Literature study: High Order Material Point Method

Roel Tielen
February 112016

THDelft

Outline

- Introduction master project
- Description MPM
- Numerical challenges with MPM
- Benchmark problems
- Prelimenary numerical results
- Outlook

THDelft

Introduction master project

Objective:

Development of a class of high-order material point methods that:

- solve/reduce some numerical challenges within classical MPM
- reduce computing times
- enable a more accurate prediction of physical quantities

Material point method

Combined particle－mesh approach：
－Material points represent a continuum
－Equation of motion is solved on fixed background grid
－Material points move through domain over time

Description MPM

A time step of MPM consists of three steps:
(1) Project particle properties onto nodes
(2) Solve equation of motion on background grid
(3) Update particle properties from solution at the nodes

Projection from particles to nodes

Construction of mass matrix \mathbf{M}^{t} and force vector $\mathbf{F}^{\text {int,t }}$

$$
\begin{aligned}
& \mathbf{M}_{(i, j)}^{t}=\int_{\Omega} \phi_{i}(x) \phi_{j}(x) \rho(x) \mathrm{d} x \\
& \approx \sum_{p=1}^{n_{p}} \phi_{i}\left(x_{p}^{t}\right) \phi_{j}\left(x_{p}^{t}\right) m_{p} \\
& \mathbf{F}_{(i)}^{\mathrm{int}, \mathrm{t}}=\int_{\Omega} \sigma(x) \nabla \phi_{i}(x) \mathrm{d} x \quad \approx \sum_{p=1}^{n_{p}} \sigma_{p}^{t} \nabla \phi_{i}\left(x_{p}^{t}\right) V_{p}^{t}
\end{aligned}
$$

Solving equation on background grid

- At each time step we obtain

$$
\mathbf{M}^{t} \mathbf{a}^{t}=\mathbf{F}^{t}
$$

- Determine lumped mass matrix

$$
\mathbf{M}^{t} \rightarrow \mathbf{M}_{\mathbf{L}}{ }^{t}
$$

- Solve equation of motion for $i \in\left\{1, \ldots, n_{n}\right\}$

$$
\mathbf{a}_{i}^{t}=\frac{\mathbf{F}_{i}^{t}}{\mathbf{M}_{\mathbf{L}(i, i)}^{t}}
$$

Update particle properties

Update particle properties (velocity, stress, etc.) from nodal quantities by evaluating basis functions at particle positions.

Example:

$$
\begin{aligned}
v_{p}^{t+\Delta t} & =v_{p}^{t}+\Delta t \sum_{i=1}^{n_{n}} \phi_{i}\left(x_{p}^{t}\right) a_{i}^{t} \\
\Delta \epsilon_{p}^{t+\Delta t} & =\sum_{i=1}^{n_{n}} \nabla \phi_{i}\left(x_{p}^{t}\right) \Delta u_{i}^{t+\Delta t}
\end{aligned}
$$

Numerical challenges with MPM

The quality of the MPM solution is affected by:

- Grid crossing errors
- Quadrature rule used in MPM

Grid crossing error

Grid crossing:

The movement of a particle from one element to another element

Effect of grid crossing:

- Non-physical increase/decrease of internal force at node
- Influences quality of MPM solution

THDelft

Grid crossing error

Internal force at node x_{i} is determined by:

$$
\mathbf{F}_{(i)}^{\mathrm{int}, \mathrm{t}}=\sum_{p=1}^{n_{p}} \sigma_{p}^{t} \nabla \phi_{i}\left(x_{p}^{t}\right) V_{p}^{t}
$$

In standard MPM, $\nabla \phi_{i}$ is discontinuous at element boundary:

Quadrature rule MPM

Within MPM particles serve as integration points:

$$
\int_{\Omega} \phi_{i}(x) \phi_{j}(x) \rho(x) \mathrm{d} x \approx \sum_{p=1}^{n_{p}} \phi_{i}\left(x_{p}^{t}\right) \phi_{j}\left(x_{p}^{t}\right) m_{p}
$$

This numerical integration rule is in general not exact.

