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1 Abstract

The objective of this literature study report is to give an overview of the numerical methods used
to model reservoir simulation. In particular, we focus on iterative linear solvers with precon-
ditioner and deflation techniques. Simulating one-phase flow in a reservoir with heterogeneous
porous media leads to a system of large linear equations after using discretization method. Those
equations are derived from a mesoscopic model that uses mass-conservation law and Darcy’s law
to describe ground flow problem. The obtained linear equations are large and ill-conditioned, i.e.
the matrix has high condition number. To solve this system is to use the Conjugate Gradient
method. If the approach is insufficient, preconditioning techniques have to be used. Recently,
Proper Orthogonal Decomposition (POD) based on system information has been found to be a
good approach to accelerate the solving process further. The POD method constructs the basis
matrix with the use of snapshots, known solutions of the linear system, to reduce the condition
number. New POD based methods have been derived for this purpose. The first method is
a deflation technique that uses the POD basis matrix is used as deflation-subspace matrix [1].
Another method to use the basis matrix is to construct a ROM-based preconditioner proposed
by [2].

4



Preface

‘Well begun is half done’

-Jenny Tjan, 2018
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2 Introduction

This report investigates one-phase flow through heterogeneous porous media on the mesoscopic
scale. The mathematical general model is derived from mass-conservation law and Darcy’s law.
It is hard to obtain an accurate solution of the general problem and to simulate numerically.
To model the flow problem and obtain a good approximation of the solution, it is sufficient to
describe it with general trends in the reservoir flow pattern.

After discretizing the flow problem, we obtain a set of nonlinear equations. The equations will
be linearized with Newton Rapson to obtain a linear system. The linear system is large and
ill-conditioned, i.e. the matrix has high condition number. To solve the linear system, the it-
erative method Conjugate Gradient is used. The next step is to use preconditioning techniques
to achieve faster convergence. The following step is to use deflation methods. For this method,
the deflation subdomain matrix is needed and chosen so that the flow problem can be solved.

Recently, Proper Orthogonal Decomposition (POD) based on known information has been found
to be a good approach to accelerate the solving process. The POD method requires snapshots,
known solutions of the linear system, to constructs the basis matrix. This basis matrix is used
as deflation subdomain matrix proposed by [1]. Also, the basis matrix can be used to construct
a ROM-based preconditioner proposed by [2]. The different way to use the POD basis matrix
is interesting to be investigated and compared.

The methods will be applied to incompressible case to get a basic idea about the convergence
and amount of iterations are needed to solve the system. Thereafter, different test problems for
the constant compressible case for the one-phase flow through porous media are given. These
test problems will be more specified in the next report. In the end, the research question will
be given in the conclusion.
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3 Preliminaries

This section gives a brief introduction of linear algebra theory that will be used in this report.

3.1 Notation

The column vector x ∈ Rn will be denoted as

x =

x1...
xn

 . (3.1)

The matrix A ∈ Rn×m will be denoted as

A =

a11 . . . a1m
...

. . .
...

an1 . . . anm

 . (3.2)

3.2 Definition

Definition 3.1. Let A be an n × n matrix. λ is called an eigenvalue of A if there exists an
v 6= 0 such that

Av = λv. (3.3)

The set of eigenvalues of A is given by

λ(A) = {λ1, . . . , λn}, (3.4)

where λi is an eigenvalue of A.

Definition 3.2. Let A be an n×n matrix, A is called symmetric positive definite (SPD) if for
every x ∈ Rn\{0}

x>Ax > 0. (3.5)

A is called symmetric positive semi definite (SPSD) if for every x ∈ Rn

x>Ax ≥ 0. (3.6)

Definition 3.3. Let x,y ∈ Rn, the inner product is defined as

〈x,y〉 = x>y. (3.7)

Definition 3.4. Let A be an n× n matrix, the 2-norm is defined as

‖A‖2 =
√
λmax(A>A). (3.8)

Definition 3.5. Let x,y ∈ Rn, and A is SPD, the A-norm and A-inner product is defined
respectively as

‖x‖A =
√
〈Ax,x〉 and 〈x,y〉A = 〈Ax,y〉 . (3.9)

Definition 3.6. Let A be an n× n matrix with eigenvalues λ1, . . . , λn. The condition number
of A is defined as

κ2(A) = ‖A‖2‖A
−1‖ 2. (3.10)

If A is SPD with real eigenvalues λ1, . . . , λn, then

κ2(A) =
λmax(A)

λmin(A)
, (3.11)

where λmax(A) = max1≤i≤n λi and λmin(A) = min1≤i≤n λi.
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4 Reservoir Simulation

Two models are needed to describe reservoir flow through porous media, which are the math-
ematical model and the geological model. The mathematical model consists of a set of partial
differential equations to describe flow through porous media. The equations are derived from
for mass-conservation law and Darcy’s law, which will be more explained in Section 4.2.1.

