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Abstract
Computational AeroAcoustics deals with both disciplines Computa-

tional Fluid Dynamics and AeroAcoustics. Acoustic propagation prob-
lems are governed by the linearized Euler equations. All properties of
the acoustic waves are encoded in the dispersion relation of these equa-
tions. Optimized high order numerical schemes are presented in this re-
port. These schemes optimize the dispersion and dissipation errors by
preserving the dispersion relation and are presented in the original �nite
di¤erence and the �nite volume approach.

In many practical applications complex geometries have to be handled.
This report presents a cut-cell method, which uses a Cartesian background
grid. In the interior of the domain the numerical schemes can easily be
implemented but in the vicinity of the boundaries special treatment for
each cell is required.

To test this approach, a testcase with results is presented. Further-
more, proposals for further investigation are presented. Investigation of
the resulting order of accuracy and the impact of the cut-cell method
on it are proposed. Also an improvement of the numerical solution by
Richardson extrapolation or least square extrapolation is proposed.
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1 Acoustic Models

1.1 Introduction

Computational AeroAcoustics (CAA) deals with both disciplines Computational
Fluid Dynamics and AeroAcoustics. Sound generated by aerodynamic forces
or a �ow, fall in the category of aeroacoustics. Aeroacoustics should not be
confused with classical acoustics, e.g. sound generated by loudspeakers is in the
domain of classical acoustics, whereas sound generated by a turbulent �ow is in
the aeroacoustic area.
An acoustic wave has a wavelength � in space, as well as a frequency f in

time. The speed of sound in a medium is c0. These are coupled by the following
relation: �f = c0. It is well known that all wave propagation properties are
encoded in the dispersion relation of the governing equations [8,9]. The dis-
persion relation is a relation between the angular frequency ! = 2�f and the
wavenumber of the wave � = 2�

� . This relation can easily be obtained by taking
space and time Fourier transforms of the governing equations. For example, the
dispersion relation of the one-dimensional wave equation is:

@2u
@t2 � c

2
0
@2u
@x2 = 0 ) !2 = c20�

2 ) ! = �c0� =W (�),

with angular frequency ! and wavenumber �.
Also dispersiveness (spreading), dissipativeness (damping), group velocity

(vgr = dW
d� ), phase velocity (vph =

W (�)
� ) etc. are all determined by the disper-

sion relation, e.g. when vph depends on � the waves are dispersive and when
W (�) has an imaginary part the waves are dissipative [8,9].
It is well-known that acoustic waves are non-dispersive. Although sound

is dissipated by viscosity, it is dissipated after a very long travel distance and
therefore acoustics is considered to be an inviscid �uid phenomenon. So, dis-
sipative loss becomes important for sound with high frequencies, which travels
long distances. It is also well-known that acoustic waves travel with the speed
of sound. In order to commit satisfactory CAA all wave properties have to be
preserved in the numerical solution, which implies low dispersion and dissipa-
tion error. This can be obtained by preserving the dispersion relation in the
numerical scheme, which can be done by preserving the wavenumber and the
angular frequency. So when a numerical scheme has the same dispersion relation
as the governing equations, the waves in the numerical solution will have the
same properties as those of the governing equation.
Many CFD schemes are dispersive and dissipative. Sometimes numerical

dissipation is added to make the scheme stable. In CFD, schemes are usually
assessed by the order of Taylor series truncation, higher order often means better
local approximation, and by the Lax theorem for convergence. In acoustics
all this does not ensure a good quality numerical solution, as appears from
the previous discussion. A common approach in CFD is to make a stretched
grid, e.g. boundary layers. In acoustics stretched grids could cause strange
phenomena, such as change of frequency or even re�ection [2].
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Another di¢ culty in CAA are the type of problems for practical applications.
These problems often are exterior problems, what implies that these problems
have to be solved in an unbounded space. Thus for computational sake, the
space has to be cut o¤ to make the computational domain �nite. Boundary
conditions have to be proposed for those cut o¤ boundaries. The boundary
conditions are out�ow boundary conditions for the free space behind, which
implies that re�ection of outgoing waves is undesirable.
Also problems in acoustics often have complex geometries. So, good methods

to handle these complexities are required.
Like explained before, sound propagation is modelled as an inviscid �uid

phenomenon. On the other hand, if sound generation by a �ow is considered,
viscosity (implying the Reynolds number) plays an important role. Sound is
mainly generated in turbulent �ows, e.g. acceleration of vorticity.
In the remaining of Chapter 1 important sound propagation and generation

models are derived. Also an acoustic problem is posed in this chapter. In
Chapter 2 numerical methods are discussed. Here the DRP and OPC spatial
discretization scheme is presented respectively in Section 2.1 and 2.2. Also time
integration schemes are included. To handle complex geometries the cut-cell
method is presented in Section 2.3. Conclusions and future work are discussed
in Chapter 3.
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1.2 The Wave Equation and Acoustic Analogies

Aeroacoustics is concerned with sound propagation and generation. This is
mainly done for �uids such as air and water, which have small viscosity and
heat conduction. Also disturbances are very small. For the propagation of
sound dissipative e¤ects have to be taken into account after very long travel
distances. So sound is generally considered as an inviscid �uid phenomenon.
Therefor Euler�s equation will be used to derive the wave equation in the �rst
subsection. In the second subsection Lighthill�s acoustic analogy is derived by
rearranging the equations of �uid dynamics. This analogy deals with sound
generated by a turbulent �ow and its propagation and has its main applica-
tion in �ows without solid boundaries or more correctly, the e¤ects of solid
boundaries can be neglected. As an extension of Lighthill�s analogy the Ffowcs
Williams Hawkings equation is derived in the third subsection. This equation
deals with sound generation and propagation in a turbulent �ow in presence of
solid boundaries.

1.2.1 Linear Acoustic Wave Equation

This equation is derived for a homogeneous �uid with characteristics:
� = �0, p = p0, u = 0,

where u represents a vector and �0 and p0 are constants.
When sound disturbs the �uid, the �uid is characterized by:

� = �0 + �
0, j�j � �0,

p = p0 + p
0, jp0j � �0c

2
0,

u = u0, ku0k � c0.
(1)

The Euler equation (momentum equation for an inviscid �ow) and the equa-
tion of state are used to obtain the wave equation:

�t + u � O�+ �O � u = 0,
�(ut + (u � O)u) + Op = 0,

(2)

and
p0 = c20�

0, (3)

where c0 is the propagation speed (speed of sound).
Substituting (1) into (2) leads to:

(�0 + �
0)t + u

0 � O(�0 + �0) + (�0 + �0)O � u0 =
�0t + u

0 � O�0 + �0O � u0 + �0O � u0 = 0,
(4)

and

(�0 + �
0) [u0t + (u

0 � O)u0] + O(p0 + p0) =
�0u

0
t + �

0u0t + �0(u
0 � O)u0 + �0(u0 � O)u0 + Op0 = 0. (5)

All perturbation are small, so higher order terms can be neglected, which
results in the following:
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�0t + �0O � u0 = 0, (6)

�0u
0
t + Op0 = 0. (7)

From (3) it follows that Op0 = c20O�0, which can be substituted in (7):

�0t + �0O � u0 = 0, (8)

�0u
0
t + c

2
0O�0 = 0. (9)

Note that (8) and (9) are the linearized Euler equations.
Now the time derivative of (8) and the divergence of (9) have to be taken:

�0tt + �0O � u0t = 0, (10)

�0O � u0t + c20O2�0 = 0. (11)

which is equivalent with:

�0tt + �0O � u0t = 0, (12)

�0O � u0t = �c20O2�0. (13)

Substituting (13) into (12) gives the wave equation:

�0tt � c20O2�0 = 0. (14)

This can be uniquely solved with two initial and two boundary conditions.

