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Abstract
HER2+ breast cancer patients suffer from aggressive tumours that often respond well to treatment
compared to HER2- patients. Currently, patients are all treated with the same number of anti-tumour
treatments, although the required number to eradicate all tumour cells varies between patients. The
goal is thus to have an individualised model based on an MRI before the start of therapy and an MRI
after several rounds of therapy that predicts how many treatments are needed to eradicate all tumour
cells. In the previous MSc thesis by N. Oudhof, a two-dimensional spatiotemporal mechanically cou-
pled reaction-diffusion model was implemented. This was used to model the number of tumour cells
in each position of the breast, where the mechanics are included to simulate the behaviour of the sur-
rounding tissue.
The goal of this thesis is to improve that model by improving the calibration in which the patient-specific
parameters are optimised, by taking into account the treatment schedule of the patients and by ex-
tending the model to three dimensions. For calibration, the first and second MRI scans are used and a
third MRI is used for validation. To simulate the chemotherapy, both the Kety-Tofts model and a Nor-
malised Blood Volume Map are applied, of which the latter appeared the best option. In 2D, four mod-
els are implemented: the reaction-diffusion models with and without mechanics and with and without
chemotherapy term. These were compared by analysing the predicted and measured tumour densi-
ties for a cohort of three HER2+ patients. For 3D, only the basic reaction-diffusion and chemotherapy-
incorporated reaction-diffusion models are implemented. The models are compared in terms of mean
squared error, global relative error and concordance correlation coefficient. For both 2D and 3D, the
models without chemotherapy gave slightly better results in terms of these measures, although the dif-
ferences between the models were rather small. To determine the required number of therapy rounds,
it is however better to use the chemotherapy-incorporated models because they offer more possibilities
to simulate different treatment strategies. The computation time of the 3D implementation should be re-
duced before the mechanics can be included, which will allow conclusions to be drawn on which model
is most accurate. Other directions for future improvements include using the second MRI to calculate
the chemotherapy concentrations after calibration, adding an immunotherapy term and increasing the
number of patients.
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1
Introduction

Cancer is one of the leading causes of death worldwide. The most frequently diagnosed and primary
cause of death by cancer for women is breast cancer [1], and it is estimated that one in eight women
will be diagnosed with breast cancer during their life [2]. As more and more research is done into new
treatment options and the behaviour of tumours in response to them, the chances of survival increase.
Nowadays multiple treatments are possible depending on the size and type of tumour. Chemotherapy,
which reduces the tumour size, is often given in preparation for surgery where the tumour is removed.
The growth of a tumour is a complex process and its response to chemotherapy is often still unpre-
dictable. Much research has been done into modelling this process to gain more insights into the
underlying dynamics and to optimise the treatment plan based on the new insights. If it is possible to
perfectly model the growth of a tumour, then an optimal treatment strategy can be determined where
for example the time between rounds of chemotherapy or the used components of chemotherapy is
correctly adjusted to eradicate as many tumour cells as possible.

Attention for patient-specific models based on magnetic resonance images (MRI) has grown over
the past decade [3] as this is a non-invasive method to obtain information on the tumour and it greatly
aids the doctor in determining a treatment plan. In more recent years, promising results were accom-
plished with a mathematical model that predicts the tumour density and its response to chemotherapy
in the breast region [4–9]. In this thesis, this model is applied to a set of MRI scans of breast cancer
patients.

In Section 1.1 of this introductory chapter, some context is provided on the topic and the collaboration
with Erasmus Medical Center. Section 1.2 further describes the problem, Section 1.3 lays down the
scope of this thesis and Section 1.4 contains the outline of this thesis.

1.1. Context
The Erasmus Medical Center (EMC) is a Dutch hospital that has been treating cancer patients for many
years. In 2020 the EMC Cancer Institute was opened, where doctors and researchers collaborate to
find new treatment possibilities and work together to directly implement them. It enables patient-tailored
therapy to provide the best possible care. In the past years, the collaboration between the EMC and
the Delft University of Technology has intensified as the technological and medical sectors can provide
useful insights to each other. Under this collaboration, the department of Numerical Analysis from the
Delft University of Technology works together with the department of Oncology of EMC.

1.2. Problem Description
The growth behaviour of a tumour depends on many factors, including some genetic ones. The human
epidermal growth factor receptor 2 (HER2) is a gene that has been shown to cause more aggressive
breast cancer tumours. If a patient is HER2+, meaning the gene is overexpressed, the chances of
survival are significantly lower compared to HER2- patients [10]. On the other hand, these HER2+
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2 1. Introduction

tumours often respond well to anti-tumour treatment where the eradication of the tumour cells is the
main goal. Although the number of treatments required for this varies greatly from patient to patient,
currently HER2+ patients at EMC are treated with the same number of anti-tumour treatments. These
treatment rounds do not only destroy tumour cells but also destroy healthy cells. It therefore comes
with many side effects and in addition these treatments are costly. For this reason, EMC wants to be
able to determine per patient how many rounds of therapy are needed, because this can both reduce
the impact on the patient and improve the long-term prognosis. They thus need a model that can
be calibrated with patient-specific data to predict the response of the tumour to therapy. Currently,
MRI scans are made during the treatment process to track the response of the tumour to therapy and
these scans thus serve as useful input data for the model to predict its behaviour. With this model,
the goal is to be able to predict tumour response to therapy, which could aid doctors in determining a
patient-specific treatment plan.

1.3. Scope
This thesis explores how a Mechanically Coupled Reaction-Diffusion (MCRD) model can be used to
predict tumour response to chemotherapy to determine patient-specific treatment plans. Previous re-
search has shown that both this model [3–6] and an extendedmodel [7–9], called theDrug-Incorporated
Mechanically Coupled Reaction-Diffusion (DIMCRD)model, can be used to this end. In a previousmas-
ter thesis by Nathalie Oudhof [11], the MCRD model was applied to a dataset of MRI scans of HER2+
patients from EMC to predict tumour growth of breast cancer patients based on their MRI scans. In
that research, the treatment schedule of the patients was not taken into account and the model was
only implemented in two dimensions (2D). Therefore, this thesis will build upon that research and ex-
plore the possibilities of the model by both extending it to the DIMCRD model and extending it to three
dimensions (3D). The general research question that we aim to answer is:

How can the MCRD model be improved to achieve better results in modelling chemotherapy and the
growth of tumours to determine the correct number of treatment rounds in HER2+ breast cancer

patients?

1.4. Document Structure
Following this introductory chapter, Chapter 2 and 3 give necessary background information on con-
cepts and methods that are used in this thesis. Chapter 2 provides medical background on breast
cancer and its treatment. Chapter 3 moves on to explain the mathematical models previously de-
scribed in the literature that will be applied in this research. Based on this background information,
the research question is further specified and the corresponding methodology is described in Chapter
4. Following this chapter, the modelling pipeline including the pre-processing steps, discretisations for
the 2D model and improvements for the calibration are presented in Chapter 5. Chapter 6 explains
how the chemotherapy term can be calculated for the DIMCRD model and includes analyses of the
parameters. In that chapter, the results for the different models and patients in 2D are also presented
and evaluated. The extension to the three-dimensional model is explained and analysed in Chapter 7.
In Chapter 8 the results are discussed and recommendations for future research are given. Last but
not least, in Chapter 9 the conclusions are presented.



2
Medical background

This chapter several medical concepts that are used in this thesis are explained. Firstly, background
information on HER2+ patients is given in Section 2.1. Next, in Section 2.2 tumour growth is described,
which is followed by an explanation of treatment in Section 2.3. In Section 2.4 information is provided
on the different types of MRI scans that are used in this thesis.

2.1. HER2+ patients
As explained in the introductory chapter, this thesis focuses on HER2+ patients. Approximately 25%
of the breast cancer patients overexpress the HER2 gene, which is sometimes also referred to as the
ERBB2 gene and plays an important role in normal cell growth. Due to the amplification of the gene,
the number of receptors at the tumour-cell surface increases. These growth factor receptors bind to
growth factors and transmit a signal to the cell to start proliferation. In this way, overexpression of the
HER2 gene leads to excessive cellular division and the formation of fast-growing tumours [10]. As a
result, cancer in HER2+ patients is more aggressive and has a poor prognosis of survival [12, 13].
Because it can cause cancer, HER2 is called an oncogene.

2.2. Tumour growth
To model the growth of tumours, it is important to understand the dynamics between the tumour and the
healthy tissue within the breast. The breast tissue of a patient with breast cancer is a heterogeneous
mixture of adipose, fibroglandular and tumour tissue. Adipose tissue consists of body fat and fibroglan-
dular tissue is a combination of connective tissue and glandular tissue which contains the ducts of the
breast. It has been shown that breast fibroglandular tissue is twice as stiff as adipose tissue, so fibrog-
landular tissue has higher mechanical properties than adipose tissue [3]. This means that these tissues
respond differently when a deformation nearby poses stress on the tissue. As a tumour grows outwards
within the breast, it imposes an external force on the surrounding tissue, which leads to deformation
and stress in that tissue. In this way a growing tumour displaces surrounding tissue, a phenomenon
called mass effect in literature [3, 5]. Depending on the stiffness of the surrounding tissue, the mass
effect of the tumour causes a change in the energy state of that tissue. The increase in mechanical
stress restricts further expansion of the tumour [14]. Note that when tumours are mentioned in this
thesis, we always refer to malignant tumours, as benign tumours do not invade the surroundings or
spread through the body and are therefore usually harmless.

When talking about cell growth, often the term doubling time is used. This refers to the time it takes
for a group of cells to double in size. Researchers used to think that the doubling time of tumour cells
was constant like normal cells, implying growth to be exponential. A curve describing the total num-
ber of tumour cells would thus be J-shaped. So if one cell would take 𝑇 time to turn into two cells,
then two cells would take 𝑇 time to proliferate into 4 cells, etc. However, researchers found that tu-
mour cells did not grow exponentially but rather logistically [15]. Hence, the growth of tumour cells can
be described by a Gompertzian or Sigmoid S-shaped curve for which the doubling time increases with
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4 2. Medical background

increasing tumour size, implying that smaller groups of cells grow faster than larger groups of cells [13].

2.3. Treatment
Treatment against cancer can be of various forms like chemotherapy, radiotherapy or surgery. Usually,
a combination is used and in this thesis the focus will be on neoadjuvant therapy (NAT), which is used
in preparation for surgery. This means chemotherapy is applied to the tumour to reduce its size until
it is small enough to be removed in surgery [3], although is also often happens that NAT has already
eradicated all tumour cells. After removal of the tissue in surgery, the tissue is sent to the lab where
it is examined. If there are no more signs of cancer cells present in the tissue, it is called pathological
complete response (pCR). This means that the treatment completely removed all cancer cells. For
HER2+ patients, NAT often leads to pCR. Several studies within the medical field have been done
to investigate if radiologic complete response (rCR), which refers to the situation where no tumour is
visible on the radiologic scans, can predict pCR. Research showed that for HER2+ patients rCR often
corresponds to pCR [16]. For this thesis, it is assumed that the tumour densities which are determined
based on the MRI scans are equal to the true tumour densities in tissue, so it is assumed that indeed
rCR predicts pCR. We will return to this point in the Discussion in Chapter 8. Tumours of HER2+ pa-
tients do not decrease into multiple small tumour while treated, but instead they usually just remain in
one piece while shrinking.

HER2+ patients are in general treated with nine rounds of treatment at Erasmus MC, consisting
of trastuzumab, pertuzumab, carboplatin and paclitaxel which are all administered intravenously. Both
carboplatin and paclitaxel are chemotherapy treatments, meaning that they kill fast-growing cells, which
are usually tumour cells as they grow quicker and faster than normal cells. Trastuzumab and per-
tuzumab are immunotherapy treatments, meaning they consists of monoclonal antibodies that attach
to the receptors on the tumour cell to stop it from growing and dividing. This addition to the normal
chemotherapy treatment for HER2+ patients has significantly improved the prognosis and increased
survival rates [10]. One round of treatment consists of three weeks, where in the first week trastuzumab,
pertuzumab, carboplatin and paclitaxel are administered, in the second week only paclitaxel is used
and in the third week no treatment is given. The next round of therapy starts in the following week with
again all four drugs. The dosage of each component varies throughout the weeks. After three or four
treatments, an MRI scan is made to see if the tumour has responded to therapy and has decreased in
size, and after all nine treatments are finished surgery takes place.

How a tumour grows and responds to treatment of course differs per patient and depends on a big
number of factors, like the stage the tumour is in, the location of the tumour, the weight of the patient,
etc. However, all HER2+ patients are treated with the same treatment schedule. It is often thought by
doctors that a patient-specific treatment schedule that for example dictates the number of treatment
rounds that are needed for the best long-term result would work better. This number could be both
higher or lower than the current standard of nine rounds, depending on the prediction of how many
rounds will be necessary to eradicate all tumour cells. There are thus possibilities to improve patient
care by finding the optimal number of treatment rounds.

2.4. MRI scans
It is crucial to know as soon as possible if NAT is effective against a tumour as untreated tumours can
easily grow into sizes that are no longer suitable for surgery or other forms of treatment. Thus, if it turns
out that the tumour does not respond well, it is possible to choose a different treatment strategy based
on other components. To evaluate how well a tumour responds to therapy, medical imaging is used like
MRI scans or ultrasound. Conventional MRI scans and ultrasounds can only provide information after
the patient has received several treatment cycles, but as technology has evolved new types of MRI
scans have been invented. Diffusion-weighted MRI (DW-MRI) and dynamic contrast-enhanced MRI
(DCE-MRI) for example can give insights into tumour response after only one cycle of NAT and can
thus be used to predict growth after multiple cycles of treatment [3]. DW-MRI measures the motion of
water within tissue and is used to estimate the apparent diffusion coefficient (ADC) value that describes
the rate of water diffusion in cellular tissue. Based on these ADC values, the number of tumour cells
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for each position in the breast, which is needed for the models, can be estimated. In DCE-MRI a fast
acquisition of images is made while a contrast agent (CA) is inserted into a vein of a patient. As the
name suggests, a contrast agent is used to create more contrast between the different tissues on an
MRI image and thus improves the quality of an MRI image [2]. This means that one DCE scan consists
of multiple images that are made at different time points. The first images are called pre-contrast
images, as they were made before the CA was used and the other images are called post-contrast
images. Note that it depends on the MRI machine and the MRI protocol of the hospital, which dictates
the different MRI settings, how many pre-contrast and post-contrast images should be made. In the
models, DCE-MRI is used to detect a region of interest (ROI) that contains the tumour, determine
certain parameter values and estimate the distribution of drugs in tumour tissue.





3
Mathematical Models

In this chapter, the mathematical model that used in this thesis are presented. Firstly, the Mechani-
cally Coupled Reaction-Diffusion model is explained in Section 3.1. Secondly, the extended version of
this model, called the Drug-Incorporated Mechanically Coupled Reaction-Diffusion model is explained
in Section 3.2. Section 3.3 provides an overview of the variables and parameters, and Section 3.4
provides an overview of the models.

3.1. Mechanically Coupled Reaction-Diffusion Model
Much research has been done into modelling breast cancer tumours and their response to chemother-
apy based on MRI images. In recent years, there has been more attention for patient-specific models
that can make these predictions already after one round of chemotherapy. The tumour density was
in most cases predicted with a classical reaction-diffusion model describing the proliferation (reaction)
and movement (diffusion) of tumour cells. One of the restrictions of this approach is that tumour growth
is only limited by the boundaries of the simulated domain while in practice the stiffness of the surround-
ing tissue plays an important role [17]. For this reason, researchers started looking into biomechanical
models that take the surrounding tissue into account. In 2013, a paper was published that showed that
the Mechanically Coupled Reaction-Diffusion (MCRD) model more accurately predicted the response
of breast cancer tumours to chemotherapy than standard reaction-diffusion models [3]. In this paper,
the available quantitative data from the newest imaging technologies (i.e. DCE-MRI and DW-MRI) was
combined with a reaction-diffusion model that takes the mechanical properties of the different tissue
types into account to predict the tumour density in every position of the breast. The mechanics were
included by restricting the tumour cell diffusion in such a way that tissue with high stiffness (i.e. fibrog-
landular tissue) is less likely to be invaded by the tumour than tissue with low stiffness (i.e. adipose
tissue). In this way, the growth patterns of tumours were more closely simulated compared to the stan-
dard models without restricted cell diffusion.

The first paper of this group of researchers compared 2D non-mechanical and mechanical models
and showed that the latter models the response of a tumour to chemotherapy more accurately. In a
second paper in which the MCRDmodel was applied to breast cancer patients, parameters which were
previously taken from literature were estimated based on patient-specific data to predict pCR [5], and
in a third paper the model was extended to 3D [6].

Let us now summarize the approach before presenting the model. Firstly, the DW- and DCE-MRI
scans are pre-processed to derive the tumour densities and segment the tissue into adipose, fibroglan-
dular and tumorous tissue. The tumour densities consist of the number of tumour cells for each voxel
in the breast. Then, using the MRI scans from the first and second time points, denoted at 𝑡0 and 𝑡1,
the model parameters are calibrated in such a way that there is an accurate prediction from the first to
the second scan. Then the model is used to predict from 𝑡1 to 𝑡2, which is the time point of the last MRI
scan. The modelled and measured tumour densities at 𝑡2 are then compared to evaluate the results.
More details on the modelling pipeline are given in Section 5.2.

7
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The model is described by the following set of coupled partial differential equations:

𝜕𝑁(𝑥, 𝑡)
𝜕𝑡 = ∇ ⋅ (𝐷(𝑥, 𝑡)∇𝑁(𝑥, 𝑡)) + 𝑘(𝑥)𝑁(𝑥, 𝑡)(1 − 𝑁(𝑥, 𝑡)𝜃 ) (3.1)

𝐷(𝑥, 𝑡) = 𝐷0𝑒−𝛾𝜎𝑣𝑚(𝑥,𝑡) (3.2)

∇ ⋅ 𝐺∇�⃗� + ∇( 𝐺
1 − 2𝜈 (∇ ⋅ �⃗�)) − 𝜆∇𝑁(𝑥, 𝑡) = 0 (3.3)

In Equation 3.1 the spatiotemporal rate of change of the tumour cell number is described as the sum of
the random tumour cell movement (diffusion, first term) and the logistic growth (reaction, second term).
In the above formula, 𝑁(𝑥, 𝑡) is the estimated number of tumour cells of voxel 𝑥 at time 𝑡, 𝜃 represents
the maximum tumour density per voxel, which is often also referred to as the carrying capacity and
𝑘(𝑥) is the net tumour proliferation, which represents he difference between cell growth and cell death.
Equation 3.1 is also used in the standard reaction-diffusion models, but the MCRD model is extended
with Equations 3.2 and 3.3 to simulate the mechanical properties of the tissue.

Equation 3.2 defines the tumour cell diffusion term 𝐷, where 𝜎𝑣𝑚 is the von Mises stress reflecting
the interaction between the growing tumour and its environment, 𝛾 is a coupling constant for the von
Mises stress, and 𝐷0 is the diffusion when there is no external stress, so without mechanical restric-
tions. From this definition, it can be seen that as the local von Mises stress increases, there will be
a decrease in tumour cell movement and the tumour cell diffusion coefficient 𝐷 will be lower, thereby
simulating the mechanical effect on the surrounding tissue. The von Mises stress 𝜎𝑣𝑚 is calculated with
the tissue displacement vector �⃗� caused by the growing tumour, which is found by solving Equation
3.3 for �⃗�.

To obtain Equation 3.3, the mechanical equilibrium ∇ ⋅ 𝜎𝑣𝑚(𝑥, 𝑡) − 𝜆 ⋅ ∇𝑁(𝑥, 𝑡) = 0 is rewritten in
terms of the displacement vector �⃗�. This step is made under the assumption that breast tissue is linear
elastic isotropic. Equation 3.3 thus describes a so-called linear elastic isotropic mechanical equilibrium,
on which an external force is acting depending on a coupling constant 𝜆 and the change in tumour cell
number 𝑁(𝑥, 𝑡). The first two terms of Equation 3.3 represent the linear-elastic description of tissue
displacement and the third term represents the local body force generated by the invading tumour [17].
It thus governs the response of the displacement vector �⃗� to the tumour cell growth.
In the equation, 𝐺 = 𝐸

2(1+𝜈) represents the shear modulus, which is an intrinsic mechanical property of
breast and tumour tissue, and 𝐸 and 𝜈 are material properties of Young’s modulus and Poisson’s ratio
respectively. Young’s modulus is the elasticity modulus measuring the stiffness of a material under
a lengthwise force. It corresponds to the ratio between stress and strain. Stress is a quantity that
describes the distribution of internal forces within an object and is often denoted by 𝜎. Normal stress
is stress under a force that is perpendicular to the surface and shear stress is stress under a force
that is parallel to the surface. Strain, on the other hand, is a quantity that describes the deformations
that occur within a body, denoted by 𝜖. Poisson’s ratio measures the Poisson effect that occurs when
a force is applied and the material deforms in perpendicular direction to the force. These two ratios
determine the deformation of the material and are used in a deformation matrix that is used to calculate
the von Mises stress. For this, Hooke’s Law will be applied, which states that stress is the product of
Young’s modulus and strain.
After solving Equation 3.3 for �⃗� = (𝑢, 𝑣, 𝑤) where 𝑢, 𝑣, 𝑤 are the local deformations in 𝑥−, 𝑦−, and
𝑧−direction, the normal strains (𝜖𝑥𝑥 , 𝜖𝑦𝑦 , 𝜖𝑧𝑧) and shear strains (𝜖𝑥𝑦 , 𝜖𝑥𝑧 , 𝜖𝑦𝑧) are calculated. As only
small deformations occur, 𝜖𝑖𝑗 can be calculated as the change in length in direction 𝑖 divided by the
original length in direction 𝑗, as given in Equation 3.4. Note that three-dimensional notation is used
here, but this can be simplified to the two-dimensional case by only considering plane stress [11].

⎛
⎜
⎜

⎝

𝜖𝑥𝑥
𝜖𝑦𝑦
𝜖𝑧𝑧
𝜖𝑥𝑦
𝜖𝑥𝑧
𝜖𝑦𝑧

⎞
⎟
⎟

⎠

=
⎛
⎜
⎜

⎝

𝜕𝑢/𝜕𝑥
𝜕𝑣/𝜕𝑦
𝜕𝑤/𝜕𝑧
𝜕𝑢/𝜕𝑦
𝜕𝑢/𝜕𝑧
𝜕𝑣/𝜕𝑧

⎞
⎟
⎟

⎠

(3.4)
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Now Hooke’s law for linear isotropic materials is applied to calculate the normal and shear stresses.

⎛
⎜
⎜

⎝

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑧𝑧
𝜎𝑥𝑦
𝜎𝑥𝑧
𝜎𝑦𝑧

⎞
⎟
⎟

⎠

= 2𝐺
1 − 2𝜈

⎡
⎢
⎢
⎢
⎢
⎣

1 − 𝜈 𝜈 𝜈 0 0 0
𝜈 1 − 𝜈 𝜈 0 0 0
𝜈 𝜈 1 − 𝜈 0 0 0
0 0 0 1 − 2𝜈 0 0
0 0 0 0 1 − 2𝜈 0
0 0 0 0 0 1 − 2𝜈

⎤
⎥
⎥
⎥
⎥
⎦

⎛
⎜
⎜

⎝

𝜖𝑥𝑥
𝜖𝑦𝑦
𝜖𝑧𝑧
𝜖𝑥𝑦
𝜖𝑥𝑧
𝜖𝑦𝑧

⎞
⎟
⎟

⎠

Finally, the normal and shear stresses are used to calculate the von Mises stress for each voxel.

𝜎𝑣𝑚 = [
1
2((𝜎𝑥𝑥 − 𝜎𝑦𝑦)

2 + (𝜎𝑥𝑥 − 𝜎𝑧𝑧)2 + (𝜎𝑧𝑧 − 𝜎𝑦𝑦)2 + 6(𝜎2𝑥𝑦 + 𝜎2𝑥𝑧 + 𝜎2𝑦𝑧))]
1
2

For the forward prediction the following steps are taken:

1. Calculate ∇𝑁(𝑥, 𝑡)

2. Solve Equation 3.3 for �⃗�

3. Calculate 𝜎𝑣𝑚(𝑥, 𝑡)

4. Update 𝐷(𝑥, 𝑡) with Equation 3.2

5. Calculate 𝑁(𝑥, 𝑡 + Δ𝑡) with Equation 3.1

These steps are also displayed in Figure 3.1.

Figure 3.1: Schematic drawing of the steps taken in one time iteration for the MCRD model.

In this thesis, we will refer to Equation 3.1 as the first or reaction-diffusion equation, Equation 3.2
will be called the second or diffusion coefficient equation and Equation 3.3 will be indicated as the third
or linear-elastic equation.

3.2. Drug-Incorporated Mechanically Coupled Reaction-Diffusion
Model

One of the main limitations of the MCRD model is that it assumes constant proliferation of the tumour
cells, implying NAT to have an unrealistic linear effect [3, 5, 6]. In 2018, a paper on an extension
to the MCRD model was published, which performed better at predicting the tumour cell density at
the conclusion of treatment [7]. In a subsequent paper, different treatment strategies were modelled
and compared [8]. This model, which was referred to as the Drug incorporated Mechanically Coupled
Reaction-Diffusion (DIMCRD) model, takes a non-uniform distribution of drugs into account by adding
an explicit death term in the form of a spatiotemporal 𝐶𝑑𝑟𝑢𝑔𝑡𝑖𝑠𝑠𝑢𝑒(𝑥, 𝑡) term combined with a calibrated
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efficacy term 𝛼 to the reaction-diffusion equation. This results in the system of equations given in
below.

𝜕𝑁(𝑥, 𝑡)
𝜕𝑡 = ∇ ⋅ (𝐷∇𝑁(𝑥, 𝑡)) + 𝑘(𝑥)𝑁(𝑥, 𝑡)(1 − 𝑁(𝑥, 𝑡)𝜃 ) − 𝛼𝐶𝑑𝑟𝑢𝑔𝑡𝑖𝑠𝑠𝑢𝑒(𝑥, 𝑡) (3.5)

𝐷 = 𝐷0𝑒−𝛾𝜎𝑣𝑚(𝑥,𝑡) (3.6)

∇ ⋅ 𝐺∇�⃗� + ∇( 𝐺
1 − 2𝜈 (∇ ⋅ �⃗�)) + 𝜆∇𝑁(𝑥, 𝑡) = 0 (3.7)

The 𝐶𝑑𝑟𝑢𝑔𝑡𝑖𝑠𝑠𝑢𝑒(𝑥, 𝑡) represents the drug concentration in position 𝑥 at time 𝑡, which can be calculated
in various ways based on the DCE-MRI scans. In the first paper of 2018, the extended Kety-Tofts (KT)
model was used. This is a pharmacokinetic model that describes the change in drug concentration be-
tween the tissue and blood plasma spaces, which is why it is called a two-compartment model. It is a
model that is widely used in papers regarding cancer modelling for estimating physiological parameters
describing the perfusion and permeability, analysing the vasculature and estimating drug concentra-
tions in tissue [2, 4, 18–22]. For this model, the assumption is made that chemotherapy spreads out in
the same way as the contrast agent that was used for the DCE-MRI scans.

In Figure 3.2 a schematic drawing is given for the Kety-Tofts model, where 𝐺𝑑 represents the
gadolinium that is part of the contrast agent and 𝑘𝑒𝑝 =

𝐾𝑡𝑟𝑎𝑛𝑠
𝑣𝑒

is the reflux rate of the gadolinium.
𝐾𝑡𝑟𝑎𝑛𝑠(𝑥) is the volume transfer constant that represents the transport rate of the gadolinium from the
blood plasma to the tissue extravascular extracellular space, which is the space between the tissue
cells and the blood vessel. The volume fraction of this extravascular-extracellular space is given by
𝑣𝑒(𝑥) and the volume fraction of the plasma space is given by 𝑣𝑝(𝑥).

Figure 3.2: Schematic drawing of the Kety-Tofts model [23].

By assuming that the behaviour of the drugs are comparable to the behaviour of the contrast agent,
the concentration of drug in the tissue at location 𝑥 at time 𝑡 can be calculated with Equation 3.8, where
𝐶𝑑𝑟𝑢𝑔𝑝𝑙𝑎𝑠𝑚𝑎(𝑡) is defined as the concentration of drug in the plasma at time 𝑡, which is a literature-based
function for the drug that is considered.

𝐶𝑑𝑟𝑢𝑔𝑡𝑖𝑠𝑠𝑢𝑒(𝑥, 𝑡) = 𝐾𝑡𝑟𝑎𝑛𝑠(𝑥)∫
𝑡

0
(𝐶𝑑𝑟𝑢𝑔𝑝𝑙𝑎𝑠𝑚𝑎(𝑠) ⋅ exp ( −

𝐾𝑡𝑟𝑎𝑛𝑠(𝑥)
𝑣𝑒(𝑥)

(𝑡 − 𝑠)))𝑑𝑠 + 𝑣𝑝(𝑥)𝐶𝑑𝑟𝑢𝑔𝑝𝑙𝑎𝑠𝑚𝑎(𝑡) (3.8)

The values of 𝐾𝑡𝑟𝑎𝑛𝑠(𝑥), 𝑣𝑒(𝑥) and 𝑣𝑝(𝑥) are found based on the DCE data, for which more details
will be given in Section 6.1. For the standard Kety-Tofts model, which is also described in various lit-
erature, 𝑣𝑝(𝑥) is put to zero, so the second term in Equation 3.8 turns zero and only the integral remains.
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In a subsequent on the DIMCRD model, a so-called Normalised Blood Volume Map (NBVM) is
scaled by the peak concentration of drug to estimate the drug distribution in each position of the breast,
where the peak concentration is calculated with the standard Kety-Tofts model [8]. Another paper on
the DIMCRD model, also published in 2020, only uses the NBVM and does not use Kety-Tofts [9].
This NBVM is calculated based on the DCE data by subtracting the average pre-contrast signal from
the post-contrast values for each voxel, calculating the area under the curve (AUC) of these baseline-
subtracted signal curves and then normalising by the maximum AUC value found within the tumour.
More details on these steps are provided in Section 6.2. Once the NBVM is calculated, which is denoted
by 𝐶𝑑𝑟𝑢𝑔𝑡𝑖𝑠𝑠𝑢𝑒(𝑥, 𝑡∗), where 𝑡∗ refers to the time of treatment, it is multiplied with an exponential decay term
to simulate the washout of the drug after each dose. Thus, based on the NBVM, 𝐶𝑑𝑟𝑢𝑔𝑡𝑖𝑠𝑠𝑢𝑒(𝑥, 𝑡) can be
calculated with the formula in Equation 3.9, where 𝛽 describes the decay of the drug.