4.1 Porous Media

The geological model describes the porous media rock formation and is constructed such that
the model reproduce geological heterogeneity in the reservoir rock.The rock formation is defined
by rock porosity ϕ, i.e. the ability of the rock to store fluid, and the rock permeability K, i.e.
the ability to transport fluid.
The porosity ϕ is defined as the percentage of void in the porous media and 1−ϕ is the percent-
age of solid material, i.e. rock matrix. There are interconnected pore space in the porous media
where fluid can flow through and disconnected pores where fluid can only be stored. Since it is
not interesting to look at disconnected pores, the effective porosity will be considered that only
consider connected pores where fluid can flow through.
The rock permeability K describes the basic flow of porous media and it measures its ability to
transmit a single fluid when the void space is filled with the fluid. Mathematically, the ability
of a fluid to flow in a direction is described using a tensor.

This report will only consider a mesoscopic model of the problem. The fundamental equa-
tions of this model describe the fluid flow as continuity of fluid phases and uses Darcy’s law to
describe the speed of the fluid in porous media.

4.2 Single-phase flow

In this section, we will give a basic review of the mathematical model of a single-phase flow
through porous media. The general model of the physical problem will be derived. However,
obtaining an detailed solution of the general model requires a lot of computational time and the
model is hard to simulate. To get a good approximation, it is sufficient to describe the physical
problem with general trends in the reservoir flow pattern. Therefore, a few assumptions will be
made such that it does not need a large amount of computer resources to model the problem.

4.2.1 Mathematical Model

The mathematical model of a single-phase in- and outflow though a porous medium is used to
predict and analyse fluid flow while consider mass conservation.The equation is given in Equation
(4.1):

α
∂(ρϕ)

∂t
+∇(αρv) = αρq, (4.1)

where ρ(t,x) is the fluid density, α(x) is a geometric factor, g is the gravity constant and q(t,x) is
a source term. The geometric factor depends on the dimension of the problem. For 1D problem,
we have α(x) = A(x), where A is the cross-sectional area. For 2D problem, the geometric factor
α(x) = h(x, y), where h is the reservoir height. We only consider a 3D model of the problem,
thus α(x) = 1. The mesoscopic model consider Darcy’s velocity v(t,x) that is defined as

v = −K

µ
(∇p− ρg∇d), (4.2)
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where p(t,x) is the pressure, µ is the fluid viscosity, K(x) is the rock permeability and d(x) is
the reservoir depth. Combining (4.1) and (4.2) gives

∂(ρϕ)

∂t
−∇

(
ρ
K

µ
(∇p− ρg∇d)

)
= ρq. (4.3)

The fluid viscosity µ and rock permeability hardly depends on the pressure in our case, so they
will be taken independent of the pressure and constant. Assuming the fluid density depends on
the pressure, the liquid compressibility cl can be defined as

cl(p) :=
1

ρ

∂ρ

∂p
. (4.4)

Similar, the relation between rock porosity and pressure can be defined with rock compressibility
cr

cr(p) :=
1

ϕ

∂ϕ

∂p
. (4.5)

Note that Equation (4.5) and (4.4) are first order ordinary differential equations. Let the total
compressibility ct be defined as

ct = cr + cl. (4.6)

Since fluid density and rock porosity depend on the pressure, the next relation can be obtained

∂(ρϕ)

∂t
=
∂ρ

∂p

∂p

∂t
+
∂ϕ

∂p

∂p

∂t
= ρϕ

∂p

∂t

(
1

ρ

∂ρ

∂p
+

1

ϕ

∂ϕ

∂p

)
. (4.7)

Then substitute Equation (4.6) in Equation (4.3) using Equation (4.7) to get the general result
given in Equation (4.8).

The general nonlinear partial differential equation for the dependent variable pressure p is given
by

ctρϕ
∂p

∂t
−∇

(
ρ
K

µ
(∇p− ρg∇d)

)
= ρq (4.8)

The quantities and dimensions are given in appendix A.

4.2.2 Boundary Conditions

In reservoir simulation one would describe a closed flow system and provide boundary conditions
to obtain an unique solution. For a closed flow system, the pressure related boundary conditions
corresponds to Dirichlet boundary conditions. The homogeneous boundary condition is defined
as:

p = 0 for x ∈ ∂Ω, (4.9)

where ∂Ω denotes the boundary of the Porous media Ω.
Another boundary condition that is often prescribed for this flow problem is in- and outflow
related conditions, that corresponds to Neumann Boundary conditions:

v · n = 0 for x ∈ ∂Ω, (4.10)

where n is defined as normal vector orthogonal to the boundary ∂Ω.

The boundary conditions should be chosen such that the solution is well-posed.
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4.3 Incompressible Model

The basic model of simulation one-phase flow through porous media is assuming the density and
the porosity are pressure independent, i.e. ∂ρ

∂p = ∂ϕ
∂p = 0. Therefore, the incompressible model is

also time-independent and Equation (4.8) becomes:

−∇
(
ρ
K

µ
(∇p− ρg∇d)

)
= ρq. (4.11)

Assuming isotropic permeability, absence of gravity, fluid with constant velocity and density,
Equation (4.11) becomes

− 1

µ
∇(K∇p) = q. (4.12)

Equation (4.12) is an example of an elliptic equation with constant coefficients µ,K. This will
be solved numerically and the numerical scheme will be given in the next section.

