇c
)

· nij dx, (3.5)

2. Discretise the time domain as follows:

0 = t0 < t1 < ... < tN ≤ T,

and apply an ODE solver (see e.g. [BF01, Chapter 5]) to (3.4) to obtain a system of the
form2

gni (cn−1
1 , ..., cn−1

I+K , c
n
1 , ..., c

n
I+K) = 0, i = 1, ..., I; n = 1, ..., N. (3.6)

Here, cni is short for ci(tn). In the remaining of this part of the thesis, a generalisation of
this convenient notation will be used, i.e. qn := q(tn) for each quantity q(t). The solution
of this system approximates the solution of the model:

c(xi, tn) ≈ cni , i = 1, ..., I; n = 1, ..., N. y

Remark 3.8 (Numerical flux in WAQ): As a rule, WAQ uses a central difference approach for
the diffusion term and a separate finite difference approach for the advection term. More precisely,
the numerical flux function φij is of the form:

φij = ψij − dij
cj − ci

‖xj − xi‖2
,

where dij = dji represents the total amount of diffusion between Vi and Vj , and ψij ≈ cijuij · nij
approximates the advection term by means of a certain finite difference approach. y

Remark 3.9 (Dealing with nonlinearity): Note that p may depend nonlinearly on the concentra-
tion of any substance that is included in the water quality model. In order to avoid the necessity
of solving a complex nonlinear system, WAQ uses the following strategy.

1φij may also depend on concentrations other than ci and cj . However, such flux functions are not considered
in this thesis.

2gn
i may also depend on other times than tn−1 and tn. However, such time-discretisations are not considered

in this thesis.

14 Finite Volume Method

1. Suppose that cn−1
i is known. Initially, leave transport out of consideration, and deal with

the water quality processes in an explicit manner. In other words, compute intermediate
states ĉ

n

i by means of:

|Vni |ĉ
n

i − |Vn−1
i |cn−1

i

tn − tn−1
= |Vn−1

i |pn−1
i , i = 1, ..., I.

2. After that, compute cni by solving

d|Vi|ci
dt

= −
∑

j∈Ji

|Sij |φij(ci, cj), i = 1, ..., I,

with the help of an ODE solver (see e.g. Method 4.4 or Method 5.1) using ĉ
n

i instead of
cn−1
i .

Note that this fractional step approach introduces an error. On the other hand, it involves linear
systems only, as long as the flux functions are linear. y

The remainder of this part of the thesis will focus on the second step of the strategy above.

3.4 The quality of a finite volume method

The quality of a finite volume scheme is determined by a combination of accuracy and robustness.
These topics are discussed briefly below.

3.4.1 Accuracy

Several properties are related to accuracy. First of all, the scheme should not conflict with the law
of conservation of mass. Usually, mass conservation is a result of anti-symmetrical flux functions
(φij = −φji).
Definition 3.10 (Mass conservation): Consider Method 3.7 for p = 0 (no processes) and
∂D1 = ∅ (no open boundary3). The scheme is mass conservative, if the total amount of mass in
the interior grid cells does not change in time:

∑I
i=1 |Vni |cni =

∑I
i=1 |Vn−1

i |cn−1
i , n = 1, ..., N y

Additionally, the method should yield the exact solution for infinitely small grid cells and time
steps. In that case, the method is called convergent.

Definition 3.11 (Global truncation error): The global truncation error of Method 3.7 at time
tn is defined as:

eni = c(xi, tn) − cni , i = 1, ..., I. y

Definition 3.12 (Convergence): Consider the Method 3.7. Let the spatial mesh sizes and the
time steps be decreasing functions of a parameter h. The method converges at time tn with respect
to some norm ‖.‖, if

lim
h↓0

‖en‖ = 0, tn,x1, ...,xI fixed.

Here, en is the vector containing the global truncation errors. y

In practice, the global truncation error is (generally) not equal to zero, since the grid cells and
the time steps are not infinitely small. Therefore, it is convenient to have an indication of the
accuracy, which is provided below for the one-dimensional equidistant case.

3In case of an open boundary, the change in mass should match the transport through the open boundary.

3.4 The quality of a finite volume method 15

Definition 3.13 (Order of accuracy): Consider the one-dimensional variant (m = 1) of Method
3.7 with constant time step ∆t and constant cell width ∆x. The method is said to be s1 order
accurate in time and s2 order accurate in space with respect to some norm ‖.‖, if

‖en‖ = O(∆ts1) +O(∆xs2).

Here, en is the vector containing the global truncation errors. y

Intuitively, convergence can only occur if the local truncation error is small enough. This condition
is called consistency.

Definition 3.14 (Local truncation error): The local truncation error of Method 3.7 at time
tn is defined as:

ẽni = gni
(
c(x1, tn−1), ..., c(xI+K , tn−1), c(x1, tn), ..., c(xI+K , tn)

)
, i = 1, ..., I. y

Definition 3.15 (Consistency): Consider Method 3.7. Let the spatial mesh sizes and the time
steps be decreasing functions of a parameter h. The method is consistent at time tn with respect
to some norm ‖.‖, if

lim
h↓0

‖ẽn‖ = 0, tn,x1, ...,xI fixed.

Here, ẽn is the vector containing the local truncation errors. y

3.4.2 Robustness

Next to accuracy, efficiency is of great importance. A method is said to be robust if its “efficiency
is insensitive to changes in the problem, such as variations in grid point distribution (especially cell
aspect ratios)” [Wes01, p. 263], or in the velocity profile. The robustness of a scheme is usually
related to conditions that ensure stability, positivity, and non-oscillatory behavior. This section
discusses these properties.

Roughly speaking, stability means that a small perturbation of the initial condition should not
lead to a completely different solution. A definition of absolute stability is given below. For more
information about stability-related topics, see e.g. [Wes01, Chapter 5].

Definition 3.16 (Absolute stability): Method 3.7 is called absolutely stable with respect to
some norm ‖.‖, if there exist constants k, τ > 0 (τ may depend on the spatial mesh size) such
that, if

tn − tn−1 ≤ τ, ∀n = 1, ..., N,

then, for any perturbation w0 of the initial condition c0 that yields a perturbation wn of cn,

‖wn‖ ≤ k‖w0‖, ∀n = 1, ..., N. y

Next to stability, positivity is a favorable feature, because negative concentrations are unphysical.
Positivity preserving schemes guarantee positive results, provided that the initial and boundary
conditions are positive.

Definition 3.17 (Positivity preservation): Method 3.7 (for p = 0) is positivity preserving , if

c0i ≥ 0, i = 1, ..., I,
cni ≥ 0, i = I + 1, ..., I +K; n = 0, ..., N,

implies that

cni ≥ 0, i = 1, .., I; n = 1, ..., N. y

16 Finite Volume Method

Finally, the method should not generate spurious oscillations. In the one-dimensional case, the
occurrence of wiggles is unlikely if the scheme is monotonicity-preserving [Wes01, p. 340].

Definition 3.18 (Monotonicity preservation): Consider Method 3.7 for p = 0 and m =
1. The scheme is monotonicity preserving, if, for every non-decreasing (non-increasing) initial
condition {c0i }, the numerical solution at all later instants cni (n = 1, 2, ..., N) is non-decreasing
(non-increasing).

In the multi-dimensional unstructured case, the concept of local extremum diminishing schemes
is useful, which was introduced by Jameson [Jam93].

Definition 3.19 (Local Extremum Diminishing (LED)): Consider Method 3.7 for p = 0.
The system of ODEs that results from the spatial discretisation is called local extremum dimin-
ishing , if a local maximum cannot increase and a local minimum cannot decrease. y

Observe that a LED scheme is automatically positivity preserving and L∞-stable, as the global
maximum cannot increase and the global minimum cannot decrease [KT02, p. 531]. However, the
nice features of a LED spatial discretisation may still get disturbed by time discretisation. For
this purpose, a local and a global discrete maximum principle will be discussed now. The local
discrete maximum principle basically states that each concentration cni lies between the minimum
and maximum of the concentrations that it depends on. The global discrete maximum principle
implies that each concentration cni lies between the minimum and the maximum of the initial and
the boundary conditions.

Definition 3.20 (Local discrete maximum principle): Consider Method 3.7 for p = 0. Sup-
pose a scheme of the form:

aniic
n
i +

∑

j∈An
i

anijc
n
j =

∑

j∈Bn
i

bnijc
n−1
j , i = 1, .., I, anij 6= 0 (j ∈ An

i ∪ {i}), bnij 6= 0 (j ∈ Bni),

where Ai ⊂ Ji and Bi ⊂ Ji ∪ {i}. The scheme admits a local discrete maximum principle, if, for
any solution to the scheme, either

cni = cnj = cn−1
k , j ∈ An

i , k ∈ Bni , (3.7)

or

min

{

min
j∈An

i

cnj , min
j∈Bn

i

cn−1
j

}

< cni < max

{

max
j∈An

i

cnj ,max
j∈Bn

i

cn−1
j

}

, (3.8)

for all i = 1, ..., I and for all n = 1, .., N . y

Definition 3.21 (Global discrete maximum principle): Consider Method 3.7 for p = 0.
Suppose a scheme of the form:

aniic
n
i +

∑

j∈An
i

anijc
n
j =

∑

j∈Bn
i

bnijc
n−1
j , i = 1, .., I, anij 6= 0 (j ∈ An

i ∪ {i}), bnij 6= 0 (j ∈ Bni),

where Ai ⊂ Ji and Bi ⊂ Ji ∪ {i}. The scheme satisfies the global discrete maximum principle,
if, for any solution to the scheme, for each i = 1, ..., I and for each n = 1, ..., N , there is a
non-decreasing path to the boundary or to to the initial condition in the sense that there exist
j1, j2, ..., jE ∈ {1, ..., I +K} and m1,m2, ...,mE ∈ {0, 1, ..., N} such that

• je+1 ∈ Ame

je
∪ Bme

je
,

• me+1 ≤ me,

• either mE = 0 or jE ∈ {I + 1, ..., I +K},

• cni ≤ cm1

j1
≤ ... ≤ cmE

jE
,

3.5 Summary 17

and if, similarly, a non-increasing path exists. As a consequence, the scheme satisfies:

min

min

j=1,...,I
{c0j}, min

j=I+1,...,I+K

n=0,...,N

{cnj },

︸ ︷︷ ︸

=:m

≤ cni ≤ max

max

j=1,...,I
{c0j}, max

j=I+1,...,I+K

n=0,...,N

{cni }

︸ ︷︷ ︸

=:M

, (3.9)

for all i = 1, ..., I +K and for all n = 0, ..., N . y

Often, the global discrete maximum can be derived by successive application of the local discrete
maximum principle. For the fully explicit case it is mentioned in [BO04, p. 13] that the local
discrete maximum principle “precludes spurious extrema and O(1) Gibbs-like phenomena”. In the
general implicit case, the global discrete maximum principle implies that, for each concentration
cni , it is possible to step through the stencil, passing only concentrations that are not larger than
cni , until either a boundary cell (i = I+1, ..., I +K) or an initial cell (n = 0) is reached. A similar
result holds for non-increasing values. In other words: a local maximum in the interior can only be
the result of the transportation of a local maximum in the initial or boundary conditions and, in
that sense, can not be spurious. In the remaining of this thesis this will be called non-oscillatory
behavior. Another convenient consequence of the global discrete maximum principle is that the
scheme is positivity preserving and absolutely stable with respect to ‖.‖∞.

Theorem 3.22: If Method 3.7 satisfies the global discrete maximum principle (3.9), then the
scheme is positivity preserving.

Proof. Trivial. �

Theorem 3.23: If Method 3.7 satisfies the global discrete maximum principle (3.9), then the
scheme is absolutely stable with respect to ‖.‖∞.

Proof. (See also [Wes01, p. 170-171].) Let w0 be a perturbation of the initial condition c0 that
yields a perturbation wn of cn. As both cn and cn + wn satisfy the (linear) scheme, subtraction
yields that wn also satisfies the scheme. Applying the global maximum principle (3.9), it follows
that

min
j

{w0
j} ≤ wni ≤ min

j
{w0

j}

Hence,

‖wn‖∞ ≤ ‖w0‖∞,

As a result, the scheme is absolutely stable with respect to ‖.‖∞ (see also Definition 3.16 for
k = 1). �

3.5 Summary

The solution of the water quality model can be approximated by means of the finite volume method
(FVM). The grid that is used by Delft3D-WAQ is usually three-dimensional, unstructured, and
strongly non-uniform. Water quality processes are treated in an explicit manner, in order to avoid
the necessity of solving a nonlinear system. The quality of a finite volume scheme is determined
by accuracy and robustness. In this respect, the local and the global discrete maximum principle
are favorable properties of a FVM because they imply stability, positivity and non-oscillatory
behavior.

18 Finite Volume Method

Chapter 4

Accurate explicit schemes

In the introduction it was mentioned that WAQ’s current schemes are either explicit higher order
schemes that are not robust, or implicit first order schemes that are inaccurate. This chapter
considers the first category.

4.1 Local extremum diminishing flux functions

The flux function that is used in a finite volume scheme determines much of the characteristics
of the scheme. The beauty of first order upwind discretisation (4.1) is that it leads to a linear
local extremum diminishing (LED) system of ODEs. This is easy to prove with the help of the
following theorem.

Theorem 4.1: Consider Method 3.7 for p = 0. Suppose that spatial discretisation has resulted in
a system of the form:

d|Vi|ci
dt

= −
∑

j∈Ji

|Sij |φij

−|Sij |φij = −γjici + γijcj ,
∑

j∈Ji

(−γji + γij) = 0.

If γij ≥ 0 for all i and j, then, the system is LED.

Proof. (See also [Jam93, p. 385] or [KT02, p. 531].) Suppose that ci is a local maximum. So
ci ≥ cj for all j ∈ Ai. Consequently:

d|Vi|ci
dt

=
∑

j∈Ji

(−γjici + γijcj)

=
∑

j∈Ji

−γjici +
∑

j∈Ji

γij (cj − ci) +
∑

j∈Ji

γijci

=
∑

j∈Ji

(−γji + γij)

︸ ︷︷ ︸

=0

ci +
∑

j∈Ji

γij
︸︷︷︸

≥0

(cj − ci)
︸ ︷︷ ︸

≤0

≤ 0.

Therefore, the local maximum can not increase. Similarly, it can be shown that a local minimum
can not decrease. Hence, the scheme is LED. �

Proposition 4.2: Consider Method 3.7 for p = 0, after applying first order upwind spatial dis-
cretisation to the advection terms and central difference discretisation to the diffusion terms:

d|Vi|ci
dt

= −
∑

j∈Ji

|Sij |φij ,

20 Accurate explicit schemes

where φij is the following flux function:

− |Sij |φij = −γjici + γijcj (4.1)

γij = −|Sij |
(

min{0,uij · nij} −
dij

‖xj − xi‖2

)

.

If the velocity profile is conservative in the sense that

∑

j∈Ji

|Sij |uij · nij = 0, (4.2)

then, the resulting system is LED.

Proof. First, note that γij ≥ 0. Furthermore, observe that

∑

j∈Ji

(−γji + γij) = −
∑

j∈Ji

|Sij |
(
−max{0,uji · nji} + max{0,uij · nij}

)

= −
∑

j∈Ji

|Sij |
(
min{0,uij · nij} + max{0,uij · nij}

)

= −
∑

j∈Ji

|Sij |uij · nij

(4.2)
= 0

Applying Theorem 4.1 yields that the scheme is LED. �

A similar argument does not hold for central discretisation (4.3), which is of second order. How-
ever, the proposition below shows how central discretisation can be rendered LED by eliminating
negative coefficients by adding artificial diffusion. This strategy results in what will be called
upwinded central discretisation.

Proposition 4.3: Consider Method 3.7 for p = 0. Apply central discretisation to the advection
terms and the central difference scheme to the diffusion terms to obtain:

d|Vi|ci
dt

= −
∑

j∈Ji

|Sij |φ̃ij ,

where φ̃ij is the following flux function:

− |Sij |φ̃ij = −γ̃jici + γ̃ijcj (4.3)

γ̃ij = −|Sij |
(

uij · nij
2

− dij
‖xj − xi‖2

)

.

If φij is the following ‘upwinded’ version of φ̃ij:

− |Sij |φij = −γjici + γijcj (4.4)

γij = γ̃ij + max{0,−γ̃ij ,−γ̃ji},

and if the velocity profile is conservative in the sense that

∑

j∈Ji

|Sij |uij · nij = 0, (4.5)

then, the system

d|Vi|ci
dt

= −
∑

j∈Ji

|Sij |φij ,

4.2 Explicit schemes 21

is LED.

Proof. First, note that γij ≥ 0. Furthermore, observe that

∑

j∈Ji

(−γji + γij) =
∑

j∈Ji

(−γ̃ji + γ̃ij)

= −
∑

j∈Ji

|Sij |uij · nij

(4.5)
= 0

Applying Theorem 4.1 yields that the scheme is LED. �

According to Kuzmin et al. [KMT, p. 4-5], who proposed this strategy, the physical diffusion is
“automatically detected and the amount of artificial diffusion is reduced accordingly.” For diffusion
dominated problems, upwinded central discretisation is identical to central discretisation, “since
the coefficients are nonnegative from the outset”. For the one-dimensional advection equation,
upwinded central discretisation is equivalent to first order upwind discretisation.

4.2 Explicit schemes

Method 4.4 (Explicit (upwind) scheme): The explicit scheme is a FVM (Method 3.7) that
reads (for p=0):

|Vni |cni − |Vn−1
i |cn−1

i

tn − tn−1
= −

∑

j∈Ji

|Sn−1
ij |φn−1

ij ,

where φij is a flux function. If φij is as in (4.1), the scheme is known as the explicit upwind
scheme. y

Figure 4.1 displays the results of the explicit upwind scheme for the following test case.

Test case 4.5 (One-dimensional advection equation): This test case is the one-dimensional
advection equation with periodic boundary conditions:

∂c
∂t

+ u ∂c
∂x

= 0, x ∈ [0, 10], t ≥ 0,
c(x, 0) = 1[2,4](x)

1
2

(
1 − cos(πx)

)
+ 1[6,8](x), x ∈ [0, 10],

c(0, t) = c(10, t), t ≥ 0.