𝐶𝑑𝑟𝑢𝑔𝑡𝑖𝑠𝑠𝑢𝑒(𝑥, 𝑡) = 𝐶
𝑑𝑟𝑢𝑔
𝑡𝑖𝑠𝑠𝑢𝑒(𝑥, 𝑡∗)𝑒−𝛽(𝑡−𝑡

∗) (3.9)

3.3. Overview of variables and parameters
The two tables below contain all the previously mentioned variables and parameters and their units.

Variable Description
𝑁(𝑥, 𝑡) Number of tumour cells in the voxel at position 𝑥 at time 𝑡
𝐷(𝑥, 𝑡) Diffusion coefficient of tumour cells (mm2/day)
𝜎𝑣𝑚 von Mises stress (kPa)
𝐺 Shear modulus due to breast tissue properties (kPa)
�⃗� Displacement vector due to tumour growth (mm)
𝐶𝑑𝑟𝑢𝑔𝑡𝑖𝑠𝑠𝑢𝑒(𝑥, 𝑡) Concentration of drugs in tissue in voxel at position 𝑥 at time 𝑡 (𝜇M)
𝐶𝑑𝑟𝑢𝑔𝑝𝑙𝑎𝑠𝑚𝑎(𝑡) Concentration of drugs in plasma at time 𝑡 (𝜇M)

Table 3.1: Variables and their descriptions

Parameter Description
𝑘(𝑥) Proliferation rate of tumour cells per voxel (1/day)
𝜃 Carrying capacity
𝐷0 Diffusion coefficient without stress (mm2/day)
𝛾 Coupling constant for von Mises stress (1/kPa)
𝐸 Material property of Young’s Modulus (kPa)
𝜈 Material property of Poisson ratio
𝜆 Coupling constant for displacement vector
𝛼 Efficacy of the drug against tumour cells (1/(𝜇𝑀⋅ day))
𝐾𝑡𝑟𝑎𝑛𝑠(𝑥) Volume transfer constant from plasma to tissue space (1/day)
𝑣𝑒(𝑥) Volume fraction of extravascular extracellular space
𝑣𝑝(𝑥) Volume fraction of plasma space
𝛽 Drug decay rate (1/day)

Table 3.2: Parameters and their descriptions

3.4. Model overview
In this thesis, various models will be compared. For clarity, the modelling equations and the abbrevia-
tions for these models are repeated below.

• Reaction-Diffusion model (RD):

𝜕𝑁(𝑥, 𝑡)
𝜕𝑡 = ∇ ⋅ (𝐷∇𝑁(𝑥, 𝑡)) + 𝑘(𝑥)𝑁(𝑥, 𝑡)(1 − 𝑁(𝑥, 𝑡)𝜃 )
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• Mechanically Coupled Reaction-Diffusion model (MCRD):

𝜕𝑁(𝑥, 𝑡)
𝜕𝑡 = ∇ ⋅ (𝐷∇𝑁(𝑥, 𝑡)) + 𝑘(𝑥)𝑁(𝑥, 𝑡)(1 − 𝑁(𝑥, 𝑡)𝜃 )

𝐷 = 𝐷0𝑒−𝛾𝜎𝑣𝑚(𝑥,𝑡)

∇ ⋅ 𝐺∇�⃗� + ∇( 𝐺
1 − 2𝜈 (∇ ⋅ �⃗�)) + 𝜆∇𝑁(𝑥, 𝑡) = 0

• Drug Incorporated Reaction-Diffusion model (DIRD):

𝜕𝑁(𝑥, 𝑡)
𝜕𝑡 = ∇ ⋅ (𝐷∇𝑁(𝑥, 𝑡)) + 𝑘(𝑥)𝑁(𝑥, 𝑡)(1 − 𝑁(𝑥, 𝑡)𝜃 ) − 𝛼𝐶𝑑𝑟𝑢𝑔𝑡𝑖𝑠𝑠𝑢𝑒(𝑥, 𝑡)𝑁(𝑥, 𝑡)

• Drug Incorporated Mechanically Coupled Reaction-Diffusion model (DIMCRD):

𝜕𝑁(𝑥, 𝑡)
𝜕𝑡 = ∇ ⋅ (𝐷∇𝑁(𝑥, 𝑡)) + 𝑘(𝑥)𝑁(𝑥, 𝑡)(1 − 𝑁(𝑥, 𝑡)𝜃 ) − 𝛼𝐶𝑑𝑟𝑢𝑔𝑡𝑖𝑠𝑠𝑢𝑒(𝑥, 𝑡)𝑁(𝑥, 𝑡)

𝐷 = 𝐷0𝑒−𝛾𝜎𝑣𝑚(𝑥,𝑡)

∇ ⋅ 𝐺∇�⃗� + ∇( 𝐺
1 − 2𝜈 (∇ ⋅ �⃗�)) + 𝜆∇𝑁(𝑥, 𝑡) = 0



4
Research questions and methodology

In this chapter, the research plan for this thesis is established. For this, firstly the research question
and the accompanying sub-questions are formulated. Next, the steps that are taken to answer these
questions are summarised.

4.1. Research Questions
As stated in Section 1.3, the research question of this thesis is:

How can the MCRD model be improved to achieve better results in modelling chemotherapy and the
growth of tumours to determine the correct number of treatment rounds in HER2+ breast cancer

patients?

To answer the research question, several sub-questions will be formulated. However, before we
do this, we first make some remarks on what was found in the research by Oudhof, in which the
MCRD model was used to model the tumour growth for HER2+ patients in a similar way to the method
explained in the literature [3, 5, 6]. One of the things that were found in that thesis was that in the
calibration phase the number of parameters was higher than the number of data points. The papers do
not elaborate on how this is solved, and in the solution of Oudhof a Tikhonov regularisation term was
used to overcome the problem, but the value that was given to this regularisation term turned out to have
a big influence on the results. For that reason, we want to investigate how we can reduce the number
of parameters, as for the DIMCRD model there is at least one additional parameter. Furthermore, an
important recommendation from her research was to include the treatment schedule of the patients
to calculate a chemotherapy term for the reaction-diffusion equation. This was motivated by the fact
that in the MCRD model there is a proliferation term that represents both cell growth and cell death
which is constant in time and therefore is not realistic. Another limitation of the implementation was
that one slice of the MRI scan was used because the model was only implemented in 2D, which meant
that it was not possible to include the entire tumour in the model. With this information, the following
sub-questions are posed for this thesis:

1. How can the number of parameters be reduced for the calibration?

2. How should the chemotherapy term be calculated based on the treatment data and MRI scans
of patients?

3. How can the model be extended from 2D to 3D?

4. How accurate are the predictions of the model?

4.2. Methodology
4.2.1. Data
The dataset of this thesis consists of DCE- and DW-MRI scans before (𝑡0), during (𝑡1) and after treat-
ment (𝑡2) of three HER2+ patients that were treated at EMC. These MRI scans have already been

13
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pre-processed by Oudhof and we are thus already provided with the tumour densities at these time
points and the segmentation of adipose, fibroglandular and tumorous tissue. In addition to this data,
we are provided with the metadata of the scans, including the dates of the scans and the acquisition
parameters, and the dates, components and dosages of treatment that were given to these patients.
More information on the data can be found in Section 5.1.

4.2.2. Calibration
As the data is already pre-processed, we can immediately move on to the calibration phase, in which
the parameters are tweaked using a non-linear least squares algorithm to minimise the error between
the modelled tumour density at 𝑡1 and the measured tumour density at that time point. For the spatial
discretisations finite difference discretisations will be used and for the time integration, Forward Euler
will be used. For solving the linear elastic equation a direct solver that was already implemented by
Oudhof is used. In the calibration for the RD and MCRD models, the proliferation rate 𝑘 is determined
for each voxel and 𝐷0 is determined as a global parameter. For the DIRD and DIMCRD models, an
additional global parameter 𝛼 needs to be fitted. This means that for all cases there are more param-
eters than data points. For this reason, we will create a mask such that this proliferation rate is no
longer determined for each voxel, which will decrease both the number of parameters that need to be
estimated and the computation time. In addition, we will look into using another non-linear least square
algorithm with which we can provide bounds on the parameters to prevent unwanted negative values
on some parameters.

4.2.3. Chemotherapy extension
To incorporate the treatment schedule of the patients, we need to calculate the 𝐶𝑑𝑟𝑢𝑔𝑡𝑖𝑠𝑠𝑢𝑒(𝑥, 𝑡) for the DIRD
and DIMCRD model. For this, we will use the standard Kety-Tofts model and the Normalised Blood
Volume Map that were introduced in Section 3.2. We will evaluate and compare these methods and
decide which one is best to use for our dataset. Once this choice is made, we will make a thorough
model analysis to investigate the influence of the parameters and the effect of certain choices. We will
also compare the results of the different models to see if this addition has improved the predictions.

4.2.4. Three-dimensional extension
To extend the model to three dimensions, the discretisations have to be slightly adjusted and the im-
plementation should be updated accordingly. Here, we expect difficulty regarding the computational
complexity of the model, so we will look at different options to decrease the number of computations or
speedup the computations. Hence, several choices have to be made regarding the number of slices
that are considered andwhether each slice should be downsampled or not. These will also be evaluated
and we will evaluate whether this extension has improved the results compared to the two-dimensional
implementation.
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Implementation

In this chapter, information is given on the implementation of the models. Firstly, details are provided
on the data for this thesis in Section 5.1. Next, the modelling pipeline is presented in Section 5.2, which
provides an overview of all the steps that have to be taken to get to a model prediction. In Section 5.3,
the discretisations for the modelling equations are worked out, which are needed to make predictions
with the model based on the tumour densities that are calculated based on the MRI scans. Lastly,
Section 5.4 improvements that were made for the calibration phase are explained.

5.1. Data
For this thesis, three patients that are HER2+, were treated at Erasmus MC and had three MRI scans,
have been selected by dr A. Jager, who is the involved internist-oncologist from EMC. We will refer to
these patients are 𝑝1, 𝑝2 and 𝑝3 as all data has been anonymized. Note that a fourth patient was also
included in the previous research [11], but it turned out that the data for this patient was not suitable: the
tumour had a strange shape and the dimensions of all scans were different, making the pre-processing
harder.

All three patients did not achieve pCR after their treatment, meaning that tumour cells were still
visible on the third MRI scan. Both 𝑝1 and 𝑝2 had multiple tumours, of which the biggest one is chosen
and selected for the model as the other tumours were no longer visible on the scan at 𝑡2. The tumour
of 𝑝3 was oddly shaped and did not shrink centrally.

Table 5.1 provides information on the MRI acquisition parameters that were used for the scans at
EMC. This info was retrieved from either the metadata or the MRI imaging protocol of EMC. All scans
were made with a magnetic field strength of 1.5T and for the DCE images 8 scans were made: 2
pre-contrast and 6 post-contrast, where 15 mL ProHance was used as a gadolinium-based contrast
agent. Approximately every 70 seconds a scan was made. The first scan of 𝑝2 has been made at
a different hospital and thus acquisition parameters are different from the ones of EMC. The corre-
sponding acquisition parameters can be found in Appendix A.1. The information on the type of scan
sequence, repetition time, echo time and flip angle will be used in Chapter 6to calculate the concentra-
tion of chemotherapy based on the DCE scans. The size of the voxels and the acquisition matrix are
important for the pre-processing steps.

DW-MRI DCE-MRI
Scan sequence Spin Echo Vibrant
Repetition time (ms) 5468 4.724
Echo time (ms) 68.6 2.208
Flip angle (degrees) 90 10
Voxel dimension (mm) 1.4 × 1.4 0.66 × 0.66
Acquisition matrix 256 ×256 512 × 512

Table 5.1: MRI acquisition parameters

15
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In Table 5.2 the voxel length and the number of slices in 𝑧-dimension are stated. It can be seen that
these numbers vary quite a lot between the different scans and patients, especially for the DCE scans,
which is why they have been summarised below. This information is important for the pre-processing
and the three-dimensional implementation of the model. After pre-processing, the tumour densities for
𝑝1 and 𝑝3 are represented by arrays of size (180, 180, 120), for 𝑝2 this is an array of size (210, 210, 86).
Each of the 120 or 86 slices is then downsampled by a factor three. At each time point, the slice with
the highest number of tumour cells is chosen as measured data for the two-dimensional model.

DW DCE
𝑡0 𝑡1 𝑡2 𝑡0 𝑡1 𝑡2

Voxel length (mm) 𝑝1 6.5 6.5 6.5 1.6 1.6 2.2
𝑝2 4.8 6.5 6.5 0.9 2.2 2.2
𝑝3 6.5 6.5 6.5 1.6 1.6 2.2

Number of slices 𝑝1 32 32 32 120 120 86
𝑝2 34 32 32 160 86 86
𝑝3 32 32 32 120 120 86

Table 5.2: Length of the voxel in 𝑧-direction and the number of slices in 𝑧-direction for all patients and scans.

All patients have been treated with the same type of treatment schedule consisting of paclitaxel,
carboplatin, trastuzumab and pertuzumab. As explained in Section 2.3, pertuzumab and trastuzumab
are immunotherapy often used in the treatment of HER2+ patients, and carboplatin and paclitaxel are
chemotherapy medications that are used to treat various forms of cancer. For 𝑝1, Figure 5.1 displays
the treatment schedule. It can be seen that every three weeks a mix of all four drugs is given. After the
first week, additional paclitaxel is given, which is followed by a week of no drugs. Note that the amount
of administered drugs in each mix varies and that the final treatment was given after the last MRI scan.
The treatment schedule for the other patients is similar.

Figure 5.1: Treatment schedule for 𝑝1. The dates of the MRI scans are shown by vertical lines in green.

5.2. Modelling pipeline
To give an overview of all the steps that are taken to get from MRI scans and a treatment schedule to
a model prediction, a modelling pipeline has been formulated. It is described below and illustrated in
Figure 5.2.

• Registration: Using both rigid and non-rigid registration, the images from different sessions are
aligned to correct for body movements.
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• Tissue segmentation: With the help of a radiologist, the tumour is segmented from the surround-
ing tissue. Next, global histogram equalization is used to distinguish between fibroglandular and
adipose tissue.

• Calculating tumour densities: The tumour segmentation and calculated ADC values are com-
bined to determine the tumour densities, denoted by �̂�(𝑥, 𝑡0), �̂�(𝑥, 𝑡1) and �̂�(𝑥, 𝑡2), for the three
time points 𝑡0, 𝑡1 and 𝑡2.

• Calculating chemotherapy concentrations: The concentration of drug at each time 𝑡 and in
each voxel 𝑥 is calculated using the DCE scans and the treatment schedule

• Calibration: Based on initial guesses, the optimal value for the patient-specific parameters
𝑘(𝑥), 𝐷0 and 𝛼 are determined by running the model forward in time from 𝑡0 to 𝑡1 and comparing
the estimated tumour density 𝑁(𝑥, 𝑡1) with the actual tumour density �̂�(𝑥, 𝑡1).

• Evaluation: The model is run from 𝑡1 to 𝑡2, yielding 𝑁(𝑥, 𝑡2) which is compared to �̂�(𝑥, 𝑡2) to
evaluate the results.

Figure 5.2: Modelling pipeline

The pre-processing steps consist of registration, tissue segmentation and calculating the tumour
densities. More information on these pre-processing steps is given in Appendix A.2 and in the work of
Oudhof [11]. As the data has already been pre-processed, this work is based on the calculated tumour
densities and tissue segmentation, which are shown for 𝑝1 in Figure 5.3 below.

5.3. Discretisations
For the forward calculations in time in the calibration and evaluation phases, spatial and temporal dis-
cretisations will be used to approximate the continuous variables. In this section, the discretisations
for the modelling equations are worked out. In the literature, different methods are used: some papers
use the Finite Difference Method (FDM) for the spatial discretisation [7–9, 14, 24] but a few others use
the Finite Element Method (FEM) [3, 5, 6] which is more complex. In this thesis, the Finite Difference
Method as described in Vuik et al. (2016), Chapter 7 and van Kan et al. (2014) Chapter 3 is applied
[25, 26]. This is a technique that uses finite differences to approximate derivatives to solve differential
equations. The discretisations in this chapter are given in two dimensions but they can easily be ex-
tended to three dimensions.



18 5. Implementation

(a) �̂�(𝑥, 𝑡0) (b) �̂�(𝑥, 𝑡1) (c) �̂�(𝑥, 𝑡2)
(d) Segmentation

Figure 5.3: Tumour densities and segmentation for 𝑝1. The left three images show the measured tumour densities for 𝑝1 on 𝑡0 , 𝑡1
and 𝑡2 from left to right. The right image shows the segmentation, where the tumour is displayed in yellow, the fibroglandular
tissue in green and the adipose tissue in purple.

5.3.1. Reaction-Diffusion equation
Spatial discretisation
As a first step for the spatial discretisation of Equation 3.5, the right-hand side is rewritten, where for
simplicity 𝐶 = 𝐶𝑑𝑟𝑢𝑔𝑡𝑖𝑠𝑠𝑢𝑒 denotes the concentration of drug in the tissue.

∇ ⋅ (𝐷∇𝑁) + 𝑘𝑁(1 − 𝑁𝜃 ) − 𝛼𝐶𝑁 =
𝜕
𝜕𝑥(𝐷

𝜕𝑁
𝜕𝑥 ) +

𝜕
𝜕𝑦(𝐷

𝜕𝑁
𝜕𝑦 ) + 𝑘𝑁(1 −

𝑁
𝜃 ) − 𝛼𝐶𝑁

For the discretisation, the centres of the pixels of the MRI images are taken as grid points, so a
cell-centred approach is used to form a 𝑛𝑥 × 𝑛𝑦 grid. These grid points make up the mathematical
domain which is considered two-dimensional for now. For notation, let us introduce 𝑁𝑖,𝑗 = 𝑁(𝑥𝑖 , 𝑦𝑗)
which is the tumour density in point (𝑥𝑖 , 𝑦𝑗). In a similar way 𝐷𝑖,𝑗 , 𝑘𝑖,𝑗 and 𝐶𝑖,𝑗 are defined.

Next, the partial derivatives are discretised using repeated central differences. For this, we write
𝑀(𝑥, 𝑦) = 𝐷(𝑥, 𝑦)𝜕𝑁(𝑥,𝑦)𝜕𝑥 and apply central difference for𝑀𝑖,𝑗 using midpoints 𝑥𝑖− 12

and 𝑥𝑖+ 12
. This yields

𝜕𝑀𝑖,𝑗
𝜕𝑥 =

𝑀𝑖+ 12 ,𝑗
−𝑀𝑖− 12 ,𝑗
Δ𝑥 + 𝒪(Δ𝑥2).

Replacing 𝑀𝑖,𝑗 by 𝐷𝑖,𝑗
𝜕𝑁𝑖,𝑗
𝜕𝑥 thus gives the following result:

𝜕
𝜕𝑥(𝐷𝑖,𝑗

𝜕𝑁𝑖,𝑗
𝜕𝑥 ) =

𝐷𝑖+ 12 ,𝑗
𝜕𝑁𝑖+ 12 ,𝑗
𝜕𝑥 − 𝐷𝑖− 12 ,𝑗

𝜕𝑁𝑖− 12 ,𝑗
𝜕𝑥

Δ𝑥 + 𝒪(Δ𝑥2).

The case of 𝜕
𝜕𝑦 (𝐷𝑖,𝑗

𝜕𝑁𝑖,𝑗
𝜕𝑦 ) is similar. Using this information and truncating the partial derivatives

yields the discretisation of Equation 3.5.

𝜕𝑁𝑖,𝑗
𝜕𝑡 =

𝐷𝑖+ 12 ,𝑗
𝜕𝑁𝑖+ 12 ,𝑗
𝜕𝑥 − 𝐷𝑖− 12 ,𝑗

𝜕𝑁𝑖− 12 ,𝑗
𝜕𝑥

Δ𝑥 +
𝐷𝑖,𝑗+ 12

𝜕𝑁𝑖,𝑗+ 12
𝜕𝑦 − 𝐷𝑖,𝑗− 12

𝜕𝑁𝑖,𝑗− 12
𝜕𝑦

Δ𝑦 +𝑘𝑖,𝑗𝑁𝑖,𝑗(1−
𝑁𝑖,𝑗
𝜃 )−𝛼𝐶𝑖,𝑗𝑁𝑖.𝑗 (5.1)

In the next step, central differences are again applied for the partial derivatives that are still present
in Equation 5.1 and the values for the diffusion coefficient are approximated using the known values in
the grid points.
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𝜕𝑁𝑖+ 12 ,𝑗
𝜕𝑥 =

𝑁𝑖+1,𝑗 − 𝑁𝑖,𝑗
Δ𝑥 + 𝒪(Δ𝑥2) 𝐷𝑖+ 12 ,𝑗

≈
𝐷𝑖+1,𝑗 + 𝐷𝑖,𝑗

2
𝜕𝑁𝑖− 12 ,𝑗
𝜕𝑥 =

𝑁𝑖,𝑗 − 𝑁𝑖−1,𝑗
Δ𝑥 + 𝒪(Δ𝑥2) 𝐷𝑖− 12 ,𝑗

≈
𝐷𝑖,𝑗 + 𝐷𝑖−1,𝑗

2
𝜕𝑁𝑖,𝑗+ 12
𝜕𝑦 =

𝑁𝑖,𝑗+1 − 𝑁𝑖,𝑗
Δ𝑦 + 𝒪(Δ𝑦2) 𝐷𝑖,𝑗+ 12

≈
𝐷𝑖,𝑗+1 + 𝐷𝑖,𝑗

2
𝜕𝑁𝑖,𝑗− 12
𝜕𝑦 =

𝑁𝑖,𝑗 − 𝑁𝑖,𝑗−1
Δ𝑦 + 𝒪(Δ𝑦2) 𝐷𝑖,𝑗− 12

≈
𝐷𝑖,𝑗 + 𝐷𝑖,𝑗−1

2

Finally, using all of the above information, it can be seen that the discretised form of Equation 3.5
can be written in the form 𝜕N

𝜕𝑡 = 𝐴N+ 𝑓(N), where 𝐴 consists of the coefficients and

𝑓(𝑁𝑖,𝑗) = 𝑘𝑖,𝑗𝑁𝑖,𝑗(1 −
𝑁𝑖,𝑗
𝜃 ) − 𝛼𝐶𝑖,𝑗𝑁𝑖.𝑗. For this matrix-vector notation, it is necessary to introduce a

global ordering of the nodes. This is done by assigning to node (𝑖, 𝑗) the global index 𝐼 = 𝑖 + 𝑗 ⋅ 𝑛𝑥.
Homogeneous Neumann boundary conditions are imposed for both the boundary of the breast and the
boundaries of the grid, meaning there is no diffusive flux of tumour cells on the boundaries. This was
also done in the literature [3, 7–9, 11], but it should be noted that this assumes that the tumour cells do
not invade the chest wall.

Time discretisation
Most of the papers based on some version of MCRD use a fully explicit method for the time integration
[3, 6, 9, 14, 24, 27]. This explicit method, which is often also called the Forward Euler Method, uses the
so-called left rectangle rule for approximation of the integral. For a non-linear equation 𝜕N

𝜕𝑡 = 𝐴N+𝑓(N)
this leads to Equation 5.2, where the time domain is discretised into 𝑚 = 0, ..., 𝑛𝑡 and thus N0 = N(𝑡0).

N𝑚+1 = N𝑚 + Δ𝑡(𝐴N𝑚 + 𝑓(N𝑚)) (5.2)
For the reaction-diffusion equation, this leads to Equation 5.3.

𝑁𝑚+1𝑖,𝑗 = 𝑁𝑚𝑖,𝑗 + Δ𝑡(
1

2Δ𝑥2((𝐷𝑖,𝑗 + 𝐷𝑖−1,𝑗)𝑁
𝑚
𝑖−1,𝑗 − (𝐷𝑖−1,𝑗 + 2𝐷𝑖,𝑗 + 𝐷𝑖+1,𝑗)𝑁𝑚𝑖,𝑗 + (𝐷𝑖,𝑗 + 𝐷𝑖+1,𝑗)𝑁𝑚𝑖+1,𝑗)

+ 1
2Δ𝑦2((𝐷𝑖,𝑗 + 𝐷𝑖,𝑗−1)𝑁

𝑚
𝑖,𝑗−1 − (𝐷𝑖,𝑗−1 + 2𝐷𝑖,𝑗 + 𝐷𝑖,𝑗+1)𝑁𝑚𝑖,𝑗 + (𝐷𝑖,𝑗 + 𝐷𝑖,𝑗+1)𝑁𝑚𝑖,𝑗+1)

+ 𝑘𝑖,𝑗𝑁𝑚𝑖,𝑗(1 −
𝑁𝑚𝑖,𝑗
𝜃 ) − 𝛼𝐶𝑚𝑖,𝑗𝑁𝑚𝑖.𝑗)

(5.3)

The main advantage of this method is that it is fully explicit: the values of the next time step can
easily be calculated without solving a big system of equations, which is usually the case for implicit
methods. The downside however is that this is a first-order approximation, meaning that the local
truncation error is of order Δ𝑡. The local truncation error is the new error that is made in each time step.
In addition, it is conditionally stable, meaning that this method is only stable for certain values of Δ𝑡 [25].
Because this restriction leads to a small time step, 𝑛𝑡 will be big, so many computations are needed
to predict the model forwards in time. For the reaction-diffusion equation that is used in this thesis, the
stability criterion is given by Equation 5.4. The derivation for this bound is given in Appendix A.3.

Δ𝑡 ≤ 2
4𝐷max(

1
Δ𝑥2 +

1
Δ𝑦2 ) + |𝑘|max + 𝛼𝐶max

(5.4)

Note that this bound depends on the calibrated parameters, but for the calibration a time step Δ𝑡 should
be defined. Therefore, in the simulations by default Δ𝑡 = 0.5 is chosen, which means that one time
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step covers half a day. Then, after calibration, it is checked with the parameters if this Δ𝑡 satisfies the
bound that was calculated. In most cases it does, but when it does not, Δ𝑡 is halved and calibration
is run again, after which the bound is checked again. In this way, it is ensured that there is numerical
stability.

5.3.2. Linear-Elastic equation
Now let us consider Equation 3.7, which we first rewrite by working out the inner products and vector
notations. Note that we write �⃗� = (𝑢, 𝑣), so 𝑢 refers to the first component of �⃗� and 𝑣 refers to the
second component.

𝜕
𝜕𝑥(𝐺

𝜕𝑢
𝜕𝑥 ) +

𝜕
𝜕𝑦(𝐺

𝜕𝑢
𝜕𝑦) +

1
1 − 2𝜈

𝜕
𝜕𝑥(𝐺(

𝜕𝑢
𝜕𝑥 +

𝜕𝑣
𝜕𝑦)) − 𝜆

𝜕𝑁
𝜕𝑥 = 0 (5.5)

𝜕
𝜕𝑥(𝐺

𝜕𝑣
𝜕𝑥 ) +

𝜕
𝜕𝑦(𝐺

𝜕𝑣
𝜕𝑦) +

1
1 − 2𝜈

𝜕
𝜕𝑦(𝐺(

𝜕𝑢
𝜕𝑥 +

𝜕𝑣
𝜕𝑦)) − 𝜆

𝜕𝑁
𝜕𝑦 = 0 (5.6)

We now again discretise and use repeated central differences to approximate the partial derivatives.

𝐺𝑖+ 12 ,𝑗
𝜕𝑢𝑖+ 12 ,𝑗
𝜕𝑥 − 𝐺𝑖− 12 ,𝑗

𝜕𝑢𝑖− 12 ,𝑗
𝜕𝑥

Δ𝑥 +
𝐺𝑖,𝑗+ 12

𝜕𝑢𝑖,𝑗+ 12
𝜕𝑦 − 𝐺𝑖,𝑗− 12

𝜕𝑢𝑖,𝑗− 12
𝜕𝑦

Δ𝑦

+ 1
1 − 2𝜈

𝐺𝑖+ 12 ,𝑗
𝜕𝑢𝑖+ 12 ,𝑗
𝜕𝑥 − 𝐺𝑖− 12 ,𝑗

𝜕𝑢𝑖− 12 ,𝑗
𝜕𝑥 + 𝐺𝑖+ 12 ,𝑗

𝜕𝑣𝑖+ 12 ,𝑗
𝜕𝑦 − 𝐺𝑖− 12 ,𝑗

𝜕𝑣𝑖− 12 ,𝑗
𝜕𝑦

Δ𝑥 − 𝜆
𝜕𝑁𝑖,𝑗
𝜕𝑥 = 0

(5.7)

𝐺𝑖+ 12 ,𝑗
𝜕𝑣𝑖+ 12 ,𝑗
𝜕𝑥 − 𝐺𝑖− 12 ,𝑗

𝜕𝑣𝑖− 12 ,𝑗
𝜕𝑥

Δ𝑥 +
𝐺𝑖,𝑗+ 12

𝜕𝑣𝑖,𝑗+ 12
𝜕𝑦 − 𝐺𝑖,𝑗− 12

𝜕𝑣𝑖,𝑗− 12
𝜕𝑦

Δ𝑦

+ 1
1 − 2𝜈

𝐺𝑖,𝑗+ 12
𝜕𝑢𝑖,𝑗+ 12
𝜕𝑥 − 𝐺𝑖,𝑗− 12

𝜕𝑢𝑖,𝑗− 12
𝜕𝑥 + 𝐺𝑖,𝑗+ 12

𝜕𝑣𝑖,𝑗+ 12
𝜕𝑦 − 𝐺𝑖,𝑗− 12

𝜕𝑣𝑖,𝑗− 12
𝜕𝑦

Δ𝑦 − 𝜆
𝜕𝑁𝑖,𝑗
𝜕𝑦 = 0

(5.8)

𝜕𝑢𝑖+ 12 ,𝑗
𝜕𝑥 =

𝑢𝑖+1,𝑗 − 𝑢𝑖,𝑗
Δ𝑥 + 𝒪(Δ𝑥2)

𝜕𝑣𝑖+ 12 ,𝑗
𝜕𝑥 =

𝑣𝑖+1,𝑗 − 𝑣𝑖,𝑗
Δ𝑥 + 𝒪(Δ𝑥2)

𝜕𝑢𝑖− 12 ,𝑗
𝜕𝑥 =

𝑢𝑖,𝑗 − 𝑢𝑖−1,𝑗
Δ𝑥 + 𝒪(Δ𝑥2)

𝜕𝑣𝑖− 12 ,𝑗
𝜕𝑥 =

𝑣𝑖,𝑗 − 𝑣𝑖−1,𝑗
Δ𝑥 + 𝒪(Δ𝑥2)

𝜕𝑢𝑖,𝑗+ 12
𝜕𝑦 =

𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗
Δ𝑦 + 𝒪(Δ𝑦2)

𝜕𝑣𝑖,𝑗+ 12
𝜕𝑦 =

𝑣𝑖,𝑗+1 − 𝑣𝑖,𝑗
Δ𝑦 + 𝒪(Δ𝑦2)

𝜕𝑢𝑖,𝑗− 12
𝜕𝑦 =

𝑢𝑖,𝑗 − 𝑢𝑖,𝑗−1
Δ𝑦 + 𝒪(Δ𝑦2)

𝜕𝑣𝑖,𝑗− 12
𝜕𝑦 =

𝑣𝑖,𝑗 − 𝑣𝑖,𝑗−1
Δ𝑦 + 𝒪(Δ𝑦2)

𝜕𝑢𝑖,𝑗
𝜕𝑥 =

𝑢𝑖+1,𝑗 − 𝑢𝑖−1,𝑗
2Δ𝑥 + 𝒪(Δ𝑥2)

𝜕𝑣𝑖,𝑗
𝜕𝑦 =

𝑣𝑖,𝑗+1 − 𝑣𝑖,𝑗−1
2Δ𝑦 + 𝒪(Δ𝑦2)

𝐺𝑖+ 12 ,𝑗
≈
𝐺𝑖+1,𝑗 + 𝐺𝑖,𝑗

2
𝜕𝐺𝑖,𝑗
𝜕𝑥 =

𝐺𝑖+1,𝑗 − 𝐺𝑖−1,𝑗
2Δ𝑥 + 𝒪(Δ𝑥2)

𝐺𝑖− 12 ,𝑗
≈
𝐺𝑖,𝑗 + 𝐺𝑖−1,𝑗

2
𝜕𝐺𝑖,𝑗
𝜕𝑦 =

𝐺𝑖,𝑗+1 − 𝐺𝑖,𝑗−1
2Δ𝑦 + 𝒪(Δ𝑦2)

𝐺𝑖,𝑗+ 12
≈
𝐺𝑖,𝑗+1 + 𝐺𝑖,𝑗

2
𝜕𝑁𝑖,𝑗
𝜕𝑥 =

𝑁𝑖+1,𝑗 − 𝑁𝑖−1,𝑗
2Δ𝑥 + 𝒪(Δ𝑥2)

𝐺𝑖,𝑗− 12
≈
𝐺𝑖,𝑗 + 𝐺𝑖,𝑗−1

2
𝜕𝑁𝑖,𝑗
𝜕𝑦 =

𝑁𝑖,𝑗+1 − 𝑁𝑖,𝑗−1
2Δ𝑦 + 𝒪(Δ𝑦2)
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After working out the equations and approximating all the partial derivatives, Equations 5.7 and 5.8
can be written as a linear system of equations: 𝐵u = 𝑔(N), where 𝐵 is a matrix containing all the
coefficients for 𝑢 and 𝑣, and 𝑔(N) = 𝜆∇N. This system is solved with a direct solver and was already
implemented by Oudhof [11].

