
Deflated Krylov-Schwarz Domain Decomposition

for the Incompressible Navier-Stokes Equations

on a Colocated Grid

Master’s Thesis

Jarno Verkaik

Delft, August 2003

Delft University of Technology | TNO TPD

Committee: Prof.dr.ir. P. Wesseling (TU Delft)
Dr.ir. C. Vuik (TU Delft)
Ir. B.D. Paarhuis (TNO TPD)
Dr. A. Twerda (TNO TPD)

Contents

Preface v

1 Introduction 1

2 Finite Volume discretization 3

2.1 Introduction . 3

2.2 The governing equations in fluid dynamics . 3

2.3 Discretization of the stationary convection-diffusion equation 8

2.3.1 Problem description . 8

2.3.2 Interpolation practices . 9

2.3.3 Spatial discretization . 11

2.4 The stationary incompressible Navier-Stokes equations 12

2.4.1 Problem description . 12

2.4.2 Discretization on a colocated grid . 13

2.5 Connection with the X-stream code . 16

3 Iterative solution methods 19

3.1 Introduction . 19

3.2 Methods for solving linear equation systems 19

3.2.1 Basic iterative solution methods . 19

3.2.2 SIP basic iterative method . 23

3.2.3 Krylov subspace methods . 25

3.2.4 Deflation method . 29

3.3 Solving the stationary incompressible Navier-Stokes equations 33

3.4 Connection with the X-stream code . 36

4 Domain decomposition methods 39

4.1 Introduction . 39

4.2 Alternating Schwarz methods . 39

4.3 Convergence aspects . 43

4.3.1 Local coupling . 43

4.3.2 Global coupling . 44

4.3.3 Inaccurate subdomain solution . 45

4.4 Deflated Krylov-Schwarz domain decomposition 46

4.5 Domain decomposition for the incompressible Navier-Stokes equations 49

4.6 Connection with the X-stream code . 49

ii Contents

5 Numerical experiments with domain decomposition for the Poisson equa-
tion 51

5.1 Introduction . 51

5.2 The 2D Poisson equation and setup . 51

5.3 The Dirichlet problem . 53

5.3.1 Choice of deflation vectors . 53

5.3.2 Eigenvalue spectra and iterative solution methods compared 57

5.3.3 Further observations . 63

5.4 The Neumann problem . 65

5.4.1 Choice of deflation vectors . 65

5.4.2 Eigenvalue spectra and iterative solution methods compared 69

5.4.3 Further observations . 72

5.5 Connection with the X-stream code . 74

6 Deflated Krylov-Schwarz domain decomposition for the Navier-Stokes equa-
tions 75

6.1 Introduction . 75

6.2 Some implementation aspects . 75

6.3 Three testcases in X-stream . 76

6.3.1 Testcase descriptions . 76

6.3.2 Parameter variation . 81

6.4 Results for the number of inner iterations . 84

6.4.1 Solving the 3D Poisson equation . 84

6.4.2 Solving the pressure-correction system 87

6.5 Results for the number of outer iterations . 96

7 Conclusions and recommendations 107

7.1 Conclusions . 107

7.2 Recommendations . 109

A PWI method 111

A.1 Derivation of the PWI method . 111

A.2 Discretization of the continuity equation with the PWI method 112

B RCGS algorithm and LU factorization algorithms 113

C GCR-SIMPLE method on a colocated grid 115

D Figures and tables numerical experiments 119

D.1 Figures . 119

D.2 Tables . 122

E Figures and tables results in X-stream 125

E.1 Figures . 125

E.2 Tables . 128

Nomenclature 135

Contents iii

List of figures 144

List of tables 146

Bibliography 149

Summary 149

iv Contents

Preface

This Master’s thesis is written for the degree of Master of Science for the study Applied
Mathematics, faculty of Electrical Engineering, Mathematics, and Computer Science, Delft
University of Technology. The graduation work is done in the unit of Numerical Mathemat-
ics of the department of Applied Mathematical Analysis. During nine months, the Master’s
project has been carried out at TNO TPD, division Models and Processes, department of
Process Physics.

I would like to thank my direct supervisors Kees Vuik and Bart Paarhuis for their excellent
supervising during the graduation work. Furthermore, I would like express my gratitude to-
wards professor P. Wesseling, Aris Twerda, and all my colleagues at Process Physics. Last
but not least, I would like to thank my family for their support.

Delft, August 2003 Jarno Verkaik

vi Preface

1

Introduction

Mathematical simulation of flows is important for the design, optimization and trouble shoot-
ing of glass melting furnaces. To gain insight into the glass melting process, physical experi-
ments can be done. However, physical experiments are often very costly and time-consuming,
and there are circumstances under which certain physical quantities cannot be measured.
Simulation by Computational Fluid Dynamics (CFD) does not have these disadvantages. Al-
though CFD only approximates the true physics, it gives engineers in the glass industry great
insight into the transport phenomena occurring in glass melting furnaces.

At Process Physics, at TNO TPD, a CFD simulation package called X-stream is developed
for the glass industry. Besides solving the incompressible Navier-Stokes equations and the en-
ergy equation, several models specifically related to the process of glass melting can be solved.