4.3.1 Discretization

The Method of lines is used to solve Equation (4.12). A finite difference scheme with cell cen-
tral differences is used to approximate spatial derivatives. Assuming a uniform grid with grid
size ∆x,∆y,∆z for the dimension x, y, z, respectively. Let (i, j, l) be the centre of the cell for
the x-direction, y-direction and z-direction respectively. Also, the pressure in the cell (i, j, l) is
defined as p(xi, yj , zl) = pi,j,l.

Equation 4.12 can be rewritten as

− 1

µ

[
∂

∂x

(
k
∂p

∂x

)
+

∂

∂y

(
k
∂p

∂y

)
+

∂

∂z

(
k
∂p

∂z

)]
= q. (4.13)

The first term in the equation in x-direction can be written as

∂

∂x

(
k
∂p

∂x

)
≈
ki+ 1

2
,j,l(pi+1,j,l − pi,j,l)− ki− 1

2
,j,l(pi,j,l − pi−1,j,l)

(∆x)2
+O

(
(∆x)2

)
, (4.14)

where ki+ 1
2
,j,l denote the harmonic averaging of grid-block permeabilities (i+ 1, j, l) and (i, j, l)

given by

ki+ 1
2
,j,l =

2
1

ki+1,j,l
+ 1

ki,j,l

. (4.15)

Let the transmissibility between cell (i+ 1, j, l) and (i, j, l) be given by

Ti+ 1
2
,j,l :=

1

µ

2∆y∆z

∆x
ki+ 1

2
,j,l. (4.16)

Similarly expression can be obtained for the y, z-direction.

For a cell (i, j, l) the discretisation of Equation (4.13) is given by

−pi−1,j,lTi− 1
2
,j,l − pi,j−1,lTi,j− 1

2
,l − pi,j,l−1Ti,j,l− 1

2

+pi−1,j,l

(
Ti− 1

2
,j,l + Ti,j− 1

2
,l + Ti,j,l− 1

2
+ Ti+ 1

2
,j,l + Ti,j+ 1

2
,l + Ti,j,l+ 1

2

)
(4.17)

−pi+1,j,lTi+ 1
2
,j,l − pi,j+1,lTi,j+ 1

2
,l − pi,j,l+1Ti,j,l+ 1

2
= ∆x∆y∆z qi,j,l.

The transmissibility matrix T can be defined with the given boundary conditions. In the end,
Equation (4.12) can be written as

Tp = q, (4.18)

which is a system of linear equations.
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4.4 Compressible Model

For the compressible model, it is not easy to derive the discretization to solve the problem
numerically. The compressible model is, unlike the incompressible model, time-dependent. It
means that it would take more computational time to get results. Like mentioned before, it
would take a lot of computer resources to obtain a solution of the flow problem. Therefore, only
the constant compressible model would be explained. More information can be found in [4].

4.4.1 Constant Compressibility

Assuming that the fluid density and rock porosity are constant compressible, i.e. cl, cr ∈ R. The,
the total compressibility is also constant. Therefore, the fluid density and porosity are linearly
dependent on the pressure. The initial condition for the pressure is defined as p

∣∣
t=0

= p0,
without loss of generality let p0 = 0. Then, the initial conditions for rock porosity and fluid
density are:

ρ

∣∣∣∣
p=p0

= ρ0 and ϕ

∣∣∣∣
p=p0

= ϕ0. (4.19)

Inserting the initial conditions in Equation (4.5) and Equation (4.4) gives:

ϕ = ϕ0e
crp and ρ = ρ0e

clp. (4.20)

For small values of the fluid compressibility, the fluid density can be written by using linearization

ρ ≈ ρ0(1 + clp). (4.21)

If the rock porosity is pressure independent, Equation (4.8) can be written as

ϕ
∂ρ(p)

∂t
−∇

(
ρ(p)

K

µ
(∇p− ρ(p)g∇d)

)
= ρ(p)q. (4.22)

Assuming isotropic permeability and absence of gravity and fluid with constant velocity results
in

ϕ
∂ρ(p)

∂t
− ρ0
µ
∇(K∇p)− ρ0cl

µ
∇(pK∇p) = ρ(p)q. (4.23)

If the fluid compressibility is sufficient small, in the sense of cl∇(pK∇p)� ∇(K∇p), the term
cl∇(pK∇p) can be neglected. In the end, the result is

ϕ
∂ρ(p)

∂t
− ρ0
µ
∇(K∇p) = ρ(p)q. (4.24)

Discretization

The difference between Equation (4.12) and Equation (4.24) is the time dependence. Equation
(4.24) can be discretizated in the same manner as in the incompressible case, and written in the
form:

ϕ
∂ρ(p)

∂t
+ Tp = q̄(p), (4.25)

where the source term is defined as q̄(p) = ρ(p)q and T is the transmissibility matrix.
In this case, Euler Backwards will be used to solve this system and will be rewritten as

V
ρ(pk+1)− ρ(pk)

∆tk
+ Tpk+1 = q̄(pk+1), (4.26)

where ∆tk = tk+1 − tk and V is the accumulation matrix defined as

V = ∆x∆y∆zϕIn, (4.27)

where In ∈ Rn×n is the identity matrix.
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4.5 Well Model

