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1
Introduction

A burn is a type of injury to the skin that may be caused by heat, electricity, radiation, lasers or chemical
substances. After a burn has healed, mechanical tension remains. A contracture can be defined as a
tightening of the skin caused by a burn. Symptoms may include restriction of movement, a feeling of
tightness, and pain [1].

Insight in the mechanics involved in the wound healing process that occurs after a burn, results in
a better understanding of contractures. Eventually, this could lead to improved treatment. One could,
for example, think of splinting a limb in order to minimize the final tightness of the skin.

To describe the mechanical behavior of skin during wound healing, a so-calledmorphoelasticmodel
has been used in [12], [14] and [11]. The idea is to split deformations up into an elastic and a plastic
part.

At the start of this graduation project my supervisor Fred Vermolen told me that he wanted to gain
more understanding in how the morphoelasticity models applied to burns work. To do so, in this thesis
we will loosely reconstruct some of the models from [12] and [11]. We will start with very rudimentary
models, and build on them towards more complicated ones. We will try to understand how most of
the models work by walking through derivations. Additionally, we will present results that will highlight
the most important features of every model. We will also construct a framework to include a means of
heterogeneity in some of the models. Moreover, we will allow for this heterogeneity to be stochastic.

In chapter 2 we will walk through the biology relevant to this project. We will introduce some nec-
essary terminology and we will discuss the effects at play that will be captured by the models.

In chapter 3 we will present some prerequisite theory on stress and strain. Although there are plenty
of books that cover this, the models will rely heavily on this theory. For that reason, it is important for the
reader to be familiar with it. Also, a chapter on stress and strain gives us the opportunity to introduce
some of the notation we will use throughout this thesis.

In chapter 4 we will provide a mathematical derivation or substantiation for each of the models
around which this thesis revolves. We will start off fairly easy, so that the reader can finish the chapter
with a profound understanding of morphoelasticity.

In chapter 5 we will walk through the Finite Element Method applied to some of the more advanced
models. With this chapter, it should be clear how the Finite Element Method can be applied to the
simpler models.

In chapter 6, we present results for the models introduced in chapter 4. Some of these results will
aim at gaining even more understanding in the models. Others will contain relevant quantitative outputs
of the models.

Finally, in chapter ??, we will briefly summarize the findings of the thesis, and provide some recom-
mendations for future work.

1





2
Biological background

In this chapter we will walk through the relevant biological background. We will discuss burns, wound
healing, contraction and contractures. Wewill also provide a timeline for wound healing and contraction.
This timeline will be helpful in the chapters that follow.

2.1. Layers of the skin
Human skin consists of three layers. See figure 2.1.

Epidermis

Dermis

Hypodermis

Figure 2.1: A simplified representation of the skin, including sweat glands (blue), hair follicles (black),
blood vessels (red), and collagen fibres (brown).

The epidermis is the outermost layer, and is relatively thin. Its main functions are providing protection
against infection from pathogens, regulating perspiration, and the production of melanin to form a barrier
to ultraviolet radiation.

The dermis is the middle layer, and is the thickest of the three. It houses biological structures like
sweat glands, hair follicles, and blood vessels. The dermis itself consists of cells, such as endothelial
cells, immune cells and fibroblasts, and an extracellular matrix. In turn, the extracellular matrix is
made up of components such as collagen and elastin. In figure 2.1 the brown strings running through
the dermis are collagen fibres. It turns out that the arrangement of these fibres strongly affects the
mechanical properties of the skin. In healthy, uninjured skin, the arrangement seems to be random
([12]).

The hypodermis, also refered to as the subcutis, connects the dermis to the tissues underneath the
skin.

2.2. Burns
A burn is an injury to the skin that can be classified as [2]:

• thermal,

• electrical,

• radiation-induced,

3



4 2. Biological background

• laser-induced,

• chemical.

All of these types of burns are slightly different from each other. Burns as a class of wound in turn have
different characteristics compared to wounds caused by, for example, cuts or infections. Consequently
every type of wound will heal in its own way. However, to a large extent the process is always the same,
and for that reason in this thesis it will be reasonable to build upon the general wound healing theory.

2.3. Healing of dermal wounds
Superficial wounds, that only affect the epidermis, do usually not cause scars [3]. Therefore the focus
will be on wounds involving damage to the dermis, so-called dermal wounds. Themorphoelastic model,
that we will present later in this thesis, will only capture part of the healing process. Also, it will have
a rudimentary character, i.e. only the processes that are known to have a large influence will be taken
into account. In [1] an elaborate description of the healing process of dermal wounds is given. Here
we will essentially give a simplified summary of this description, refraining from introducing too much
terminology that is ultimately not reflected by the morphoelastic model.

The body’s healing response to dermal wounds can be subdivided into four phases, i.e. hemostasis,
inflammation, proliferation and maturation. It is important to note that these phases overlap partially.

2.3.1. Hemostasis and inflammation
Upon injury, the hemostasis phase commences. Reactions in the blood lead to the production of fibrin,
which forms a clot. See figure 2.2. This stops the bleeding, and, additionally, the clot serves as a

Figure 2.2: Injured skin. A blood cloth (red) has formed during hemostasis.

scaffold for cells to migrate in the absence of an ECM. In the inflammatory phase, blood vessels become
more permeable, and white blood cells make their way into the wounded area. Their main function is
to prevent infection from pathogens, and to remove dead cells, damaged cells and other debris.

2.3.2. Proliferation
In the proliferation phase granulation tissue is formed. Three cell types that play an important role are
macrophages, endothelial cells and fibroblasts.

Through the proliferation phase, macrophages continue the removal of debris from the wound, and
the protection against pathogenic infection.

Fibroblasts are an important type of cell. The two most important phenotypes are the ‘normal’
fibroblast, and the myofibroblast. It is suggested that there is a third type of fibroblast, called proto-
myofibroblast. ‘Normal’ fibroblasts are more mobile than myofibroblasts. However, they are unable to
exert significant forces on the granulation tissue and surrounding skin tissue, as opposed to the other
types. All of the types can excrete collagen fibres. This is very important in wound healing, because
collagen provides scars with the necessary tensile strength. Throughout this thesis we will not distin-
guish between the three types. Instead, we will use only one type of fibroblast that can exert forces
and excrete collagen. We assume that this type is representative for the whole heterogenous fibroblast
population.

During the proliferation phase, the fibroblasts will construct an ECM, by laying down collagen fibres.
The ECM in uninjured skin is of higher quality than what is seen in granulation tissue. Around 80 to
90 percent of healthy skin consists of so-called type I collagen. Type III collagen comprises ten to 20
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percent [1]. Type I collagen is stronger, while type III collagen can be produced at a faster rate. In
granulation tissue the collagen composition is skewed towards type III, where it now accounts for 30%.

Another important process that starts is angiogenesis, which is the creation of new blood vessels
from ones that exist close to the wound area. To this end, endothelial cells, which make up the inside
of blood vessels, proliferate, and migrate into the wound. The new blood vessel network will be very
important in the proliferation phase: it allows for transport of the debris that leukocytes are trying to
remove, and it provides nutrients and oxygen to a variety of cells. Fibroblasts, for example, need
oxygen to carry out their work. Additional leukocytes that are needed in the wound area will also start
using the newly constructed network.

2.3.3. maturation
As soon as fibroblasts enter the wound, they start remodeling the ECM. In the early stages of the
healing process, they break down fibrin and replace it by collagen. As the healing process progresses,
they continue to modify the tissue by removing existing collagen fibres and laying down new ones. This
remodeling of the tissue is called maturation. In this process, which lasts until a mature scar is formed,
much of the type III collagen is turned into type I collagen. This will be reflected by the mechanical
properties of the tissue.

In figure 2.3 we present a timeline that shows when the phases approximately commence and end.
An indication is also given for the period in which the wound experiences contraction.

injury

∼3 days

2-3 years

∼3 weeks

2-3 weeks

3-4 weeks

∼4 days

∼6 days
shortly after injury

shortly after injury

Hemostasis

Inflammation

Contraction

Proliferation

Maturation

Figure 2.3: A non-linear timeline including the four phases of wound healing, based on [1]. We also
included contraction, because of the important role in this thesis. It must be noted that the time values
are approximate and may vary from case to case.

2.4. Contraction, mechanical properties and contractures
In view of the change in the composition of the ECM described in subsection ??, it stands to reason that
a scar will have different mechanical properties than uninjured skin. It is not just the type of collagen
that plays a role though, the orientation is also essential. It is known that fibroblasts lay down collagen
fibres predominantly along the axis subject to the highest normal stress. In scar tissue, the resulting
disposition will show a lot of fibres that are roughly parallel to the skin. There is some discord as to
how this compares to collagen arrangement in healthy skin. For example, [12] speaks of a random
alignment, whereas [1] presumes a “basket weave-like pattern”.

Figures 2.1, 2.2, 2.4 and 2.5 are in chronological order. Together, they visualize the process leading
to residual stress and altered mechanical properties of the wounded area.

In terms of strength, it is known that a wound has three percent of its final strength after a week, and
20 percent after three weeks. After three months the strength will be 80 percent of that of uninjured
skin, and it will stay at this level.

It can also be seen that after the wound healing process, uninjured skin is spanning a larger area
than before. This means that there will be residual stress. This stress defines a contracture. Symptoms
are restriction of movement, a feeling of tightness, and pain. Especially contractures resulting from



6 2. Biological background

Figure 2.4: Injured skin with granulation tissue (pink). Fibroblasts (black dots) induce contraction, and
secrete collagen fibres (brown), oriented along the axis with highest normal stress.

Figure 2.5: Wound in the final stages of the healing process. The uninjured skin is spanning a larger
area than it did before contraction. Therefore there will be residual stress. Collagen fibres (brown) in
the area that has been injured are now predominantly oriented parallel to the skin.

large burns can lead to serious complications.
In figure 2.6, we can see a contracture.

Figure 2.6: A debilitating case of a contracture. This photo was taken from [1].



3
Definitions of stress and strain

In this chapter we will give a brief introduction to stress and strain. We will also discuss some other
important topics that would be distracting if we introduced them in other chapters.

3.1. Definition of stress
In physics, stress is a quantity that measures forces that adjacent particles in a material exert on each
other. Stress resulting from a force applied perpendicular to an area is called normal stress. If the
force is applied parallel to the area we call it shear stress. In both cases, stress is defined as the force
divided by the area over which it is exerted, i.e.:

𝜎 ∶= 𝐹
𝐴 . (3.1)

In three dimensions, there is a total of three normal stresses, and six shear stresses to be considered.
See figure 3.1.

𝑥

𝑦

𝑧

𝜎ኻኽ

𝜎ኻኻ
𝜎ኻኼ

Figure 3.1: A cube subject to stresses.

The stress tensor is then given by:

𝜎 ∶= [
𝜎ኻኻ 𝜎ኻኼ 𝜎ኻኽ
𝜎ኼኻ 𝜎ኼኼ 𝜎ኼኽ
𝜎ኽኻ 𝜎ኽኼ 𝜎ኽኽ

] . (3.2)

7



8 3. Definitions of stress and strain

3.1.1. Symmetry of the stress tensor
Assume that the cube in figure 3.1 is subject to forces, but it does not rotate. Then the sum of the
momenta must be zero. If the forces are distributed uniformly along the surfaces, we find that:

𝜎ኻኼ − 𝜎ኼኻ = 0, (3.3)
𝜎ኻኽ − 𝜎ኽኻ = 0, (3.4)
𝜎ኼኽ − 𝜎ኽኼ = 0. (3.5)

This shows that 𝜎 must be symmetric.

3.2. Eulerian vs. Lagrangian and the material derivative
Let 𝑥 ∶= 𝑥(𝑋, 𝑡) be a flow, where 𝑋 is the initial position of a particle, and 𝑥 is the position of the particle
with initial coordinates 𝑋, at time 𝑡. Consider a physical quantity 𝑐 that depends on space and time.
There are two common ways of looking at the quantity. Firstly, we can look at a specific point, and
see how 𝑐 evolves over time. In this case, we usually write 𝑐 ∶= 𝑐(𝑥, 𝑡). We call this the Eulerian
specification of 𝑐.

Secondly, we can follow a particle, and see how 𝑐 evolves as the particle moves through the fluid.
It is common to label the particle using its initial position. We can write 𝑐 ∶= 𝑐(𝑋, 𝑡) ∶= 𝑐(𝑥(𝑋, 𝑡), 𝑡),
where 𝑥(𝑋, 𝑡) is the position at time of the particle with initial position 𝑋. This is called the Lagrangian
specification of 𝑐, and in this thesis we will call 𝑋 the Lagrangian coordinates or initial position of the
particle. Similarly, we will call 𝑥 the Eulerian coordinates or current position of the particle.

In this setting, derivatives depend on the specification we use. If we want to know the rate of change
of 𝑐 with respect to time at a fixed position 𝑥, we simply regard 𝜕𝑐/𝜕𝑡. However, if we are interested in
the rate of change of 𝑐 experienced by a particle as it moves through fluid, we have to consider:

d(𝑐(𝑥, 𝑡))
d𝑡 = 𝜕𝑐

𝜕𝑡 +
d𝑥
d𝑡 ⋅ ∇

ፄ𝑐 = 𝜕𝑐
𝜕𝑡 + 𝑣 ⋅ ∇

ፄ𝑐, (3.6)

where ∇ፄ = (𝜕/𝜕𝑥, 𝜕/𝜕𝑦, 𝜕/𝜕𝑧)ፓ is the so-called Eulerian gradient operator, and 𝑣 ∶= 𝑣(𝑋, 𝑡) ∶=
𝑣(𝑥(𝑋, 𝑡), 𝑡) is the velocity at time 𝑡 of the particle with initial position 𝑋. Here we used the chain rule
for differentiation.

Because the distinction between the two types of derivatives is so important, the latter has its own
notation in most texts; the material derivative is defined by:

D𝑐
D𝑡 =

𝜕𝑐
𝜕𝑡 + 𝑣 ⋅ ∇

ፄ𝑐. (3.7)

3.3. Definition of strain
Displacement is defined as the difference between a particle’s current and initial position. The distinc-
tion between Eulerian and Lagrangian coordinates comes in handy now. We have, in one dimension:

𝑢(𝑥) = 𝑥 − 𝑋, (3.8)

where 𝑢 is the displacement of a particle with current position 𝑥 and initial position 𝑋. In three dimen-
sions we have:

𝑢(𝑥) = 𝑥 − 𝑋, (3.9)

where 𝑢 is the displacement of a particle with current position 𝑥 = (𝑥, 𝑦, 𝑧)ፓ and initial position 𝑋 =
(𝑋, 𝑌, 𝑍)ፓ. Strain is a measure of deformation. One can define strain for a body as a whole. In one
dimension, if a body with initial length 𝑙 undergoes a stress such that it has current length 𝑙ᖣ, then a
possible definition is:

𝜖 ∶= 𝑙ᖣ − 𝑙
𝑙 . (3.10)

Often more useful is a local definition of strain. The local analagon of (3.10) is:

𝜖 ∶= 𝜕𝑢
𝜕𝑋 . (3.11)
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As the derivative is taken with respect to 𝑋, we call this the Lagrangian strain. Similarly, the Eulerian
strain is given by:

𝜖 ∶= 𝜕𝑢
𝜕𝑥 . (3.12)

In three dimensions we have for the Lagrangian strain:

𝜖 = (
𝜖ኻኻ 𝜖ኻኼ 𝜖ኻኽ
𝜖ኼኻ 𝜖ኼኼ 𝜖ኼኽ
𝜖ኽኻ 𝜖ኽኼ 𝜖ኽኽ

) ∶= 1
2(∇

ፋ𝑢 + (∇ፋ𝑢)ፓ), (3.13)

where ∇ፋ = (𝜕/𝜕𝑋, 𝜕/𝜕𝑌, 𝜕/𝜕𝑍)ፓ is the Lagrangian gradient operator. The three-dimensional Eulerian
strain is defined as:

𝜖 ∶= 1
2(∇

ፄ𝑢 + (∇ፄ𝑢)ፓ). (3.14)

There are plenty of other definitions of strain. In [14], for example, the following is considered:

𝜖 ∶= (∇ፋ𝑥)ኼ − ∇ፄ𝑋. (3.15)

It can be seen that the latter suggestion is non-linear, as opposed to the ones listed before.

3.3.1. Symmetry of the strain tensor
The stress tensor is always guaranteed to be symmetric. The same cannot be said for the strain tensor,
where this depends on the definition used. For definitions (3.13) and (3.14) taking the transpose easily
shows that symmetry holds. If we use another definition, symmetry may either be hard to prove, or
not true at all. We will later see that this is an important caveat to keep in mind, and once we have
established the morphoelasticity model we will show that the strain tensor that is involved is indeed
symmetric.





4
Mathematical models

In this chapter we will consider some models that are well-known in elasticity theory. We will start with
the simplest, and build from there. Because we desire to gain qualitative insight in the morphoelastic
models that will follow later in this chapter, a solid foundation is necessary. Therefore, we will give
derivations for most of the one-dimensional models. The three-dimensional derivations can be tedious
whilst not providing a lot more insight, so we will omit them most of the time.

4.1. Pure elasticity in one dimension
4.1.1. Hooke’s law
If we assume that there is a function mapping 𝜖 to 𝜎, we can write

𝜎 = 𝑓(𝜖). (4.1)

For small values of 𝜖 it is justified to linearize this equation. Since we expect zero stress to correspond
to zero strain we have:

𝜎 = 𝐸𝜖, (4.2)

where 𝐸 ∶= 𝑓ᖣ(0) is called the Young’s modulus. This constant is material-dependent. The above
equation is known as Hooke’s law. Although quadratic and higher order approximations are also used
in the literature, Hooke’s law is most popular. For small deformations it is accurate, while being simpler
than higher order approximations. This is particularly helpful when we build upon it to construct more
advanced models.

Consider figure 4.1. An example of a stress-strain curve is presented that could be observed in
reality. Note that away from 𝜖 = 0, the relationship is non-linear. However, closer to the origin, Hooke’s
law is accurate. We assume that all the materials that we will consider in this thesis obey Hooke’s law,
if we consider small enough strain values.

11
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0
𝜖

𝜎

Figure 4.1: An example of a stress-strain curve.

4.2. Pure elasticity in three dimensions
As we have seen in chapter 3, in three dimensions there are six distinct stresses to be considered. For
the normal stresses, we have already established (4.2). For shear stresses a similar linearization can
be stated:

𝜎shear = 𝐺𝜖shear . (4.3)

As it turns out, the so-called shear modulus 𝐺 can be expressed in terms of 𝐸, and another parameter,
𝜈. We will define 𝜈 first, and then we will derive the expression for 𝐺. After that we will be ready to
establish Hooke’s law in three dimensions.

4.2.1. The Poisson effect
Consider Poisson’s effect, depicted in figure 4.2. The figure illustrates what happens if a beam is

(a) A beam in two dimensions, subject to expansion in
the horizontal direction. Contraction occurs in the verti-
cal direction.

(b) A simplification that is justified when looking at a
small piece of the beam, making the definition of Pois-
son’s ratio intuitive.

Figure 4.2: Figures illustrating Poisson’s effect. In dashed we have the stress-free shape of a beam.
The solid lines show the shapes that result when stresses are imposed.

elongated in a certain direction: compression will happen in the two other directions. Conversely,
compression in one direction will induce elongation in the other two. This effect can be quantified using



4.2. Pure elasticity in three dimensions 13

Poisson’s ratio:

𝜈 ∶= −
d𝜖፲
d𝜖፱

= −d𝜖፳d𝜖፱
. (4.4)

In figure 4.3a we present a simulation of Poisson’s effect, performed using model 4.42. The Pois-
son’s ratio used is 𝜈 = 0.48. In figure 4.3b the body forces are presented that give rise to the deforma-
tion.

−2 0 2

−2

0

2

𝑥

𝑦

(a) An unstrained square (blue) gets deformed to the red
shape, displaying Poisson’s effect.

−2 0 2

−2

0

2

𝑥
𝐹 
(𝑥
,𝑦
)

(b) Body force ፅᑓ(⋅, ፲) for ዅኽ. ጾ ፲ ጾ ኽ..

Figure 4.3: A simulation illustrating Poisson’s effect.

4.2.2. Relationship between elastic constants
The so-called shear modulus 𝐺 can be expressed in terms of 𝐸 and 𝜈. We will loosely follow a derivation
from [16].