1.2.2 Lighthill Acoustic Analogy

In this section the acoustic approach introduced by Lighthill is derived. This
approach is used to calculate acoustic radiation from a turbulent �ow in an
in�nite homogeneous �uid with reference values �0, c0 and p0.
Density and pressure �uctuations are de�ned as in the previous subsection.
The summation convention is used to write the continuity and momentum

equations:
@�

@t
+

@

@xj
(�uj) = 0. (15)

�

�
@ui
@t

+ uj
@ui
@xj

�
= � @p

@xi
+
@�ij
@xj

, (16)

where �ij is the component of the viscous stress tensor.
Multiplying (15) by ui and adding this to (16) gives:

�
@ui
@t

+ ui
@�

@t| {z } + �uj
@ui
@xj

+ ui
@

@xj
(�uj)| {z } = � @p

@xi
+

@�ij
@xj

,

@
@t (�ui) + @

@xj
(�uiuj) = � @p

@xi
+

@�ij
@xj

.

(17)
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This can be written in the following way:

@

@t
(�ui) = �

@

@xj
(�uiuj)�

@p

@xi
+
@�ij
@xj

= � @

@xj
(�uiuj + �ijp� �ij). (18)

Adding c20
@�
@xi

to both sides:

@

@t
(�ui) + c

2
0

@�

@xi
= � @

@xj
(�uiuj + �ij(p� c20�)� �ij). (19)

The divergence of this equation is as follows:

@

@xi

@

@t
(�ui) + c

2
0

@2�

@x2i
= � @2

@xi@xj
(�uiuj + �ij(p� c20�)� �ij). (20)

Time di¤erentiation of the continuity equation (15) gives:

@2�

@t2
+
@

@t

@

@xj
(�uj) = 0. (21)

Substracting (20) of (21):

@2�

@t2
+

�
@

@t

@

@xj
(�uj)�

@

@xi

@

@t
(�ui)

�
� c20

@2�

@x2i
=
@2(�uiuj + �ij(p� c20�)� �ij)

@xi@xj
.

(22)
Because p0, �0 and c0 are constant, the �nal equation can be written as

follows:
@2�0

@t2
� c20O2�0 =

@2Tij
@xi@xj

, (23)

where Tij = �uiuj+�ij
�
(p� p0)� c20(�� �0)

�
��ij is Lighthill�s turbulence

stress tensor.
Equation (23) clearly has the same form as the classical wave equation. In

analogy with classical acoustics this is a wave equation that governs the acoustic
�eld produced by a quadrupole source of strength Tij [10].

1.2.3 Ffowcs Williams - Hawkings Analogy

In this section the acoustic approach introduced by Ffowcs Williams and Hawk-
ings is derived. This approach deals with the presence of rigid bodies in the �ow.
The most important assumption is that there is no �ow-acoustics coupling, this
means that the acoustics don�t a¤ect the �ow.
Consider a �nite volume with a moving rigid body, which is described as a

mathematical surface S(t) with f(x; t) de�ned as the kinematics of this surface.
On every point on the surface the velocity us and the unit normal vector n are
de�ned. Inside this rigid body the �ow is perfectly at rest. An example of a
geometry is shown in Figure 1.
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Figure 1: Geomety of a �ow �eld
with a moving rigid body.

The no cross-�ow condition on the surface can be decribed as follows:

us � n = u � n, (24)

where u is the velocity of the surrounding �uid.
With the presence of the rigid bodies the continuity and momentum equa-

tions are modi�ed. This is because in vicinity of the surface the mass and
momentum balances are di¤erent. The continuity and momentum equations
can be written as follows:

@�

@t
+

@

@xj
(�uj) = �0us;i�(f)

@f

@xi
, (25)

@

@t
(�ui) +

@

@xj
(�uiuj � �

0

ij) = ��
0

ij�(f)
@f

@xj
, (26)

where � is the Dirac delta function and �
0

ij = �ij � (p� p0)�ij with �ij the
viscous stress tensor and p the static pressure.
Following the same procedure as in Lighthill�s analogy the following is ob-

tained:

@2�0

@t2
� c20O2�0 =

@2Tij
@xi@xj

+
@

@xi

�
�
0

ij�(f)
@f

@xj

�
+
@

@t

�
�0us;i�(f)

@f

@xi

�
. (27)

Roger [ref] showed that �uctuations in the �uid are exactly the same as
the �uctuations that would appear in an equivalent medium at rest. These
�uctuations are forced by the following source distributions:

1. A volume distribution @2Tij
@xi@xj

in the real �ow �eld due to the �ow.

2. A surface distribution @
@xi

�
�
0

ij�(f)
@f
@xj

�
due to the interaction of the �ow

with the moving boundaries.

3. A surface distribution @
@t

�
�0us;i�(f)

@f
@xi

�
due to the kinematics of the

bodies.
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1.3 Problem

From the derivation of the homogeneous wave equation it appears that the
linearized Euler equations are used to model acoustic propagation. The following
acoustic problem has been posed by Popescu, Shyy and Tai [11]. The problem
is solved in 2-D and has a geometry as in Figure 2.

Figure 2: Geometry of the problem.

For this problem the computational domain is (x; y) 2 [�6; 6]� [0; 15], which
is cut o¤ by a solid wall, de�ned by �. At y = 0 and around x = 0 a piston, that
is ba­ ed, is located. The problem is to �nd the sound �eld generated by this
ba­ ed piston. This �eld is re�ected by the solid wall. The problem is modelled
as follows:

1. The linearized Euler equations are used, which are non-dimensionalized
with c0 = 1:

@p
@t + O � u = 0,
@u
@t + Op = 0,

(28)

where u =
�
u
v

�
.

2. The initial conditions are as follows:

u = 0,
p = 0.

(29)

3. The boundary conditions are as follows:

v(x; 0; t) =

�
V0 cos(!t), (x; 0) 2 piston

0, otherwise
(30a)

where V0 = 1 and ! = 4.

