Automated analysis of microscopic images of cellular tissues

Rutger Slooter

December 8, 2017
Overview

- The problem
Overview

- The problem
- Initial impressions
Overview

- The problem
- Initial impressions
- Real space
Overview

- The problem
- Initial impressions
- Real space
 - Watershed segmentation
 - Local extrema
 - Current Development
Overview

- The problem
- Initial impressions
- Real space
 - Watershed segmentation
 - Local extrema
 - Current Development
- Conclusion
Microscope images of potato slices.

The problem

Important features: Individual cells.

▶ Average size.
▶ Average eccentricity.
▶ Orientation.

Beyond that we also want to know the variation.

▶ Cell wall thickness.

i.e. we want to determine cell statistics.
The problem

Microscope images of potato slices. Important features: Individual cells.
The problem

Microscope images of potato slices.
Important features: Individual cells.

So what do we want to do with the cells in the microscope images?

Average size.
Average eccentricity.
Orientation.

Beyond that we also want to know the variation.
And when possible.
Cell wall thickness.

i.e. we want to determine cell statistics.
The problem

Microscope images of potato slices.
Important features: Individual cells.

So what do we want to do with the cells in the microscope images?
▶ Average size.
The problem

Microscope images of potato slices. Important features: Individual cells.

So what do we want to do with the cells in the microscope images?

- Average size.
- Average eccentricity.
The problem

Microscope images of potato slices. Important features: Individual cells.

So what do we want to do with the cells in the microscope images?

- Average size.
- Average eccentricity.
- Orientation.
The problem

Microscope images of potato slices.
Important features: Individual cells.

So what do we want to do with the cells in the microscope images?

- Average size.
- Average eccentricity.
- Orientation.

Beyond that we also want to know the variation.
Microscope images of potato slices. Important features: Individual cells.

So what do we want to do with the cells in the microscope images?

- Average size.
- Average eccentricity.
- Orientation.

Beyond that we also want to know the variation.

And when possible.

- Cell wall thickness.
The problem

Microscope images of potato slices.
Important features: Individual cells.

So what do we want to do with the cells in the microscope images?

- Average size.
- Average eccentricity.
- Orientation.

Beyond that we also want to know the variation.

And when possible.

- Cell wall thickness.

i.e. we want to determine cell statistics.
Why is this a problem?

Figure 1: An example of a microscope image. Note that here the best area of a larger image is selected.
Some first impressions

We have:

- Brightness of the pixels.
- We can see the cells with our own eyes.

Two main options:
- Work with the real image, which we call Real Space.
- Work with a Fourier transformed image, in Frequency Space.
Some first impressions

We have:

- Brightness of the pixels.
Some first impressions

We have:

- Brightness of the pixels.
- We can see the cells with our own eyes.
Some first impressions

We have:

- Brightness of the pixels.
- We can see the cells with our own eyes.

Two main options:
Some first impressions

We have:

- Brightness of the pixels.
- We can see the cells with our own eyes.

Two main options:

- Work with the real image, which we call Real Space
Some first impressions

We have:

- Brightness of the pixels.
- We can see the cells with our own eyes.

Two main options:

- Work with the real image, which we call Real Space
- Work with a Fourier transformed image, in Frequency Space
From the thesis by Peter Iles [1] we have also seen a method concerning the real image.
Real space analysis

From the thesis by Peter Iles [1] we have also seen a method concerning the real image. Namely the watershed method, hereto we also point to.
Real space analysis

From the thesis by Peter Iles [1] we have also seen a method concerning the real image. Namely the watershed method, hereto we also point to.

- Robust Muscle Cell Segmentation using Region Selection with Dynamic Programming, by F. Liu et al. [2].
Real space analysis

From the thesis by Peter Iles [1] we have also seen a method concerning the real image. Namely the watershed method, hereto we also point to.

- Robust Muscle Cell Segmentation using Region Selection with Dynamic Programming, by F. Liu et al. [2].
- Contour Detection and Hierarchical Image Segmentation, P. Arbelez et al. [3].
From the thesis by Peter Iles [1] we have also seen a method concerning the real image. Namely the watershed method, hereto we also point to.