We consider figure 4.4a, which shows a side view of a cube with side length 𝑎. The lengths of the
diagonals (of the face of the cube) are 𝑑ኻ = 𝑑ኼ = √2 ⋅ 𝑎. In figure 4.4b we see the shape that results

𝑑ኻ

𝑑ኼ

𝑎

𝑎

(a) A side view of an unstrained cube

𝑑ᖣኻ

𝑑ᖣኼ

𝐹፬

𝛼

𝑎

𝑎

(b) A side view of the cube after shear force
ፅᑤ has induced strain ᎎ

Figure 4.4

when shear force 𝐹፬ is exerted. We assume that the force is uniformly distributed. The shear strain is
usually defined by the angle between the strained shape and the unstrained shape. In our case we
have 𝜖፬ = 𝛼. The lengths of the diagonals are now denoted by 𝑑ᖣኻ and 𝑑ᖣኼ.

Let us consider the change that 𝑑ኻ experiences through the straining of the cube. In figure 4.4b we
see that the top right corner has moved a distance of 𝑎 tan𝛼 to the right . For small deformations we
have that 𝑎 tan𝛼 ≈ 𝑎𝛼. This means that:

𝑑ᖣኻ = √𝑎ኼ + (𝑎 + 𝑎𝛼)ኼ = √2𝑎ኼ + 2𝑎ኼ𝛼 + 𝑎ኼ𝛼ኼ ≈ √2𝑎ኼ + 2𝑎ኼ𝛼. (4.5)
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Now 𝑑ᖣኻ can be linearized around 𝛼 = 0 using Taylor’s theorem:

𝑑ᖣኻ ≈ [√2𝑎√1 + 𝛼]ᎎኺ + [
1
2√2

𝑎
√1 + 𝛼

]
ᎎኺ

⋅ 𝛼

= √2𝑎(1 + 𝛼2). (4.6)

Let us denote Δ𝑑ኻ ∶= 𝑑ᖣኻ − 𝑑ኻ and Δ𝑑ኼ = 𝑑ᖣኼ − 𝑑ኼ. It follows that the following linearization holds:

Δ𝑑ኻ
𝑑ኻ

= 𝑑ᖣኻ − 𝑑ኻ
𝑑ኻ

= 𝑎𝛼
√2√2𝑎

= 𝛼
2 . (4.7)

We can write the shear strain in terms of the shear stress 𝜎፬, so that:

Δ𝑑ኻ
𝑑ኻ

= 1
2𝜖፬ =

1
2
𝜎፬
𝐺 = 1

2
𝐹፬
𝐺𝑎ኼ . (4.8)

Analogously we can show that Δ𝑑ኼ/𝑑ኼ has the same magnitude, but opposite sign.
Now we will consider four of these shear forces, that will add up in such a way that they can be

viewed as normal forces. This will allow us to compare normal strain to shear strain. So, consider
figure 4.5a. In both the 𝑥 and the 𝑦-direction the strained shape will make an angle of 2𝛼 with the

𝐹፬

𝐹፬𝐹፬

𝐹፬

(a) Side view of a strained cube subject to four
shear forces

𝐹

𝐹

𝐹 𝐹

𝐹

𝐹

𝐹 𝐹

(b) Side view of the strained cube with the shear
forces decomposed into forces that can be per-
ceived as normal if we imagine them working on the
faces of an imaginary embedding cuboid

Figure 4.5: Side views of an unstrained and a strained cube.

original cube, since there are two shear forces working in each direction. The total shear strain is the
sum of these angles, hence we have 𝜖s = 2𝛼+2𝛼 = 4𝛼. The shear stress is also four times as big now,
we have 𝜎፬ = 4𝐹፬/𝑎ኼ. It is easy to show that in this case the deformations of 𝑑ኻ and 𝑑ኼ are respectively
equal to 2𝛼 and −2𝛼.

Each of the shear forces can be decomposed into an 𝑥- and 𝑦-component. The magnitude of these
components must be 𝐹 = ኻ

ኼ√2𝐹፬, because only then we have √𝐹ኼ + 𝐹ኼ = 𝐹፬.
Now imagine the cube embedded in a bigger cuboid, see figure 4.5b in which we show a side view.

We will apply the forces with magnitude 𝐹 to the faces of the cuboid. This gives the same strain as
applying them to the cube. To see why, observe that the normal forces 𝐹 are distributed uniformly,
since the shear forces are, and recall that Lagrangian strain is defined relative to original length.

Now both in the 𝑥- and 𝑦-direction we have a stress with magnitude:

𝜎 = 4 𝐹
ኻ
ኼ√2𝑎

= 4
ኻ
ኼ√2𝐹፬
ኻ
ኼ√2𝑎

= 4𝐹፬
𝑎 . (4.9)
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The signs of these stresses are opposite. Now, taking into account the Poisson effect, the deformation
in the 𝑦-direction is:

𝜖 = 4𝐹፬/𝑎
𝐸 − 𝜈 ⋅ ( − 4𝐹፬/𝑎𝐸 ) = 1 + 𝜈

𝐸
4𝐹፬
𝑎 . (4.10)

So now we have two expressions for the deformation of 𝑑ኻ. We can equate them, and see that:

1 + 𝜈
𝐸

4𝐹፬
𝑎 = 2𝛼 = 1

2(4𝛼) =
1
2(𝜖፬) =

1
2(4

𝐹፬
𝐺𝑎ኼ ) = 2

𝐹፬
𝐺𝑎ኼ . (4.11)

From this it follows that:

𝐺 = 𝐸
2(1 + 𝜈) . (4.12)

N.B.: Assume that an unstrained cube has a vertex that is located in the origin, and three of its
edges are on the 𝑥-, 𝑦- and 𝑧-axes. Then here we defined strain as the sum of the angles that the
strained cube makes with the axes. This is quite common in the literature. However, some texts use
strain 𝛼 for a strained cube that makes angle 𝛼 in all three directions. Consequently, they find 𝐸/(1+𝜈)
as an alternative expression for the shear modulus.

4.2.3. Hooke’s law in three dimensions
We have now established that:

[
𝜖ኻኻ
𝜖ኼኼ
𝜖ኼኽ
] = [

1/𝐸 −𝜈/𝐸 −𝜈/𝐸
−𝜈/𝐸 1/𝐸 −𝜈/𝐸
−𝜈/𝐸 −𝜈/𝐸 1/𝐸

] [
𝜎ኻኻ
𝜎ኼኼ
𝜎ኽኽ
] (4.13)

Inverting the matrix gives:

[
𝜎ኻኻ
𝜎ኼኼ
𝜎ኽኽ
] = 𝐸

1 + 𝜈 [
𝜈/(1 − 2𝜈) + 1 𝜈/(1 − 2𝜈) 𝜈/(1 − 2𝜈)
𝜈/(1 − 2𝜈) 𝜈/(1 − 2𝜈) + 1 𝜈/(1 − 2𝜈)
𝜈/(1 − 2𝜈) 𝜈/(1 − 2𝜈) 𝜈/(1 − 2𝜈) + 1

] [
𝜖ኻኻ
𝜖ኼኼ
𝜖ኽኽ
] (4.14)

For the shear stresses we have, with our derived expression for 𝐺:

[
𝜎ኻኼ
𝜎ኻኽ
𝜎ኼኽ
] = 𝐸

2(1 + 𝜈) [
𝜖ኻኼ
𝜖ኻኽ
𝜖ኼኽ
] (4.15)

Assuming the strain tensor is symmetric, it now follows that:

𝜎 = 𝜖 + 𝜈
1 − 2𝜈Tr(𝜖)𝐼, (4.16)

where Tr(𝜖) ∶= 𝜖ኻኻ +𝜖ኼኼ +𝜖ኽኽ is the trace of 𝜖. This is the three-dimensional analogon of Hooke’s law.

4.3. Viscous stress
A highly simplified one-dimensional sketch of a dashpot is presented in figure 4.6. A rod is connected
to a piston, which is immersed in some fluid. The piston is almost as wide as the outer cilinder, so it
leaves little space for fluid to flow through. As we try to move the piston by pushing or pulling on the
rod, it is hindered by the fluid. Stress results, which in turn slows down. It may be clear that now stress
and strain are not related via Hooke’s law, because if the rectangle is not moving there should not be
any stress. Also, it seems intuitive that moving faster will induce higher stress values. Indeed, it turns
out that the stress is proportional to the rate of change of strain, i.e.:

𝜎 = 𝜇𝜕𝜖𝜕𝑡 , (4.17)
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Figure 4.6: A highly simplified sketch of a dashpot

where 𝜇 is the dynamic viscosity. The occurrence of this parameter reflects that moving the rectangle
through a viscous fluid like honey would induce much larger stresses than moving it through something
like water.

If we use 𝜖 = 𝜕𝑢/𝜕𝑥, then if follows that:

𝜕𝜖
𝜕𝑡 =

𝜕
𝜕𝑡 (

𝜕𝑢
𝜕𝑥 ) =

𝜕
𝜕𝑥 (

𝜕𝑢
𝜕𝑡 ) =

𝜕𝑣
𝜕𝑥 . (4.18)

4.4. Viscoelasticity
4.4.1. One-dimensional
Although the purely elastic and the viscous laws can both be very useful, a lot of materials do not obey
them. Rather, they behave like something in between a solid and a fluid, and a so-called viscoelastic
law is appropriate:

𝜎 = 𝜇𝜕𝑣𝜕𝑥 + 𝐸𝜖. (4.19)

This is commonly refered to as the Kelvin-Voigt law. In [14] it is argued that a viscoelastic law will
be most appropriate in the development of the morphoelastic model. They base this statement upon
experimental findings showing that skin re-expansion in the later stages of wound healing is not instan-
taneous. Therefore, viscosity should not be ignored.

4.4.2. Three-dimensional
The viscoelastic stress-strain law can be extended to three dimensions. In [11] the following is used:

𝜎 = 𝜇ኻsym(∇𝑣) + (𝜇ኼ∇ ⋅ 𝑣)𝐼 +
𝐸√𝜌
1 + 𝜈(𝜖 +

𝜈
1 − 2𝜈Tr(𝜖)𝐼). (4.20)

Here 𝑣 = (𝑢, 𝑣, 𝑤)ፓ, where 𝑢, 𝑣 and 𝑤 are the velocities in the 𝑥-,𝑦- and 𝑧-direction respectively. We will
not further derive or substantiate this expression. Note however, that compared to the usual elasticity
model, here 𝐸√𝜌 is used, by means of which a density-dependent Young’s modulus is incorporated.

4.5. The Cauchy momentum equation
The Cauchy momentum equation can be viewed as a transcription of Newton’s second law to the
framework of stresses. It provides a relationship between accelleration, stress, and body forces. In
this section we will derive this equation in three dimensions.

Consider a small cube Ω ∶= [𝑥, 𝑥+Δ𝑥]×[𝑦, 𝑦+Δ𝑦]×[𝑧, 𝑧+Δ𝑧] ⊆ ℝኽ. The impulse in the 𝑥-direction
is given by:

∫

𝜌𝑢 d𝑉. (4.21)

The forces on Ω can be subdivided into external and internal forces. The external ones can be ex-
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pressed in terms of normal and shear stresses:

∫
፳ዄጂ፳

፳
∫
፲ዄጂ፲

፲
(𝜎ኻኻ(𝑥 + Δ𝑥) − 𝜎ኻኻ(𝑥)) d𝐴 ≈ ∫



𝜕 𝜎ኻኻ
𝜕𝑥 d𝑉 (4.22)

∫
፳ዄጂ፳

፳
∫
፱ዄጂ፱

፱
(𝜎ኼኻ(𝑦 + Δ𝑦) − 𝜎ኼኻ(𝑦)) d𝐴 ≈ ∫



𝜕 𝜎ኼኻ
𝜕𝑦 d𝑉 (4.23)

∫
፲ዄጂ፲

፲
∫
፱ዄጂ፱

፱
(𝜎ኼኻ(𝑧 + Δ𝑧) − 𝜎ኼኻ(𝑧)) d𝐴 ≈ ∫



𝜕 𝜎ኽኻ
𝜕𝑧 d𝑉. (4.24)

For the internal forces we can write:

∫

𝑓 d𝑉, (4.25)

where 𝑓 represents force per unit volume, also known as body force. Now, by Newton’s second law,
the rate of change of the impulse with respect to time should be equal to the sum of all forces. So:

d
d𝑡 ∫

𝜌𝑢 d𝑉 = ∫

(∇ ⋅ 𝜎⋅ኻ + 𝑓) d𝑉. (4.26)

For the left-hand side we have, using Reynolds’ theorem:

d
d𝑡 ∫

𝜌𝑢 d𝑉 = ∫


𝜕 (𝜌𝑢)
𝜕𝑡 d𝑉 + ∫

Ꭷ
((𝑢𝜌𝑢)|፱ዄጂ፱ − (𝑢𝜌𝑢)|፱) d𝐴 (4.27)

= ∫


𝜕(𝜌𝑢)
𝜕𝑡 d𝑉 + ∫



𝜕(𝑢𝜌𝑢)
𝜕𝑥 d𝑉 (4.28)

= ∫

(𝜌𝜕𝑢𝜕𝑡 + 𝑢

𝜕𝜌
𝜕𝑡 + 𝑢

𝜕(𝜌𝑢)
𝜕𝑥 + 𝜌𝑢𝜕𝑢𝜕𝑥 ) d𝑉 (4.29)

= ∫

𝜌(𝜕𝑢𝜕𝑡 + 𝑢

𝜕𝑢
𝜕𝑥 ) d𝑉 (4.30)

= ∫

𝜌D𝑢D𝑡 d𝑉. (4.31)

Here we used that ᎧᎧ፭ +
Ꭷ(፮)
Ꭷ፱ = 0. This equality is known as the continuity equation. It now follows

that:

∫

(𝜌D𝑢D𝑡 − ∇ ⋅ 𝜎⋅ኻ − 𝑓) d𝑉 = 0. (4.32)

Since the choice for Ωwas arbitrary, the integrand must be zero. Doing the work for all three dimensions
now gives the convective form of the Cauchy momentum equation:

𝜌D𝑣D𝑡 = ∇ ⋅ 𝜎 + 𝑓. (4.33)

The continuity equation in three dimensions reads Ꭷ
Ꭷ፭ + ∇ ⋅ (𝜌𝑣) = 0. We can use this to rewrite the

left-handside of (4.33):

𝜌D𝑣D𝑡 = 𝜌
D𝑣
D𝑡 + (

𝜕𝜌
𝜕𝑡 + ∇ ⋅ (𝜌𝑣))𝑣 (4.34)

= 𝜌𝜕𝑣𝜕𝑡 + 𝜌𝑣 ⋅ ∇𝑣 + (
𝜕𝜌
𝜕𝑡 + 𝜌(∇ ⋅ 𝑣) + (𝑣 ⋅ ∇𝜌))𝑣 (4.35)

= 𝜕(𝜌𝑣)
𝜕𝑡 + 𝜌𝑣 ⋅ ∇𝑣 + (𝑣 ⋅ ∇𝜌)𝑣 + 𝜌𝑣(∇ ⋅ 𝑣) (4.36)

= 𝜕(𝜌𝑣)
𝜕𝑡 + 𝑣 ⋅ ∇(𝜌𝑣) + 𝜌𝑣(∇ ⋅ 𝑣) (4.37)

= D(𝜌𝑣)
D𝑡 + 𝜌𝑣(∇ ⋅ 𝑣). (4.38)
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This gives us the conservation form of the Cauchy momentum equation:

D(𝜌𝑣)
D𝑡 + 𝜌𝑣(∇ ⋅ 𝑣) = ∇ ⋅ 𝜎 + 𝑓. (4.39)

4.6. A purely elastic model
Here we consider a simple static model based on pure elasticity, in one dimension. We have:

⎧
⎪⎪

⎨
⎪⎪
⎩

−Ꭷ
Ꭷ፱ = 𝐹 ,

𝜎 = 𝐸𝜖,
𝜖 = Ꭷ፮

Ꭷ፱ , 0 < 𝑥 < 𝐿
𝑢(0) = 0,
𝜎(𝐿) = 0.

(4.40)

This model describes a tissue (or other material) in one dimension, with length 𝐿. The second
equation can be obtained by taking (4.39) and setting D𝑣/D𝑡 = 0. The solution of this model therefore
corresponds to the equilibrium state reached due to the exertion of body force 𝐹. The fourth equation
is a boundary condition corresponding to the tissue being tethered to say a petridish on its left end.
The fifth equation is also a boundary condition and indicates that the tissue can move freely on its right
end. With these conditions, we have a tissue that can contract and expand, while at the same being
fixed in place on one end. This way we do not have to worry about the tissue drifting away because of
numerical inaccuracies.

4.7. A one-dimensional dynamical viscoelastic model
Here we consider a dynamical model incorporating viscoelasticity, in one dimension. We have:

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝜎 = 𝜇 Ꭷ፯Ꭷ፱ + 𝐸𝜖,ዎ(፯)
ዎ፭ + 𝜌𝑣 Ꭷ፯Ꭷ፱ =

Ꭷ
Ꭷ፱ + 𝐹 ,

𝜖 = Ꭷ፮
Ꭷ፱ ,

𝑣 = ዎ፮
ዎ፭ , 0 < 𝑥 < 𝐿,

𝑢(0) = 0,
𝜎(𝐿) = 0.

(4.41)

We see that the second equation is the one-dimensional analagon of (4.39). We also use the vis-
coelastic law (4.19) now. This model is dynamical, and this allows us to investigate more closely the
interaction between elastic and viscous stresses.

We will vary 𝜇 in the simulations. For now, we will use constant density, 𝜌 = ..... For the other
parameters we use the same values as for (4.40).

4.8. A two-dimensional dynamical viscoelastic model
Here we consider basically the same model as (4.41), but in two dimensions. In order to get the most
accurate results, a three-dimensional model would probably be desirable. However, when we get to
morphoelasticity, the models will start to get quite computationally expensive. Therefore we choose to
work in two dimensions.

Consider (??). We set 𝜖ኻኽ = 𝜖ኽኻ = 𝜖ኼኽ = 𝜖ኽኼ = 𝜖ኽኽ = 0. Furthermore we take (4.39), and set
𝑣ኽ = 0. Let Ω ∶= {(𝑥, 𝑦) ∈ ℝኼ ∶ −𝐿/2 < 𝑥 < 𝐿/2,−𝐻/2 < 𝑦 < 𝐻/2}. Then we can establish the
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following model:

⎧
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

ዎ(፯Ꮃ)
ዎ፭ + 𝜌𝑣ኻ∇ ⋅ 𝑣 = ∇ ⋅ 𝜎⋅ኻ + (𝐹)ኻ,

ዎ(፯Ꮄ)
ዎ፭ + 𝜌𝑣ኼ∇ ⋅ 𝑣 = ∇ ⋅ 𝜎⋅ኼ + (𝐹)ኼ,

𝜎ኻኻ = 𝜇ኻ
Ꭷ፯Ꮃ
Ꭷ፱ + 𝜇ኼ∇ ⋅ 𝑣 +

ፄ√
ኻዄ (𝜖ኻኻ +


ኻዅኼ (𝜖ኻኻ + 𝜖ኼኼ)),

𝜎ኻኼ =
ኻ
ኼ𝜇ኻ(

Ꭷ፯Ꮃ
Ꭷ፲ +

Ꭷ፯Ꮄ
Ꭷ፱ ) +

ፄ√
ኻዄ 𝜖ኻኼ,

𝜎ኼኻ =
ኻ
ኼ𝜇ኻ(

Ꭷ፯Ꮄ
Ꭷ፱ +

Ꭷ፯Ꮃ
Ꭷ፲ ) +

ፄ√
ኻዄ 𝜖ኼኻ,

𝜎ኼኼ = 𝜇ኻ
Ꭷ፯Ꮄ
Ꭷ፲ + 𝜇ኼ∇ ⋅ 𝑣 +

ፄ√
ኻዄ (𝜖ኼኼ +


ኻዅኼ (𝜖ኻኻ + 𝜖ኼኼ)),

𝜖ኻኻ =
Ꭷ፮Ꮃ
Ꭷ፱ ,

𝜖ኻኼ = 𝜖ኼኻ =
ኻ
ኼ(

Ꭷ፮Ꮃ
Ꭷ፲ +

Ꭷ፮Ꮄ
Ꭷ፱ ),

𝜖ኼኼ =
Ꭷ፮Ꮄ
Ꭷ፲ , 𝑥 ∈ Ω,

𝑣ኻ = 𝑣ኼ = 0, 𝑥 ∈ 𝜕Ω,
𝜎ኻኻ = 𝜎ኻኼ = 𝜎ኼኻ = 𝜎ኼኻ = 𝑣ኻ = 𝑣ኼ = 0, 𝑡 = 0.

(4.42)

This model does not contain boundary conditions analogous to the zero-stress conditions imposed
on the one-dimensional models presented so far. However, we can emulate the stress-free boundary
condition simply by using this model, and considering deformations that happen far away from the
boundary.