9



un = 0
@p
@n = 0

�
on the solid wall. (30b)

Out�ow conditions at x = �6, x = 6 and y = 15. (30c)

The goal is to solve this problem numerically. Several methods are presented
in the following chapters to obtain satisfactory numerical solutions. Results of
Popescu, Shyy and Tai [11] are presented in Chapter 3.
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2 Numerical Methods

2.1 Introduction

In the previous chapter it has been shown that acoustic propagation problems
can be modelled by the linearized Euler equations. Properties of the acoustic
waves, such as dispersiveness, dissipativeness, speed of sound etc. have to be
preserved in the numerical solution. In order to obtain such a satisfactory nu-
merical solution, low dispersion and low dissipation errors are required. The
dispersion relation of the governing equations contains all characteristics of
the waves. Waves of the numerical solution should have the same properties
as those of the linearized Euler equations. To obtain this, the dispersion re-
lation of the numerical solution should be equal to the one of the linearized
Euler equations. Several numerical schemes have been introduced to preserve
this dispersion relation in combination with a satisfactory order of accuracy.
In this chapter the Dispersion-Relation-Preserving and Optimized-Prefactored-
Compact scheme are presented, both in the original �nite di¤erence approach
followed by the �nite volume approach. A �nite volume approach has been
developed to handle better non-linearities and complex geometries, which are
often present in practical applications. Also optimized time integration schemes
and a stability analysis are presented.
In this chapter also a cut-cell method is presented. This method uses a

Cartesian background grid, therefore the presented schemes can easily be im-
plemented in the interior. In the vicinity of the complex boundaries the cut-cell
approach handles the irregular boundary cells. To preserve the order of accu-
racy of the schemes, used in the interior, the cut-cell method should have the
same order of accuracy. First an ordinary cut-cell method is presented followed
by a higher order cut-cell method for acoustic problems.
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2.2 Dispersion-Relation-Preserving Scheme

Acoustic problems are governed by the linearized Euler equations. In the dis-
persion relation of these equations all characteristics are encoded. To obtain
a satisfactory numerical solution the result must contain waves with the same
characteristics as those of the linearized Euler equations. This ensures low dis-
persion and low dissipation errors. So, the DRP scheme�s main goal is to match
the discrete and continuous dispersion relations.

2.2.1 Finite Di¤erence approach

Tam [1] introduced a DRP-scheme in a �nite di¤erences approach. This scheme
is constructed as follows:

du

dx
(x) ' 1

�x

NX
j=�N

aju(x+ j�x): (31)

This approximation uses 2N + 1 nodes. There are two important goals to
make a good scheme:

1. It has an order of accuracy of 2(N � 1). So, dudx (x) �
1
�x

NX
j=�N

aju(x +

j�x) = O(�x2(N�1)).

2. The behaviour of the numerical solution must be close to that of the exact
solution.

Fourier transforms are used in this derivation. Fourier transform with wavenum-
ber � 2 R, is de�ned as:

ef(�) = 1

2�

1Z
�1

f(x)e�i�xdx, (32)

and its inverse:

f(x) =

1Z
�1

ef(�)ei�xd�. (33)

The Fourier transform leads to the following derivative and shift theorems:

@̂f
@x (x) = i�

ef(�),
^f(x+ �) = ei�� ef(�). (34)

Applying this to (31) the following expression is obtained:

i�eu = 1

�x

24 NX
j=�N

aje
ij��x

35 eu = i�eu, (35)
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where the wavenumber of the scheme � is de�ned as follows:

� =
�i
�x

24 NX
j=�N

aje
ij��x

35 . (36)

Note that � is a periodic function of ��x. To match � and � a �rst condition
is: � 2 R. This implies that the coe¢ cients aj must be anti-symmetric (aj =
�a�j) and a0 = 0. Plugging these identities into the scheme�s wavenumber
gives:

� =
1

�x

24 NX
j=1

2aj sin(j��x)

35 . (37)

This looks like a truncated Fourier sine series. So, this scheme tries to
approximate the derivative by a truncated Fourier sine series in the wavenumber
space.
To have an order of accuracy of 2(N � 1) a Taylor expansion of (31) can be

made:

�x
du

dx
'

NX
j=�N

aj

�
u(x) + j�x

du

dx
+ :::+

(j�x)2N�3

(2N � 3)!
d2N�3u

dx2N�3
+
(j�x)2(N�1)

2(N � 1)!
d2(N�1)u

dx2(N�1)
+ :::

�
.

(38)
With the anti-symmetric property of aj only the odd terms of this Taylor

expansion giveN�1 conditions forN unknowns. This leaves only one parameter
as a free parameter, say ak.
Now, a second condition can be derived to match � and �. This is done by

choosing the free ak such that the error is minimized over a speci�ed wavenumber
range. The error E is de�ned as:

E =

�Z
��

(��x� ��x)2d(��x) =
�Z
��

24y � NX
j=1

2aj sin(jy)

352 dy: (39)

Note that: minak E , @E
@ak

= 0.

Tam [1] showed that for � = �
2 the coe¢ cients of the 4

th order scheme are:

a0 = 0,
a1 = �a�1 = 0:79926643,
a2 = �a�2 = �0:18941314,
a3 = �a�3 = 0:02651995.

Figure 3 [2] shows ��x as a function of ��x. Also the ideal situation
��x = ��x for all ��x is shown.
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Figure 3: ��x versus ��x for the DRP 4th order
scheme and two standard 4th and 6th order schemes.

The value of �c can be determined by the condition j��x� ��xj < 0:001,
for example. This means that this scheme produces quite accurate results for
wavenumbers less than �c. From Figure 2 it appears that ��x and ��x are
nearly the same up to ��x is �c�x for the DRP scheme.
Another important issue to consider the performance of the scheme is the

group velocity d�
d� . This should be nearly one to avoid dispersion in wave prop-

agation. In Figure 4 [2] it appears that by narrowing the range of wavenumbers
dispersion can be reduced.

Figure 4: d(��x)d(��x) versus ��x for the 4
th order DRP scheme.
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2.2.2 Finite Volume approach

In many practical applications problems are posed with complex geometries
and non-linearities. In order to better handle these non-linearities and complex
geometries, a �nite volume approach has been developed by Popescu [2]. The
�nite volume approach ensures that estimated �uxes at a cell face are equal and
thus, satisfy the governing conservation laws of physics.
To explain the �nite volume approach Popescu uses the one-dimensional

linear wave equation and the geometry as given in Figure 5:

@u

@t
+
@u

@x
= 0. (40)

Figure 5: Cell centered grid with
control volume [xw; xe].

Integration over a cell gives:

@u

@t
�x+ ujew =

@u

@t
�x+ ue � uw = 0, (41)

where @u
@t is an average value over a control volume.

With the �nite volume approach @u
@x is associated with ue � uw. The �-

nite di¤erence DRP scheme (4th order, seven point stencil) looks like:
�
du
dx

�
l
'

1
�x

3X
j=�3

ajul+j . Now ue and uw are approximated with their neighboring nodes:

ue = �1ui�2 + �2ui�1 + �3ui + �4ui+1 + �5ui+2 + �6ui+3,
uw = �1ui�3 + �2ui�2 + �3ui�1 + �4ui + �5ui+1 + �6ui+2.

(42)

By imposing that u at the same location has the same value as in the �nite

di¤erences approach,
3X

j=�3
ajui+j = ue � uw, the values of �k are determined

by solving the following 7 expressions:

��1 = a�3,
(�1 � �2) = a�2,
(�2 � �3) = a�1,
(�3 � �4) = 0,
(�4 � �5) = a1,
(�5 � �6) = a2,

�6 = a3.

(43)

This procedure can easily be extended to higher dimensional problems.
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2.2.3 Time Integration

For time integration Tam [1] uses an explicit multistep method with time step
�t. Suppose there is an unknown vector u(t) and the solution u(t) is known
up to t = n�t, then the 4-level �nite di¤erences time integration is given as
follows:

u(n+1) � u(n) ' �t
3X
j=0

bj

�
du

dt

�(n�j)
. (44)

Again a Taylor expansion is used to ensure that the scheme is 3rd order in
time:

(u(n) +�tdu
(n)

dt + �t2

2
d2u(n)

dt2 + �t3

6
d3u(n)

dt3 + :::)� u(n) '

�t
3X
j=0

bj

�
du(n)

dt ��td2u(n)dt2 + �t2

2
d3u(n)

dt3 + ::::
�
.