Note that the (exact) solution is periodic with a period of 10. y

For this test case, the explicit upwind scheme reads:

∆xic
n
i − ∆xic

n−1
i

∆t
= −ucn−1

i + ucn−1
i−1 , (4.6)

where ∆t = tn − tn−1 is the constant time step and ∆xi = |Vn−1
i | = |Vni | is the cell width. The

scheme will be stable, positivity preserving and non-oscillatory if

∆xi
u∆t

≤ 1, i = 1, ..., I, (4.7)

which results from (5.2) for θ = 0. This condition is also known as the Courant-Friedrichs-Lewy
(CFL) condition [LeV02, Section 4.4]. Note that the smallest grid cell is responsible for the number
of time steps. This explains why the number of time steps N is much larger in Figures 4.1(c) and
4.1(d) than in Figures 4.1(a) and 4.1(b). Apparently, the scheme is not robust. Furthermore, the
explicit upwind scheme is not very accurate for this test case. The numerical solution is smeared
out compared to the exact solution. Observe that this effect is larger in Figures 4.1(c) and 4.1(d)

22 Accurate explicit schemes

0 2 4 6 8 10

0

0.5

1

1.5
u=1, I=100, T=10

x

c
(c

on
ce

nt
ra

tio
n)

exact solution
Explicit upwind (N=111)

(a) equidistant grid, 1 period

0 2 4 6 8 10

0

0.5

1

1.5
u=1, I=100, T=50

x

c
(c

on
ce

nt
ra

tio
n)

exact solution
Explicit upwind (N=551)

(b) equidistant grid, 5 periods

0 2 4 6 8 10

0

0.5

1

1.5
u=1, I=120, T=10

x

c
(c

on
ce

nt
ra

tio
n)

exact solution
Explicit upwind (N=1101)

(c) non-equidistant grid, 1 period

0 2 4 6 8 10

0

0.5

1

1.5
u=1, I=120, T=50

x

c
(c

on
ce

nt
ra

tio
n)

exact solution
Explicit upwind (N=5501)

(d) non-equidistant grid, 5 periods

Figure 4.1: Explicit upwind scheme (Method 4.4) for Test case 4.5

than in Figures 4.1(a) and 4.1(b). This is explained by the fact that, for a one-dimensional
equidistant grid, the explicit upwind scheme introduces the following additional artificial diffusion
coefficient:

u∆x

2

(

1 − u∆t

∆x

)

. (4.8)

This follows from Proposition 5.2 for θ = 0. A simple calculation shows that the numerical
diffusion in Figures 4.1(a) and 4.1(b) reads 0.0198, whereas it is equal to 0.1818 (in the largest
cells) in Figures 4.1(c) and 4.1(d). The next section discusses a strategy to diminish this numerical
diffusion.

4.3 Flux corrected transport

Theorem 4.6 (Godunov’s barrier theorem): Consider the one-dimensional advection equation
(Model 2.1 for m = 1, d = 0, p = 0, and u constant):

∂c

∂t
+ u

∂c

∂x
= 0.

4.3 Flux corrected transport 23

Suppose that the model is solved by means of Method 3.7 with a constant mesh width ∆x and a
constant time step ∆t. Assume that the scheme can be written in the form:

cni =
∑

j

γjc
n−1
i+j .

If the scheme is second-order in the sense that the exact solution is reproduced if the initial condi-
tion is a polynomial of second degree, then, the scheme cannot be monotonicity preserving, unless
|u|∆t
∆x ∈ N.

Proof. See [Wes01, Theorem 9.2.2]. �

Roughly speaking, Godunov’s barrier theorem implies that a linear method either is relatively
inaccurate (remember the artificial diffusion of the explicit upwind scheme), or it has a tendency
to generate spurious oscillations [BO04, p.19]. The Flux Correcting Transport (FCT) algorithm
attempts to combine a non-oscillatory first order flux function with an accurate higher order
flux function by means of a nonlinear limiter. Roughly speaking, the algorithm uses a convex
combination of the two flux functions, instead of just one of them. This strategy can also be
described as updating the first order flux with a limited correction flux.

Method 4.7 (Explicit FCT scheme): The explicit FCT scheme is a FVM (Method 3.7) of the
following form (for p = 0):

|Vni |cni − |Vn−1
i |cn−1

i

tn − tn−1
= −

∑

j∈Ji

|Sn−1
ij |

(

φ̂n−1
ij + lnij

(
φ̃n−1
ij − φ̂n−1

ij

))

. (4.9)

Here, φ̂ij is a non-oscillatory first order numerical flux function of the form (3.5), and φ̃ij is a

higher order one. The difference φ̃ij− φ̂ij can be interpreted as a correction term, which is limited

by lij . If φ̂ij is as in (4.1), the explicit upwind FCT scheme is obtained. y

Note that choosing lnij = 0 corresponds to applying the first order method. On the other hand,
setting lnij = 1 is equivalent to using the higher order method. The limiter that is used by scheme
12 of WAQ is a generalised version of the one-dimensional limiter that was proposed by Boris &
Book [BB73], the founders of the FCT algorithm. This limiter has been extended to the multi-
dimensional case on a structured grid by Zalesak [Zal79]. Below, it is further generalised for an
unstructured grid. The limiter allows as much correction as possible, provided that it generates
no new local extrema.

Method 4.8 (Explicit FCT scheme à la Boris & Book): This method results from the
explicit FCT scheme (Method 4.7) by using the following limiter:

1. Suppose that cn−1
i is known from the previous time step. Compute a first order approxima-

tion ĉ
n

i by means of (4.9) with lnij = 0, which is equivalent to applying the explicit scheme

(Method 4.4) with the lower order flux function φ̂ij :

|Vni |ĉ
n

i − |Vn−1
i |ĉn−1

i

tn − tn−1
= −

∑

j∈Ji

|Sn−1
ij |φ̂n−1

ij .

2. Define the flux correction ∆φnij as follows:

∆φnij = φ̃n−1
ij − φ̂n−1

ij

3. Since ∆φnij often corrects the numerical diffusion of the first order flux, it is sometimes
referred to as anti-diffusion. Because an anti-diffusion term should not behave as a diffusion
term, put ∆φnij = 0 if

∆φnij(ĉ
n

i − ĉ
n

j) > 0.

24 Accurate explicit schemes

If this prelimiting step is not performed, the flux correction may smooth the low-order
solution, or it may cause small-scale numerical ripples [KT02, p.541]. Since it is unphysical
for an anti-diffusion term to be directed from a higher concentration to a lower concentration,
the effect of the adjustment above is minimal in practice [Zal79, p. 342].

4. Construct an upper and a lower bound for cni by means of the first order approximation ĉ
n

i :

cmax
i = max

j∈Ji∪{i}
{ĉnj },

cmin
i = min

j∈Ji∪{i}
{ĉnj }.

5. The amount of mass that flows into cell Vi as a result of the flux correction (without the
limiter) reads:

λ+
i =

∑

j∈Ji

(tn − tn−1)|Snij |max{0,−∆φnij}.

The allowed mass increase is, however:

µ+
i = |Vi|

(

cmax
i − ĉ

n

i

)

.

Thus, the fraction of mass that is allowed to flow into the cell is given by:

ν+
i =

min
{

1,
µ

+

i

λ+

i

}

, λ+
i > 0,

0, λ+
i = 0,

Introduce analogue quantities for mass decrease:

λ−i =
∑

j∈Ji

(tn − tn−1)|Snij |max{0, ∆φnij},

µ−
i = |Vi|

(

ĉ
n

i − cmin
i

)

,

ν−i =

min
{

1,
µ−

i

λ
−

i

}

, λ−i > 0,

0, λ−i = 0.

6. The limiter is the mass fraction that is allowed by both adjacent cells:

lnij =

{

min{ν+
j , ν

−
i }, ∆φnij ≥ 0,

min{ν+
i , ν

−
j }, ∆φnij < 0.

y

Remark 4.9: Alternatively, next to the first order approximation ĉ
n

i , the previous solution esti-
mation cn−1

i could be used to determine the bounds cmax
i and cmin

i :

cmax
i = max

j∈Ji∪{i}

{

max{cn−1
j , ĉ

n

j }
}

,

cmin
i = min

j∈Ji∪{i}

{

min{cn−1
j , ĉ

n

j }
}

.

In general, this leads to a larger limiter, which means that more flux correction is applied that
diminishes numerical diffusion. However, this choice is less safe because the birth of new local
extremes is no longer excluded (see also [Zal79, p. 342]). y

4.3 Flux corrected transport 25

0 2 4 6 8 10

0

0.5

1

1.5
u=1, I=100, T=10

x

c
(c

on
ce

nt
ra

tio
n)

Exact solution
Explicit upwind (N=111)
Explicit upwind FCT (N=111)

(a) equidistant grid, 1 period

0 2 4 6 8 10

0

0.5

1

1.5
u=1, I=100, T=50

x

c
(c

on
ce

nt
ra

tio
n)

Exact solution
Explicit upwind (N=551)
Explicit upwind FCT (N=551)

(b) equidistant grid, 5 periods

0 2 4 6 8 10

0

0.5

1

1.5
u=1, I=120, T=10

x

c
(c

on
ce

nt
ra

tio
n)

Exact solution
Explicit upwind (N=1101)
Explicit upwind FCT (N=1101)

(c) non-equidistant grid, 1 period

0 2 4 6 8 10

0

0.5

1

1.5
u=1, I=120, T=50

x

c
(c

on
ce

nt
ra

tio
n)

Exact solution
Explicit upwind (N=5501)
Explicit upwind FCT (N=5501)

(d) non-equidistant grid, 5 periods

Figure 4.2: Explicit upwind FCT scheme (Method 4.8) with central flux correction (4.3) for Test
case 4.5

Remark 4.10 (TVD limiters): After Boris and Book proposed the FCT algorithm, many alter-
native limiting strategies have been developed. A popular class is formed by the Total Variation
Diminishing (TVD) limiters, which includes minmod, Van Leer, MC, and superbee. These limiters
are considered for multi-dimensional unstructured grids in [KT, Sections 2 and 10]. y

Figure 4.2 displays the results of the explicit upwind FCT scheme (Method 4.8) with central
flux correction (4.3). Compared to the explicit upwind scheme, the numerical diffusion has been
reduced drastically. However, the anti-diffusion is too large in some portions of the domain,
especially in Figures 4.2(a) and 4.2(b). This is explained by the fact that, for a one-dimensional
equidistant grid, the explicit scheme with central fluxes introduces the following additional artificial
diffusion coefficient:

−1

2
u2∆t.

This follows from Proposition 5.6 for θ = 0. Because negative diffusion is unphysical, central
fluxes are unsuitable to serve as flux correction in the explicit FCT scheme. An alternative flux
correction is provided by the Lax-Wendroff scheme.

Method 4.11 (Lax-Wendroff scheme): The Lax-Wendroff scheme is a fully discrete FVM (see

26 Accurate explicit schemes

Method 3.7 for notational aspects) of the following form (for p = 0 and D̃ = 0):

|Vni |cni − |Vn−1
i |cn−1

i

tn − tn−1
= −

∑

j∈Ji

|Sn−1
ij |φn−1

ij ,

where

φn−1
ij = φ̂n−1

ij +

(

∆ξn−1
ij

‖xn−1
j − xn−1

i ‖2

−
un−1
ij · nn−1

ij (tn − tn−1)

2‖xn−1
j − xn−1

i ‖2

)

un−1
ij · nn−1

ij

(
cn−1
j − cn−1

i

)
.

Here, φ̂n−1
ij is the first order upwind flux:

φ̂n−1
ij = max{un−1

ij · nn−1
ij , 0}cn−1

i + min{un−1
ij · nn−1

ij , 0}cn−1
j ,

and ∆ξn−1
ij is the distance1 between xn−1

i and Sn−1
ij , if un−1

ij · nn−1
ij ≥ 0, and minus the distance

between xn−1
j and Sn−1

ij , if un−1
ij · nn−1

ij < 0.

Derivation. First, reduce the model to the one-dimensional advection equation with constant
velocity u > 0, constant cell width ∆x > 0, and constant time step ∆t > 0. Consider the following
Taylor expansion around t = tn−1:

c(x, tn) ≈ c(x, tn−1) + ∆t
∂c

∂t
(x, tn−1) +

∆t2

2

∂2c

∂t2
(x, tn−1).

This expression can be rewritten to obtain:

c(x, tn) − c(x, tn−1)

∆t
≈ ∂c

∂t
(x, tn−1) +

∆t

2

∂2c

∂t2
(x, tn−1).

Note that:

∂c

∂t
= −u ∂c

∂x
,

∂2c

∂t2
= u2 ∂

2c

∂x2
.

Hence:

c(x, tn) − c(x, tn−1)

∆t
= −u ∂c

∂x
(x, tn−1) +

∆t

2
u2 ∂

2c

∂x2
(x, tn−1).

Applying central differences yields:

cni − cn−1
i

∆t
= −u

cn−1
i+1 − cn−1

i−1

2∆x
+

∆t

2
u2 c

n−1
i−1 − 2cn−1

i + cn−1
i+1

∆x2
.

Rewriting gives:

∆x
cni − cn−1

i

∆t
= −ucn−1

i + ucn−1
i−1

−1

2

(

1 − u∆t

∆x

)

u(cn−1
i+1 − cn−1

i) − 1

2

(

1 − u∆t

∆x

)

u(cn−1
i−1 − cn−1

i).

Finally, the derivation of the generalisation to non-equidistant grids can be found in [LeV02,
Section 6.17]. �

Figure 4.3 displays the results of the explicit upwind FCT scheme (Method 4.8) with Lax-Wendroff
flux correction (Method 4.11) for Test case 4.5. Again, compared to the explicit upwind scheme,
the numerical diffusion has been reduced. Where the central scheme caused too much anti-diffusion
(see Figure 4.2), the Lax-Wendroff scheme seems to add a more appropriate amount. Proposition
5.7 (for θ = 0) shows that, on a one-dimensional equidistant grid, the numerical diffusion of the
Lax-Wendroff scheme is equal to zero. Scheme 12 of WAQ uses Lax-Wendroff flux correction.

1Of course, there is more than one way to define this distance. In WAQ, the distance between xi and Sij is an
approximation of ‖xi − y

ij
‖2. Here yn

ij is the point where the line through xi and xj intersects Sij .

4.4 Summary 27

0 2 4 6 8 10

0

0.5

1

1.5
u=1, I=100, T=10

x

c
(c

on
ce

nt
ra

tio
n)

Exact solution
Explicit upwind (N=111)
Explicit upwind FCT (N=111)

(a) equidistant grid, 1 period

0 2 4 6 8 10

0

0.5

1

1.5
u=1, I=100, T=50

x

c
(c

on
ce

nt
ra

tio
n)

Exact solution
Explicit upwind (N=551)
Explicit upwind FCT (N=551)

(b) equidistant grid, 5 periods

0 2 4 6 8 10

0

0.5

1

1.5
u=1, I=120, T=10

x

c
(c

on
ce

nt
ra

tio
n)

Exact solution
Explicit upwind (N=1101)
Explicit upwind FCT (N=1101)

(c) non-equidistant grid, 1 period

0 2 4 6 8 10

0

0.5

1

1.5
u=1, I=120, T=50

x

c
(c

on
ce

nt
ra

tio
n)

Exact solution
Explicit upwind (N=5501)
Explicit upwind FCT (N=5501)

(d) non-equidistant grid, 5 periods

Figure 4.3: Explicit upwind FCT scheme (Method 4.8) with Lax-Wendroff flux correction (Method
4.11) for Test case 4.5

4.4 Summary

The explicit upwind scheme is neither robust nor accurate. The former is caused by the fact
that the time step is limited to ensure stability, positivity and non-oscillatory behavior. The
inaccuracy is a a result of numerical diffusion, which can be diminished by means of the flux
corrected transport (FCT) algorithm. Central flux correction leads to an anti-diffusion error. For
this reason, the Lax-Wendroff scheme is more suitable to serve as flux corrector, as its numerical
diffusion is equal to zero. Although the accuracy of the explicit FCT scheme is generally high,
the robustness of the explicit scheme remains unchanged, which can result in long computational
times. Scheme 12 of WAQ is an explicit FCT scheme with Lax-Wendroff flux correction.

28 Accurate explicit schemes

Chapter 5

Robust implicit theta schemes

In the introduction it was mentioned that WAQ’s current schemes are either explicit higher order
schemes that are not robust, or implicit first order schemes that are inaccurate. This chapter
considers the second category.

5.1 Theta scheme

Method 5.1 (Theta (upwind) scheme): The theta scheme is a FVM (Method 3.7) that reads
(for p=0):

|Vni |cni − |Vn−1
i |cn−1

i

tn − tn−1
= −

∑

j∈Ji

(
(1 − θ)|Sn−1

ij |φn−1
ij + θ|Snij |φnij

)
,

where φij is a flux function. If φij is as in (4.1), the scheme theta upwind scheme is obtained. y

0 2 4 6 8 10

0

0.5

1

1.5
u=1, I=120, T=10

x

c
(c

on
ce

nt
ra

tio
n)

exact solution
Theta upwind (θ=0, N=1101)
Theta upwind (θ=0.89, N=111)
Theta upwind (θ=1, N=111)

(a) 1 period

0 2 4 6 8 10

0

0.5

1

1.5
u=1, I=120, T=50

x

c
(c

on
ce

nt
ra

tio
n)

exact solution
Theta upwind (θ=0, N=5501)
Theta upwind (θ=0.89, N=551)
Theta upwind (θ=1, N=551)

(b) 5 periods

Figure 5.1: Theta upwind scheme (5.1) for Test case 4.5

Figure 5.1 displays the results of the theta upwind scheme for Test case 4.5. For this test case,
the theta upwind scheme reads:

∆xic
n
i − ∆xic

n−1
i

∆t
= −(1 − θ)u(cn−1

i − cn−1
i−1) − θu(cni − cni−1), (5.1)

30 Robust implicit theta schemes

where ∆t = tn − tn−1 is the constant time step and ∆xi = |Vn−1
i | = |Vni | is the cell width. The

scheme will be stable, positivity preserving and non-oscillatory if

θ ≥ 1 − ∆xi
u∆t

, i = 1, ..., I, (5.2)

which follows from (6.10) for constant θ. The test was performed for three different pairs of θ
and ∆t that satisfy (5.2). In the fully explicit case (θ = 0, blue), this has resulted in a relatively
large number of time steps. In the fully implicit case (θ = 1, red), any number of time steps is
allowed, because (5.2) is unconditionally satisfied. This is the value that is used by scheme 16 of
WAQ. Finally, observe that the numerical solution is more smeared out in comparison with the
exact solution as θ becomes larger. In the following proposition, an expression for the numerical
diffusion coefficient is derived with the help of the modified equation.

Proposition 5.2: Consider the theta upwind scheme (Method 5.1) for the one-dimensional ad-
vection equation with constant velocity u > 0, constant cell width ∆x > 0, and constant time step
∆t > 0:

cn+1
i − cni

∆t
+ θu

cn+1
i − cn+1

i−1

∆x
+ (1 − θ)u

cni − cni−1

∆x
= 0.

Let η(x, t) be a ‘sufficiently differentiable’function such that η(xi, tn) = cni . Then, the correspond-
ing modified equation reads

∂η

∂t
(xi, tn) + u

∂η

∂x
(xi, tn) ≈

u∆x

2

(

1 − (1 − 2θ)
u∆t

∆x

)

︸ ︷︷ ︸

Numerical diffusion coefficient

∂2η

∂x2
(xi, tn).

Proof. Because η(xi, tn) = cni ,

η(xi, tn+1) − η(xi, tn)

∆t

+θu
η(xi, tn+1) − η(xi−1, tn+1)

∆x

+(1 − θ)u
η(xi, tn) − η(xi−1, tn)

∆x
= 0.