4.9. One-dimensional morphoelasticity
Here we will introduce morphoelasticity. The fundamental idea is to decompose deformations into an
elastic and a plastic part. This idea was first presented in [5]. In [12], it was cast into a bio-mathematical
framework. In this section we will walk through the derivation of a one-dimensional morphoelasticity
equation.

We will loosely follow the construction of the model in [14].
Imagine a tissue that undergoes both plastic and elastic deformations. We denote the initial co-

ordinates of a point in the tissue by 𝑋, using Lagrangian coordinates (see section 3.2). Similarly, we
denote the current coordinates of a point by 𝑥, using Eulerian coordinates. We assume that initially no
stresses are imposed on the tissue.

The deformation gradient 𝐹 that maps 𝑋 to 𝑥 is now given by:

𝐹 = 𝜕𝑥
𝜕𝑋 . (4.43)

This mapping captures both plastic and elastic deformations. We now decompose 𝐹 as

𝐹 = 𝛼𝛾, (4.44)

where elastic effects should be described by 𝛼, and growth effects by 𝛾. Since initially the tissue is
stress-free, we infer that the image of 𝛾 contains the coordinates of the so-called zero-stress state of
the tissue. This is an imaginary state in which the tissue has experienced growth, but no stresses are
imposed. The coordinates of the tissue in the zero-stress state will be denoted by 𝑧.

Using the chain rule for differentiation we see that:

𝐹 = 𝜕𝑥
𝜕𝑋 =

𝜕𝑧
𝜕𝑋

𝜕𝑥
𝜕𝑧 = 𝛼𝛾, (4.45)

where 𝛼 = 𝜕𝑥/𝜕𝑧 is the local size ratio between the current state and the zero-stress state, and 𝛾 =
𝜕𝑧/𝜕𝑋 is the local size ratio between the zero stress state and the initial state.

Figure 4.7 summarizes the above.
In ([14]) it is argued that 𝛾 should be of the form:

D𝛾
D𝑡 = 𝐹𝑔(𝑥, 𝑡), (4.46)
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Zero-stress
state:
𝑧

Current
state:
𝑋

Initial state:
𝑥

𝛼

𝛾 𝐹

Figure 4.7: The three states underlying the fundamental morphoelasticity assumption, the correspond-
ing coordinates, and the mappings connecting them.

where 𝑔(𝑥, 𝑡) represents the growth rate of the tissue at position 𝑥 and time 𝑡.
The strain is chosen according to definition (3.12). The main reason for this is that this will result in

an elegant equation. Substitution of (4.44) into (4.46) gives:

𝐹D𝛼
ዅኻ

D𝑡 + 𝛼ዅኻD𝐹D𝑡 = 𝐹𝑔. (4.47)

This means that:

D𝛼ዅኻ
D𝑡 + 𝛼ዅኻ𝐹ዅኻD𝐹D𝑡 = 𝑔. (4.48)

It holds that:

𝐹ዅኻD𝐹D𝑡 =
D
D𝑡(

𝜕𝑥
𝜕𝑋)

𝜕𝑋
𝜕𝑥 (4.49)

= 𝜕
𝜕𝑋(

D𝑥
D𝑡 )

𝜕𝑋
𝜕𝑥 (4.50)

= 𝜕𝑣
𝜕𝑋

𝜕𝑋
𝜕𝑥 (4.51)

= 𝜕𝑣
𝜕𝑥 . (4.52)
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Substituting this we can write our equation as:

D(1 − 𝛼ዅኻ)
D𝑡 + (1 − 𝛼ዅኻ − 1)𝜕𝑣𝜕𝑥 = −𝑔. (4.53)

For the Eulerian strain we have:

𝜖 = 𝜕𝑢
𝜕𝑥 =

𝜕𝑥 − 𝑋
𝜕𝑥 = 1 − 𝜕𝑋𝜕𝑥 = 1 − 𝛼

ዅኻ, (4.54)

from which it now follows that:

D𝜖
D𝑡 + (𝜖 − 1)

𝜕𝑣
𝜕𝑥 = −𝑔. (4.55)

This equation can be viewed as an evolution equation for the elastic strain. In the remainder of this
thesis we will refer to equation (4.55) as the strain evolution equation.

4.10. Three-dimensional morphoelasticity
Every matrix 𝐴 can be written in terms of a symmetric part and a skew part:

𝐴 = sym(𝐴) + skw(𝐴), (4.56)

where

sym(𝐴) = 1
2(𝐴 + 𝐴

ፓ), and (4.57)

skw(𝐴) = 1
2(𝐴 − 𝐴

ፓ). (4.58)

Note that sym(𝐴) and skw(𝐴) are respectively symmetric and skew-symmetric, i.e. [sym(𝐴)]ፓ =
sym(𝐴) and [skw(𝐴)]ፓ = −skw(𝐴). In [12] the morphoelasticity equation is extended to a three-
dimensional one. It reads:

D𝜖
D𝑡 + 𝜖skw(∇𝑣) − skw(∇𝑣)𝜖 + (Tr(𝜖) − 1)sym(∇𝑣) = −𝑔 (4.59)

Here 𝜖 is the three-dimensional strain tensor, and 𝑔 is the three-dimensional growth tensor, analogous
to 𝑔. The derivation of this equation is very technical, and therefore we will omit it here.

4.10.1. Symmetry of the strain tensor
In section 3.3.1 we noted that symmetry of the strain tensor is not always guaranteed. Having derived
a model in ̄̄𝜖 and 𝑣, we observe that symmetry would be a convenient property. Indeed, it would reduce
the number of variables we have to solve for. As we will see in 5, finding a numerical approximation for
the solution of the model is quite a tedious task. We can state the following:

Theorem 1. Let ̄̄𝜖 be defined by (4.65). Suppose that 𝑔 is symmetric for all 𝑡 ≥ 0, and ̄̄𝜖 is symmetric
at 𝑡 = 0. Then ̄̄𝜖 is symmetric for all 𝑡 ≥ 0.

Proof. By definition ̄̄𝜖 satisfies:

D𝜖
D𝑡 + 𝜖skw(∇𝑣) − skw(∇𝑣)𝜖 + (Tr(𝜖) − 1)sym(∇𝑣) = −𝑔. (4.60)

We can take the transpose on both sides, to obtain:

D𝜖
ፓ

D𝑡 + skw(∇𝑣)ፓ𝜖
ፓ
− 𝜖

ፓ
skw(∇𝑣)ፓ + (Tr(𝜖

ፓ
) − 1)sym(∇𝑣)ፓ = −𝑔

ፓ
. (4.61)
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Now, because skw(∇𝑣)ፓ = −swk(∇𝑣), and sym(∇𝑣)ፓ = sym(∇𝑣), we have:

D𝜖
ፓ

D𝑡 − skw(∇𝑣)𝜖
ፓ
+ 𝜖

ፓ
skw(∇𝑣) + (Tr(𝜖) − 1)sym(∇𝑣) = −𝑔. (4.62)

Here we also used the symmetry of 𝑔. Subtracting (4.62) from (4.60) gives:

D(𝜖 − 𝜖
ፓ
)

D𝑡 + (𝜖 − 𝜖
ፓ
)skw(∇𝑣) − skw(∇𝑣)(𝜖 − 𝜖

ፓ
) = 0. (4.63)

We see that, if 𝜖 = 𝜖
ፓ
, then D𝜖/D𝑡 = 0. Since 𝜖 is symmetric at 𝑡 = 0, symmetry holds for all 𝑡 ≥ 0.

4.11. A one-dimensional morphoelastic model
By replacing the third equation of (??) by our newly established strain evolution equation (4.55), we
can obtain the following morpholelastic model:

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝜎 = 𝜇 Ꭷ፯Ꭷ፱ + 𝐸𝜖,ዎ(፯)
ዎ፭ + 𝜌𝑣 Ꭷ፯Ꭷ፱ =

Ꭷ
Ꭷ፱ + 𝐹 ,ዎᎨ

ዎ፭ + (𝜖 − 1)
Ꭷ፯
Ꭷ፱ = −𝑔,

𝑣 = ዎ፮
ዎ፭ , 0 < 𝑥 < 𝐿,

𝑣(0) = 0,
𝜎(𝐿) = 0.

(4.64)

Note that now 𝜖 is defined as the second element of the solution pair (𝑣, 𝜖) of model (4.64). This model
describes the morphoelastic behavior of a one-dimensional tissue, with one edge fixed in place, and
one edge moving freely.

4.12. A three-dimensional morphoelastic model
Similarly to the one-dimensional case, we can state a three-dimensional morphoelastic model, by com-
bining mechanics and strain evolution. We have:

⎧
⎪

⎨
⎪
⎩

ዎ(፯)
ዎ፭ + 𝜌𝑣(∇ ⋅ 𝑣) = ∇ ⋅ 𝜎 + 𝑓,

ዎᎨ
ዎ፭ + 𝜖skw(∇𝑣) − skw(∇𝑣)𝜖 + (Tr(𝜖) − 1)sym(∇𝑣) = −𝑔,
𝜎 = 𝜇ኻsym(∇𝑣) + (𝜇ኼ∇ ⋅ 𝑣)𝐼 +

ፄ√
ኻዄ (𝜖 +


ኻዅኼTr(𝜖)𝐼), 𝑥 ∈ Ω,

𝑣 = 0, 𝑥 ∈ 𝜕Ω,

(4.65)

where Ω ∶= {(𝑥, 𝑦) ∈ ℝኼ ∶ −𝐿/2 < 𝑥 < 𝐿/2,−𝐻/2 < 𝑦 < 𝐻/2,−𝑊/2 < 𝑧 < 𝑊/2}. This model
describes the morphoelastic behavior of a three-dimensional tissue, fixed in place on its edges.

4.13. A two-dimensional morphoelastic model
We will be working a lot with a two-dimensional model, and for that reason we explicitly state it here.
It can be derived from (4.65). Note that we use 𝜖ኼኻ = 𝜖ኻኼ, which is allowed because we have proven
that 𝜖 is symmetric.
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We have:

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

ዎ(፯Ꮃ)
ዎ፭ + 𝜌𝑣ኻ∇ ⋅ 𝑣 = ∇ ⋅ 𝜎⋅ኻ + (𝐹)ኻ,

ዎ(፯Ꮄ)
ዎ፭ + 𝜌𝑣ኼ∇ ⋅ 𝑣 = ∇ ⋅ 𝜎⋅ኼ + (𝐹)ኼ,

ዎᎨᎳᎳ
ዎ፭ + 𝜖ኻኻ∇ ⋅ 𝑣 = (1 − 𝜖ኼኼ)

Ꭷ፯Ꮃ
Ꭷ፱ + 𝜖ኻኻ

Ꭷ፯Ꮄ
Ꭷ፲ +

ኻ
ኼ (

Ꭷ፯Ꮃ
Ꭷ፲ −

Ꭷ፯Ꮄ
Ꭷ፱ ) (𝜖ኼኻ + 𝜖ኻኼ) − 𝑔ኻኻ,

ዎᎨᎳᎴ
ዎ፭ + 𝜖ኻኼ∇ ⋅ 𝑣 = 𝜖ኻኼ (

Ꭷ፯Ꮃ
Ꭷ፱ +

Ꭷ፯Ꮄ
Ꭷ፲ ) +

ኻ
ኼ ((1 − 2𝜖ኻኻ)

Ꭷ፯Ꮃ
Ꭷ፲ + (1 − 2𝜖ኼኼ)

Ꭷ፯Ꮄ
Ꭷ፱ ) − 𝑔ኻኼ,

ዎᎨᎴᎴ
ዎ፭ + 𝜖ኼኼ∇ ⋅ 𝑣 = (1 − 𝜖ኻኻ)

Ꭷ፯Ꮄ
Ꭷ፲ + 𝜖ኼኼ

Ꭷ፯Ꮃ
Ꭷ፱ −

ኻ
ኼ (

Ꭷ፯Ꮃ
Ꭷ፲ −

Ꭷ፯Ꮄ
Ꭷ፱ ) (𝜖ኻኼ + 𝜖ኼኻ) − 𝑔ኼኼ,

𝜖ኼኻ = 𝜖ኻኼ,
𝜖ኻኽ = 𝜖ኽኻ = 𝜖ኼኽ = 𝜖ኽኼ = 𝜖ኽኽ = 0,
𝜎ኻኻ = 𝜇ኻ

Ꭷ፯Ꮃ
Ꭷ፱ + 𝜇ኼ∇ ⋅ 𝑣 +

ፄ√
ኻዄ (𝜖ኻኻ +


ኻዅኼ (𝜖ኻኻ + 𝜖ኼኼ)),

𝜎ኻኼ =
ኻ
ኼ𝜇ኻ(

Ꭷ፯Ꮃ
Ꭷ፲ +

Ꭷ፯Ꮄ
Ꭷ፱ ) +

ፄ√
ኻዄ 𝜖ኻኼ,

𝜎ኼኻ =
ኻ
ኼ𝜇ኻ(

Ꭷ፯Ꮄ
Ꭷ፱ +

Ꭷ፯Ꮃ
Ꭷ፲ ) +

ፄ√
ኻዄ 𝜖ኼኻ,

𝜎ኼኼ = 𝜇ኻ
Ꭷ፯Ꮄ
Ꭷ፲ + 𝜇ኼ∇ ⋅ 𝑣 +

ፄ√
ኻዄ (𝜖ኼኼ +


ኻዅኼ (𝜖ኻኻ + 𝜖ኼኼ)), 𝑥 ∈ Ω,

𝑣ኻ = 𝑣ኼ = 0, 𝑥 ∈ 𝜕Ω,

(4.66)

whereΩ ∶= {(𝑥, 𝑦) ∈ ℝኼ ∶ −𝐿/2 < 𝑥 < 𝐿/2,−𝐻/2 < 𝑦 < 𝐻/2}. This model describes themorphoelastic
behavior of a two-dimensional tissue, the edges of which are fixed in place.





5
Numerical methods

In this chapter we will derive Finite Element Method (FEM) approximations for some of the models
presented in chapter 4. From there it should be clear how FEM approximations for the other models
can be derived. If the reader is not familiar with the Finite Element Method, [7] can be consulted for an
elaborate description.

5.1. Finite Element Approximations in one dimension
Consider model (4.64). We work through the Finite Element Method (FEM) applied to this model. From
there, it should be clear how the same can be done for more rudimentary models.

5.1.1. Weak forms
First we will derive two weak forms: one for the mechanical equation, and one for the strain evolution
equation. First we consider:

D(𝜌𝑣)
D𝑡 + 𝜌𝑣𝜕𝑣𝜕𝑥 =

𝜕𝜎
𝜕𝑥 + 𝐹 . (5.1)

We will assume that 𝜌 is constant. We multiply the above equation by a test function 𝜒 ∈ Σᖣ ∶=
{𝑣 smooth ∶ 𝑣(0) = 0} and integrate over Ω፭. We get:

∫
፥(፭)

ኺ
{𝜌D𝑣D𝑡 + 𝜌𝑣

𝜕𝑣
𝜕𝑥 −

𝜕𝜎
𝜕𝑥 − 𝐹}𝜒 d𝑥 = 0 (5.2)

It can be proven that D𝜒/t = 0, if 𝜒 is a basis function (see [6]). This means that we can pull 𝜒 through
the material derivative. If we then work out the material derivative, we get:

∫
፥(፭)

ኺ
{𝜌(𝜕(𝑣𝜒)𝜕𝑡 + 𝑣𝜕(𝑣𝜒)𝜕𝑥 + 𝑣𝜒𝜕𝑣𝜕𝑥 ) −

𝜕𝜎
𝜕𝑥 𝜒 − 𝐹𝜒} d𝑥 = 0 (5.3)

This can be written as:

∫
፥(፭)

ኺ
{𝜌𝜕(𝑣𝜒)𝜕𝑡 + 𝜌𝜕(𝑣

ኼ𝜒)
𝜕𝑥 − 𝜕(𝜎𝜒)𝜕𝑥 + 𝜎𝜕𝜒𝜕𝑥 − 𝐹𝜒} d𝑥 = 0 (5.4)

Now we apply Leibniz’ theorem to the first term, and Gauss’ theorem to the second and third term. We
get:

( dd𝑡 ∫
፥(፭)

ኺ
𝜌𝑣𝜒 d𝑥 − [𝜌𝑣ኼ𝜒]፱፥(፭)፱ኺ ) + [𝜌𝑣ኼ𝜒]፱፥(፭)፱ኺ + [𝜎𝜒]፱፥(፭)፱ኺ +∫

፥(፭)

ኺ
{𝜎𝜕𝜒𝜕𝑥 − 𝐹𝜒} d𝑥 = 0 (5.5)

Now we use the boundary conditions. Since 𝜎(𝑙(𝑡)) = 0 and 𝜒(0) = 0 since 𝜒 ∈ Σᖣ, we get, after tidying
up:

d
d𝑡 ∫

፥(፭)

ኺ
𝜌𝑣𝜒 d𝑥 + ∫

፥(፭)

ኺ
{𝜎𝜕𝜒𝜕𝑥 − 𝐹𝜒} d𝑥 = 0. (5.6)

25
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Recalling that 𝜎 = 𝐸𝜖 + 𝜇 Ꭷ፯Ꭷ፱ , we find as our weak form:

d
d𝑡 ∫

፥(፭)

ኺ
𝜌𝑣𝜒 d𝑥 + ∫

፥(፭)

ኺ
(𝐸𝜖 + 𝜇𝜕𝑣𝜕𝑥 )

𝜕𝜒
𝜕𝑥 d𝑥 = ∫

፥(፭)

ኺ
𝐹𝜒 d𝑥. (5.7)

Secondly we will work towards the weak form of:

D𝜖
D𝑡 + (𝜖 − 1)

𝜕𝑣
𝜕𝑥 = −𝜁𝜖. (5.8)

We multiply by a test function 𝜂 ∈ Σ ∶= {𝜖 smooth} and integrate over Ω፭. We get:

∫
፥(፭)

ኺ
{D𝜖D𝑡 + (𝜖 − 1)

𝜕𝑣
𝜕𝑥 + 𝜁𝜖}𝜂 d𝑥 = 0. (5.9)

As we will later pick 𝜂 to be a basis function, we can again pull it through the material derivative. We
get:

∫
፥(፭)

ኺ
{D(𝜖𝜂)D𝑡 + 𝜂(𝜖 − 1)𝜕𝑣𝜕𝑥 + 𝜁𝜂𝜖} d𝑥 = 0. (5.10)

Working out the material derivative, we get:

∫
፥(፭)

ኺ
{𝜕(𝜖𝜂)𝜕𝑡 + 𝑣𝜕(𝜖𝜂)𝜕𝑥 + 𝜂(𝜖 − 1)𝜕𝑣𝜕𝑥 + 𝜁𝜂𝜖} d𝑥 = 0 (5.11)

This is equal to

∫
፥(፭)

ኺ
{𝜕𝜖𝜂𝜕𝑡 + 𝜕(𝑣𝜖𝜂)𝜕𝑥 − 𝜂𝜕𝑣𝜕𝑥 + 𝜁𝜂𝜖} d𝑥 = 0 (5.12)

To the first term within the integral we can apply Leibniz’ theorem, and to the second term Gauss’
theorem (which is the same as the Fundamental Theorem of Calculus in this one-dimensional case).
We obtain:

d
d𝑡 ∫

፥(፭)

ኺ
𝜖𝜂 d𝑥 − [d𝑥d𝑡 𝜖𝜂]

፱፥(፭)

፱ኺ
+ [𝑣𝜖𝜂]፱፥(፭)፱ኺ +∫

፥(፭)

ኺ
{ − 𝜂𝜕𝑣𝜕𝑥 + 𝜁𝜂𝜖} d𝑥 = 0. (5.13)

Since 𝑣 ∶= d𝑥/d𝑡, this simply reduces to:

d
d𝑡 ∫

፥(፭)

ኺ
𝜖𝜂 d𝑥 + ∫

፥(፭)

ኺ
{ − 𝜂𝜕𝑣𝜕𝑥 + 𝜁𝜂𝜖} d𝑥 = 0. (5.14)

Note: although the original equations are nonlinear, we have established linear weak forms.

5.1.2. Discretization
Now the weak forms that have been established are going to be discretized. Three methods to go
about this are:

1. A segregated approach, i.e. we do something like:
for 𝑡 = 0, Δ𝑡, … , 𝑇 − Δ𝑡, do
determine 𝜖 at time 𝑡 + Δ𝑡
determine 𝑣 at time 𝑡 + Δ𝑡

end for

2. The same segregated approach, but at every timestep we first find 𝑣, and then 𝜖.

3. A monolithic approach: instead of working segregatedly, we construct a single system from which
we can derive both 𝜖 and 𝑣 at 𝑡 + Δ𝑡.
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We will work through all three methods, and explore which one will be most suitable.
For both segregated approaches, we will use a forward-in-time method for one of the variables, and

a backward-in-time for the other.
To avoid akwardly long equations, we will agree on the following: if an integral is evaluated over

Ω፬, then the whole integrand should be evaluated at time 𝑠. For example, instead of ∫ᑥᎼᏺᑥ 𝜖ኼኼ(𝑥(𝑡 +
Δ𝑡), 𝑡 + Δ𝑡)𝜂(𝑥(𝑡 + Δ𝑡), 𝑡 + Δ𝑡) dΩ we will simply write ∫ᑥᎼᏺᑥ 𝜖ኼኼ𝜂 dΩ.