The geometries of glass melting furnaces can be very complex, and generally the transport
equations have to be solved with a high accuracy, resulting in large computing times. To
overcome these difficulties, a domain decomposition approach can be used. The total domain
is divided into subdomains, such that complex geometries can be dealt with more ease. The
problem is divided into subproblems, which can be computed in parallel, and by this, com-
puting time can be gained.

Since the incompressible Navier-Stokes equations are non-linear, solving these equations is
most time-consuming. In X-stream, the Navier-Stokes equations are discretized and lin-
earized, resulting in linear systems for the velocities and the pressure, which are solved with a
domain decomposition method. Solving the system for the pressure is most time-consuming,
because this system has elliptic properties.

The goal of the Master’s project is to accelerate the domain decomposition method used in
X-stream for solving the pressure system. To achieve this, Krylov subspace acceleration is
considered combined with a new technique called deflation.

The structure of this thesis as as follows. In Chapter 2, the discretization is treated. In Chap-
ter 3, iterative solution methods are discussed and the deflated Krylov subspace acceleration
methods are described. In Chapter 4, these methods are generalized to a domain decomposi-
tion context. In Chapter 5, results are given for numerical experiments, followed in Chapter 6
by results for testcases in X-stream. Finally, in Chapter 7 conclusions and recommendations
are given.

2 1. Introduction

2

Finite Volume discretization

2.1 Introduction

Generally, three discretization methods can be distinguished for discretising partial differ-
ential equations (PDEs): the finite difference method, the finite element method and the
finite volume method. In this chapter, the Finite Volume (FV) method will be discussed,
which is in great detail treated in, for example, Patankar [16], Ferziger & Perić [4], and Wes-
seling [36]. In this chapter we will closely follow Wesseling [36] and entirely adopt his notation.

In Section 2.2, first the governing equations in fluid dynamics are briefly discussed. In Sections
2.3 and 2.4, respectively, the discretizations of the stationary convection-diffusion equation
and the stationary incompressible Navier-Stokes equations are described. In Section 2.5, the
connection with the X-stream code is given.

2.2 The governing equations in fluid dynamics

The conservation equations of mass, momentum, and energy can be found in many intro-
duction books on fluid dynamics, for example Bird [1], Ferziger & Perić [4], or Wesseling
[36].

Summation convention and Cartesian tensor notation

The conservation equations are given for a Cartesian coordinate system (x1, . . . , xd), where
d is the number of space dimensions. Boldface Latin letters denote vectors, for example,
x = (x1, . . . , xd). We will use Cartesian tensor notation, in which differentiation is denoted
as

φ,α =
∂φ

∂xα
,

and with a Greek subscript we refer to coordinate directions. We will adopt Einstein’s sum-
mation convention: when a subscript is repeated in a term, a summation of d terms is implied.
For example, the divergence of a vector field u is given by:

uα,α =
d

∑

α=1

∂uα

∂xα
. (2.1)

Sometimes, we will use vector notation if this is more convenient. For example, in vector
notation, the divergence of a vector field is written as divu.

4 2. Finite Volume discretization

Reynolds’ transport theorem and Gauß’ divergence theorem

The conservation laws of mass, momentum, and energy can be easily derived using Reynolds’
transport theorem and Gauß’ divergence theorem.

Let V (t) be denoted as a material volume of a fluid that moves with the flow and consists
permanently of the same material particles.

Theorem 2.1 (Reynolds’ transport theorem). For any material volume V (t) and dif-
ferentiable scalar field φ we have

d

dt

∫

V (t)

φdV =

∫

V (t)

{∂φ
∂t

+ div (φu)}dV .

Proof. See Wesseling [36, page 10] Theorem 1.3.1.

Gauß’ divergence theorem is given by the following theorem.

Theorem 2.2 (Gauß’ divergence theorem). For any volume V ⊂ IRd with piecewise
smooth closed surface S and any differentiable vector field u, we have

∫

V

divudV =

∫

S

u · ndS ,

where n is the outward unit normal on S.

Proof. See Wesseling [36, page 5] Theorem 1.2.2.

Conservation of mass

Conservation of mass means that the rate of change of mass in an arbitrary material volume
V (t) equals the rate of mass production in V (t), i.e.

d

dt

∫

V (t)

ρdV =

∫

V (t)

σdV ,

where ρ(t,x) is the density of the material particle at time t and position x, and σ(t,x) is
the rate of mass production per volume. We now take σ = 0, because this is usually the case
in practice. Applying Theorem 2.1, taking φ = ρ, yields:

∫

V (t)

{∂ρ
∂t

+ div (ρu)}dV = 0 .

Since this holds for every V (t), the integrand must be zero, resulting in:

∂ρ

∂t
+ (ρuα),α = 0 . (2.2)

This is the mass conservation law, also known as the continuity equation.

2.2. The governing equations in fluid dynamics 5

Incompressible flow

It is clear that the velocity field u(t,x) of the flow satisfies

u(t,x) =
∂x(t,y)

∂t
, (2.3)

where y is an initial position at time t = 0. A physical property φ of a material particle
is called a material property. The time derivative of a material property is called the total
derivative, and is denoted by Dφ/Dt. The quantity φ is defined everywhere in the flow,
because every material particle has some φ, and therefore φ(t,x) is a scalar field. We have

Dφ

Dt
=

∂

∂t
φ[t,x(t,y)] =

∂φ

∂t
+
∂xα(t,y)

∂t

∂φ

∂xα
,

which can be written with (2.3) as

Dφ

Dt
=
∂φ

∂t
+ uαφ,α .