Using a Taylor expansion of η around tn results in (higher order terms that will be neglected later
are colored):

∂η

∂t
(xi, tn) +

∆t

2

∂2η

∂t2
(xi, tn) +

∆t2

6

∂3η

∂t3
(xi, τ1)

+θu

(
η(xi, tn) + ∆t∂η

∂t
(xi, tn) + ∆t2

2
∂2η
∂t2

(xi, tn) + ∆t3

6
∂3η
∂t3

(xi, τ2)

∆x

−η(xi−1, tn) + ∆t∂η
∂t

(xi−1, tn) + ∆t2

2
∂2η
∂t2

(xi−1, tn) + ∆t3

6
∂3η
∂t3

(xi−1, τ3)

∆x

)

+(1 − θ)u
η(xi, tn) − η(xi−1, tn)

∆x
= 0,

5.1 Theta scheme 31

for certain τ1, τ2, τ3 ∈ [tn, tn+1]. Using a Taylor expansion of η around xi yields:

∂η

∂t
(xi, tn) +

∆t

2

∂2η

∂t2
(xi, tn) +

∆t2

6

∂3η

∂t3
(xi, τ1)

+θu

(
∂η

∂x
(xi, tn) −

∆x

2

∂2η

∂x2
(xi, tn) +

∆x2

6

∂3η

∂x3
(ξ1, tn)

+∆t
∂

∂x

∂η

∂t
(xi, tn) −

∆t∆x

2

∂2

∂x2

∂η

∂t
(ξ2, tn)

+
∆t3

6∆x

∂3η

∂t3
(xi, τ2) −

∆t3

6∆x

∂3η

∂t3
(ξ3, τ3)

)

+(1 − θ)u

(
∂η

∂x
(xi, tn) −

∆x

2

∂2η

∂x2
(xi, tn) +

∆x2

6

∂3η

∂x3
(ξ4, tn)

)

= 0,

for certain ξ1, ξ2, ξ3, ξ4 ∈ [xi−1, xi]. Rewriting gives:

∂η

∂t
(xi, tn) + u

∂η

∂x
(xi, tn) =

u∆x

2

∂2η

∂x2
(xi, tn)

−∆t

2

∂2η

∂t2
(xi, tn) − θu∆t

∂

∂x

∂η

∂t
(xi, tn)

−∆t2

6

∂3η

∂t3
(xi, τ1)

−θu
(

∆x2

6

∂3η

∂x3
(ξ1, tn) −

∆t∆x

2

∂2

∂x2

∂η

∂t
(ξ2, tn)

+
∆t3

6∆x

∂3η

∂t3
(xi, τ2) −

∆t3

6∆x

∂3η

∂t3
(ξ3, τ3)

)

−(1 − θ)u
∆x2

6

∂3η

∂x3
(ξ4, tn).

Note that

∂η

∂t
(xi, tn) = −u∂η

∂x
(xi, tn) +O(∆t) +O(∆x)

∂2η

∂t2
(xi, tn) = u2 ∂

2η

∂x2
(xi, tn) +O(∆t) +O(∆x).

Substitution yields:

∂η

∂t
(xi, tn) + u

∂η

∂x
(xi, tn) =

u∆x

2

∂2η

∂x2
(xi, tn)

−u
2∆t

2

∂2η

∂x2
(xi, tn) + θu2∆t

∂2η

∂x2
(xi, tn)

+O
(
∆t2

)
+O

(
∆x2

)
+O(∆x∆t).

Rewriting and neglecting second order terms ends the proof. �

The proposition above implies that, on an equidistant grid, the numerical diffusion coefficient of
Test case 4.5 reads:

u∆x

2

(

1 − (1 − 2θ)
u∆t

∆x

)

. (5.3)

This is illustrated in Figure 5.2 by means of a contour plot of 1 − (1 − 2θ)u∆t
∆x as a function of

the CFL-number u∆t
∆x . The magenta line indicates the border of the region where the numerical

diffusion is nonnegative:

θ ≥ 1

2

(

1 − ∆x

u∆t

)

. (5.4)

32 Robust implicit theta schemes

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

u∆
 t/

∆
x

θ

−3

−2

−1

0

1

2

3

4

Figure 5.2: Contour plot of 1 − (1 − 2θ)u∆t
∆x , the scaled numerical diffusion coefficient (5.3); the

magenta border corresponds to (5.4), the (dark) purple border corresponds to (5.2)

The (dark) purple line indicates the border of the region where (5.2) is satisfied. Apparently,
if (5.2) is satisfied, which implies stable, positive, and non-oscillatory behavior, the numerical
diffusion coefficient must be strictly positive (unless θ = 0 and u∆t

∆x = 1). At the same time, a
strictly positive numerical diffusion coefficient causes artificial smearing of the solution (see Figure
5.1). Observe that the numerical diffusion grows with θ. Altogether, it is best to satisfy (5.2) with
the smallest possible θ.

5.2 Theta FCT scheme

Section 4.3 described the explicit FCT scheme (Method 4.7), which is accurate, but not robust
due to a severe stability criterion for the time step. The question is: will an implicit variant of
such a scheme lead to a method that is both accurate and robust? For this purpose, the explicit
FCT scheme will be generalized to the theta FCT scheme.

Method 5.3 (Theta (upwind) FCT scheme): The theta FCT scheme is a FVM (Method 3.7)
of the following form (for p = 0):

|Vni |cni − |Vn−1
i |cn−1

i

tn − tn−1
= −

∑

j∈Ji

|Snij |
(

(1 − θ)
(

φ̂n−1
ij + ln,n−1

ij

(
φ̃n−1
ij − φ̂n−1

ij

))

+θ
(

φ̂nij + ln,nij
(
φ̃nij − φ̂nij

))
)

(5.5)

Again, φ̂ij is a non-oscillatory first order numerical flux function of the form (3.5), and φ̃ij is a

higher order one. The difference φ̃ij− φ̂ij can be interpreted as a correction term, which is limited

by lij . If φ̂ij is as in (4.1), the theta upwind FCT scheme is obtained. y

Note that, if θ = 0, the method corresponds to the explicit FCT scheme (Method 4.7). In
the implicit case (θ > 0), Method 5.3 requires the solution of a nonlinear system, if the limiter
depends nonlinearly on the concentration at the new time tn. The latter is usually the case
because of Godunov’s barrier theorem (Theorem 4.6). The following method avoids this difficulty
by approximating the flux corrections at the new time with the help of the first order solution
approximation. The limiter is based on the one described in Method 4.8.

Method 5.4 ((Approximate) theta (upwind) FCT scheme à la Boris & Book): This
method consists of the following steps, which involve linear systems only (see Method 5.3 for
notational aspects):

5.2 Theta FCT scheme 33

1. Suppose that cn−1
i is known from the previous time step. Compute a first order approxima-

tion ĉ
n

i by means of (5.5) with ln,n−1
ij = ln,nij = 0, which is equivalent to applying the theta

scheme (Method 5.1) with the lower order flux function φ̂ij :

|Vni |ĉ
n

i − |Vn−1
i |cn−1

i

tn − tn−1
= −

∑

j∈Ji

|Snij |
(

(1 − θ)φ̂n−1
ij + θφ̂nij

)

.

2. Define the total flux correction ∆φnij as follows:

∆φnij = (1 − θ)
(

φ̃n−1
ij − φ̂n−1

ij

)

+ θ
(

φ̃nij − φ̂nij

)

= (1 − θ)
(

φ̃ij(c
n−1
i , cn−1

j) − φ̂ij(c
n−1
i , cn−1

j)
)

+ θ
(

φ̃ij(c
n
i , c

n
j) − φ̂ij(c

n
i , c

n
j)
)

.

Since cni is unknown, approximate ∆φnij with the help of the first order approximation1 ĉ
n

i :

∆φnij ≈ (1 − θ)
(

φ̃ij(c
n−1
i , cn−1

j) − φ̂ij(c
n−1
i , cn−1

j)
)

+ θ
(

φ̃ij(ĉ
n

i , ĉ
n

j) − φ̂ij(ĉ
n

i , ĉ
n

j)
)

.

3. Apply steps 2-6 of Method 4.8 to obtain the limiter à la Boris & Book lnij = ln,n−1
ij = ln,nij .

4. Compute the solution estimation at time tn by approximating (5.5) as follows2:

|Vni |cni − |Vni |ĉ
n

i

tn − tn−1
= −

∑

j∈Ji

|Snij |lnij∆φnij . (5.6)

y

Remark 5.5: Alternatively, an iterative theta FCT scheme could be formulated similar to the
iterative FEM-FCT scheme that was proposed by Kuzmin et al. in [KMT, Sections 5 and 6]. This
probably leads to higher accuracy, although extra computational costs also need to be taken into
account. y

Figure 5.3 illustrates the performance of the approximate theta FCT scheme if central fluxes are
used to correct the numerical diffusion of the first order upwind scheme. The test was performed
for the same pairs of θ and ∆t as in Figure 5.1. The explicit case that was obtained before is
displayed again in blue, to demonstrate the difference with implicit cases. Unfortunately, the
results show a lot of smearing. From the proposition below it becomes clear that the numerical
diffusion coefficient of the theta scheme with central fluxes reads

(

θ − 1

2

)

u2∆t.

Apparently, central fluxes are only suitable to serve as flux corrector in the theta FCT scheme
if θ is sufficiently close to 1

2 . Unfortunately, this condition often conflicts with (5.2) (unless the
time step or the grid is altered which would mean that the scheme is not robust), which ensures
stability, positivity, and non-oscillatory behavior of the theta upwind scheme.

Proposition 5.6: Consider the theta scheme (Method 5.1) with central fluxes (4.3) for the one-
dimensional advection equation with constant velocity u > 0, constant cell width ∆x > 0, and
constant time step ∆t > 0:

∆x
cni − cn−1

i

∆t
+ u

cni+1 − cni−1

2
+ (1 − θ)u

cn−1
i+1 − cn−1

i−1

2
= 0

1Alternatively, the higher order approximation, which can be obtained by means of (5.5) with l
n,n−1

ij
= l

n,n
ij

= 1,
could be used. However, this would require the solution of an extra linear system. This strategy has not been tested.

2Instead of (5.6), (5.5) could be used with l
n,n−1

ij
= l

n,n
ij

= lnij . However, this would not guarantee the absence of
new local extremes, because the limiter is now applied to a different correction flux than it was originally designed
for.

34 Robust implicit theta schemes

0 2 4 6 8 10

0

0.5

1

1.5
u=1, I=120, T=10

x

c
(c

on
ce

nt
ra

tio
n)

exact solution
Theta upwind FCT (θ=0, N=1101)
Theta upwind FCT (θ=0.89, N=111)
Theta upwind FCT (θ=1, N=111)

(a) 1 period

0 2 4 6 8 10

0

0.5

1

1.5
u=1, I=120, T=50

x

c
(c

on
ce

nt
ra

tio
n)

exact solution
Theta upwind FCT (θ=0, N=5501)
Theta upwind FCT (θ=0.89, N=551)
Theta upwind FCT (θ=1, N=551)

(b) 5 period

Figure 5.3: Approximate theta upwind FCT scheme (Method 5.4) with central flux correction
(4.3) for Test case 4.5

Let η(x, t) be a ‘suffciently differentiable’ function such that η(xi, tn) = cni (for all i = 1, ..., I, for
all n = 1, ..., N). Then for all i = 1, ..., I and for all n = 1, ..., N :

∂η

∂t
(xi, tn) + u

∂η

∂x
(xi, tn) ≈

(

θ − 1

2

)

u2∆t

︸ ︷︷ ︸

Numerical diffusion coefficient

∂2η

∂x2
(xi, tn)

Proof. The proof is similar to the proof of Proposition 5.2. �

0 2 4 6 8 10

0

0.5

1

1.5
u=1, I=120, T=10

x

c
(c

on
ce

nt
ra

tio
n)

exact solution
Theta FCT (θ=0, N=1101)
Theta FCT (θ=0.89, N=111)
Theta FCT (θ=1, N=111)

(a) 1 period

0 2 4 6 8 10

0

0.5

1

1.5
u=1, I=120, T=50

x

c
(c

on
ce

nt
ra

tio
n)

exact solution
Theta FCT (θ=0, N=5501)
Theta FCT (θ=0.89, N=551)
Theta FCT (θ=1, N=551)

(b) 5 periods

Figure 5.4: Approximate theta upwind FCT scheme (Method 5.4) with Lax-Wendroff flux correc-
tion (Method 4.11) for Test case 4.5

Figure 5.4 illustrates the effect of using second order Lax-Wendroff fluxes once more to correct the
numerical diffusion of the theta upwind scheme. Again, the results show a lot of smearing. From
the proposition below it becomes clear that the numerical diffusion coefficient of the theta scheme
with Lax-Wendroff fluxes reads

θu2∆t.

5.2 Theta FCT scheme 35

Apparently, Lax-Wendroff fluxes are only suitable to serve as flux corrector in the theta FCT
scheme if θ is sufficiently close to 0. Unfortunately, this condition often conflicts with (5.2).

Proposition 5.7: Consider the theta scheme (Method 5.1) with Lax-Wendroff fluxes (see Method
4.11) for the one-dimensional advection equation with constant velocity u > 0, constant cell width
∆x > 0, and constant time step ∆t > 0:

∆x
cni − cn−1

i

∆t
+ θ

(

u
cni+1 − cni−1

2
− u2∆t

2

cni−1 − 2cni + cni+1

∆x

)

+(1 − θ)

(

u
cn−1
i+1 − cn−1

i−1

2
− u2∆t

2

cn−1
i−1 − 2cn−1

i + cn−1
i+1

∆x

)

= 0 (5.7)

Let η(x, t) be a ‘sufficiently differentiable’ function such that η(xi, tn) = cni (for all i = 1, ..., I, for
all n = 1, ..., N). Then for all i = 1, ..., I and for all n = 1, ..., N :

∂η

∂t
(xi, tn) + u

∂η

∂x
(xi, tn) ≈ θu2∆t

︸ ︷︷ ︸

Numerical diffusion coefficient

∂2η

∂x2
(xi, tn)

Proof. The proof is similar to the proof of Proposition 5.2. �

Actually, it is rather peculiar to combine the theta scheme with Lax-Wendroff fluxes, because
the Lax-Wendroff fluxes include time discretisation already. For this reason, now, the implicit
counterpart of the Lax-Wendroff scheme will be considered, which can be derived in a similar
manner as the (explicit) Lax-Wendroff scheme (Method 4.11). As a matter of fact, except for one
single minus sign, it leads to the exact same scheme.

Method 5.8 (Implicit Lax-Wendroff scheme): The implicit Lax-Wendroff scheme is a fully
discrete FVM (see Method 3.7 for notational aspects) of the following form (for p = 0 and D̃ = 0):

|Vni |cni − |Vn−1
i |cn−1

i

tn − tn−1
= −

∑

j∈Ji

|Snij |φnij ,

where

φnij = φ̂nij +

(

∆ξnij
‖xnj − xni ‖2

+
unij · nnij(tn − tn−1)

2‖xnj − xni ‖2

)

unij · nnij
(
cnj − cni

)
.

Here, φ̂nij is the first order upwind flux:

φ̂nij = max{unij · nnij , 0}cni + min{unij · nnij , 0}cnj ,

and ∆ξnij is as in Method 4.11.

Derivation. First, reduce the model to the one-dimensional advection equation with constant
velocity u > 0, constant cell width ∆x > 0, and constant time step ∆t > 0. Consider the following
Taylor expansion around t = tn:

c(x, tn−1) ≈ c(x, tn) − ∆t
∂c

∂t
(x, tn) +

∆t2

2

∂2c

∂t2
(x, tn).

Now, the same strategy that led to the explicit Lax-Wendroff scheme (Method 4.11) can be used
to obtain the implicit Lax-Wendroff scheme. �

A convex combination of the (explicit) Lax-Wendroff scheme and the implicit Lax-Wendroff scheme
leads to the theta Lax-Wendroff scheme:

36 Robust implicit theta schemes

Method 5.9 (Theta Lax-Wendroff scheme): The theta Lax-Wendroff scheme is a FVM
(Method 3.7) that is the following convex combination of the original Lax-Wendroff scheme
(Method 4.11) and the implicit Lax-Wendroff scheme (Method 5.8) (for p = 0 and D̃ = 0):

|Vni |cni − |Vn−1
i |cn−1

i

tn − tn−1
= −

∑

j∈Ji

(
(1 − θ)|Sn−1

ij |φn−1
ij + θ|Snij |ψnij

)
,

where θ ∈ [0, 1] is a constant, and

φn−1
ij = φ̂n−1

ij +

(

∆ξn−1
ij

‖xn−1
j − xn−1

i ‖2

−
un−1
ij · nn−1

ij (tn − tn−1)

2‖xn−1
j − xn−1

i ‖2

)

un−1
ij · nn−1

ij

(
cn−1
j − cn−1

i

)
,

ψnij = φ̂nij +

(

∆ξnij
‖xnj − xni ‖2

+
unij · nnij(tn − tn−1)

2‖xnj − xni ‖2

)

unij · nnij
(
cnj − cni

)
.

Here φ̂nij is the first order upwind flux:

φ̂nij = max{unij · nnij , 0}cni + min{unij · nnij , 0}cnj ,

and ∆ξnij is as in Method 4.11. y

Unfortunately, the theta Lax-Wendroff scheme is unstable for θ > 1
2 , as becomes clear from the

following proposition.

Proposition 5.10: Consider the theta Lax-Wendroff scheme (Method 5.9) for the one-dimensional
advection equation with constant velocity u > 0, constant cell width ∆x > 0, and constant time
step ∆t > 0:

∆x
cni − cn−1

i

∆t
+ θ

(

u
cni+1 − cni−1

2
+
u2∆t

2

cni−1 − 2cni + cni+1

∆x

)

+(1 − θ)

(

u
cn−1
i+1 − cn−1

i−1

2
− u2∆t

2

cn−1
i−1 − 2cn−1

i + cn−1
i+1

∆x

)

= 0. (5.8)

If θ ∈ (1
2 , 1], then this scheme is unstable for all ν := u∆t

∆x ∈ (0, 1).

Proof. Rewrite the scheme to obtain:

θ

(

−1

2
ν +

1

2
ν2

)

cni−1 +
(
1 − θν2

)
cni + θ

(
1

2
ν +

1

2
ν2

)

cni+1 =

(1 − θ)

(
1

2
ν +

1

2
ν2

)

cn−1
i−1 +

(
1 − (1 − θ)ν2

)
cn−1
i + (1 − θ)

(

−1

2
ν +

1

2
ν2

)

cn−1
i+1 .

Substitution of cni = γnξ e
ijξ, in which j is the imaginary unit, yields:

(

θ

(

−1

2
ν +

1

2
ν2

)

e−jξ +
(
1 − θν2

)
+ θ

(
1

2
ν +

1

2
ν2

)

ejξ
)

γnξ e
ijξ =

(

(1 − θ)

(
1

2
ν +

1

2
ν2

)

e−jξ +
(
1 − (1 − θ)ν2

)
+ (1 − θ)

(

−1

2
ν +

1

2
ν2

)

ejξ
)

γn−1
ξ eijξ.

Define the amplification factor g as:

g(ξ, ν, θ) :=
γnξ

γn−1
ξ

=
(1 − θ)

(
1
2ν + 1

2ν
2
)
e−jξ +

(
1 − (1 − θ)ν2

)
+ (1 − θ)

(
− 1

2ν + 1
2ν

2
)
ejξ

θ
(
− 1

2ν + 1
2ν

2
)
e−jξ + (1 − θν2) + θ

(
1
2ν + 1

2ν
2
)
ejξ

.