5.4. Calibration
For the parameter calibration, a non-linear least squares algorithm is used. This means the sum of the
squared differences between the estimated and measured tumour cell numbers is minimised.

argmin𝛽||𝑁𝛽(𝑥, 𝑡1) − �̂�(𝑥, 𝑡1)||22 for 𝑥 ∈ 𝒳,

where 𝒳 is the set of grid points, 𝛽 = (𝐷0, 𝛼, 𝑘1, … , 𝑘𝑛), 𝑁𝛽(𝑥, 𝑡1) is the result of predicting forward
from 𝑡0 to 𝑡1 with the parameter estimate 𝛽 and �̂�(𝑥, 𝑡1) is the measured tumour cell density at 𝑡1. The
calibration phase is in general the bottleneck regarding the computation time. One iteration consists of
updating the parameters, calculating forward from 𝑡0 to 𝑡1 and comparing the outcome to the measured
tumour density. If the convergence criterion is met, then the calibration is stopped. Else, the parame-
ters are updated again and the algorithm continues.

As stated in Chapter 4, issues arise in the calibration phase as the number of parameters is higher
than the number of data points. This section explains how these issues were solved and which non-
linear least squares algorithm was used for calibration.

5.4.1. Parameter reduction
To speed up calibration, in the implementation of Oudhof [11] a region of interest (ROI) was defined
around the tumour, which will be denoted by 𝒦. Within that region of interest, the value of 𝑘(𝑥) is
determined and outside of that region the values are set to zero, meaning 𝛽 = (𝐷0, 𝛼, 𝑘1, … , 𝑘𝑛𝑘), where
𝑛𝑘 < 𝑛. The minimisation problem is thus given by:

argmin𝛽||𝑁𝛽(𝑥, 𝑡1) − �̂�(𝑥, 𝑡1)||22 for 𝑥 ∈ 𝒦
It is logical to assume the proliferation is zero outside of this ROI as the tumour will only grow in the

nearby area around the tumour. This indeed speeds up computation, but one problem still remains:
the number of unknowns is bigger than the number of data points. Suppose in the ROI there are 𝑛𝑘
points, then in the calibration for each of those 𝑛𝑘 points a value for 𝑘(𝑥) needs to be found. In addition,
the global parameters 𝐷0 and 𝛼 need to be determined. This means there are 𝑛𝑘 values to determine
𝑛𝑘 + 2 parameters. In the work by Oudhof [11], there was one parameter less as the chemotherapy
was not included, so 𝛼 did not need to be estimated. There, the problem was solved by introducing a
Tikhonov regularisation term to make sure that the problem was no longer ill-posed, which led to the
minimisation problem given below.

argmin𝛽(||𝑁𝛽(𝑥, 𝑡1) − �̂�(𝑥, 𝑡1)||22 + ||Λ𝛽0||22) for 𝑥 ∈ 𝒦
Here, Λ denotes the Tikhonov regularisation term and 𝛽0 = 𝐷0. In this way the number of parame-
ters and the number of data points were equal. With this addition to the minimisation formula, 𝐷0 is
forced to be small when Λ is big and 𝐷0 can be calibrated more freely when Λ is small. The downside of
this method was that the Λ still had to be estimated and the choice for Λ influenced the results quite a lot.

For the chemotherapy extension in this thesis, there is however an additional global parameters,
so there are two more unknowns than data points. If the same method would be applied, two Tikhonov
regularisation terms would have to be introduced, Λ0 and Λ1 and the minimisation problem would be
as follows:

argmin𝛽(||𝑁𝛽(𝑥, 𝑡1) − �̂�(𝑥, 𝑡1)||22 + ||Λ0𝛽0||22 + ||Λ1𝛽1||22) for 𝑥 ∈ 𝒦
Once again, different choices of the combination of Λ0 and Λ1 led to different results and thus it was
decided to use a different method to solve the issue by reducing the number of parameters.
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There are several options for this. One option, for example, would be to take literature values for
𝛼 and 𝐷0 and in this way make sure the number of unknowns equals the number of knowns. In that
case, the proliferation rate, which is calibrated per voxel, would be the only value that is calibrated
and thus differs for each patient. These parameters 𝐷0 and 𝛼 are however global parameters and are
thus important to determine for each patient. Because of this, the idea emerged to try to reduce the
number of voxels for which the proliferation rate has to be determined and thus define a reduced mask
with fewer voxels in it. For this, it was observed in previous research [11] that the proliferation map
returned by the calibration shows a smooth distribution of the values with no or little harsh boundaries.
Therefore, one could say that the proliferation rate in one voxel is approximately equal to the average
of its neighbours. This idea is central to the way that the reduced mask was set up.

The reduced mask 𝒦𝑟𝑒𝑑 is defined within the ROI, meaning it is a subset of the original mask 𝒦,
where it includes all the points on the boundary of the ROI and in the interior of the ROI a chessboard
structure is used. It is constructed as follows:
for 𝑥𝑖,𝑗 ∈ 𝒳 do

if 𝑥𝑖,𝑗 ∈ 𝜕𝒦 then
𝑥𝑖,𝑗 ∈ 𝒦𝑟𝑒𝑑

else
if (𝑖 mod 2 = 0 ∧ 𝑗 mod 2 = 0) ∨ (𝑖 mod 2 = 1 ∧ 𝑗 mod 2 = 1) then

𝑥𝑖,𝑗 ∈ 𝒦𝑟𝑒𝑑
Theminimisation problem can then bewritten in terms of this reducedmask, where 𝛽 = (𝐷0, 𝛼, 𝑘1, … , 𝑘�̂�𝑘)

and �̂�𝑘 represents the number of points in 𝒦𝑟𝑒𝑑.

argmin𝛽||𝑁𝛽(𝑥, 𝑡1) − �̂�(𝑥, 𝑡1)||22 for 𝑥 ∈ 𝒦𝑟𝑒𝑑
For the voxels that are within the ROI but are not included in the reduced mask, 𝑘(𝑥) is determined by
taking the average of the neighbouring voxels that were included in the reduced mask. Because of the
way that this mask was set up, these four neighbouring voxels that are part of the reduced mask will
always exist. During calibration, the following steps are used to determine the proliferation rate value
for each position in the breast.
for 𝑥𝑖,𝑗 ∈ 𝒳 do

if 𝑥𝑖,𝑗 ∈ 𝒦𝑟𝑒𝑑 then
𝑘𝑖,𝑗 = 𝛽(𝑘𝑖,𝑗)

else
if 𝑥𝑖,𝑗 ∉ 𝒦𝑟𝑒𝑑 ∧ 𝑥𝑖,𝑗 ∈ 𝒦 then

𝑘𝑖,𝑗 =
1
4(𝛽(𝑘𝑖−1,𝑗) + 𝛽(𝑘𝑖+1,𝑗) + 𝛽(𝑘𝑖,𝑗−1) + 𝛽(𝑘𝑖,𝑗+1))

else
𝑘𝑖,𝑗 = 0

In Figure 5.4 the ROI 𝒦 and the reduced mask 𝒦𝑟𝑒𝑑 is displayed in yellow for 𝑝1.

(a) 𝒦 (b) 𝒦𝑟𝑒𝑑

Figure 5.4: Masks for parameter calibration for 𝑝1.



5.4. Calibration 23

Note that at first there were 𝑛𝑘 data points and 𝑛𝑘 + 2 parameters to be estimated. With this mask,
there are 𝑛𝑘 data points and �̂�𝑘 + 2 parameters, with �̂�𝑘 + 2 < 𝑛𝑘. In this way, there are thus fewer
parameters than there are data points.

5.4.2. Non-linear least squares algorithm
There are different choices for the non-linear least squares optimisation algorithm. In quite a lot of
papers, the Levenberg-Marquardt (LM) algorithm is used for parameter calibration [3, 7–9, 14, 17].
However, in this thesis the Trust Region Reflective (TRF) algorithm, which is suitable for large sparse
problems, is used instead. This algorithm is just like LM one of the methods that can be chosen in the
least_squares function of the scipy.optimize library in Python.

Let us now shortly explain the workings of the algorithm to find the optimal parameters before we
motive this choice. Suppose that the objective function, i.e. the function that should be minimised, is
𝑓(𝛽), where 𝛽 represents the parameters. Then 𝑓(𝛽) is approximated by a quadratic function 𝑞(𝑠) that
simulates the behaviour of 𝑓(𝛽) around the current point 𝛽 in a neighbourhood 𝑁, which is called the
trust-region. The so-called trust-region sub-problem consists of computing a trial step 𝑠 by minimising
the area 𝑁. Then, if 𝑓(𝛽 + 𝑠) < 𝑓(𝛽), 𝛽 is updated to be 𝛽 + 𝑠 and the step is successful and the trust
region remains the same. However, if the step is unsuccessful, then 𝛽 stays the same and the trust
region 𝑁 is reduced for the next step [28]. More details on the exact workings of the algorithm can be
found in [29].

This algorithmwas chosen instead of LM as it was usually faster in finding the optimised parameters.
Another big advantage of TRF is that bounds can be given to the parameters. In general, no bounds
were given, but when the calibration yielded a negative value for either 𝐷0 or 𝛼, then the calibration
was run again with a lower bound for these parameters.





6
Chemotherapy extension

In this chapter, two methods to calculate the chemotherapy term are introduced. Firstly, with the stan-
dard Kety-Tofts model in Section 6.1 and secondly with the Normalised Blood Volume Map in Section
6.2, followed by a comparison in Section 6.3. Next, an extensive model analysis is made in Section
6.4 and lastly, the results for all models and patients are presented in Section 6.5.

6.1. Kety-Tofts model
As explained in Section 3.2, one of the options to calculate the chemotherapy term is to use the standard
or extended Kety-Tofts model. For simplicity, only the standard Kety-Tofts (KT) model (i.e. the model
with 𝑣𝑝 = 0) is used in this thesis. This section explains how this model can be used to estimate the
concentration of chemotherapy in the tissue.

6.1.1. Overview of steps
The parameters for the basic model are 𝐾𝑡𝑟𝑎𝑛𝑠 and 𝑣𝑒, which need to be determined for each voxel. To
calculate these parameters, information is needed on the concentration of contrast agent (CA) found
in the plasma and in the tissue, as these are used to determine the parameters with which the con-
centration of drug in the tissue is estimated. This means that the DCE-MRI images are used to derive
𝐶𝐶𝐴𝑝𝑙𝑎𝑠𝑚𝑎(𝑡) and based on the literature a function is chosen for 𝐶𝐶𝐴𝑡𝑖𝑠𝑠𝑢𝑒(𝑡), which is also called the arterial
input function (AIF) [4, 19]. Once these are determined, the values can be fit to Equation 6.1 for each
voxel to yield parameters estimates 𝐾𝑡𝑟𝑎𝑛𝑠(𝑥) and 𝑣𝑒(𝑥).

𝐶𝐶𝐴𝑡𝑖𝑠𝑠𝑢𝑒(𝑡) = 𝐾𝑡𝑟𝑎𝑛𝑠∫
𝑡

0
(𝐶𝐶𝐴𝑝𝑙𝑎𝑠𝑚𝑎(𝑠) ⋅ exp ( −

𝐾𝑡𝑟𝑎𝑛𝑠
𝑣𝑒

(𝑡 − 𝑠)))𝑑𝑠 (6.1)

After finding reasonable parameter estimates, the next step is to determine 𝐶𝑑𝑟𝑢𝑔𝑝𝑙𝑎𝑠𝑚𝑎(𝑡) based on
the literature and the treatment schedule. Next, the parameters and these values are combined to
calculate 𝐶𝑑𝑟𝑢𝑔𝑡𝑖𝑠𝑠𝑢𝑒(𝑥, 𝑡) with Equation 6.2.

𝐶𝑑𝑟𝑢𝑔𝑡𝑖𝑠𝑠𝑢𝑒(𝑥, 𝑡) = 𝐾𝑡𝑟𝑎𝑛𝑠(𝑥)∫
𝑡

0
(𝐶𝑑𝑟𝑢𝑔𝑝𝑙𝑎𝑠𝑚𝑎(𝑠) ⋅ exp ( −

𝐾𝑡𝑟𝑎𝑛𝑠(𝑥)
𝑣𝑒(𝑥)

(𝑡 − 𝑠)))𝑑𝑠 (6.2)

In summary, finding the chemotherapy term with the KT model comes down to the following steps:

1. Derive 𝐶𝐶𝐴𝑝𝑙𝑎𝑠𝑚𝑎(𝑡) and 𝐶𝐶𝐴𝑡𝑖𝑠𝑠𝑢𝑒(𝑡)

2. Calculate 𝐾𝑡𝑟𝑎𝑛𝑠(𝑥) and 𝑣𝑒(𝑥) by fitting 𝐶𝐶𝐴𝑝𝑙𝑎𝑠𝑚𝑎(𝑡) and 𝐶𝐶𝐴𝑡𝑖𝑠𝑠𝑢𝑒(𝑡) to Equation 6.1

3. Derive 𝐶𝑑𝑟𝑢𝑔𝑝𝑙𝑎𝑠𝑚𝑎(𝑡)

4. Calculate 𝐶𝑑𝑟𝑢𝑔𝑡𝑖𝑠𝑠𝑢𝑒(𝑥, 𝑡) with Equation 6.2
This approach is similar to the one presented by Jarret et al. [7] and in the next sections these steps
are worked out.
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6.1.2. Choosing arterial input function
There are many different options to obtain an AIF. One approach is to sample directly from the blood
during the administering period. Although this yields accurate characterisations of 𝐶𝐶𝐴𝑝𝑙𝑎𝑠𝑚𝑎(𝑡), this ap-
proach is impractical and invasive for the patient. Secondly, it is possible to determine the AIF per
patient based on the DCE-MRI images. Although this is non-invasive and patient-based, it is time-
consuming and requires that a major vessel like the aorta is visible on the scan, which is often far from
the tumour in the breast. Other options also exist, but the most common and convenient way is to use
an assumed or population-based AIF [19, 30]. In this thesis, an assumed AIF will be used, although it
is argued by some researchers that these types of AIFs introduce systematic errors in the parameters
and pharmacokinetic analysis [19, 31].

A lot of research has been done into assumed AIFs and it was found that depending on the appli-
cation one should choose a suitable AIF as there is no AIF that works best for all cases. In a paper by
Woolf et al. [30] six different AIFs were analysed to determine which one performed best in assessing
breast cancer response. The included AIFs were: Cosine Bolus Parker, Femoral Artery, Fritz-Hansen,
Modified Fritz-Hansen, Weinmann and Biexponential Parker. The AIFs were analysed on their ability to
minimize the number of computational fit fails, their ability to produce physiologically valid parameters
and their ability to correctly detect pCR. In their conclusion, they recommended using Modified Fritz-
Hansen or Cosine Bolus Parker when there is no measured AIF as these both performed reasonably
well in all three criteria.

In this work, the Cosine Bolus Parker function with parameters and values from Orton et al. is used.
[22]. The function is given by the following formula:

𝐶𝐶𝐴𝑝𝑙𝑎𝑠𝑚𝑎(𝑡) = {
𝑎𝐵(1 − cos(𝜇𝐵𝑡)) + 𝑎𝐵𝑎𝐺𝑓(𝑡, 𝜇𝐺) for 0 ≤ 𝑡 ≤ 𝑡𝐵
𝑎𝐵𝑎𝐺𝑓(𝑡𝐵 , 𝜇𝐺)𝑒−𝜇𝐺(𝑡−𝑡𝐵) for 𝑡 > 𝑡𝐵

The function 𝑓(𝑡, 𝜇𝐺) is defined below.

𝑓(𝑡, 𝑎) = 1
𝑎(1 − 𝑒

−𝑎𝑡) − 1
𝑎2 + 𝜇2𝐵

(𝑎 cos(𝜇𝐵𝑡) + 𝜇𝐵 sin(𝜇𝐵𝑡) − 𝑎𝑒−𝑎𝑡)

The same values for the input parameters are taken as the ones assumed in the paper, which are
as follows:

𝑎𝐵 = 2.84 𝜇𝐵 = 22.8
𝑎𝐺 = 1.36 𝜇𝐺 = 0.17

𝑡𝐵 =
2𝜋
𝜇𝐵

The motivation for this function is that the curves that are generated by it show a similar shape to
the curves of measured AIFs. In addition, the terms of the function are relatively simple and easy to
calculate with, which is important as this function is needed to calculate the concentration of contrast
agent in the tissue for different parameter values. A graph of this function can be seen in Figure 6.1.

By writing 𝑘𝑒𝑝 =
𝐾𝑡𝑟𝑎𝑛𝑠
𝑣𝑒

in Equation 6.1, the following formula is obtained:

𝐶𝐶𝐴𝑡𝑖𝑠𝑠𝑢𝑒(𝑡) = 𝐾𝑡𝑟𝑎𝑛𝑠∫
𝑡

0
𝐶𝐶𝐴𝑝𝑙𝑎𝑠𝑚𝑎(𝑠) ⋅ 𝑒−𝑘𝑒𝑝(𝑡−𝑠)𝑑𝑠 (6.3)

In literature the value 𝑘𝑒𝑝, which represents the rate between the extravascular extracellular space and
the blood plasma [32], is referred to as the redistribution rate constant [19] or efflux rate constant [2].

One of the advantages of the Cosine Bolus Parker function is that when it is used in the formula
above, the integral can be written out into the analytical expression given in Equation 6.4. The proof
for this is given in Appendix A.4.
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Figure 6.1: Cosine Bolus Parker function which is used as 𝐶𝐶𝐴𝑝𝑙𝑎𝑠𝑚𝑎(𝑡)

𝐶𝐶𝐴𝑡𝑖𝑠𝑠𝑢𝑒(𝑡) = {
𝑎𝐵𝑎𝐺𝐾𝑡𝑟𝑎𝑛𝑠
𝑘𝑒𝑝−𝜇𝐺

(𝑓(𝑡, 𝜇𝐺) + (
𝑘𝑒𝑝−𝜇𝐺
𝑎𝐺

− 1)𝑓(𝑡, 𝑘𝑒𝑝)) for 0 ≤ 𝑡 ≤ 𝑡𝐵
𝑎𝐵𝑎𝐺𝐾𝑡𝑟𝑎𝑛𝑠
𝑘𝑒𝑝−𝜇𝐺

(𝑓(𝑡𝐵 , 𝜇𝐺)𝑒−𝜇𝐺(𝑡−𝑡𝐵) + (
𝑘𝑒𝑝−𝜇𝐺
𝑎𝐺

− 1)𝑓(𝑡, 𝑘𝑒𝑝)𝑒−𝑘𝑒𝑝(𝑡−𝑡𝐵)) for 𝑡 > 𝑡𝐵
(6.4)

Below the influence of the parameter choice for 𝑣𝑒 and 𝐾𝑡𝑟𝑎𝑛𝑠 is demonstrated. From these plots,
it becomes clear that in general 𝐾𝑡𝑟𝑎𝑛𝑠 determines the height and slope of the initial peak while 𝑣𝑒
determines the behaviour of the curve after this peak.

(a) (b) (c)

Figure 6.2: CA concentration for various values of 𝐾𝑡𝑟𝑎𝑛𝑠

(a) (b) (c)

Figure 6.3: CA concentration for various values of 𝑣𝑒.
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6.1.3. Deriving CA concentration from DCE scans
The next step in the process to determine the parameters for the model is to derive the concentration of
CA in the tissue of the scans. Just like for the AIFs, there are different ways to obtain these values. In
the literature, three different approaches have been identified, which are described below. In Section
5.1, it was explained that the DCE scans consist of 8 scans. For notation, we will denote 𝑠(𝑡𝑛) for the
signal intensity of the scan at time 𝑡𝑛, where 𝑛 ∈ {0, 1, … , 7}.

Method 1: LC with assumed 𝑇10 values
Linear conversion (LC) is described by Wake et al. [33]. As the name suggests, LC refers to the linear
conversion of signal intensity 𝑠(𝑡) from the DCE scans to the concentration 𝐶𝐶𝐴𝑝𝑙𝑎𝑠𝑚𝑎(𝑡), as opposed to
non-linear conversion (NLC), which logically refers to non-linear conversion. For LC, Equation 6.5 can
be used to calculate the concentration in each voxel at each time point 𝑡𝑛 of the DCE scans.

𝐶𝐶𝐴𝑝𝑙𝑎𝑠𝑚𝑎(𝑡𝑛) =
1

𝑟1𝑇10
(𝑠(𝑡𝑛)𝑠0

− 1) (6.5)

In the formula above, 𝑠0 is a constant that describes the proton density and scanner gain [19, 31, 34]
which is sometimes taken as the average pre-contrast signal [33, 35]. In addition, 𝑟1 is the longitudinal
relaxivity rate of the contrast agent, which is usually taken to be either 4.5 [35, 36] or 3.9 𝑚𝑀−1𝑠−1
[33]. The latter was chosen as the approach suggested in that paper is followed here. Lastly, 𝑇10 is
the 𝑇1 value before the CA is injected. 𝑇1 values represent the time it takes for nuclei to align after an
MR pulse has been given. They depend on the type of tissue, the strength of the magnetic field (which
is 1.5T for our data) and the presence of contrast agents as these shorten 𝑇1 times [35]. Determining
these values is crucial as they greatly influence the estimates of the parameters 𝐾𝑡𝑟𝑎𝑛𝑠 , 𝑣𝑒 and 𝑣𝑝 [20,
33]. In the study by Wake et al. the basis Kety-Tofts model was considered, meaning that 𝑣𝑝 was set
to 0. In their simulation study, they found that higher 𝑇10 values, which were varied between 700 and
2500 ms, yielded lower estimates for 𝐾𝑡𝑟𝑎𝑛𝑠 and 𝑣𝑒. In addition, they found that for a small flip angle (in
their study FA= 12∘) the smallest errors were found with LC combined with an assumed AIF compared
to a measured AIF and that in that case 𝐾𝑡𝑟𝑎𝑛𝑠 and 𝑣𝑒 were least affected by the assumed 𝑇10 value.

In Table 6.1 𝑇1 literature values for different tissue types are summarised. As no contrast agent was
present, these 𝑇1 values can be used as assumed 𝑇10 values. Since Merchant et al. present values
for all three tissue types that we consider, the means of their reported 𝑇1 values are taken as assumed
𝑇10 values.

Tissue Rakow-Penner et al. [37] Merchant et al. [38]
Adipose 296.01 ± 12.94 264.02 ± 2.38
Fibroglandular 1266.18 ± 81.8 795.64 ± 21.12
Tumour - 876.09 ± 27.83

Table 6.1: Mean 𝑇1 relaxation times and standard deviations in 𝑚𝑠 from literature for 1.5T

Method 2: NLC with fitted 𝑇1 and assumed 𝑇10 values
In the same paper by Wake et al. NLC is described as an alternative to LC, which is also used by Tofts
[35]. For this method, the concentration of CA is calculated with Equation 6.6.

𝐶𝐶𝐴𝑝𝑙𝑎𝑠𝑚𝑎(𝑡𝑛) =
1
𝑟1
( 1𝑇1𝑛

− 1
𝑇10
) (6.6)

For this approach, both papers use assumed 𝑇10 values and calculate the 𝑇1𝑛 values by fitting the
signal intensities from each DCE image to the so-called spoiled gradient echo (SPGRE) equation [19,
33]. For this approach, one needs spoiled gradient echo images with different flip angles in addition
to the DCE images, which is done quite often in research related to this topic [2, 4, 18, 31, 39]. It
is important to note that in theory, one could measure the 𝑇1 values, but this is very time-consuming
[19]. Other approaches than SPGRE include spin-echo images obtained at different repetition times
or inversion recovery methods [20]. Compared to these, the SPGRE multi-flip approach requires less
time and still maintains a high signal-to-noise ratio, which is important for MRI scans and thus explains
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why this approach is widely used in DCE-MRI analysis. Equation 6.7 below describes the SPGRE
equation.

𝑠(𝑡𝑛) = 𝑠0 sin𝜙
1 − exp (−𝑇𝑅/𝑇1𝑛)

1 − cos𝜙 exp (−𝑇𝑅/𝑇1𝑛)
(6.7)

Here, 𝑇𝑅 refers to the repetition time of the DCE scan, which is the time between pulses of an MRI
and 𝜙 is the flip angle that was used in the scan.

Method 3: NLC with fitted 𝑇1 and fitted 𝑇10 values
Lastly, Yankeelov et al. [19] and Chikui et al. [34] use a similar but slightly different approach to the one
presented before. NLC is again used, so the concentration is calculated using Equation 6.6. However,
instead of using assumed 𝑇10 values, they use the SPGRE equation to find the 𝑇10 values.

𝑠(𝑡0) = 𝑠0 sin𝜙
1 − exp (−𝑇𝑅/𝑇10)

1 − cos𝜙 exp (−𝑇𝑅/𝑇10)
(6.8)

The next step is to calculate the 𝑇1𝑛 values. For this, the ratio of 𝑠(𝑡𝑛) to 𝑠(𝑡0), so Equations 6.8
and 6.7, are used and fitted to the data.

𝑠(𝑡𝑛)
𝑠(𝑡0)

=
𝑠0 sin𝜙

1−exp (−𝑇𝑅/𝑇1𝑛)
1−cos𝜙 exp (−𝑇𝑅/𝑇1𝑛)

𝑠0 sin𝜙
1−exp (−𝑇𝑅/𝑇10)

1−cos𝜙 exp (−𝑇𝑅/𝑇10)

= (1 − exp (−𝑇𝑅/𝑇1𝑛))
(1 − exp (−𝑇𝑅/𝑇10))

(1 − cos𝜙 exp (−𝑇𝑅/𝑇10))
(1 − cos𝜙 exp (−𝑇𝑅/𝑇1𝑛))

Wake et al. [33] compare methods 1 and 2 and report on how they influence the estimates for
𝐾𝑡𝑟𝑎𝑛𝑠 and 𝑣𝑒 for the basic Kety-Tofts model. In their study, it is clearly shown that methods 1 and 2
lead to different parameter estimates. One of their findings is that when 𝑇10 is unknown, LC provides
more accurate parameters while NLC provides more robust parameters. Another finding that is worth
noting is that they suggest combining LC with an assumed AIF when a small FA is used and 𝑇10 is
not measured as this will minimise the uncertainty that is introduced by as assumed 𝑇10. Lastly, it was
found that LC usually overestimates the parameters, especially for small FA. One of the explanations
is given by Guo et al. [20], who claim that for SPGRE signals with small FA there is a strong non-linear
relationship between the change in relaxation rate and the signal enhancement.

After implementing these methods, the results of method 2 and 3 turned out to be extremely similar.
For this reason, only the results for methods 1 and 2 are presented in Figures 6.4a and 6.4b respectively.

(a) Method 1 (b) Method 2

Figure 6.4: CA concentration

In both pictures, the tumour has a higher concentration of CA than the surrounding tissue, which is
to be expected. It is important to note however that the scales for both pictures are quite different and
that the calculated concentrations are much higher for LC than for NLC. In the next step, the parameters
are fitted with both LC and NLC.
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6.1.4. Fitting parameters
In this section we will elaborate on how the parameters are fitted using the information from the previ-
ous sections. As a fitting method, the curve_fit function from the scipy.optimize Python library
is used, for which the AIF as described in Equation 6.4 is given as input, together with the DCE images
and an array with timestamps corresponding to the time when the DCE images have been made. By
definition, it is known that 0 ≤ 𝑣𝑒 ≤ 1 and in addition it is known from the literature that in general
0 ≤ 𝐾𝑡𝑟𝑎𝑛𝑠 ≤ 2 [18, 19, 22, 33]. For this reason, we also provide the above bounds to the algorithm.
To speed up computation time, the parameters are only estimated for each voxel within the breast and
all other values are set to zero.

In Figures 6.5 and 6.6 box plots are displayed for the found values of 𝐾𝑡𝑟𝑎𝑛𝑠 and 𝑣𝑒 for 𝑝1, where
the orange line indicates the median value as usual and the green arrow indicates the mean value.
The box plots of the other patients are similar and therefore left out. Note that 𝐾𝑡𝑟𝑎𝑛𝑠 is measured in
1/𝑚𝑖𝑛 here, but for the model this has to be converted to 1/𝑑𝑎𝑦 so all values will have to be multiplied
by a factor (24 ∗ 60). In these box plots, there is a clear difference between the found values with LC
and NLC. In general, both the 𝐾𝑡𝑟𝑎𝑛𝑠 and the 𝑣𝑒 values for LC are a lot higher than the values for NLC.
This is interesting, especially since Wake et al. state that in general LC estimates are lower than NLC
estimates for both 𝐾𝑡𝑟𝑎𝑛𝑠 and 𝑣𝑒. A possible explanation for this is the difference in presumed AIFs: for
this study the Cosine-Bolus Parker function was used, but Wake et al. used the original Parker func-
tion [21, 33]. Another cause could be that the DCE images of that study were made with a 3T scanner,
while the images for this research were made with 1.5T. The difference in magnetic field strength yields
different T1 values and could therefore lead to different parameter estimates.