(45)

This gives three equations for four unknowns, so there is one free parameter,
say b0, with the following relations:

b1 = �3b0 +
53

12
, b2 = 3b0 �

16

3
, b3 = �b0 +

23

12
. (46)

To determine b0 Tam [1] uses Laplace transforms, like Fourier transforms in
the space discretization, which are de�ned below:

bf(!) = 1

2�

1Z
0

f(x)ei!xdx, (47)

and its inverse:

f(x) =

Z
�

bf(!)e�i!xd�. (48)

This leads to the derivative and shift theorems:

\@f
@x (x) = �i! bf(!),
\f(x+ �) = e�i!� bf(!). (49)

Applying this to the continuous generalization of (44) the following is deter-
mined:

(e�i!�t � 1)bu(n) = �t 3X
j=0

bje
ij!�t

 c@u
@t

!(n)
= �i!�t

3X
j=0

bje
ij!�tbu(n). (50)

Thus, ! of the scheme is: ! = i(e�i!�t�1)

�t

3X
j=0

bjeij!�t

.
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To optimize the time integration scheme, the weighted error E is optimized:

E =

�Z
��

�
�(Re(!�t� !�t))2 + (1� �) Im(!�t� !�t))2

�
d(!�t). (51)

The value of b0 can be determined by setting: @E
@b0

= 0.
The weight � can be chosen to emphasize the real or imaginary part. This

has the e¤ect of better wave propagation characteristic (real part) or better
dissipative characteristics (imaginary part). Tam [1] chooses � = 0:36, which
appears to be a good balance between real and imaginary part. With & = 1

2 the
values of bj become [1]:

b0 = 2:30256, b1 = �2:49100, b2 = 1:57434, b3 = �0:38589.

The relation between !�t and !�t is not one-to-one. For every !�t there
are four values of !�t. To clarify this ! is considered.

! = i(e�i!�t�1)

�t

3X
j=0

bjeij!�t

,
3X
j=0

bje
ij!�t = i(e�i!�t�1)

!�t

,
3X
j=0

bje
i(j+1)!�t = i(1�ei!�t)

!�t ,

,
3X
j=0

bj
�
ei!�t

�j+1
+ i

!�te
i!�t � i

!�t = 0.

By setting z = ei!�t the following polynomial is obtained:

b3z
4 + b2z

3 + b1z
2 + (b0 +

i

!�t
)z � i

!�t
= 0. (52)

Now, it is obvious that there are four values of !�t for every value of !�t.
This introduces spurious numerical solutions. From Figure 6 [1] it appears

that:

1. There is one curve which has nearly zero imaginary part for !�t < 0:6.

2. There is a spurious curve which has negative imaginary part only for
!�t < 0:4.

3. The two other curves have negative imaginary parts.
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Figure 6: Im(!�t) versus !�t. The four roots and the ideal Im(!�t) = 0.

Tam [1] showed that for numerically stable results Im(!�t) � 0, so !�t <
0:4, is needed. With this condition all roots, especially the spurious, are damped
out.

2.2.4 Stability

Popescu and Shyy [3] have investigated the stability of the DRP scheme for the
linear wave equation, which is shown below. Tam [1] has investigated it for the
linear Euler equations. The Fourier-Laplace transformation of the linear wave
equation, @u@t + c

@u
@x = 0, is:

�i!eu = �ci�eu , !�t = c��t , !�t = c�t
�x ��x.

Tam [1] showed that !�t < 0:4 for numerical stability and that !�t < 0:19
is required for negligible numerical dissipation. Furthermore, Popescu and Shyy
[3] showed that ��x < 0:9 is required to obtain a good numerical accuracy
(d�d� < 1:02). These results lead to the following condition:

!�t = c�t
�x 0:9 = 0:9� � 0:19 ) � � 0:211,

with � = c�t�x the CFL-number.
Now the stability condition has been obtained.
The �nal DRP scheme with 7-point in space (4th order) and 4-point in time

(3rd order) for the linear wave equation is:

u
(n+1)
l � u(n)l

�t
+

c

�x

3X
j=0

bj

3X
k=�3

aku
(n�j)
l+k = 0. (53)
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2.3 Optimized Prefactored Compact Scheme

The OPC scheme is based on prefactored compact schemes, which require very
small stencil support. The prefactor procedure splits the implicit central scheme
into a forward and backward operator. The compact schemes have small stencils,
which implies that the speci�cation of the boundaries is simpli�ed, because no
additional conditions have to be proposed. Another advantage of the OPC
scheme is that it has the same order of accuracy with a smaller stencil than
other schemes.

2.3.1 Finite Di¤erence approach

Let us introduce �rst the compact scheme:

�(Di�2 +Di+2) + �(Di�1 +Di+1) +Di '
a

2�x (ui+1 � ui�1) +
b

4�x (ui+2 � ui�2) +
c

6�x (ui+3 � ui�3).
(54)

where Di is the spatial derivative of u in the point xi.
A Taylor series expansion is showed below:

2�(@ui@x +
(2�x)2

2
@3ui
@x3 +

(2�x)4

4!
@5ui
@x5 + :::)+

2�(@ui@x +
�x2

2
@3ui
@x3 +

�x4

4!
@5ui
@x5 + :::) +

@ui
@x '

2 a
2�x (

@ui
@x �x+

�x3

3!
@3ui
@x3 +

�x5

5!
@5ui
@x5 + :::)+

2 b
4�x (

@ui
@x (2�x) +

(2�x)3

3!
@3ui
@x3 +

(2�x)5

5!
@5ui
@x5 + :::)+

c
6�x (

@ui
@x (3�x) +

(3�x)3

3!
@3ui
@x3 +

(3�x)5

5!
@5ui
@x5 + :::).

(55)

After matching coe¢ cients the following relations can be obtained [4]:
Second order:

a+ b+ c = 1 + 2� + 2�, (56)

Fourth order:

a+ 22b+ 32c = 2
3!

2!
(� + 22�), (57)

Sixth order:

a+ 24b+ 34c = 2
5!

4!
(� + 24�), (58)

etc.
Only for tenth order all coe¢ cients are unique.
Also the numerical wavenumber of (54) can be determined by the Fourier

transform and its shift and derivative theorems:

�(e�i�2�x + ei�2�x)i�eu+ �(e�i��x + ei��x)i�eu+ i�eu '
a

2�x (e
i��x � e�i��x)eu+ b

4�x (e
i�2�x � e�i�2�x)eu+

c
6�x (e

i�3�x � e�i�3�x)eu, (59)
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(2� cos(2��x) + 2� cos(��x) + 1)i�eu '
( a
�x sin(��x) +

b
2�x sin(2��x) +

c
3�x sin(3��x))ieu. (60)

Hence, the (real) numerical wavenumber is given by:

��x =
a sin(��x) + b

2 sin(2��x) +
c
3 sin(3��x)

2� cos(2��x) + 2� cos(��x) + 1
. (61)

The prefactored compact scheme is de�ned using a forward and backward
operator [4]. This leads to reduced, upper and lower bidiagonal, matrices, which
is advantageous when these have to be inverted (This procedure is described in
the last part of this section).