Usually, in reservoir simulation, the closed flow system is described in combination with a well
model as source term. Fluids are injected or produced in a well at constant bottom-hole pressure
or a constant rate. The inflow performance is defined by the bottom-hole pressure with surface
flow rate. The simplest model is the Peaceman linear model is defined by [3, 4]

qi,j,l = J(pi,j,l − pbhi,j,l), (4.28)

where pbhi,j,l is the bottom-hole pressure in cell (i, j, l) and J is the productivity index.
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5 Iterative Numerical Methods

The partial differential equation has been discretized in the following form:

V
dρ(p)

dt
+ Tp = q(p), (5.1)

where V ∈ Rn×n is the accumulation matrix which is strictly positive, T is the transmissibility
matrix which is SPD, p is the pressure which is unknown and q is the source vector. The
unknown time variable dp

dt is approximated by using the Euler Backwards method. Let the time
step size be defined by ∆tk = tk+1 − tk. Equation (5.1) is discretized in time by

V
ρ(pk+1)− ρ(pk)

∆tk
+ Tpk+1 = q(pk+1). (5.2)

The equation is nonlinear and is solved to find the unknown pressure p by using linearization
methods, i.e. Newton-Raphson. For every timestep, it can be written as a system of linear
equations in the form of

Ax = b, (5.3)

where A is a large SPD matrix, which makes it suitable to use iterative methods. This section
will start with explaining Newton-Raphson and defining A more precisely. Thereafter, iteration
methods like the Conjugate Gradient, preconditioner techniques and deflation methods will be
explained. Hereafter, an overview of the POD method will be given and show that it could be
used as deflation-subspace matrix and preconditioner.

5.1 Newton-Raphson

The Newton-Raphson method is used to linearize nonlinear equations. First, for an one-
dimensional case, function h(x) would be defined such that h(x) = 0. The iteration steps
are found by using a Taylor expansion. Start with an initial guess x0 and for each the iteration
step, compute

xk+1 = xk − h(xk)

h′(xk)
, (5.4)

while assuming h′(xk) 6= 0 for every step k. Depending on the choice of the initial guess, this
method will converge.
For the multidimensional case, the same process can be used. Let f(x) be an n-dimensional
function. Assume x∗ = xk + δx where f(x∗) = 0, then the Taylor expansion around point xk is

f(xk + δx) ≈ f(xk) + Jf (x
k)δx, (5.5)

where Jf is de Jacobian of f . Recall, f(x∗) = 0, thus to find δx one need to solve the linear
system

Jf (x
k)δx = −f(xk). (5.6)

Thereafter, update xk+1 = xk + δx. The algorithm for every iteration is defined as

Algorithm 1 Newton-Raphson

1: Initial: p0, ε
2: while

∣∣pk+1 − pk
∣∣ > ε do

3: Solve: Jf (p
k)δp = −f(pk)

4: Update: pk+1 = pk + δp
5: k = k + 1

14



Example

The heat equation with nonlinear source term is defined as

∂T

∂t
=
∂2T

∂x2
+ T (T − 1) for 0 < x < 1, t > 0, (5.7)

with homogeneous Dirichlet boundary conditions T (0) = T (1) = 0.
To illustrate how Newton-Raphson works, only the steady state of the problem will be solved,
i.e. ∂T

∂t = 0. The analytic solution for this problem is

T (x) = 0 for 0 < x < 1. (5.8)

To solve this problem numerically, we use a uniform gridsize n = 4 with ∆x = 0.25. Hence, the
function f(T) can be defined as

f(T) =
1

∆x2


−2 1
1 −2 1

1 −2 1
1 −2 1

1 −2



T1
T2
T3
T4
T5

 (5.9)

+


T1(T1 − 1)

T2(T2 − 1)
T3(T3 − 1)

T4(T4 − 1)
T5(T5 − 1)

.

Newton-Raphson will be used to solve f(T). The Jacobian matrix is defined as

Jf (T) =
1

∆x2


−2 1
1 −2 1

1 −2 1
1 −2 1

1 −2

+ 2


T1

T2
T3

T4
T5

−


1
1

1
1

1

. (5.10)

Choose as initial condition

Tint =
[
0.25 0.25 0.25 0.25 0.25

]>
(5.11)

with stop criteria 10−4. After 6 iterations the steady state solution is

Tss ≈
[
0 0 0 0 0

]>
, (5.12)

with error 2.4559 · 10−31. The solution found with the numerical scheme is close to the analytic
solution with a small error.

For the original problem, Equation (5.2) is nonlinear and multidimensional. Define the function

f(pk+1; pk) = V
ρ(pk+1)− ρ(pk)

∆tk
+ Tpk+1 − q̄(pk+1). (5.13)

This will be used to find the solution for the pressure p.

15



5.2 Basic Iterative Method

When matrices are very large, it is time-consuming to solve the system Ax = b with direct
solution methods. Therefore, another way to solve the system is by using iterative methods.
The basic iterative method goes as follows: Split A = M − N such that M−1 exists. The
iterative condition for x can be derived from

Ax = b⇒Mx = b + Nx. (5.14)

Thus, the result is
xk+1 = xk + M−1rk, (5.15)

where rk = b −Axk is the residual. The residual denotes the difference between the iterative
solution and true solution.
There are different choices for M. The Jacobi method uses M = diag(A) and Gauss-Seidel uses
M = L, where L is the lower triangle of A.
The iterative method goes as follows: Choose initial guess x0 and after k iterations the iterative
solution can be written as.

x0 = x0

x1 = x1 + M−1r1 = x0 + M−1r0

x2 = x2 + M−1r2

= . . . = x0 + M−1AM−1r0 + 2M−1r0

etc.