(a) (b)

Figure 6.5: Fitted parameter values for 𝑝1 with LC.

(a) (b)

Figure 6.6: Fitted parameter values for 𝑝1 with NLC.

Let us now compare these fitted parameters to some literature values. Using the same AIF and
assuming a linear relationship between the 𝑇1 estimates and CA concentration, Orton et al. report
a median value for 𝐾𝑡𝑟𝑎𝑛𝑠 of 0.20 and 0.13 and a median value for 𝑣𝑒 of 0.46 and 0.35 for tumour
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and lymph tissue respectively. These median values can be compared to the median values that are
displayed by the orange line in the box plots. Firstly, considering tumorous tissue, it can be seen that
for LC the value of 𝐾𝑡𝑟𝑎𝑛𝑠 is a lot higher than the one from Orton et al. but for NLC it is a lot lower.
On the other hand, the median 𝑣𝑒 value in LC is way higher and the NLC value is very close to the
literature value. Secondly, considering fibroglandular, i.e. lymph, tissue, the found 𝐾𝑡𝑟𝑎𝑛𝑠 value with
LC is comparable to the literature value but the NLC value is a lot lower. For 𝑣𝑒 both LC and NLC values
are a lot higher than the value reported by Orton et al. In their paper, they also mention the median
values for muscular tissue, but because this thesis only focuses on tumour, adipose and fibroglandular
tissue these values are left out for the comparison as muscular tissue is not comparable to these types
of tissue. Wake et al. also estimated 𝐾𝑡𝑟𝑎𝑛𝑠 and 𝑣𝑒 values for tumorous tissue in patients with breast
cancer, although they used a different AIF. The median 𝐾𝑡𝑟𝑎𝑛𝑠 value for LC was 0.0016 and the median
for NLC was 0.0021 and the median 𝑣𝑒 value for LC was 0.34 and for NLC was 0.52. Note that the
𝐾𝑡𝑟𝑎𝑛𝑠 values are a lot lower than the ones found both in this research and in the paper by Orton et
al. The 𝑣𝑒 data are more comparable but, as noted before, the parameter values of NLC from Wake
are higher than the ones of LC while our values are exactly the other way around. Lastly, Yankeelov et
al. [19] report on an average value of 0.0077 for 𝐾𝑡𝑟𝑎𝑛𝑠 within the tumour, which is a lot lower than the
mean value was was found in this study (displayed by the green triangle), and 0.70 for 𝑣𝑒 within the
tumour, which in turn is higher than the mean value was that presented here. No literature has been
found that reported on these parameter estimates for adipose breast tissue. All in all, it seems like NLC
provides more realistic values that are in line with literature which is why it was decided to continue
working with NLC.

6.1.5. Deriving concentration of drug in plasma
Now that the parameters have been fitted, the following step is to calculate the concentration of drug
in the tissue for each voxel. For this, a function 𝐶𝑑𝑟𝑢𝑔𝑝𝑙𝑎𝑠𝑚𝑎(𝑡) that describes the concentration of drug
in the plasma is needed. It is difficult to precisely describe this function, as the anti-tumour treatment
of the patients consists of different components: carboplatin, paclitaxel, trastuzumab and pertuzumab.
Therefore, for simplicity purposes, for now only carboplatin is considered. In a paper by Oguri et al., a
triexponential function is given to model the concentration of carboplatin in plasma [40].

𝐶𝑐𝑎𝑟𝑏𝑜𝑝𝑙𝑎𝑡𝑖𝑛𝑝𝑙𝑎𝑠𝑚𝑎 (𝑡) = 𝐴1𝑒−𝛾1𝑡 + 𝐴2𝑒−𝛾2𝑡 + 𝐴3𝑒−𝛾3𝑡 (6.9)

Here, 𝛾1, 𝛾2 and 𝛾3 describe the fast, middle and slow decay processes respectively and 𝐴1, 𝐴2 and
𝐴3 represent the corresponding ordinate intercepts, i.e. the concentration value at 𝑡 = 0. In the paper,
the values were fitted to blood sample data taken from patients. Different values were found, depending
on the dosage of the patient. The choice was made to take the values of the dosage that most patients
had received. Because the 𝛾1, 𝛾2 and 𝛾3 values are given in 1/hour and the time scale of this thesis is
in days, these have to be converted to 1/day. The following values are taken for the parameters:

𝐴1 = 12.06 𝛾1 = 70.32
𝐴2 = 17.17 𝛾2 = 12.82
𝐴3 = 2.367 𝛾3 = 0.86

Using the expression given for 𝐶𝑐𝑎𝑟𝑏𝑜𝑝𝑙𝑎𝑡𝑖𝑛𝑝𝑙𝑎𝑠𝑚𝑎 (𝑡) in 6.2 yields:

𝐶𝑑𝑟𝑢𝑔𝑡𝑖𝑠𝑠𝑢𝑒(𝑥, 𝑡) = 𝐾𝑡𝑟𝑎𝑛𝑠(𝑥)∫
𝑡

0
((𝐴1𝑒−𝛾1𝑠 + 𝐴2𝑒−𝛾2𝑠 + 𝐴3𝑒−𝛾3𝑠) ⋅ 𝑒−𝑘𝑒𝑝(𝑥)(𝑡−𝑠))𝑑𝑠

= 𝐾𝑡𝑟𝑎𝑛𝑠(𝑥)∫
𝑡

0
(( ∑

𝑖∈{1,2,3}
𝐴𝑖𝑒−𝛾𝑖𝑠) ⋅ 𝑒−𝑘𝑒𝑝(𝑥)(𝑡−𝑠))𝑑𝑠

= 𝐾𝑡𝑟𝑎𝑛𝑠(𝑥)𝑒−𝑘𝑒𝑝(𝑥)𝑡 ∑
𝑖∈{1,2,3}

(𝐴𝑖∫
𝑡

0
𝑒𝑠(𝑘𝑒𝑝(𝑥)−𝛾𝑖)𝑑𝑠)

= 𝐾𝑡𝑟𝑎𝑛𝑠(𝑥) ∑
𝑖∈{1,2,3}

𝐴𝑖
𝑘𝑒𝑝(𝑥) − 𝛾𝑖

(𝑒−𝛾𝑖𝑡 − 𝑒−𝑘𝑒𝑝𝑡)
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Using this expression, chemotherapy curves can be calculated for each voxel in the breast. Results
will be shown in Section 6.3 where the outcomes of this method are compared to the ones that were
made using the Normalised Blood Volume Map.

6.2. Normalised Blood Volume Map
An alternative option exists to calculate the concentration of drug in the tissue, this method will be re-
ferred to as the Normalised Blood VolumeMap (NBVM). It is also used by Jarrett et al. in the third paper
on the DIMCRD model [9]. They motivate their choice by stating that the pharmacokinetic analysis with
the Kety-Tofts model is not suitable for DCE scans with a bad temporal resolution, which means that
there is a long time gap between two consecutive scans. The temporal resolutions of the DCE scans
for the different papers on the DIMCRD model and of this thesis are summarised in Table 6.2 below.
The DCE data that was used in the first two papers had a high temporal resolution and the data for
the third study had a very low temporal resolution. The temporal resolution for this study lies between
those values, which motivated the choice to test both KT and NBVM.

Study Temporal resolution
Jarrett et al. [7] 14.6-20.2 s
Jarrett et al. [8] 7.27 s
Jarrett et al. [9] 180s
This study 70s

Table 6.2: Temporal resolutions for the three papers on the DIMCRD model and this study.

6.2.1. Overview of steps
Determining 𝐶𝑑𝑟𝑢𝑔𝑡𝑖𝑠𝑠𝑢𝑒(𝑥, 𝑡) using NBVM consists of the following steps:

1. Subtract the average pre-contrast from the post-contrast values to obtain a baseline-subtracted
time course for each voxel. For this, let 𝑠(𝑥, 𝑡𝑛) denote the DCE signal value in position 𝑥 at
time 𝑡𝑛, with 𝑛 ∈ {0, 1, … 7} as 8 scans were made in total, of which 2 are pre-contrast and 6 are
post-contrast. Then the baseline-subtracted time course for each voxel 𝑥 can be calculated as
follows:

𝑆𝑏(𝑥, 𝑡𝑛) = 𝑆(𝑥, 𝑡𝑛) −
1
2(𝑆(𝑥, 𝑡0) + 𝑆(𝑥, 𝑡1))

2. Determine the Area Under the Curve (AUC) value of the baseline-subtracted time course.

𝐴𝑈𝐶(𝑥) = ∫
𝑡7

𝑡2
𝑆𝑏(𝑥, 𝑡𝑛)𝑑𝑡

3. Normalise the AUC values by the maximum AUC value of the tumour, this yields the NBVM and
thus the initial drug distribution, which is denoted by 𝐶𝑑𝑟𝑢𝑔𝑡𝑖𝑠𝑠𝑢𝑒(𝑥, 𝑡∗), where 𝑡∗ refers to the time of
treatment.

𝐶𝑑𝑟𝑢𝑔𝑡𝑖𝑠𝑠𝑢𝑒(𝑥, 𝑡∗) =
𝐴𝑈𝐶(𝑥)

max𝑥∗∈𝒳𝑡𝑢𝑚 𝐴𝑈𝐶(𝑥
∗)

4. Multiply the NBVM with an exponential that describes the decay of the drug in the tissue, where
𝛽 refers to the decay rate of the drug:

𝐶𝑑𝑟𝑢𝑔𝑡𝑖𝑠𝑠𝑢𝑒(𝑥, 𝑡) = 𝐶
𝑑𝑟𝑢𝑔
𝑡𝑖𝑠𝑠𝑢𝑒(𝑥, 𝑡∗)𝑒−𝛽(𝑡−𝑡

∗)

6.2.2. Estimating drug decay rate
In this section we will explain how we choose the value for the drug decay rate parameter 𝛽. One option
could be to include 𝛽 in the calibration to find the optimal value, but it was found that this takes extremely
long. This is probably caused by its relationships with the drug efficacy 𝛼 term that the chemotherapy
term is multiplied with, which is also included in the calibration. Thus, various combinations of 𝛼 and 𝛽
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will lead to the same result which causes a long calibration time. In the research by Jarrett et al, 𝛽 was
included in the calibration but it was restricted to some literature-based bounds [8, 9]. These bounds
were based on the terminal elimination half-lives of the drugs, which is the time that it takes after ad-
ministration for the concentration of drug in plasma to decrease by 50% after reaching an equilibrium,
i.e. in the elimination phase of the drug. This should not be confused with normal half-lives of drugs,
which refer to the time that it takes for a certain concentration to decrease by 50% from the moment of
administration.

Let us first analyse the influence of 𝛽 on the chemo concentration and the tumour cell number before
choosing its value. Figure 6.7a shows the chemo concentration between days 10 and 20, which is when
the patient is treated for the first time, for various values of 𝛽. As expected, the chemo concentration
decreases quicker when 𝛽 is higher. Note that if 𝛽 = 0, the chemo concentration would not decrease
anymore after the peak and would stay at its maximum. Figure 6.7b instead shows the influence of 𝛽 on
the total tumour cell number which is displayed on a logarithmic scale. For these plots, the calibration
was executed with the given value of 𝛽, which means that different chemotherapy curves were used for
each simulation and the optimised parameter values differ. As can be seen, the total number of tumour
cells for 𝛽 = 0.20 starts oscillating after its initial decrease. Although the error at 𝑡2 is the smallest for
this value, it does not seem to give realistic results: it can be expected that treatment will kill the tumour
cells, which could partially grow back but it should not be as quickly as it is for this case. In addition,
a negative 𝐷0 value was found which is also unwanted. It is interesting to see that 𝛽 = 0.40, 𝛽 = 0.60
and 𝛽 = 1.00 all show different initial behaviour, but after 𝑡1 the curves seem to align. Moreover, it
is also curious to see that the behaviour of the curve for 𝛽 = 0.80 is quite different from those cases
and seems to also oscillate around some equilibrium, which means that the number of tumour cells will
never go to zero, just like the case 𝛽 = 0.20. In addition, it was found that for smaller 𝛽, the time step
has to be decreased as otherwise with the optimised values the bound on Δ𝑡 is not met. From this, it
can be concluded that the choice of 𝛽 heavily influences the behaviour and outcome of the model.

(a) (b)

Figure 6.7: Plots displaying the influence of 𝛽. On the left, the average chemotherapy concentration between days 10 and 20 is
displayed for various 𝛽 and on the right, the total tumour cell number is displayed, where for the calibration the displayed values
of 𝛽 were used.

As it is not immediately clear from this analysis which value should be chosen for 𝛽, let us provide
some information found in the literature on the pharmacokinetics of carboplatin. In a paper by van
der Vijgh [41], which was also cited by both DIMCRD papers that use NBVM [8, 9], the different val-
ues found in papers on the distribution half-life, initial elimination half-life and the terminal elimination
half-life of carboplatin are discussed. The value of the terminal elimination half-life in most studies lies
around 5 days, although in one paper a much lower value was found. In that paper by Oguri et al.,
which was also used in this thesis to derive the plasma concentration function in Section 6.1.5, the
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found values vary between 0.9 and 1.7 days, depending on the dose that was given [40]. The literature
is thus also not fully conclusive on what value should be taken and it is unclear how the 𝛽 should be
chosen based on the terminal elimination half-life.

In the end, the choice was made for 𝛽 = 0.50, as this provided the most stable results. With this, we
mean that no unexpected negative parameter values were found, the time step remained stable, and
the resulting total number of tumour cells did not show the oscillations that were seen for some other
values.

6.3. Comparison of methods
In this section, the advantages and disadvantages of both methods to determine the chemotherapy
term are discussed and their outcomes are compared. Firstly, let us look at what the average chemo
concentration curve looks like after the first treatment for different tissue types, which is displayed in
Figure 6.8. It can be observed that for the KTmethod, the concentration in fibroglandular tissue is higher
than the concentration in adipose tissue, and the concentration in adipose tissue is higher than that in
tumorous tissue. For NBVM, the concentration is highest in the tumour, followed by the fibroglandular
tissue and the adipose tissue. These outcomes for NBVM are comparable to what was found in the
paper by Jarrett et al. [9] in which the NBVM was used and it is expected that for targeted therapies
like trastuzumab and pertuzumab this is realistic as they target the tumour. For chemotherapy, which
targets any type of cell that is dividing, it cannot be guaranteed that the concentration in the tumour is
highest. However, there will most likely be more dividing cells in the tumour than in the adipose tissue,
which is indeed shown for NBVM but not for KT. Note that the peaks for KT are slightly higher than the
ones for NBVM and that the decay rate for KT is a lot higher than for NBVM. Another remark about
both figures is that all lines peak at the same time. Chemotherapy is given intravenously, which is
why perhaps we would expect it to first peak in the fibroglandular tissue through which it is transported
before it peaks in the tumorous or adipose tissue, but both models do not show this.

(a) KT (b) NBVM

Figure 6.8: Average chemo concentration per tissue type for Kety-Tofts model (left) and the Normalised Blood Volume Map
(right).

Instead of only looking at the average chemo curves per tissue type, we are also interested in how
the drug distributes throughout the breast after chemo, which is displayed in Figure 6.9. It can be
seen that for KT the concentration in the tumour is indeed quite low compared to the other tissue types
and that the image is not very smooth. This is probably because for the fibroglandular tissue almost
all calibrated values for 𝑣𝑒 were set to one and also the 𝐾𝑡𝑟𝑎𝑛𝑠 values are quite similar as previously
displayed in the box plots in Figure 6.6. Therefore, in the fibroglandular points, the chemo concentration
is almost everywhere approximately the same because the concentration is calculated based on these
values. In addition, the concentration in some adipose points is relatively high which is unexpected as
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explained before. For the NBVM images, the concentration in the tumour is highest, followed by the
concentration in the fibroglandular tissue. The image is quite smooth and the CA pattern from the DCE
scans can be recognised in which the tumour gave high intensity values because of the CA that spread
there. As stated before, this method seems reasonable for targeted therapies, but in our opinion it is
in this case also more realistic than KT when looking at the distribution in the different tissue types.

(a) KT

(b) NBVM

Figure 6.9: Distribution of chemo on the day of treatment, the day after and three days after treatment for Kety-Tofts model (top)
and Normalised Blood Volume Map (bottom).

Lastly, let usmake some final remarks about bothmethods to calculate the concentration of chemother-
apy in the tissue. The advantage of KT is that it is a model based on the physical process of how drugs
travel from the blood plasma to the tissue. In addition, it is used in quite a lot of papers. The disad-
vantage of this method however is that many choices have to be made and many steps have to be
taken: firstly we had to choose an AIF, secondly we had to decide to use LC or NLC for determining
the concentration of CA in the scans, next multiple parameters had to be fitted for each voxel and lastly
we needed to choose the function to describe the concentration of drug in the plasma. In addition, our
data might not be suitable for this method as it is downsampled in the spatial domain, which perhaps
causes the parameters to take on high and unrealistic values as we saw, and it has a relatively low
temporal resolution, which motivated us to also look into NBVM. NBVM was compared to KT an easy
and quick method to implement, with little steps to be taken and fewer choices that had to be made.
However, it is rather unclear what the NBVM physically represents, what it is based on and what the
underlying assumptions are. Furthermore, the only thing that had to be chosen carefully was the pa-
rameter 𝛽, which turned out to be difficult as different choices led to different results and fitting this
parameter was not feasible. As a final remark, it is also important to look at how these models should
be used when a different drug than carboplatin is being considered. For KT, the parameters could be
kept the same, but a new function 𝐶𝑑𝑟𝑢𝑔𝑝𝑙𝑎𝑠𝑚𝑎 has to be chosen that describes the concentration of that
drug in the plasma. For NBVM instead, one should introduce another parameter 𝛽2 in addition to 𝛽1
that represents the decay of the other drug. Taking all these things into account, we chose to continue
working with NBVM as it seems to give more realistic results, it is more suitable for our data and it is a
lot quicker.
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6.4. Model analysis
In this section, the chemotherapy-incorporated model is analysed by evaluating the influence of various
choices for the parameters, the effect of using all three MRI scans for the calibration and the influence
of the slice thickness of the MRI. The results shown in this section are all made based on the data of
𝑝1.

6.4.1. Influence of 𝐷0
Firstly, let us analyse the influence of 𝐷0, for which calibration is first run once. After this calibration, 𝛼
and 𝑘(𝑥) are kept at the found optimal values and the model is predicted forward with different values
of 𝐷0. The results can be shown in various ways. Firstly, the resulting total number of tumour cells over
time is shown in Figure 6.10a. In this figure, it can be seen that the trend in the descending number
of tumour cells is the same for all values of 𝐷0 as the lines all show similar behaviour, but as 𝐷0 gets
bigger the decrease is stronger. It is important to note that the minimisation function in calibration does
not minimise the total number of tumour cells, but instead it looks at the squared differences between
the measured and predicted number of tumour cells per voxel. This means that the calibration focuses
on getting good results on a voxel-by-voxel basis. The sum of the squared errors that were at 𝑡1, which
is the calibration time point, and 𝑡2, which is the validation time point, are displayed in Figures 6.10b
and 6.10c respectively. The optimal value, which was 𝐷0 = 2.234 ⋅ 10−4 indeed provides a minimum
for the error function at 𝑡1, as can be seen in Figure 6.10b. However, at 𝑡2 this value does not yield a
minimum and it can be seen that choosing a bigger value for 𝐷0 would in that case lead to a smaller
error at 𝑡2.

(a) Total number of tumour cells (b) Error at 𝑡1 (c) Error at 𝑡2

Figure 6.10: Plots displaying the influence of 𝐷0. On the left, the total number of tumour cells is displayed. In the middle and on
the right, the sum of the squared errors at 𝑡1 and 𝑡2 respectively are shown. The optimal value for 𝐷0 is displayed in red.

6.4.2. Influence of 𝛼
As a second step in the analysis of the model, the role of 𝛼 is investigated. Similar to what was done
in the previous section, the calibration is run once and after this the values for 𝐷0 and 𝑘(𝑥) are kept at
the optimal values and the value of 𝛼 is varied. Figure 6.11 shows the results.

In Figure 6.11a the influence of 𝛼 is clearly shown: when 𝛼 is small, the chemotherapy plays a small
role and there are little or no oscillations in the tumour cell numbers, but when 𝛼 is big, then there are
many increases and decreases in the number of tumour cells. For bigger values of 𝛼, the results do not
necessarily seem very realistic: the total number of tumour cells oscillates and the tumour cells grow
back as quickly as they are eradicated. In addition, for these values the total number of tumour cells
does not go down, so it seems impossible to eradicate all cells. It is questionable if this is what actually
happens or if in this case the value of 𝛼 is just simply too big to describe the behaviour of chemotherapy
realistically. Note that none of the curves pass through all three of the measured points.

Figure 6.11b shows that the optimal value for 𝛼 = 3.705 ⋅ 10−2 indeed yields a minimum at 𝑡1 so a
global minimum was found. This has been further checked by starting the calibration with various initial
guesses for 𝛼. Like with 𝐷0, this optimal value however is not the optimal value for the error at time 𝑡2
and a bigger value would have given a smaller error at 𝑡2.
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(a) Total number of tumour cells (b) Error at 𝑡1 (c) Error at 𝑡2

Figure 6.11: Plots displaying the influence of 𝛼. On the left, the total number of tumour cells is displayed. In the middle and on
the right, the sum of the squared errors at 𝑡1 and 𝑡2 respectively are shown. The optimal value for 𝛼 is displayed in red.

6.4.3. Influence of 𝑘(𝑥)
In this section the proliferation rate 𝑘(𝑥) is analysed. It turns out that choices here not only influence
the total number of tumour cells but also the spatial distribution of the tumour density. To quantify this
at both the calibration (𝑡1) and validation (𝑡2), the mean squared error (MSE) will be used, which is
calculated as follows:

𝑀𝑆𝐸(𝑡𝑖) =
∑𝑥(𝑁(𝑥, 𝑡𝑖) − �̂�(𝑥, 𝑡𝑖))2

𝑛

Constant proliferation rate
First let us look at what happenswhen the proliferation rate is the same value for all voxels, i.e. 𝑘(𝑥) = 𝑘.
In that case, the optimum value found is 𝑘 = −0.04998. This is interesting, as we would expect to have
a positive proliferation rate for the model as the chemotherapy term is the death term and the prolif-
eration thus only represents cell growth. Apparently, the cell death in the model comes both from a
negative proliferation term that is constant over time and a treatment term that varies over time. As
explained in Section 5.4, bounds can be defined for the parameters because the TRF algorithm is used.
For this reason, calibration was run again, this time demanding all parameters to be positive. The op-
timal value for 𝑘 in this case is 8.979 ⋅ 10−31, which is extremely small and shows that in that case it is
best to basically set 𝑘 = 0.

Let us now analyse the total tumour density and the error that the model makes in these cases,
which are shown in Figure 6.12. On the left, the total number of tumour cells is shown. Here, it can be
seen that although both cases show different behaviour, they both pass through the first green point,
meaning they give a good estimate of the total number of tumour cells in calibration, but they both un-
derestimate the total number of tumour cells at 𝑡2. For the first case (in blue), it can be seen that there
is a strong decrease in the total number of tumour cells leading to an underestimation of the number
of tumour cells at 𝑡2 and that the curve does not show the same shape that was seen with an initial
strong decline which was followed by a more gradual decline. In addition, the influence of chemo that
was previously visible in the form of decreases on the days of treatment is no longer visible. This is
caused by the fact that 𝛼 has been calibrated to a small value. Note that the other curve (in orange) for
the case with lower bound shows behaviour that is wanted: a strong decrease in tumour cell numbers
when the patient is treated and almost constant behaviour when the effect of treatment has decreased.
However, the effect of treatment is too strong so unfortunately it also underestimates the total number
of tumour cells at 𝑡2.

In addition to the total number of tumour cells, the absolute error at 𝑡1 and 𝑡2 in the middle and on
the right respectively are presented for the case without a lower bound. The images for the other case
were very similar and are therefore omitted. Here, it can be seen that the model in the case where 𝑘 is
constant for all voxels was not able to make an accurate prediction of the tumour density, as it predicts
that there are still tumour cells present in places where there is no more tumour and it underestimates
the number of tumour cells in the location of the tumour itself. It thus predicts that the decrease in
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tumour cells is approximately the same everywhere in the tumour, while the tumour actually shrinks
centrally, which means that the number of tumour cells might not decrease in the innermost part of
the tumour. This high error in the tumour density at 𝑡1 is also reflected in the MSE, which is shown
in Table 6.3, as these are both a lot higher than the MSE for calibration in which the proliferation rate
is determined per voxel, which is generally of order 106 or 107. The error for the case with the lower
bound is higher than the case without the lower bound, which explains why the optimal value for 𝑘
returned by the TRF algorithm was negative and not positive as a positive 𝑘 would give a worse result.

(a) Total number of tumour cells (b) Absolute error at 𝑡1 (c) Absolute error at 𝑡2

Figure 6.12: Results for taking 𝑘(𝑥) constant for all voxels. On the left, the total number of tumour cells over time is displayed
for the cases with and without lower bound on the parameters. In the middle and on the right, the absolute error at 𝑡1 and 𝑡2
respectively are shown.

This is thus a good example to show that it is important to not only look at the curve of the total num-
ber of tumour cells but also at the tumour density prediction of the model. In this case, for example the
error at 𝑡1 of the total number of tumour cells seems small, but this does not mean that the model made
a good prediction. The opposite is the case, as the modelled spatial distribution is far off compared
to the measured spatial distribution of the tumour cells, which could be seen in the figures displaying
the absolute errors and in the MSE values. It is therefore clear that the proliferation rate should not
be constant, as otherwise the model is not able to simulate the shrinkage in the way that the tumour
actually shrinks and the errors made by the model are big.

Calibration 𝑀𝑆𝐸(𝑡1) 𝑀𝑆𝐸(𝑡2)
Without lower bound 1.792 ⋅ 109 7.702 ⋅ 108
With lower bound 2.061 ⋅ 109 7.976 ⋅ 108

Table 6.3: Mean squared errors for the calibration with and without lower bound for the case where 𝑘 is taken constant for all
voxels.

Proliferation rate per tissue
The model performance for the case where 𝑘 is determined for each tissue type has also been inves-
tigated, which can be written as follows:

𝑘(𝑥) = {
𝑘1 for 𝑥 ∈ tumour
𝑘2 for 𝑥 ∈ fibroglandular tissue
𝑘3 for 𝑥 ∈ adipose tissue

Calibration returns 𝑘1 = −0.049, 𝑘2 = −0.354, 𝑘3 = −0.027. Once again, the results were run in
addition with lower bounds on the parameters. This yielded 𝑘1 = 4.659 ⋅ 10−29, 𝑘2 = 1.014 ⋅ 10−41, 𝑘3 =
1.528 ⋅ 10−52, which are once again very small values. In Figure 6.13 on the left, the total number of
tumour cells is displayed for these cases. Note that this is extremely similar to what was seen in Figure
6.12. As it turns out, also the predicted tumour densities and the MSE for both time points are similar.
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This can however easily be explained. The model focuses on calculating the number of tumour cells
in each voxel. Therefore, 𝜕𝑁𝜕𝑡 will only be non-zero in voxels that were non-zero at 𝑡0 and which were
thus labelled as tumorous tissue, so 𝑘2 and 𝑘3 will not lead to changes in the model prediction. For that
reason, there is no difference in the results between having the proliferation rate calculated per tissue
or having it constant for all tissue types and also explains why the value of 𝑘1 was almost the same
as the value of 𝑘. In addition, the proliferation rates are shown in Figure 6.13 in the middle and on the
right for the case with and without lower bounds on the parameters respectively.

(a) Total number of tumour cells (b) 𝑘(𝑥) without lower bound (c) 𝑘(𝑥) with lower bound

Figure 6.13: Results for calibrating 𝑘(𝑥) per tissue type. On the left the total number of tumour cells over time is displayed. In
the middle and on the right, the resulting proliferation map 𝑘(𝑥) is displayed for the case without lower bound and with lower
bound respectively.

Proliferation rate per voxel
Lastly, 𝑘(𝑥) is calibrated for each voxel with the reduced mask 𝒦𝑟𝑒𝑑 that was explained in Section 5.4.
There are both positive and negative values for the proliferation rates, but it is worth noting that in the
literature on the DIMCRD model negative values for the proliferation also occurred [7]. Out of interest,
the calibration was like before also run with a lower bound on the parameters so analyse the effect. The
results for these two cases are displayed in Figure 6.14. For the classical calibration, i.e. calibration
without any bounds, which is displayed in blue, a small effect of the treatment can be seen in the total
number of tumour cells and the model overestimates the total number of tumour cells at 𝑡2. For the
other case with a lower bound, displayed in orange, there are strong oscillations in the total number of
tumour cells which is very different from the behaviour of the curve when no lower bounds are enforced.
Also, the proliferation rate is quite different from the first case. Note that the colour scale is different for
the proliferation rate maps.

(a) Total number of tumour cells (b) 𝑘(𝑥) without lower bound (c) 𝑘(𝑥) with lower bound

Figure 6.14: Results for calibrating 𝑘(𝑥) per voxel. On the left the total number of tumour cells over time is displayed. In the
middle and on the right, the resulting proliferation map 𝑘(𝑥) is displayed for the case without lower bound and with lower bound
respectively.
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Let us now look at the error on a local level. In Table 6.4 it can be seen that the MSE at 𝑡1 is smaller
for the case without lower bound, but the MSE at 𝑡2 is smaller for the case with lower bound.

Calibration 𝑀𝑆𝐸(𝑡1) 𝑀𝑆𝐸(𝑡2)
Without lower bound 1.380 ⋅ 106 1.099 ⋅ 109
With lower bound 1.462 ⋅ 107 7.052 ⋅ 108

Table 6.4: Mean squared errors for the calibration with and without lower bound for the case where 𝑘 is calibrated for each voxel.

We have thus seen that choosing 𝑘(𝑥) constant for all voxels or all tissue types leads to the same
result but differs from the case where 𝑘(𝑥) is calibrated per voxel. For a constant proliferation, the
model was not able to properly simulate the decay of tumour cells on a local level, which resulted in
large MSE values at 𝑡1. Both positive and negative values were observed, although these negative
values can be avoided by imposing bounds on the parameters. However, in other studies, negative
values also appeared for the proliferation and when a lower bound was enforced for the calibration
per voxel, it resulted in strong oscillations in the total number of tumour cells, which is unwanted. A
proliferation rate that is determined on a voxel-by-voxel basis is important to capture the heterogeneity
of the tumour that results in different cell growth and death levels in different parts of the tumour. It
thus represents an important aspect in connection to the actual dynamic process of tumour growth.
Therefore, the proliferation rate is determined per voxel and no bounds will be imposed.