Di =
1

2
(DB

i +D
F
i ), (62)

which are de�ned by:

�FD
F
i + �FD

F
i+1 '

1

�x
[aFui+2 + bFui+1 + cFui + dFui�1 + eFui�2], (63)


BD
B
i�1 + �BD

B
i '

1

�x
[aBui+2 + bBui+1 + cBui + dBui�1 + eBui�2]. (64)

Again Fourier transforms determine the numerical wavenumer of these op-
erators, which have a real and imaginary part.
Forward stencil:

Re(�F�x) =
(aF �F+bF �F�cF �F�dF �F ) sin(��x)

�2F+�
2
F+2�F �F cos(��x)

+

(aF �F�dF �F�eF �F ) sin(2��x)�eF �F sin(3��x)
�2F+�

2
F+2�F �F cos(��x)

,
(65)

Im(�F�x) =
�(bF �F+cF �F )�(aF �F+bF �F+cF �F+dF �F ) cos(��x)

�2F+�
2
F+2�F �F cos(��x)

+

�(aF �F+dF �F+eF �F ) cos(2��x)�eF �F cos(3��x)
�2F+�

2
F+2�F �F cos(��x)

.
(66)

Backward stencil:

Re(�B�x) =
(bB�B+cB
B�dB�B�eB
B) sin(��x)


2B+�
2
B+2
B�B cos(��x)

+

(aB�B+bB
B�eB�B) sin(2��x)+aB
B sin(3��x)

2B+�

2
B+2
B�B cos(��x)

,
(67)

Im(�B�x) =
�(cB�B+dB
B)�(bB�B+cB
B+dB�B+eB
B) cos(��x)


2B+�
2
B+2
B�B cos(��x)

+

�(aB�B+bB
B+eB�B) cos(2��x)�aB
B cos(3��x)

2B+�

2
B+2
B�B cos(��x)

.
(68)

The real parts represent the dispersion relation and the imaginary parts the
dissipation.
To be equivalent with the original compact scheme Hixon and Turkel [5]

de�ned several conditions:
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1. The imaginary parts of the forward and backward wavenumbers have to
be equal but of opposite sign.

2. The real parts have to be equal and also equal to the wavenumber of the
compact scheme.

To satisfy the �rst condition the following is required:

�B = �F ; 
B = �F ,
aB = �eF ; bB = �dF ; cB = �cF ; dB = �bF ; eB = �aF .

(69)
To satisfy the second condition and supplementary relation aF + bF + cF +

dF +eF = 0, to ensure that when gradients are zero the computed gradients are
also zero, the coe¢ cients are known as a function of a, b, c, � and � , which are
not completely determined yet in case of lower order accuracy than 10th order.
Now the stencil has to be optimized. The optimize technique is applied

to the original compact scheme. Again an error E is de�ned to measure the
di¤erence between the wavenumber and the numerical wavenumber:

E =

r�Z
0

(��x� ��x)W (��x)d(��x), (70)

whereW (��x) is a weigth function, which makes the expression analytically
integrable, and r de�nes the optimized range. Kim and Lee [6] chose the func-
tion W (��x) = [2� cos(2��x) + 2� cos(��x) + 1]2. How much free variables
are present depends on the choice of the order of accuracy. The errorfunction
can be minimized by the free parameter(s) and now the problem is closed and
all parameters of the compact scheme are known, which implies that also all
parameters of the forward and backward schemes are known. This optimization
procedure leads to 4th order accuracy for a scheme with maximum 6th order
(6=4 OPC) with a three-point stencil and for a scheme with maximum 8th order
(8=4 OPC) with a �ve-point stencil.
Also boundary stencils have to be taken into account. For example, for a

three-point stencil the forward and backward boundary stencils are explicitly
de�ned:

DB
1 =

1
�x

4X
j=1

sjuj , DB
N =

1
�x

NX
j=N�3

ejuj ,

DF
1 =

1
�x

4X
j=1

�eN+1�juj , DF
N =

1
�x

NX
j=N�3

�sN+1�juj ,
(71)

where the coe¢ cients sj and ej are determined by matching coe¢ cients from
the Taylor series expansion.
Now, the system of equations following from (63) and (64) can be written

as follows:
[AF ]DF = [BF ]u, (72)
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[AB ]DB = [BB ]u, (73)

where [:] are matrices.
The system of equations following from (62) can be obtained using (72) and

(73):

D =
1

2
([AF ]�1[BF ] + [AB ]�1[BB ])u. (74)

Figure 7 [2] shows ��x as a function of ��x for several schemes. Also the
ideal situation ��x = ��x for all ��x is shown.

Figure 7: ��x versus ��x for two OPC schemes and two
compact schemes.

Like in the DRP case, it appears that ��x and ��x are nearly the same up
to �c�x, which is easily determined by a simple condition, e.g. j��x� ��xj <
0:001. Also the group velocity is considered and compared with the other
schemes in Figure 8 [2].
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Figure 8:
���d(��x)d(��x) � 1

��� versus ��x for two OPC schemes
and two compact schemes.

It appears from the �gures that the OPC schemes produce quite good results
over a large range of wavenumbers.

2.3.2 Finite Volume approach

For the �nite volume derivation of the OPC scheme Popescu [2] uses again the
one-dimensional linear wave equation and the geometry as given in Figure 5.

@u

@t
+
@u

@x
= 0. (75)

Integration over a cell gives:�
@u

@t

�
i

�x+ uijew =
�
@u

@t

�
i

�x+ uei � uwi = 0, (76)

where
�
@u
@t

�
i
is an average value over a control volume i.

Equations (62), (63) and (64) describe the OPC scheme and the approxima-
tions of ue and uw have similar forms:

uei =
1
2 (u

Fe
i + uBei ),

uwi =
1
2 (u

Fw
i + uBwi ),

(77)

where uFei , u
Be
i , u

Fw
i and uBwi are determined from:

�uFei+1 + �u
Fe
i = bui+1 � dui,

�uFwi+1 + �u
Fw
i = bui � dui�1,

�uBei + �uBei�1 = bui � dui+1,
�uBwi + �uBwi�1 = bui�1 � dui.

(78)
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Here the coe¢ cients �, �, b and d are the same as in the �nite di¤erence
approach: � = �F , � = �F , b = bF and d = dF .
In order to solve this, explicit boundary stencils are required like (71):

uw1 =
3X
i=1

aiui, uwN =
3X
i=1

riuN�i,

ue1 =
3X
i=1

aiui+1, ueN =
3X
i=1

riuN�i+1,

(79)

all for forward and backward operators. Where the coe¢ cients are:

aB1 = �s1,
aB2 = �s1 � s2,
aB3 = �s1 � s2 � s3,

aF1 = eN ,
aF2 = eN + eN�1,
aF3 = eN + eN�1 � eN�2,

rB1 = eN ,
rB2 = eN + eN�1,
rB3 = eN + eN�1 � eN�2,

rF1 = �s1,
rF2 = �s1 � s2,
rF3 = �s1 � s2 � s3.

(80)

Now, the systems of equations can be solved like in the �nite di¤erences
approach.