Method 1
Subdivide [0, 𝑙(𝑡)] into 𝑛 elements, denoted by 𝑒ኻ, … , 𝑒፧, so that we have 𝑛+1 gridpoints: 0 = 𝑥ኻ, … , 𝑥፧ዄኻ =
𝑙(𝑡). Let 𝑣፣(𝑡) be the approximation for 𝑣 in 𝑥 = 𝑥፣ at time 𝑡, so 𝑣፣(𝑡) ≈ 𝑣(𝑥፣(𝑡), 𝑡), for 𝑗 = 0,… , 𝑛. Now
we will approximate 𝑣 by:

𝑣(𝑥, 𝑡) ≈
፧

∑
፣ኺ
𝑣፣(𝑡)𝜙፣(𝑥, 𝑡). (5.15)

where the 𝜙፣ are basis functions. Note that they depend on time because 𝑥 does (we have D𝜙፣/D𝑡 = 0,
but 𝜕𝜙፣/𝜕𝑡 ≠ 0). Because of the boundary condition 𝑣(0) = 0, it makes sense to impose that 𝑣ኺ(𝑡) = 0.
So:

፧

∑
፣ኺ
𝑣፣(𝑡)𝜙፣(𝑥, 𝑡) = 𝑣ኺ(𝑡)𝜙ኺ(𝑥, 𝑡) +

፧

∑
፣ኻ
𝑣፣(𝑡)𝜙፣(𝑥, 𝑡) =

፧

∑
፣ኻ
𝑣፣(𝑡)𝜙፣(𝑥, 𝑡). (5.16)

We will implement Euler Forward, so that (5.7) results in:

∫
፥(፭ዄጂ፭)

ኺ
𝜌𝑣𝜒 d𝑥 = ∫

፥(፭)

ኺ
𝜌𝑣𝜒 d𝑥 − Δ𝑡∫

፥(፭)

ኺ
(𝐸𝜖 + 𝜇𝜕𝑣𝜕𝑥 )

𝜕𝜒
𝜕𝑥 d𝑥 + Δ𝑡∫

፥(፭)

ኺ
𝐹𝜒 d𝑥. (5.17)

Now we will choose 𝜒 = 𝜙። , 𝑖 = 1,… , 𝑛, and fill in the discretization for 𝑣. The resulting system is:

𝜌
፧

∑
፣ኻ
𝑣፣(𝑡 + Δ𝑡)∫

፥(፭ዄጂ፭)

ኺ
𝜙፣𝜙። d𝑥 = 𝜌

፧ዄኻ

∑
፣ኼ

𝑣፣(𝑡)∫
፥(፭)

ኺ
𝜌𝜙፣𝜙። d𝑥 − Δ𝑡𝐸

፧ዄኻ

∑
፣ኻ

𝜖፣(𝑡)∫
፥(፭)

ኺ
𝜙፣
𝜕𝜙።
𝜕𝑥 d𝑥

−Δ𝑡𝜇
፧ዄኻ

∑
፣ኼ

𝑣፣(𝑡)∫
፥(፭)

ኺ

𝜕𝜙፣
𝜕𝑥

𝜕𝜙።
𝜕𝑥 d𝑥 + Δ𝑡∫

፥(፭)

ኺ
𝐹𝜙። d𝑥, 𝑖 = 2,… , 𝑛 + 1. (5.18)

We simplify this a bit, and get:

𝜌
፧ዄኻ

∑
፣ኼ

𝑣፣(𝑡 + Δ𝑡)∫
፥(፭ዄጂ፭)

ኺ
𝜙፣𝜙። d𝑥 =

፧ዄኻ

∑
፣ኼ

𝑣፣(𝑡) [𝜌∫
፥(፭)

ኺ
𝜙፣𝜙። d𝑥 − Δ𝑡𝜇∫

፥(፭)

ኺ

𝜕𝜙፣
𝜕𝑥

𝜕𝜙።
𝜕𝑥 d𝑥]

−Δ𝑡𝐸
፧ዄኻ

∑
፣ኻ

𝜖፣(𝑡)∫
፥(፭)

ኺ
𝜙፣
𝜕𝜙።
𝜕𝑥 d𝑥 + Δ𝑡∫

፥(፭)

ኺ
𝐹𝜙። d𝑥, 𝑖 = 2,… , 𝑛 + 1. (5.19)

We can now do the same for the strain evolution equation. We will approximate 𝜖 by:

𝜖(𝑥, 𝑡) ≈
፧

∑
፣ኺ
𝜖፣(𝑡)𝜙፣(𝑥, 𝑡). (5.20)

We will use Euler Backward for the strain evolution equation. This way, (5.14) can be expressed as:

∫
፥(፭ዄጂ፭)

ኺ
𝜖𝜂 d𝑥 = ∫

፥(፭)

ኺ
𝜖𝜂 d𝑥 + Δ𝑡∫

፥(፭ዄጂ፭)

ኺ
{𝜂 𝜕𝑣𝜕𝑥 − 𝜁𝜂𝜖} d𝑥. (5.21)
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This is equivalent to:

(1 + Δ𝑡𝜁)∫
፥(፭ዄጂ፭)

ኺ
𝜖𝜂 d𝑥 = ∫

፥(፭)

ኺ
𝜖𝜂 d𝑥 + Δ𝑡∫

፥(፭ዄጂ፭)

ኺ

𝜕𝑣
𝜕𝑥 𝜂 d𝑥. (5.22)

Now we will choose 𝜂 = 𝜙። , 𝑖 = 0,…𝑛, and fill in the discretization for 𝜖. This results in the following
system:

(1 + Δ𝑡𝜁)
፧

∑
፣ኺ
𝜖፣(𝑡 + Δ𝑡)∫

፥(፭ዄጂ፭)

ኺ
𝜙፣𝜙። d𝑥 =

፧

∑
፣ኺ
𝜖፣(𝑡)∫

፥(፭)

ኺ
𝜙፣𝜙። d𝑥

+Δ𝑡∫
፥(፭ዄጂ፭)

ኺ

𝜕𝑣
𝜕𝑥 𝜙። d𝑥, 𝑖 = 0,… , 𝑛. (5.23)

Because the integral with the 𝜕𝑣/𝜕𝑥-term appears by itself, i.e. it does not have 𝜖 in it, we could
leave it as it is for now. If 𝑣 is known, we can decide how we compute the corresponding integral in
the above equation. For example, we could use forward differences to compute 𝜕𝑣/𝜕𝑥 in 𝑥ኺ, … , 𝑥፧
and then use, for example, the trapezium rule to find the value of the integral. However, in order to
respect the element-based character of the Finite Element Method, it makes more sense to substitute
the approximation for 𝑣 in terms of basis functions, see (5.16). This gives:

(1 + Δ𝑡𝜁)
፧

∑
፣ኺ
𝜖፣(𝑡 + Δ𝑡)∫

፥(፭ዄጂ፭)

ኺ
𝜙፣𝜙። d𝑥 =

፧

∑
፣ኺ
𝜖፣(𝑡)∫

፥(፭)

ኺ
𝜙፣𝜙። d𝑥

+Δ𝑡
፧

∑
፣ኻ
𝑣፣(𝑡 + Δ𝑡)∫

፥(፭ዄጂ፭)

ኺ

𝜕𝜙፣
𝜕𝑥 𝜙። d𝑥, 𝑖 = 0,… , 𝑛. (5.24)

We will write (5.19) in matrix-vector form as

𝜌𝑀፤ዄኻኻ 𝑣፤ዄኻ = (𝜌𝑀፤ኻ − 𝜏𝜇𝑀፤ኼ )𝑣፤ − 𝜏𝐸𝑀፤ኽ 𝜖፤ + 𝜏𝐹፤ , (5.25)

where 𝑣፤ = (𝑣ኺ((𝑘 − 1)Δ𝑡), … , 𝑣፧((𝑘 − 1)Δ𝑡)), 𝜖፤ = (𝜖ኺ((𝑘 − 1)Δ𝑡), … , 𝜖፧((𝑘 − 1)Δ𝑡)), 𝑀ኻ, 𝑀ኼ, 𝑀ኽ and
𝑀ኾ are (𝑛 + 1)× (𝑛 + 1)-matrices, and 𝐹 is a vector of length 𝑛+1. They are defined by the following
element matrices and element vector:

(𝑀፤ኻ )el =
ℎ
6 [
2 1
1 2] (5.26)

(𝑀፤ኼ )el =
1
ℎ [

1 −1
−1 1 ] (5.27)

(𝑀፤ኽ )el =
1
2 [
−1 −1
1 1 ] (5.28)

(𝐹፤)el =
ℎ
2 [

𝐹(𝑥፤፦)
𝐹(𝑥፤፦ዄኻ)

] (5.29)

where ℎ ∶= ℎ፤፦ is the length of element el with vertices 𝑥፤፦ and 𝑥፤፦ዄኻ. Note that ℎ፤ዄኻ፦ needs to be
determined for all elements before we can compute 𝑣፤ዄኻ. This means that we have to use a forward-
in-time method to compute 𝑥፤ዄኻኻ , … , 𝑥፤ዄኻ፧ at every timestep. We use 𝑥፤ዄኻ፣ = 𝑥፤፣ + Δ𝑡𝑣፤፣ , which we can
use to compute the spacing, ℎ፤ዄኻ፦ = 𝑥፤፦ዄኻ − 𝑥፤፦.

The full matrices can be found by summing all the element contributions, and then including the
boundary condition 𝑣(0) = 0. To do this, observe that if we set 𝑣ኻኺ = 0, we can just take 𝑣፤ዄኻኺ = 𝑣፤ኻ .
This amounts to replacing the first row of 𝑀፤ኻ by [1, 0, … , 0], and the first rows of 𝑀፤ኼ and 𝑀፤ኽ by zeros,
and then replacing the remainders of the first columns of all three matrices by zeros.

Similarly, we will write (5.24) in matrix-vector form as

(1 + Δ𝑡𝜁)𝑁፤ዄኻኻ 𝜖፤ዄኻ = 𝑁፤ኻ 𝜖፤ + 𝜏𝑁፤ኼ 𝑣፤ዄኻ, (5.30)



5.1. Finite Element Approximations in one dimension 29

where 𝑁ኻ, 𝑁ኼ and 𝑁ኽ are (𝑛 + 1) × (𝑛 + 1)-matrices. For the element matrices we get:

(𝑁፤ኻ )el ∶
ℎ፤፦
6 [2 1

1 2] , (5.31)

(𝑁፤ኼ )el ∶
1
2 [
−1 1
−1 1] , (5.32)

The full matrices can be found by summing all the element contributions. Notice that there is no bound-
ary condition to be implemented. This is because there is no direct boundary condition imposed on the
strain evolution equation. In fact, this equation can be viewed as an ordinary differential equation as it
only involves derivatives with respect to 𝑡.

Method 2
We will implement Euler Backward, so that (5.7) results in:

∫
፥(፭ዄጂ፭)

ኺ
𝜌𝑣𝜒 d𝑥 = ∫

፥(፭)

ኺ
𝜌𝑣𝜒 d𝑥 − Δ𝑡∫

፥(፭ዄጂ፭)

ኺ
(𝐸𝜖 + 𝜇𝜕𝑣𝜕𝑥 )

𝜕𝜒
𝜕𝑥 d𝑥 − Δ𝑡∫

፥(፭ዄጂ፭)

ኺ
𝐹𝜒 d𝑥 (5.33)

Now we will choose 𝜂 = 𝜙። , 𝑖 = 1,… , 𝑛, and fill in the discretization for 𝑣. We then obtain:

𝜌
፧

∑
፣ኻ
𝑣፣(𝑡 + Δ𝑡)∫

፥(፭ዄጂ፭)

ኺ
𝜙፣𝜙። d𝑥 = 𝜌

፧

∑
፣ኻ
𝑣፣(𝑡)∫

፥(፭)

ኺ
𝜙፣𝜙። d𝑥

−Δ𝑡𝐸
፧

∑
፣ኺ
𝜖፣(𝑡 + Δ𝑡)∫

፥(፭ዄጂ፭)

ኺ
𝜙፣
𝜕𝜙።
𝜕𝑥 d𝑥 − Δ𝑡𝜇

፧ዄኻ

∑
፣ኼ

𝑣፣(𝑡 + Δ𝑡)∫
፥(፭ዄጂ፭)

ኺ

𝜕𝜙፣
𝜕𝑥

𝜕𝜙።
𝜕𝑥 d𝑥

+Δ𝑡∫
፥(፭ዄጂ፭)

ኺ
𝐹𝜙። d𝑥, 𝑖 = 1,… , 𝑛, (5.34)

or equivalently:

𝜌
፧

∑
፣ኻ
𝑣፣(𝑡 + Δ𝑡) [∫

፥(፭ዄጂ፭)

ኺ
𝜙፣𝜙። d𝑥 + Δ𝑡𝜇∫

፥(፭ዄጂ፭)

ኺ

𝜕𝜙፣
𝜕𝑥

𝜕𝜙።
𝜕𝑥 d𝑥] =

፧

∑
፣ኻ
𝑣፣(𝑡) [𝜌∫

፥(፭)

ኺ
𝜙፣𝜙። d𝑥] − Δ𝑡𝐸

፧

∑
፣ኺ
𝜖፣∫

፥(፭ዄጂ፭)

ኺ
𝜙፣
𝜕𝜙።
𝜕𝑥 d𝑥 + 𝜏∫

፥(፭ዄጂ፭)

ኺ
𝐹𝜙። d𝑥,

𝑖 = 1,… , 𝑛. (5.35)

If we use Euler forward, (5.14) can be expressed as:

∫
፥(፭ዄጂ፭)

ኺ
𝜖𝜂 d𝑥 = ∫

፥(፭)

ኺ
𝜖𝜂 d𝑥 + Δ𝑡∫

፥(፭)

ኺ
{𝜂𝜕𝑣𝜕𝑥 − 𝜁𝜂𝜖} d𝑥, (5.36)

or, equivalently:

∫
፥(፭ዄጂ፭)

ኺ
𝜖𝜂 d𝑥 = (1 − Δ𝑡𝜁)∫

፥(፭)

ኺ
𝜖𝜂 d𝑥 + Δ𝑡∫

፥(፭)

ኺ

𝜕𝑣
𝜕𝑥 𝜂 d𝑥 (5.37)

Now we will choose 𝜂 = 𝜙። , 𝑖 = 1,…𝑛 + 1, and fill in the discretizations for 𝜖 and 𝑣. This results in
the following system:

፧

∑
፣ኺ
𝜖፣(𝑡 + Δ𝑡)∫

፥(፭ዄጂ፭)

ኺ
𝜙፣𝜙። d𝑥 = (1 − Δ𝑡𝜁)

፧

∑
፣ኺ
𝜖፣(𝑡)∫

፥(፭)

ኺ
𝜙፣𝜙። d𝑥

+𝜏
፧

∑
፣ኻ
𝑣፣(𝑡)∫

፥(፭)

ኺ

𝜕𝜙፣
𝜕𝑥 𝜙። d𝑥, 𝑖 = 1,… , 𝑛 + 1. (5.38)



30 5. Numerical methods

We write (5.35) in matrix-vector form as:

𝑁፤ዄኻኻ 𝜖፤ዄኻ = (1 − Δ𝑡𝜁)𝑁፤ኻ 𝜖፤ + Δ𝑡𝑁፤ኼ 𝑣፤ , (5.39)

and (5.38) as:

(𝜌𝑀፤ዄኻኻ + Δ𝑡𝜇𝑀፤ዄኻኼ )𝑣፤ዄኻ = 𝜌𝑀፤ኻ𝑣፤ − Δ𝑡𝐸𝑀፤ዄኻኽ 𝜖፤ + Δ𝑡F፤ዄኻ , (5.40)

where all the vectors and matrices have the same definition as in 5.1.2.

Method 3
For method 3 we combine the backward-in-time approximations from methods 1 and 2, (5.35) and
(5.24). We write this as a matrix-vector system:

𝑁፤ዄኻ𝑤፤ዄኻ = 𝑀፤𝑤፤ + Δ𝑡 ̂𝐹
፤ዄኻ, (5.41)

where𝑤፤ = [𝜖፤ኺ , … , 𝜖፤፧ , 𝑣፤ኺ , … , 𝑣፤፧ ]ፓ, and𝑁፤ and𝑀፤ are 2(𝑛+1)×2(𝑛+1)-matrices that can be composed
by matrices defined earlier as follows:

𝑁፤ = [(1 + Δ𝑡𝜁)𝑁
፤
ኻ −Δ𝑡𝑁፤ኼ

Δ𝑡𝐸𝑀፤ኽ 𝜌𝑀፤ኻ + Δ𝑡𝜇𝑀፤ኼ
] , (5.42)

𝑀፤ = [𝑁
፤
ኻ 0
0 𝜌𝑀፤ኻ

] , (5.43)

where 0 is in this case the (𝑛 + 1) × (𝑛 + 1)-matrix consisting of only zeros. Similarly, we define
̂𝐹
፤ ∶= [0, … , 0, (𝐹፤)ፓ]ፓ.

5.1.3. Choice for the method
The plots in figures were obtained using method 1. Clearly, there is something wrong. It turns out that
Euler Forward applied to the mechanical equation is very unstable.

Methods 2 and 3 both give good results. In this thesis we will follow [11], and use a monolithic
approach. Hence we choose method 3.
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Figure 5.1: Plots of (𝑋, 𝑥(𝑋, 𝑡)) (blue) at 𝑡 = 0.25, using method 1, and (𝑋, 𝑋) (red) as a reference.
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Figure 5.2: Plots of (𝑋, 𝑥(𝑋, 𝑡)) (blue) at 𝑡 = 0.3, using method 1, and (𝑋, 𝑋) (red) as a reference.

5.2. Finite Element Approximations in two dimensions
In the one-dimensional case we have compared three methods to discretize a morphoelastic model.
We chose the monolithic approach. For the two-dimensional case, we will not walk through different
methods again. We will use the monolithic approach straight away. In this section we will walk through
the Finite Element Method applied to model (4.66), using a monolithic approach.

5.2.1. Weak forms
We multiply each of the 𝑣-equations by the test function 𝜂 and we integrate over Ω፭. We get:

{∫ᑥ
{𝜌 (ዎ፯Ꮃዎ፭ + 𝑣ኻ∇ ⋅ 𝑣) − ∇ ⋅ 𝜎⋅ኻ} 𝜂 dΩ = ∫ᑥ(𝐹)ኻ𝜂 dΩ,

∫ᑥ {𝜌 (
ዎ፯Ꮄ
ዎ፭ + 𝑣ኼ∇ ⋅ 𝑣) − ∇ ⋅ 𝜎⋅ኼ} 𝜂 dΩ = ∫ᑥ(𝐹)ኼ𝜂 dΩ.

(5.44)

To the stress terms in each equation we can apply the product rule. This gives:

{∫ᑥ
{𝜌𝜂 (ዎ፯Ꮃዎ፭ + 𝑣ኻ∇ ⋅ 𝑣) − ∇ ⋅ (𝜎⋅ኻ𝜂) + 𝜎⋅ኻ ⋅ (∇𝜂)} dΩ = ∫ᑥ(𝐹)ኻ𝜂 dΩ,

∫ᑥ {𝜌𝜂 (
ዎ፯Ꮄ
ዎ፭ + 𝑣ኼ∇ ⋅ 𝑣) − ∇ ⋅ (𝜎⋅ኼ𝜂) + 𝜎⋅ኼ ⋅ (∇𝜂)} dΩ = ∫ᑥ(𝐹)ኼ𝜂 dΩ.