Benchmark problems

Three benchmark problems are considered:

- Vibrating string with initial velocity
- Soil column under self weight
- Vibrating bar with dynamic traction ${ }^{1}$
${ }^{1}$ M. Steffen, R. M. Kirby, M. Berzins. Analysis and reduction of quadrature errors in the material point method (MPM). Int. J. Numer. Methods. Engrg, 76 (2008), pp. 922-948. TUDelft

Vibrating string

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{E}{\rho} \frac{\partial^{2} u}{\partial x^{2}}
$$

Boundary conditions:

$$
\begin{aligned}
& u(0, t)=0 \\
& u(L, t)=0
\end{aligned}
$$

Initial conditions:

$$
\begin{aligned}
& u(x, 0)=0 \\
& \frac{\partial u}{\partial t}(x, 0)=v_{0} \sin \left(\frac{\pi x}{L}\right)
\end{aligned}
$$

Soil column under self weight

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{E}{\rho} \frac{\partial^{2} u}{\partial y^{2}}-g
$$

Boundary conditions:

$$
u(0, t)=0
$$

$$
\frac{\partial u}{\partial y}(H, t)=0
$$

Initial conditions:

$$
\begin{gathered}
u(y, 0)=0 \\
\frac{\partial u}{\partial t}(y, 0)=0
\end{gathered}
$$

Implementation MPM

- Modified Lagrangian algorithm ${ }^{2}$
- Euler-Cromer time integration scheme
- Piecewise linear basis functions
- 1D implementation in Matlab
${ }^{2}$ (AL)-Kafaji, I, Formulation of a dynamic material point method (MPM) for geomechanical problems, Institut für Geotechnik der Universität Stuttgart, (2013) TUDelft

Results

In this presentation focus on：
－Investigation of grid crossing error
－Spatial convergence

Numerical Approximation：

$$
u_{e x}=u_{\text {num }}+\mathcal{O}\left(\Delta x^{n}\right)+\mathcal{O}(\Delta t)
$$

RMS Error：

$$
e^{R M S}=\sqrt{\frac{1}{n_{p}} \sum_{p=1}^{n_{p}}\left(u_{n u m}\left(x_{p}, t\right)-u_{e x}\left(x_{p}, t\right)\right)^{2}}
$$

THDelft

Vibrating string

THDelft

ㅌ. わQल

Vibrating string

For the vibrating string problem, when particles (almost) stay equally distributed:

- MPM shows $2^{\text {nd }}$ order convergence in space.
- Increasing number of PPC, decreases the RMS error.

Order of convergence consistent with literature. ${ }^{3}$

[^0]
Soil column under self weight

THDelft

Soil column under self weight

40 elements, no grid crossing

Soil column under self weight

80 elements, grid crossing

T̛UDelft

Soil column under self weight

－Convergence only for a low number of elements．
－Grid crossings seriously effect quality of the solution．

Similar observations by Bardenhagen et al．${ }^{4}$ and Steffen et al．${ }^{5}$

[^1]
High order MPM

Quadratic B-spline basis functions:

- are positive functions
- have continuous derivatives
- lead to lower quadrature errors ${ }^{6}$
- possess partition of unity property

B-spline basis functions (seem) well suited for MPM!

${ }^{6}$ M. Steffen, R. M. Kirby, M. Berzins. Analysis and reduction of quadrature errors in the material point method (MPM). Int. J. Numer. Methods. Engrg, 76 (2008), pp. 922-948. TUDelft

B-splines

TUD

Outlook

B-spline MPM already implemented, next steps:

- Comparison with standard MPM (Benchmark problems)
- Apply an MLS approach to decrease quadrature error
- Decrease quadrature error with B-spline approximation
- Investigate $3^{\text {rd }}$ order B-spline basis functions
- Extension of B-spline MPM to 2D

Linear vs. B-spline MPM

fuDelft

Linear vs. B-spline MPM

fudelft

[^0]: ${ }^{3}$ M. Gong. Improving the Material Point Method. The University of New Mexico (2015)

[^1]: ${ }^{4}$ S．G．Bardenhagen，E．M．Kober．The generalized interpolation material point method．Comput Model Engrg Sci， 5 （2004），pp．477－495．
 ${ }^{5}$ M．Steffen，R．M．Kirby，M．Berzins．Analysis and reduction of quadrature errors in the material point method（MPM）．Int．J．Numer．Methods．Engrg， 76 （2008），pp．922－948． TUDelft