6.4.4. Calibration with all 3 MRI scans
In standard calibration, only the MRI scans at 𝑡0 and 𝑡1 are taken into account and the model is validated
by calculating forward from 𝑡1 to 𝑡2 with the optimised parameters. It is expected that if the scan at 𝑡2
is also given as input for the calibration, then the prediction at 𝑡2 would improve as the model already
knows the tumour density at 𝑡2. Let us investigate if this is indeed the case so if the alternative calibration
with all 3 MRI scans, gives better results compared to the standard calibration with only 2 MRI scans.
Figure 6.15 shows on the left the total number of tumour cells for both calibration options. It can be
seen that in using the alternative calibration, the total number of tumour cells at 𝑡1 is overestimated but
the estimated total number of tumour cells at 𝑡2 is closer than it is for the standard calibration. Quite
remarkably, the effect of chemo is not clearly visible for the alternative calibration as there are no sharp
decreases in the number of tumour cells on the days on which the patient is treated, which is caused
by a small calibrated value for 𝛼.

(a) Total number of tumour cells (b) Standard calibration
(c) Alternative calibration

Figure 6.15: Results for calibration with two (standard) or three (alternative) MRI scans. On the left, the total number of tumour
cells for both options is displayed. In the middle, and on the right, the absolute error at 𝑡2 is displayed for the standard calibration
and alternative calibration respectively.

As noted before, summarising the performance of the model by only displaying the total number of
tumour cells is not completely fair as it leaves out information on how the model performs on a local
level. Thus, the MSE values at 𝑡1 and 𝑡2 are compared for the standard calibration with 2 MRI scans
and the alternative calibration with 3 MRI scans. The results are shown in Table 6.5, where it can be
seen that the MSE at 𝑡1 is a lot lower for the standard than for the alternative calibration option, but
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the MSE at 𝑡2 for the alternative calibration is almost a factor 10 lower than the MSE for the standard
calibration.

Calibration 𝑀𝑆𝐸(𝑡1) 𝑀𝑆𝐸(𝑡2)
Standard calibration 1.380 ⋅ 106 1.099 ⋅ 109
Alternative calibration 1.546 ⋅ 108 1.278 ⋅ 108

Table 6.5: Mean squared errors for the standard calibration with 2 MRI scans and the alternative calibration with 3 MRI scans.

From this case study, it can be concluded that when the third MRI scan is also taken into account,
the prediction at 𝑡2 improves but the prediction at 𝑡1 is less good. What would be interesting to see in
the future is, when four MRI scans are available for a patient, if having three MRI scans for calibration
improves the prediction for the fourth MRI scan.

6.4.5. Influence of slice thickness
So far the slice thickness, which will be denoted as Δ𝑧, was not varied and was always equal to the slice
thickness of the DCE scans (Δ𝑧 = 1.6 mm). In previous work, it was found that for this slice thickness,
the model prediction of the MCRD model was not significantly different from the basic RD model [11].
Therefore, so far the DIRD model was used because it was not expected that the results would differ
much from the DIMCRD model and the DIRD model is much faster in its calculations. In this section,
the slice thickness is increased and the influence of the mechanics is analysed.

(a) Δ𝑧 = 1.6 mm (b) Δ𝑧 = 3.2 mm (c) Δ𝑧 = 4.8 mm

Figure 6.16: Total number of tumour cells for both the DIRD and the DIMCRD model for different slice thicknesses Δ𝑧. Note the
different scales on the tumour cell axis.

In Figure 6.16 the total number of tumour cells for both the DIRD and DIMCRD model is shown
for slice thicknesses of 1.6, 3.2 and 4.8 mm. As expected, the total number of measured tumour cells
increases as the slice thickness increases, which is logical as the tumour will in general be thicker than
just 1.6 mm. What immediately stands out is that for Δ𝑧 = 1.6 mm there is quite a difference between
the DIRD and DIMCRD model, but this was not expected. Apparently, when chemotherapy is included,
there is a difference between the model with and without mechanics, even for this small slice thickness.
The number of tumour cells for the DIMCRD model is higher than for the DIRD model after calibration.
In the middle, the results are shown for a slice thickness of 3.2 mm. In this case, calibration returned a
small value for 𝛼, which means that the influence of chemotherapy is not visible anymore and thus the
results for both models are similar. On the right, for Δ𝑧 = 4.8 mm, it can be seen that there are strong
increases and decreases in the number of tumour cells for both models. It is the type of behaviour
that was seen before as well, in which the tumour cells grow back as quick as they are killed. Note
that the decreases for DIRD are stronger than for DIMCRD and the peaks are all approximately at the
same height. which means that most likely because of the mechanics the number of tumour cells did
not decrease as hard as it could for the model without mechanics. Thus, the mechanics limit the cell
death, which could also be seen similarly in the left figure where the blue line of DIRD stays under the
orange line of DIMCRD.
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Δ𝑧 model 𝑀𝑆𝐸(𝑡1) 𝑀𝑆𝐸(𝑡2)
1.6 mm DIRD 1.380 ⋅ 106 1.099 ⋅ 109

DIMCRD 1.398 ⋅ 106 1.089 ⋅ 109
3.2 mm DIRD 3.389 ⋅ 107 2.774 ⋅ 109

DIMCRD 3.818 ⋅ 107 3.406 ⋅ 109
4.8 mm DIRD 4.540 ⋅ 107 3.451 ⋅ 109

DIMCRD 4.644 ⋅ 107 1.721 ⋅ 109

Table 6.6: Mean squared errors for different slice thicknesses and various models for 𝑝1.

In Table 6.6, the mean squared errors for these cases are presented, where it can be seen that
the mean squared error increases as the slice thickness gets bigger. This is logical, as bigger voxels
contain more tumour cells and thus the errors increase. The MSE at 𝑡2 of DIMCRD is however does
not follow this trend and turns out lower than expected. Also, note that the MSE at 𝑡1 for 1.6 mm is
smaller for DIMCRD than for DIRD, but for the other cases the MSE is bigger for DIMCRD than for
DIRD. Furthermore, for 1.6 and 4.8 mm, the MSE at 𝑡2 is smaller for DIMCRD than for DIRD, but it is
the other way around for 3.2 mm.

Let us now reflect on the choice of slice thickness. In previous work, it was observed that for Δ𝑧 = 1.6
mm, there was no difference between themodel without mechanics (RD) and themodel with mechanics
(MCRD) [11]. This is why the slice thickness in that research was increased and this resulted in different
outcomes for the RD and MCRD models. However, for the DIRD and DIMCRD models, a difference
can already be observed for the small slice thickness. In addition, the curves for this slice thickness
showed behaviour that was more in line with what was expected: the influence of chemotherapy was
clear, the increases and decreases were not very big and in addition the MSE values were all relatively
small. Note however that this last observation was most likely caused by the fact that less tumour
cells were present compared to the thicker slices. All in all, it was decided to use Δ𝑧 = 1.6 mm in the
remainder of this chapter for the results of the other patients.

6.5. Results and comparison of models
In this section, the results will be summarised for the different models and patients. We will analyse
the total number of tumour cells over time, the parameter values and various measures that were
chosen to quantify the results. The aim is to have a model that can accurately predict for each position
in the breast how many tumour cells are present, which means that the local error should be small.
For this, the previously introduced mean squared error (MSE) will be used. If the model makes proper
predictions on a local level, then the sum over the predicted tumour cells, denoted by 𝑆(𝑡𝑖) = ∑𝑥 𝑁(𝑥, 𝑡𝑖)
should be close to the sum over the measured tumour cells, denoted by �̂�(𝑡𝑖) = ∑𝑥 �̂�(𝑥, 𝑡𝑖). In previous
sections, these values have been plotted to evaluate the different cases as a way to summarise the
behaviour of the model on a global scale. To quantify this at 𝑡1 and 𝑡2, the global relative error (GRE)
will be used. The GRE value represents the relative difference between the sum of the modelled tumour
densities and the sum of the measured tumour densities. It is calculated using the following formula:

𝐺𝑅𝐸(𝑡𝑖) =
|𝑆(𝑡𝑖) − �̂�(𝑡𝑖)|

𝑆(𝑡𝑖)
So far the MSE has been introduced to assess the local error and the GRE has been introduced to
assess the global error of the model. In addition to these error measures, the concordance correlation
coefficient (CCC) will also be used to quantify the results. This coefficient is a value between 0 and 1
and it measures the agreement between two sets of data. It has also been used in papers related to
using mechanical models to predict tumour growth [7, 8, 14] and thus allows us to compare values. It
is calculated using the mean, the variance, covariance and the correlation coefficient:

𝐶𝐶𝐶(𝑡𝑖) =
2 ⋅ 𝜌 ⋅ 𝜎(𝑁(𝑥, 𝑡𝑖)) ⋅ 𝜎(�̂�(𝑥, 𝑡𝑖))

𝜎2(𝑁(𝑥, 𝑡𝑖)) + 𝜎2(𝑁(𝑥, 𝑡𝑖)) +
1
𝑁2 (𝑆(𝑡𝑖) − �̂�(𝑡𝑖))

2

Here, 𝜎 corresponds to the standard deviation and 𝜌 is the Pearson product-moment correlation coef-
ficient, which can be computed by calculating the covariance of 𝑁(𝑥, 𝑡𝑖) and �̂�(𝑥, 𝑡𝑖) and dividing this
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by the product of their standard deviations.

Now that the measures by which the results will be quantified are introduced, we can move on to
present the results of all models for all patients. Note that for 𝑝2 the DCE scan of 𝑡1 instead of 𝑡0 was
used to calculate the chemotherapy term as the scan of 𝑡0 was made at a different hospital and was
not of the required form.

(a) 𝑝1 (b) 𝑝2 (c) 𝑝3

Figure 6.17: Total number of tumour cells for all patients and all models.

Firstly, let us analyse the behaviour of themodels over time by looking at the curves that describe the
total number of tumour cells, for all models and patients, which are shown in Figure 6.17. In previous
research, it was already discussed that the results for RD and MCRD are very similar when a small
slice thickness is used, which can also be seen here. For 𝑝1 it was already observed that there is quite
a difference between the curves of the DIRD and the DIMCRD models but this difference is smaller
for the other patients. In addition, it can be seen that for all patients the curves describing the total
number of tumour cells of the chemotherapy models (DIRD and DIMCRD) are higher than the ones of
the models without treatment term (RD and MCRD), meaning there is a smaller decay in the number
of tumour cells for the chemotherapy models. In the case of 𝑝2, this is beneficial as the models without
chemotherapy underestimated the total number of tumour cells, but for 𝑝1 and 𝑝3 it is the other way
around, resulting in an overestimate of the number of tumour cells. Furthermore, it is interesting to see
for 𝑝3 that the number of tumour cells seems to increase towards 𝑡2 according to the chemotherapy
models, while this does not correspond to the measured data. In addition, for this patient the behaviour
of the non-mechanical (RD and DIRD) and mechanical (MCRD and DIMCRD) models differ between
𝑡0 and 𝑡1 but there is almost no visible difference between 𝑡1 and 𝑡2.

𝐷0 𝛼 mean 𝑘(𝑥) min𝑥 𝑘(𝑥) max𝑥 𝑘(𝑥)
𝑝1 RD 2.733 ⋅ 10−3 - −3.548 ⋅ 10−3 −0.426 0.293

MCRD 4.289 ⋅ 10−3 - −4.034 ⋅ 10−3 −0.666 0.363
DIRD 2.234 ⋅ 10−3 3.705 ⋅ 10−2 −5.243 ⋅ 10−3 −0.344 0.296
DIMCRD 4.398 ⋅ 10−3 9.064 ⋅ 10−2 −4.431 ⋅ 10−3 −0.478 0.469

𝑝2 RD 5.143 ⋅ 10−3 - −5.780 ⋅ 10−3 −0.452 0.295
MCRD 5.081 ⋅ 10−3 - −4.836 ⋅ 10−3 −0.390 0.220
DIRD 2.972 ⋅ 10−3 0.280 −4.008 ⋅ 10−3 −0.695 0.781
DIMCRD 3.465 ⋅ 10−3 0.263 −5.620 ⋅ 10−3 −0.680 0.819

𝑝3 RD 2.789 ⋅ 10−3 - −3.754 ⋅ 10−3 −0.581 0.227
MCRD 4.780 ⋅ 10−4 - −2.493 ⋅ 10−3 −0.361 0.316
DIRD 3.401 ⋅ 10−4 3.867 ⋅ 10−2 −6.800 ⋅ 10−4 −0.819 0.283
DIMCRD 4.426 ⋅ 10−4 3.927 ⋅ 10−2 2.150 ⋅ 10−4 −0.418 0.283

Table 6.7: Optimised parameter values for all models and patients.

In Table 6.7 the calibrated parameter values are summarised, where for the proliferation rate 𝑘(𝑥)
the mean, minimum and maximum values are displayed. It turns out that the minimum is always neg-
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ative and the maximum is always positive, indicating that there are both negative and positive values.
The mean is always very small and in all cases but one the mean is negative. It can be observed for
each parameter that it has approximately the same order for the models and patients and there are
no extremely high or low values. This is an improvement compared to previous research, in which the
value of for example 𝐷0 varied greatly between the order of 10−11 to 10−3 for different patients and
different models [11]. This was probably caused by the Tikhonov regularisation term that was used to
overcome the issue of the under-determined problem. As this issue was solved in another way with the
reduced mask, it seems like this has improved the model in the sense that there is more similarity in
the parameter values. There is however still some variation in these parameter values, which is good
as the aim is to have a model with patient-specific parameters.

𝑀𝑆𝐸(𝑡1) 𝑀𝑆𝐸(𝑡2) 𝐺𝑅𝐸(𝑡1) 𝐺𝑅𝐸(𝑡2) 𝐶𝐶𝐶(𝑡1) 𝐶𝐶𝐶(𝑡2)
𝑝1 RD 2.041 ⋅ 106 1.036 ⋅ 109 2.069 ⋅ 10−2 0.190 0.999 0.490

MCRD 2.032 ⋅ 106 1.035 ⋅ 109 2.001 ⋅ 10−2 0.191 0.999 0.490
DIRD 1.380 ⋅ 106 1.099 ⋅ 109 1.364 ⋅ 10−2 0.480 1.000 0.503
DIMCRD 1.398 ⋅ 106 1.089 ⋅ 109 1.382 ⋅ 10−2 0.632 1.000 0.518

𝑝2 RD 2.510 ⋅ 107 3.263 ⋅ 109 3.803 ⋅ 10−2 0.303 0.998 0.670
MCRD 2.528 ⋅ 107 3.328 ⋅ 109 3.824 ⋅ 10−2 0.326 0.998 0.662
DIRD 2.198 ⋅ 107 3.186 ⋅ 109 1.985 ⋅ 10−2 0.174 0.998 0.694
DIMCRD 2.139 ⋅ 107 3.174 ⋅ 109 1.933 ⋅ 10−2 0.191 1.000 0.478

𝑝3 RD 7.624 ⋅ 106 8.060 ⋅ 109 1.167 ⋅ 10−2 0.175 1.000 0.624
MCRD 6.486 ⋅ 106 8.297 ⋅ 109 9.183 ⋅ 10−3 0.171 1.000 0.618
DIRD 1.990 ⋅ 106 8.469 ⋅ 109 3.083 ⋅ 10−3 0.316 1.000 0.592
DIMCRD 2.029 ⋅ 106 8.468 ⋅ 109 3.275 ⋅ 10−3 0.312 1.000 0.592

Table 6.8: Mean squared errors, global relative errors and concordance correlation coefficient for 𝑡1 and 𝑡2 for all models and
patients.

Lastly, the performance of the models is assessed with the introduced MSE, GRE en CCC values,
which are shown in Table 6.8 for both 𝑡1 and 𝑡2. The values at 𝑡1 are shown here, as it is also inter-
esting to compare the performance of the models at calibration. For 𝑡1, it can be seen that in general
the DIRD and DIMCRD models perform better than the RD and MCRD models: the MSE and GRE
values are lower and the CCC values are higher. This is also logical, as in the calibration the sum of
the voxel-wise squared difference between the measured and modelled tumour number is minimised,
which is quite similar to the MSE. Thus, if the MSE of the RD and MCRD models were lower than the
ones of DIRD and DIMCRD, then the calibration should yield 𝛼 = 0 as this would in that case reduce
the squared error and it simplifies those models to the RD and MCRD models. In addition, all CCC
values are almost equal to 1, which means that the predicted tumour density is very close to the actual
tumour density, as expected in calibration.

For 𝑡2 it differs per patient which type of model performs better. In most cases, it even depends
on which measure is being looked at which model is best. For example for 𝑝1, the MSE, GRE and
CCC values of RD and MCRD are extremely similar and are all better compared to the chemotherapy
models. From the curve in Figure 6.17a, it could already be seen that on a global level the RD and
MCRD models performed better and thus that their GRE values would be lower compared to DIRD
and DIMCRD models. For those chemotherapy models, it can be seen that although the GRE value of
DIMCRD is quite a lot higher, it gives better MSE and CCC values compared to the DIRD model. Thus,
looking at the MSE and GRE, the models without the chemotherapy term perform better, but looking
at the CCC value, the DIMCRD model performs best for this patient.
Next, let us take a look at 𝑝2. Here, the chemotherapy models seem to outperform the models with-
out treatment in almost all aspects except for the CCC value of DIMCRD, which is surprisingly low in
comparison to the other CCC scores for this patient. The DIRD model performs exceptionally well for
this patient, with the second lowest MSE, lowest GRE and highest CCC value out of all models and
patients.
For 𝑝3 quite similar behaviour can be seen compared to 𝑝1. The RD and MCRD models outperform the
DIRD and DIMCRD models in all aspects; even the CCC value is higher. The RD model seems best
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here, as it has the lowest MSE and highest CCC despite its slightly higher GRE value compared to
MCRD. The chemotherapy models perform very comparably, which is what was also concluded from
Figure 6.17c, but the DIMCRD model is slightly better in terms of MSE and GRE.

Lastly, before this chapter is concluded, we would also like to compare our CCC values of 𝑡2 to
the ones reported on by Jarrett et al. [7]. Their study included five patients of which there was only
one HER2+, the others were HER2-. The found CCC values ranged from 0.05 to 0.50 for the MCRD
and from 0.08 to 0.51 for the DIMCRD model, with a median of 0.27 and 0.33 respectively. For all five
patients, the CCC value of DIMCRD was higher than the one of MCRD. For this study, the CCC values
for MCRD lie between 0.490 and 0.662 and for DIMCRD they lie between 0.478 and 0.592. The CCC
values for our patients are thus quite a lot higher than the values that were presented by Jarrett et al.
However, in our case the CCC value of DIMCRD was higher than the MCRD value for only one out of
three patients.

In summary, the performance of the models has been evaluated and their outcomes have been
compared. It depended on the measure and the patient which model performed best and it was not
clear which model performed best overall. However, we did see that in general the models that included
the chemotherapy performed better at 𝑡1, but for 𝑡2 it was not possible to draw such a conclusion.
In most cases, including mechanics did not give big differences compared to the standard models.
However, the computation time for the MCRD and DIMCRD models was much larger than that of RD
and DIRD. It is thus the question if including the mechanics is worth the extra effort. Computing the
chemotherapy curves required some extra time before the normal computation, but it did not influence
the time that was needed for calibration, which is the bottleneck of the implementation.





7
Three-dimensional extension

In this chapter, steps are taken to extend from a two-dimensional to a three-dimensional model. In the
previous chapter, we have explained how the chemotherapy term can be calculated and the resulting
two-dimensional model was analysed for various cases and different models. We noticed that the mod-
els that included mechanics (MCRD and DIMCRD) took a lot longer than the models without mechanics
(RD and DIRD) and their results often did not differ much. By extending into another dimension, the
calibration time increases greatly. For that reason, only the RD and DIRD models will be considered
in 3D as it is currently infeasible to use MCRD and DIMCRD.

For the two-dimensional model, one slice was chosen from pre-processed data. For the three-
dimensional extension, it would in theory be possible to consider all slices of the pre-processed data.
In the case of 𝑝1 and 𝑝3, this would result in a total array of size (60, 60, 120) and for 𝑝2 an array of size
(70, 70, 86), meaning the number of computations is huge compared to the 2D model. For that reason,
not all 120 slices, or 86 in the case of 𝑝2, are considered. Instead, only 3 slices will be considered, as
this number turned out to give tolerable computation times. The middle slice is corresponding to the
slice that was chosen in 2D and the other slices are the ones above and below that central slice.

In this chapter, the possibilities to work with the 3D model are investigated. For this, firstly the
discretisations are updated in Section 7.1. Next, the influence of the slice thickness for the 3D model
is analysed in Section 7.2. In addition, the option to decrease the number of voxels in the grid by
downsampling the (𝑥, 𝑦) plane is explored in Section 7.3 and its results and computation time are
compared to the standard grid. Next, in Section 7.4 a comparison is made between having a thick
slice in 2D and having three thin slices that cover the same area in 3D. Lastly, results for the 3D
implementation for all patients are presented in Section 7.5.

7.1. Discretisations
Now that there is an extra dimension, the discretisations and boundary conditions should be updated.
Because only the simple models without mechanics are considered, only the discretisation of the
reaction-diffusion equation has to be updated.

𝜕𝑁𝑖,𝑗,𝑘
𝜕𝑡 =

𝐷𝑖+ 12 ,𝑗,𝑘
𝜕𝑁𝑖+ 12 ,𝑗,𝑘

𝜕𝑥 − 𝐷𝑖− 12 ,𝑗,𝑘
𝜕𝑁𝑖− 12 ,𝑗,𝑘

𝜕𝑥
Δ𝑥 +

𝐷𝑖,𝑗+ 12 ,𝑘
𝜕𝑁𝑖,𝑗+ 12
𝜕𝑦 − 𝐷𝑖,𝑗− 12 ,𝑘

𝜕𝑁𝑖,𝑗− 12
𝜕𝑦

Δ𝑦

+
𝐷𝑖,𝑗,𝑘+ 12

𝜕𝑁𝑖,𝑗,𝑘+ 12
𝜕𝑧 − 𝐷𝑖,𝑗,𝑘− 12

𝜕𝑁𝑖,𝑗,𝑘− 12
𝜕𝑧

Δ𝑧 + 𝑘𝑖,𝑗,𝑘𝑁𝑖,𝑗,𝑘(1 −
𝑁𝑖,𝑗,𝑘
𝜃 ) − 𝛼𝐶𝑖,𝑗,𝑘𝑁𝑖.𝑗,𝑘

(7.1)

In addition to the already existing boundary conditions, homogeneous Neumann boundary conditions
are imposed for the 𝑧−direction. It is thus implicitly assumed that the tumour cells remain within the
selected slices and do not diffuse to the slices outside of the domain. This is a simplifying assumption
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because the tumour in most cases is not completely covered by those three slices. Writing out Equation
7.1 using central differences and applying Forward Euler, the discretisation given in 7.2 is obtained.

𝑁𝑚+1𝑖,𝑗,𝑘 = 𝑁𝑚𝑖,𝑗,𝑘

+ Δ𝑡( 1
2Δ𝑥2((𝐷𝑖,𝑗,𝑘 + 𝐷𝑖−1,𝑗,𝑘)𝑁

𝑚
𝑖−1,𝑗,𝑘 − (𝐷𝑖−1,𝑗,𝑘 + 2𝐷𝑖,𝑗,𝑘 + 𝐷𝑖+1,𝑗,𝑘)𝑁𝑚𝑖,𝑗,𝑘 + (𝐷𝑖,𝑗,𝑘 + 𝐷𝑖+1,𝑗,𝑘)𝑁𝑚𝑖+1,𝑗,𝑘)

+ 1
2Δ𝑦2((𝐷𝑖,𝑗,𝑘 + 𝐷𝑖,𝑗−1,𝑘)𝑁

𝑚
𝑖,𝑗−1,𝑘 − (𝐷𝑖,𝑗−1,𝑘 + 2𝐷𝑖,𝑗,𝑘 + 𝐷𝑖,𝑗+1,𝑘)𝑁𝑚𝑖,𝑗,𝑘 + (𝐷𝑖,𝑗,𝑘 + 𝐷𝑖,𝑗+1,𝑘)𝑁𝑚𝑖,𝑗+1,𝑘)

+ 1
2Δ𝑧2((𝐷𝑖,𝑗,𝑘 + 𝐷𝑖,𝑗,𝑘−1)𝑁

𝑚
𝑖,𝑗,𝑘−1 − (𝐷𝑖,𝑗,𝑘−1 + 2𝐷𝑖,𝑗,𝑘 + 𝐷𝑖,𝑗,𝑘+1)𝑁𝑚𝑖,𝑗,𝑘 + (𝐷𝑖,𝑗,𝑘 + 𝐷𝑖,𝑗,𝑘+1)𝑁𝑚𝑖,𝑗,𝑘+1)

+ 𝑘𝑖,𝑗,𝑘𝑁𝑚𝑖,𝑗,𝑘(1 −
𝑁𝑚𝑖,𝑗,𝑘
𝜃 ) − 𝛼𝐶𝑚𝑖,𝑗,𝑘𝑁𝑚𝑖.𝑗,𝑘)

(7.2)

7.2. Influence of slice thickness
Like for the 2D model, a choice has to be made for the slice thickness. In 3D, this could be more im-
portant than in 2D due to the interactions between the slices. Having thick slices means that there are
more tumour cells per voxel, which creates a bigger difference between the voxels with tumour cells
and the voxels without any tumour cells compared to thin slices. The advantage of thick slices on the
other hand is that a larger area is considered, so fewer slices are needed to cover the entire breast
region.

In Figure 7.1 the total number of tumour cells for different slice thicknesses is displayed for 𝑝1. Just
like for the 2D case, note that the scales of the tumour cell axis are different and that the number of
tumour cells increases as the slice thickness increases. All models and slice thicknesses result in an
overestimation. For Δ𝑧 = 3.2 and Δ𝑧 = 4.8 mm, the DIRD model outperforms the RD model regarding
this aspect, but for Δ𝑧 = 1.6 mm it is the other way around. Just like for the 2D case, for Δ𝑧 = 3.2 mm
the effect of chemotherapy is not clearly visible as there are no decreases on the days of treatment.
However, the curves of the RD and DIRD differ quite a lot and the DIRDmodel gives a better prediction.

(a) Δ𝑧 = 1.6 mm (b) Δ𝑧 = 3.2 mm (c) Δ𝑧 = 4.8 mm

Figure 7.1: Total number of tumour cells for the RD and DIRD model in 3D for different slice thicknesses Δ𝑧.

Once again, the local errors are quantified through the MSE, as displayed in Table 7.1. Interestingly
enough, for Δ𝑧 = 1.6 mm, the MSE of DIRD is bigger than RD for both 𝑡1 and 𝑡2. For Δ𝑧 = 3.2
and Δ𝑧 = 4.8 mm, the MSE at 𝑡1 of DIRD is bigger, but the MSE at 𝑡2 is smaller compared to RD. It is
surprising to see these MSE values of 𝑡1 because in the 2D case it was observed that the chemotherapy
models in general had a lower MSE at 𝑡1 than the standard models. The orders of these errors are
however comparable to the 2D results. Since for Δ𝑧 = 4.8 mm the influence of chemotherapy is clearly
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visible and the DIRD model seems like an improvement compared to RD, this thickness is also used
in the next section and the results for the other patients.

Δ𝑧 model 𝑀𝑆𝐸(𝑡1) 𝑀𝑆𝐸(𝑡2)
1.6 mm RD 9.463 ⋅ 105 1.244 ⋅ 109

DIRD 1.410 ⋅ 106 1.315 ⋅ 109
3.2 mm RD 3.355 ⋅ 106 3.602 ⋅ 109

DIRD 3.361 ⋅ 106 2.838 ⋅ 109
4.8 mm RD 5.487 ⋅ 106 3.949 ⋅ 109

DIRD 6.635 ⋅ 106 3.501 ⋅ 109

Table 7.1: Mean squared errors for different slice thicknesses and various models for 𝑝1.

7.3. Downsampled (𝑥, 𝑦) plane
Currently, only three slices are considered for the 3D implementation, but this means that a large part
of the breast and certain parts of the tumour are not included. To model the entire tumour, more slices
should be considered, so therefore it is interesting to investigate options to decrease the computation
time, which in this section will be done by downsampling the (𝑥, 𝑦) plane. Before going into that, let us
make some remarks on other options that were considered. In the previous chapter, the influence of
the proliferation rate has been investigated, where also the option to have a constant proliferation for
all voxels was researched. Having only one value for 𝑘(𝑥) of course greatly decreases the calibration
time, but it turned out that because of this the model was no longer able to make accurate predictions
of the tumour density on a local level, which resulted in big MSE values. In 3D this option was also
looked into, but this gave the same issues that were addressed before. Another option that was con-
sidered, was relaxing the convergence criterion of the TRF algorithm in calibration. This was possible,
but the results deteriorated a lot which is why that option was also rejected. Therefore, it was decided
to instead investigate another option to speed up the computations, namely downsampling the (𝑥, 𝑦)
plane. Note that the data that was used previously had already been downsampled by a factor three
and this is now increased to a factor six. This means each slice consists of a (30, 30) grid which used
to be a (60, 60) grid.

Like before, both the total number of tumour cells and theMSE values are compared for the standard
grid and this downsampled grid. In Figure 7.2, it can be seen that the measured number of tumour cells
remains the same while the curves for these different grids vary. What stands out is that the error at 𝑡1
in the number of tumour cells for the downsampled grid is very large for both RD and DIRD. This is also
reflected in the MSE values in Table 7.2, where the MSE at 𝑡1 is of order 108 while for the normal grid it
is of order 106. Although the final points of the curves seem to end around the same height as they did
for the normal grid, the MSE values at 𝑡2 are a factor 10 bigger for the downsampled grid. Note also
that there are no clear decreases on the days of treatment for the DIRD model applied to the downsam-
pled grid, but still the RD and DIRD models show different curves. It is however important to note that
the computation time of the downsampled grid was considerably lower than that of the normal grid: the
calibration for the normal grid took almost six times as long as the calibration for the downsampled grid.

Grid model 𝑀𝑆𝐸(𝑡1) 𝑀𝑆𝐸(𝑡2)
Normal grid RD 5.487 ⋅ 106 3.949 ⋅ 109

DIRD 6.635 ⋅ 106 3.501 ⋅ 109
Downsampled grid RD 4.286 ⋅ 108 3.991 ⋅ 1010

DIRD 5.626 ⋅ 108 3.510 ⋅ 1010

Table 7.2: Mean squared errors for normal and downsampled grid and various models for 𝑝1.