It follows that the iterative solution can be written as

xk = x0 + span
{

M−1r0,M−1AM−1r0, . . . , (M−1A)k−1M−1r0
}
. (5.16)

The Krylov subspace of dimension k is defined as

Kk(A, r) := span
{

Ar,A2r, . . . ,Ak−1r
}
. (5.17)

Hence, the iterative solution can be written as

xk = x0 +Kk(M−1A,M−1r0). (5.18)

The matrix M is also called a preconditioner, which will be explained later. In the following
section, the Conjugate Gradient method will be explained by using M = I.

5.3 Conjugate Gradient

Conjugate Gradient (CG) is an iterative method that is used for SPD matrices. The purpose of
CG is to construct a sequence {xk}k such that it minimizes the A-norm of the error:

min
xk∈Kk(A,r0)

‖x− xk‖A, (5.19)

where x is the true solution. CG uses search vectors
{
pi
}
i
that are defined such that

〈
Api,pj

〉
=

0 for every i 6= j. Also, the residuals should be orthogonal hence
〈
ri, rj

〉
= 0 for every i 6= j.

With every iteration step, there will be updates for the solution and residual defined as

xk+1 = xk + αkpk and rk+1 = rk − αkApk, (5.20)

respectively, where αk is chosen such that it minimizes Equation (5.19). Therefore αk =
〈rk,rk〉
〈Apk,pk〉 . The search vectors are updated as

pk+1 = rk+1 + βkpk. (5.21)

The method is summarized in Algorithm 2 and can be found in [5, 6].
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Algorithm 2 Conjugate Gradient

1: Initial: x0, ε
2: Compute: r0 = b−Ax0 and p0 = r0

3: for k = 0, . . . do
4: while rk > ε do

5: αk =
〈rk,rk〉
〈Apk,pk〉

6: xk+1 = xk + αkpk

7: rk+1 = rk − αkApk

8: βk =
〈rk+1,rk+1〉
〈rk,rk〉

9: pk+1 = rk+1 + βkpk

Convergence

After k iterations, the error in the A-norm is bounded by

‖x− xk‖A ≤ 2‖x− x0‖A

(√
κ2(A)− 1√
κ2(A) + 1

)k
. (5.22)

The proof can be found in [7].

5.4 Preconditioner

The convergence depends on the condition number of the matrix. Preconditioners can be used
to achieve a faster convergence by reducing the condition number. The preconditioner matrix
M is applied to the system Ax = b as

M−1Ax = M−1b. (5.23)

The system given in Equation (5.23), M−1A is not necessary SPD, thus the system is redefined
to

Ax = b, (5.24)

where A = M− 1
2 AM− 1

2 , x = M
1
2 x and b = M− 1

2 b. With extra conditions that M should be
SPD and M− 1

2 exists and is symmetric. It follows that A is SPD, proof can be found in [7].
There are many choices that can be used as preconditioner. If M = I, then this is the iterative
method from before and the condition number remain unchanged. If M = A, the condition
number is equal to 1 and the solution can be found in one step. It is often hard to compute
A−1, so it is often not chosen as preconditioner.

5.4.1 Preconditioned Conjugate Gradient

The new system using a preconditioner is defined as

Ax = b, (5.25)

where A is SPD, thus Conjugate Gradient algorithm can be used. The derivation of this method,
also called Preconditioned Conjugate Gradient (PCG), can also be found in [7] and is given in
Algorithm 3.
To use preconditioned Conjugate Gradient method in practise, it is needed that M−1 is inex-
pensive to apply and cheap to compute.
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Algorithm 3 Preconditioned Conjugate Gradient

1: Initial: x0, ε
2: Compute: r0 = b−Ax0, z0 = M−1r0 and p0 = z0

3: for k = 0, . . . do
4: while rk > ε do
5: zk+1 = M−1rk

6: αk =
〈rk,zk〉
〈Apk,pk〉

7: xk+1 = xk + αkpk

8: rk+1 = rk − αkApk

9: βk =
〈zk+1,rk+1〉
〈zk,rk〉

10: pk+1 = zk+1 + βkpk

Convergence

The error is bounded by the next inequality:

‖x− xk‖A ≤ 2‖x− x0‖A

(√
κ2(M−1A)− 1√
κ2(M−1A) + 1

)k
. (5.26)

The advantages of choosing the right preconditioner ensures that the condition number is being
reduced and a faster convergence is achieved.

Incomplete Decomposition

This report uses Incomplete Cholesky as preconditioner, that will be denoted by MIC0. An
Incomplete Cholesky is an SPD approximation of the Cholesky factorization where the amount
of fill in can be chosen. This entails a decomposition of the form A = LL> −Ar, where L is
the lower triangle with the same zero pattern as matrix A and Ar is the residual or error of the
factorization. The matrix A is approximated with LL> and we define the Incomplete Cholesky
as preconditioner matrix as MIC0 = LL>. More information can be found in [6].