An incompressible flow is a flow in which the density of each material particle is constant
during the motion:

ρ(t,x(t,y)) = ρ(0,y) .

When ρ = constant, we get
Dρ

Dt
= 0 , (2.4)

and using

div (ρu) = ρdivu + uαρ,α ,

it follows from the continuity equation (2.2) that the flow is divergence free:

divu = 0 .

For variable density flows, i.e. ρ 6= constant, (2.4) does not hold anymore, and we have

div (ρu) = 0 ,

due to the continuity equation (2.2). Incompressibility is not a property of the fluid, but of
the flow. It can be shown that compressibility depends only on the speed of the flow. For
more details, see Wesseling [36].

Conservation of momentum

Newton’s law of conservation of momentum implies that the rate of change of momentum
of a material volume is equal to the total force on the volume. Two types of forces can be
distinguished: body forces and surface forces. A body force acts on a material particle and is
proportional to its mass. We can write

body force = fbρdV (t) , (2.5)

6 2. Finite Volume discretization

where dV (t) is denoted as the volume of the material particle. A surface force works on
the surface of V (t) and is proportional to its area. The surface force working on the surface
element dS(t) of a material particle can be written as

surface force = f sdS(t) . (2.6)

Applying the law of conservation of momentum to a material volume, results in:

d

dt

∫

V (t)

ρuαdV =

∫

V (t)

ρfb
αdV +

∫

S(t)

f s
αdS .

By applying Theorem (2.1) with φ = ρuα, we find:

∫

V (t)

{∂(ρuα)

∂t
+ (ρuαuβ),β}dV =

∫

V (t)

ρfb
αdV +

∫

S(t)

f s
αdS . (2.7)

It can be shown that there exist nine quantities ταβ such that

f s
α = ταβnβ , (2.8)

where ταβ is the stress tensor and n is the outward unit normal on dS. By Theorem 2.2,
Equation (2.7) can be rewritten as

∫

V (t)

{∂(ρuα)

∂t
+ (ρuαuβ),β}dV =

∫

V (t)

(ρfb
α + ταβ,β)dV . (2.9)

Since this holds for every V (t), we must have

∂(ρuα)

∂t
+ (ρuαuβ),β = ταβ,β + ρfb

α , (2.10)

which is the momentum conservation law. The LHS of this equation is called the inertia term.

For Newtonian fluids ταβ is given by the following constitutive relation:

ταβ = −pδαβ + 2µ(sαβ − 1

3
∆δαβ) , (2.11)

where p is the pressure, δαβ the Kronecker delta, µ the dynamic viscosity, sαβ the rate-of-strain
tensor, defined by

sαβ =
1

2
(uα,β + uβ,α) ,

and

∆ = sαα = divu .

The equations given by (2.10) and (2.11) are called the Navier-Stokes equations.

2.2. The governing equations in fluid dynamics 7

Conservation of energy

The first law in thermodynamics tells us that work done in a closed system plus heat added
to it, equals the increase of the sum of kinetic and internal energy of the system. The kinetic
energy per unit mass of a material particle is 1

2uαuα, its internal energy per unit mass is
denoted by e. The internal energy is a state variable, like p and ρ. For simple systems, there
are at most two independent state variables needed.

Applying the first law of thermodynamics to a material volume V (t) we get

d

dt

∫

V (t)

ρEdV = W +Q , (2.12)

where E denotes the total energy per unit mass, and is given by

E = e+
1

2
uαuα .

Furthermore, W is the rate of work expended by the surroundings on the fluid V (t), and Q
is the rate of heat addition. The body force (2.5) does work at a rate u · f bρdV (t), and the
surface force (2.6) at a rate u · f sρdS(t), thus W is given by

W =

∫

V (t)

uαf
b
αρdV +

∫

S(t)

uαf
s
αdS .

Using (2.8) and Theorem 2.2, this can be rewritten as

W =

∫

V (t)

{ρuαf
b
α + (uαταβ),β}dV . (2.13)

When we assume that heat is added to each material particle at a rate q per unit of mass,
and that there is a heat flux σ per unit of area through S(t), we get

Q =

∫

V (t)

ρqdV +

∫

S(t)

σdS .

Using Fourier’s law
σ = kn · gradT ,

with k the thermal conductivity, and T the temperature, we get by using Theorem 2.2:

Q =

∫

V (t)

{ρq + (T,α),α}dV . (2.14)

Application of Theorem 2.1 to (2.12) and substitution of (2.14) and (2.13), yields
∫

V (t)

∂(ρE)

∂t
+ (ρuαE),α}dV =

∫

V (t)

{(uαταβ),β + (kT,α),α + ρuαf
b
α + ρq}dV .

Since this should hold for every V (t), we have

∂(ρE)

∂t
+ (ρuαE),α = (uαταβ),β + (kT,α),α + ρuαf

b
α + ρq .

This equation is called the energy equation.

8 2. Finite Volume discretization

State equations

We have obtained a total of five conservation equations: one for mass, one for momentum
in each coordinate direction, and one for energy. However, there are seven unknowns: ρ, uα

(α = 1, 2, 3), p, T and e. Therefore, the system of equations need to be completed by two
additional equations, i.e. by two equations of state, see Wesseling [36] for more details.