- Robust Muscle Cell Segmentation using Region Selection with Dynamic Programming, by F. Liu et al. [2].
- Contour Detection and Hierarchical Image Segmentation, P. Arbelez et al. [3].
How does the watershed method work?

- Locate drainage points.
- Let 'water' flow into the lowest areas. (i.e. the darkest pixels.)
- When the image is filled stop.

Now we have found various segments in the image.
Watershed segmentation

How does the watershed method work?

There are various mechanisms but the key is:
How does the watershed method work?

There are various mechanisms but the key is:

- Locate drainage points.
Watershed segmentation

How does the watershed method work?

There are various mechanisms but the key is:
- Locate drainage points.
- Let ‘water’ flow into the lowest areas. (i.e. the darkest pixels.)
Watershed segmentation

How does the watershed method work?

There are various mechanisms but the key is:

- Locate drainage points.
- Let ‘water’ flow into the lowest areas. (i.e. the darkest pixels.)
- When the image is filled stop.
Watershed segmentation

How does the watershed method work?

There are various mechanisms but the key is:

▶ Locate drainage points.
▶ Let ‘water’ flow into the lowest areas. (i.e. the darkest pixels.)
▶ When the image is filled stop.

Now we have found various segments in the image.
Literature results

We look at [2] which uses the Ultrametric Contour Map (UCM) from [3]. An example:

Figure 2: Examples of segmentation by UCM. From top to bottom: Image, UCM produced by gPb-owt-ucm, and ODS and OIS segmentations, source [3].
Figure 3: Decision tree for the segmentation using the UCM, source [2].
Literature results cont’d

Figure 3: Decision tree for the segmentation using the UCM, source [2].

Figure 4: Segmentation results, source [2].
Contrast enhancement

\[
f_{\text{out}}(x, y) = \frac{1}{1 + e^{4m[f_{\text{avg}}(x, y) - f_{\text{in}}(x, y)]}}
\] (1)
Contrast enhancement

\[f_{\text{out}}(x, y) = \frac{1}{1 + e^{4m[f_{\text{avg}}(x, y) - f_{\text{in}}(x, y)]}} \]

(1)

Figure 5: Left just a cropped image from Fig. 1. On the right the image, with locally enhanced contrast. We have \(m = 10 \) and a radius \(r \) of 50 pixels.
Our results

Figure 6: Our result for a watershed segmentation.
Local extrema

How to find cell centres?
How to find cell centres?

Convolve the image with a Gaussian peak, i.e. use a Weierstraß transformation.
Local extrema

How to find cell centres?

Convolve the image with a Gaussian peak, i.e. use a Weierstrass transformation.

Locate local maxima or minima on the image.
Figure 7: A transformed image, here we have used a Gaussian with $\sigma = 7$.
Figure 8: A numerical solution to the merging of two Gaussian peaks. \(w \) is the distance between peaks, \(m \) the ratio in amplitude and \(\sigma \) the standard deviation of the Gaussian. Also read [5, 6].
Choosing σ

Figure 9: Here we study the number of detected peaks vs. the standard deviation σ. We choose the value $\sigma = 7$.

![Graph showing the number of peaks vs. σ.](image)
Choosing σ cont’d

Figure 10: Using simple geometry we can determine a suitable σ for finding minima. This turns out to be approximately 4.
Figure 11: Local extrema. In blue the cell centres, in red the corners of the cells.
Figure 12: Connected cell corners. We see some interesting results, but it is very complicated to extract cells from this data.
Figure 13: Located corners of an octagonal cell (as we have only allowed 8 points to move).
Conclusion

- Identification of the problem.
Conclusion

- Identification of the problem.
- Attempts at a simple solution don’t work.
Conclusion

- Identification of the problem.
- Attempts at a simple solution don’t work.
- Finding local extrema as a foundation.
Conclusion

- Identification of the problem.
- Attempts at a simple solution don’t work.
- Finding local extrema as a foundation.
- Using a potential to form cells.
References I