5.5 Deflation Method

Even when using a preconditioner, the eigenvalues of the system Ax = b are not always favor-
able. Thus, it would hardly make any difference in performance by using PCG. The deflation
method reduces the condition number by setting the extreme eigenvalues equal to zero such that
the convergence bound is small. The method is defined by using the next definition:

Definition 5.1. Given an n × n-matrix A which is SPD, given a deflation-subspace matrix Z
of size n×m where m� n. The deflation method is defined as

P = I−AQ P ∈ Rn×n, Q ∈ Rn×n, (5.27)

where Q = ZE−1Z> with Z ∈ Rn×m, E ∈ Rm×m and E = Z>AZ.

The columns of the deflation-subspace matrix Z are called deflation vectors. The vectors are
chosen such that the matrix E, also known as coarse matrix, is nonsingular. In Section 5.6,
more details will be given how matrix Z will be constructed. Note that PAZ = 0n,k.

Proof. Let P,Q,Z be defined as in Definition 5.1, then

PAZ = (I−AQ)AZ = AZ−AQAZ = AZ−AZ = 0n,k. (5.28)
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This follows from
QAZ = ZE−1Z>AZ = ZE−1E = Z. (5.29)

Thus PA is a singular matrix since it contains zero eigenvalues. Hence, after using the deflation
method, the system can be written as

PAx̂ = Pb, (5.30)

where x̂ is the non unique solution.
The solution of the original system Ax = b is found by using

x = Qb + P>x̂, (5.31)

follows from [7].

5.6 Proper Orthogonal Decomposition

The objective of the report is to use the Proper Orthogonal Decomposition (POD) method to
accelerate the solution of the linear system Ax = b. Hence, an overview will be given in this
section. The POD method is a Model Order Reduction-based method (MOR), which reduces
a large system into a smaller system such that it is easier to solve. The solution of the system
can be approximated by

x ≈
m∑
i=1

ciψi, (5.32)

where ci ∈ R and {ψi}i are basis vectors of the basismatrix Ψ, which will be specified later on.

The basis is constructed from known solutions xi, also called snapshots, of the system Axi = bi,
where the right hand space bi is changed. The correlation matrix is defined as follows:

R =
1

m
XX>, (5.33)

where X =
[
x1 . . . xm

]
. Note that the correlation matrix R ∈ Rn×n is SPSD.

Proof. Let y ∈ Rn, then

y>Ry = y>
1

m
XX>y =

1

m

(
X>y

)(
X>y

)
=

1

m

(
X>y

)2
≥ 0, (5.34)

where m > 0. Also,

R> =

(
1

m
XX>

)>
=

1

m
XX> = R. (5.35)

Hence R is SPSD.

The eigenvectors of R are used as vectors for the basis matrix Ψ. Note that R ∈ Rn×n, instead
of computing the eigenvalues and eigenvectors of the correlation matrix R, it is easier to find
the eigenvalues and eigenvectors of

R̃ :=
1

m
X>X, (5.36)

since the dimension is m×m and m� n. Assume R̃ has eigenvalues defined as

λ1 > λ2 > . . . > λm. (5.37)
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The relation between the eigenvectors of R̃ and R is as follows. If v is an eigenvector of R̃,
then Xv is an eigenvector of R. Not every eigenvector is used as basis vector, the dimension
is chosen such that it only represents the l largest eigenvalues of R, where l � m � n. The
quantity l is chosen such that the next equality holds

max
1≤l≤m

l∑
i=1

λi(R)

m∑
i=1

λi(R)

≤ α, (5.38)

where 0 < α ≤ 1 is close to 1. Therefore, the basis matrix Ψ ∈ Rn×l is defined as

Ψ :=
[
ψ1 . . . ψl

]
, (5.39)

where {ψi}i are eigenvectors of the matrix R.

In the next two sections, this matrix is used in different ways. First, it will be used as deflation-
subspace matrix before applying the preconditioner (section 5.7). Thereafter, it will be used to
construct a preconditioner (section 5.8). The basis matrix will be denoted with Z instead of Ψ.

5.7 Deflated Preconditioned Conjugated Gradient

This proposal was given by [1] and the method uses the basis matrix as deflation-subspace matrix
to reduce the amount of iterations required to solve the system. As mentioned in Section 5.5
and Section 5.6, the deflation-subspace matrix is chosen as the eigenvectors corresponding to
the largest eigenvalues of the matrix R. It is important to choose good deflation vectors and
since they contain relevant information about the spectral radius in a few vectors [1, 7]. The
system Ax = b is solved be defining the next system:

P̃Ã˜̂x = P̃b̃, (5.40)

with
Ã := M− 1

2 AM− 1
2 , ˜̂x := M

1
2 x̂, b̃ := M− 1

2 b (5.41)

and
P̃ := I− ÃQ̃, Q̃ := Z̃Ẽ−1Z̃>, Ẽ := Z̃>ÃZ̃, (5.42)

where ˜̂x is the nonunique deflation solution. The true solution of the deflation method can be
found with:

x̃ := Q̃b̃ + P̃> ˜̂x. (5.43)

Therefore the true solution of the system Ax = b is

x = M− 1
2 x̃. (5.44)

This can be summarized and given in Algorithm 4.
Algorithm 4 is not being used since it is not practical. The more practical algorithm is given by
[7] and is found in Algorithm 5.