General form of the conservation equations

The general form of the conservation equations of mass, momentum and energy reads:

∂(ρϕ)

∂t
+ Fα,α = Sϕ , (2.15)

where Fα is the total flux of quantity φ in direction α. The total flux is the sum of the
convective flux and the diffusive flux:

Fα = F con
α + F dif

α = ρuαϕ− Γϕϕ,α , (2.16)

where Γφ is the effective transport coefficient. For example, for the continuity equation φ = 1,
Γφ = 0 and Sφ = 0. Equation (2.15) with (2.16) is called the convection-diffusion equation.

2.3 Discretization of the stationary convection-diffusion equa-

tion

2.3.1 Problem description

Taking ρ = 1, dropping the subscript of Γϕ, and renaming Sφ by q, the stationary form of
the convection-diffusion equation given by equations (2.15) and (2.16), can be written as

(uαϕ),α − (Γϕ,α),α = q , x ∈ Ω ⊂ IRd .

We assume that this equation is linear, with the quantity ϕ to be the only unknown.

The dimensionless form of the above equation is (see Wesseling [36, page 111]):

Lϕ = q , Lϕ ≡ (uαϕ),α − (εϕ,α),α , (2.17)

where ε ≡ Pe−1 with Pe the Péclet number, given by

Pe =
UL

Γ
,

with L and U typical length and velocity scales. For Pe � 1 we have dominating convection,
for Pe � 1 diffusion dominates.

The convection-diffusion equation can be classified as a parabolic equation, just like the
Navier-Stokes equations (2.10). However for 0 < Γ � 1, or Pe � 1, hyperbolic aspects
are dominant. A kind of mixture of parabolic and hyperbolic behavior is typical for the
convection-diffusion equation.

2.3. Discretization of the stationary convection-diffusion equation 9

h1

h2

x1

x2

P

N

S

EW

Figure 2.1: A cell-centered grid. (• grid points; – finite volume boundaries.)

Boundary conditions

One has to specify suitable boundary conditions (BCs) to assure that the problem is well-
posed. Firstly, the BCs have to be chosen such that the problem has an unique solution. For
a second order equation, such as the general convection diffusion equation, this means that we
have to prescribe exactly one BC at each boundary of the domain Ω. Secondly, the problem
is well-posed if small perturbations in the data do not cause large changes in the solution.
Suitable boundary conditions for ε� 1 are given by, see Wesseling [36],

ϕ(x) = fin(x) , x ∈ ∂Ωin (Dirichlet) ,

ϕ(x) = fout(x) , x ∈ ∂Ωout (Dirichlet) , or ,

∂ϕ(x)

∂n
= gout(x) , x ∈ ∂Ωout (Neumann) ,

where n is the outward unit normal on the boundary ∂Ω, ∂Ωin is the inflow boundary (where
ujnj < 0) and ∂Ωout the outflow boundary (ujnj > 0).

2.3.2 Interpolation practices

Approximating the diffusive flux can be done in a straightforward manner. For approximating
the convective flux various methods exist. This can be done, for example, by applying a
central, upwind, or hybrid scheme, or by defect correction. More accurate schemes could also
used as well, see for a survey Ferziger & Perić [4, Section 4.4–4.5], and Wesseling [36, Section
4.5–4.8].

We restrict ourselves to the treatment of central and upwind discretization, and to the
treatment of defect correction. First the computational grid is defined.

The computational grid

For sake of simplicity, we restrict ourselves to the two-dimensional case. Generalization to
three dimensions can be done in a straightforward way. We will use a cell-centered uniform
grid, see Figure 2.1. The rectangular domain Ω = L1 × L2 is subdivided in rectangular cells

10 2. Finite Volume discretization

of size h1 × h2. The computing grid G is the set of cell-centers:

G = {x ∈ Ω : x = xj , j = (j1, j2) , jα = 1, 2, . . . ,mα , mα =
Lα

hα
} ,

with xj defined by

xj = (x1
j , x

2
j) , x1

j = (j1 − 1
2)h1 , x2

j = (j2 − 1
2)h2 .

The cell with center xj is denoted by Ωj . Define:

e1 ≡ (1
2 , 0) , e2 ≡ (0, 1

2) ,

then the value of a quantity ϕ in xj is denoted by ϕj , and ϕj+e1
is located at a cell face,

namely at
xj+e1

= (j1h1, (j2 − 1
2)h2) .

The cell at the ‘east’ side of Ωj is designated by Ωj+2e1
.

Central and upwind discretization

Consider an uniform cell-centered grid, as depicted in Figure 2.1. Approximating the convec-
tive flux with the central difference scheme (CDS), results in

(uϕ)cds,j+e1
≈ 1

2
uj+e1

(ϕj + ϕj+2e1
) .

The CDS scheme is O(h2
α) accurate. Another way is to use a upwind difference scheme (UDS),

and approximate uϕ by the value of the node upstream, i.e.

(uϕ)uds,j+e1
≈

uj+e1
ϕj if uj+e1

> 0 ,

−uj+e1
ϕj+2e1

if uj+e1
≤ 0 .

The UDS scheme is O(hα) accurate.