5.2 Theta FCT scheme 37

Substitution of ejξ = cos(ξ) + j sin(ξ) yields:

g(ξ, ν, θ) =
1 − (1 − θ)ν2 + (1 − θ)ν2 cos(ξ) − j(1 − θ)ν sin(ξ)

1 − θν2 + θν2 cos(ξ) + jθν sin(ξ)
.

The Von Neumann condition reads:

∀ξ ∈ R : |g(ξ, ν, θ)| ≤ 1.

This is a necessary and sufficient condition for absolute stability (see [Wes01, p. 175]). Rewriting
gives that

∣
∣
∣
∣
g

(
1

2
π, ν, θ

)∣
∣
∣
∣

2

=
1 + ν4 − ν2 + (ν4 + ν2)θ2 − 2ν4θ

1 + (ν4 + ν2)θ2 − 2ν2θ
= 1 +

(ν4 − ν2)(1 − 2θ)

(1 − ν2θ)2 + ν2θ2
> 1

for all θ ∈ (1
2 , 1] and ν ∈ (0, 1). Indeed, the Von Neumann condition is not satisfied. Illustrations

of |g(ξ, 0.5, θ)| and |g(ξ, 0.9, θ)| can be found in Figure 5.5. The red area contains all values that
are larger than 1. �

Figure 5.5: Illustration of |g(ξ, 0.5, θ)| (left) and |g(ξ, 0.9, θ)| (right)

Although the theta Lax-Wendroff scheme is unstable for θ ∈ (1
2 , 1], it can still be used in the ap-

proximate FCT scheme. The reason is that the limiter, which does not allow new local extremes,
will render the scheme stable in any case. However, the unstability may blow up the error that
is introduced as a result of the fact that the flux corrections at the new time are approximated.
This may lead to a severe limiter, i.e. a limiter with a value close to zero.

Figure 5.6 illustrates the effect of using the theta Lax-Wendroff scheme to correct the numerical
diffusion of the theta upwind scheme. Indeed, the numerical diffusion has reduced a little, but not
as much as in the explicit case. The main reason is that, as θ becomes larger, the theta upwind
scheme needs more flux correction, as it suffers more from numerical diffusion (see Proposition 5.2
and Figure 5.2), whereas the flux correction becomes less accurate, because the flux corrections
at the new time are approximations. Altogether, the theta Lax-Wendroff scheme does not lead to
satisfactory accuracy if it serves as flux corrector in the approximated theta upind FCT scheme.

38 Robust implicit theta schemes

0 2 4 6 8 10

0

0.5

1

1.5
u=1, I=120, T=10

x

c
(c

on
ce

nt
ra

tio
n)

exact solution
Theta FCT (θ=0, N=1101)
Theta FCT (θ=0.89, N=111)
Theta FCT (θ=1, N=111)

(a) 1 period

0 2 4 6 8 10

0

0.5

1

1.5
u=1, I=120, T=50

x

c
(c

on
ce

nt
ra

tio
n)

exact solution
Theta FCT (θ=0, N=5501)
Theta FCT (θ=0.89, N=551)
Theta FCT (θ=1, N=551)

(b) 5 periods

Figure 5.6: Approximate theta upwind FCT scheme (Method 5.4) with theta Lax-Wendroff flux
correction (Method 5.9) for Test case 4.5

5.3 Summary

The theta upwind scheme is robust, but inaccurate due to numerical diffusion, which grows with
θ. The robustness results from the fact that the scheme is stable, positivity preserving and non-
oscillatory, provided that θ is sufficiently large. Scheme 16 of WAQ is the theta upwind scheme for
θ = 1. As in the explicit case, it is possible to attempt to improve the accuracy by applying the
flux corrected transport algorithm. For this purpose, the explicit FCT scheme has been generalised
to the theta FCT scheme. Implicit nonlinear systems can be avoided by approximating the flux
corrections at the new time by means of the first order solution estimation. Because Lax-Wendroff
fluxes are not suitable as flux correctors if θ is not close to zero, and central fluxes are unsuitable
if θ is not close to 1

2 , the theta Lax-Wendroff scheme has been considered. Unfortunately, the
approximated theta FCT scheme did not lead to satisfactory accuracy with theta Lax-Wendroff
flux correction. The main reason is that, as θ becomes larger, the theta upwind scheme needs more
flux correction, as it suffers more from numerical diffusion, whereas the flux correction becomes
less accurate, because the flux corrections at the new time are approximations.

Chapter 6

Local-theta scheme

Chapter 5 described the robust theta upwind scheme, which is inaccurate due to numerical diffu-
sion. This is strongly related to the time-discretisation, since the numerical diffusion grows with θ
(see Proposition 5.2 and Figure 5.2). For this reason, this chapter investigates whether a minimal
local value for theta will lead to better accuracy, without loss of robustness.

6.1 Local-theta scheme

Below, the theta scheme is generalised to the local-theta scheme.

Method 6.1 (Local-theta (upwind) scheme): The local-theta scheme is a FVM (Method 3.7)
of the following form:

|Vni |cni − |Vn−1
i |cn−1

i

tn − tn−1
= −

∑

j∈Ji

((
1 − θnij

)
|Sn−1
ij |φn−1

ij + θnij |Snij |φnij
)

.

Here, φij is a numerical flux function, and θnij ∈ [0, 1] is still free to be chosen such that the scheme
has nice properties (see below). If φij is as in (4.1), the local-theta upwind scheme is obtained. y

On the one hand, the local theta coeffients θnij should be as small as possible, to minimize the
amount of numerical diffusion. On the other hand they need to be large enough to ensure that
the scheme is stable, positivity preserving, and non-oscillatory. Sufficient conditions for these
properties are constructed below, by deriving a local and a global discrete maximum principle
with the help of the following lemma.

Lemma 6.2: Let γj and cj (j=1,...,J) be reals satisfying

J∑

j=1

γjcj = 0,

J∑

j=1

γj = 0, γ2, ...γJ < 0, J ≥ 2.

Then, either

c1 = c2 = ... = cJ

or

min
j=2,...,J

cj < c1 < max
j=2,...,J

cj .

40 Local-theta scheme

Proof. (See also [Wes01, Lemma 4.4.1]) First of all, note that γ1 = −∑J
j=2 γj > 0. Hence,

∑J
j=1 γjcj = 0 can be rewritten to obtain:

c1 =

J∑

j=2

−γj
γ1
︸︷︷︸

>0

cj .

Using
∑J
j=1 γj = 0 once more, it follows that

J∑

j=2

−γj
γ1

=
γ1

γ1
= 1.

Apparently, c1 is a convex combination of c2, .., cJ . As a result,

cmin := min
j=2,...,J

cj ≤ c1 ≤ max
j=2,...,J

cj =: cmax.

Now, there are two options.

1. If cmin = cmax, then, c1 = c2 = ... = cJ .

2. If cmin < cmax, then there exist jmin, jmax ≥ 2 such that

cjmin
= cmin < cmax = cjmax

.

As a result,

c1 =

J∑

j=2

−γj
γ1

cj ≤
J∑

j=2,j 6=jmin

−γj
γ1

cmax +
−γjmin

γ1
cmin <

J∑

j=2

−γj
γ1

cmax = cmax

Similarly, it can be shown that c1 > cmin. �

Theorem 6.3: Consider the local-theta scheme (Method (6.1)) for flux functions of the form:

−|Sij |φij = −γjici + γijcj , γij ≥ 0.

Let θij ∈ [0, 1] be symmetrical:

θij = θji. (6.1)

Moreover, let the system be consistent in the sense that

|Vni | − |Vn−1
i |

tn − tn−1
−
∑

j∈Ji

((
1 − θnij

) (
−γn−1

ji + γn−1
ij

)
+ θnij

(
−γnji + γnij

))

= 0. (6.2)

Moreover, assume that the following generalistaion of the CFL-condition holds:

|Vn−1
i | −

∑

j∈Ji

(tn − tn−1)(1 − θnij)γ
n−1
ji ≥ 0. (6.3)

If, furthermore, for all i = 1, ..., I, either (1 − θnij)γ
n−1
ij > 0 for some j ∈ Ji, or (6.3) is satisfied

strictly1, then, the scheme

I. is mass-conservative,

II. satisfies the local discrete maximum principle (see Definition 3.20),

1This condition is not necesary and can be neglected in practice.

6.1 Local-theta scheme 41

III. admits the global discrete maximum principle (see Definition 3.21).

Proof.

I. First of all, observe that the scheme reads:

|Vni |cni − |Vn−1
i |cn−1

i

tn − tn−1
= −

∑

j∈Ji

(

(1 − θnij)|Sn−1
ij |φn−1

ij + θnij |Snij |φnij
)

︸ ︷︷ ︸

=:ψn
ij

. (6.4)

Furthermore, note that the flux function φij is anti-symmetric (φij = −φji):

− |Sij |φij = −γjici + γijcj = |Sji|φji = |Sij |φji. (6.5)

Hence, ψij is also anti symmetric:

ψnji = (1 − θnji)|Sn−1
ji |φn−1

ji +θnji|Snji|φnji
(6.1)
= (1 − θnij)|Sn−1

ji |φn−1
ji +θnij |Snji|φnji

(6.5)
= −(1 − θnij)|Sn−1

ij |φn−1
ij −θnij |Snij |φnij = −ψnij .

(6.6)

As a result, in the absence of an open boundary (∂D1 = ∅),

I∑

i=1

|Vni |cni − |Vn−1
i |cn−1

i

tn − tn−1

(6.4)
= −

I∑

i=1

∑

j∈Ji

ψnij
(6.6)
= 0,

where it has been used that each ψnij is canceled by ψnji, since j ∈ Ji ⇔ i ∈ Jj . As a
consequence, the scheme is mass conservative.

II. Note that the scheme can be written in the form:

aniic
n
i +

∑

j∈An
i

anijc
n
j =

∑

j∈Bn
i

bnijc
n−1
j , i = 1, .., I,

where

anii = |Vni | + (tn − tn−1)
∑

j∈Ji

θnijγ
n
ji,

anij = −(tn − tn−1)θ
n
ijγ

n
ij ,

bnii = |Vn−1
i | − (tn − tn−1)

∑

j∈Ji

(1 − θnij)γ
n−1
ji ,

bnij = (tn − tn−1)(1 − θnij)γ
n−1
ij ,

and

An
i = {j ∈ Ji : aij 6= 0},

Bni = {j ∈ Ji ∪ {i} : bij 6= 0}.

Observe that

1. anii > 0 and anij < 0 (j ∈ An
i), since γnij ≥ 0 (and θnij ≥ 0) for all i and j,

2. bnij > 0 (j ∈ Bni), because of (6.3) and γn−1
ij ≥ 0 (and 1 − θn−1

ij ≥ 0) for all i and j,

3. the sum of the coefficients is zero in the sense that

anii +
∑

j∈An
i

anij +
∑

j∈Bn
i

−bnij = 0,

as a result of consistency (6.2).

42 Local-theta scheme

Now, the local discrete maximum principle follows immediately from Lemma 6.2 for γ1 =
aii > 0 and c1 = cni .

III. To obtain the global maximum principle, observe that, by definition, the claim is true for
n = 0. Now suppose that the claim is true, i.e. a path with non-decreasing values exists
for each concentration (see Definition 3.21), up to time tn−1. Next, consider cni for some
i ∈ {1, ..., I}. Now, the local maximum principle leads to one of the following options:

1. (3.7) holds. Because either (6.3) is satisfied strictly, or (1− θnij)γ
n−1
ij > 0 for some j ∈ Ji,

Bni is nonempty. Hence, cni = cn−1
j for some j ∈ Bni . As a path with non-decreasing values

exists for cn−1
j , the same path can be used for cni and the claim is true.

2. (3.8) holds. Again there are two options

i. cni < cn−1
j for some j ∈ Bni . As a path with non-decreasing values exists for cn−1

j , the
same path can be used for cni and the claim is true.

ii. cni < cnj for some j ∈ An
i . Once more, there are two options.

a. j ∈ {I + 1, ..., I + K} indicates a boundary element. This implies that an non-
decreasing path to the boundary has been found, in only one step.

b. j ∈ {1, ..., I} indicates an interior element. In this case, the argument can be
repeated without visiting this index again, because cni < cnj is a strict inequality.

As a consequence a path with increasing values can be found for all i = 1, ..., I +K and all
n = 0, ..., N . Similarly, a path with non-increasing values can be found. �

A direct consequence of the local and the global discrete maximum principle is that the scheme
is absolutely stable with respect to ‖.‖∞, positivity preserving, and non-oscillatory (see Section
3.4.2).

For the local-theta scheme, (6.2) and (6.3) become

|Vni | − |Vn−1
i |

tn − tn−1
= −

∑

j∈Ji

(

(1 − θnij)|Sn−1
ij |un−1

ij · nn−1
ij + θnij |Snij |unij · nnij

)

, (6.7)

and

|Vn−1
i | − (tn − tn−1)

∑

j∈Ji

(1 − θnij)|Sn−1
ij |

(

max{0,un−1
ij · nn−1

ij } +
d
n−1

ij

‖xn−1
j − xn−1

i ‖2

)

≥ 0. (6.8)

The consistency condition (6.7) is always satisfied in WAQ. Therefore, this condition does not have
to be taken into account during the implementation. A practical strategy for obtaining (nearly)
optimal values of θnij reads as follows.

Example 6.4: Consider the local-theta upwind scheme (Method 6.1). Assume that (6.7) is
satisfied. Theorem 6.3 (practically) holds if the coefficients θnij are chosen as follows:

1. Define the following auxiliary coefficient for each grid cell:

θni = 1 − |V n−1
i |

(tn − tn−1)
∑

j∈Ji
|Sn−1
ij |

(

max{0,un−1
ij · nn−1

ij } +
d

n−1

ij

‖xn−1

j
−x

n−1

i
‖2

) , i = 1, ..., I.

Note that (6.8) is satisfied for grid cell i, if θnij = max{0, θni } for all j ∈ Ji.

2. Now choose

θnij = max
{
0, θni , θ

n
j

}
.

Note that this ensures that both (6.8) and the symmetry condition (6.1) are satisfied. y

6.2 Flux corrected transport 43

Remark 6.5: In the example above, θni ‘blames’ each face of cell i equally if (6.8). Alternatively,
only the face with the largest incoming flux could be blamed, by using a relatively large nonzero
local theta coefficient for that face only. After that, the coefficients need to be updated to ensure
symmetry. Another strategy is to use weighted coefficients in accordance with the size of the
incoming flux. y

Remark 6.6: In order to ensure that, for all i = 1, ..., I, either (1− θnij)γn−1
ij > 0 for some j ∈ Ji,

or (6.8) is satisfied strictly, whenever necesary, the auxiliary coefficients θni could be raised a little
in order to satisfy (6.8) strictly. However, this option has not been implemented in WAQ. First
of all, because the condition is not a necesary (yet sufficient) condition to prove the results of
Theorem (6.3). Moreover, the modification is only necesary in highly exceptional cases to satisfy
the condition. In addition, the absence of this modification did not lead to unstable, negative, or
oscillatory results during the testcases. y

Figure 6.1 displays the performance of the local-theta upwind scheme for Test case 4.5. For this
test case, the local-theta upwind scheme reads:

∆xic
n
i − ∆xic

n−1
i

∆t
= −(1 − θni,i+1)uc

n−1
i + (1 − θni,i−1)uc

n−1
i−1 − θni,i+1uc

n
i + θni,i−1uc

n
i−1, (6.9)

where ∆t = tn − tn−1 is the constant time step and ∆xi = |Vn−1
i | = |Vni | is the cell width. The

scheme will be stable, positivity preserving and non-oscillatory if

θni+1,i = θni,i+1 = 1 − ∆xi
u∆t

, i = 1, ..., I, (6.10)

which follows from simplifying (6.8) and Example 6.4.

Figure 6.1 illustrates that, without loss of robustness, the local-theta upwind scheme suffers less
from numerical diffusion than the theta upwind scheme.

0 2 4 6 8 10

0

0.5

1

1.5
u=1, I=120, T=10

x

c
(c

on
ce

nt
ra

tio
n)

Exact solution
Theta upwind (θ=0, N=1101)
Theta upwind (θ=1, N=111)
Local theta upwind (N=111)

(a) 1 period

0 2 4 6 8 10

0

0.5

1

1.5
u=1, I=120, T=50

x

c
(c

on
ce

nt
ra

tio
n)

Exact solution
Theta upwind (θ=0, N=5501)
Theta upwind (θ=1, N=551)
Local theta upwind (N=551)

(b) 5 periods

Figure 6.1: Local-theta upwind scheme ((6.9) and (6.10)) compared to the theta upwind scheme
(5.1) for Test case 4.5

6.2 Flux corrected transport

In the previous section, the numerical diffusion of the theta upwind scheme was reduced by switch-
ing from a global theta to a local value. Once more, it is possible to use the flux corrected transport

44 Local-theta scheme

algorithm to reduce the numerical diffusion even more. The strategy is quite similar to the meth-
ods described in Section 5.2. As a matter of fact, the local-theta FCT scheme simply results from
replacing θ by θnij in the theta FCT scheme (Method 5.3).

Method 6.7 (Local-theta (upwind) FCT scheme): The local-theta FCT scheme is a FVM
(Method 3.7) of the following form (for p = 0):

|Vni |cni − |Vn−1
i |cn−1

i

tn − tn−1
= −

∑

j∈Ji

|Snij |
(

(1 − θnij)
(

φ̂n−1
ij + ln,n−1

ij

(
φ̃n−1
ij − φ̂n−1

ij

))

+θnij

(

φ̂nij + ln,nij
(
φ̃nij − φ̂nij

))
)

(6.11)

Again, φ̂ij is a non-oscillatory first order numerical flux function of the form (3.5), and φ̃ij is a

higher order one. The difference φ̃ij− φ̂ij can be interpreted as a correction term, which is limited

by lij . If φ̂ij is as in (4.1), the local-theta upwind FCT scheme is obtained. y

Again, the problem of the nonlinear limiter comes up, which calls for the solution of a nonlinear
system in the implicit case. This problem can be tackled very similar to Method 5.4.

Method 6.8 ((Approximate) local-theta (upwind) FCT scheme à la Boris & Book):
This method consists of the following steps, which involve linear systems only (see Method 6.7 for
notational aspects):

1. Suppose that cn−1
i is known from the previous time step. Compute a first order approxi-

mation ĉ
n

i by means of (6.11) with ln,n−1
ij = ln,nij = 0, which is equivalent to applying the

local-theta scheme (Method 6.1) with the first order flux function φ̂ij :

|Vni |ĉ
n

i − |Vn−1
i |cn−1

i

tn − tn−1
= −

∑

j∈Ji

|Snij |
(

(1 − θnij)φ̂
n−1
ij + θnij φ̂

n
ij

)

.