2.3.3 Time Integration

For time integration the modi�ed Runge-Kutta scheme, Low Dispersion and
Dissipation Runge-Kutta (LDDRK), has been developed by Hu, Hussaini and
Manthey [7]. In the original Runge-Kutta scheme the coe¢ cients are chosen
such that the Taylor series coe¢ cients match up to a certain order of accuracy.
The Runge-Kutta scheme is applied to the equation:

du

dt
= F (u). (81)

Consider the original p-stage explicit Runge-Kutta scheme in the (n + 1)th

iteration:
K1 = �tF (u

n),
...

Ki = �tF (u
(i�1)),

u(i) = un + biKi, i = 1:::p,
...

un+1 = u(p),

(82)

where bp = 1. See Appendix to note the equivalence of this notation and
standard notation for linear problems.
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Another way to write un+1 is:

un+1 � un '
pX
j=1

pY
l=p�j+1

bl�t
j d

jun

dtj
. (83)

When the left hand side of this equation is expanded into a truncated Taylor

series and the right hand side is written out the coe¢ cients 
j =
pY

l=p�j+1
bl can

be determined:

�tdu
n

dt +
�t2

2
d2un

dt2 + :::+ �tp

p!
dpun

dtp '
bp�t

dun

dt + (bpbp�1)�t
2 d2un

dt2 + :::+ (bp:::b1)�t
p dpun

dtp .
(84)

Hence, 
j =
1
j! for p

th order accuracy, like in the p-stage standard Runge-
Kutta.
By applying Fourier transforms to (83) the numerical ampli�cation factor r

is obtained:

r =
eun+1eun = 1 +

pX
j=1


j(�i!�t)j = 1 +
pX
j=1


j(�i�)j . (85)

Also the exact ampli�cation factor can be obtained:

rexact = e
�i!�t = e�i�. (86)

With 
j =
1
j! , it is easy to see that the numerical ampli�cation factor is the

truncated Taylor series of the exact ampli�cation factor. To compare the exact
and numerical ampli�cation factor its ratio have to be obtained:

r

rexact
=

1 +

pX
j=1


j(�i�)j

e�i�
, (87)

which can be rewritten as:
r

rexact
= j�je�i�: (88)

In this expression j�j represents the dissipation rate and � represents the
dispersion rate. Where the j�j should be 1 and � should be 0 for r and rexact to
be equal. Thus for accuracy�s sake � must be close to 0 and j�j must be close to
1 and for stability�s sake j�j � 1. To obtain this the Runge-Kutta method has to
be modi�ed to optimize the dispersion and dissipation rate. Hu, Hussiani and
Manthey [7] showed that it is su¢ cient to minimize jr � rexactj2 as a function
of !�t:

min

j

�Z
0

������1 +
pX
j=1


j(�i!�t)j � e�i!�t
������
2

d(!�t) ; (89)
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with a supplementary condition of j�j � 1 and [0;�] the optimization range.
Hu, Hussiani and Manthey [7] showed that jr� rexactj2 is an approximation

of the sum of the dispersion and dissipation errors. They also showed that
minimization of this integral also preserves frequency. In Figure 9 [2] it�s obvious
that LDDRK has better dispersion and dissipation properties than the ordinary
Runge-Kutta integration. Here L and R denote the accuracy limit and the
stability limit respectively.
Also the dissipation and dispersion error of an alternating scheme can be

optimized. An example of the alternating scheme 4-6-LDDRK: in the odd time
steps the four stage LDDRK and the even time steps the six stage LDDRK is
used. In this procedure jr4r6�r2exactj2 is minimized. For alternating schemes the
dissipation and dispersion error can be further reduced with the minimization
and another advantage is that higher order of accuracy can be maintained.
Hu, Hussiani and Manthey [7] present the coe¢ cients of 4-6-LDDRK and 5-6-
LDDRK, which are both fourth order accurate.

Figure 9: Dissipation and dispersion errors. Above 4 stages, below 6
stages.

Popescu [2] speci�es the coe¢ cients of the 4-6-LDDRK scheme:
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1. Four stages:

b1 =
1
4 , b2 =

1
3 , b3 =

1
2 .

2. Six stages:

b1 = 0:17667, b2 = 0:38904, b3 =
1
4 , b4 =

1
3 , b5 =

1
2 .

2.3.4 Stability

For the investigation of the stability of the OPC scheme the linear wave equation
is used, which is shown below. The Fourier-Laplace transformation of the linear
wave equation, @u@t + c

@u
@x = 0, is:

�i!eu = �ci�eu , !�t = c��t , !�t = c�t
�x ��x.

Popescu [2] showed that ��x < 1:4 is required and that ��x < 1:9 is
required for respectively 6=4-scheme and 8=4-scheme for low dispersion error.

Criterion
���d(��x)d(��x) � 1

��� < 3 � 10�3 is used to obtain these requirements. This is
also illustrated in Figure 7 and Figure 8. Popescu [2] showed that for numerical
stability of the 4-6-LDDRK !�t < 2:52 is required. For accuracy�s sake this
requirement is replaced by !�t < 1:64 which also satis�es the requirement of
negligible numerical dissipation. These results lead to the following condition:

!�t = c�t
�x 1:4 = 1:4� � 1:64 ) � � 1:17,

with � = c�t�x the CFL-number.
Now the stability condition has been obtained for the 6=4-OPC scheme in

combination with the 4-6-LDDRK scheme.
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2.4 Cut-Cell Method

In general there are two approaches to generate a grid.

1. A boundary conforming grid: the grid lines match with the boundary

2. A boundary non-conforming grid, the grid lines do not match or intersect
the boundary

Often the �rst option results in curvilinear grids, for which numerical schemes
are harder to implement due to the irregular cells. With the second option often
a Cartesian grid is used, for which special treatment for each boundary cell is
required. A great advantage of this Cartesian grid is the easy implementation
for the interior domain. For the implementation of the boundaries the cut-cell
technique is used. The standard second order cut-cell method is described be-
low as an introduction for the cut-cell method for acoustic problems which is
described later.

2.4.1 Ordinary Second Order Cut-Cell Method

The basic idea of the cut-cell method is to rearrange the control volumes, which
are in vicinity of the boundaries, to create cells that conform the boundaries.
Cells are cut o¤ according to the boundary and become an independent cell
or are merged with another (cut) cell. Cut cells are merged with others if the
cell area is less than a minimum acceptable cell area Smin. Otherwise, it could
be independent. So, this procedure produces new irregular shaped boundary
cells. In a �nite volume approach the �uxes across the faces of the cells are
approximated by: I

f � nds �
kX
i=1

fini; (90)

where �ux f contains both the convective and the di¤usive �ux, resulting
from a di¤erential equation for �. To compute the �uxes on the faces the
midpoint rule is used which means that the �uxes are evaluated at the center
of the faces.
For further explanation of the cut-cell method the geometry as in Figure 10

is used.
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Figure 10: Two cut cells,
ABDE and BCD, are
merged into a new cell

ABCDE.