Spurious wiggles

Writing the convection-diffusion equation in non-conservation form, one can formulate the
so-called maximum principle, which can give us a-priori information. This principle tells us if
the exact solution has a local maximum or minimum. If this is true, wiggles in the numerical
solution must be regarded as numerical artifacts.

Discretization of the convection-diffusion equation leads to a FV scheme. If this scheme
is of the so-called positive type, which can be verified by the scheme’s stencil, a discrete
maximum principle can be formulated that gives us the conditions for which numerical wiggles
may occur.

One can verify that for the convection-diffusion equation with a constant velocity field, the
UDS scheme is positive for all Péclet numbers and satisfies the discrete maximum principle,
so that this scheme does not introduce wiggles. On the other hand, one can verify that the
central scheme introduces wiggles for

pj+eα
≡ |uj+eα

|hα

ε
≥ 2 , (2.18)

where p is called the dimensionless mesh Péclet number. See Wesseling [36] for more details.

2.3. Discretization of the stationary convection-diffusion equation 11

Defect correction

Defect correction, also known as deferred correction, is an iterative method to improve the
accuracy of a lower order discretization, without having to solve for a higher order discretiza-
tion. More details on defect correction can be found in Wesseling [36, Section 4.6]. Let
the system of equations corresponding to a lower and a higher order discretization for the
stationary convection-diffusion equation be denoted by, respectively,

L̄hϕ̄h = q̄h , Lhψh = qh .

Defect correction is given by

L̄hϕ
(0)
h = q̄h ,

L̄hϕ
(k)
h = qh + β(L̄h − Lh)ϕ

(k−1)
h , k = 1, . . . , ,

where 0 ≤ β ≤ 1 is a blending factor. If L̄h is first order accurate (for example UDS) and Lh

is a second order scheme (for example CDS), one can prove for β = 1 that ϕ
(1)
h is of second

order accuracy.
Compared to a second order scheme, defect correction has the advantage that the resulting

system has better properties when solved with an iterative solver.

2.3.3 Spatial discretization

Discretization for the interior

We will now integrate Equation (2.17) over a cell Ωj . Integrating the LHS of (2.17) and using
Gauß’ divergence theorem (Theorem 2.2), yields

Lhϕj ≡
∫

Ωj

LϕdΩ =
[

∫ x j+e1+e2
x j+e1−e2

−
∫ x j−e1+e2
x j−e1−e2

]

(u1ϕ− εϕ,1)dx2

+
[

∫ x j+e1+e2
x j−e1+e2

−
∫ x j+e1−e2
x j−e1−e2

]

(u2ϕ− εϕ,2)dx1

= F 1|j+e1

j−e1
+ F 2|j+e2

j−e2
,

where Lh is defined as a discrete operator, and F α is the (numerical) flux. The surface integrals
in the above equation can be approximated by the midpoint rule. When the derivative is
approximated by central differences, the diffusive flux, for example at the ‘east’ side, is given
by

∫ x j+e1+e2

x j+e1−e2

(−εϕ,1)dx2 ≈ −ε(ϕj+2e1
− ϕj)

h2

h1
.

The convective flux can be approximated by an interpolation scheme, as described in Subsec-
tion 2.3.2.

Integrating the source term in the RHS of Equation (2.17) yields

∫

Ωj

qdΩ ≈ q̂j ≡ h1h2q(xj) .

12 2. Finite Volume discretization

Discretization of the boundary conditions

Consider the case of a Dirichlet BC at the inflow, and Neumann BC at the outflow.

Let Ωj be a cell for which (j1 = 1, j2), so that the ’west’ face is part of the inflow boundary.
The Dirichlet BC at the inflow is given by

ϕ(x) = a , x ∈ ∂Ωin .

The convective flux (u1ϕ)j−e1
could be approximated in a straightforward manner:

(u1ϕ)j−e1
≈ u1

j−e1
a ,

and the diffusive flux (εϕ,1)j−e1
by a one-sided approximation:

(εϕ,1)j−e1
≈ 2εj−e1

ϕj − a

h1
.

Consider Ωj (j1, j2 = m2), so that the ’east’ face is part of the outflow boundary. The
Neumann BC at the outflow is given by:

∂ϕ(x)

∂x1
= b , x ∈ ∂Ωout .

Then the diffusive flux (εϕ,1)j+e1
can be simply approximated by:

(εϕ,1)j+e1
≈ εj+e1

b .

When a UDS scheme is used for the diffusive flux (εϕ,1)j+e1
, u1

j+e1
> 0 is assumed, then

(u1ϕ)j+e1
≈ u1

j+e1
ϕj .

Using a CDS scheme, we can approximate ϕj+2e1
with linear extrapolation, using the Neu-

mann BC:

ϕj+2e1
≈ ϕj + bh1 .

In general, various methods can be considered for treating the BCs, compare Ferziger & Perić
[4] to Wesseling [36].

2.4 The stationary incompressible Navier-Stokes equations

In this section, the discretization of the stationary incompressible Navier-Stokes equations is
discussed. In Subsection 2.4.1, first a problem description is given, followed by the discretiza-
tion on a colocated grid in Subsection 2.4.2.