(5.45)

Now we can apply Gauss’ theorem, to obtain:

{∫ᑥ
{𝜌𝜂 (ዎ፯Ꮃዎ፭ + 𝑣ኻ∇ ⋅ 𝑣) + 𝜎⋅ኻ ⋅ (∇𝜂)} dΩ − ∫Ꭷᑥ 𝑛 ⋅ (𝜎⋅ኻ𝜂) dΓ = ∫ᑥ(𝐹)ኻ𝜂 dΩ,

∫ᑥ {𝜌𝜂 (
ዎ፯Ꮄ
ዎ፭ + 𝑣ኼ∇ ⋅ 𝑣) + 𝜎⋅ኼ ⋅ (∇𝜂)} dΩ − ∫Ꭷᑥ 𝑛 ⋅ (𝜎⋅ኼ𝜂) dΓ = ∫ᑥ(𝐹)ኼ𝜂 dΩ,

(5.46)

where 𝑛 = (𝑛ኻ, 𝑛ኼ, 𝑛ኽ)ፓ is the unit vector pointing away from the surface. Now we will proceed by
performing some manipulations that we have seen many times before: pull 𝜂 through the material
derivative, expand the material derivative, apply Reynolds’ theorem and tidy up. Some terms cancel
out nicely, like in the one-dimensional case, so that we obtain:

{
የ
የ፭ ∫ᑥ 𝑣ኻ𝜂 dΩ + ∫ᑥ 𝜎⋅ኻ ⋅ (∇𝜂) dΩ − ∫Ꭷᑥ 𝑛 ⋅ (𝜎⋅ኻ𝜂) dΓ = ∫ᑥ(𝐹)ኻ𝜂 dΩ,የ
የ፭ ∫ᑥ 𝑣ኼ𝜂 dΩ + ∫ᑥ 𝜎⋅ኼ ⋅ (∇𝜂) dΩ − ∫Ꭷᑥ 𝑛 ⋅ (𝜎⋅ኼ𝜂) dΓ = ∫ᑥ(𝐹)ኼ𝜂 dΩ.

(5.47)
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Now we will derive the weak form for the strain evolution equations. We multiply each of the 𝜖-
equations by a test function 𝜉 and integrate over Ω፭. We get:

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

∫ᑥ {
ዎᎨᎳᎳ
ዎ፭ + 𝜖ኻኻ∇ ⋅ 𝑣} 𝜉 dΩ =
∫ᑥ {(1 − 𝜖ኼኼ)

Ꭷ፯Ꮃ
Ꭷ፱ + 𝜖ኻኻ

Ꭷ፯Ꮄ
Ꭷ፲ +

ኻ
ኼ (

Ꭷ፯Ꮃ
Ꭷ፲ −

Ꭷ፯Ꮄ
Ꭷ፱ ) (𝜖ኼኻ + 𝜖ኻኼ) − 𝑔ኼኼ} 𝜉 dΩ,

∫ᑥ {
ዎᎨᎳᎴ
ዎ፭ + 𝜖ኻኼ∇ ⋅ 𝑣} 𝜉 dΩ =
∫ᑥ {𝜖ኻኼ (

Ꭷ፯Ꮃ
Ꭷ፱ +

Ꭷ፯Ꮄ
Ꭷ፲ ) +

ኻ
ኼ ((1 − 2𝜖ኻኻ)

Ꭷ፯Ꮃ
Ꭷ፲ + (1 − 2𝜖ኼኼ)

Ꭷ፯Ꮄ
Ꭷ፱ ) − 𝑔ኻኼ} 𝜉 dΩ,

∫ᑥ {
ዎᎨᎴᎴ
ዎ፭ + 𝜖ኼኼ∇ ⋅ 𝑣} 𝜉 dΩ =
∫ᑥ {(1 − 𝜖ኻኻ)

Ꭷ፯Ꮄ
Ꭷ፲ + 𝜖ኼኼ

Ꭷ፯Ꮃ
Ꭷ፱ −

ኻ
ኼ (

Ꭷ፯Ꮃ
Ꭷ፲ −

Ꭷ፯Ꮄ
Ꭷ፱ ) (𝜖ኼኻ + 𝜖ኻኼ) − 𝑔ኼኼ} 𝜉 dΩ.

(5.48)

We will do some manipulations to the left-hand sides of the equations. First observe that we can pull
𝜉 through the material derivative. This is because, similar to the one-dimensional case, we have that
D𝜉/D𝑡 = 0. Working out the material derivative the left-hand sides become:

⎧

⎨
⎩

∫ᑥ {
ᎧᎨᎳᎳ
Ꭷ፭ + 𝑣 ⋅ ∇(𝜖ኻኻ𝜉) + 𝜖ኻኻ𝜉∇ ⋅ 𝑣} dΩ,

∫ᑥ {
ᎧᎨᎳᎴ
Ꭷ፭ + 𝑣 ⋅ ∇(𝜖ኻኼ𝜉) + 𝜖ኻኼ𝜉∇ ⋅ 𝑣} dΩ,

∫ᑥ {
ᎧᎨᎴᎴ
Ꭷ፭ + 𝑣 ⋅ ∇(𝜖ኼኼ𝜉) + 𝜖ኼኼ𝜉∇ ⋅ 𝑣} dΩ.

(5.49)

This is, by means of the product rule, equal to

⎧

⎨
⎩

∫ᑥ {
ᎧᎨᎳᎳ
Ꭷ፭ + ∇ ⋅ (𝑣𝜖ኻኻ𝜉)} dΩ

∫ᑥ {
ᎧᎨᎳᎴ
Ꭷ፭ + ∇ ⋅ (𝑣𝜖ኻኼ𝜉)} dΩ

∫ᑥ {
ᎧᎨᎴᎴ
Ꭷ፭ + ∇ ⋅ (𝑣𝜖ኼኼ𝜉)} dΩ.

(5.50)

Now we will apply Reynolds’ transport theorem, which is the three-dimensional analogon of Leibniz’
theorem. We get:

⎧

⎨
⎩

የ
የ፭ ∫ᑥ 𝜖ኻኻ𝜉 dΩ − ∫Ꭷᑥ(𝑣 ⋅ 𝑛)𝜖ኻኻ𝜉 dΓ + ∫ᑥ {∇ ⋅ (𝑣𝜖ኻኻ𝜉)} dΩየ
የ፭ ∫ᑥ 𝜖ኻኼ𝜉 dΩ − ∫Ꭷᑥ(𝑣 ⋅ 𝑛)𝜖ኻኼ𝜂 dΓ + ∫ᑥ {∇ ⋅ (𝑣𝜖ኻኼ𝜉)} dΩየ
የ፭ ∫ᑥ 𝜖ኼኼ𝜉 dΩ − ∫Ꭷᑥ(𝑣 ⋅ 𝑛)𝜖ኼኼ𝜉 dΓ + ∫ᑥ {∇ ⋅ (𝑣𝜖ኼኼ𝜉)} dΩ.

(5.51)

By Gauss’ theorem the last two terms of each left-hand side now cancel out, so that we find:

⎧
⎪
⎨
⎪
⎩

የ
የ፭ ∫ᑥ 𝜖ኻኻ𝜉 dΩ = ∫ᑥ {(1 − 𝜖ኼኼ)

Ꭷ፯Ꮃ
Ꭷ፱ + 𝜖ኻኻ

Ꭷ፯Ꮄ
Ꭷ፲ +

ኻ
ኼ (

Ꭷ፯Ꮃ
Ꭷ፲ −

Ꭷ፯Ꮄ
Ꭷ፱ ) (𝜖ኼኻ + 𝜖ኻኼ) − 𝑔ኼኼ} 𝜉 dΩ

የ
የ፭ ∫ᑥ 𝜖ኻኼ𝜉 dΩ = ∫ᑥ {𝜖ኻኼ (

Ꭷ፯Ꮃ
Ꭷ፱ +

Ꭷ፯Ꮄ
Ꭷ፲ ) +

ኻ
ኼ ((1 − 2𝜖ኻኻ)

Ꭷ፯Ꮃ
Ꭷ፲ + (1 − 2𝜖ኼኼ)

Ꭷ፯Ꮄ
Ꭷ፱ ) − 𝑔ኻኼ} 𝜉 dΩ

የ
የ፭ ∫ᑥ 𝜖ኼኼ𝜉 dΩ = ∫ᑥ {(1 − 𝜖ኻኻ)

Ꭷ፯Ꮄ
Ꭷ፲ + 𝜖ኼኼ

Ꭷ፯Ꮃ
Ꭷ፱ −

ኻ
ኼ (

Ꭷ፯Ꮃ
Ꭷ፲ −

Ꭷ፯Ꮄ
Ꭷ፱ ) (𝜖ኼኻ + 𝜖ኻኼ) − 𝑔ኼኼ} 𝜉 dΩ

(5.52)

Finally the weak form for model (4.66) is given by:

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

የ
የ፭ ∫ᑥ 𝜖ኻኻ𝜉 dΩ =
∫ᑥ {(1 − 𝜖ኼኼ)

Ꭷ፯Ꮃ
Ꭷ፱ + 𝜖ኻኻ

Ꭷ፯Ꮄ
Ꭷ፲ +

ኻ
ኼ (

Ꭷ፯Ꮃ
Ꭷ፲ −

Ꭷ፯Ꮄ
Ꭷ፱ ) (𝜖ኼኻ + 𝜖ኻኼ) − 𝑔ኻኻ} 𝜉 dΩ,

የ
የ፭ ∫ᑥ 𝜖ኻኼ𝜉 dΩ =
∫ᑥ {𝜖ኻኼ (

Ꭷ፯Ꮃ
Ꭷ፱ +

Ꭷ፯Ꮄ
Ꭷ፲ ) +

ኻ
ኼ ((1 − 2𝜖ኻኻ)

Ꭷ፯Ꮃ
Ꭷ፲ + (1 − 2𝜖ኼኼ)

Ꭷ፯Ꮄ
Ꭷ፱ ) − 𝑔ኻኼ} 𝜉 dΩ,

የ
የ፭ ∫ᑥ 𝜖ኼኼ𝜉 dΩ =
∫ᑥ {(1 − 𝜖ኻኻ)

Ꭷ፯Ꮄ
Ꭷ፲ + 𝜖ኼኼ

Ꭷ፯Ꮃ
Ꭷ፱ −

ኻ
ኼ (

Ꭷ፯Ꮃ
Ꭷ፲ −

Ꭷ፯Ꮄ
Ꭷ፱ ) (𝜖ኼኻ + 𝜖ኻኼ) − 𝑔ኼኼ} 𝜉 dΩ,

𝜖ኼኻ = 𝜖ኻኼ,

{
የ
የ፭ ∫ᑥ 𝑣ኻ𝜉 dΩ + ∫ᑥ 𝜎⋅ኻ ⋅ (∇𝜉) dΩ − ∫Ꭷᑥ 𝑛 ⋅ (𝜎⋅ኻ𝜉) dΓ = ∫ᑥ 𝑓ኻ𝜉 dΩ,የ
የ፭ ∫ᑥ 𝑣ኼ𝜉 dΩ + ∫ᑥ 𝜎⋅ኼ ⋅ (∇𝜉) dΩ − ∫Ꭷᑥ 𝑛 ⋅ (𝜎⋅ኼ𝜉) dΓ = ∫ᑥ 𝑓ኼ𝜉 dΩ.

(5.53)
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5.2.2. Discretization
Again we will agree on the following: if an integral is evaluated over Ω፬ or 𝜕Ω፬, then the integrand is
evaluated at time 𝑠. We will also omit the spatial variable 𝑥. For example, instead of ∫ᑥᎼᏺᑥ 𝜖ኻኻ(𝑥(𝑡 +
Δ𝑡), 𝑡 + Δ𝑡)𝜙።(𝑥(𝑡 + Δ𝑡), 𝑡 + Δ𝑡) dΩ we will simply write ∫ᑥᎼᏺᑥ 𝜖ኻኻ𝜙። dΩ.

Implementing Euler Backwards we now get the following equations:

⎧
⎪

⎨
⎪
⎩

∫ᑥᎼᏺᑥ 𝑣ኻ𝜂 dΩ = ∫ᑥ 𝑣ኻ𝜂 dΩ + Δ𝑡[ − ∫ᑥᎼᏺᑥ 𝜎⋅ኼ ⋅ (∇𝜂) dΩ + ∫ᎧᑥᎼᏺᑥ 𝑛 ⋅ (𝜎⋅ኻ𝜂) dΓ
+ ∫ᑥᎼᏺᑥ(𝐹)ኻ𝜂 dΩ]
∫ᑥᎼᏺᑥ 𝑣ኼ𝜂 dΩ = ∫ᑥ 𝑣ኼ𝜂 dΩ + Δ𝑡[ − ∫ᑥᎼᏺᑥ 𝜎⋅ኼ ⋅ (∇𝜂) dΩ + ∫ᎧᑥᎼᏺᑥ 𝑛 ⋅ (𝜎⋅ኼ𝜂) dΓ
+ ∫ᑥᎼᏺᑥ(𝐹)ኼ𝜂 dΩ]

(5.54a)

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

∫ᑥᎼᏺᑥ 𝜖ኻኻ𝜒 dΩ = ∫ᑥ 𝜖ኻኻ𝜒 dΩ+
Δ𝑡 ∫ᑥᎼᏺᑥ [(1 − 𝜖ኼኼ)

Ꭷ፯Ꮃ
Ꭷ፱ + 𝜖ኻኻ

Ꭷ፯Ꮄ
Ꭷ፲ + (

Ꭷ፯Ꮃ
Ꭷ፲ −

Ꭷ፯Ꮄ
Ꭷ፱ ) 𝜖ኻኼ − 𝑔ኻኻ] 𝜒 dΩ

∫ᑥዄጂ፭ 𝜖ኻኼ𝜒 dΩ = ∫ᑥ 𝜖ኻኼ𝜒 dΩ+
Δ𝑡 ∫ᑥᎼᏺᑥ [𝜖ኻኼ (

Ꭷ፯Ꮃ
Ꭷ፱ +

Ꭷ፯Ꮄ
Ꭷ፲ ) +

ኻ
ኼ ((1 − 2𝜖ኻኻ)

Ꭷ፯Ꮃ
Ꭷ፲ + (1 − 2𝜖ኼኼ)

Ꭷ፯Ꮄ
Ꭷ፱ ) − 𝐺ኻኼ] 𝜒 dΩ

∫ᑥᎼᏺᑥ 𝜖ኼኼ𝜒 dΩ = ∫ᑥ 𝜖ኼኼ𝜒 dΩ+
Δ𝑡 ∫ᑥᎼᏺᑥ [(1 − 𝜖ኻኻ)

Ꭷ፯Ꮄ
Ꭷ፲ + 𝜖ኼኼ

Ꭷ፯Ꮃ
Ꭷ፱ − (

Ꭷ፯Ꮃ
Ꭷ፲ −

Ꭷ፯Ꮄ
Ꭷ፱ ) 𝜖ኻኼ − 𝑔ኼኼ] 𝜒 dΩ

(5.54b)

5.2.3. Matrix-vector system for mechanics with pure elasticity
To keep things organized we will present a matrix-vector systems for the mechanical part of (4.66)
here, omitting viscous stress. After that we will add viscous stress, and finally we will include the strain
evolution equations

We fill in

𝑣ኻ(𝑥, 𝑦, 𝑡) ≈
፧

∑
፣ኻ
(𝑣ኻ)፭፣𝜙፣(𝑥, 𝑦, 𝑡), (5.55)

and 𝜂 = 𝜙።(𝑥, 𝑦, 𝑡), and get:

∑
፣ኻ,ኼ,ኽ

(𝑣ኻ)፭ዄጂ፭፣ ∫
elᑥᎼᏺᑥ

𝜙፣𝜙። dΩ = ∑
፣ኻ,ኼ,ኽ

(𝑣ኻ)፭፣∫
elᑥ
𝜙፣𝜙። dΩ + Δ𝑡[ − ∫

elᑥᎼᏺᑥ
𝜎ኻኻ

𝜕𝜙።
𝜕𝑥 dΩ

−∫
elᑥᎼᏺᑥ

𝜎ኼኻ
𝜕𝜙።
𝜕𝑦 dΩ +∫

ᎧelᑥᎼᏺᑥ
𝑛ኻ𝜎ኻኻ𝜙። dΓ + ∫

ᎧelᑥᎼᏺᑥ
𝑛ኼ𝜎ኼኼ𝜙። dΓ + ∫

ᎧelᑥᎼᏺᑥ
(𝐹)ኻ𝜙። dΩ]. (5.56)

Here we denoted by el፭ the element with vertices 1, 2 and 3 at time 𝑡, and by 𝜕el፭ we denoted its
boundary. Filling in

𝜎ኻኻ =
𝐸√𝜌
1 + 𝜈(𝜖ኻኻ +

𝜈
1 − 2𝜈 (𝜖ኻኻ + 𝜖ኼኼ)), (5.57)

𝜎ኼኻ =
𝐸√𝜌
1 + 𝜈𝜖ኼኻ, (5.58)

we have:

∑
፣ኻ,ኼ,ኽ

(𝑣ኻ)፭ዄጂ፭፣ ∫
elᑥᎼᏺᑥ

𝜙፣𝜙። d𝑉 = ∑
፣ኻ,ኼ,ኽ

(𝑣ኻ)፭ዄጂ፭፣ ∫
elᑥ
𝜙፣𝜙። d𝑉 + Δ𝑡

𝐸√𝜌
1 + 𝜈 [(

1 − 𝜈
1 − 2𝜈 ∑

፣ኻ,ኼ,ኽ
(𝜖ኻኻ)፭ዄጂ፭፣

+ 𝜈
1 − 2𝜈 ∑

፣ኻ,ኼ,ኽ
(𝜖ኼኼ)፭ዄጂ፭፣ ){ − ∫

elᑥᎼᏺᑥ
𝜙፣
𝜕𝜙።
𝜕𝑦 d𝑉 + 𝑛ኻ∫

ᎧelᑥᎼᏺᑥ
𝜙፣𝜙። d𝑉}

+ ∑
፣ኻ,ኼ,ኽ

(𝜖ኻኼ)፭ዄጂ፭፣ { − ∫
elᑥᎼᏺᑥ

𝜙፣
𝜕𝜙።
𝜕𝑦 d𝑉 + 𝑛ኼ∫

ᎧelᑥᎼᏺᑥ
𝜙፣𝜙። dΓ}] + Δ𝑡∫

elᑥᎼᏺᑥ
(𝐹)ኻ𝜙። d𝑉. (5.59)
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We denote 𝑣፭ኻ ∶= [(𝑣ኻ)፭ኻ, … , (𝑣ኻ)፭፧]ፓ and 𝑣፭ኼ ∶= [(𝑣ኼ)፭ኻ, … , (𝑣ኼ)፭፧]ፓ, where (𝑣ኻ)፭። and (𝑣ኼ)፭። are the Finite
Element Approximations for 𝑣ኻ and 𝑣ኼ respectively, at gridpoint 𝑖 at time 𝑡. Also, we denote by |Δ| ∶= |Δ|፭
the doubled area of an element. We will use the subscripts 1, 2 and 3 to indicate a symbol belongs to
vertex 1, 2 or 3 of an element. If𝜙ኻ, 𝜙ኼ and𝜙ኽ are the basis functions corresponding to the three vertices
of an element, we can write:

𝜙ኻ ∶= 𝜙ኻ(𝑥, 𝑦, 𝑡) = 𝛼ኻ + 𝛽ኻ𝑥 + 𝛾ኻ𝑦, (5.60)
𝜙ኼ ∶= 𝜙ኼ(𝑥, 𝑦, 𝑡) = 𝛼ኼ + 𝛽ኼ𝑥 + 𝛾ኼ𝑦, (5.61)
𝜙ኽ ∶= 𝜙ኽ(𝑥, 𝑦, 𝑡) = 𝛼ኽ + 𝛽ኽ𝑥 + 𝛾ኽ𝑦, (5.62)

where 𝛼። ∶= 𝛼።(𝑡), 𝛽። ∶= 𝛽።(𝑡) and 𝛾። ∶= 𝛾።(𝑡) are constant with respect to 𝑥 and 𝑦, 𝑖 = 1, 2, 3. It must
hold that:

[
𝛼ኻ 𝛽ኻ 𝛾ኻ
𝛼ኼ 𝛽ኼ 𝛾ኼ
𝛼ኽ 𝛽ኽ 𝛾ኽ

] [
1 1 1
𝑥ኻ 𝑥ኼ 𝑥ኽ
𝑦ኻ 𝑦ኼ 𝑦ኽ

] = [
1 0 0
0 1 0
0 0 1

] (5.63)

This means that:

[
𝛼ኻ 𝛽ኻ 𝛾ኻ
𝛼ኼ 𝛽ኼ 𝛾ኼ
𝛼ኽ 𝛽ኽ 𝛾ኽ

] = [
1 1 1
𝑥ኻ 𝑥ኼ 𝑥ኽ
𝑦ኻ 𝑦ኼ 𝑦ኽ

]

ዅኻ

, (5.64)

which gives:

[
𝛽ኻ 𝛾ኻ
𝛽ኼ 𝛾ኼ
𝛽ኽ 𝛾ኽ

] = 1
|Δ| [

𝑦ኼ − 𝑦ኽ 𝑥ኽ − 𝑥ኼ
𝑦ኽ − 𝑦ኻ 𝑥ኻ − 𝑥ኽ
𝑦ኻ − 𝑦ኼ 𝑥ኼ − 𝑥ኻ

] , (5.65)