2. Define the total flux correction ∆φnij as follows:

∆φnij = (1 − θnij)
(

φ̃n−1
ij − φ̂n−1

ij

)

+ θnij

(

φ̃nij − φ̂nij

)

= (1 − θnij)
(

φ̃ij(c
n−1
i , cn−1

j) − φ̂ij(c
n−1
i , cn−1

j)
)

+ θnij

(

φ̃ij(c
n
i , c

n
j) − φ̂ij(c

n
i , c

n
j)
)

.

Since cni is unknown, approximate ∆φnij with the help of the first order approximation ĉ
n

i :

∆φnij ≈ (1 − θnij)
(

φ̃ij(c
n−1
i , cn−1

j) − φ̂ij(c
n−1
i , cn−1

j)
)

+ θnij

(

φ̃ij(ĉ
n

i , ĉ
n

j) − φ̂ij(ĉ
n

i , ĉ
n

j)
)

.

3. Apply steps 2-6 of Method 4.8 to obtain the limiter à la Boris & Book ln,n−1
ij = ln,nij = lnij .

4. Compute the solution estimation at time tn by approximating (6.11) as follows:

|Vni |cni − |Vni |ĉ
n

i

tn − tn−1
= −

∑

j∈Ji

|Snij |lnij∆φnij . (6.12)

y

Now that the approximate local-theta FCT scheme has been formulated, several flux correction
strategies can be tested. First of all, central flux correction is considered.

Method 6.9: This method is the local-theta upwind FCT scheme (Method 6.8) with central flux
correction (4.3). y

6.2 Flux corrected transport 45

0 2 4 6 8 10

0

0.5

1

1.5
u=1, I=120, T=10

x

c
(c

on
ce

nt
ra

tio
n)

exact solution
Local theta upwind FCT (N=111)
Local theta upwind FCT (N=111)
Explicit upwind FCT (N=1101)

(a) small ‘implicit’ domain, 1 period

0 2 4 6 8 10

0

0.5

1

1.5
u=1, I=120, T=50

x

c
(c

on
ce

nt
ra

tio
n)

exact solution
Local theta upwind FCT (N=551)
Local theta upwind FCT (N=551)
Explicit upwind FCT (N=5501)

(b) small ‘implicit’ domain, 5 periods

0 2 4 6 8 10

0

0.5

1

1.5
u=1, I=160, T=10

x

c
(c

on
ce

nt
ra

tio
n)

exact solution
Local theta upwind FCT (N=111)
Local theta upwind FCT (N=111)
Explicit upwind FCT (N=1101)

(c) large ‘implicit’ domain, 1 period

0 2 4 6 8 10

0

0.5

1

1.5
u=1, I=160, T=50

x

c
(c

on
ce

nt
ra

tio
n)

exact solution
Local theta upwind FCT (N=551)
Local theta upwind FCT (N=551)
Explicit upwind FCT (N=5501)

(d) large ‘implicit’ domain, 5 periods

Figure 6.2: Local-theta upwind FCT scheme (Method 6.9 (red) and Method 6.10 (green)) com-
pared to the local-theta upwind scheme ((6.9) and the explicit upwind FCT scheme (Method 4.8)
with Lax-Wendroff flux correction (Method 4.11) for Test case 4.5

Method 6.9 (Figure 6.2, red) shows hardly any numerical diffusion. As a matter of fact, the
numerical diffusion has been replaced by anti-diffusion. A similar result was obtained earlier in
the explicit case (Figure 4.2). Proposition 5.6 reveals the amount of unphysical anti-diffusion that
is introduced in the (larger) grid cells for which θnij ∈ [0, 1

2). The same proposition shows that
this anti-diffusion can be eliminated by raising the local theta coefficients to a minimal value of
1
2 , which leads the following method.

Method 6.10: This method is the local-theta upwind FCT scheme (Method 6.8) with central
flux correction (4.3), where all θnij has been chosen such that θnij ≥ 1

2 . y

A negative side-effect of Method 6.10 (Figure 6.2, green) is that an extra amount of numerical
diffusion is introduced by the local-theta upwind scheme (see also Proposition 5.2). In other words:
Method 6.10 replaces the anti-diffusion error of Method 6.9 with a diffusion error.

Alternatively, as in the explicit case, the anti-diffusion error can be avoided by switching from
central flux correction to Lax-Wendroff correction, because the latter has zero numerical diffusion
(see Proposition 5.7 for θ = 0).

Method 6.11: This method is the local-theta upwind FCT scheme (Method 6.8) with Lax-
Wendroff flux correction (Method 4.11) for explicit faces (θnij = 0) and no flux correction for

46 Local-theta scheme

0 2 4 6 8 10

0

0.5

1

1.5
u=1, I=120, T=10

x

c
(c

on
ce

nt
ra

tio
n)

exact solution
Local theta upwind FCT (N=111)
Explicit upwind FCT (N=1101)

(a) small ‘implicit’ domain, 1 period

0 2 4 6 8 10

0

0.5

1

1.5
u=1, I=120, T=50

x

c
(c

on
ce

nt
ra

tio
n)

exact solution
Local theta upwind FCT (N=551)
Explicit upwind FCT (N=5501)

(b) small ‘implicit’ domain, 5 periods

0 2 4 6 8 10

0

0.5

1

1.5
u=1, I=160, T=10

x

c
(c

on
ce

nt
ra

tio
n)

exact solution
Local theta upwind FCT (N=111)
Explicit upwind FCT (N=1101)

(c) large ‘implicit’ domain, 1 period

0 2 4 6 8 10

0

0.5

1

1.5
u=1, I=160, T=50

x

c
(c

on
ce

nt
ra

tio
n)

exact solution
Local theta upwind FCT (N=551)
Explicit upwind FCT (N=5501)

(d) large ‘implicit’ domain, 5 periods

Figure 6.3: Local-theta upwind FCT scheme (Method 6.11) compared to the local-theta upwind
scheme ((6.9) and the explicit upwind FCT scheme (Method 4.8) with Lax-Wendroff flux correction
(Method 4.11) for Test case 4.5

implicit faces (θnij > 0). y

Figures 6.3(a) and 6.3(b) illustrate that, as long as the implicit part of the spatial domain is large,
the accuracy of Method 6.11 (red) is comparable to the accuracy of the explicit FCT scheme (blue).
Because flux correction is only applied in the explicit part of the spatial domain, the amount of
numerical diffusion increases as the implicit domain becomes larger (Figures 6.3(c) and 6.3(d)).

By combining the advantages of Methods 6.9 and 6.11, the following method is obtained.

Method 6.12: This method is the local-theta upwind FCT scheme (Method 6.8) with Lax-
Wendroff flux correction (Method 4.11) for explicit faces (θnij = 0) and central flux correction (4.3)
for implicit faces (θnij > 0). y

Similar to Method 6.9, Method 6.12 (Figure 6.4, red) introduces unphysical anti-diffusion, but
only for the implicit grid cells for which θnij ∈ (0, 1

2). As a consequence, Method 6.12 shows less
anti-diffusion than Method 6.9 (compare e.g. Figures 6.2(a) and 6.4(a)). Moreover, this explains
why a larger implicit domain can lead to more anti-diffusion (compare e.g. Figures 6.4(a) and
6.4(c)). Again, it is possible to eliminate the anti-diffusion, by raising the local theta coefficients
to a minimal value of 1

2 , which leads to the following method.

Method 6.13: This method is the local-theta upwind FCT scheme (Method 6.8) with Lax-

6.3 Molenkamp problem 47

0 2 4 6 8 10

0

0.5

1

1.5
u=1, I=120, T=10

x

c
(c

on
ce

nt
ra

tio
n)

exact solution
Local theta upwind FCT (N=111)
Local theta upwind FCT (N=111)
Explicit upwind FCT (N=1101)

(a) small ‘implicit’ domain, 1 period

0 2 4 6 8 10

0

0.5

1

1.5
u=1, I=120, T=50

x

c
(c

on
ce

nt
ra

tio
n)

exact solution
Local theta upwind FCT (N=551)
Local theta upwind FCT (N=551)
Explicit upwind FCT (N=5501)

(b) small ‘implicit’ domain, 5 periods

0 2 4 6 8 10

0

0.5

1

1.5
u=1, I=160, T=10

x

c
(c

on
ce

nt
ra

tio
n)

exact solution
Local theta upwind FCT (N=111)
Local theta upwind FCT (N=111)
Explicit upwind FCT (N=1101)

(c) large ‘implicit’ domain, 1 period

0 2 4 6 8 10

0

0.5

1

1.5
u=1, I=160, T=50

x

c
(c

on
ce

nt
ra

tio
n)

exact solution
Local theta upwind FCT (N=551)
Local theta upwind FCT (N=551)
Explicit upwind FCT (N=5501)

(d) large ‘implicit’ domain, 5 periods

Figure 6.4: Local-theta upwind FCT scheme (Method 6.12 (red) and Method 6.13 (green)) com-
pared to the local-theta upwind scheme ((6.9) and the explicit upwind FCT scheme (Method 4.8)
with Lax-Wendroff flux correction (Method 4.11) for Test case 4.5

Wendroff flux correction (Method 4.11) for explicit faces (θnij = 0) and central flux correction (4.3)
flux correction for implicit faces (θnij > 0), where θnij has been chosen such that either θnij = 0 of

θnij ≥ 1
2 . y

Similar to Method 6.10, Method 6.13 (Figure 6.4, green) introduces an extra amount of numerical
diffusion of the theta upwind scheme. Because this strategy is not applied in the explicit domain,
this extra diffusion error is small in comparison with Method 6.10. Finally, note that, for this
test case, the accuracy of Method 6.13 is higher than the accuracy of Method 6.11 (compare for
example Figures 6.3(d) and 6.4(d)).

6.3 Molenkamp problem

Now, the local-theta FCT scheme will be tested for the Molenkamp problem. This testcase is the
two-dimensional advection equation (Model 2.1 for d = 0, p = 0, and m = 2) with a constant
angular velocity, which has been chosen such that the exact solution is periodic with a period of 4
hours. An illustration of the initial condition, the grid, and the local θ coefficients (for ∆t = 60 s)
can be found in Figure 6.5.

48 Local-theta scheme

(a) grid

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Local θ coefficients (∆t =
60 s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) initial condition

Figure 6.5: Molenkamp problem

Figures 6.6 and 6.7 display the performance of several schemes for the Molenkamp test. As in
the one-dimensional case (Figure 6.1), the local-theta scheme (Figure 6.6(c)) shows less numerical
diffusion than scheme 16 of WAQ (Figure 6.6(b)), which is the theta upwind scheme with θ = 1.
Nevertheless, flux correction appears to be essential.

At the center of the spatial domain, the local-theta FCT schemes (Figures 6.7(a), 6.7(b), and
6.7(c)) all perform better than scheme 12 of WAQ (Figure 6.6(a)), which is an explicit FCT
scheme. This can be explained as follows. In the explicit cells, the four schemes coincide, except
that scheme 12 uses a smaller time step. As a consequence, scheme 12 needs to correct more
numerical diffsusion to obtain the same accuracy (see also Proposition 5.2 for θ = 0).

Near the boundary, where the number of explicit cells is small (see Figure 6.5(b)), the differences
of the schemes become visible. Method 6.11 (Figure 6.7(a)) shows more numerical diffusion than
scheme 12 near the boundary, which makes sense, as Method 6.11 only applies flux correction
in the explicit part of the domain. Method 6.12 (Figure 6.7(b)) shows hardly any numerical
diffusion. However, as mentioned before, it may introduce unphysical anti-diffusion, which can
not be observed in this test case, because of the nature of the initial condition. Moreover, this
method shows a dispersive error which appears to grow with θ. This error could be investigated
theoretically by deriving a more accurate version of the modified equation that is considered in
proposition 5.6. As observed before, Method 6.13 (Figure 6.7(c)) guarantees the absence of an
anti-diffusion error, at the cost of extra numerical diffusion. Similar to Method 6.12, this method
shows a dispersive error, which has been smeared out as a result of the extra numerical diffusion.
Nonetheless, Method 6.13 is more accurate that Method 6.11 in the implicit area.

6.4 Revisiting Hong Kong

Now, it is time to revisit the Hong Kong model that illustrated the problem in the introduction
of this thesis (Figure 1.2). Figures 6.8 and 6.9 show the performance of Methods 6.12 and 6.13
for this problem, compared to schemes 12 and 16 of WAQ. First of all, note the difference in
computational time between scheme 12 (176 minutes) and the local-theta upwind schemes (14
minutes). Figure 6.10 illustrates that the local theta coefficients vary strongly in space and time
during the simulation. Even though the implicit part of the spatial domain appears to be large, the
accuracy of the local theta FCT schemes is comparable to the accuracy of scheme 12. Furthermore,
note that the difference between Methods 6.12 and 6.13 is hardly visible.

6.4 Revisiting Hong Kong 49

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Scheme 12 of WAQ (see Appendix A) (∆t = 6 s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Scheme 16 of WAQ (see Appendix A) (∆t = 60 s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Local-theta upwind scheme (Method 6.1) (∆t = 60 s)

Figure 6.6: Molenkamp problem after one (left) and four (right) rotations

50 Local-theta scheme

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Local-theta upwind FCT scheme (Method 6.11) (∆t = 60 s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Local-theta upwind FCT scheme (Method 6.12) (∆t = 60 s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Local-theta upwind FCT scheme (Method 6.13) (∆t = 60 s)

Figure 6.7: Molenkamp problem after one (left) and four (right) rotations

6.5 Final implementation in WAQ 51

6.5 Final implementation in WAQ

Several test cases have illustrated that the local-theta FCT schemes 6.12 and 6.13 are not only
robust, but also accurate. Therefore, these schemes have both been added to the current schemes
of WAQ.

What has not been put forward so far, is the fact that both schemes 12 and 16 use central
discretisation in the vertical direction (see also Appendix A), which may cause oscillatory or
negative results. For this reason, a Forrester filter has been implemented in WAQ, which is optional
(this option was used during the testcase). The Forrester filter renders the solution monotone
in the vertical direction, eliminating buth spurious and non-spurious oscillations. Moreover, in
the current implementation, positivity of the solution is not guaranteed, with and without the
Forrester filter. These two relevant drawbacks of schemes 12 and 16 do not apply for the local-theta
schemes. Alternative versions of schemes 12 and 16, that do not suffer from the aforementioned
disadvantages, are schemes 14 and 15, which use diffusive implicit upwind discretisation in the
vertical direction (see also Appendix A). The latter schemes have a much lower level of accuracy
than the local-theta FCT schemes.

6.6 Summary

The theta scheme can be generalised to the local-theta scheme, which uses an optimal local θ
rather than a constant value. The coefficients are called optimal, if they are as small as possible,
to minimise the amount of numerical diffusion, yet large enough to ensure that the scheme is stable,
positivity preserving and non-oscillatory. This way, the accuracy of the theta upwind scheme is
improved, without loss of robustness. Once more, the flux corrected transport algorithm can be
used to enhance the accuracy even more. If Lax-Wendroff flux correction is applied in the explicit
part of the spatial domain, i.e. the faces where the local-theta coefficients are zero, the scheme can
compete with the explicit FCT scheme as long as the explicit domain is sufficiently large. To obtain
good accuracy for larger time steps as well, central flux correction can be applied in the implicit
part of the domain in addition. During a Molenkamp test, this strategy led to a replacement of
the diffusion error with a dispersion error, that grew with θ. Another flaw of this approach is
that unphysical anti-diffusion may be introduced, which can be avoided by raising the local theta
coefficients to a minimum of 1

2 in the implicit part of the domain. A negative side effect of this
remedy is an increase of the numerical diffusion of the local-theta upwind scheme. However, the
overall accuracy is acceptable. Altogether, the local-theta FCT schemes 6.12 and 6.13 are both
accurate and robust and have both been implemented in the source code of Delft3D-WAQ.

52 Local-theta scheme

0

5

10

15

20

25

30

35

(a) Scheme 12 of WAQ (see Appendix A) (∆t =
1 min. , cpu time ≈ 176 min.)

0

5

10

15

20

25

30

35

(b) Scheme 16 of WAQ (see Appendix A) (∆t =
60 min. , cpu time ≈ 9 min.)

0

5

10

15

20

25

30

35

(c) Local-theta upwind FCT scheme (Method 6.12)
(∆t = 60min. , cpu time ≈ 14min.)

0

5

10

15

20

25

30

35

(d) Local-theta upwind FCT scheme (Method 6.13)
(∆t = 60 min. , cpu time ≈ 14 min.)

Figure 6.8: Simulation of salinity (after ± 1
2 year) at the bottom of an estuary near Hong Kong by

means of Delft3D-WAQ. The colors of the cicles indicate measured values.

6.6 Summary 53

0

5

10

15

20

25

30

35

(a) Scheme 12 of WAQ (see Appendix A) (∆t =
1 min. , cpu time ≈ 176 min.)

0

5

10

15

20

25

30

35

(b) Scheme 16 of WAQ (see Appendix A) (∆t =
60 min. , cpu time ≈ 9 min.)

0

5

10

15

20

25

30

35

(c) Local-theta upwind FCT scheme (Method 6.12)
(∆t = 60min. , cpu time ≈ 14min.)

0

5

10

15

20

25

30

35

(d) Local-theta upwind FCT scheme (Method 6.13)
(∆t = 60 min. , cpu time ≈ 14 min.)

Figure 6.9: Simulation of salinity (after ± 1
2 year) at the surface of an estuary near Hong Kong by

means of Delft3D-WAQ. The colors of the cicles indicate measured values.

54 Local-theta scheme

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Bottom layer, at the beginnnig

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Bottom layer, at the end (after 1

2
year)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Surface layer, at the beginning

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) Surface layer, at the end (after 1

2
year)

Figure 6.10: Local theta coefficients for the Hong model for ∆t = 60min.

Chapter 7

Summary & Recommendations

Water quality is determined by the concentrations of the substances it contains. These concen-
trations be affected by transport and water quality processes. The corresponding mathematical
model is the advection diffusion reaction equation, one for each substance that needs to be simu-
lated.

The solution of the water quality model can be approximated by means of the finite volume method
(FVM). The grid that is used by Delft3D-WAQ is usually three-dimensional, unstructured, and
strongly non-uniform. Water quality processes are treated in an explicit manner, in order to avoid
the necessity of solving a nonlinear system. The quality of a finite volume scheme is determined by
accuracy and robustness. In this respect, the local and the global discrete maximum principle are
favorable properties of a FVM because they imply stability, positivity and non-oscillatory behavior.

The explicit upwind scheme is neither robust nor accurate. The former is caused by the fact that
the time step is limited to ensure stability, positivity and non-oscillatory behavior. The inaccuracy
is a a result of numerical diffusion, which can be diminished by means of the flux corrected trans-
port (FCT) algorithm. Central flux correction leads to an anti-diffusion error. For this reason,
the Lax-Wendroff scheme is more suitable to serve as flux corrector, as its numerical diffusion is
equal to zero. Although the accuracy of the explicit FCT scheme is generally high, the robustness
of the explicit scheme remains unchanged, which can result in long computational times. Scheme
12 of WAQ is an explicit FCT scheme with Lax-Wendroff flux correction.