The goal here was to see if with a downsampled grid proper results could still be obtained so that in
the future perhaps this method could be used to decrease the computations when the full breast region
is considered. However, even though the computation time went down considerably, the results were
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(a) Normal grid (b) Downsampled grid

Figure 7.2: Comparison of the total number of tumour cells for the normal grid and the downsampled grid.

not good. In calibration, the error was a lot larger than the error for the normal grid and also in validation
the model performed a lot worse compared to the normal grid. It thus seems like too much information
is lost and that this is not an appropriate measure to decrease the number of computations.

7.4. Comparison of 3D model versus 2D model
In this section a comparison is made between the result of the 2D model with a thick slice and the 3D
model with 3 thin slices. The aim is to use the same physical region within the breast and compare the
outcome of the 2D model that just has one slice of 4.8mm and the outcome of the 3D model with three
slices of 1.6 mm.

The results presented in Figure 7.3 and Table 7.3 are based on the data of 𝑝1. For the 2D simulation,
all MSE values are higher than the ones found for the 3D simulation. Note however that the MSE values
at 𝑡2 are of the same order, but there is quite a big difference between the values at 𝑡1 of 2D and 3D.
The local errors of the 3D model thus increased a lot more between 𝑡1 and 𝑡2 than they did for 2D.
Also, in the 2D simulation, the DIRD model predicted heavy oscillations that are not at all visible in
the 3D case. Note also the difference between curves of the RD model in 2D and in 3D, which for
3D results in a better approximation on both a global and local level. All in all, it seems like the 3D
model gives better results than the 2D model for this use case. Note however that only one patient
was considered, so the results might differ for the other patients. Furthermore, the computation time of
the 3D implementation was considerably longer than the computation time of the 2D implementation,
which also poses the question of whether the small improvements that were seen for the 3D model are
worth the extra computation time.

(a) 2D (4.8 mm) (b) 3D (3 slices of 1.6 mm)

Figure 7.3: Comparison of the total number of tumour cells for the 2D model with a thick slice of 4.8 mm and the 3D model with
3 slices of 1.6 mm.
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Model 𝑀𝑆𝐸(𝑡1) 𝑀𝑆𝐸(𝑡2)
2D (1 slice of 4.8 mm) RD 5.900 ⋅ 107 6.528 ⋅ 109

DIRD 4.540 ⋅ 107 3.451 ⋅ 109
3D (3 slices of 1.6 mm) RD 9.463 ⋅ 105 1.244 ⋅ 109

DIRD 1.410 ⋅ 106 1.315 ⋅ 109

Table 7.3: Mean squared errors for 𝑡1 and 𝑡2 for the two-dimensional model with a thick slice and the three-dimensional model
with three thin slices.

7.5. Results and comparison of models
Let us now present and analyse the performance of RD and DIRD in 3D for all patients. In Figure 6.17
the total number of tumour cells are shown. The results for 𝑝1 and 𝑝2 seem quite good as both curves
of RD and DIRD go through the measured point at 𝑡1 and get quite close to the measured total number
of tumour cells at 𝑡2. Note that for 𝑝2 in 2D all models made an underestimation but for 3D RD and
DIRD instead overestimate the total number of tumour cells at 𝑡2. For 𝑝3 both models do not seem to
be able to make a proper prediction and the DIRD model shows strong oscillations that do not go down
over time.

(a) 𝑝1 (b) 𝑝2 (c) 𝑝3

Figure 7.4: Total number of tumour cells of the RD and DIRD models in 3D for all patients.

The optimised parameter values are summarised in Table 7.4. Here, it stands out that for 𝑝3, 𝐷0 is
a lot smaller than for the other patients and models and 𝛼 is relatively big, which explains the heavy
oscillations that can be seen for this patient. In 2D the proliferation rate stayed within the range (−1, 1),
but for the 3D case, larger values are observed. A possible explanation is that the slices are three
times as thick as they were for the 2D case, meaning there can be up to three times as many tumour
cells in one voxel, i.e. 𝜃 is a lot higher. As the proliferation rate is determined per voxel, this could have
led to higher proliferation rates as it is part of the reaction term in the modelling equations.

𝐷0 𝛼 mean 𝑘(𝑥) min𝑥 𝑘(𝑥) max𝑥 𝑘(𝑥)
𝑝1 RD 4.742 ⋅ 10−2 - −1.232 ⋅ 10−2 −4.047 1.854

DIRD 1.892 ⋅ 10−2 7.154 ⋅ 10−2 −4.344 ⋅ 10−3 −0.735 1.059
𝑝2 RD 4.224 ⋅ 10−2 - −8.070 ⋅ 10−3 −2.023 2.524

DIRD 1.980 ⋅ 10−2 3.595 ⋅ 10−2 −5.617 ⋅ 10−3 −1.323 1.775
𝑝3 RD 2.422 ⋅ 10−2 - −8.157 ⋅ 10−3 −1.452 0.506

DIRD 1.763 ⋅ 10−4 0.299 −2.434 ⋅ 10−3 −2.961 1.640

Table 7.4: Optimised parameter values of the RD and DIRD models in 3D for all patients.

The same measures as before are used to quantify the results, which are presented in Table 7.5.
In general, it can be seen that compared to the 2D results the orders of the errors are comparable but
slightly larger and that the CCC scores are relatively low. All models perform better at 𝑡1 compared
to 𝑡2 for all patients. However, while before it was concluded that the chemotherapy models always
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outperformed the models without chemotherapy at 𝑡1, this is no longer the case: the MSE of all patients
is larger and the GRE of patient 𝑝3 is also larger for the DIRD model than for the RD model at 𝑡1. This
is rather unexpected, as in this case it would be more logical for the calibration to return a very small
value for 𝛼, or even 𝛼 = 0, thus reducing the DIRD model to the RD model which has better results at
𝑡1, but this did not happen. For the validation time point 𝑡2, it can be seen that RD has a lower MSE
and GRE for 𝑝1 and 𝑝3. For 𝑝2, however, the MSE and GRE values of DIRD are better than the values
of the RD model. Lastly, the CCC values are better for RD compared to DIRD for all patients. The bad
performance of both models for 𝑝3 is also reflected in the high error values, especially in the GRE at
𝑡2. One possible explanation for this is that at 𝑡2 there was only one slice with tumour cells in it while
at 𝑡1 all slices still contained quite a lot of tumour cells. Thus, although the initial decrease was rather
small, this patient in the end responded well to treatment, which the models did not predict.

𝑀𝑆𝐸(𝑡1) 𝑀𝑆𝐸(𝑡2) 𝐺𝑅𝐸(𝑡1) 𝐺𝑅𝐸(𝑡2) 𝐶𝐶𝐶(𝑡1) 𝐶𝐶𝐶(𝑡2)
𝑝1 RD 5.487 ⋅ 106 3.949 ⋅ 109 2.322 ⋅ 10−2 0.717 0.999 0.381

DIRD 6.635 ⋅ 106 3.501 ⋅ 109 3.204 ⋅ 10−2 0.386 0.999 0.372
𝑝2 RD 6.031 ⋅ 107 9.388 ⋅ 109 5.618 ⋅ 10−2 0.346 0.998 0.554

DIRD 1.205 ⋅ 108 9.145 ⋅ 109 5.234 ⋅ 10−2 0.203 0.998 0.308
𝑝3 RD 1.409 ⋅ 108 6.295 ⋅ 1010 1.135 ⋅ 10−2 1.649 0.999 0.304

DIRD 5.122 ⋅ 107 9.323 ⋅ 1010 3.692 ⋅ 10−3 2.497 0.999 0.248

Table 7.5: Mean squared errors, global relative errors and concordance correlation coefficient for 𝑡1 and 𝑡2 of the RD and DIRD
models in 3D for all patients.



8
Discussion and recommendations

In this chapter, the results presented in previous chapters are discussed and recommendations are
made for future research. First, some remarks are made on the pre-processing steps and suggestions
are made to improve the calibration and other aspects of the implementation in Section 8.1. Next, the
methods that were used to calculate the chemotherapy term are discussed in Section 8.2 and lastly
the 2D and 3D results are discussed in Section 8.3.

8.1. Model implementation
In this thesis, the pre-processed data from Oudhof was used [11]. However, as noted in that thesis,
there is still room for improvement in how the data was pre-processed. For example, to reduce noise
in the MRI images, it is possible to use a Gaussian filter [14]. In addition, after the tumour has been
segmented by the radiologist, one could use a fuzzy c-means algorithm to refine the boundaries as
was done in certain papers [8, 9]. Furthermore, for the data of this thesis the segmentation was done
before registration, but it might be better to do this after registration as this is also the order that was
followed in other research [3, 5, 6, 8]. On the other hand, the current order allows the future use of
a tumour volume preserving registration algorithm to make sure the tumour volume does not change
during registration [3, 6, 42]. Another relevant remark to make here is that the tumour densities are esti-
mated using the ADC values found in the DW scans. In addition to cellularity, many factors like cell size
and cell membrane permeability play a role in changes in these ADC values, so the estimated tumour
densities are only an approximation of the actual tumour densities. Although many studies use the
ADC values to calculate tumour densities, they all comment on the ambiguity of its interpretation and
recommend finding a better way to estimate the tumour densities more precisely [6–9, 14]. Moreover,
it should be noted that for the tissue segmentation a voxel was assumed to be either fibroglandular,
adipose or tumorous. This is of course a simplification of reality, just like the assumption that a tumor-
ous voxel consists of only tumour cells.

Although 𝛼, 𝐷0 and 𝑘(𝑥) were all considered as patient-specific parameters and calibrated as such,
the other parameters (𝛾, 𝐸, 𝜆 and 𝜈) were given literature values while these most likely also differ per
patient. In the future, it should therefore be considered to determine these parameters per patient as
well by for example using modality independent elastography to estimate the breast elasticity parame-
ters based onMRI scans [3]. In addition, it should be noted that the carrying capacity 𝜃 is assumed to be
constant in time and space, and it might be interesting to investigate options to make this a spatiotem-
poral parameter, although this would complicate the model as it requires some modelling equations for
𝜃. In a paper by Hormuth et al. [14], the MCRD model was for example implemented with 𝜃(𝑥) instead
of 𝜃.

The calibration in this thesis was done with the Trust Region Reflective algorithm, which is different
from the Levenberg-Marquardt algorithm that was usually applied in the literature [3, 5, 6, 8, 9, 11, 14,
17]. The advantage of TRF is that it is relatively faster and bounds can be imposed on the parameters.
This was in general not done as these bounds slowed down the algorithm, but if calibration without
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bounds yielded a negative value for 𝛼 or 𝐷0, then calibration was run again with lower bounds for these
parameters. It is however questionable whether this approach is correct, as it is rather strange that
these parameters can become negative and it thus begs the question of what goes wrong. Perhaps
the model is not able to capture the behaviour of the measured tumour densities for those cases, as
many modelling assumptions are made and not all aspects of tumour growth are included. In the future,
it would be good to investigate other non-linear least squares algorithms to see if a different algorithm
gives better and faster results. The time factor is especially important here because the calibration in
which the algorithm is used is the bottleneck in the implementation. Having a faster non-linear least
squares algorithm could thus significantly speed up the implementation. One of the papers on the
MCRD model in 3D for example describes how the parameters can be estimated through an inverse
problem that is based on the adjoint state method, which is supposed to be numerically efficient [6].
The time integration is currently done with the explicit Forward Euler method, which is conditionally
stable and thus restricts the time step. One of the possible improvements to look into is using an im-
plicit or a semi-implicit method instead, as this would allow a bigger time step and thus reduces the
computations. Calculating one iteration however usually takes longer for implicit methods compared to
explicit methods as it involves solving a system of linear equations. It is therefore not immediately clear
whether this change will improve the computation time of calibration, in which the calculation from 𝑡0
to 𝑡1 has to be performed many times with different parameter values.
Another aspect of the implementation that should be made quicker is solving the linear-elastic equation
for the mechanically coupled models. This was now done with a direct solver, but in the future a Krylov
subspace method like the Conjugate Gradient method could be used. By using a preconditioner like an
incomplete Cholesky decomposition, additional speedup can be achieved. This will help in reducing
the calibration time as well, which is especially important for the three-dimensional implementation,
where the mechanical models were not used due to this time complexity issue.

To overcome the issue of the under-determined problem, a reduced mask was introduced. The
proliferation rate was calibrated for each voxel within this mask, and for the other voxels in the ROI
the average of their neighbours was taken. This decision was made based on the observation that in
previous work the proliferation rate seemed to have a smooth distribution [11]. However, due to the av-
eraging, some voxels will have gotten a higher or lower value than they would have gotten in standard
calibration without the reduced mask, which means that the calibrated proliferation rate is perhaps less
optimal. Additionally, the number of parameters was reduced quite a lot while it only had to be reduced
by two to make sure the number of unknowns equalled the number of data points, so perhaps this
approach was too rigorous. On the other hand, this reduction of parameters has made the calibration a
lot faster. Since most papers did not comment on how they dealt with the under-determined problem,
there might be other approaches that work better. One possible solution would be to include an extra
MRI scan in the calibration phase, which would create more data points, but making an extra MRI scan
is currently not part of the protocol and comes with additional costs.

In future research, it would be interesting to investigate the timing of the second MRI scan that is
used in calibration as well. In some papers, the second MRI was already made after one round of
treatment [3, 5, 6, 8], while in others it was made after several rounds of treatments [9], just like in this
thesis. It is possible that this timing plays a big role in how accurate the model prediction at 𝑡2 is and
would therefore be relevant to research. In addition, from a practical perspective, knowing how well
the tumour responds to treatment after one treatment round is better than knowing this halfway through
treatment.

An important realisation for this study is that the MRI data was viewed as ground truth and that the
assumption was made that the measured tumour cells from the MRI corresponded exactly with the
tumour cells present in the tissue. Although it was found that for HER2+ patients radiologic complete
response often predicts pathologic complete response [16], it will not always be the case, which is ex-
actly the reason why in surgery tissue is extracted and sent to the laboratory to inspect the tissue for
remaining tumour cells. This is thus a limiting assumption in this work and something to keep in mind
for practical implementation because even if the model can perfectly predict the tumour density found
in the MRI at the end of treatment, it might not correspond with the actual tumour density in the tissue.
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8.2. Chemotherapy
In this work, both the Kety-Tofts model and Normalised Blood Volume Map were used to calculate
the chemotherapy term, which were compared in Section 6.3. As stated in that section, KT has been
extensively described in various literature and is based on a physical process. Only the standard KT
model was used, so 𝑣𝑝 was set to zero for simplicity, which was also done in one of the papers on the
DIMCRD model [8]. Many steps had to be taken to obtain the fitted parameters that were needed to
calculate the chemotherapy curves. Both the fitted parameters and the resulting drug distributions did
not give results that seemed realistic. One explanation that was given for this was that this method
may not be suitable for the data due to the temporal resolution, which was also the reason why NBVM
was used in the paper by Jarrett et al. [9]. This method has only been described in the two papers that
used the DIMCRD model and there is thus less scientific support for this method compared to KT. In
addition, this method assumed that the highest concentration of chemotherapy would be in the tumour,
but it is not certain that this reflects reality as chemotherapy in general kills all dividing cells. On the
other hand, this method was rather easy to implement and calculating the chemotherapy curves was
quick, although it was quite a struggle to find a suitable value for 𝛽. The choice for this parameter
influenced the results a lot and in some cases, it was observed that the number of tumour cells showed
unrealistic oscillations with no global decrease. Therefore, one of the recommendations is to include 𝛽
in the calibration in the same way that the papers on DIMCRD did [8, 9].

In the analysis of the DIRD and DIMCRD model, it was sometimes observed that there were heavy
oscillations in the total number of tumour cells. From a certain point onward, the model in that case
predicted that the tumour cells grew back as quickly as they were eradicated. It seemed like the model
reached some sort of equilibrium state around which the number of tumour cells fluctuated between
two asymptotes. This would make it impossible for the curve to go to zero at any point and thus there is
no way that all tumour cells will be eradicated. Although this was not investigated further, it is relevant
to look into the cause of this unrealistic behaviour, because in general tumour cells will not grow back
that quickly and the number of tumour cells will go down over time during treatment.

Another important remark to make here is that the chemotherapy curves were all based on the DCE
scan at 𝑡0. However, a tumour changes the vasculature and changes shape as treatment progresses.
As NBVM assumes that the concentration of the drug is highest within the tumour, this means that at
𝑡0 and 𝑡1 the same area contains a high concentration while in reality, the tumour at 𝑡1 has shrunk and
thus the area with a high concentration should be a lot smaller. It is therefore important to use the DCE
scan of 𝑡0 for the chemotherapy curves between 𝑡0 and 𝑡1 and use the DCE scan of 𝑡1 to derive the
chemotherapy curves between 𝑡1 and 𝑡2 in future research as this might improve the results, which is
also the approach that was followed in the papers that used NBVM [8, 9]. For 𝑝2, the DCE scan of 𝑡1
has been used as the DCE scan of 𝑡0 was not suitable: since this scan was made at a different hospital,
the dimensions differed a lot compared to the other scans and there was no information on the MRI
protocol. Therefore, it was not clear how much time there was between the scans and how many pre-
and post-contrast scans were made, which is information that is needed to calculate the chemotherapy
curves. Thus, to still include this patient, the only possibility was to use the scan of 𝑡1 as this one was
made at EMC, although this could have influenced the results for this patient and could have caused
for example different calibrated proliferation rates compared to when the DCE scan of 𝑡0 was used.

Furthermore, it is important to note that in calculating the chemotherapy term only the days on
which chemotherapy was given have been taken into account. This means that the dosage and other
components of treatment were not included as data. In the future, it will be interesting to also incorporate
these to model the treatment more accurately. As the immunotherapy components trastuzumab and
pertuzumab spread in a different way than chemotherapy, an option to model this would be to use PET
scans as data and derive the drug concentration curves as was done in a recent paper by Jarret et al.
[9]. In that paper, this extended chemotherapy model was investigated for two patients and it was found
that the model that uses both MRI and PET was better at distinguishing pCR from non-pCR outcomes.
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The DIRD equation would then look as follows for treatment consisting of two components:

𝜕𝑁(𝑥, 𝑡)
𝜕𝑡 = ∇ ⋅ (𝐷∇𝑁(𝑥, 𝑡)) + 𝑘(𝑥)𝑁(𝑥, 𝑡)(1 − 𝑁(𝑥, 𝑡)𝜃 ) − 𝐶𝑑𝑟𝑢𝑔(𝑥, 𝑡),

where
𝐶𝑑𝑟𝑢𝑔(𝑥, 𝑡) = 𝛼1𝐶𝑑𝑟𝑢𝑔1(𝑥, 𝑡∗)𝑒−𝛽1𝑡 + 𝛼2𝐶𝑑𝑟𝑢𝑔2(𝑥, 𝑡∗)𝑒−𝛽2𝑡 .

This however introduces extra global parameters, which could complicate the calibration and requires
the availability of both MRI and PET scans for patients. Furthermore, both the original model and this
extended model only take into account the efficacy and decay rate of a drug and assume that all cancer
cells respond in the same matter, but when multiple components are considered, it is important to also
model the different mechanisms of each drug and their drug synergy.

8.3. Results
In the analysis of the 2D models, it was observed that the total number of tumour cells of the DIRD and
DIMCRD models was higher than that of the RD and MCRD models, which means that the chemother-
apy models predicted a more limited decay in the number of tumour cells. This was a positive result
for 𝑝2, as RD and MCRD in that case underestimated the total number of tumour cells, but a nega-
tive result for 𝑝1 and 𝑝3. For 𝑝3 the curves of the chemotherapy models even increased towards the
end. These curves were used to evaluate the behaviour of the models over time, which especially for
the chemotherapy models was interesting as this sometimes displayed unexpected oscillations, which
have already been discussed in the previous section. It should be noted, however, that for these curves
the sum is taken over all voxels, which means that local underestimates and local overestimates in vox-
els could compensate for each other. For that reason, the results were also quantified by looking at the
MSE, GRE and CCC values for both 𝑡1 and 𝑡2. For calibration, it was concluded that the DIRD and DIM-
CRD models had better MSE, GRE and CCC values than RD and MCRD. However, when the models
were used to predict forward for validation, it was not possible to draw such a conclusion because this
varied per patient and per measure. Therefore, it is not clear whether including the mechanics and/or
the chemotherapy in the prediction gives better quantitative results in 2D. The CCC values of DIMCRD
at 𝑡2 were not better than the values of MCRD for all patients, as opposed to what was found in the
literature [7].

For the 3D results, only the RD and DIRD models were evaluated, so the mechanics were not in-
cluded. It turned out that the DIRD model did not outperform RD at 𝑡1 in the way that was seen for
the 2D results. However, the MSE and GRE values of DIRD were better at 𝑡2 for two out of three
patients. On the other hand, all CCC values of RD were better than the values of DIRD. Thus, for the
3D case, it is not completely clear whether RD is better than DIRD or not as it differed per patient and
measure. One of the limitations of the 3D simulations is that only three slices were considered when in
most cases the tumour was also present in other slices. It is however not completely clear if in future
research all slices in the breast need to be included or if a smaller number can be chosen as long as
the tumour is completely included in them. Another big limitation of the 3D implementation was that
only the RD and DIRD models were used and that thus mechanics were not taken into account, while
the mechanics could play an important role in 3D. It would thus be interesting to compare the results
in 3D with and without mechanics to further investigate the relevance of including the mechanics. In
the future, it is therefore recommended to speed up the implementation with the previously mentioned
options to allow the MCRD and DIMCRD models to be used in 3D.

It is important to reflect on whether the three-dimensional extension has improved the model as
well, where it should also be noted that the computation time was a lot longer and it was not possible to
run all models. In 3D, the MSE and GRE values were in general higher and the CCC values were lower
compared to 2D, so the results seemed less good. It is however not fair to compare these 2D and 3D
results in this way, as for the 2D implementation only a thin slice was considered and for 3D the domain
consisted of three thick slices, which means that the physical domain was a lot bigger and each voxel
contained a lot more tumour cells. In Section 7.4 an attempt was made to compare the 2D and 3D
implementations for the same breast region and there it was found that the 3D model seemed slightly
better, although this comparison was only made for one patient. Even though in one of the papers on



8.3. Results 57

the DIMCRD model it was found that the 3D MCRD and DIMCRD implementations gave more accu-
rate tumour density predictions than in 2D, it turned out that those differences were not significant [7].
Thus, to be able to evaluate whether extending the model into 3D improves the model, firstly the imple-
mentation should be made quicker so the MCRD and DIMCRD models can also be used and secondly
more patients should be included so a better comparison can be made between the 2D and 3D models.

Especially this last point should be emphasised because the limited group of patients was one of
the reasons why it was difficult to draw conclusions on which model performed best in the analysis
of the quantitative results of the models. The fact that only three patients were included is therefore
a big limitation of this research and it is thus strongly recommended to involve more patients in later
research. This will help in concluding which model gives the best results and in understanding which
parts of the models will need to be improved upon. In the selection of patients, it would also be a good
addition to include patients that achieved pCR after their chemotherapy and immunotherapy treatment.
Currently, all patients included in this thesis did not achieve pCR, meaning there were still tumour cells
remaining at the end of treatment. It is crucial to also include HER2+ pCR patients in future efforts
because the models should be able to capture that outcome of treatment as well.

In the comparison of the models, the performance has been analysed in multiple ways to determine
which model was best and to see if the extensions have improved the accuracy of the predictions. In
general, models are simplifications of reality in which many modelling assumptions are made, as is also
the case for the models considered in this thesis. By adding more aspects to a model, a model usually
gets more realistic but this does not always mean that the results become better. In addition, often a
more complex model has a higher computation time. This is also what was seen in this thesis and in
other research on reaction-diffusion based cancer models. The RD model is the most basic variant
and by including mechanics more physical aspects are taken into account, but the computation time
increased a lot and the results did not necessarily get better, although this appeared to also depend on
the slice thickness that was used. In the RD and MCRD models, the proliferation rate was constant in
time, which was one of the modelling assumptions, while the decay of tumour cells due to treatment
is not constant in time. This was the motivation for including the chemotherapy term in the DIRD and
DIMCRD models. This however introduced extra parameters that had to be estimated or calibrated.
Due to this addition, the model has become more non-linear and seemed more sensitive to small
changes in the parameter values. Furthermore, there was a higher chance of overfitting, as was often
seen with unrealistic oscillating curves. In the presented results, the chemotherapy models turned out
to not necessarily be better in terms of MSE, GRE and CCC than the models without chemotherapy; the
results were usually comparable and the errors were of the same order. This study focused on including
the treatment data and investigating which model gave the closest results to reality. It is however also
important to reflect on whether including a treatment term helps to predict how many treatment rounds
are required. Between 𝑡0 and 𝑡1, the treatment is set and because the proliferation rate is constant
over time in the RD and MCRD models, it is rather hard to make such a prediction. The only possibility
would be to assume all treatment rounds have the same components, dosage and frequency, and just
predict the model forward in time from 𝑡1 onward, see when the total number of tumour cells hits zero
and derive the number of rounds from this. The DIRD and DIMCRD models offer more possibilities for
this, as the chemotherapy curves can be adjusted based on which days the treatment is given and,
when the models have been further developed, the components and their dosage could be taken into
account as well. In that way, in silico experiments can be done to test if increasing for example the
dosage or frequency gives better results, in a similar way to what was done in the paper by Jarrett et
al. [8]. There is thus more flexibility in the chemotherapy models than there is in the models without
chemotherapy to predict how many rounds of treatment are necessary. However, the predictions of the
models are at this point not accurate enough and should therefore first be improved before they can
be used for this.





9
Conclusion

The aim of this thesis was to answer the following research question:

How can the MCRD model be improved to achieve better results in modelling chemotherapy and the
growth of tumours to determine the correct number of treatment rounds in HER2+ breast cancer

patients?

In this chapter, a summary is made of the research that was done and the results that were presented,
and the research question is answered.

To improve the implementation, firstly some steps were taken to solve the issue of the under-
determined problem. While in previous research a Tikhonov parameter was used [11], in this work
a reduced mask within the ROI has been introduced. Instead of calibrating 𝑘(𝑥) for each voxel within
the ROI, this is now only determined for the set of voxels within the reduced mask, which addition-
ally also reduces computation time. The proliferation rate of the other voxels in the ROI is calculated
by taking the average of their neighbouring voxels. In addition, a different non-linear least squares al-
gorithm was used, which was faster and allowed for bounds on the parameters that had to be optimised.

In the standard MCRD model, the proliferation rate represented both cell growth and cell death.
This term was however not time dependent while in reality cell death varies over time due to treat-
ment. Therefore, as an extension to this model, a chemotherapy term was added to simulate cell death
through treatment. To calculate this term, the standard Kety-Tofts model and the Normalised Blood
Volume Map were used, of which the latter turned out to be the best option for the DCE data that was
used for this research.

In the model analysis, the influence of the fitted parameters was investigated, where the option to
have a constant proliferation rate instead of a proliferation rate per voxel was also explored. It was
found that in that case the model no longer properly models the decay of tumour cells on a local level,
so it is logical to determine this per voxel to maintain the heterogeneity within the tumour. In addition,
a test was made to see if calibrating with all three MRI scans indeed improved the prediction, which
turned out to be the case. As a final part of the model analysis, the influence of the slice thickness was
explored. It turned out that for the standard slice thickness there was already a difference between
the chemotherapy model with and without mechanics, which was not the case for the models without
chemotherapy.

To investigate whether this addition of the chemotherapy term improved the model, a comparison
was made between the results of the four different types of reaction-diffusion models (RD, MCRD,
DIRD and DIMCRD) in 2D. The mean squared error, global relative error and concordance correlation
coefficient were used to quantify the results. It was concluded that in calibration the chemotherapy
models all outperformed the models without chemotherapy, but at the validation time point for which
the models made a prediction, it was not possible to conclude this. Although higher CCC values were
found compared to literature, the CCC values of the chemotherapy models were not always higher
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than the ones of the models without chemotherapy. It is thus not possible to conclude that adding
chemotherapy has improved the prediction in terms of MSE, GRE or CCC values. On the other hand,
including this treatment term is an essential step to take to be able to use a model to predict how many
rounds of therapy are needed to eradicate all tumour cells.

As a final step, the model was extended to 3D. The influence of the slice thickness was again anal-
ysed and for this case it was concluded that having a thick slice was the best option. Several options
were considered to decrease the number of computations, of which the results for downsampling the
(𝑥, 𝑦) plane were presented. This however did not turn out to be a good option for this, as the local
errors increased a lot in comparison to the normal grid and the effect of chemotherapy was not visible in
the same way as before. In comparing the 2D results and 3D results for the same breast region, it was
found that the 3D model had slightly better results on a local and global level, although the computation
time was a lot longer. The 3D model predictions were evaluated for all patients but again it was not pos-
sible to draw a conclusion on which model performed best for all patients and all measures. However,
when looking at the CCC values, the RD model gave more accurate results than DIRD. Compared
to 2D the results seemed less good and the computation time for 3D was a lot higher. On the other
hand, to accurately model all the dynamics within the breast, the 3D model is probably more realistic
than for example using the 2D model with a thick slice, because it is expected that the interaction be-
tween the slices plays an important role and thus including this will likely result in more accurate results.

Various limitations were discussed and recommendations were given to improve the model. One
of the limitations is the small cohort of patients that were considered for this study. In the future, the
sample size should be increased and the group of patients should also include patients with pCR. An-
other limitation of this study was that in the 3D implementation only three slices were used and only the
models without mechanics were considered due to the computation time of the mechanically coupled
models. The calibration should thus be made quicker by for example choosing a different non-linear
least squares algorithm and using an iterative method to solve the linear-elastic equation. Furthermore,
to properly incorporate the treatment schedule of the patients, it is advised to use the second MRI scan
for determining the chemotherapy curves between the calibration and validation point and to include
an immunotherapy term in addition to the chemotherapy term.