The approximation of the �ux on a face is split into an approximation of
the �ux on a cut face and an approximation of the �ux on a regular face. For
example, the �ux on face AC in Figure 10 is split into a �ux fw on regular face
AB and a �ux fsw on cut face BC, which results in:Z

AC

fdy =

Z
AB

fdy +

Z
BC

fdy. (91)

This integral can be approximated by:Z
AC

fdy � fw(yA � yB) + fsw(yB � yC). (92)

In this case a second order approximation of fw can be made just by linear
interpolation of neighboring nodes P and W . For example if fw requires a
value for �, this can be interpolated: �w = ��W + (1 � �)�P . If fw requires
the derivative of �, this can be handled by a second order �nite di¤erence
approximation.
This can�t be done for the �uxes fsw and fe, because of the absence of neigh-

boring nodes due to the boundary. The approximation for fsw is shown below,
whereas fe can be done in the same way. These �uxes can be approximated by
making an interpolation polynomial. To make a second order approximation an
interpolation polynomial is made that is linear in x and quadratic in y:

�(x; y) = c1xy
2 + c2y

2 + c3xy + c4y + c5x+ c6. (93)

So,
@�

@x
= c1y

2 + c3y + c5. (94)
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This polynomial has six unknown coe¢ cients. In order to solve these coef-
�cients six neighboring points are needed. The trapezoidal region de�ned for
this is shown in Figure 11.

Figure 11: Cut cell
ABCDE (lined) and the
trapezoidel region 123456
(blue) for the interpolation

polynomial.

Substituting these six points into the interpolation polynomial leads to the
following system:26664

�1
�2
...
�6

37775 =
26664
x1y

2
1 y21 x1y1 y1 x1 1

x2y
2
2 y22 x2y2 y2 x2 1

...
...

...
...

...
...

x6y
2
6 y26 x6y6 y6 x6 1

37775
26664
c1
c2
...
c6

37775 : (95)

This system is easily inverted, which gives c1,..., c6 in terms of �1,..., �6.
Now, �sw and

@�sw
@x are determined in terms of the neighboring nodes �1,..., �6

by substituting c1,..., c6, xsw and ysw into the interpolation polynomial.
In a similar way fe can be determined. Also north and south faces, which

are cut, are treated in this way. The only di¤erence is that the interpolation
polynomial is linear in y and quadratic in x.
Now, fint on face CD has to be calculated. Since fint is on the boundary,

given boundary conditions could be implemented. When Dirichlet conditions
are given this can directly be implemented. Then only @�int

@n is needed to ap-
proximate, when present in fint. When Neumann conditions are given, only
�int is needed to approximate. Below the description of the approximation for
@�int
@n :

@�

@n
=
@�

@x
nx +

@�

@y
ny, (96)

where nx and ny are the components of the unit normal vector of face CD,
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which are known. From Figure 11 it appears that fint lies on node 2. This
implies that node 3, 4 and "4n" (north neighboring node of 4) are its neigh-
boring nodes in y-direction. So for the approximation of @�@y the interpolation
polynomial is only quadratic in y:

�(y) = c1y
2 + c2y + c3; (97)

for which the resulting system is easily solved. The approximation of @�int@y

is written as @�int
@y � 2c1yint + c2.

To approximate @�int
@x the procedure is similar to the procedure used for the

approximation of @�sw@x .
All �uxes have been determined now.

2.4.2 Cut-Cell Method for CAA Approach

In order to preserve the order of accuracy as developed in the DRP or OPC
schemes the same order of accuracy is needed for the boundary implementation.
To explain the adapted procedure for the CAA approach, again the geometry
as in Figure 10 is used. Also the �nite volume technique is used and gives the
integral approximations as described in the ordinary cut-cell procedure. Only
di¤erence is the approximations of the �uxes.
Now fw can be approximated by a given boundary stencil of the DRP or

OPC scheme. For the OPC scheme this is for example (71) and for the DRP
scheme ghostpoints have to be introduced. In the ordinary cut-cell procedure
central di¤erences and interpolation are used to approximate fw.
To �nd a fourth order approximation of fsw an interpolation polynomial is

used. To make this approximation fourth order this polynomial is third order
in x and fourth order in y:

�(x; y) =
4X
i=0

3X
j=0

cijx
jyi. (98)

This polynomial has 20 unknown coe¢ cients. Thus, 20 points are needed to
determine these coe¢ cients in terms of �1,..., �20. The trapezoidel region with
points 1,..., 20 are shown in Figure 12. This results in a similar system as in
the ordinary case. The only di¤erence is that the system is now � = [A]c, with
� and c twenty-dimensional vectors and [A] a 20 � 20 matrix, which is easily
inverted.
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Figure 12: The cut cell
ABCDE and the

trapezoidal 1 � � � 20 to
approximate fsw.

Also the approximation of fe can be done with this procedure as well as
north and south �uxes of this kind.
The approximation of fint in this case is also similar to the approximation

in the ordinary case. Again the approximation of the normal derivative is ex-
plained:

@�

@n
=
@�

@x
nx +

@�

@y
ny; (99)

where @�int@x can be approximated by a interpolation polynomial that is third
order in x and fourth order in y, like fsw has been approximated, and

@�int
@y can

be approximated by a polynomial that is fourth order in y along the vertical
line 14, 13, 12 , 11 and "11n":

�(y) = c1y
4 + c2y

3 + c3y
2 + c4y + c5, (100)

with derivative:

@�

@y
= 4c1y

3 + 3c2y
2 + 2c3y + c4. (101)

Substituting these 5 points in (100) leads to a small system, which is easily
solved.
All �uxes have been determined with this cut-cell method. The procedure

for acoustic problems is similar to that for ordinary problems, the only extension
is higher order interpolation polynomials.
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3 Conclusions and Future Work

3.1 Introduction

In the previous chapters several numerical methods have been presented. The
DRP and OPC schemes have been assessed by Popescu, Shyy and Garbey [12]
for both �nite di¤erence and �nite volume approach. Several testcases, such
as linear and nonlinear wave equation with and without viscosity, were used to
compare the performances of the schemes. It turned out that the �nite volume
versions of the schemes produce much better results than their �nite di¤erence
versions in case of nonlinearity and high gradients. For the linear wave equation
the DRP and OPC schemes perform with similar order of accuracy. However,
the magnitude of the error is lower for the OPC schemes.
The problem, posed in Section 1.3, tests the cut-cell procedure and the out-

�ow boundary condition in combination with a spatial discretization and time
integration method. Before the numerical simulation of this problem, Popescu,
Shyy and Tai [11] �rst test two similar problems. First, a simulation of the radi-
ation, generated by the ba­ ed piston without re�ection by a solid wall is done,
in order to test the out�ow boundary conditions and the numerical schemes.
In this problem the boundary conditions for the east, west and upper bound of
the computational domain are all out�ow conditions. Second, a simulation of
an acoustic pulse, re�ected by a solid wall is done, in order to test the cut-cell
procedure. This problem has the same geometry and boundary conditions as
the problem, posed in Section 1.3. After these simulations, the simulation of
the problem in Section 1.3 is done, which means a test for all aspects.
A challenge of this problem is to handle the discontinuity at the front of the

wave. Despite the problem can be solved by taking the solid wall parallel to the
grid lines, the wall is deliberately placed at an angle, in order to evaluate the
performance of the cut-cell method.

3.2 Results

For the spatial discretization of the linearized Euler equations (28) Popescu,
Shyy and Tai [11] use the �nite volume version of the 6=4 OPC scheme. A
uniform grid is used with �x = �y = 0:05 and CFL = c0 �t�x = 0:5 to determine
the time step. For time integration the 4-6-LDDRK method with the time step,
that just has been de�ned, is used.
The initial condition (29) and boundary condition (30a) are easily imple-

mented.
In vicinity of the solid wall the cut-cell procedure is used. For the imple-

mentation of boundary condition (30b) Figure 13 [11] is used to clarify the
procedure.
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Figure 13: Geometry in vicinity of the solid
wall with cut cell ABCDE.