The theta upwind scheme is robust, but inaccurate due to numerical diffusion, which grows with
θ. The robustness results from the fact that the scheme is stable, positivity preserving and non-
oscillatory, provided that θ is sufficiently large. As in the explicit case, it is possible to attempt to
improve the accuracy by applying the flux corrected transport algorithm. For this purpose, the
explicit FCT scheme has been generalised to the theta FCT scheme. Implicit nonlinear systems
can be avoided by approximating the flux corrections at the new time by means of the first order
solution estimation. Because Lax-Wendroff fluxes are not suitable as flux correctors if θ is not close
to zero, and central fluxes are unsuitable if θ is not close to 1

2 , the theta Lax-Wendroff scheme has
been considered. Unfortunately, the approximated theta FCT scheme did not lead to satisfactory
accuracy with theta Lax-Wendroff flux correction. The main reason is that, as θ becomes larger,
the theta upwind scheme needs more flux correction, as it suffers more from numerical diffusion,
whereas the flux correction becomes less accurate, because the flux corrections at the new time
are approximations.

The theta scheme can be generalised to the local-theta scheme, which uses an optimal local θ
rather than a constant value. The coefficients are called optimal, if they are as small as possi-
ble, to minimise the amount of numerical diffusion, yet large enough to ensure that the scheme
is stable, positivity preserving and non-oscillatory. This way, the accuracy of the theta upwind

56 Summary & Recommendations

scheme is improved, without loss of robustness. Once more, the flux corrected transport algorithm
can be used to enhance the accuracy even more. If Lax-Wendroff flux correction is applied in the
explicit part of the spatial domain, i.e. the faces where the local-theta coefficients are zero, the
scheme can compete with the explicit FCT scheme as long as the explicit domain is sufficiently
large. To obtain good accuracy for larger time steps as well, central flux correction can be applied
in the implicit part of the domain in addition. During a Molenkamp test, this strategy led to a
replacement of the diffusion error with a dispersion error, that grew with θ. Another flaw of this
approach is that unphysical anti-diffusion may be introduced, which can be avoided by raising the
local theta coefficients to a minimum of 1

2 in the implicit part of the domain. A negative side effect
of this remedy is an increase of the numerical diffusion of the local-theta upwind scheme. How-
ever, the overall accuracy is acceptable. Altogether, the local-theta FCT schemes 6.12 and 6.13
are both accurate and robust and have both been implemented in the source code of Delft3D-WAQ.

To answer the question that was asked in the introduction of this thesis (Chapter 1):

It is possible to construct a finite volume scheme for the advection diffusion equation that is
both accurate and robust by constructing an optimal local blend of the accurate explicit FCT
scheme and the robust theta method.

7.1 Recommendations

Apart from flux correction, the accuracy of the local theta scheme can be improved in two ways.
Firstly, the first order upwind flux could be replaced by, for instance, the upwinded central flux
(4.4). Regardless of the time discretisation, this probably leads to a decrease in numerical diffusion.
Moreover, the local theta coefficients could altered. Two suggestions can be found in Remark 6.5.
The flux correction strategy can be improved in three ways. First of all, an alternative higher
order flux function could lead to better flux correction. Figure 6.7(b) calls for an investigation of
the dispersion error of the theta scheme with central discretisation. This could be executed by
deriving of a more accurate version of the modified equation. Furthermore, a different limiter, such
as a TVD limiter [KT, Sections 2 and 10], could lead to an improvement. Perhaps it is possible
to eliminate the anti-diffusion error of the central scheme by changing the limiter, rather than by
raising the local theta coefficients at the cost of extra numerical diffusion? Finally, an iterative
local-theta FCT scheme could be formulated similar to the iterative FEM-FCT scheme that was
proposed by Kuzmin et al. in [KMT, Sections 5 and 6]. This probably leads to higher accuracy,
although extra computational costs also need to be taken into account.

Part II

Solving the numerical model

Chapter 8

Solution methods for linear

systems

In the previous part, the finite volume method was discussed to solve the water quality model
(Model 2.1). Since it is often needed to predict water quality several years ahead, large time steps
are desirable. Therefore, implicit methods are preferable to explicit schemes, as the latter do not
allow arbitrary time steps without becoming unstable. Implicit methods require the solution of
many large sparse1 linear systems. To obtain these solutions, efficient solvers are discussed in this
chapter.

8.1 Direct methods

A direct method computes a theoretically exact solution using a finite number of operations. A
useful measure for the amount of work is the number of floating point operations (flops).

Example 8.1: Consider a full matrix A ∈ R
n×n and a vector x ∈ R

n. Then the matrix vector

product Ax needs 2n2 flops. y

8.1.1 Triangular matrices

Triangular systems are easily solved by means of backward or forward substitution.

Method 8.2 (Forward substitution): Let L ∈ R
n×n be a lower triangular matrix. Forward

substitution solves the linear system Lx = b by means of the following algorithm:

1. for i = 1, ..., n:
2. xi = bi
3. for j = 1, ..., i− 1:
4. xi = xi − lijxj
5. end
6. end

For a full matrix, the computational costs amount to n2 flops. In case the matrix has at most q
nonzero off-diagonal elements per row, approximately 2qn flops are needed. y

Method 8.3 (Backward substitution): Let U ∈ R
n×n be an upper triangular matrix. Back-

ward substitution solves the linear system U x = b by means of the following algorithm:

1. for i = n, ..., 1:
2. xi = bi

1A matrix is sparse if it contains ‘many’ zero elements

60 Solution methods for linear systems

3. for j = i+ 1, ..., n:
4. xi = xi − uijxj
5. end
6. xi = xi

uii

7. end

For a full matrix, the computational costs amount to n2 flops. In case the matrix has at most q
nonzero off-diagonal elements per row, approximately 2qn flops are needed. y

8.1.2 General square matrices

A general square system can be solved by means of Gaussian elimination. This method reduces a
linear system to two triangular systems, which can be solved by backward or forward substitution.
The triangular systems are obtained by constructing an LU factorisation of the matrix.

Definition 8.4 (LU factorisation): An LU factorisation of a matrix A consists of a unit lower
triangular matrix L and an upper triangular matrix U such that

A = L U . y

Method 8.5 (LU factorisation): The following algorithm generates an LU factorisation for a
matrix A ∈ R

n×n, provided that the pivots, ukk, are nonzero.

1. for i = 1, ..., n:
2. w = ai∗
3. for k = 1, ..., i− 1:
4. wk = wk

ukk

5. w = w − wkuk∗
6. end
7. lij = wj for j = 1, ..., i− 1
8. uij = wj for j = i, ..., n
9. end

ai∗ denotes row i of A . For a full matrix, the computational costs of the factorisation amount to
2
3n

3 flops. y

More detailed information about LU factorizations can be found in [GL96, Section 3.2].

Method 8.6 (Gaussian elimination): Gaussian elimination solves an n × n linear system
Ax = b in three steps:

1. Construct an LU factorisation of A . This can by done by means of Method 8.5.

2. Solve y from Ly = b by means of forward substitution (Method 8.2)

3. Solve x from U x = y by applying backward substitution (Method 8.3) y

A disadvantage of Gaussian elimination for sparse matrices is that L and U are generally less
sparse than A . This effect is called fill-in.

Definition 8.7 (Fill-in): The fill-in of a matrix consists of those entries which change from an
initial zero to a nonzero value during the execution of an algorithm. y

Theorem 8.8: Consider a matrix A with lower bandwidth ql and upper bandwidth qu. Let A =
L U be an LU factorisation. Then, L has lower bandwidth ql and U has upper bandwidth qu.
Moreover, if n≫ ql, qu, the costs of the LU factorisation are approximately 2nqlqu flops.

Proof. See [GL96, Theorem 4.3.1 and p. 153]. �

8.2 Iterative Methods 61

8.2 Iterative Methods

An alternative for Gaussian elimination is provided by iterative methods. These methods itera-
tively improve an initial solution estimation.

Method 8.9 (Iterative method: general form): Consider an n × n linear system Ax = b.
An iterative method consists of the following steps:

1. Choose an initial guess of the solution, x0 ∈ R
n.

2. Set k = 1. Choose an improved approximation of the solution, xk, and set k = k + 1, until
a certain termination criterion is met.

3. Approximate the solution of Ax = b according to x ≈ xk. y

Definition 8.10 (Convergent iterative method): Method 8.9 is convergent if

‖xk − x‖ → 0. y

Remark 8.11 (A good termination criterion): A good termination criterion has the following
properties:

1. It is scaling invariant. This means that the number of iterations for αAx = αb is indepen-
dent of α ∈ R.

2. The number of iterations should not be independent of the initial estimation x0; a better
initial guess should lead to a smaller number of iterations.

3. It provides an upper bound for the relative error
‖x−xk‖2

‖x‖2
.

An example of a good termination criterion, satisfying the properties above, is
‖b−Axk‖2

‖b‖2
≤ ǫ. y

8.2.1 Linear fixed point iteration

Linear fixed point iteration determines the estimates of the solution by means of a matrix splitting
of A .

Definition 8.12 (Matrix splitting): A matrix splitting of a matrix A consists of matrices M
and N such that

A = M − N . y

Method 8.13 (Linear fixed point iteration): Linear fixed point iteration follows from Method
8.9 by updating xk according to a matrix splitting A = M − N , with M nonsingular. The
following strategies are equivalent:

M xk = N xk−1 + b, (8.1)

xk = M −1N xk−1 + M −1b, (8.2)

xk = xk−1 + M −1(b − Axk−1). (8.3)

y

Example 8.14: Consider a matrix A. Define a diagonal matrix D , a strictly lower triangular
matrix L , and a strictly upper triangular matrix U , such that A = L + D + U . Moreover, let
ω ∈ R be a constant. The following matrix splittings A = M − N lead to well-known methods:

62 Solution methods for linear systems

M N Method

D −L − U Gauss-Jacobi (GJ)
D + L −U Gauss-Seidel (GS)
D + U −L Backward Gauss-Seidel
D + ω L (ω − 1)L − U Successive Over-Relaxation (SOR)

y

Theorem 8.15 (Convergence of linear fixed point iteration): Method 8.13 converges for any
starting vector x0, if

max{|λ| : λ eigenvalue of M −1N } < 1.

Proof. See [GL96, Theorem 10.1.1]. �

Method 8.16 (Multiple linear fixed point iteration): Method 8.13 can be applied twice to
obtain a new iterative scheme:

1. Use Method 8.13 with a matrix splitting A = M 1 − N 1 to obtain x∗
k:

M 1x
∗
k = N 1xk−1 + b;

2. Apply Method 8.13 once more using another matrix splitting A = M 2− N 2 to acquire xk:

M 2xk = N 2x
∗
k + b. y

Proposition 8.17: Method 8.16 is equivalent to Method 8.13 for the matrix splitting A = M −
(M − A), with

M = M 1

(
M 1 + N 2

)−1
M 2.

Proof. Since (8.1) and (8.3) are equivalent, Method 8.18 can be rewritten to obtain:

x∗
k := xk−1 + M −1

1

(
b − Axk−1

)

xk = x∗
k + M −1

2

(
b − Ax∗

k

)
.

Thus,

xk = xk−1 + M −1
1

(
b − Axk−1

)

+M −1
2

(

b − A
(
xk−1 + M −1

1 (b − Axk−1)
))

= xk−1 + M −1
1

(
b − Axk−1

)

+M −1
2

(
b − Axk−1 − A M −1

1 (b − Axk−1)
)

= xk−1 +
(
M −1

1 + M −1
2 (I − A M −1

1)
) (

b − Axk−1

)

= xk−1 +
(

M −1
1 + M −1

2

(
I − (M 2 − N 2)M

−1
1

)) (
b − Axk−1

)

= xk−1 +
(

I + M −1
2

(
M 1 − (M 2 − N 2)

))

M −1
1

(
b − Axk−1

)

= xk−1 + M −1
2 (M 1 + N 2)M

−1
1

(
b − Axk−1

)

= xk−1 +
(
M 1(M 1 + N 2)

−1M 2
︸ ︷︷ ︸

=:M

)−1 (
b − Axk−1

)
.

Applying the equivalence of (8.1) and (8.3) once more completes the proof. �

8.2 Iterative Methods 63

An example of Method 8.16 is Symmetric Gauss-Seidel.

Method 8.18 (Symmetric Gauss-Seidel): Symmetric Gauss-Seidel follows from method 8.16
by applying one step of Gauss-Seidel (M 1 = D + L , N 1 = −U), followed by one step of
Backward Gauss-Seidel (M 2 = D + U , N 2 = −L). y

8.2.2 Krylov methods

A large category of iterative schemes is formed by the Krylov methods. These are based on a
so-called Krylov space, which is defined below.

Definition 8.19 (Krylov space): Let A ∈ R
n×n and r ∈ R

n. A Krylov space is of the form:

Kk(A , r) = span
{
r, A r, ..., A k−1r

}
. y

The link between Krylov methods and linear fixed point iteration becomes clear from the following
proposition.

Proposition 8.20: Let xk result from linear fixed point iteration (Method 8.13):

xk = xk−1 + M −1 (b − Axk−1)
︸ ︷︷ ︸

rk−1

.

Then,

xk ∈ x0 + Kk(M −1A , M −1r0)
︸ ︷︷ ︸

=:Kk

, for all k ≥ 1.

Proof. First of all, note that the statement is true for k = 1:

x1 = x0 + M −1r0 ∈ x0 + K1.

Now, suppose that xk ∈ x0 + Kk (k ≥ 1). The residual rk can be expressed in r0, according to:

rk = b − Axk

= b − A (xk−1 + M −1rk−1)

= rk−1 − A M −1rk−1

= (I − A M −1)rk−1

= (I − A M −1)kr0.

Hence,

xk+1 = xk + M −1rk = xk
︸︷︷︸

∈x
0
+Kk

+ M −1(I − A M −1)kr0
︸ ︷︷ ︸

∈Kk+1

∈ x0 + Kk+1.
�

Method 8.21 (Krylov method): A Krylov method follows from Method 8.9 by choosing xk
such that:

1. xk ∈ x0 + Kk(A , r0),

2. rk = b − Axk ⊥ Lk.

Here, Lk is a k-dimensional subspace of R
n. y

The nature of a Krylov method is mainly determined by two aspects. Of course, the choice of Lk
plays an important role. Additionally, there are several ways to construct a basis for Kk(A , r0).
Three choices are listed below, including the methods resulting from them.

64 Solution methods for linear systems

1. Arnoldi provides an orthonormal basis V = {v1, ...,vk} for Kk(A ,v1) (variants: Arnoldi-
Modified Gram-Schmidt and Householder Arnoldi)

• Lk = Kk(A , r0): Full Orthogonalization Method (FOM) (variants: Restarted FOM
(FOM(k), Incomplete Orthogonalisation Method (IOM), Direct IOM (DIOM))

• Lk = AKk(A , r0): General Minimal RESidual (GMRES) (variants: Restarted GM-
RES (GMRES(k)), Quasi-GMRES (QGMRES), Direct QGMRES (DQGMRES))

2. Lanczos is like Arnoldi, but only applicable to symmetric matrices (variant: Direct Lanczos
(D-Lanczos))

• Lk = Kk(A , r0): Conjugate Gradient (GG) (for positive definite matrices) (variant:
CG-Three-term recurrence variant (for positive definite matrices))

• Lk = AKk(A , r0): Conjugate Residual (CR) (for positive definite hermitian matrices)

3. Lanczos Biothogonalisation (BiLanczos) computes a basis V = {v1, ...,vk} for Kk(A ,v1)

and a basis W = {w1, ...,wk} for Kk(A T ,w1), such that vi ⊥ wj for all i, j = 1, ..., k

• Lk = Kk(A T , r0): BiConjugate Gradient (BCG) (variants: Conjugate Gradient Squared
(CGS), Biconjugate Gradient Stabilized (BICGSTAB)) and Quasi Minimal Residual
(QMR) (variant: Transpose Free QMR (TFQMR)

In the next sections, Arnoldi and GMRES will be considered in more detail. For more information
about other Krylov methods, see [Saa00, Chapter 6 and 7].

Arnoldi

The Arnoldi method constructs an orthonormal basis for a Krylov space with the help of Gram-
Schmidt.

Method 8.22 (Arnoldi): The Arnoldi method constructs an orthonormal basis {v1, ...,vk} for
the Krylov space Kk(A , r) by means of the following algorithm:

1. v1 = 1
‖r‖2

r

2. for j = 1, .., k:

3. for i = 1, ..., j: hij =
(
Avj

)T
vi

4. vj+1 = vj+1 −
∑j
i=1 hijvi

5. hj+1,j = ‖vj+1‖2

6. if hj+1,j = 0: stop
7. vj+1 = 1

hj+1,j
vj+1

8. end y

The following variant of the algorithm above uses Modified Gram-Schmidt instead of Gram-
Schmidt.

Method 8.23 (Arnoldi-Modified Gram-Schmidt): The Arnoldi-Modified Gram-Schmidt method
constructs an orthonormal basis {v1, ...,vk} for the Krylov space Kk(A , r) by means of the fol-
lowing algorithm.

1. v1 = 1
‖r‖2

r

2. for j = 1, .., k:
3. vj+1 = Avj
4. for i = 1, ..., j:
5. hij = vTj+1vi
6. vj+1 = vj+1 − hijvi
7. end

8.2 Iterative Methods 65

8. hj+1,j = ‖vj+1‖2

9. if hj+1,j = 0: stop
10. vj+1 = 1

hj+1,j
vj+1

11. end y

In theory, the results of both algorithms are the same. In practice, Arnoldi-Modified Gram-
Schmidt is less sensitive to round-off errors. Another variant is Householder Arnoldi [Saa00, p.
149], which is even more reliable, but also more expensive.

General minimal residual method

The general minimal residual method [SS86] is a Krylov method that uses Lk = AKk(A , r0). As
its name already indicates, it is based on minimizing the residual rk = b − Axk. Each step, xk
is chosen such that:

xk = x0 + arg min
z∈Kk(A ,r

0
)
‖b − A (x0 + z) ‖2

= x0 + arg min
z∈Kk(A ,r

0
)
‖r0 − A z‖2.

Since this involves a minimization problem that is not trivial to solve, it will be rewritten.

Proposition 8.24: Let vj (for j=1,...,k+1) and hij (for i = 1, ..., k and j = 1, ..., k + 1) result

from applying (a variant of) Arnoldi to Kk(A , r0). Define V k ∈ R
n×k and H k ∈ R

k+1×k (also
known as the Hessenberg matrix) such that:

V k =
[

v1 . . . vk
]
, (8.4)

H k =

h11 . . . h1k

h21 . . . h2k

. . .
...

hk+1,k

. (8.5)

Define y
k

as the solution of the following linear least squares problem:

y
k

= arg min
y∈Rk

∥
∥ ‖r0‖2e1 − H ky

∥
∥

2
. (8.6)

Then

arg min
z∈Kk(A ,r

0
)
‖r0 − A z‖2 = V kyk.

Proof. See [Saa00, Section 6.5.1]. �

In order to determine y
k

in (8.6) efficiently, H k will be transformed by what are called Givens
rotations in order to achieve the following structure:

H
(i)
k =

h
(i)
11 h

(i)
1k

. . .
...

h
(i)
i+1,i+1

...

h
(i)
i+2,i+1

. . .
...