𝛼ኻ = 1 − 𝛽ኻ𝑥ኻ − 𝛾ኻ𝑦ኻ, (5.66)
𝛼ኼ = 1 − 𝛽ኼ𝑥ኼ − 𝛾ኼ𝑦ኼ, (5.67)
𝛼ኽ = 1 − 𝛽ኽ𝑥ኽ − 𝛾ኽ𝑦ኽ. (5.68)

Now we can write (5.59) as a system

𝑀፭ዄጂ፭𝑣፭ዄጂ፭ኻ = 𝑀፭𝑣፭ኻ

+ Δ𝑡 𝐸√𝜌1 + 𝜈 [(𝑃
፭ዄጂ፭
ኻ + 𝑃፭ዄጂ፭ኽ ){ 1 − 𝜈1 − 2𝜈𝜖

፭ዄጂ፭
ኻኻ + 𝜈

1 − 2𝜈𝜖
፭ዄጂ፭
ኼኼ } + (𝑃፭ዄጂ፭ኼ + 𝑃፭ዄጂ፭ኾ )𝜖፭ዄጂ፭ኻኼ ] + Δ𝑡𝑓፭ዄጂ፭፯Ꮃ , (5.69)

defined by the following element matrices and vector:

(𝑀፭ᎨᎳᎳ)el =
1
24|Δ| [

2 1 1
1 2 1
1 1 2

] , (5.70)

(𝑃፭ኻ )el = −
|Δ|
6 [

𝛽ኻ 𝛽ኻ 𝛽ኻ
𝛽ኼ 𝛽ኼ 𝛽ኼ
𝛽ኽ 𝛽ኽ 𝛽ኽ

] , (5.71)

(𝑃፭ኼ )el = −
|Δ|
6 [

𝛾ኻ 𝛾ኻ 𝛾ኻ
𝛾ኼ 𝛾ኼ 𝛾ኼ
𝛾ኽ 𝛾ኽ 𝛾ኽ

] , (5.72)

(𝑃ኽ)፭el = 𝑛ኻ
|𝜕|
6 𝐼 [

2 1 1
1 2 1
1 1 2

] , (5.73)

(𝑃ኾ)፭el = 𝑛ኼ
|𝜕|
6 𝐼 [

2 1 1
1 2 1
1 1 2

] , (5.74)

(𝑓፯Ꮃ)
፭
el =

|Δ|
6 [

((𝐹)ኻ)ኻ
((𝐹)ኻ)ኼ
((𝐹)ኻ)ኽ

] . (5.75)
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Here, (𝑛ኻ, 𝑛ኼ)ፓ is the unit vector pointing outward of a boundary element. For an internal element we
impose 𝑛ኻ = 𝑛ኼ = 0. The length of the boundary segment part of an element is denoted by |𝜕|. The
matrix 𝐼 will consist of only zeros, except for the rows 𝑗 that correspond to a boundary point. Here we
will have a 1 at the 𝑗-th position. Worded differently, 𝐼 is the identity matrix where the 𝑗-th diagonal
entry is set to zero if 𝑗 corresponds to an internal vertex.

For the equation for 𝑣ኼ we get, analoguously:

∑
፣ኻ,ኼ,ኽ

(𝑣ኼ)፭ዄጂ፭፣ ∫
elᑥᎼᏺᑥ

𝜙፣𝜙። d𝑉 = ∑
፣ኻ,ኼ,ኽ

(𝑣ኼ)፭ዄጂ፭፣ ∫
elᑥ
𝜙፣𝜙። d𝑉 + Δ𝑡

𝐸√𝜌
1 + 𝜈 [(

𝜈
1 − 2𝜈 ∑

፣ኻ,ኼ,ኽ
(𝜖ኻኻ)፭ዄጂ፭፣

+ 1 − 𝜈
1 − 2𝜈 ∑

፣ኻ,ኼ,ኽ
(𝜖ኼኼ)፭ዄጂ፭፣ ){ − ∫

elᑥᎼᏺᑥ
𝜙፣
𝜕𝜙።
𝜕𝑦 d𝑉 + 𝑛ኽ∫

ᎧelᑥᎼᏺᑥ
𝜙፣𝜙። d𝑉}

+ ∑
፣ኻ,ኼ,ኽ

(𝜖ኻኼ)፭ዄጂ፭፣ { − ∫
elᑥᎼᏺᑥ

𝜙፣
𝜕𝜙።
𝜕𝑥 d𝑉 + 𝑛ኼ∫ᎧelᑥᎼᏺᑥ

𝜙፣𝜙። dΓ}] + Δ𝑡∫
elᑥᎼᏺᑥ

(𝐹)ኼ𝜙። d𝑉, (5.76)

which results in the following system:

𝑀፭ዄጂ፭𝑣፭ዄጂ፭ኼ = 𝑀፭𝑣፭ኼ

+ Δ𝑡 𝐸√𝜌1 + 𝜈 [(𝑃
፭ዄጂ፭
ኼ + 𝑃፭ዄጂ፭ኾ ){ 𝜈

1 − 2𝜈𝜖
፭ዄጂ፭
ኻኻ + 1 − 𝜈

1 − 2𝜈𝜖
፭ዄጂ፭
ኼኼ } + (𝑃፭ዄጂ፭ኻ + 𝑃፭ዄጂ፭ኽ )𝜖፭ዄጂ፭ኻኼ ].

+ Δ𝑡𝑓፭ዄጂ፭፯Ꮄ . (5.77)

Now our full elastic system reads:

[𝑀
፭ዄጂ፭ ∅
∅ 𝑀፭ዄጂ፭] [

𝑣፭ዄጂ፭ኻ
𝑣፭ዄጂ፭ኼ

] = [𝑀
፭ ∅
∅ 𝑀፭] [

𝑣፭ኻ
𝑣፭ኼ
]

+ Δ𝑡 𝐸√𝜌1 + 𝜈 [
ኻዅ
ኻዅኼ (𝑃

፭ዄጂ፭
ኻ + 𝑃፭ዄጂ፭ኽ ) (𝑃፭ዄጂ፭ኼ + 𝑃፭ዄጂ፭ኾ ) 

ኻዅኼ (𝑃
፭ዄጂ፭
ኻ + 𝑃፭ዄጂ፭ኽ )


ኻዅኼ (𝑃

፭ዄጂ፭
ኼ + 𝑃፭ዄጂ፭ኾ ) (𝑃፭ዄጂ፭ኻ + 𝑃፭ዄጂ፭ኽ ) ኻዅ

ኻዅኼ (𝑃
፭ዄጂ፭
ኼ + 𝑃፭ዄጂ፭ኾ )] [

𝜖፭ዄጂ፭ኻኻ
𝜖፭ዄጂ፭ኻኼ
𝜖፭ዄጂ፭ኼኼ

]

+ Δ𝑡 [𝑓
፭ዄጂ፭
፯Ꮃ
𝑓፭ዄጂ፭፯Ꮄ

] . (5.78)

5.2.4. Matrix-vector system for mechanics with viscoelasticity
To include viscosity, we must now use the full viscoelastic law (4.20). This amounts to adding the
following to the right-hand side of (5.59):

Δ𝑡[ ∑
፣ኻ,ኼ,ኽ

(𝑣ኻ)፭ዄጂ፭፣ {(𝜇ኻ + 𝜇ኼ)( − ∫
elᑥᎼᏺᑥ

𝜕𝜙፣
𝜕𝑥

𝜕𝜙።
𝜕𝑥 d𝑉 + ∫ᎧelᑥᎼᏺᑥ

𝑛፱
𝜕𝜙፣
𝜕𝑥 𝜙። dΓ)

− 𝜇ኻ∫
elᑥᎼᏺᑥ

𝜕𝜙፣
𝜕𝑧

𝜕𝜙።
𝜕𝑦 d𝑉 + 𝜇ኻ2 ∫ᎧelᑥᎼᏺᑥ

𝑛፲
𝜕𝜙፣
𝜕𝑦 𝜙። dΓ} + ∑

፣ኻ,ኼ,ኽ
(𝑣ኼ)፭ዄጂ፭፣ { − 𝜇ኼ∫

elᑥᎼᏺᑥ

𝜕𝜙፣
𝜕𝑦

𝜕𝜙።
𝜕𝑥 d𝑉

− 𝜇ኻ2 ∫elᑥᎼᏺᑥ
𝜕𝜙፣
𝜕𝑥

𝜕𝜙።
𝜕𝑦 d𝑉 + 𝜇ኼ∫

ᎧelᑥᎼᏺᑥ
𝑛፱
𝜕𝜙፣
𝜕𝑦 𝜙። dΓ +

𝜇ኻ
2 ∫ᎧelᑥᎼᏺᑥ

𝑛፲
𝜕𝜙፣
𝜕𝑥 𝜙። dΓ}]. (5.79)

We then get the following viscoelastic system:

𝑀፭ዄጂ፭𝑣፭ዄጂ፭ኻ = 𝑀፭𝑣፭ኻ + Δ𝑡
𝐸√𝜌
1 + 𝜈 [(𝑃

፭ዄጂ፭
ኻ + 𝑃፭ዄጂ፭ኽ ){ 1 − 𝜈1 − 2𝜈𝜖

፭ዄጂ፭
ኻኻ + 𝜈

1 − 2𝜈𝜖
፭ዄጂ፭
ኼኼ }

+ (𝑃፭ዄጂ፭ኼ + 𝑃፭ዄጂ፭ኾ )𝜖፭ዄጂ፭ኻኼ ] + Δ𝑡[{(𝜇ኻ + 𝜇ኼ)(𝑉፭ዄጂ፭ኻ + 𝑉፭ዄጂ፭ኾ ) + 𝜇ኻ2 (𝑉
፭ዄጂ፭
ኼ + 𝑉፭ዄጂ፭ )}𝑣ኻ

+ {𝜇ኼ(𝑉፭ዄጂ፭ኽ + 𝑉፭ዄጂ፭ዀ ) + 𝜇ኻ2 ((𝑉
፭ዄጂ፭
ኽ )ፓ + 𝑉፭ዄጂ፭ )}𝑣ኼ + 𝑓፭ዄጂ፭፯Ꮃ ], (5.80)
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where the 𝑉ኻ, … , 𝑉 are defined by the following element matrices:

(𝑉ኻ)el = −
|Δ|
2 [

𝛽ኻ𝛽ኻ 𝛽ኻ𝛽ኼ 𝛽ኻ𝛽ኽ
𝛽ኼ𝛽ኻ 𝛽ኼ𝛽ኼ 𝛽ኼ𝛽ኽ
𝛽ኽ𝛽ኻ 𝛽ኽ𝛽ኼ 𝛽ኽ𝛽ኽ

] , (5.81)

(𝑉ኼ)el = −
|Δ|
2 [

𝛾ኻ𝛾ኻ 𝛾ኻ𝛾ኼ 𝛾ኻ𝛾ኽ
𝛾ኼ𝛾ኻ 𝛾ኼ𝛾ኼ 𝛾ኼ𝛾ኽ
𝛾ኽ𝛾ኻ 𝛾ኽ𝛾ኼ 𝛾ኽ𝛾ኽ

] , (5.82)

(𝑉ኽ)el = −
|Δ|
2 [

𝛽ኻ𝛾ኻ 𝛽ኻ𝛾ኼ 𝛽ኻ𝛾ኽ
𝛽ኼ𝛾ኻ 𝛽ኼ𝛾ኼ 𝛽ኼ𝛾ኽ
𝛽ኽ𝛾ኻ 𝛽ኽ𝛾ኼ 𝛽ኽ𝛾ኽ

] , (5.83)

(𝑉ኾ)el = 𝑛ኼ
|𝜕|
2 𝐼 [

𝛽ኻ 𝛽ኼ 𝛽ኽ
𝛽ኻ 𝛽ኼ 𝛽ኽ
𝛽ኻ 𝛽ኼ 𝛽ኽ

] , (5.84)

(𝑉)el = 𝑛ኼ
|𝜕|
2 𝐼 [

𝛾ኻ 𝛾ኼ 𝛾ኽ
𝛾ኻ 𝛾ኼ 𝛾ኽ
𝛾ኻ 𝛾ኼ 𝛾ኽ

] , (5.85)

(𝑉ዀ)el = 𝑛ኽ
|𝜕|
2 𝐼 [

𝛽ኻ 𝛽ኼ 𝛽ኽ
𝛽ኻ 𝛽ኼ 𝛽ኽ
𝛽ኻ 𝛽ኼ 𝛽ኽ

] , (5.86)

(𝑉)el = 𝑛ኽ
|𝜕|
2 𝐼 [

𝛾ኻ 𝛾ኼ 𝛾ኽ
𝛾ኻ 𝛾ኼ 𝛾ኽ
𝛾ኻ 𝛾ኼ 𝛾ኽ

] . (5.87)

Analoguously, we can find a system for 𝑣ኼ:

𝑀፭ዄጂ፭𝑣፭ዄጂ፭ኼ = 𝑀፭𝑣፭ኼ + Δ𝑡
𝐸√𝜌
1 + 𝜈 [(𝑃

፭ዄጂ፭
ኻ + 𝑃፭ዄጂ፭ኽ ){ 1 − 𝜈1 − 2𝜈𝜖

፭ዄጂ፭
ኻኻ + 𝜈

1 − 2𝜈𝜖
፭ዄጂ፭
ኼኼ }

+ (𝑃፭ዄጂ፭ኼ + 𝑃፭ዄጂ፭ኾ )𝜖፭ዄጂ፭ኻኼ ] + Δ𝑡[{𝜇ኼ(𝑉፭ዄጂ፭ኽ + 𝑉፭ዄጂ፭ዀ ) + 𝜇ኻ2 ((𝑉
፭ዄጂ፭
ኽ )ፓ + 𝑉፭ዄጂ፭ )}𝑣ኻ

+ {(𝜇ኻ + 𝜇ኼ)(𝑉፭ዄጂ፭ኻ + 𝑉፭ዄጂ፭ኾ ) + 𝜇ኻ2 (𝑉
፭ዄጂ፭
ኼ + 𝑉፭ዄጂ፭ )}𝑣ኼ + 𝑓፭ዄጂ፭፯Ꮄ ]. (5.88)

This now leads to the full viscoelastic mechanical system:

[𝑀
፭ዄጂ፭ ∅
∅ 𝑀፭ዄጂ፭] [

𝑣፭ዄጂ፭ኻ
𝑣፭ዄጂ፭ኼ

] = [𝑀
፭ ∅
∅ 𝑀፭] [

𝑣፭ኻ
𝑣፭ኼ
]

+ Δ𝑡 𝐸√𝜌1 + 𝜈 [
ኻዅ
ኻዅኼ (𝑃ኻ + 𝑃ኽ) (𝑃ኼ + 𝑃ኾ)


ኻዅኼ (𝑃ኻ + 𝑃ኽ)

ኻዅኼ (𝑃ኼ + 𝑃ኾ) (𝑃ኻ + 𝑃ኽ)
ኻዅ
ኻዅኼ (𝑃ኼ + 𝑃ኾ)

] [
𝜖፭ዄጂ፭ኻኻ
𝜖፭ዄጂ፭ኻኼ
𝜖፭ዄጂ፭ኼኼ

]

+ Δ𝑡 [
(𝜇ኻ + 𝜇ኼ)(𝑉ኻ + 𝑉ኾ) +

᎙Ꮃ
ኼ (𝑉ኼ + 𝑉) 𝜇ኼ(𝑉ኽ + 𝑉ዀ) +

᎙Ꮃ
ኼ (𝑉

ፓ
ኽ + 𝑉)

𝜇ኼ(𝑉ኽ + 𝑉ዀ) +
᎙Ꮃ
ኼ (𝑉

ፓ
ኽ + 𝑉) (𝜇ኻ + 𝜇ኼ)(𝑉ኻ + 𝑉ኾ) +

᎙Ꮃ
ኼ (𝑉ኼ + 𝑉)

] [𝑣
፭ዄጂ፭
ኻ
𝑣፭ዄጂ፭ኼ

]

+ Δ𝑡 [𝑓
፭ዄጂ፭
፯Ꮃ
𝑓፭ዄጂ፭፯Ꮄ

] , (5.89)

where the matrices 𝑃1,… , 𝑃ኾ, 𝑉1… , 𝑉 should be evaluated at 𝑡 + Δ𝑡.

5.2.5. Matrix-vector system for morphoelasticity
System (5.54b) already reveals that we will be dealing with a nonlinear discretization for each of the
strain evolution equations. We will therefore split the matrix-vector system up in a linear part and a
non-linear part.
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For the equation for 𝜖ኻኻ we have:

∑
፣ኻ,ኼ,ኽ

(𝜖ኻኻ)፭ዄጂ፭፣ ∫
elᑥᎼᏺᑥ

𝜙፣𝜙። dΩ = ∑
፣ኻ,ኼ,ኽ

(𝜖ኻኻ)፭፣∫
elᑥ
𝜙፣𝜙። dΩ

+ Δ𝑡[ ∑
፣ኻ,ኼ,ኽ

(𝑣ኻ)፭ዄጂ፭፣ ∫
elᑥᎼᏺᑥ

𝜕𝜙፣
𝜕𝑥 𝜙። dΩ−

∑
፣ኻ,ኼ,ኽ

(𝜖ኼኼ)፭ዄጂ፭፣ ( ∑
፣ᖤኻ,ኼ,ኽ

(𝑣ኻ)፭ዄጂ፭፣ᖤ ∫
elᑥᎼᏺᑥ

𝜙፣
𝜕𝜙፣ᖤ
𝜕𝑥 𝜙። dΩ)

+ ∑
፣ኻ,ኼ,ኽ

(𝜖ኻኻ)፭ዄጂ፭፣ ( ∑
፣ᖤኻ,ኼ,ኽ

(𝑣ኼ)፭ዄጂ፭፣ᖤ ∫
elᑥᎼᏺᑥ

𝜙፣
𝜕𝜙፣ᖤ
𝜕𝑦 𝜙። dΩ)+

∑
፣ኻ,ኼ,ኽ

(𝜖ኻኼ)፭ዄጂ፭፣ ( ∑
፣ᖤኻ,ኼ,ኽ

(𝑣ኻ)፭ዄጂ፭፣ᖤ ∫
elᑥᎼᏺᑥ

𝜙፣
𝜕𝜙፣ᖤ
𝜕𝑦 𝜙። dΩ)

− ∑
፣ኻ,ኼ,ኽ

(𝜖ኻኼ)፭ዄጂ፭፣ ( ∑
፣ᖤኻ,ኼ,ኽ

(𝑣ኼ)፭ዄጂ፭፣ᖤ ∫
elᑥᎼᏺᑥ

𝜙፣
𝜕𝜙፣ᖤ
𝜕𝑥 𝜙። dΩ) − ∫

፞ᑥᎼᏺᑥᑞ
𝑔ኻኻ𝜙። dΩ]. (5.90)

We will set

𝜖፭ኻኻ ∶= ((𝜖ኻኻ)፭ኻ, … , (𝜖ኻኻ)፭፧)ፓ , (5.91)
𝜖፭ኻኼ ∶= ((𝜖ኻኼ)፭ኻ, … , (𝜖ኻኼ)፭፧)ፓ , (5.92)
𝜖፭ኼኼ ∶= ((𝜖ኼኼ)፭ኻ, … , (𝜖ኼኼ)፭፧)ፓ , (5.93)

𝑤፭ ∶=
⎡
⎢
⎢
⎢
⎣

𝜖፭ኻኻ
𝜖፭ኻኼ
𝜖፭ኼኼ
𝑣፭ኻ
𝑣፭ኼ

⎤
⎥
⎥
⎥
⎦

. (5.94)

Now (5.90) gives rise to the following system:

𝑀፭ዄጂ፭𝜖፭ዄጂ፭ኻኻ = 𝑀፭𝜖፭ኻኻ + Δ𝑡 ⋅ [𝐿፭ዄጂ፭ኻ 𝑣፭ዄጂ፭ኻ + 𝑁፭ዄጂ፭ᎨᎳᎳ (𝑤፭ዄጂ፭) + 𝑓፭ዄጂ፭ᎨᎳᎳ ]. (5.95)

Here, 𝑀፭ is defined by (5.70), and:

(𝐿፭ኻ)el =
1
6|Δ| [

𝛽ኻ 𝛽ኼ 𝛽ኽ
𝛽ኻ 𝛽ኼ 𝛽ኽ
𝛽ኻ 𝛽ኼ 𝛽ኽ

] , (5.96)