The interpolation polynomials as described in Section 2.4.2 are fourth order
in y and third order in x. For this problem the interpolation polynomials are
fourth order in x and y. The �uxes fws and fn are approximated with these
polynomials. For the �uxes fs and fe the boundary stencils of the OPC scheme
can be used. For the �ux on face CD a virtual point G is de�ned. Point (xi; yj)
is the mass center of the boundary cell and G is the symmetrical opposite of
this mass center. Then uCD and pCD are de�ned as follows:

uCD =
uij+uG

2 , with uG = uij � 2(uij � n)n.
pCD =

pij+pG
2 , with pG = pij .

After some mathematical manipulation it appears that boundary condition
(30b) holds.
The modelling of the out�ow boundary conditions (30c) are based on the

out�ow boundary conditions of Tam [1]:

@p
@t +

@p
@x cos(�) +

@p
@y sin(�) +

p
2r = 0,

@u
@t + Op = 0,

(102)

where r is the distance from the boundary point to the center of the piston
and � the angular coordinate.
In Figure 14 the contour plots of the pressure of the numerical results of this

problem are presented [11]. The angle of the wall is � = 63o.
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Figure 14: a) t = 1:5, b) t = 9:4, c) t = 25:0. Wave generated by a ba­ ed piston and
re�ected by a solid wall.

Popescu, Shyy and Tai [11] conclude that, based on the test cases, the pre-
sented approach can be e¤ective for acoustic problems with complex geometry.
Also they conclude that the computational overhead of the cut-cell method is
modest, because much computations in the vicinity of the boundary have to be
done once (because the geometry is �xed).

3.3 Future work

In this report several numerical methods has been presented in order to tackle
computational acoustic problems. Also a testcase has been presented to test
these methods. The results of this testcase are satisfactory and the conclusion
is that �nite volume 6=4 OPC spatial discretization and 4-6-LDDRK time in-
tegration in combination with the cut-cell method can be an e¤ective approach
for acoustic problems. Further investigation is needed to con�rm this.

3.3.1 Proposals

It has been derived that the 6=4 OPC and 4-6-LDDRK schemes have both
fourth order accuracy. Also the cut-cell method uses fourth order interpolation
methods to handle the complex geometry. Because there is no analytical solution
of this testcase the order of accuracy cannot be determined explicitly. However,
it is important to know what the order of accuracy is in practice. Another
important issue is the impact of interpolation in the cut-cell procedure on the
order of accuracy of the complete method. Two proposals are presented in order
to investigate the order of accuracy and improve the numerical solution.

1. In order to determine the order of accuracy Richardson extrapolation can
be used. Richardson extrapolation is based on numerical experiments.
Also the impact of interpolation in the cut-cell procedure can be investi-
gated by these numerical experiments.
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2. Richardson extrapolation can also be used to improve the accuracy of the
solution. Shyy and Garbey [13] describe Richardson extrapolation and
also present a least square extrapolation method, which is more robust
and numerically e¢ cient.

3.3.2 Richardson Extrapolation

Let N(h) be an approximation of M . Then the error of this approximation can
be written as follows:

M �N(h) = C1hp1 + C2hp2 + ::: (103)

where Ci 2 R and pi 2 N with 0 � p1 < p2 < ::.
When h is small, (103) can be approximated by:

M �N(h) = Chp. (104)

Now, this equation can be written down for h, h
2 and

h
4 , which gives the

following system:

M �N(h) = Chp,
M �N(h2 ) = C

�
h
2

�p
,

M �N(h4 ) = C
�
h
4

�p
.

(105)

After subtracting the second equation from the �rst, the third from the
second and dividing these expressions the following is obtained:

N(h2 )�N(h)
N(h4 )�N(

h
2 )
= 2p. (106)

From this equation the order of accuracy p can be determined.
By subtracting the second and third equation of (105), C can be determined:

C =
N(h4 )�N(

h
2 )

(h2 )
p(1� ( 12 )p)

. (107)

From the third equation of (105) an improvement of the solution accuracy
can be derived:

Nimpr = N(
h

4
) + C

�
h

4

�p
. (108)

This can be written as follows:

Nimpr =
2pN(h4 )�N(

h
2 )

(2p � 1) . (109)

This procedure can easily be extended to higher dimensions.
Shyy and Garbey [13] developed a least square extrapolation, which has the

same goal as Richardson extrapolation, but which is more robust and e¢ cient.
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5 Appendix

The equivalence is shown for the fourth order Runge-Kutta scheme and the
following ordinary di¤erential equation:

du
dt = F (u),

where F (u) is a linear operator.
1. Standard notation:

k1 = �tF (u
n),

k2 = �tF (u
n + 1

2k1),
k3 = �tF (u

n + 1
2k2),

k4 = �tF (u
n + k3),

un+1 = un + 1
6 (k1 + 2k2 + 2k3 + k4).

2. Notation used in this work:
K1 = �tF (u

n),
...

Ki = �tF (u
(i�1)),

u(i) = un + biKi, i = 1:::p,
...

un+1 = u(p),
where bp = 1 and p = 4 for fourth order.

Writing out both:
1. un+1 = un + 1

6 (k1 + 2k2 + 2k3 + k4) =

un+ 1
6 (�tF (u

n)+2�tF (un+ 1
2k1)+2�tF (u

n+ 1
2k2)+�tF (u

n+k3)) =

un + 1
6 (6�tF (u

n) + �tF (k1) + �tF (k2) + �tF (k3)) =

un + 1
6 (6�tF (u

n) + �t2F (F (un)) + �t2F (F (un + 1
2k1))+

�t2F (F (un + 1
2k2))) =

un + 1
6 (6�tF (u

n) + �t2FF (un) + �t2FF (un) + �t2FF ( 12k1)+
�t2FF (un) + �t2FF ( 12k2)) =

un + 1
6 (6�tF (u

n) + 3�t2FF (un) + 1
2�t

3FFF (un)+
1
2�t

3FFF (un + 1
2k1)) =

un+ 1
6 (6�tF (u

n)+3�t2FF (un)+�t3FFF (un)+ 1
4�t

4FFFF (un)) =

un +�tF (un) + 1
2�t

2FF (un) + 1
6�t

3FFF (un) + 1
24�t

4FFFF (un).

2. un+1 = u(p) = un+b4K4 = u
n+b4�tF (u

(3)) = un+b4�tF (u
n+b3K3) =

un + b4�tF (u
n) + b4b3�tF (�tF (u

(2))) = un + b4�tF (u
n)+

b4b3�t
2FF (un + b2K2) =

un + b4�tF (u
n) + b4b3�t

2FF (un) + b4b3b2�t
2FF (�tF (u(1))) =

un + b4�tF (u
n) + b4b3�t

2FF (un) + b4b3b2�t
3FFF (un + b1K1) =

un+b4�tF (u
n)+b4b3�t

2FF (un)+b4b3b2�t
3FFF (un)+b4b3b2b1�t

4FFFF (un).

With:
b4 = 1, b3 = 1

2 , b2 =
1
3 , b1 =

1
4 ,
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this notation is equivalent with the standard Runge-Kutta fourth order no-
tation. The implementation of this notation is easier and needs less storage
than the standard Runge-Kutta.
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