. . . h
(i)
kk

h
(i)
k+1,k

.

Note that in particular H
(k)
k will have a favorable structure.

66 Solution methods for linear systems

Proposition 8.25: Let H k and r0 be as in Proposition 8.24. Define:

H
(0)
k = H k. (8.7)

Let I i be the i × i identity matrix. Introduce Givens rotations Ωi ∈ R
k+1×k+1 (i = 1, ..., k)

according to:

Ω i =

I i−1

ci si
−si ci

I k−i

, (8.8)

ci =
hi+1,i

√
(

h
(i−1)
i,i

)2

+ h2
i+1,i

, (8.9)

si =
h

(i−1)
i,i

√
(

h
(i−1)
i,i

)2

+ h2
i+1,i

. (8.10)

Apply the Givens rotations to H k and ‖r0‖2e1 to obtain:

H
(i)
k = Ω i...Ω 1H k, (8.11)

g(i) = Ω i...Ω 1‖r0‖2e1. (8.12)

Then, the following two statements hold:

1. The solution of the linear least square problem (8.6) satisfies:

Ĥ
(k)
k y

k
= ĝ(k),

in which Ĥ
(k)
k and ĝ(k) result from H

(k)
k and g(k) by deleting their last rows. Note that

Ĥ
(k)
k is an upper triangular matrix, so the system is easily solved by means of backward

substitution (Method 8.3).

2. The 2-norm of the residual, ‖b− Axk‖2, is given by the last element of g(k). This result is
convenient for the implementation of a stopping criterion.

Proof. See [Saa00, Proposition 6.9] �

Putting it all together:

Method 8.26 (General Minimal RESidual method (GMRES)): The general minimal
residual method follows from Method 8.9 by using the following strategy to obtain xk:

1. Compute H k and V k by applying (a variant of) Arnoldi to Kk(A , r0) and using equations
(8.4) and (8.5).

2. Determine H
(k)
k and g(k) using equations (8.7)-(8.12).

3. Calculate y
k

by means of the first statement of Proposition 8.25.

4. xk = x0 + V kyk.

Note that the vectors y
k

and xk only need to be computed after the termination criterion has
been reached. y

8.3 Summary 67

Theorem 8.27 (Convergence of GMRES): Consider a diagonalizable matrix A with eigenvalues
λ1, ..., λn and corresponding eigenvectors v1, ...,vn. So, V = [v1 . . .vn] is an invertible matrix.
Then, the relative error in step k of GMRES (Method 8.26) satisfies:

‖b − Axk‖2

‖b − Ax0‖2
≤ ‖V ‖2‖V −1‖2 min

p∈Pk,p(0)=1
max

i{1,...,n}
|p(λi)|.

If, moreover, all eigenvalues are contained in an ellipse E ⊂ C, excluding the origin and having
center c ∈ C, focal distance d ∈ C, and semi major axis a ∈ C (see Figure 8.1 for an example),
then, the relative error satisfies:

‖b − Axk‖2

‖b − Ax0‖2
≤ ‖V ‖2‖V −1‖2

∣
∣
∣
∣
∣

pk
(
a
d

)

pk
(
c
d

)

∣
∣
∣
∣
∣

≈ ‖V ‖2‖V −1‖2

∣
∣
∣
∣
∣

a+
√
a2 − d2

c+
√
c2 − d2

∣
∣
∣
∣
∣

k

.

Here, pk : C → C is the complex Chebychev polynomial, which can be defined recursively according
to:

p1(z) = 1,

p2(z) = z,

pk(z) = 2zpk(z) − pk−1(z) (k ≥ 2).

Proof. See [Saa00, Proposition 6.15, Corollary 6.1, and (6.100)] �

Figure 8.1: Example of an ellipse for c, d, a ∈ R

8.3 Summary

If an implicit FVM is used to solve the water quality model, many large sparse linear systems
need to be solved. For such systems, iterative methods are more suitable than direct methods. At
present, GMRES is implemented in WAQ. This Krylov method converges faster as the eigenvalues
are more clustered.

68 Solution methods for linear systems

Chapter 9

Preconditioning

In practice, iterative methods often have an unsatisfactory convergence speed. A popular way to
deal with this problem is enhancing the spectrum by means of preconditioning, which is discussed
in this chapter.

9.1 Basic preconditioning

Preconditioning transforms a linear system into an equivalent system that can be handled better
by an iterative method.

Method 9.1 (Preconditioning: general form): Consider an n × n linear system Ax = b.
Preconditioning consists of the following steps:

1. Choose invertible matrices P l, P r ∈ R
n×n, the preconditioners.

2. Solve y from:

P −1
l A P −1

r y = P −1
l b.

3. Determine x according to:

x = P −1
r y. y

Remark 9.2: If P r = I , one speaks of left preconditioning . Similarly, choosing P l = I results
in right preconditioning . Usually, the termination criterion of an iterative method is based on the
residual norm ‖rk‖ = ‖b− Axk‖. Preconditioning translates the residual norm to ‖P −1

l rk‖. For
this reason, right preconditioning is often preferred. y

Remark 9.3 (Recycling): In general, it is more costly to compute a preconditioner than to solve
the preconditioned system. Therefore, it might be efficient to recycle the preconditioner, i.e. using
the same preconditioner in multiple time steps. If the matrix does not vary much in time, the
preconditioner hopefully remains effective. y

Good preconditioners at least guarantee that:

1. P l and P r can be determined inexpensively;

2. the spectrum1 of P −1
l A P −1

r is favorable with respect to convergence2;

3. P −1
l v and P −1

r v can be computed at low cost (v ∈ R
n).

What are suitable preconditioners? This will be treated in the following sections.

1set of eigenvalues
2Remember Theorem 8.27 and 8.15

70 Preconditioning

9.2 Preconditioners based on matrix splitting

Matrix splitting gives rise to a class of preconditioners that are relatively simple to construct.

Method 9.4 (Preconditioners based on matrix splitting): There are two ways to derive
preconditioners from a matrix splitting A = M − N :

1. P l = M ,
P r = I .

2. P l = I ,
P r = M .

Note that the construction costs are 0 flops. y

Example 9.5 (Symmetric GS preconditioner): An example of the preconditioner above is the
symmetric GS preconditioner, which is currently used in WAQ to speed up GMRES (schemes 15
and 16). Remembering Method 8.18 and Proposition 8.17 results in:

M = M 1

(
M 1 + N 2

)−1
M 2 = (D + L)D −1(D + U). y

The symmetric GS preconditioner seems to be inadequate for diffusion dominated problems. This

is illustrated in Figure 9.1, in which the relative residual
b−Axk

‖b‖2
is plotted for each iteration k

for a two-dimensional problem. The blue line corresponds to the actual diffusion dominated case
in which the diffusion coefficient has been increased by 10m 2 s (see Remark 3.6). The red line is
the result of neglecting this amount of extra diffusion. Indeed, the current preconditioning seems
unsuitable for diffusion dominated problems.

0 5 10 15 20 25 30 35 40 45 50
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

k (# iterations)

r/
||b

||

dispersion=10: 46 it
dispersion=0: 12 it

Figure 9.1: The effect of diffusion dominance on the convergence of GMRES

9.3 Preconditioners based on an incomplete LU factorisation 71

9.3 Preconditioners based on an incomplete LU factorisa-

tion

As mentioned before, LU factorisations are inefficient for sparse matrices (due to fill-in), which is
why iterative methods are essential in the first place. However, approximate factorisations often
result in powerful preconditioners.

Definition 9.6 (Incomplete LU factorisation): An incomplete LU factorisation of a matrix
A consists of a unit lower triangular matrix L̃ , an upper triangular matrix Ũ , and a matrix R
such that:

A = L̃ Ũ − R . y

Method 9.7 (Preconditioners based on an incomplete LU factorisation): There are three
ways to derive preconditioners from an incomplete LU factorisation:

1. P l = L̃ Ũ
P r = I

2. P l = I

P r = L̃ Ũ

3. P l = L̃

P r = Ũ y

In the sections hereafter, several algorithms to compute an incomplete LU factorisation will be
discussed.

9.3.1 Incomplete LU threshold

The incomplete LU threshold method provides a basic strategy to compute an incomplete LU fac-
torisation. The algorithm results from adding two dropping rules to the algorithm that computes
an ordinary LU factorisation (see Method 8.5). A dropping rule sets an element equal to zero if
it satisfies certain criteria. To put it more bluntly: If you don’t want to compute it, discard it.

Method 9.8 (Incomplete LU Threshold (ILUT)): The incomplete LU threshold algorithm
computes an incomplete LU factorisation A = L̃ Ũ − R by means of the following algorithm,
provided that the pivots, ũkk, are nonzero:

1. for i = 1, ..., n:
2. w := ai∗
3. for k = 1, ..., i− 1:
4. wk = wk

ũkk

5. Apply a dropping rule to wk
6. w := w − wkũk∗
7. end
8. Apply a dropping rule to w
9. l̃ij = wj for j = 1, ..., i− 1
10. ũij = wj for j = i, ..., n
11. end y

An application of Method 9.8 is ILUT(p,τ), which drops elements that are small in some sense.
Moreover, it limits the number of elements per row.

Method 9.9 (ILUT(p,τ)): ILUT(p,τ) follows from Method 9.8 by using the following dropping
rules:

Line 5 is replaced by:

72 Preconditioning

if wk < τ‖ai∗‖2: wk = 0

Line 8 is replaced by:

for k = 1, ..., n:
if wk < τ‖ai∗‖2: wk = 0

end
Drop all elements in w, except wi, the p largest elements in {w1, ..., wi−1}, and the p
largest elements in {wi+1, ..., wn}.

If A contains at most q nonzero elements per row, the costs of this factorisation amount to
approximately

n
(

p
(
2(p+ 1) + 1

)

︸ ︷︷ ︸

row update

+ 2q
︸︷︷︸

‖ai∗‖2

)

flops. y

9.3.2 Incomplete LU

Incomplete LU preconditioners form a subcategory of ILUT preconditioners. Their dropping rules
are based on a zero pattern.

Method 9.10 (Incomplete LU (ILU): general form): Let

Z ⊂ {(i, j) ∈ [1, ..., n] × [1, ..., n] : i 6= j}

be a zero pattern. The general Incomplete LU algorithm follows from Method 9.8 by letting both
dropping rules set wk equal to zero if (i, k) /∈ Z. In other words:

Line 5 is replaced by:

if (i, k) ∈ Z: wk = 0

Line 8 is replaced by:

for k = 1, ..., n:
if (i, k) ∈ Z: wk = 0

end

Note that R follows from:

rij =

{
aij , (i, j) ∈ Z,
0, (i, j) /∈ Z. y

An application of Method 9.10 is ILU(0).

Method 9.11 (ILU(0)): ILU(0) follows from Method 9.10 by taking Z equal to the zero pattern
of A . y

In practice, ILU(0) can have insufficient accuracy, resulting in inefficiency and unreliability. ILU(0)
has no fill-in. ILU(p), the generalisation of ILU(0), attempts to improve ILU(0) by allowing some
fill-in. The method drops elements that have a level of fill (see Method 9.12 below for a definition)
larger than p.

Method 9.12 (ILU(p)): Let fij denote the level of fill. Initially, this quantity is defined as
follows:

fij =

{
0, aij 6= 0 or i = j,
∞, aij = 0.

9.3 Preconditioners based on an incomplete LU factorisation 73

ILU(p) follows from Method 9.10 by using the zero pattern:

Z = {(i, j) ∈ [1, ..., n] × [1, ..., n] : fij > p} .

Right before the end of the k-loop (so before line 7 in Method 9.8), fij is updated according to:

fij =

{
min{fij , fik + fkj + 1}, wj 6= 0,
fij , wj = 0,

j = 1, ..., n.

If L̃ has at most q̃l nonzero off-diagonal elements per row and Ũ has at most q̃u nonzero off-
diagonal elements per row, then the costs of the factorization amount to approximately

nq̃l
(
(2q̃u + 1)
︸ ︷︷ ︸

row update

+ (q̃l + q̃u + 1)2
︸ ︷︷ ︸

level of fill update

)

flops. y

ILU(p) might be a good alternative for the current preconditioner. This idea is based on Figure 9.2,

in which the relative residual
b−Axk

‖b‖2
has been plotted for each iteration k for a two-dimensional

diffusion dominated problem. The black line, which corresponds to the case without precondition-
ing, shows that preconditioning is indispensable. The blue line, which is the result of the symmetric
Gauss-Seidel preconditioner, demonstrates that the current preconditioner is insufficient for this
type of problems. The red line, which coincides with ILU(3) preconditioning, illustrates that
ILU(p) performs rather well for the diffusion dominates problems.

0 20 40 60 80 100 120 140
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

k (# iterations)

r/
||b

||

no prec.: 136 it.
SGS: 46 it.
ILU(3): 13 it.

Figure 9.2: The effect of preconditioning on the convergence of GMRES

Nonetheless, according to Saad [Saa00, p. 280], there ”are a number of drawbacks to the above
algorithm. First, the amount of fill-in and computational work for obtaining the ILU(p) factoriza-
tion is not predictable for p > 0. Second, the cost of updating the levels can be quite high. Most

74 Preconditioning

importantly, the level of fill for indefinite matrices may not be a good indicator of the size of the
elements that are being dropped. Thus, the algorithm may drop large elements and result in an
inaccurate incomplete factorisation”.

So far, the elements that were dropped were simply discarded. Modified ILU uses a different
approach. It adds dropped elements to the diagonal of Ũ .

Method 9.13 (Modified ILU (MILU)): Modified ILU follows from Method 9.10, by inserting
the following diagonal update of Ũ right after line 10 in Method 9.8:

ũii := ũii +
∑n
m=1 rim. y

MILU guarantees that A and L̃ Ũ have the same row sums. Its results are especially good for
matrices resulting from the discretisation of a PDE that has a more or less constant solution.

9.4 Summary

The convergence speed of an iterative method depends on the spectrum of the matrix. Precondi-
tioning transforms a linear system into an equivalent system that has better spectral properties.
At present, WAQ uses symmetric Gauss-Seidel preconditioning, which is costless to construct. Un-
fortunately, for diffusion dominated problems, this preconditioner does not lead to a satisfactory
reduction of the number of iterations. An alternative preconditioning, such as ILU(p), could lead
to a much smaller number of iterations. However, construction costs and the costs per iteration
should also be taken into account.

Chapter 10

Reordering

In Chapter 9, preconditioning was introduced to speed up the convergence of an iterative method.
The construction of a good preconditioner is generally expensive. An important tool in facing
this problem, which is especially useful for matrices arising from discretisation on an unstructured
grid, is reordering of the matrix elements in advance. This is treated in this chapter.

In this chapter, level-set ordering, independent set ordering, and multi-color ordering are discussed.
Other orderings can be found in [DER86, Chapter 8] and [GL81, Chapter 5].

10.1 Symmetric permutation

Reordering is actually is special case of preconditioning, in which the preconditioners are permu-
tation matrices. A permutation matrix is the identity matrix with its rows or columns permuted.

Definition 10.1 (Interchange matrix): An interchange matrix is the identity matrix with two
of its rows interchanged. y

Definition 10.2 (Permutation matrix): A permutation matrix P ∈ R
n×n is a product of (at

most n) interchange matrices. y

Proposition 10.3: If P is a permutation matrix, then

P −1 = P T .

Proof. See [Saa00, p. 73] �

Method 10.4 (Symmetric permutation): A symmetric permutation follows from Method 9.1
by using

P l = P T ,

P r = P .

y

Example 10.5: Consider a system

a11 0 a13 0
0 a22 a23 a24

a31 a32 a33 0
0 a42 0 a44

︸ ︷︷ ︸

A

x = b.

76 Reordering

Choose the following permutation matrix:

P =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

.

Then

P T A P =

a11 a13 0 0
a31 a33 a32 0
0 a23 a22 a24

0 0 a42 a44

.

Note that an (I)LU-factorisation of this matrix would have zero fill-in. y

10.2 Renumbering the adjacency graph

A symmetric permutation of a matrix is equivalent to renumbering the vertices of its adjacency
graph [Saa00, p.75].

Definition 10.6 (Graph): A graph G consists of a set of vertices V = {v1, ..., vn} and a set of
edges E ⊂ V × V. Notation: G = (V, E). y

Definition 10.7 (Adjacency graph): The adjacency graph of a matrix A ∈ R
n×n is a graph

G = (V, E) such that:

• The vertices represent the unknowns, i.e. v1, ..., vn ∈ V.

• The edges represent the nonzero elements of the matrix, in other words, (vi, vj) ∈ E , if
aij 6= 0 and i 6= j. y

Example 10.8 (Adjacency graph): The adjacency graph

1• // •2

��

// •3

4• •5

OO

corresponds to the matrix structure

∗ ∗
∗ ∗ ∗

∗
∗

∗ ∗

.

y

10.2.1 Level-set orderings

Level-set orderings are based on traversing the graph by level sets.

Definition 10.9 (Adjacent): Two vertices in a graph are adjacent if they have a common edge.
To put it more precisely: If G = (V, E) is a graph, then v, w ∈ V are adjacent, if (v, w) ∈ E or
(w, v) ∈ E . y

10.2 Renumbering the adjacency graph 77

Definition 10.10 (Level set): A level set of a graph G = (V, E) is a recursively defined subset
of V. The initial level set L1 can be any subset of V. Each next level-set Lk (k ≥ 2) contains the
unmarked neighbors of the vertices of the previous level set:

Lk = {v ∈ V \ (L1 ∪ ... ∪ Lk−1) : ∃w ∈ L1 ∪ ... ∪ Lk−1 adjacent to v}. y

Method 10.11 (Level set ordering): Consider a graph G = (V, E). A basic level set ordering
can be constructed by applying the following steps:

1. Choose an initial level set L1 = {vm1
, ..., vM1

} ⊂ V. Mark all vertices v ∈ L1.

2. While unmarked vertices are available: Determine the next level set Lk = {vmk
, ..., vMk

} by
traversing Lk−1 in a certain way. Mark all vertices v ∈ Lk.

3. Order the vertices in the following manner:

vm1
, ..., vM1

, vm2
, ..., vM2

, ... y

Level set orderings differ from one another in initial level set, way of traversing, and way of
numbering. The Cuthill-McKee ordering, for example, is based on the degrees of the vertices.

Definition 10.12 (Degree): The degree of a vertex of a graph is the number of edges incident
to it. Loops1 are counted twice. y

Method 10.13 (Cuthill-McKee (CMK) ordering): The Cuthill-McKee ordering follows from
Method 10.11 by using the following strategies:

• The initial level set consists of a single node: L1 = {vm1
}.

• The elements of a level set are traversed from the nodes of lowest degree to those of highest
degree.

• Nodes are numbered in the same order as they are traversed. y

CMK ordering normally leads to a smaller bandwidth.

Example 10.14 (CMK ordering): Consider the following adjacency graph with initial level set
{1}:

•

�� ��

•

•

��

// •1 //oo •

OO

•

Applying CMK ordering yields:

5•

�� ��

•4

3•

��

// •1 //oo •2

OO

6•
y

1Note that loops do not occur in adjacency graphs

78 Reordering

10.2.2 Independent set ordering

An independent set ordering isolates unknowns that are independent of one another. This results
in a matrix of the form:

[
D E
F C

]

,

in which D is a diagonal matrix. This structure is especially useful for parallel computing.