(𝑁፭ᎨᎳᎳ(𝑤፭))el =
1
24|Δ| [

𝛾ፓ(𝑣ኻኼ)el( ̄𝜖ኻኻ) − 𝛽
ፓ(𝑣ኻኻ)el( ̄𝜖ኼኼ) + {𝛾ፓ(𝑣ኻኻ)el − 𝛽

ፓ(𝑣ኻኼ)el}( ̄𝜖ኻኼ)
𝛾ፓ(𝑣ኼኼ)el( ̄𝜖ኻኻ) − 𝛽

ፓ(𝑣ኼኻ)el( ̄𝜖ኼኼ) + {𝛾ፓ(𝑣ኼኻ)el − 𝛽
ፓ(𝑣ኼኼ)el}( ̄𝜖ኻኼ)

𝛾ፓ(𝑣ኽኼ)el( ̄𝜖ኻኻ) − 𝛽
ፓ(𝑣ኽኻ)el( ̄𝜖ኼኼ) + {𝛾ፓ(𝑣ኽኻ)el − 𝛽

ፓ(𝑣ኽኼ)el}( ̄𝜖ኻኼ)
] , (5.97)

(𝑓፭ᎨᎳᎳ)el = −
1
6|Δ| [

(𝑔ኻኻ)፭ኻ
(𝑔ኻኻ)፭ኼ
(𝑔ኻኻ)፭ኽ

] , (5.98)

and:

(𝑣።፤)ፓel ∶= ((𝑣።፤)፭)ፓel = [
(1 + 𝛿ኻ።)(𝑣፤)፭ኻ
(1 + 𝛿ኼ።)(𝑣፤)፭ኼ
(1 + 𝛿ኽ።)(𝑣፤)፭ኽ

] , 𝑖 = 1, 2, 3, 𝑘 = 1, 2, (5.99)

( ̄𝜖፤) ∶= ( ̄𝜖፤)፭ = (𝜖፤)፭ኻ + (𝜖፤)፭ኼ + (𝜖፤)፭ኽ, 𝑘 = {11}, {12}, {22}, (5.100)

𝛿።፣ is the Kronecker delta, and the elements of the last two vectors are Finite Element Approximations
for 𝑣ኼ, 𝑣ኽ, 𝜖ኻኻ, 𝜖ኻኼ and 𝜖ኼኼ at the three vertices of the element.
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For the second of the 𝜖-equations filling in the discretization gives:

∑
፣ኻ,ኼ,ኽ

(𝜖ኻኼ)፭ዄጂ፭፣ ∫
elᑥᎼᏺᑥ

𝜙፣𝜙። dΩ = ∑
፣ኻ,ኼ,ኽ

(𝜖ኻኼ)፭፣∫
elᑥ
𝜙፣𝜙። dΩ

+ Δ𝑡[12 ∑
፣ኻ,ኼ,ኽ

(𝑣ኻ)፭ዄጂ፭፣ ∫
elᑥᎼᏺᑥ

𝜕𝜙፣
𝜕𝑦 𝜙። dΩ +

1
2 ∑
፣ኻ,ኼ,ኽ

(𝑣ኼ)፭ዄጂ፭፣ ∫
፞ᑥᎼᏺᑥᑞ

𝜕𝜙፣
𝜕𝑥 𝜙። dΩ

+ ∑
፣ኻ,ኼ,ኽ

(𝜖ኻኼ)፭ዄጂ፭፣ ( ∑
፣ᖤኻ,ኼ,ኽ

(𝑣ኻ)፭ዄጂ፭፣ᖤ ∫
elᑥᎼᏺᑥ

𝜙፣
𝜕𝜙፣ᖤ
𝜕𝑥 𝜙። dΩ)

+ ∑
፣ኻ,ኼ,ኽ

(𝜖ኻኼ)፭ዄጂ፭፣ ( ∑
፣ᖤኻ,ኼ,ኽ

(𝑣ኼ)፭ዄጂ፭፣ᖤ ∫
elᑥᎼᏺᑥ

𝜙፣
𝜕𝜙፣ᖤ
𝜕𝑦 𝜙። dΩ)

− ∑
፣ኻ,ኼ,ኽ

(𝜖ኻኻ)፭ዄጂ፭፣ ( ∑
፣ᖤኻ,ኼ,ኽ

(𝑣ኻ)፭ዄጂ፭፣ᖤ ∫
elᑥᎼᏺᑥ

𝜙፣
𝜕𝜙፣ᖤ
𝜕𝑦 𝜙። dΩ)

− ∑
፣ኻ,ኼ,ኽ

(𝜖ኼኼ)፭ዄጂ፭፣ ( ∑
፣ᖤኻ,ኼ,ኽ

(𝑣ኼ)፭ዄጂ፭፣ᖤ ∫
elᑥᎼᏺᑥ

𝜙፣
𝜕𝜙፣ᖤ
𝜕𝑥 𝜙። dΩ)

− ∫
elᑥᎼᏺᑥ

𝑔ኻኼ𝜙። dΩ]. (5.101)

This results in a system

𝑀፭ዄጂ፭𝜖፭ዄጂ፭ኻኼ = 𝑀፭𝜖፭ኻኼ + Δ𝑡 ⋅ [
1
2(𝐿

፭ዄጂ፭
ኼ 𝑣፭ዄጂ፭ኻ + 𝐿፭ዄጂ፭ኻ 𝑣፭ዄጂ፭ኼ ) + 𝑁፭ዄጂ፭ᎨᎳᎴ (𝑤፭ዄጂ፭) + 𝑓፭ዄጂ፭ᎨᎳᎴ ], (5.102)

where

(𝐿፭ኼ)el =
1
6|Δ| [

𝛾ኻ 𝛾ኼ 𝛾ኽ
𝛾ኻ 𝛾ኼ 𝛾ኽ
𝛾ኻ 𝛾ኼ 𝛾ኽ

] , (5.103)

(𝑁፭ᎨᎳᎴ(𝑤፭))el =
1
24|Δ| [

{𝛽ፓ(𝑣ኻኼ)el + 𝛾ፓ(𝑣ኻኼ)el}( ̄𝜖ኻኼ)el − 𝛾ፓ(𝑣ኻኻ)el( ̄𝜖ኻኻ)el − 𝛽
ፓ(𝑣ኻኼ)el( ̄𝜖ኼኼ)el

{𝛽ፓ(𝑣ኻኼ)el + 𝛾ፓ(𝑣ኼኼ)el}( ̄𝜖ኻኼ)el − 𝛾ፓ(𝑣ኼኻ)el( ̄𝜖ኻኻ)el − 𝛽
ፓ(𝑣ኼኻ)el( ̄𝜖ኼኼ)el

{𝛽ፓ(𝑣ኽኻ)el + 𝛾ፓ(𝑣ኽኼ)el}( ̄𝜖ኼኽ)el − 𝛾ፓ(𝑣ኽኻ)el( ̄𝜖ኻኻ)el − 𝛽
ፓ(𝑣ኽኼ)el( ̄𝜖ኼኼ)el

] , (5.104)

(𝑓፭ᎨᎳᎴ)el = −
1
6|Δ| [

(𝑔ኻኼ)ኻ
(𝑔ኻኼ)ኼ
(𝑔ኻኼ)ኽ

] . (5.105)
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Finally, for the equation for 𝜖ኼኼ we get:

∑
፣ኻ,ኼ,ኽ

(𝜖ኼኼ)፭ዄጂ፭፣ ∫
elᑥᎼᏺᑥ

𝜙፣𝜙። dΩ = ∑
፣ኻ,ኼ,ኽ

(𝜖ኼኼ)፭፣∫
elᑥ
𝜙፣𝜙። dΩ+

Δ𝑡[ ∑
፣ኻ,ኼ,ኽ

(𝑣ኼ)፭ዄጂ፭፣ ∫
elᑥᎼᏺᑥ

𝜕𝜙፣
𝜕𝑦 𝜙። dΩ

− ∑
፣ኻ,ኼ,ኽ

(𝜖ኻኻ)፭ዄጂ፭፣ ( ∑
፣ᖤኻ,ኼ,ኽ

(𝑣ኼ)፭ዄጂ፭፣ᖤ ∫
elᑥᎼᏺᑥ

𝜙፣
𝜕𝜙፣ᖤ
𝜕𝑦 𝜙። dΩ)

+ ∑
፣ኻ,ኼ,ኽ

(𝜖ኼኼ)፭ዄጂ፭፣ ( ∑
፣ᖤኻ,ኼ,ኽ

(𝑣ኻ)፭ዄጂ፭፣ᖤ ∫
elᑥᎼᏺᑥ

𝜙፣
𝜕𝜙፣ᖤ
𝜕𝑥 𝜙። dΩ)

− ∑
፣ኻ,ኼ,ኽ

(𝜖ኻኼ)፭ዄጂ፭፣ ( ∑
፣ᖤኻ,ኼ,ኽ

(𝑣ኻ)፭ዄጂ፭፣ᖤ ∫
elᑥᎼᏺᑥ

𝜙፣
𝜕𝜙፣ᖤ
𝜕𝑦 𝜙። dΩ)

+ ∑
፣ኻ,ኼ,ኽ

(𝜖ኻኼ)፣( ∑
፣ᖤኻ,ኼ,ኽ

(𝑣ኼ)፭ዄጂ፭፣ᖤ ∫
elᑥᎼᏺᑥ

𝜙፣
𝜕𝜙፣ᖤ
𝜕𝑥 𝜙። dΩ)

− ∫
elᑥᎼᏺᑥ

𝑔ኼኼ𝜙። dΩ]. (5.106)

This yields a system

𝑀፭ዄጂ፭𝜖፭ዄጂ፭ኼኼ = 𝑀፭𝜖፭ኼኼ + Δ𝑡 ⋅ [𝐿፭ዄጂ፭ኼ 𝑣፭ዄጂ፭ኼ + 𝑁፭ዄጂ፭ᎨᎴᎴ (𝑤፭ዄጂ፭) + 𝑓፭ዄጂ፭ᎨᎴᎴ ], (5.107)

where

(𝑁ᎨᎴᎴ(𝑤))el =
1
24|Δ| [

−𝛽ፓ(𝑣ኻኻ)el( ̄𝜖ኼኼ)el + 𝛾ፓ(𝑣ኻኼ)el( ̄𝜖ኽኽ)el + {𝛽
ፓ(𝑣ኻኻ)el − 𝛾ፓ(𝑣ኻኼ)el} ⋅ ( ̄𝜖ኻኼ)el

−𝛽ፓ(𝑣ኼኻ)el( ̄𝜖ኼኼ)el + 𝛾ፓ(𝑣ኼኼ)el( ̄𝜖ኽኽ)el + {𝛽
ፓ(𝑣ኻኻ)el − 𝛾ፓ(𝑣ኻኼ)el} ⋅ ( ̄𝜖ኻኼ)el

−𝛽ፓ(𝑣ኽኻ)el( ̄𝜖ኼኼ)el + 𝛾ፓ(𝑣ኽኼ)el( ̄𝜖ኽኽ)el + {𝛽
ፓ(𝑣ኻኻ)el − 𝛾ፓ(𝑣ኻኼ)el} ⋅ ( ̄𝜖ኻኼ)el

] , (5.108)

(𝑓፭ᎨᎴᎴ)el = −
1
6|Δ| [

(𝑔ኼኼ)ኻ
(𝑔ኼኼ)ኼ
(𝑔ኼኼ)ኽ

] . (5.109)

Combining (5.95), (5.102) and (5.107) with (5.89) we obtain a full morphoelastic system:

⎡
⎢
⎢
⎢
⎣

∅ 𝑀፭ዄጂ፭
𝑀፭ዄጂ፭

𝑀፭ዄጂ፭
𝑀፭ዄጂ፭ ∅

𝑀፭ዄጂ፭

⎤
⎥
⎥
⎥
⎦

𝑤፭ዄጂ፭ =
⎡
⎢
⎢
⎢
⎣

∅ 𝑀፭
𝑀፭

𝑀፭
𝑀፭ ∅

𝑀፭

⎤
⎥
⎥
⎥
⎦

𝑤፭

+ Δ𝑡{
⎡
⎢
⎢
⎢
⎣

ፆ̄ ᎳᎽᒒ
ᎳᎽᎴᒒ (ፏᎳዄፏᎵ) ፆ̄(ፏᎴዄፏᎶ) ፆ̄

ᒒ
ᎳᎽᎴᒒ (ፏᎳዄፏᎵ) ᎙̃(ፕᎳዄፕᎶ)ዄ

ᒑᎳ
Ꮄ (ፕᎴዄፕᎹ) ᎙Ꮄ(ፕᎵዄፕᎸ)ዄ

ᒑᎳ
Ꮄ (ፕ

ᑋ
Ꮅ ዄፕᎷ)

ፆ̄ ᒒ
ᎳᎽᎴᒒ (ፏᎴዄፏᎶ) ፆ̄(ፏᎳዄፏᎵ) ፆ̄

ᎳᎽᒒ
ᎳᎽᎴᒒ (ፏᎴዄፏᎶ) ᎙Ꮄ(ፕᎵዄፕᎸ)ዄ

ᒑᎳ
Ꮄ (ፕ

ᑋ
Ꮅ ዄፕᎷ) ᎙̃(ፕᎳዄፕᎶ)ዄ

ᒑᎳ
Ꮄ (ፕᎴዄፕᎹ)

ፋᑥᎼᏺᑥᎳ ∅
∅ Ꮃ

Ꮄ ፋ
ᑥᎼᏺᑥ
Ꮄ

Ꮃ
Ꮄ ፋ
ᑥᎼᏺᑥ
Ꮅ

∅ ፋᑥᎼᏺᑥᎴ

⎤
⎥
⎥
⎥
⎦

𝑤፭ዄጂ፭

+
⎡
⎢
⎢
⎢
⎣

∅
∅

𝑁፭ዄጂ፭ᎨᎳᎳ (𝑤፭ዄጂ፭)
𝑁፭ዄጂ፭ᎨᎳᎴ (𝑤፭ዄጂ፭)
𝑁፭ዄጂ፭ᎨᎴᎴ (𝑤፭ዄጂ፭)

⎤
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑓፭ዄጂ፭፯Ꮃ
𝑓፭ዄጂ፭፯Ꮄ
𝑓፭ዄጂ፭ᎨᎳᎳ
𝑓፭ዄጂ፭ᎨᎳᎴ
𝑓፭ዄጂ፭ᎨᎴᎴ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

}, (5.110)
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where

�̄� = 𝐸√𝜌
1 + 𝜈 , (5.111)

and

�̃� = 𝜇ኻ + 𝜇ኼ. (5.112)

5.2.6. Fixed-point iterations
System (5.110) is non-linear, and therefore it has to be solved with an iterative method. We will use
Picard iterations, see appendix A.

5.2.7. Remeshing to maintain accuracy
In order to do the FEM computations we have to construct a triangular mesh. By the nature of the
problem we are considering, this mesh will be moving. Since we divide by |Δ| when we determine
some of the matrices in (5.110), it is important that the triangles do not have very sharp angles. If they
do, they will be close to singular, i.e. |Δ| ≈ 0, and this will lead to inaccuracies. Ideally every triangle
has angles of around 60 degrees. However, for most choices of parameters, after enough time has
passed, some triangles will become ill-shaped, i.e. some of their angles will become very small. We
can mitigate the inaccuracies that will result, by generating a new mesh. After doing this, we will need
to approximate the values of 𝑣 and 𝜖 in the new mesh points. We do this using linear interpolation.



6
Results

In this chapter we will present results for some of the models we have constructed in chapter 4. Some
of the results will be qualitative and aim at gaining even more understanding. Others will be more
quantitative.

6.1. A purely elastic model
In this section we will derive the analytic solution to model (4.40), and present some plots.

6.1.1. Solution to model (4.40)
We have:

𝜕𝜎
𝜕𝑥 = −𝐹 . (6.1)

We assume that the tissue will contract, and therefore we will use the following body force profile:

𝐹(𝑥) = {
�̄� , 0 ≤ 𝑥 ≤ 𝐿/2,
−�̄� , 𝐿/2 < 𝑥 ≤ 𝐿. (6.2)

For now we take �̄� = 0.36. In section 6.2 we will elaborate on an appropriate choice for this value.
The body force profile is depicted in figure 6.1. Integrating equation (6.1) now gives:

𝜎(𝑥) = {−�̄�𝑥 + 𝐶ኻ, 0 ≤ 𝑥 ≤ 𝐿/2,
�̄�(𝑥 − 𝐿) + 𝐶ኻ, 𝐿/2 < 𝑥 ≤ 𝐿, (6.3)

where 𝐶ኻ is a constant. The boundary condition 𝜎(𝐿) = 0 implies that 𝐶ኻ = 0, so we have:

𝜎(𝑥) = {−�̄�𝑥, 0 ≤ 𝑥 ≤ 𝐿/2,
�̄�(𝑥 − 𝐿), 𝐿/2 < 𝑥 ≤ 𝐿. (6.4)

This stress profile is depicted in figure 6.6. It shows the stress magnitude becomes higher as we get
closer to the center of the tissue. In [9] various models for cell distribution are presented. These models
include diffusion and chemotaxis, i.e. movement in reaction to chemical stimuli. As stated in section
2.4, fibroblasts lay down collagen fibres predominantly along the axis subject to the highest normal
stress. Therefore it seems reasonable to assume that high fibroblast concentrations are present in the
wound area. As the models in [9] are diffusion-based, we presume a somewhat smooth transition from
lower concentrations in healthy skin to higher ones in the wounded area. For this simple model, we
consider (6.6) to be reasonable.

We have:
𝜕𝑢
𝜕𝑥 =

𝜎
𝐸 , (6.5)

41
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Figure 6.1: A plot of the body force profile 𝐹(𝑥).
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Figure 6.2: A plot of the stress profile 𝜎(𝑥) induced by 𝐹.

from which it follows that:

𝑢(𝑥) = {
− ፅ̄ᑓ
ኼፄ𝑥

ኼ + 𝐶ኼ, 0 ≤ 𝑥 ≤ 𝐿/2,
ፅ̄ᑓ
ኼፄ [𝑥 − 𝐿(1 +

ኻ
ኼ√2)][(𝑥 − 𝐿(1 −

ኻ
ኼ√2)] + 𝐶ኼ, 𝐿/2 < 𝑥 ≤ 𝐿.

(6.6)

The boundary condition 𝑢(0) = 0 implies that 𝐶ኼ = 0, so that:

𝑢(𝑥) = {
− ፅ̄ᑓ
ኼፄ𝑥

ኼ, 0 ≤ 𝑥 ≤ 𝐿/2,
ፅ̄ᑓ
ኼፄ [𝑥 − 𝐿(1 +

ኻ
ኼ√2)][(𝑥 − 𝐿(1 −

ኻ
ኼ√2)], 𝐿/2 < 𝑥 ≤ 𝐿.

(6.7)
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6.1.2. Results for time-invariant body forces
In figures 6.3 and 6.4 we see plots of 𝑢 and 𝑥 = 𝑋+𝑢 versus 𝑋 respectively. We see that the boundary
condition on the left end is satisfied because 𝑢(0) = 0. The right boundary, however, can move freely,
and has experienced the largest displacement out of all the points in the tissue.
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Figure 6.3: A plot of the displacement 𝑢(𝑥) induced by 𝐹.
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Figure 6.4: A plot of (𝑋, 𝑥) induced by 𝐹 (blue) along with (𝑋, 𝑋) as a reference (red).
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6.1.3. Results for time-dependent body forces
We will now construct a time-dependent body force term. To respect the diffusion-based distribution of
the fibroblasts, we will use exponential functions for the increase and decay of the body forces:

�̃�(𝑥, 𝑡) =

⎧
⎪

⎨
⎪
⎩

0, 𝑡 < 𝑡f0 ,

𝐹(𝑥)(1 − exp ( − 𝑐fd
፭ዅ፭f0
፭fmዅ፭f0

)), 𝑡f0 ≤ 𝑡 < 𝑡ap ,

𝐹(𝑥)(1 − exp ( − 𝑐fd
፭ዅ፭f0
፭fmዅ፭f0

)) exp(−(𝑡 − 𝑡ap)), 𝑡 ≥ 𝑡ap .

(6.8)

where 𝑡f0 is the point in time at which fibroblasts first start entering the wound, 𝑡fm is the time at which the
fibroblast concentration is maximal, 𝑡ap is the time at which the fibroblast concentration starts returning
to 0. As argued in section 2.4, contraction starts shortly after injury, and lasts for 2-3 weeks. Therefore,
we take 𝑡f0ኺ.ኻ, 𝑡fmኼኺ, and 𝑡apኼኺ. By means of 𝑐fd we include a factor to control the rate at which the
fibroblast concentration increases. If we set 𝑐fdኾ, the body forces reach about 98% of the value of �̄�,
while they do not increase too quickly. The purely elastic model with time-dependent body forces is
given by:

⎧
⎪⎪

⎨
⎪⎪
⎩

−Ꭷ
Ꭷ፱ = �̃� ,

𝜎 = 𝐸𝜖,
𝜖 = Ꭷ፮

Ꭷ፱ , 0 < 𝑥 < 𝐿,
𝑢(0) = 0,
𝜎(𝐿) = 0.