2.4.1 Problem description

We restrict ourselves to the stationary case. The dimensionless form of the continuity equation
(2.2) is given by:

uα
,α = 0 . (2.19)

2.4. The stationary incompressible Navier-Stokes equations 13

The dimensionless form of the Navier-Stokes equations (2.10) and (2.11) (see Wesseling [36,
page 16]) reads:

(ρuαuβ),β = −p,α + σαβ
,β + fα, σαβ = Re−1(uα

,β + uβ
,α) , (2.20)

where f is a body force, σαβ the deviatoric stress tensor, and Re the dimensionless Reynolds
number, defined by

Re =
ρ0UL

µ
,

where ρ0 is a suitable value for the density, U respectively L are typical length and velocity
scales, and µ is the dynamic viscosity.

Note that the Navier-Stokes equations are non-linear, by the LHS of Equation (2.20).

No-slip condition

At a solid surface we have the no-slip condition

uα(x) = vα(x) , x ∈ Ωsw ,

with vα(x) the local wall velocity.

Inflow conditions

Since the momentum equations resemble convection-diffusion equations for the velocities, we
use the same inflow BCs as in Subsection 2.3.1, i.e. Dirichlet conditions.

Outflow conditions

At the outflow boundary, apart from the pressure, there is usually not enough physical infor-
mation available on which a sufficient number of BCs can be based. Because of the resem-
blance of Equation (2.20) to the convection-diffusion equation, it can be shown, by applying
singular perturbation analysis that the ‘wrong’ information generated by the artificial outflow
BC propagates upstream by a distance of O(Re−1). So for highly turbulent flow, Re � 1, the
outflow condition does not influence the the solution significantly. However, for laminar low
Reynolds flow this is not the case. To obtain a well-posed problem, it is advisable to choose
a (homogeneous) Neumann outflow BC for the stationary case, see Wesseling [36].

2.4.2 Discretization on a colocated grid

Colocated and staggered grids

There are two ways to arrange the unknowns on the grid: colocated arrangement and stag-
gered arrangement, see Figure 2.2. When all discrete unknowns are located in the cell-centers,
the grid is called a colocated grid (colocate = to locate together). When the pressure is lo-
cated in the cell-centers and the velocity components are located at the cell face centers, the
grid is called staggered.

We will restrict ourselves to a colocated grid and to incompressible flow with constant
density ρ = 1.

14 2. Finite Volume discretization

Staggered gridColocated grid

: scalar variables +
velocities position and CV

: scalar variables position and CV

: v-velocity position and CV

: u-velocity position and CV

Figure 2.2: A two-dimensional domain with a colocated grid arrangement (left) and a stag-
gered grid arrangement (right). (CV: control volume or cell.)

Discretization of the continuity equation

FV discretization of Equation (2.19) gives
∫

Ωj

uα
,αdΩ ≈ h2u

1|j+e1

j−e1
+ h1u

2|j+e2

j−e2
= 0 . (2.21)

Since the velocity components are situated in the cell centers, the cell face values in the above
equation need to be interpolated, e.g., by applying a CDS scheme:

h2u
1|j+2e1

j−2e1
+ h1u

2|j+2e2

j−2e2
= 0 .

Discretization of the momentum equations

For simplicity we take f = 0 in (2.20), so we have to discretize

F̄αβ
,β + p,α = 0 , F̄αβ = uαuβ − σαβ .

FV discretization yields
∫

Ωj

{F̄αβ
,β + p,α}dΩ ≈ h2F̄

α1|j+e1

j−e1
+ h1F̄

α2|j+e2

j−e2
+ hγp|j+eα

j−eα
, (2.22)

with γ 6= α. Just as for the discretization of the continuity equation, the cell face values have
to be interpolated between cell center values. For the pressure this is done as follows:

pj+eα
≈ 1

2
(pj + pj+2eα

) .

2.4. The stationary incompressible Navier-Stokes equations 15

When α = β, the deviatoric viscous stress is approximated by

(σαα)j+e1
= (2Re−1uα

,α)j+e1
≈ 2Re−1

j+e1
(uα

j+2e1
− uα

j)/hα .

For the inertia terms one can use the CDS scheme:

(uαuβ)j+eβ
≈ 1

2
[(uαuβ)j + (uαuβ)j+2eβ

] .

Spurious checkerboard pattern

Using the CDS scheme to approximate the terms in Equations (2.21) and (2.22), causes a
spurious checkerboard pattern. Assuming that Re = constant and neglecting the boundary
conditions, one can show that

uα
j = (−1)j1+j2 exp{− 12

Re
(h−2

1 + h−2
2)t} , p = (−1)j1+j2 ,

is a solution of the discretised Navier-Stokes equations (2.22). This shows that if Re � 1,
the checkerboard pattern is damped slowly for the velocity, but not at all for the pressure.
A way to avoid checkerboard patterns is to use a staggered grid instead of a colocated grid.
If we do not want this, another option is to use the pressure-weighted interpolation method,
which will be discussed next.

Pressure weighted interpolation method

With the pressure weighted interpolation (PWI) method (or Rhie & Chow interpolation after
its inventors), the cell face velocities are approximated as follows:

uα
j+eα

=
1

2
(uα

j + uα
j+2eα

) + (
hβ

4aα
∆αp)|j+2eα

j (no summation) , (2.23)

where ∆αpj = pj+2eα
− 2pj + pj−2eα

, β 6= α. See Appendix A.1 for a derivation. This
discretization method is O(h2

1 +h2
2) accurate. The second term in the RHS can be interpreted

as a regularizing term that excludes spurious patterns.