The goal of this thesis was to extend the MCRD model by including the treatment schedule of
patients and by extending the model from 2D to 3D. Although the drug-incorporated model does not
always give better results compared to the model without chemotherapy, it is more suitable to predict
the required number of treatment rounds because it offers more flexibility to simulate different treatment
frequencies, components and dosages. It is not clear if the 3D model improves the predictions, so the
implementation first needs to be further developed before conclusions can be drawn on this.
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Appendix

A.1. Acquisition parameters for the first MRI scan of 𝑝2
DW-MRI DCE-MRI

Scan sequence unknown unknown
Repetition time (ms) 9337 4.33
Echo time (ms) 108 1.29
Flip angle (degrees) 90 unknown
Voxel dimension (mm) 1.89 × 1.89 0.80 × 0.80
Acqusition matrix 190 ×116 448 × 448

Table A.1: MRI acquisition parameters for the first scan at 𝑡0 of 𝑝2

A.2. Pre-processing information
A.2.1. Registration
Before extracting values from the MRI scans, it is important to align the images. The reason behind
this is that in different scans the breast may not be in the same position so we need to perform a
correction for motion. We want to compare precise changes in the tissue and thus need to compare
the pixel values of the same location in the breast. If this step is skipped, the model might report that for
example the tumour moved to the left between the first and second scan when in fact the breast was
located slightly to the left in the second scan and the tumour did not move at all. This process of aligning
different scans is called registration. Before registration, the MRI scans are upscaled to make sure that
the number of slices in the 𝑧-direction is the same for each scan. After upscaling, the voxel spacing has
of course been changed, which is taken into account during the registration step. In addition, measures
were taken to make sure that both DCE and DW covered the same part of the breast by for example
excluding certain slices if needed. As a next step, the registration is performed with functions from
the Python library itk-elastics which is an open source toolbox for rigid and nonrigid registration of
images. Two different types of registration are used: rigid and non-rigid registration. In rigid registration,
the internal architecture of an image is preserved and the images are only transformed with a rotation
or translation. In nonrigid registration, also called elastic registration, an image is stretched to match
the other image. This method thus accounts for local deformations [2]. During the first registration
step, inter-scan registration with a non-rigid algorithm is applied to the DCE images of different time
points, meaning the DCE scans of time 𝑡0 and 𝑡2 are both aligned to the DCE scan at time 𝑡1. Next,
intra-scan registration is performed by a rigid registration algorithm to align the DW and DCE images
of the same time points, so the DW scan at time 𝑡0 is aligned with the DCE scan at time 𝑡0, and DW at
𝑡1 is aligned with DCE at 𝑡1, and DW at 𝑡2 is aligned with DCE at 𝑡2. Lastly, the DW scan at 𝑡0 and DW
at 𝑡2 images are aligned with DCE at 𝑡1 with nonrigid registration. After this final step, all images are
aligned properly so the data can be analysed properly. More details about these steps can be found in
[11].
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A.2.2. Tissue segmentation
To use the model and be able to display results in a proper way, certain segmentations of the tissue
need to be created. Firstly, it will be useful to distinguish between interior and exterior points as the
three-dimensional matrices with all voxel intensities contain a lot of points that are located outside the
breast. For this, region-growing is used to create a mask that can be used in displaying the results of
the model. Note that because of registration this mask is the same for the MRI scans that were made
at different time points.

Secondly, the tumour needs to be located on the scans of all three time points. There are different
approaches to this. One approach that is described in some literature consists of computing the average
of the pre-contrast images, and the average of the post-contrast images and a voxel is marked as a
tumorous voxel if the increase between these averages is more than a certain threshold, which is
usually taken to be 80% [3–6, 31]. Next, the biggest group of voxels within the region of interest that
is marked as a tumour is taken as the tumour for the analysis. This method thus uses the fact that
tumours light up because of the contrast agent. Another approach that is found in the literature is to
manually draw a region of interest around the tumour and apply a fuzzy c-means algorithm to refine
the boundaries of the tumour [8, 9]. This algorithm is a clustering algorithm where points can belong
to multiple clusters with a certain likelihood. For this thesis, however, the tumour has been manually
segmented by dr A.I.M Obedijn who is a breast cancer radiologist at Erasmus MC. This is similar to the
second approach without using fuzzy c-means and is also done in other image-driven breast cancer
research [19, 20, 33]. Figure A.1 shows the resulting tumour for 𝑝1 at the start of treatment when a
threshold of 80% is used and when the segmentation is performed by a radiologist respectively. Note
that these images have been downsampled to reduce the number of computations needed by themodel
later on.

(a) Tumour segmentation with 80% threshold. (b) Tumour segmentation by radiologist.

Figure A.1: Result of tumour segmentation for 𝑝1 with different methods.

Lastly, to include the mechanical properties of different tissue types, a segmentation between fi-
broglandular and adipose tissue is needed. In the work of Oudhof [11], three different methods are in-
vestigated: using a simple threshold, applying contrast limited adaptive histogram equalization (which
is also used by Jarrett et al. [8]) and applying global histogram equalization. It turned out that global
histogram equalization provided the best results and thus this method was used to compute the seg-
mentations for the data. Figure A.2 shows the segmentation results for 𝑝1 at 𝑡0.

A.2.3. Tumour density
To obtain the number of tumour cells per voxel within the tumour, the DW images at the three different
time points are used. For this, firstly the apparent diffusion coefficients (ADC) are calculated for each
voxel on the registered scans. As explained before, these ADC values are a measure of the rate of
water diffusion within the tissue. These values are calculated per voxel using the formula below.

𝐴𝐷𝐶 = 1
3 ∑
𝑖=𝑥,𝑦,𝑧

ln(𝑆0𝑆𝑖 )
𝑏𝑖

,
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Figure A.2: Segmentation of tissue. Tumour, adipose and fibroglandular tissue are shown in yellow, purple and green, respec-
tively.

Here, 𝑖 is the direction of diffusion-weighting, 𝑏𝑖 is the amount of diffusion-weighting applied to the
sample and 𝑆𝑖 and 𝑆0 are the signal intensities in each voxel with and without diffusion gradients re-
spectively. Using these ADC values, an estimate of the number of tumour cells is made, which is
represented by 𝑁(𝑥, 𝑡). It has been shown by many researchers that there is an inverse relationship
between ADC values and cellularity [17], thus indicating that tissue with a low ADC value contains many
cells.

𝑁(𝑥, 𝑡) = 𝜃(𝐴𝐷𝐶𝑤 − 𝐴𝐷𝐶(𝑥, 𝑡)𝐴𝐷𝐶𝑤 − 𝐴𝐷𝐶𝑚𝑖𝑛
)

In the above formula, 𝜃 represents the same carrying capacity as in Equations 3.1 and 3.5, 𝐴𝐷𝐶𝑤 is the
ADC value of free water, 𝐴𝐷𝐶𝑚𝑖𝑛 is the smallest ADC values measured in the tumour, corresponding
to the voxel with the largest number of cells, and 𝐴𝐷𝐶(𝑥, 𝑡) is the ADC value of the voxel 𝑥 on time 𝑡.

A.3. Stability criterion
As stated before, for Explicit Euler there is a bound on Δ𝑡 to ensure stability of themethod. In this section
we work out the stability condition, for which we follow the same approach as the one used by Oudhof
[11]. For this analysis we need to write the system as a linear system of the form 𝑁𝑚+1 = 𝑁𝑚+Δ𝑡𝐴𝑁𝑚,
which is why firstly the proliferation is linearized around the numerical solution �̃�. In [11] it was shown
that this leads to 𝑓(𝑁) ≈ 𝑘 �̃�

𝑚

𝜃 +𝑘𝑁(1−2
�̃�
𝜃 ) and that the constant can be ignored in the stability analysis.

This leads to the following equation.

𝑁𝑚+1𝑖,𝑗 = 𝑁𝑚𝑖,𝑗 + Δ𝑡(
1

2Δ𝑥2((𝐷𝑖,𝑗 + 𝐷𝑖−1,𝑗)𝑁
𝑚
𝑖−1,𝑗 − (𝐷𝑖−1,𝑗 + 2𝐷𝑖,𝑗 + 𝐷𝑖+1,𝑗)𝑁𝑚𝑖,𝑗 + (𝐷𝑖,𝑗 + 𝐷𝑖+1,𝑗)𝑁𝑚𝑖+1,𝑗)

+ 1
2Δ𝑦2((𝐷𝑖,𝑗 + 𝐷𝑖,𝑗−1)𝑁

𝑚
𝑖,𝑗−1 − (𝐷𝑖,𝑗−1 + 2𝐷𝑖,𝑗 + 𝐷𝑖,𝑗+1)𝑁𝑚𝑖,𝑗 + (𝐷𝑖,𝑗 + 𝐷𝑖,𝑗+1)𝑁𝑚𝑖,𝑗+1)

+ 𝑘𝑖,𝑗𝑁𝑚𝑖,𝑗(1 − 2
�̃�𝑖,𝑗
𝜃 ) − 𝛼𝐶𝑚𝑖,𝑗𝑁𝑚𝑖,𝑗)

This leads to a system 𝑁𝑚+1 = 𝑁𝑚 + Δ𝑡𝐴𝑁𝑚, where 𝐴 = 1
2Δ𝑥2𝒳 +

1
2Δ𝑦2𝒴 + ℛ, for which 𝒳,𝒴 and

ℛ are defined below.
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𝒳 = ⎛⎜

⎝

𝑋1 ̃𝑋1
̃𝑋1 𝑋2 ̃𝑋2

⋱ ⋱ ⋱
�̃�𝑛𝑥−2 𝑋𝑛𝑥−1 �̃�𝑛𝑥−1

�̃�𝑛𝑥−1 𝑋𝑛𝑥

⎞
⎟

⎠

𝑋𝑖 = (
−(𝐷𝑖−1,1 + 2𝐷𝑖,1 + 𝐷𝑖+1,1)

⋱
−(𝐷𝑖−1,𝑛𝑦 + 2𝐷𝑖,𝑛𝑦 + 𝐷𝑖+1,𝑛𝑦)

)

�̃�𝑖 = (
𝐷𝑖−1,1 + 𝐷𝑖,1

⋱
𝐷𝑖−1,𝑛𝑦 + 𝐷𝑖,𝑛𝑦

)

𝒴 = ⎛⎜

⎝

𝑌1
𝑌2

⋱
𝑌𝑛𝑥−1

𝑌𝑛𝑥

⎞
⎟

⎠

𝑌𝑖 =
⎛
⎜
⎜
⎜

⎝

−(𝐷𝑖,0 + 2𝐷𝑖,1 + 𝐷𝑖,2) (𝐷𝑖,1 + 𝐷𝑖,2)
(𝐷𝑖,1 + 𝐷𝑖,2) −(𝐷𝑖,1 + 2𝐷𝑖,2 + 𝐷𝑖,3) (𝐷𝑖,2 + 𝐷𝑖,3)

⋱ ⋱ ⋱
(𝐷𝑖,𝑛𝑦−1 + 𝐷𝑖,𝑛𝑦−2) −(𝐷𝑖,𝑛𝑦−2 + 2𝐷𝑖,𝑛𝑦−1 + 𝐷𝑖,𝑛𝑦) (𝐷𝑖,𝑛𝑦−1 + 𝐷𝑖,𝑛𝑦)

(𝐷𝑖,𝑛𝑦 + 𝐷𝑖,𝑛𝑦−1) −(𝐷𝑖,𝑛𝑦−1 + 2𝐷𝑖,𝑛𝑦 + 𝐷𝑖,𝑛𝑦+1)

⎞
⎟
⎟
⎟

⎠

ℛ = ⎛⎜

⎝

𝑅1
𝑅2

⋱
𝑅𝑛𝑥−1

𝑅𝑛𝑥

⎞
⎟

⎠

𝑅𝑖 =
⎛
⎜⎜

⎝

𝑘𝑖,1(1 − 2
�̃�𝑖,1
𝜃 ) − 𝛼𝐶

𝑚
𝑖,1

𝑘𝑖,2(1 − 2
�̃�𝑖,2
𝜃 ) − 𝛼𝐶

𝑚
𝑖,2

⋱
𝑘𝑖,𝑛𝑦(1 − 2

�̃�𝑖,𝑛𝑦
𝜃 ) − 𝛼𝐶𝑚𝑖,𝑛𝑦

⎞
⎟⎟

⎠

In the expressions above, 𝑛𝑥 and 𝑛𝑦 refer to the number of points in 𝑥-direction and 𝑦-direction
respectively. Note that the matrix 𝐴 is symmetric, so 𝐴𝑇 = 𝐴. This means that all eigenvalues are real,
which is an important observation because this means that for Forward Euler the stability condition is
given by Δ𝑡 ≤ 2

−𝜆 for all eigenvalues 𝜆 of the matrix 𝐴. To determine these eigenvalues, let us apply
the Gershgorin Circle Theorem [25].

Theorem A.3.1. The eigenvalues 𝜆 of a general 𝑛×𝑛 matrix 𝐴 are located in the complex plane in the
union of circles |𝜆 − 𝑎𝑖,𝑖| ≤ ∑

𝑚
𝑗=1𝑖≠𝑗 |𝑎𝑖,𝑗|.

Writing out this expression for any 𝑖, 𝑗 yields:

|𝜆 − ( − 1
2Δ𝑥2 (𝐷𝑖−1,𝑗 + 2𝐷𝑖,𝑗 + 𝐷𝑖+1,𝑗) −

1
2Δ𝑦2 (𝐷𝑖,𝑗−1 + 2𝐷𝑖,𝑗 + 𝐷𝑖,𝑗+1) + (𝑘𝑖,𝑗(1 − 2

�̃�𝑖,𝑗
𝜃 ) − 𝛼𝐶𝑖,𝑗)|

≤ 1
2Δ𝑥2 (𝐷𝑖−1,𝑗 + 2𝐷𝑖,𝑗 + 𝐷𝑖+1,𝑗) +

1
2Δ𝑦2 (𝐷𝑖,𝑗−1 + 2𝐷𝑖,𝑗 + 𝐷𝑖,𝑗+1)
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To simplify the expression, we introduce the following notation:

𝐷𝑥 = 𝐷𝑖−1,𝑗 + 2𝐷𝑖,𝑗 + 𝐷𝑖+1,𝑗
𝐷𝑦 = 𝐷𝑖,𝑗−1 + 2𝐷𝑖,𝑗 + 𝐷𝑖,𝑗+1

𝑅 = 𝑘𝑖,𝑗(1 − 2
�̃�𝑖,𝑗
𝜃 ) − 𝛼𝐶𝑖,𝑗

This leads to the following bound on the eigenvalues of 𝐴:

|𝜆 + 1
2Δ𝑥2𝐷𝑥 +

1
2Δ𝑦2𝐷𝑦 − 𝑅| ≤

1
2Δ𝑥2𝐷𝑥 +

1
2Δ𝑦2𝐷𝑦

{
𝜆 ≤ 𝑅
𝜆 ≥ − 1

Δ𝑥2𝐷𝑥 −
1
Δ𝑦2𝐷𝑦 + 𝑅

Now note that we already know that 𝜆 ≤ 0 since we do not have an exponentially growing solution.
Therefore, only the second inequality plays a role. Let us first rewrite the 𝑅-term before we use the
expression for the stability criterion in Δ𝑡 ≤ 2

−𝜆 .

Claim A.3.1. 𝑅 ≥ −|𝑘|max − 𝛼𝐶max

Proof. By definition of 𝜃, we know that 0 ≤ �̂�𝑖,𝑗 ≤ 𝜃, so 0 ≤
�̂�𝑖,𝑗
𝜃 ≤ 1 and thus −1 ≤ 1−2 �̂�𝑖,𝑗𝜃 ≤ 1. From

this it can be concluded that −|𝑘|max ≤ 𝑘𝑖,𝑗(1− 2
�̂�𝑖,𝑗
𝜃 ) ≤ |𝑘|max. Since no negative concentrations can

appear, we can conclude that 0 ≤ 𝐶𝑖,𝑗 ≤ 𝐶max. In addition we know 𝛼 > 0, from which we know that
−𝛼𝐶max ≤ −𝛼𝐶𝑖,𝑗 ≤ 0. Combining the above, we know that
−|𝑘|max − 𝛼𝐶max ≤ 𝑘𝑖,𝑗(1 − 2

�̃�𝑖,𝑗
𝜃 ) − 𝛼𝐶𝑖,𝑗 = 𝑅.

Writing 𝐷max for the maximum diffusion in the breast, we can easily conclude that

𝐷𝑥 = 𝐷𝑖−1,𝑗 + 2𝐷𝑖,𝑗 + 𝐷𝑖+1,𝑗 ≤ 4𝐷max

𝐷𝑦 = 𝐷𝑖,𝑗−1 + 2𝐷𝑖,𝑗 + 𝐷𝑖,𝑗+1 ≤ 4𝐷max

Let us now use the information from above to rewrite the expression.

𝜆 ≥ − 1
Δ𝑥2𝐷𝑥 −

1
Δ𝑦2𝐷𝑦 + 𝑅 ≥ −4𝐷max(

1
Δ𝑥2 +

1
Δ𝑦2 ) − |𝑘|max − 𝛼𝐶max

This expression can now be filled into the stability criterion to find the final bound on Δ𝑡.

Δ𝑡 ≤ 2
4𝐷max(

1
Δ𝑥2 +

1
Δ𝑦2 ) + |𝑘|max + 𝛼𝐶max

≤ 2
−𝜆

Thus, if the bound given in Equation A.3.1 is met, then we know that Δ𝑡 ≤ 2
−𝜆 and thus in that case

Forward Euler is stable.

Δ𝑡 ≤ 2
4𝐷max(

1
Δ𝑥2 +

1
Δ𝑦2 ) + |𝑘|max + 𝛼𝐶max

(A.3.1)

A.4. Proof for Section 6.1.2
In this section we will provide the proof that by using the Cosine Bolus Parker function as 𝐶𝐶𝐴𝑝𝑙𝑎𝑠𝑚𝑎(𝑡) in
Equation A.4.1 yields Equation A.4.2.

𝐶𝐶𝐴𝑡𝑖𝑠𝑠𝑢𝑒(𝑡) = 𝐾𝑡𝑟𝑎𝑛𝑠∫
𝑡

0
𝐶𝐶𝐴𝑝𝑙𝑎𝑠𝑚𝑎(𝑠) ⋅ 𝑒−𝑘𝑒𝑝(𝑡−𝑠)𝑑𝑠 (A.4.1)
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𝐶𝐶𝐴𝑡𝑖𝑠𝑠𝑢𝑒(𝑡) = {
𝑎𝐵𝑎𝐺𝐾𝑡𝑟𝑎𝑛𝑠
𝑘𝑒𝑝−𝜇𝐺

(𝑓(𝑡, 𝜇𝐺) + (
𝑘𝑒𝑝−𝜇𝐺
𝑎𝐺

− 1)𝑓(𝑡, 𝑘𝑒𝑝)) for 0 ≤ 𝑡 ≤ 𝑡𝐵
𝑎𝐵𝑎𝐺𝐾𝑡𝑟𝑎𝑛𝑠
𝑘𝑒𝑝−𝜇𝐺

(𝑓(𝑡𝐵 , 𝜇𝐺)𝑒−𝜇𝐺(𝑡−𝑡𝐵) + (
𝑘𝑒𝑝−𝜇𝐺
𝑎𝐺

− 1)𝑓(𝑡, 𝑘𝑒𝑝)𝑒−𝑘𝑒𝑝(𝑡−𝑡𝐵)) for 𝑡 > 𝑡𝐵
(A.4.2)

As a reminder, the Cosine Bolus Parker function is given by

𝐶𝐶𝐴𝑝𝑙𝑎𝑠𝑚𝑎(𝑡) = {
𝑎𝐵(1 − cos(𝜇𝐵𝑡)) + 𝑎𝐵𝑎𝐺𝑓(𝑡, 𝜇𝐺) for 0 ≤ 𝑡 ≤ 𝑡𝐵
𝑎𝐵𝑎𝐺𝑓(𝑡𝐵 , 𝜇𝐺)𝑒−𝜇𝐺(𝑡−𝑡𝐵) for 𝑡 > 𝑡𝐵 ,

(A.4.3)

where
𝑓(𝑡, 𝑎) = 1

𝑎(1 − 𝑒
−𝑎𝑡) − 1

𝑎2 + 𝜇2𝐵
(𝑎 cos(𝜇𝐵𝑡) + 𝜇𝐵 sin(𝜇𝐵𝑡) − 𝑎𝑒−𝑎𝑡).

Our proof will be separated into two different parts. Firstly we will prove the case for 0 ≤ 𝑡 ≤ 𝑡𝐵 and
secondly we will prove the case 𝑡 > 𝑡𝐵.

Claim A.4.1. For 0 ≤ 𝑡 ≤ 𝑡𝐵, 𝐶𝐶𝐴𝑡𝑖𝑠𝑠𝑢𝑒(𝑡) =
𝑎𝐵𝑎𝐺𝐾𝑡𝑟𝑎𝑛𝑠
𝑘𝑒𝑝−𝜇𝐺

(𝑓(𝑡, 𝜇𝐺) + (
𝑘𝑒𝑝−𝜇𝐺
𝑎𝐺

− 1)𝑓(𝑡, 𝑘𝑒𝑝))

Proof. By the Kety-Tofts model, we know that

𝐶𝐶𝐴𝑡𝑖𝑠𝑠𝑢𝑒(𝑡) = 𝐾𝑡𝑟𝑎𝑛𝑠∫
𝑡

0
𝐶𝐶𝐴𝑝𝑙𝑎𝑠𝑚𝑎(𝑠) ⋅ 𝑒−𝑘𝑒𝑝(𝑡−𝑠)𝑑𝑠.

Note that to prove this first case, this integral should be equal to
𝑎𝐵𝑎𝐺

𝑘𝑒𝑝 − 𝜇𝐺
(𝑓(𝑡, 𝜇𝐺) + (

𝑘𝑒𝑝 − 𝜇𝐺
𝑎𝐺

− 1)𝑓(𝑡, 𝑘𝑒𝑝)).

Now let us fill in the definition for 𝐶𝐶𝐴𝑝𝑙𝑎𝑠𝑚𝑎(𝑠) from the Cosine Bolus Parker function for 0 ≤ 𝑡 ≤ 𝑡𝐵
and write out the terms within the integral.

∫
𝑡

0
𝐶𝐶𝐴𝑝𝑙𝑎𝑠𝑚𝑎(𝑠) ⋅ 𝑒−𝑘𝑒𝑝(𝑡−𝑠)𝑑𝑠 = ∫

𝑡

0
(𝑎𝐵(1 − cos(𝜇𝐵𝑠)) + 𝑎𝐵𝑎𝐺𝑓(𝑠, 𝜇𝐺)) ⋅ 𝑒−𝑘𝑒𝑝(𝑡−𝑠)𝑑𝑠

= ∫
𝑡

0
(𝑎𝐵(1 − cos(𝜇𝐵𝑠))

+ 𝑎𝐵𝑎𝐺(
1
𝜇𝐺
(1 − 𝑒−𝜇𝐺𝑠) − 1

𝜇2𝐺 + 𝜇2𝐵
(𝜇𝐺 cos(𝜇𝐵𝑠) + 𝜇𝐵 sin(𝜇𝐵𝑠) − 𝜇𝐺𝑒−𝜇𝐺𝑠))) ⋅ 𝑒−𝑘𝑒𝑝(𝑡−𝑠)𝑑𝑠

= 𝑎𝐵∫
𝑡

0
(1 − cos(𝜇𝐵𝑠))𝑒−𝑘𝑒𝑝(𝑡−𝑠)𝑑𝑠 +

𝑎𝐵𝑎𝐺
𝜇𝐺

∫
𝑡

0
(1 − 𝑒−𝜇𝐺𝑠)𝑒−𝑘𝑒𝑝(𝑡−𝑠)𝑑𝑠 − 𝑎𝐵𝑎𝐺𝜇𝐺

𝜇2𝐺 + 𝜇2𝐵
∫
𝑡

0
cos(𝜇𝐵𝑠)𝑒−𝑘𝑒𝑝(𝑡−𝑠)𝑑𝑠

− 𝑎𝐵𝑎𝐺𝜇𝐵𝜇2𝐺 + 𝜇2𝐵
∫
𝑡

0
sin(𝜇𝐵𝑠)𝑒−𝑘𝑒𝑝(𝑡−𝑠)𝑑𝑠 +

𝑎𝐵𝑎𝐺𝜇𝐺
𝜇2𝐺 + 𝜇2𝐵

∫
𝑡

0
𝑒−𝜇𝐺𝑠𝑒−𝑘𝑒𝑝(𝑡−𝑠)𝑑𝑠

We will now write out each integral separately. For this, we apply partial integration twice for the
cos(𝜇𝐵𝑠) and sin(𝜇𝐵𝑠) terms.

∫
𝑡

0
cos(𝜇𝐵𝑠)𝑒𝑘𝑒𝑝𝑠𝑑𝑠 = [

1
𝜇𝐵

sin(𝜇𝐵𝑠)𝑒𝑘𝑒𝑝𝑠]
𝑠=𝑡

𝑠=0
−
𝑘𝑒𝑝
𝜇𝐵

∫
𝑡

0
sin(𝜇𝐵𝑠)𝑒𝑘𝑒𝑝𝑠𝑑𝑠

= 1
𝜇𝐵

sin(𝜇𝐵𝑡)𝑒𝑘𝑒𝑝𝑡 −
𝑘𝑒𝑝
𝜇𝐵
([ − 1

𝜇𝐵
cos(𝜇𝐵𝑠)𝑒𝑘𝑒𝑝𝑠]

𝑠=𝑡

𝑠=0
+
𝑘𝑒𝑝
𝜇𝐵

∫
𝑡

0
cos(𝜇𝐵𝑠)𝑒𝑘𝑒𝑝𝑠𝑑𝑠)

(1 +
𝑘2𝑒𝑝
𝜇2𝐵
)∫

𝑡

0
cos(𝜇𝐵𝑠)𝑒𝑘𝑒𝑝𝑠𝑑𝑠 =

1
𝜇2𝐵
(𝑒𝑘𝑒𝑝𝑡(𝜇𝐵 sin(𝜇𝐵𝑡) + 𝑘𝑒𝑝 cos(𝜇𝐵𝑡)) − 𝑘𝑒𝑝)

∫
𝑡

0
cos(𝜇𝐵𝑠)𝑒𝑘𝑒𝑝𝑠𝑑𝑠 =

1
𝑘2𝑒𝑝 + 𝜇2𝐵

(𝑒𝑘𝑒𝑝𝑡(𝑘𝑒𝑝 cos(𝜇𝐵𝑡) + 𝜇𝐵 sin(𝜇𝐵𝑡)) − 𝑘𝑒𝑝)
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∫
𝑡

0
sin(𝜇𝐵𝑠)𝑒𝑘𝑒𝑝𝑠𝑑𝑠 = [ −

1
𝜇𝐵

cos(𝜇𝐵𝑠)𝑒𝑘𝑒𝑝𝑠]
𝑠=𝑡

𝑠=0
+
𝑘𝑒𝑝
𝜇𝐵

∫
𝑡

0
cos(𝜇𝐵𝑠)𝑒𝑘𝑒𝑝𝑠𝑑𝑠

= − 1
𝜇𝐵

cos(𝜇𝐵𝑡)𝑒𝑘𝑒𝑝𝑡 +
1
𝜇𝐵
+
𝑘𝑒𝑝
𝜇𝐵
([ 1𝜇𝐵

sin(𝜇𝐵𝑠)𝑒𝑘𝑒𝑝𝑠]
𝑠=𝑡

𝑠=0
−
𝑘𝑒𝑝
𝜇𝐵

∫
𝑡

0
sin(𝜇𝐵𝑠)𝑒𝑘𝑒𝑝𝑠𝑑𝑠)

(1 +
𝑘2𝑒𝑝
𝜇2𝐵
)∫

𝑡

0
sin(𝜇𝐵𝑠)𝑒𝑘𝑒𝑝𝑠𝑑𝑠 =

1
𝜇2𝐵
(𝑒𝑘𝑒𝑝𝑡(𝑘𝑒𝑝 sin(𝜇𝐵𝑡) − 𝜇𝐵 cos(𝜇𝐵𝑡)) + 𝜇𝐵)

∫
𝑡

0
sin(𝜇𝐵𝑠)𝑒𝑘𝑒𝑝𝑠𝑑𝑠 =

1
𝑘2𝑒𝑝 + 𝜇2𝐵

(𝑒𝑘𝑒𝑝𝑡( − 𝜇𝐵 cos(𝜇𝐵𝑡) + 𝑘𝑒𝑝 sin(𝜇𝐵𝑡)) + 𝜇𝐵)

The next step is to calculate all the integrals and write them into convenient forms.