Definition 10.15 (Independent set): An independent set of a graph G = (V, E) is a set S ⊂ V
such that no two vertices are adjacent. More precisely, ∀v ∈ S:

(v, w) ∈ E or (w, v) ∈ E ⇒ w /∈ S. y

Method 10.16 (Independent Set Ordering (ISO)): An independent set ordering for a graph
G = (V, E) can be obtained by means of the following algorithm:

1. Initially, put S = ∅.

2. While unmarked vertices are available: Choose2 an unmarked vertex v and add it to S. Mark
v and all vertices adjacent to v.

3. Number the vertices that belong to the independent set S first. Then, number the other
vertices. y

Example 10.17 (ISO): Consider the following adjacency graph:

•

����

•

•

��

// • //oo •

OO

•

An example of an ISO ordering is:

1•

����

•3

5•

��

// •4 //oo •6

OO

2•
y

Remark 10.18: Observe that, for a linear system that results from the local-theta scheme
(Method 6.1), it is possible to obtain an independent set ordering of the form

[
D

C

]

,

where the elements of the diagonal matrix D correspond to the explicit cells (θnij = 0 for each face).
As a result, the dimension of the linear system that needs to be solved has been reduced to the
dimension of C . For this reason, this type of reordering may lead to a reduction of computational
costs, especially when the number of explicit grid cells is high. y

2Choose for instance the vertex of lowest degree. Heuristically, this yields a large independent set.

10.3 Summary 79

10.2.3 Multicolor orderings

Graph coloring is the process of coloring (labeling) vertices such that adjacent vertices do not have
the same color. Moreover, this should be done with the least possible amount of colors.

A multicolor ordering is a color by color ordering after graph coloring has been executed. If k
colors are used, k independent sets are obtained. This yields a k × k block matrix with diagonal
matrices on the diagonal: Lovely for parallel computing.

In practice, the smallest possible number of colors to color the graph can rarely be easily deter-
mined. Therefore, this criterion is relaxed to obtain the following greedy algorithm.

Method 10.19 (Multicolor Ordering): A multicolor ordering for a graph G = (V, E) can be
obtained by means of the following greedy algorithm:

1. Let Si (i = 1, ..., n) contain the vertices with color i. Initially, none of the vertices is colored,
so put Si = ∅ (i = 1, ..., n).

2. While unmarked nodes are available:

i. Choose an unmarked vertex v ∈ V.

ii. Determine the ’smallest’ color that none of its neighbors has:

i = min{i ∈ {1, ..., n}|∀w ∈ V adjacent to v : w /∈ Si }.

iii. Color v with color i: Si = Si ∪ {v}.
iv. Mark v.

3. First number the vertices of S1, then the nodes in S2, and so on. y

10.3 Summary

The costs and the quality of a preconditioner partly depend on the structure of the original
matrix. Therefore, it can be a good strategy to reorder the matrix elements in advance. This can
be executed in several manners by renumbering the corresponding adjacency graph. Examples of
orderings are level set ordering, independent set ordering, and multi-color ordering.

80 Reordering

Chapter 11

Storage of sparse matrices

Since sparse matrices contain a large number of zero elements, an efficient way of storing them can
save memory as well as computing time. Two popular storing formats are the coordinate format
and the compressed sparse row format, which are both discussed in this chapter. Other formats
can be found in [DER86, Chapter 2].

11.1 Coordinate format

The most basic format is the coordinate format1, which only stores the nonzero elements and their
row and column index.

Definition 11.1 (Coordinate format): The coordinate format of a matrix A ∈ R
m×n with k

nonzero elements consists of three vectors. e ∈ R
k contains the nonzero elements of A, r ∈ N

k

contains their row indices, and c ∈ N
k contains their column indices. The vectors can be filled in

any order. If they are filled by row, the vectors are constructed according to:

1. k = 0
2. for i = 1, ...,m:
3. for j = 1, ..., n:
4. if aij 6= 0:
5. k = k + 1
6. ek = aij
7. rk = i
8. ck = j
9. end
10. end
11. end y

Example 11.2 (Coordinate format): Consider the matrix

A =

1 0 0 2 0
3 4 0 5 0
6 0 7 8 9
0 0 10 11 0
0 0 0 0 12

. (11.1)

The corresponding coordinate format reads:

e = [1 2 3 4 5 6 7 8 9 10 11 12]T ,
r = [1 1 2 2 2 3 3 3 3 4 4 5]T ,
c = [1 4 1 2 4 1 3 4 5 3 4 5]T .

1This format is used by MATLAB

82 Storage of sparse matrices

y

11.2 Compressed sparse row format

One of the most popular formats is the compressed sparse row format, which is comparable to the
coordinate format. The difference is that the row indices are stored more efficiently.

Definition 11.3 (Compressed Sparse Row format (CSR)): The compressed sparse row
format of a matrix A ∈ R

m×n with k nonzero elements consists of three vectors. e ∈ R
k contains

the nonzero elements of A, c ∈ N
k contains their column indices, and r ∈ N

m+1 contains the
pointers to the beginning of each row in the vectors e and c. The vectors are filled by row, so
according to:

1. k = 0
2. for i = 1, ...,m:
3. for j = 1, ..., n:
4. if aij 6= 0:
5. k = k + 1
6. ek = aij
7. ck = j
8. if the row pointer is not already set for row i: ri = k
9. end
10. end
11. if the row pointer is not already set for row i: ri = k
12. end
13. rm+1 = k + 1 y

Example 11.4 (CSR format): The CSR format for (11.1) reads:

e = [1 2 3 4 5 6 7 8 9 10 11 12]T ,
r = [1 3 6 10 12 13]T ,
c = [1 4 1 2 4 1 3 4 5 3 4 5]T .

y

Method 11.5 (CSR-vector product): A matrix stored in CSR format can be multiplied by a
vector x as follows:

1. for i = 1 : n
2. k1 = ri
3. k2 = ri+1 − 1

4. (e(k1 : k2))
T

x(c(k1 : k2))
5. end y

Remark 11.6 (Current format in WAQ): The current storage format in WAQ is comparable to
the CSR format. The difference is that the diagonal elements are stored separately in a vector d.
Furthermore, the row pointers point to the end of each row, instead of the beginning.

Some numerical schemes of WAQ treat the horizontal and the vertical direction separately. In that
case, the format is slightly different. In the current implementation, for each grid cell Vi, there is
exactly one coefficient ti that represents the relation to grid cell right above it, and exactly one
coefficient bi that represents the relation to the grid cell below it. These two coefficients, that may
be zero, are stored in e in front of the (other) nonzero elements of the row.

11.3 Summary 83

For example, consider a matrix that corresponds to a three-dimensional 2×2×2 rectangular grid:

d1 h12 h13 t1
h21 d2 h23 h24 t2
h31 h32 d3 h34 h35 t3

h42 h43 d4 h45 h46 t4
b5 h53 h54 d5 h56 h57

b6 h64 h65 d6 h67 h68

b7 h75 h76 d7 h78

b8 h86 h87 d8

.

This matrix would be stored as follows:

d = [d1 d2 d8]T ,

e = [0 t1 h12 h13 0 t2 h21 h23 h24 . . . b8 0 h86 h87]T ,

c = [0 5 2 3 0 6 1 3 4 . . . 4 0 6 7]T ,

r = [5 9 . . . 42]T .

y

11.3 Summary

Since sparse matrices contain a large number of zero elements, an efficient way of storing them
can save both memory and computing time. The main idea is to store the nonzero elements only.
Additionally, information about their location in the original matrix is stored in some efficient
manner. WAQ’s current storage format is comparable to the compressed sparse row format.

84 Storage of sparse matrices

Chapter 12

Summary

If an implicit FVM is used to solve the water quality model, many large sparse linear systems
need to be solved. For such systems, iterative methods are more suitable than direct methods. At
present, GMRES is implemented in WAQ. This Krylov method converges faster as the eigenvalues
are more clustered.

The convergence speed of an iterative method depends on the spectrum of the matrix. Precondi-
tioning transforms a linear system into an equivalent system that has better spectral properties.
At present, WAQ uses symmetric Gauss-Seidel preconditioning, which is costless to construct. Un-
fortunately, for diffusion dominated problems, this preconditioner does not lead to a satisfactory
reduction of the number of iterations. An alternative preconditioning, such as ILU(p), could lead
to a much smaller number of iterations. However, construction costs and the costs per iteration
should also be taken into account.

The costs and the quality of a preconditioner partly depend on the structure of the original ma-
trix. Therefore, it can be a good strategy to reorder the matrix elements in advance. This can
be executed in several manners by renumbering the corresponding adjacency graph. Examples of
orderings are level set ordering, independent set ordering, and multi-color ordering.

Since sparse matrices contain a large number of zero elements, an efficient way of storing them
can save both memory and computing time. The main idea is to store the nonzero elements
only. Additionally, information about their location in the original matrix is stored in some ef-
ficient manner. WAQ’s current storage format is comparable to the compressed sparse row format.

To answer the question that was asked in the introduction of this thesis (Chapter 1):

The convergence speed of the current solver for linear systems be enhanced for diffusion
dominated problems by using an alternative combination of iterative solver, preconditioner,
reordering strategy, and storage format.

The optimal combination that leads to the desired computational speed will have to be the result
of further investigation...

86 Summary

Appendix A

Current schemes of WAQ

At present, fifteen different numerical schemes can be used in WAQ. These are described briefly
below.

Scheme 1 is the explicit first order upwind scheme (Method 4.4).

Scheme 2 is like scheme 1, except that it uses the predictor corrector method for time integration.

Scheme 3 is the explicit Lax-Wendroff scheme (Method 4.11).

Scheme 4 is an Alternation Direction Implicit (ADI) method. It can only be applied in two
dimensions on a structured grid. This method calculates two successive timesteps in two
different ways, using a semi-implicit scheme. In one time step the derivatives in the y-
direction are evaluated explicitly instead of implicitly. In the other time step the derivatives
in the x-direction are evaluated explicitly instead of implicitly. This scheme uses the theta
scheme (Method 5.1) for θ = 1

2 . Explicit fluxes are second and third order upwind fluxes.
Implicit fluxes are central fluxes (4.3). Since only one direction at the time is implicit, this
results in a tridiagonal matrix, which is relatively easy to solve with a direct method.

Scheme 5 is an explicit FCT scheme a la Boris & Book (almost similar to Method 4.8) with
Lax-Wendroff flux correction (Method 4.11).

Scheme 10 is the theta upwind scheme (Method 5.1) with θ = 1.

Scheme 11 treats the horizontal and vertical direction seperately. In the horizontal direction,
the explicit upwind scheme (scheme 1) is applied. In the vertical direction, the theta scheme
(Method 5.1) with θ = 1

2 and central fluxes (4.3) is used, possibly with a smoothing Forrester
filter. The resulting tridiagonal linear systems are solved by means of a direct method.

Scheme 12 is like scheme 11, except that it uses an explicit FCT scheme (scheme 5) in the
horizontal direction.

Scheme 13 is like Scheme 11, except that it uses the theta upwind scheme (Method 5.1) with
θ = 1 in the vertical direction.

Scheme 14 is like scheme 12, except that it uses the theta upwind scheme (Method 5.1) with
θ = 1 in the vertical direction.

Scheme 15 is like scheme 10, except that, in the horizontal direction, the linear systems are
solved by means of GMRES (see Method 8.26) with a symmetric GS preconditioner (see
Example 9.5). In the vertical direction, a direct method is used.

Scheme 16 is like Scheme 15, except that it uses the theta scheme (Method 5.1) with θ = 1
2

and central discretisation (4.3) in the vertical direction, possibly with a smoothing Forrester
filter.

88 Current schemes of WAQ

Scheme 19 treats the horizontal and vertical direction seperately. In the horizontal direction,
an ADI method (scheme 4) is used. In the vertical direction, central fluxes (4.3) are used,
possibly with a smoothing Forrester filter.

Scheme 20 is like scheme 19, except that it uses first order upwind discretisation (4.1) in the
vertical direction.

Bibliography

[BB73] J. P. Boris and D. L. Book. Flux corrected transport. 1. shasta, a fluid transport
algorithm that works. Journal of Computational Physics, 11:38–69, 1973.

[BF01] R.L. Burden and J.D. Faires. Numerical Analysis. Brooks/Cole, Pacific Grove, 2001.

[BO04] T. Barth and M. Ohlberger. Finite volume methods: Foundation and analysis. In
Encyclopedia of Computational Mechanics. John Wiley & Sons, 2004.

[DER86] I.S. Duff, A.M. Erisman, and J.K. Reid. Direct Methods for Sparse Matrices. Clarendon
Press, Oxford, 1986.

[GL81] A. George and J.W. Liu. Computer Solution of Large Sparse Positive Definite Systems.
Prentice Hall, Inc., New Jersey, 1981.

[GL96] G.H. Golub and C.F. Van Loan. Matrix computations. The Johns Hopkins University
Press, Baltimore and London, third edition, 1996.

[God96] E. Godlewski. Numerical Approximation of Hyperbolic Systems of Conservation Laws.
Springer, New York, 1996.

[Jam93] A. Jameson. Computational algorithms for aerodynamic analysis and design. Applied
Numerical Mathematics, 13:383–422, 1993.

[KMT] D. Kuzmin, M. Möller, and S. Turek. High-resolution fem-fct schemes for multidimen-
sional conservation laws. Technical Report 231, Institute of Applied Mathematics (LS
III), University of Dortmund.

[Krö97] D. Kröner. Numerical Schemes for Conservation Laws. John Wiley & Sons Ltd, West
Sussex and B.G. Teubner, Stuttgart, 1997.

[KT] D. Kuzmin and S. Turek. High-resolution fem-tvd schemes based on a fully multidimen-
sional flux limiter. Technical Report 229, Institute of Applied Mathematics (LS III),
University of Dortmund.

[KT02] D. Kuzmin and S. Turek. Flux correction tools for finite elements. Journal of Compu-
tational Physics, 175:525–558, 2002.

[LeV02] R.J. LeVeque. Finitie Volume Methods for Hyperbolic Problems. Cambridge University
Press, New York, 2002.

[man05] Delft3D-WAQ; Versatile water quality modeling in 1D, 2D or 3D systems including phys-
ical, (bio)chemical and biological processes, November 2005.

[Pos05] L. Postma. Water quality of surface waters. Technical report, WL Delft Hydraulics,
January 2005.

[Saa00] Y. Saad. Iterative methods for sparse linear systems. This is a revised version of the book
published in 1996 by PWS Publishing, Boston. It can be downloaded from http://www-
users.cs.umn.edu/˜saad/books.html, 2000.

90 BIBLIOGRAPHY

[SS86] Y. Saad and M.H. Schultz. GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing,
7:856–869, 1986.

[Wes01] P. Wesseling. Principles of computational fluid dynamics. Springer, Berlin, 2001.

[Zal79] S.T. Zalesak. Fully multidimensional flux-corrected transport algorithms for fluids. Jour-
nal of Computational Physics, 31:335–362, 1979.

Index

adjacency graph, 76
adjacent, 76
advection, 5
Arnoldi, 64
Arnoldi-Modified Gram-Schmidt, 64

backward Gauss-Seidel, 62
backward substitution, 59

cell centered grid, 9
Chebychev polynomial, 67
compressed sparse row (CSR) format, 82
consistency, 15
convergence of

FVM, 14
GMRES, 67
iterative method, 61
linear fixed point iteration, 62

coordinate format, 81
Courant-Friedrichs-Lewy (CFL) condition, 21
Cuthill-McKee (CMK) ordering, 77

degree, 77
Dirichlet boundary condition, 6

explicit FCT scheme, 23
explicit scheme, 21
explicit upwind FCT scheme, 23
explicit upwind scheme, 21

finite volume method (FVM), 13
flops, 59
forward substitution, 59

Gauss-Jacobi, 62
Gauss-Seidel, 62
Gaussian elimination, 60
general minimal residual (GMRES) method, 66
Givens rotations, 65
global discrete maximum principle, 16
global truncation error, 14
graph, 76

Hessenberg matrix, 65

ILU, 72

ILU(0), 72
ILU(p), 73
ILUT, 71
ILUT(p,τ), 71
incomplete LU factorisation, 71
independent set, 78
independent set ordering (ISO), 78
interchange matrix, 75
iterative method, 61

Krylov method, 63
Krylov space, 63

Lax-Wendroff, 25
left preconditioning, 69
level set, 77
level set ordering, 77
linear fixed point iteration, 61
local discrete maximum principle, 16
local extremum diminishing (LED), 16
local truncation error, 15
local-theta FCT scheme, 44
local-theta scheme, 39
local-theta upwind FCT scheme, 44
local-theta upwind scheme, 39
LU factorisation, 60

mass conservative, 14
matrix splitting, 61
modified equation, 30
modified ILU (MILU), 74
molecular diffusion, 5
monotonicity preserving, 16
multicolor ordering, 79

Neumann boundary condition, 6
non-oscillatory, 17
numerical flux function, 13

order of accuracy, 15

permutation matrix, 75
positivity preserving, 15
preconditioning, 69

right preconditioning, 69

92 INDEX

robust, 15

sigma grid, 10
stability (absolute), 15
successive over-relaxation (SOR), 62
symmetric Gauss-Seidel, 63
symmetric permutation, 75

theta FCT scheme, 32
theta Lax-Wendroff scheme, 36
theta scheme, 29
theta upwind FCT scheme, 32
theta upwind scheme, 29
turbulent diffusion, 5
turbulent mixing, 5

z-grid, 10

	Acknowledgements
	Introduction
	I Constructing the numerical model
	Modeling water quality
	Physical water quality model
	Transport
	Water quality processes

	Mathematical water quality model
	Summary

	Finite Volume Method
	Grid
	Integral form
	Finite volume method
	The quality of a finite volume method
	Accuracy
	Robustness

	Summary

	Accurate explicit schemes
	Local extremum diminishing flux functions
	Explicit schemes
	Flux corrected transport
	Summary

	Robust implicit theta schemes
	Theta scheme
	Theta FCT scheme
	Summary

	Local-theta scheme
	Local-theta scheme
	Flux corrected transport
	Molenkamp problem
	Revisiting Hong Kong
	Final implementation in WAQ
	Summary

	Summary & Recommendations
	Recommendations

	II Solving the numerical model
	Solution methods for linear systems
	Direct methods
	Triangular matrices
	General square matrices

	Iterative Methods
	Linear fixed point iteration
	Krylov methods

	Summary

	Preconditioning
	Basic preconditioning
	Preconditioners based on matrix splitting
	Preconditioners based on an incomplete LU factorisation
	Incomplete LU threshold
	Incomplete LU

	Summary

	Reordering
	Symmetric permutation
	Renumbering the adjacency graph
	Level-set orderings
	Independent set ordering
	Multicolor orderings

	Summary

	Storage of sparse matrices
	Coordinate format
	Compressed sparse row format
	Summary

	Summary
	Current schemes of WAQ