Substitution of (2.23) in (2.21) results in the following discretization of uα
,α with the PWI

method:

h2u
1|j+2e1

j−2e1
+ h1u

2|j+2e2

j−2e2

+ h2
2[(

1

2a1
∆1p)j+2e1

− (
1

a1
∆1p)j + (

1

2a1
∆1p)j−2e1

]

+ h2
1[(

1

2a2
∆2p)j+2e2

− (
1

a2
∆2p)j + (

1

2a2
∆2p)j−2e2

] = 0 .

(2.24)

See Appendix A.2 for a derivation of this equation.

16 2. Finite Volume discretization

Boundary conditions and pressure

A disadvantage of the PWI method is that it requires some further specification of conditions
at boundaries, beyond what is given for the differential equations. Let (j = 1, j2), so that the
‘west’ face of Ωj is part of the boundary. When the PWI method (2.23) is applied in (2.21)
and (2.22), pj−2e1

is needed, corresponding to a grid point outside the grid G. This value is
approximated by extrapolation from the interior:

pj−2e1
= 2pj − pj+2e1

,

which is artificial since the differential equations are not accompanied by a boundary condition
for the pressure.

When the pressure distribution is required at the boundaries, this can also be obtained
by extrapolation from the interior, for example by

pj−e1
=

3

2
pj −

1

2
pj+2e1

.

For more details we refer to Wesseling [36].

Summary of equations

After spatial discretization of the continuity equation and the Navier-Stokes equations, the
following system of ordinary differential equations is obtained,

N(u) +Gp = b1 ,

Du + Cp = b2 ,
(2.25)

where N is a non-linear algebraic operator arising from the discretization of the inertia and
viscous terms of the Navier-Stokes equations, G is a linear algebraic operator representing
the discretization of the pressure gradient of the Navier-Stokes equations, D and C are linear
algebraic operators corresponding to the velocity terms and pressure terms, respectively, in the
PWI discretization of the continuity equation. The terms b1 and b2 are source terms, arising
from the boundary conditions and body forces. The system (2.25) contains both differential
and algebraic systems and is therefore called a differential-algebraic system (DAS).

2.5 Connection with the X-stream code

With the X-stream code, the basic governing equations, as discussed in Section 2.2, can be
solved both in the glass melting space as in the combustion space. In X-stream, several addi-
tional models are of great importance, which were not discussed in this chapter, for example:
combustion, turbulence, radiation, batch, electrical boosting, foam, bubbling, stirring, etc.
Most of these models are specifically related to the process of glass melting. Details on this
kind of models can be found in Post [17], Twerda [20] or Verweij [22].

In the X-stream code, the FV method is used on a colocated grid. The grid is structured
and boundary-fitted, see for details Ferziger & Perić [4] or Wesseling [36]. Defect correc-
tion is applied and blending can be done with several schemes: UDS scheme, CDS scheme,

2.5. Connection with the X-stream code 17

and higher order schemes (LDS, QUICK, TVD scheme using UMIST, MUSCL and SMART
flux delimiters). Both the instationary as the stationary (non-dimensionless) incompressible
Navier-Stokes equations can be solved. The PWI method is used to eliminate the checker-
board modes for the pressure.

18 2. Finite Volume discretization

3

Iterative solution methods

3.1 Introduction

The algebraic systems of equations arising from FV discretization are generally very large
and sparse, because many grid points are required for sufficient accuracy. Therefore, itera-
tive methods are more efficient and demand far less storage capacity than direct methods,
especially for the three-dimensional case.

We restrict ourselves to iterative methods. In Section 3.2, iterative methods for solving
linear equations are discussed in fair detail. In Section 3.3, iterative solution methods are
discussed for solving the non-linear system of the stationary incompressible Navier-Stokes
equations. Finally, in Section 3.4, the connection with the X-stream code is given.

3.2 Methods for solving linear equation systems

Various methods exist for solving linear algebraic systems, each having their own advantages
and disadvantages. In this section, first the principle of the basic iterative method is discussed
in Subsection 3.2.1. Next, an efficient basic iterative method, called the SIP method, is given
in Subsection 3.2.2. In Subsection 3.2.3, a class of efficient solution methods, called Krylov
subspace methods, is discussed. These methods can be combined with the deflation technique.
This is discussed in Subsection 3.2.4.

3.2.1 Basic iterative solution methods

The basic idea

Consider the linear algebraic n× n system

Ay = b . (3.1)

The basic idea behind iterative methods is to replace this system by some nearby system that
is easier to solve. Since b−Ay(k) is small if y(k) is close to y, the following iteration process
is motivated

y(k) = y(k−1) +M−1(b −Ay(k−1)), k = 1, 2, . . . , , (3.2)

which is called a basic iterative method (BIM). The formula A = M −N is called a splitting
of A. Iteration (3.2) can also be combined with underrelaxation:

Mδy = α(b −Ay(k−1)) , y(k) = y(k−1) + δy , (3.3)

with α a given relaxation parameter.

