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Turbulence and its Modeling



Turbulence

▪ Chaotic behavior of fluid flow

▪ Modeling improves the disign of technological applications

▪ Navier-Stokes equations describe the motion of a flow
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Turbulence Modeling

• Direct Numerical Simulations (DNS)

• High accuracy

• High computational complexity

• Reynolds Average Navier Stokes (RANS) models

• Low accuracy

• Low computation

• Interest in Machine Learning increased: 

• ML is able to find patterns

• More data available since the of computational power has increased



Challenges ML in Turbulence Modeling

• Interpretability

• Generalizability

• Simplicity

• Physically Informed

• Integration with CFD Solvers



▪ Finds a mathematical expression for a quantity of interest

▪ Requires a library of candidate functions

▪ Selects function with sparse regression techniques

Sparse Symbolic Regression
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Sparse Symbolic Regression

▪ Interpretable

▪ Physics informed

▪ Efficient

▪ Simple 

▪ Integration with CFD solvers (OpenFoam) possible and “easy”



▪

Objectives and Questions



Objective

• Develop a data-driven turbulence model using sparse symbolic regression to improve a RANS 
turbulence model, which contains physical knowledge and should be interpretable, generalizable 
and robust



Questions

• Which features are the most relevant? 

• How can physical knowledge be included?

• Which sparse symbolic regression technique finds the best performing algebraic model?

• How does the obtained turbulence model perform in terms of robustness, generalizability and interpretability?



▪

Methodology



RANS Turbulence Modeling

▪ Filling in 𝑈 = ഥ𝑈 + 𝑈′ in the NS equation (Reynolds’ decomposition):
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▪ RANS: 
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▪ Reynolds stress = 𝑈𝑖
′𝑈𝑗

′

▪ Requires modeling
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Subject of Modeling

▪ −𝑈𝑖
′𝑈𝑗
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▪ Here, 𝑏𝑖𝑗 is the anisotropic stress tensor: 

▪ Boussinesq:  𝑏𝑖𝑗 = −
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▪ Split into linear and nonlinear portions: 𝑏𝑖𝑗 = −
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Modeling Overview

RANS simulation

Extract input features:
create library

Sparse Symbolic 
Regression

DNS data

Extract target: 

𝑏𝑖𝑗
Δ = 𝑏𝑖𝑗

𝐷𝑁𝑆 − 𝑏𝑖𝑗
𝑅𝐴𝑁𝑆

Model for 𝑏𝑖𝑗
Δ

Propagate into 
CFD solver

Corrected flow 
field



Library of Candidate Functions

▪ Select appropriate features

▪ Create more complex functions by multiplying the features with each other 

▪ Multiply each function with the tensor bases 𝑇𝑖𝑗
(𝑛)

𝜆1 𝜆2 𝑞1 𝑞2 … 𝑞𝑛



Sparse Symbolic Regression

Two step modeling

1. Model Discovery

• Standardization of the features

• Lasso Regression: 𝝃 = argmin
𝜉

𝑈 − ℂ𝝃 2
2 + 𝜆 𝝃 1

• Selecting the ‘active’ features

2. Model Inference

• No standardization of the features

• Only using the selected features

• Ridge Regression: 𝝃 = argmin
𝜉
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• Calibration of the coefficient



Case Studies

▪ Channel Flow

▪ Periodic Hill

▪ Square Duct

▪ Taylor Couette flow

▪ Industrial Problem: Vortex Gripper



▪

Some first results



Periodic Hill



Model Discovery

▪ Lasso Regression: 𝝃 = min 𝑏∗ − ℂ𝝃 2
2 + 𝜆 𝝃 1



Model Inference

▪ Ridge regression: 𝝃 = min 𝑏∗ − ℂ𝝃 2
2 + 𝜆 𝝃 2

2,

▪ 𝜆 = 0.1

▪ Selecting models:

▪ Trade-off between complexity and accuracy



Result of selected models

Anisotropic stress: 𝑏𝑖𝑗 =
𝜈𝑡

𝑘
𝑆𝑖𝑗 + 𝑏𝑖𝑗

∗

• Simple: 𝑏𝑖𝑗
∗ = −4.3 ∗ 𝑇2 More complex: 𝑏𝑖𝑗

∗ = (1.72𝑞1 − 0.71𝑞11 + 0.08𝑞6 + 0.80)𝑇1
+ (−2.55𝑙2 + 4.71𝑞11 + 0.72𝑞2 − 8.20)𝑇2
+ −1.24𝑙2 + 4.51𝑞1 + 3.23𝑞11 − 4.56𝑞2 𝑇3



Model Propagation

Streamwise velocity profiles 

• Simple: 𝑏𝑖𝑗
∗ = −4.3 ∗ 𝑇2 More complex: 𝑏𝑖𝑗

∗
= (1.72𝑞1 − 0.71𝑞11 + 0.08𝑞6 + 0.80)𝑇1
+ (−2.55𝑙2 + 4.71𝑞11 + 0.72𝑞2 − 8.20)𝑇2
+ −1.24𝑙2 + 4.51𝑞1 + 3.23𝑞11 − 4.56𝑞2 𝑇3



Constraints

For realizable flows: 𝑏𝑖𝑖 ∈ −
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Creating a Lumley triangle using:     𝜁3 = 𝑏𝑖𝑗𝑏𝑖𝑛𝑏𝑗𝑛/2 and     𝜂2 = −
𝑏𝑖𝑗𝑏𝑗𝑖

2

Values of 𝜁 and 𝜂 should be inside the triangle

Adding constraints in regression function could enforce the realizability



▪

Intermediate Conclusions



Intermediate conclusions

▪ Frame-work to discover models with sparse symbolic regression

▪ Possible to add constraints

▪ No improvement of the velocity profiles yet



▪

What’s left?



To do:

▪ Finding a good model that improves the velocity

▪ Research different regression functions

▪ Research the effect of adding constraints to the regression functions

▪ Perform the other test cases



▪

To be continued…

Questions?