(6.9)

In figure 6.5 the time-dependent body force profile is visualized at four different values of 𝑡.
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Figure 6.5: Plots of the body force profile �̃� for various values of 𝑡.
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Figure 6.6: Plots of the stress profiles 𝜎 induced by �̃� for various values of 𝑡.
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Figure 6.7: Plots of the displacement profiles 𝑢 induced by �̃� for various values of 𝑡.
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Figure 6.8: Plots of (𝑋, 𝑥) induced by �̃� (blue) and (𝑋, 𝑋) as a reference (red) for various values of 𝑡.
Because differences are small, 𝑋-values range between 5 and 10.
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Figure 6.9: A plot of 𝑥(𝐿) versus 𝑡.
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6.2. A one-dimensional dynamical viscoelastic model
In this section we will qualitatively analyze solutions to model (4.41). This model incorporates vis-
coelasticity. In [14] it is stated that re-expansion of skin tissue after fibroblast concentrations have
returned to normal levels, is far from instantaneous. This indicates that viscosity plays an important
role. Furthermore, this model is dynamical. To the purely elastic model considered in section 6.1 we
did add time-dependence, but this was a rather artificial act. The inherent dynamics of model (4.41)
will constitute a more realistic model and provide more insight in the contraction process.

6.2.1. Parameters
The parameters used for the results presented in this section can be found in table 6.1. The value for
𝐸 was taken from [10]. The values of 𝜇 and 𝜌 are taken from [11]. The time values 𝑡f0 , 𝑡fm and 𝑡ap are
based on the timeline presented in section 2.3.3. For the body forces we use (6.8). The value of �̄�
has been chosen such that we obtain a reasonable contraction: in this simulation the tissue contracts
to 74% of its original length. This percentage is deemed realistic ([8]).

6.2.2. Analysis of the results
Firstly, we will look at the interaction between viscous and elastic stress. Consider figures 6.14 and
6.11. At 𝑡 = 0 the tissue is stress-free. Therefore, upon exertion of the body forces, the tissue will start
contracting at a relatively high rate. This will cause viscous stress to be high. As the tissue contracts,
elastic stresses will get higher, impeding the contraction rate. This will in turn cause viscous stresses
to get smaller again. Close to 𝑡 = 𝑓fm , the contraction rate approaches 0, and in turn will the viscous
stress. Once the body forces drop, re-expansion of the tissue occurs. Again viscous stress is initially
large, but this time with opposite sign. Viscous stress converges to 0 as the tissue approaches a stable
configuration. As viscous stress is proportional to the strain rate, it provides a means of damping. It
does this not only realistically, but also numerically. For this study a dynamical model with only elastic
stresses has also been investigated. However, no meaningful results could be obtained because of
the inherent instability of such a model. The difference between the current dynamical model and the
static model (4.40) can be seen nicely when figures 6.9 and 6.14 are compared. The dynamical model
smoothens out the changes that the tissue undergoes.

Parameter Value Unit
𝐸 31 N/(g cm)ኻ/ኼ
𝜇 10ኼ (N day)/cm
𝜌 1.02 g/cm
�̄� 5 (N g)/(cells cm)
𝑡f0 0.1 days
𝑡fm 20 days
𝑡ap 20 days

Table 6.1: The parameters used for the results in section 6.2.
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Figure 6.10: Plot of 𝑙 versus 𝑡.
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Figure 6.11: Plot of viscous (blue) and elastic (red) stresses in the center of the tissue versus time, i.e.
𝑥(𝐿/2, 𝑡) versus 𝑡.
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Figure 6.12: Plots of the displacement profiles 𝑢 for various values of 𝑡.
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Figure 6.13: Plots of (𝑋, 𝑥) (blue) and (𝑋, 𝑋) as a reference (red) for various values of 𝑡.
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6.3. A one-dimensional morphoelastic model
In this section we consider model (4.64). We will present plots that show that after contraction the tissue
does not fully return to its original length. Furthermore, we will investigate the interaction between the
elastic and plastic deformation gradients, and 𝛾.

6.3.1. The right-hand side function 𝑔
The function 𝑔 defines the plastic gradient 𝛾 by equation (6.10):

D𝛾
D𝑡 = 𝐹𝑔(𝑥, 𝑡). (6.10)

We choose 𝑔 = 𝜁𝜖, where 𝑧𝑒𝑡𝑎 is a positive constant. A comparable choice is made in [11]. We justify
this expression by imagining a rubber band being stretched. If we elastically deform the rubber band
only a bit, it will return to its original shape upon release. However, if we stretch it far enough, it will
start to plastically deform. The presumption here is that the plastic deformation occurs linearly with
respect to time. Note that our choice for 𝑔 implies that even small elastic deformations result in plastic
deformation, which is not entirely in accordance with the rubber band comparison. However, stating
that the rate of change of 𝛾 should be approximately proportional to 𝜖 seems reasonable. This choice
for 𝑔 also allows for an elegant FEM scheme.

6.3.2. Parameters
The parameters for this simulation are almost all the same as in section 6.2. Since plastic deformation
affects the total contraction, we have to reconsider the magnitude of the body forces. We have chosen
�̄� and 𝜁 such that the maximal contraction amounts to around 33% (see [8]), and the length of the
tissue upon release is around 82% its original value (comparable to [11]). All the parameters for this
model can be found in table 6.2.

6.3.3. Analysis of the plots
First off, we consider figure 6.14. It shows that both elastic and plastic deformation are involved in this
simulation.

We investigate the interaction between plastic and elastic stress more closely. Consider figure 6.15.
We see that in the beginning we have 𝐹 ≈ 𝛼. Note that we have, by definition:

𝛼 = 1 − 1𝜖 . (6.11)

We see now that we 𝛼 has a large magnitude, the growth rate of 𝛾 will have a large magnitude as well.
As the magnitude of 𝛾 increases, we see that 𝐹 and 𝛼 start to diverge. When the body forces start
to decrease, we see that 𝛼 returns back to 1. This means that 𝐹 = 𝛾. This can also be seen in the
figure. Physically, this means that only plastic deformation remains once the body forces have fully
disappeared. In figure 6.14 we see that plastic deformation causes that the tissues remains contracted
after relaxation of the body forces.

Parameter Value Unit
𝐸 31 N/(g cm)ኻ/ኼ
𝜇 10ኼ (N day)/cm
𝜌 1.02 g/cm
�̄� 4.2 (N g)/(cells cm)
𝜁 0.05 -
𝑡f0 0.1 days
𝑡fm 20 days
𝑡ap 22 days

Table 6.2: The parameters used for the results in section 6.3.
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Figure 6.14: Plot of 𝑙 versus 𝑡.
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Figure 6.15: Plot of the elastic deformation gradient 𝛼 (red), plastic deformation gradient 𝛾 (blue) and
total deformation gradient 𝐹 = 𝛼𝛾 (black) versus 𝑡.

6.4. Heterogeneity using Karhunen-Loève expansions
In [1] it is stated that scar tissue has approximately 80% of the strength that healthy tissue has. This
is just one example of the heterogeneity of human skin. We can imagine that some of the parameters
we have used so far are not the exact same value all over the body, and may also vary from person to
person. In this section we will lay out a framework that captures heterogeneity and uncertainty, based
on so-called Karhunen-Loève expansions. Using this framework, we can run the one-dimensional
morphoelasticity model with heterogenous, stochastic input. After doing this for multiple inputs, we will
present some statistical results.
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Parameter Mean St. dev. Unit
𝐸 31 11 N/(g cm)ኻ/ኼ
𝜇 10ኼ 1 (N day)/cm
𝜌 1.02 0.2 g/cm
�̄� 4 2 (N g)/(cells cm)
𝜁 0.05 0.02 -

Table 6.3: The means and standard deviations used for the results in section 6.4.
.

6.4.1. Description
For an elaborate description of Karhunen-Loéve expansions the reader can, for example, resort to [19].
The normalized truncated Karhunen-Loève expansion of a zero-mean stochastic process �̂� is given by:

�̂�(𝑋) =
፧ᑤ
∑
።ኻ
�̂�።√

2
𝑛፬
sin ((2𝑖 − 1) 𝜋2𝐿𝑋), (6.12)

where �̂�። ∼ 𝒩(0, 1), i.e. �̂�። is standard normally distributed, 𝑛፬ is the number of terms, and 0 ≤ 𝑋 ≤ 𝐿.
Let us consider the Young’s modulus 𝐸. From now this will be a stochastic variable, which we will
denote by �̂�. We can generate a heterogenous realization 𝐸(𝑋),

log(𝐸(𝑋)) ∼ ℳ + 𝒮�̂�, (6.13)

i.e. 𝐸(𝑋) is a realization of a lognormal distribution with meanℳ and standard deviation 𝒮, so that:

𝐸(𝑋) = exp(ℳ + 𝒮�̂�(𝑋)). (6.14)

If we want �̂� to have mean �̄� and variance 𝑉ፄ, we need to take:

ℳ = log ( �̄�
√1 + 𝑉ፄ/�̄�ኼ

), (6.15)

and

𝒮 = √log(1 + 𝑉ፄ/�̄�ኼ). (6.16)

In the same way, we can create heterogeneous, stochastic inputs for 𝜇, 𝜌, �̄� , and 𝜁.
We will base our simulations on the confidence intervals listed in table 6.3.

6.4.2. Statistical results
Using the parameters in table 6.3, 1000 simulations were done. The histograms in figures 6.16 and
6.17 resulted for respectively the maximal contraction and final contraction of the wound.

The empirical cumulative distribution functions (cdf) in figures 6.18 and 6.19 correspond to the
histograms in figures 6.16 and 6.17 respectively.

In figure 6.20 we present the mean and 95%-confidence interval for 𝑙(𝑡) for each 𝑡 ∈ [0, 60].
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Figure 6.16: A histogram for the maximal contractions.
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Figure 6.17: A histogram for the final contractions
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Figure 6.18: Empirical cdf for the maximal contractions.
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Figure 6.19: Empirical cdf for the final contractions
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Figure 6.20: Mean (red) and 95%-confidence interval (blue) for 𝑙(𝑡) for each 𝑡.
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6.5. A two-dimensional dynamical viscoelastic model
In this section we will consider model (4.42). From a mechanical point of view, the two-dimensional
model is more advanced than the one-dimensional model. For example, we have to deal with shear
stress and Poisson’s effect. We will present some plots to develop a feel for these phenomena. Addi-
tionally, we will look at the deformation of a rectangle, and the evolution of its area in time.

6.5.1. Poisson’s effect
To illustrate Poisson’s effect, we will run the model with the following body forces:

(𝐹)ኻ(𝑥, 𝑦) = {
�̄� , −𝐿/4 ≤ 𝑥 ≤ 0,−𝐿/4 ≤ 𝑦 ≤ 𝐿/4,
−�̄� , 0 < 𝑥 ≤ 𝐿/4,−𝐿/4 ≤ 𝑦 ≤ 𝐿/4, (6.17)

(𝐹)ኼ ≡ 0. (6.18)

For Poisson’s ratio we choose to use the same value as [11], 𝜈 = 0.48. The parameters used for this
simulation can be found in table 6.4.
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Figure 6.21: Poisson’s effect. Original shape in red, and shape at 𝑡 = 5 in blue.

Parameter Value Unit
𝐸 31 N/(g cm)ኻ/ኼ
𝜇ኻ 10ኼ (N day)/cm
𝜇ኼ 10ኼ (N day)/cm
𝜈 0.49 -
𝜌 1.02 g/cm
�̄� 5 (N g)/(cells cm)
𝑡f0 0.1 days
𝑡fm 20 days
𝑡ap 20 days

Table 6.4: The parameters used for the results in section 6.5
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6.5.2. Shear stress
To illustrate shear stress, we will run the model with the following body forces:

(𝐹)ኻ(𝑥, 𝑦) = {
�̄� , −𝐿/4 ≤ 𝑥 ≤ 𝐿/4,−𝐿/4 ≤ 𝑦 ≤ 0,
−�̄� , −𝐿/4 ≤ 𝑥 ≤ 𝐿/4, 0 ≤ 𝑦 ≤ 𝐿/4, (6.19)

(𝐹)ኼ(𝑥, 𝑦) ≡ 0. (6.20)

We use the parameters listed in table 6.4. In figure 6.22 we see the deformation that occurs due to
the body forces. In figures 6.23 and 6.24 we see the normal strain in the horizontal direction, and the
shear strain.
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Figure 6.22: Unstrained rectangle (red), and a shape subject to shear deformation at 𝑡 = 5 (blue).
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Figure 6.23: Normal strain 𝜖ኻኻ at 𝑡 = 5 under body forces (6.20).
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Figure 6.24: Shear strain 𝜖ኻኼ at 𝑡 = 5 under body forces (6.20).

6.6. A two-dimensional morphoelastic model
In this section we will consider model (4.66). Compared to (4.41), this model also involves plastic
deformation. In this section we will present results regarding the deformation of a rectangle. We will
look at strain values, and the evolution of the area of the rectangle in time.

As explained in 5.2, we have to remesh in order to maintain good accuracy. After experimenting a
bit, it turns out that we need to remesh when angles go below 40 degrees. This is a fairly high angle,
which means that we have to remesh multiple times.

In figure 6.25 we see a plot the relative area of a rectangle versus time. It can be seen that between
𝑡 = 0 and 𝑡 = 20 the curve is not entirely smooth at some points. This is because at these time points
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Parameter Value Unit
𝐸 31 N/(g cm)ኻ/ኼ
𝜇ኻ 10ኼ (N day)/cm
𝜇ኼ 10ኼ (N day)/cm
𝜈 0.49 -
𝜌 1.02 g/cm
�̄� 30 (N g)/(cells cm)
𝜁 0.05 -
𝑡f0 0.1 days
𝑡fm 20 days
𝑡ap 20 days

Table 6.5: The parameters used for the results in section 6.6.

we had to remesh.
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Figure 6.25: Plot of relative area of an initial rectangle versus 𝑡.

The parameters used in this section can be found in table 6.5





7
Conclusion, discussion and

recommendations
In this thesis we explored some morphoelastic models. The main initial goal was to gain more under-
standing in these models. We reconstructed the models, starting with rudimentary ones, and ending
with a full two-dimensional model.

After the reconstruction of the morphoelastic models, we turned to a novel framework for the in-
corporation of heterogeneity and stochastics into the one-dimensional model. We were also able to
present some statistical results.

Although from a qualitative standpoint the initial goal was hopefully achieved, there are some as-
pects that could be improved.

Firstly, for a lot of parameters no experimental data is available. In particular, for the fundamental
‘morphoelastic parameter’ that partially controls the rate of change of plastic deformation, no estimates
are available in the literature. Therefore, from a quantitative standpoint, there is a lot of room for
improvement.

Secondly, the models could be expanded, to include more relevant wound healing effects. An
interesting option could be to include the remodeling of the extra-cellular matrix by fibroblasts. This
amounts to constructing an anisotropic model, and a means of incorporating collagen fibre orientation.
Also, fibroblast diffusion would need to be included. In [11], diffusion was included. Also, collagen
fibre orientation and anisotropy of the tissue are discussed. However, these two phenomena are not
included in the two-dimensional model.
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A
Picard iterations

We will prove here that Picard iterations or fixed point iterations converge under the right conditions.

Theorem 2. Let Ω be a complete metric space and let 𝑓 ∶ Ω → Ω be a Lipschitz continuous function
with Lipschitz constant 𝕃 < 1. Then 𝑓 has a unique fixed point, i.e. a point 𝑥 ∈ Ω such that 𝑥 = 𝑓(𝑥).
Picard iterations will always converge to this point, i.e. if 𝑥፧ ∶= 𝑓(𝑥፧ዅኻ), then 𝑥፧ → 𝑥, 𝑛 → ∞.

Proof. Let 𝑥ኺ ∈ Ω be an initial guess, and let 𝑥፧ ∶= 𝑓(𝑥፧ዅኻ), so that {𝑥፧}፧∈ℕ ∶= {𝑥ኺ, 𝑥ኻ, …} is a sequence
of Picard iterations. We have:

𝑑(𝑥፧ , 𝑥፧ዅኻ) = 𝑑(𝑔(𝑥፧ዅኻ), 𝑔(𝑥፧ዅኼ))
≤ 𝕃𝑑(𝑥፧ዅኻ, 𝑥፧ዅኼ)
≤ …
≤ 𝕃፧ዅኻ𝑑(𝑥ኻ, 𝑥ኺ).

Since 𝕃 < 1, we see that {𝑥፧} is a Cauchy sequence. Since Ω is complete, it follows that {𝑥፧} converges
to a limit 𝑥 ∈ Ω.

Suppose that 𝑥 is not a unique fixed point of 𝑓. Then apparently there is an initial guess such that
the Picard iterations converge to a fixed point 𝑦 ≠ 𝑥. Since 𝑥 = 𝑓(𝑥) and 𝑦 = 𝑓(𝑦) we then have
𝑑(𝑥, 𝑦) = 𝑑(𝑓(𝑥), 𝑓(𝑦)), contradicting the Lipschitz condition. So 𝑥 is unique.
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B
Element integrals

Here we compute the element integrals that are relevant to the derivations in chapter 5. As a reference
we used [7].

One-dimensional element integrals
Assume we integrate over an element el. We have:

∫
el
𝜙ኼ፦ d𝑥 =

ℎ
3 , (B.1)

∫
el
𝜙፦𝜙፦ዄኻ d𝑥 =

ℎ
6 , (B.2)

∫
el
𝜙ኽ፦ d𝑥 =

ℎ
4 , (B.3)

∫
el
𝜙ኼ፦ዄኻ𝜙፦ d𝑥 =

ℎ
12 . (B.4)

where el is the element with vertices 𝑥፦ and 𝑥፦ዄኻ and ℎ = 𝑥፦ዄኻ − 𝑥፦ is the length of the element.

Two-dimensional element integrals
We write 𝜙።(𝑥, 𝑦) = 𝛼። + 𝛽።𝑥 + 𝛾።𝑦, where 𝛼። , 𝛽። and 𝛾። are defined as in section 5.2.

An important fact is the following, which was proven by Holand and Bell:

Theorem 3. If 𝜙ኻ, … , 𝜙፧ዄኻ are linear basis functions on a simplex 𝑆 ⊂ ℝ፧, so 𝑆 has vertices xኻ, … ,x፧ዄኻ
and 𝜙።(x፣) = 𝛿።፣ , 𝑖, 𝑗 = 1,… , 𝑛 + 1, then we have:

∫
ፒ
𝜙፦Ꮃኻ ⋯𝜙፦ᑟᎼᎳ፧ dΩ = 𝑚ኻ!⋯𝑚፧ዄኻ!

(𝑚ኻ +⋯+𝑚፧ዄኻ + 𝑛)!
|Δ|,𝑚ኻ, … ,𝑚፧ዄኻ ∈ ℕ. (B.5)

where |Δ| is the volume of 𝑆 multiplied by 2.

Note that in two-dimensional space we are dealing with triangles, and |Δ| can be computed by doing
the following: translate the triangle so that one vertex will be the origin; append zeros to the vectors
corresponding to the vertices to make them three-dimensional; compute the cross product of the two
vectors defined by the other two - translated - vertices; take the absolute value. An example would be
the triangle given by (1, 1), (1, 2) and (2, 1), which would give:

|Δ| = |((1, 2, 0)ፓ − (1, 1, 0)ፓ) × ((2, 1, 0)ፓ − (1, 1, 0)ፓ)| = 1. (B.6)
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Assume we integrate over a triangular element el, with vertices 1, 2 and 3. We have, using the result
by Holand and Bell:

∫
el
𝜙።𝜙፣ dΩ = {

ኻ
ኼኾ |Δ|, if 𝑖 ≠ 𝑗,
ኻ
ኻኼ |Δ|, if 𝑖 = 𝑗, (B.7)

∫
el
𝜙።
𝜕𝜙፣
𝜕𝑧 dΩ = 𝛾፣∫፞ᑞ

𝜙። dΩ =
1
6𝛾፣|Δ|, (B.8)

∫
el
𝜙።𝜙፣

𝜕𝜙፣ᖤ
𝜕𝑧 dΩ = 𝛾፣ᖤ ∫

፞ᑞ
𝜙።𝜙፣ dΩ = {

ኻ
ኼኾ𝛾፣ᖤ |Δ|, if 𝑖 ≠ 𝑗,
ኻ
ኻኼ𝛾፣ᖤ |Δ|, if 𝑖 = 𝑗. (B.9)
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