Accuracy/Convergence

By using this method, the smallest eigenvalue will be equal to zero, thus another condition
number will be defined for the convergence.
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Algorithm 4 Deflated Preconditioned Conjugated Gradient

1: Initial: x̂0, ε
2: Compute: r̃0 = b̃− Ãx̃0, ˆ̃r0 = P̃r̃0 and p̃0 = ˆ̃r0

3: for k = 0, . . . do
4: while r̃k > ε do
5: ˆ̃zk = P̃Ãp̃k

6: αk =
〈r̃k,r̃k〉
〈p̃k,ˆ̃zk〉

7: ˆ̃xk+1 = ˆ̃xk + αkp̃k

8: βk =
〈ˆ̃xk+1,ˆ̃xk+1〉
〈ˆ̃xk,ˆ̃xk〉

9: ˆ̃rk+1 = ˆ̃rk − αkˆ̃zk

10: p̃k+1 = ˆ̃rk+1 + βkp̃k

11: x̃k+1 := Q̃b̃ + P̃> ˜̂xk+1

12: xk+1 = M− 1
2 x̃k+1

Algorithm 5 Deflated Preconditioned Conjugated Gradient (Pracical version)

1: Initial: x0, ε
2: Compute: r0 = b−Ax0, r̂0 = Pr0, z0 = M−1r̂0 and p0 = z0

3: for k = 0, . . . do
4: while rk > ε do

5: αk =
〈r̂k,zk〉
pk,PApk

6: x̂k+1 = x̂k + αkpk

7: r̂k+1 = r̂k − αkPApk

8: ẑk+1 = M−1r̂k

9: βk =
〈r̂k+1,zk+1〉
〈r̂k,zk〉

10: pk+1 = z0 + βkpk

11: x = Qb = P>xk+1
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Definition 5.2. Assume A is SPSD with eigenvalues λ1, . . . , λn. The effective condition number
is defined as

κeff (A) =
λmax(A)

λmin(A)
, (5.45)

where λmin is the smallest nonzero eigenvalue.

The error in the A-norm is given by

‖x− xk‖A ≤ 2‖x− x0‖A

(√
κeff (M−1PA)− 1√
κeff (M−1PA) + 1

)k
(5.46)

5.8 ROM-based Preconditioner

The other method to use the POD basis matrix is to construct a preconditioner to accelerate
the process based on an AMG approach. This has been investigated and proposed by [2]. The
new preconditioner is similar to the inverse of A. As mentioned before, if the inverse of the
original system is found, the solution is found in one iteration. The proposed preconditioner

Algorithm 6 Two-grid AMG algorithm

1: Initial: ν1, ν2,x
0,M,Z

2: for k = 0, . . . , ν1 − 1 do
3: xk+1 = (I−MA)xk + Mb

4: r = b−Axν1

5: r̃ = Z>r
6: ẽ =

(
Z>AZ

)−1
r̃

7: e = Zẽ
8: xν1 = xν1 + e
9: for k = ν1, . . . , ν1 + ν2 − 1 do

10: xk+1 = (I−MA)xk + Mb

11: x = xν1+ν2

constructed by using AMG approach given in algorithm 6 by using v0 = 0, ν1 = 1, ν2 = 0 is:

M−1
rom = M + Q(1−AM), (5.47)

where Q = Z>E−1Z and E = Z>AZ as defined in Section 5.5.
Note that Mrom is not always symmetric, thus it is not SPD. To obtain an SPD variant, the
preconditioner should be symmetric. The symmetric matrix is found by using the formula A+A>

2
and that M is symmetric. The symmetric version of the rom-based conditioner is defined as:

M−1
srom = M + Q− 1

2
(QAM + MAQ) (5.48)
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6 Numerical Experiments

In this section, we define a few test problems for the incompressible model and constant com-
pressible model. To give a general impression on how the methods work, it will be tested on the
incompressible model. For the numerical experiments, the matrices are small such that the true
solution can be computed with direct methods. Then, for the constant compressible models,
different flow test problems will be defined. In the next report, we will solve the flow problems
and analyse the numerical method given in Section 5.

6.1 Incompressible model

The incompressible model given in (4.18) is defined as

Tp = q (6.1)

with homogeneous Dirichlet boundary conditions on the x-axis. The source vector is zero except
for the first entries, thus

q(1 : 5) =
[
80000 160000 160000 160000 80000

]>
. (6.2)

We consider the grid cell [−1, 1]× [−1, 1] in 2D with 2 different layers. The number of gridpoints
in de x-direction is nx = 10 and y-direction is ny = 5, since we have 2 layers. With homogeneous
boundary conditions on the x-axis, we get n = (nx − 2)ny. For this problem we use the
lexicographic ordering (i, j) 7→ i + (j − 1)(nx − 2) for 1 ≤ i ≤ nx − 2 and 1 ≤ j ≤ ny. The
transmissibility matrix T can be found in Figure 1.