∫
𝑡

0
(1 − cos(𝜇𝐵𝑠))𝑒−𝑘𝑒𝑝(𝑡−𝑠)𝑑𝑠 = ∫

𝑡

0
𝑒−𝑘𝑒𝑝(𝑡−𝑠)𝑑𝑠 − 𝑒−𝑘𝑒𝑝𝑡∫

𝑡

0
cos(𝜇𝐵𝑠)𝑒𝑘𝑒𝑝𝑠𝑑𝑠

= 1
𝑘𝑒𝑝

[𝑒−𝑘𝑒𝑝(𝑡−𝑠)]𝑠=𝑡𝑠=0 −
𝑒−𝑘𝑒𝑝𝑡
𝑘2𝑒𝑝 + 𝜇2𝐵

(𝑒𝑘𝑒𝑝𝑡(𝑘𝑒𝑝 cos(𝜇𝐵𝑡) + 𝜇𝐵 sin(𝜇𝐵𝑡)) − 𝑘𝑒𝑝)

= 1
𝑘𝑒𝑝

(1 − 𝑒−𝑘𝑒𝑝𝑡) − 1
𝑘2𝑒𝑝 + 𝜇2𝐵

(𝑘𝑒𝑝 cos(𝜇𝐵𝑡) + 𝜇𝐵 sin(𝜇𝐵𝑡) − 𝑘𝑒𝑝𝑒−𝑘𝑒𝑝𝑡) = 𝑓(𝑡, 𝑘𝑒𝑝)

∫
𝑡

0
(1 − 𝑒−𝜇𝐺𝑠)𝑒−𝑘𝑒𝑝(𝑡−𝑠)𝑑𝑠 = 𝑒−𝑘𝑒𝑝𝑡∫

𝑡

0
𝑒𝑘𝑒𝑝𝑠 − 𝑒𝑠(𝑘𝑒𝑝−𝜇𝐺)𝑑𝑠 = 𝑒−𝑘𝑒𝑝𝑡[ 1𝑘𝑒𝑝

𝑒𝑘𝑒𝑝𝑠 − 1
𝑘𝑒𝑝 − 𝜇𝐺

𝑒𝑠(𝑘𝑒𝑝−𝜇𝐺)]
𝑠=𝑡

𝑠=0

= 𝑒−𝑘𝑒𝑝𝑡( 1𝑘𝑒𝑝
(𝑒𝑘𝑒𝑝𝑡 − 1) − 1

𝑘𝑒𝑝 − 𝜇𝐺
(𝑒𝑡(𝑘𝑒𝑝−𝜇𝐺) − 1))

= 1
𝑘𝑒𝑝

(1 − 𝑒−𝑘𝑒𝑝𝑡) − 1
𝑘𝑒𝑝 − 𝜇𝐺

(𝑒−𝜇𝐺𝑡 − 𝑒−𝑘𝑒𝑝𝑡)

= 1
𝑘𝑒𝑝(𝑘𝑒𝑝 − 𝜇𝐺)

(𝑘𝑒𝑝 − 𝜇𝐺 − 𝑘𝑒𝑝𝑒−𝑘𝑒𝑝𝑡 + 𝜇𝐺𝑒−𝑘𝑒𝑝𝑡 − 𝑘𝑒𝑝𝑒−𝜇𝐺𝑡 + 𝑘𝑒𝑝𝑒−𝑘𝑒𝑝𝑡)

= 1
𝑘𝑒𝑝(𝑘𝑒𝑝 − 𝜇𝐺)

(𝑘𝑒𝑝(1 − 𝑒−𝜇𝐺𝑡) − 𝜇𝐺(1 − 𝑒−𝑘𝑒𝑝𝑡))

= 1
𝑘𝑒𝑝 − 𝜇𝐺

((1 − 𝑒−𝜇𝐺𝑡) − 𝜇𝐺
𝑘𝑒𝑝

(1 − 𝑒−𝑘𝑒𝑝𝑡))

∫
𝑡

0
cos(𝜇𝐵𝑠)𝑒−𝑘𝑒𝑝(𝑡−𝑠)𝑑𝑠 = 𝑒−𝑘𝑒𝑝𝑡∫

𝑡

0
cos(𝜇𝐵𝑠)𝑒𝑘𝑒𝑝𝑠𝑑𝑠

= 𝑒−𝑘𝑒𝑝𝑡
𝑘2𝑒𝑝 + 𝜇2𝐵

(𝑒𝑘𝑒𝑝𝑡(𝑘𝑒𝑝 cos(𝜇𝐵𝑡) + 𝜇𝐵 sin(𝜇𝐵𝑡)) − 𝑘𝑒𝑝)

= 1
𝑘2𝑒𝑝 + 𝜇2𝐵

(𝑘𝑒𝑝 cos(𝜇𝐵𝑡) + 𝜇𝐵 sin(𝜇𝐵𝑡) − 𝑘𝑒𝑝𝑒−𝑘𝑒𝑝𝑡)

∫
𝑡

0
sin(𝜇𝐵𝑠)𝑒−𝑘𝑒𝑝(𝑡−𝑠)𝑑𝑠 = 𝑒−𝑘𝑒𝑝𝑡∫

𝑡

0
sin(𝜇𝐵𝑠)𝑒𝑘𝑒𝑝𝑠𝑑𝑠

= 𝑒−𝑘𝑒𝑝𝑡
𝑘2𝑒𝑝 + 𝜇2𝐵

(𝑒𝑘𝑒𝑝𝑡( − 𝜇𝐵 cos(𝜇𝐵𝑡) + 𝑘𝑒𝑝 sin(𝜇𝐵𝑡)) + 𝜇𝐵)

= 1
𝑘2𝑒𝑝 + 𝜇2𝐵

( − 𝜇𝐵 cos(𝜇𝐵𝑡) + 𝑘𝑒𝑝 sin(𝜇𝐵𝑡) + 𝜇𝐵𝑒−𝑘𝑒𝑝𝑡)
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∫
𝑡

0
𝑒−𝜇𝐺𝑠𝑒−𝑘𝑒𝑝(𝑡−𝑠)𝑑𝑠 = 𝑒−𝑘𝑒𝑝𝑡∫

𝑡

0
𝑒𝑠(𝑘𝑒𝑝−𝜇𝐺)𝑑𝑠 = 1

𝑘𝑒𝑝 − 𝜇𝐺
𝑒−𝑘𝑒𝑝𝑡[𝑒𝑠(𝑘𝑒𝑝−𝜇𝐺)]

𝑠=𝑡

𝑠=0

= 1
𝑘𝑒𝑝 − 𝜇𝐺

𝑒−𝑘𝑒𝑝𝑡(𝑒𝑡(𝑘𝑒𝑝−𝜇𝐺) − 1) = 1
𝑘𝑒𝑝 − 𝜇𝐺

(𝑒−𝜇𝐺𝑡 − 𝑒−𝑘𝑒𝑝𝑡)

We can now combine the above information into the long expression that was found before.

∫
𝑡

0
𝐶𝐶𝐴𝑝𝑙𝑎𝑠𝑚𝑎(𝑠) ⋅ 𝑒−𝑘𝑒𝑝(𝑡−𝑠)𝑑𝑠 = 𝑎𝐵∫

𝑡

0
(1 − cos(𝜇𝐵𝑠))𝑒−𝑘𝑒𝑝(𝑡−𝑠)𝑑𝑠 +

𝑎𝐵𝑎𝐺
𝜇𝐺

∫
𝑡

0
(1 − 𝑒−𝜇𝐺𝑠)𝑒−𝑘𝑒𝑝(𝑡−𝑠)𝑑𝑠

− 𝑎𝐵𝑎𝐺𝜇𝐺
𝜇2𝐺 + 𝜇2𝐵

∫
𝑡

0
cos(𝜇𝐵𝑠)𝑒−𝑘𝑒𝑝(𝑡−𝑠)𝑑𝑠 −

𝑎𝐵𝑎𝐺𝜇𝐵
𝜇2𝐺 + 𝜇2𝐵

∫
𝑡

0
sin(𝜇𝐵𝑠)𝑒−𝑘𝑒𝑝(𝑡−𝑠)𝑑𝑠 +

𝑎𝐵𝑎𝐺𝜇𝐺
𝜇2𝐺 + 𝜇2𝐵

∫
𝑡

0
𝑒−𝜇𝐺𝑠𝑒−𝑘𝑒𝑝(𝑡−𝑠)𝑑𝑠

= 𝑎𝐵𝑓(𝑡, 𝑘𝑒𝑝) +
𝑎𝐵𝑎𝐺
𝜇𝐺

1
𝑘𝑒𝑝 − 𝜇𝐺

((1 − 𝑒−𝜇𝐺𝑡) − 𝜇𝐺
𝑘𝑒𝑝

(1 − 𝑒−𝑘𝑒𝑝𝑡))

− 𝑎𝐵𝑎𝐺𝜇𝐺
𝜇2𝐺 + 𝜇2𝐵

1
𝑘2𝑒𝑝 + 𝜇2𝐵

(𝑘𝑒𝑝 cos(𝜇𝐵𝑡) + 𝜇𝐵 sin(𝜇𝐵𝑡) − 𝑘𝑒𝑝𝑒−𝑘𝑒𝑝𝑡)

− 𝑎𝐵𝑎𝐺𝜇𝐵𝜇2𝐺 + 𝜇2𝐵
1

𝑘2𝑒𝑝 + 𝜇2𝐵
( − 𝜇𝐵 cos(𝜇𝐵𝑡) + 𝑘𝑒𝑝 sin(𝜇𝐵𝑡) + 𝜇𝐵𝑒−𝑘𝑒𝑝𝑡)

+ 𝑎𝐵𝑎𝐺𝜇𝐺
𝜇2𝐺 + 𝜇2𝐵

1
𝑘𝑒𝑝 − 𝜇𝐺

(𝑒−𝜇𝐺𝑡 − 𝑒−𝑘𝑒𝑝𝑡)

= 𝑎𝐵(𝑓(𝑡, 𝑘𝑒𝑝) +
𝑎𝐺

𝑘𝑒𝑝 − 𝜇𝐺
( 1𝜇𝐺

(1 − 𝑒−𝜇𝐺𝑡) − 1
𝑘𝑒𝑝

(1 − 𝑒−𝑘𝑒𝑝𝑡))

− 𝑎𝐺𝜇𝐺
(𝜇2𝐺 + 𝜇2𝐵)(𝑘2𝑒𝑝 + 𝜇2𝐵)

(𝑘𝑒𝑝 cos(𝜇𝐵𝑡) + 𝜇𝐵 sin(𝜇𝐵𝑡) − 𝑘𝑒𝑝𝑒−𝑘𝑒𝑝𝑡)

− 𝑎𝐺𝜇𝐵
(𝜇2𝐺 + 𝜇2𝐵)(𝑘2𝑒𝑝 + 𝜇2𝐵)

( − 𝜇𝐵 cos(𝜇𝐵𝑡) + 𝑘𝑒𝑝 sin(𝜇𝐵𝑡) + 𝜇𝐵𝑒−𝑘𝑒𝑝𝑡)

+ 𝑎𝐺𝜇𝐺
(𝜇2𝐺 + 𝜇2𝐵)(𝑘𝑒𝑝 − 𝜇𝐺)

(𝑒−𝜇𝐺𝑡 − 𝑒−𝑘𝑒𝑝𝑡))

We will leave the first line as it is for now and focus on the lower three lines of the expression. Let
us now take the cos(𝜇𝐵𝑡) term together and rewrite them.

𝑎𝐺 cos(𝜇𝐵𝑡)(
𝜇𝐺𝑘𝑒𝑝 − 𝜇2𝐵

(𝜇2𝐺 + 𝜇2𝐵)(𝑘2𝑒𝑝 + 𝜇2𝐵)
) = 𝑎𝐺 cos(𝜇𝐵𝑡)(

(𝜇𝐺𝑘𝑒𝑝 − 𝜇2𝐵)(𝑘𝑒𝑝 − 𝜇𝐺)
(𝜇2𝐺 + 𝜇2𝐵)(𝑘2𝑒𝑝 + 𝜇2𝐵)(𝑘𝑒𝑝 − 𝜇𝐺)

)

= 𝑎𝐺 cos(𝜇𝐵𝑡)
(𝑘𝑒𝑝 − 𝜇𝐺)

(
𝜇𝐺𝑘2𝑒𝑝 − 𝜇2𝐺𝑘𝑒𝑝 − 𝜇2𝐵𝑘𝑒𝑝 + 𝜇2𝐵𝜇𝐺

(𝜇2𝐺 + 𝜇2𝐵)(𝑘2𝑒𝑝 + 𝜇2𝐵)
)

= 𝑎𝐺 cos(𝜇𝐵𝑡)
(𝑘𝑒𝑝 − 𝜇𝐺)

(
𝜇𝐺(𝑘2𝑒𝑝 + 𝜇2𝐵) − 𝑘𝑒𝑝(𝜇2𝐺 + 𝜇2𝐵)

(𝜇2𝐺 + 𝜇2𝐵)(𝑘2𝑒𝑝 + 𝜇2𝐵)
)

= 𝑎𝐺
(𝑘𝑒𝑝 − 𝜇𝐺)

( 1
𝜇2𝐺 + 𝜇2𝐵

𝜇𝐺 cos(𝜇𝐵𝑡) −
1

𝑘2𝑒𝑝 + 𝜇2𝐵
𝑘𝑒𝑝 cos(𝜇𝐵𝑡))
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Next, we do the same for the sin(𝜇𝐵𝑡) term.

𝑎𝐺 sin(𝜇𝐵𝑡)(
𝜇𝐺𝜇𝐵 + 𝑘𝑒𝑝𝜇𝐵

(𝜇2𝐺 + 𝜇2𝐵)(𝑘2𝑒𝑝 + 𝜇2𝐵)
) = 𝑎𝐺 sin(𝜇𝐵𝑡)(

(𝜇𝐺𝜇𝐵 + 𝑘𝑒𝑝𝜇𝐵)(𝑘𝑒𝑝 − 𝜇𝐺)
(𝜇2𝐺 + 𝜇2𝐵)(𝑘2𝑒𝑝 + 𝜇2𝐵)(𝑘𝑒𝑝 − 𝜇𝐺)

)

= 𝑎𝐺 sin(𝜇𝐵𝑡)
(𝑘𝑒𝑝 − 𝜇𝐺)

(
𝜇𝐺𝜇𝐵𝑘𝑒𝑝 − 𝜇2𝐺𝜇𝐵 + 𝜇𝐵𝑘2𝑒𝑝 − 𝜇𝐺𝜇𝐵𝑘𝑒𝑝 + 𝜇3𝐵 − 𝜇3𝐵

(𝜇2𝐺 + 𝜇2𝐵)(𝑘2𝑒𝑝 + 𝜇2𝐵)
)

= 𝑎𝐺 sin(𝜇𝐵𝑡)
(𝑘𝑒𝑝 − 𝜇𝐺)

(
𝜇𝐵(𝑘2𝑒𝑝 + 𝜇2𝐵) − 𝜇𝐵(𝜇2𝐺 + 𝜇2𝐵)

(𝜇2𝐺 + 𝜇2𝐵)(𝑘2𝑒𝑝 + 𝜇2𝐵)
)

= 𝑎𝐺
(𝑘𝑒𝑝 − 𝜇𝐺)

( 1
𝜇2𝐺 + 𝜇2𝐵

𝜇𝐵 sin(𝜇𝐵𝑡) −
1

𝑘2𝑒𝑝 + 𝜇2𝐵
𝜇𝐵 sin(𝜇𝐵𝑡))

Finally, let us look at the 𝑒−𝑘𝑒𝑝𝑡 terms.

𝑎𝐺𝑒−𝑘𝑒𝑝𝑡(
𝜇𝐺𝑘𝑒𝑝 − 𝜇2𝐵

(𝜇2𝐺 + 𝜇2𝐵)(𝑘2𝑒𝑝 + 𝜇2𝐵)
− 𝜇𝐺
(𝜇2𝐺 + 𝜇2𝐵)(𝑘𝑒𝑝 − 𝜇𝐺)

) = 𝑎𝐺𝑒−𝑘𝑒𝑝𝑡(
(𝜇𝐺𝑘𝑒𝑝 − 𝜇2𝐵)(𝑘𝑒𝑝 − 𝜇𝐺) − 𝜇𝐺(𝑘2𝑒𝑝 + 𝜇2𝐵)

(𝜇2𝐺 + 𝜇2𝐵)(𝑘2𝑒𝑝 + 𝜇2𝐵)(𝑘𝑒𝑝 − 𝜇𝐺)
)

= 𝑎𝐺𝑒−𝑘𝑒𝑝𝑡
(𝑘𝑒𝑝 − 𝜇𝐺)(𝑘2𝑒𝑝 + 𝜇2𝐵)

(
𝜇𝐺𝑘2𝑒𝑝 − 𝜇2𝐺𝑘𝑒𝑝 − 𝜇2𝐵𝑘𝑒𝑝 + 𝜇𝐺𝜇2𝐵 − 𝜇𝐺𝑘2𝑒𝑝 − 𝜇𝐺𝜇2𝐵

(𝜇2𝐺 + 𝜇2𝐵)
)

= 𝑎𝐺𝑒−𝑘𝑒𝑝𝑡
(𝑘𝑒𝑝 − 𝜇𝐺)(𝑘2𝑒𝑝 + 𝜇2𝐵)

( −
𝑘𝑒𝑝(𝜇2𝐺 + 𝜇2𝐵)
(𝜇2𝐺 + 𝜇2𝐵)

) = 𝑎𝐺
(𝑘𝑒𝑝 − 𝜇𝐺)

( −1
𝑘2𝑒𝑝 + 𝜇2𝐵

𝑘𝑒𝑝𝑒−𝑘𝑒𝑝𝑡)

Now let us fill in these new expressions into the expression we found before.

∫
𝑡

0
𝐶𝐶𝐴𝑝𝑙𝑎𝑠𝑚𝑎(𝑠) ⋅ 𝑒−𝑘𝑒𝑝(𝑡−𝑠)𝑑𝑠 = 𝑎𝐵(𝑓(𝑡, 𝑘𝑒𝑝) +

𝑎𝐺
𝑘𝑒𝑝 − 𝜇𝐺

( 1𝜇𝐺
(1 − 𝑒−𝜇𝐺𝑡) − 1

𝑘𝑒𝑝
(1 − 𝑒−𝑘𝑒𝑝𝑡))

+ 𝑎𝐺
(𝑘𝑒𝑝 − 𝜇𝐺)

( 1
𝜇2𝐺 + 𝜇2𝐵

𝜇𝐺 cos(𝜇𝐵𝑡) −
1

𝑘2𝑒𝑝 + 𝜇2𝐵
𝑘𝑒𝑝 cos(𝜇𝐵𝑡))

+ 𝑎𝐺
(𝑘𝑒𝑝 − 𝜇𝐺)

( 1
𝜇2𝐺 + 𝜇2𝐵

𝜇𝐵 sin(𝜇𝐵𝑡) −
1

𝑘2𝑒𝑝 + 𝜇2𝐵
𝜇𝐵 sin(𝜇𝐵𝑡))

+ 𝑎𝐺
(𝑘𝑒𝑝 − 𝜇𝐺)

( −1
𝑘2𝑒𝑝 + 𝜇2𝐵

𝑘𝑒𝑝𝑒−𝑘𝑒𝑝𝑡) +
𝑎𝐺

(𝑘𝑒𝑝 − 𝜇𝐺)
( 1
𝜇2𝐺 + 𝜇2𝐵

𝜇𝐺𝑒−𝜇𝐺𝑡))

= 𝑎𝐵(𝑓(𝑡, 𝑘𝑒𝑝) +
𝑎𝐺

𝑘𝑒𝑝 − 𝜇𝐺
( 1𝜇𝐺

(1 − 𝑒−𝜇𝐺𝑡) − 1
𝜇2𝐺 + 𝜇2𝐵

(𝜇𝐺 cos(𝜇𝐵𝑡) + 𝜇𝐵 sin(𝜇𝐵𝑡) −
1
𝜇𝐺
𝑒−𝜇𝐺𝑡))

− 𝑎𝐺
𝑘𝑒𝑝 − 𝜇𝐺

( 1
𝑘𝑒𝑝

(1 − 𝑒−𝑘𝑒𝑝𝑡) − 1
𝑘2𝑒𝑝 + 𝜇2𝐵

(𝑘𝑒𝑝 cos(𝜇𝐵𝑡) + 𝜇𝐵 sin(𝜇𝐵𝑡) −
1
𝑘𝑒𝑝

𝑒−𝑘𝑒𝑝𝑡)))

= 𝑎𝐵(𝑓(𝑡, 𝑘𝑒𝑝) +
𝑎𝐺

𝑘𝑒𝑝 − 𝜇𝐺
(𝑓(𝑡, 𝜇𝐺) − 𝑓(𝑡, 𝑘𝑒𝑝))) =

𝑎𝐵𝑎𝐺
𝑘𝑒𝑝 − 𝜇𝐺

(𝑓(𝑡, 𝜇𝐺) + (
𝑘𝑒𝑝 − 𝜇𝐺
𝑎𝐺

− 1)𝑓(𝑡, 𝑘𝑒𝑝))

We have thus proven the case 0 ≤ 𝑡 ≤ 𝑡𝐵.

We now move on to the case 𝑡 > 𝑡𝐵.

ClaimA.4.2. For 𝑡 > 𝑡𝐵, 𝐶𝐶𝐴𝑡𝑖𝑠𝑠𝑢𝑒(𝑡) = 𝐾𝑡𝑟𝑎𝑛𝑠( ∫
𝑡𝐵
0 𝐶𝐶𝐴𝑝𝑙𝑎𝑠𝑚𝑎(𝑠)⋅𝑒−𝑘𝑒𝑝(𝑡𝐵−𝑠)𝑑𝑠+∫

𝑡
𝑡𝐵 𝐶

𝐶𝐴
𝑝𝑙𝑎𝑠𝑚𝑎(𝑠)⋅𝑒−𝑘𝑒𝑝(𝑡−𝑠)𝑑𝑠)

Proof. By the Kety-Tofts model, we again know that:

𝐶𝐶𝐴𝑡𝑖𝑠𝑠𝑢𝑒(𝑡) = 𝐾𝑡𝑟𝑎𝑛𝑠∫
𝑡

0
𝐶𝐶𝐴𝑝𝑙𝑎𝑠𝑚𝑎(𝑠) ⋅ 𝑒−𝑘𝑒𝑝(𝑡−𝑠)𝑑𝑠

= 𝐾𝑡𝑟𝑎𝑛𝑠(∫
𝑡𝐵

0
𝐶𝐶𝐴𝑝𝑙𝑎𝑠𝑚𝑎(𝑠) ⋅ 𝑒−𝑘𝑒𝑝(𝑡𝐵−𝑠)𝑑𝑠 + ∫

𝑡

𝑡𝐵
𝐶𝐶𝐴𝑝𝑙𝑎𝑠𝑚𝑎(𝑠) ⋅ 𝑒−𝑘𝑒𝑝(𝑡−𝑠)𝑑𝑠)
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Thus, to prove the claim, we need to show that the sum of the integrals is equal to

𝑎𝐵𝑎𝐺
𝑘𝑒𝑝 − 𝜇𝐺

(𝑓(𝑡𝐵 , 𝜇𝐺)𝑒−𝜇𝐺(𝑡−𝑡𝐵) + (
𝑘𝑒𝑝 − 𝜇𝐺
𝑎𝐺

− 1)𝑓(𝑡, 𝑘𝑒𝑝)𝑒−𝑘𝑒𝑝(𝑡−𝑡𝐵)).

It was just shown that:

∫
𝑡

0
𝐶𝐶𝐴𝑝𝑙𝑎𝑠𝑚𝑎(𝑠) ⋅ 𝑒−𝑘𝑒𝑝(𝑡−𝑠)𝑑𝑠 =

𝑎𝐵𝑎𝐺
𝑘𝑒𝑝 − 𝜇𝐺

(𝑓(𝑡, 𝜇𝐺) + (
𝑘𝑒𝑝 − 𝜇𝐺
𝑎𝐺

− 1)𝑓(𝑡, 𝑘𝑒𝑝))

When we now divide by 𝑒−𝑘𝑒𝑝𝑡 and multiply with 𝑒−𝑘𝑒𝑝𝑡𝑏 , we obtain:

∫
𝑡𝐵

0
𝐶𝐶𝐴𝑝𝑙𝑎𝑠𝑚𝑎(𝑠) ⋅ 𝑒−𝑘𝑒𝑝(𝑡𝐵−𝑠)𝑑𝑠 =

𝑎𝐵𝑎𝐺
𝑘𝑒𝑝 − 𝜇𝐺

(𝑓(𝑡𝐵 , 𝜇𝐺)𝑒−𝑘𝑒𝑝(𝑡−𝑡𝐵) + (
𝑘𝑒𝑝 − 𝜇𝐺
𝑎𝐺

− 1)𝑓(𝑡𝐵 , 𝑘𝑒𝑝)𝑒−𝑘𝑒𝑝(𝑡−𝑡𝐵))

We calculate the final term that is still left.

∫
𝑡

𝑡𝐵
𝐶𝐶𝐴𝑝𝑙𝑎𝑠𝑚𝑎(𝑠) ⋅ 𝑒−𝑘𝑒𝑝(𝑡−𝑠)𝑑𝑠 = 𝑎𝐵𝑎𝐺𝑓(𝑡𝐵 , 𝜇𝐺)𝑒𝜇𝐺𝑡𝐵−𝑘𝑒𝑝𝑡∫

𝑡

𝑡𝐵
𝑒𝑠(𝑘𝑒𝑝−𝜇𝐺)𝑑𝑠

= 𝑎𝐵𝑎𝐺
𝑘𝑒𝑝 − 𝜇𝐺

𝑓(𝑡𝐵 , 𝜇𝐺)𝑒𝜇𝐺𝑡𝐵−𝑘𝑒𝑝𝑡(𝑒𝑡(𝑘𝑒𝑝−𝜇𝐺) − 𝑒𝑡𝐵(𝑘𝑒𝑝−𝜇𝐺))

= 𝑎𝐵𝑎𝐺
𝑘𝑒𝑝 − 𝜇𝐺

(𝑓(𝑡𝐵 , 𝜇𝐺)𝑒−𝜇𝐺(𝑡−𝑡𝐵) − 𝑓(𝑡𝐵 , 𝜇𝐺)𝑒−𝑘𝑒𝑝(𝑡−𝑡𝐵))

Let us now add up the integrals.

∫
𝑡𝐵

0
𝐶𝐶𝐴𝑝𝑙𝑎𝑠𝑚𝑎(𝑠) ⋅ 𝑒−𝑘𝑒𝑝(𝑡𝐵−𝑠)𝑑𝑠 + ∫

𝑡

𝑡𝐵
𝐶𝐶𝐴𝑝𝑙𝑎𝑠𝑚𝑎(𝑠) ⋅ 𝑒−𝑘𝑒𝑝(𝑡−𝑠)𝑑𝑠

= 𝑎𝐵𝑎𝐺
𝑘𝑒𝑝 − 𝜇𝐺

(𝑓(𝑡, 𝜇𝐺)𝑒−𝑘𝑒𝑝(𝑡−𝑡𝐵) + (
𝑘𝑒𝑝 − 𝜇𝐺
𝑎𝐺

− 1)𝑓(𝑡, 𝑘𝑒𝑝)𝑒−𝑘𝑒𝑝(𝑡−𝑡𝐵))

+ 𝑎𝐵𝑎𝐺
𝑘𝑒𝑝 − 𝜇𝐺

(𝑓(𝑡𝐵 , 𝜇𝐺)𝑒−𝜇𝐺(𝑡−𝑡𝐵) − 𝑓(𝑡𝐵 , 𝜇𝐺)𝑒−𝑘𝑒𝑝(𝑡−𝑡𝐵))

= 𝑎𝐵𝑎𝐺
𝑘𝑒𝑝 − 𝜇𝐺

(𝑓(𝑡𝐵 , 𝜇𝐺)𝑒−𝜇𝐺(𝑡−𝑡𝐵) + (
𝑘𝑒𝑝 − 𝜇𝐺
𝑎𝐺

− 1)𝑓(𝑡, 𝑘𝑒𝑝)𝑒−𝑘𝑒𝑝(𝑡−𝑡𝐵))

This proves the case for 𝑡 > 𝑡𝐵.

A.5. Poster for Workshop
From the 6th until the 8th of July 2022, the workshop Nonlinear Diffusion Equations with Applications in
Biology took place in Nijmegen. This workshop, organised by the Radbound University, was aimed to
combine the theory of nonlinear diffusion equations and their modelling applications in biology. During
the workshop, the poster shown on the next page was presented during the poster session. It was
awarded with the Best Poster Award.
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Introduction
Goal: Predict the needed number of chemotherapy rounds for breast cancer patients.
Method: Model the amount of tumour cells in each position in the breast with a reaction-diffusion equation.
Model input: DCE and DW MRI scans before and during treatment.
Model output: Predicted tumour density at the conclusion of treatment.

Model
The Mechanically Coupled Reaction-Diffusion (MCRD) model, described in various literature [1–3], com-
bines available qualitative data from the Dynamic Contrast Enhanced (DCE) and Diffusion Weighted (DW) MRI
scans with a spatiotemporal reaction-diffusion model that takes the mechanical properties of the tissue
into account to predict the tumour density in each position of the breast for one patient. Recently, the model has
been extended to also include a chemotherapy term that is based on the patients’ treatment schedule [4–6].
Equations 1, 2 and 3 describe the MCRD model, for which the descriptions of the variables and parameters are
given in Table 1 and 2 respectively.

∂N(x, t)
∂t

= ∇ · (D∇N(x, t)) + k(x)N(x, t)(1 − N(x, t)
θ

) − αCdrug
tissue(x, t)N(x, t) (1)

D = D0e
−γσvm(x,t) (2)

∇ · G∇u⃗ + ∇ G

1 − 2ν
(∇ · u⃗) + λ∇N(x, t) = 0 (3)

Variable Description
N(x, t) Number of tumour cells in the voxel at position x at time t
D(x, t) Diffusion coefficient of tumour cells (mm2/day)
σvm Von Mises stress (kPa)
G Shear modulus due to breast tissue properties (kPa)
u⃗ Displacement vector due to tumour growth (mm)
Cdrug

tissue(x, t) Concentration of drugs in tissue in voxel at position x at time t (µM)
Table 1: Variables and their descriptions

Parameter Description
k(x) Proliferation rate of tumour cells per voxel (1/day)
θ Capacity of tumour cells in one voxel
α Efficacy of the drug against tumour cells (1/µM · day)
D0 Diffusion coefficient in absence of stress (mm2/day)
γ Coupling constant for von Mises stress (1/kPa)
ν Material property of Poisson ratio
λ Coupling constant for displacement vector

Table 2: Parameters and their descriptions

To apply this model, a grid is determined based on the MRI scans, thus discretising the breast into voxels.
Note that θ, which represents the maximum number of tumour cells that can fit into a voxel, is calculated based on
the data. Furthermore, γ and λ are assigned literature values and k(x), D0 and α are calibrated in the simulation.
For the spatial discretization the Finite Difference Method is used and for the temporal discretization Forward
Euler is applied. Figure 1 shows the steps that are taken in calculating the MCRD model forward in time.

Figure 1: Steps to iterate forward

Modelling pipeline
In the implementation, several steps have to be taken to get a model prediction, including some pre-processing
steps of the data. The dataset for the research consists of DCE and DW MRI scans before (t0), during (t1) and after
treatment (t2) for a group of HER2+ breast cancer patients that were selected by the involved internist-oncologist.
The modelling pipeline is described below and illustrated in Figure 2.

• Registration: Using both rigid and non-rigid registration, the images from different sessions are aligned to
correct for body movements.

• Tissue segmentation: The tissue is segmented into tumorous, fibroglandular and adipose tissue.
• Calculating tumour density: The tumour segmentation and calculated apparent diffusion coefficients

(ADC) values are combined to determine tumour cell density for the three time points t0, t1 and t2.
• Calculating chemotherapy concentrations: The concentration of drug at each time t and in each voxel

x can either be calculated by using the (Extended) Kety-Tofts model of by computing the initial drug
distribution and multiplying this with a function describing the decay of the drug in the tissue.

• Calibration: Based on initial guesses, the optimal value for the patient-specific parameters k(x), D0
and α are determined by running the model forward in time from t0 to t1 and comparing the estimated tumour
density N(x, t1) with the actual tumour density N̂(x, t1).

• Evaluation: The model is run from t1 to t2, yielding N(x, t2) which is compared to N̂(x, t2) to evaluate the
results.

Figure 2: Modelling pipeline

Results
In the first part of this research, the chemotherapy term was left out (i.e. α = 0) and a comparison was made
between the 2D RD model, which consists only of Equation 1, and the 2D MCRD model [7]. The second part
of the research consisted of incorporating the chemotherapy term by including the treatment schedule of the
patient in the two-dimensional model, as this was expected to improve the predictions. Figure 3 displays the results
of the 2D MCRD model for one of the patients. Presently, the option to extend the model to 3D is also being
researched, where most likely computational complexities will have to be overcome.

(a) N̂(x, t0) (b) N̂(x, t1) (c) N̂(x, t2)

(d)
∑

x N(x, t) (e) N(x, t1) (f) N(x, t2)
Figure 3: Results of the 2D MCRD model with chemotherapy for one patient. The top row shows the measured tumour densities with from left to right t0, t1, t2, the bottom
row shows the predicted tumour densities.

Conclusion
To predict tumour response in HER2+ patients, a 2D MCRD model has been implemented that uses MRI
scans as input. Finite Difference was used for the spatial discretization, and Forward Euler was used for the forward
calculations in time. In the implementation, the data had to be pre-processed by registration and segmentation
to calculate the required quantities. After calibration, in which the patient-specific parameters were optimised
by the model, the model is predicted forward in time to yield an estimate of the tumour density at the
conclusion of therapy. Currently, our research focuses on improving and analysing the model that includes the
treatment schedule and on extending from 2D to 3D.
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