Figure 1: Nonzero structure of T

Figure 1 shows that the matrix is sparse and the dimension of the transmissibility matrix T is
40 by 40. The exact solution of this problem is found with a direct method and compared to the
iterative methods: Conjugate Gradient (CG), preconditioner Conjugate Gradient (PCG) and
Deflated Conjugate Gradient (DCG). The preconditioner M is chosen as incomplete Cholesky
decomposition with zero fill in. The deflation-subspace matrix Z consists of subdomain deflation
vectors, that can be found in [7]. For this experiment, Z consists of 2 subdomain vectors.
Figure 2 shows the amount of iterations for each method and in Table 1 we give the general
overview of the methods in terms of error, iteration and (effective) condition number κeff . The
stopping criterion for this problem is defined as:

ε =
‖Axk − b‖ 2
‖b‖2

≤ 10−7. (6.3)
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The error is defined as

Error = ‖x− xk‖ 2, (6.4)

where x is the true solution and xk is the iterative solution after k steps.

Figure 2: Iterations

Table 1: General overview

CG PCG DCG

Iterations 67 11 29
Error 4.6668 · 10−13 3.9139 · 10−12 6.0592 · 10−10

κeff 2.3591 · 105 5.4217 2.1021 · 104

Table 1 show the problem of reservoir simulation is the high condition number. The (effective)
condition number of preconditioner matrix M−1A and deflation matrix PA are smaller than
that of the original system A. Hence, it need less iterations to converge.
Recall, the dimension of T is 40 by 40 and the Conjugate Gradient method needed 67 iterations.
The amount of iterations is more than the dimension of the system. This is presumably caused
due to rounding errors and will be more investigated in the next report.

6.2 Test Problems

In this section, several test problems are given based on different assumptions. The previous
model, incompressible model, is time independent. To investigate the methods further, we apply
the methods to a 2D Laplace equation for better understanding of them. Then, we vary the
amount the amount of layers to change the size of the system. Furthermore, the methods will
be applied to the constant compressible model, which will be discussed in the next section.

6.2.1 Constant Compressible model

This model is time dependent the equation is nonlinear. To compute each time step, we need to
linearize the model using the Newton-Raphson method. Then, for each iteration of this method,
the large system that has the form of an incompressible model needs to be solved. Hence, more
iterations are needed to solve the compressible model compared to the incompressible model.

The numerical constant compressible model defined in Section 4.4 is given by

V
ρ(pk+1)− ρ(pk)

∆tk
+ Tpk+1 = q̄(pk+1), (6.5)
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where ∆tk = tk+1 − tk and V is the accumulation matrix defined as

V = ∆x∆y∆zϕIn, (6.6)

where In ∈ Rn×n is the identity matrix.
The first test problem about the constant compressible model has a geological model with 2
different layers. For each time step, the obtained solutions are used to construct a POD basis.
After that, the size of the problem is enlarged to see if the conclusions are the same.

The afore mentioned test problems will be used as numerical experiments for the numerical
methods: Deflated preconditioner Conjugate Gradient and ROM-based preconditioner. These
methods uses the POD method in their method and it is interesting to investigate and compare
them in terms of complexity, error, amount of iterations and memory storage.
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7 Conclusion

To simulate reservoir flow, two models are needed: the physical model, and the mathematical
model. The mesoscopic model is used to derive the general mathematical model. Afterwards,
assumptions are made to derive the simple model. The simple model is the incompressible
case, i.e. where the porosity and density is pressure independent. The simple problem does not
depend on time and therefore a time-independent problem. Then, the constant compressibility
is assumed for the density to get the incompressible model. This problem is time-dependent
and needs more computational time to solve numerically. The model has been discretized in a
nonlinear system.

The nonlinear set of equations are linearized using Newton-Raphson method to get to the form
Ax = b. The matrix A is very large and ill-conditioned. Therefore, it takes time to obtain the
solution x. Iterative numerical methods are used to solve large systems like this. Due to the
property of A being SPD, it is convenient to use Conjugate Gradient method. The next step is
to use preconditioner Conjugate Gradient, this reduces the condition number and ensures faster
convergence. New POD based methods have been derived to further accelerate the process. The
first method, Deflated Preconditioner Conjugate Gradient method, uses the POD basis matrix
Ψ as the deflation-subspace matrix Z for the deflation based method. The other method uses
the basis matrix to construct a ROM-based preconditioner.

These two afore mentioned methods are similar since they both uses the deflation-subspace
matrix Z to solve the flow problem. Therefore, it is interesting to compare these two methods
applied to different test problems. For the upcoming research, both methods will be implemented
and analysed on 2D laplace equation before applied to flow problems. Then, the optimal POD
based method will be given based on complexity, memory storage, convergence, and iterations.

26



8 Appendix

A List of Notation

The list of notation defined in Section 4 is given in this Appendix.

Table 2: Notation

Symbol Quantity SI Unit

ρ Fluid density kg/m3

φ Rock porosity
q Source term
v Darcy’s velocity m/d
p Pressure Pa
K Rock permeability Darcy (D)
µ Fluid viscosity Pa
g Gravity m/s2

d reservoir depth m
cl Liquid compressibility Pa−1

cr Rock compressibility Pa−1
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