20 3. Iterative solution methods

Preconditioning

Iteration (3.2) can be written into the following form:

y(k) = M−1Ny(k−1) +M−1b ,

where the matrix N is given by N = M −A. This iteration can be viewed as a technique for
solving the system

(I −M−1N)y = M−1b ,

which equals

M−1Ay = M−1b . (3.4)

This system, which has the same solution as the original system, is called a left-preconditioned
system and the matrixM is called the left-preconditioning matrix or simply left-preconditioner.

Another interpretation of iteration (3.2) is the following. When (3.2) is multiplied by M
and y(k) = M−1x(k) is defined, we get

x(k) = x(k−1) + b −AM−1x(k−1) .

This can be viewed as a technique for solving the system

AM−1ŷ = b , y = M−1ŷ , (3.5)

which is called a right-preconditioned system, and in this context the matrix M is called a
right-preconditioner.

In general, a preconditioner M transforms a linear system into an equivalent system, for
which the transformed coefficient matrix has a more favorable eigenvalue spectrum. The
requirements on the matrix M are the following:

• M is a good approximation to A in some sense,

• the eigenvalues of the preconditioned matrix are to be clustered around 1,

• the costs of the construction of M are not prohibitive,

• a system involving M is much easier to solve than the original system.

More details on preconditioning can be found in, for example, Saad [18] or van der Vorst [34].

From now on we consider the left-preconditioned system (3.4), and we will denote this
system by

Ãy = b̃ ,

where b̃ ≡M−1b and Ã ≡M−1A.

Some convergence aspects

Rewriting (3.2), results into the preconditioned Richardson’s iteration:

y(k) = b̃ + (I − Ã)y(k−1) = y(k−1) + r̃(k−1) , (3.6)

3.2. Methods for solving linear equation systems 21

with the residual r̃(k) ≡ b̃ − Ãy(k). Multiplication by −1 and adding y, results in

y − y(k) = y − y(k−1) − r̃(k−1) .

With the global error defined as e(k) = y−y(k), and using the relation r̃(k) = Ãe(k), this can
be written as

e(k) = (I − Ã)e(k−1) ,

which is equal to

e(k) = (I − Ã)ke(0) .

From this, we see that

‖e(k)‖ ≤ ‖Bk‖ ‖e(0)‖ ,

where B ≡ I− Ã and ‖ ·‖ represents some norm. This shows that convergence in governed by
the matrix B, which is therefore called the iteration matrix. Now define the spectral radius
of a matrix A by

ρ(A) = max{|λ| where λ ∈ spectrum of A} .

It can be shown (see for example Saad [18]) that ρ(B) satisfies

ρ(B) = lim
k→∞

‖Bk‖1/k ,

and therefore we have convergence if and only if

ρ(B) < 1 .

If the splitting A = M −N is a regular splitting, i.e., M−1 ≥ 0, N ≥ 0, and A belongs to the
class of so-called M -matrices, then it can be proven that a BIM converges. A non-singular
n× n matrix A has the M -matrix property if A−1 ≥ 0 and ai,j ≤ 0 for all i 6= j. In practice,
the M -matrix property holds for important classes of discretized PDEs.

Starting vectors

Iterative solution methods, such as the BIM (3.2), need to be provided with a suitable starting
vector y(0). If no further information is available, one always starts with y(0) = 0, where 0
denotes a vector of appropriate size containing all zeros.

In CFD codes, generally a large number of iteration processes is nested. For example, the
solution to a non-linear problem is in general approximated by the solution to a number of
linear systems. In such a problem, usually the most recent iterate of the outer iteration is
used as a starting vector for the inner iteration solution method.

Another example is when a multigrid method provides a starting vector. A solution
computed on a coarser grid could be used as a starting vector for the solution method on a
finer grid.

22 3. Iterative solution methods

Termination criteria

In general, an iterative method should be provided with a good termination criterion to
assure that the method stops if the approximate solution is accurate enough. It is important
to choose a suitable termination criterion for a given problem which is not too weak or too
severe.

An overview of stopping criteria can be found in Vuik [30]. Here we restrict ourselves to
the highlights. Sometimes, the iteration method is stopped if the iterations satisfy

‖y(k) − y(k−1)‖2 ≤ ε (3.7)

for a fixed tolerance 0 < ε � 1. Although this criterion seems quite intuitive, one can show,
that this is not always a good termination criterion. We will illustrate this for linear convergent
iterative methods, i.e., methods for which the iterates satisfy the following equation:

‖y(k) − y(k−1)‖2 ≈ r‖y(k−1) − y(k−2)‖2, r < 1 ,

and y(k) → A−1b for k → ∞. An example of a linear convergent method is the SIP method
(see Subsection 3.2.2). Now one can show that for a linear convergent method the following
equation holds (see for a proof Vuik [30, page 26]):

‖y − y(k)‖2 ≤ r

1 − r
‖y(k) − y(k−1)‖2 .

With termination criterion (3.7), it follows that

‖y − y(k)‖2 ≤ r

1 − r
ε ,

which tells us that ‖y − y(k)‖2 may be large for r close to 1.
For general purposes, it is better to use a termination criterion which is based on the

residual, for example
‖b −Ay(k)‖2 ≤ ε . (3.8)

The main disadvantage of this criterion is that it is not scaling invariant. This means that
if ‖b − Ay(k)‖2 ≤ ε, this does not hold for ‖α(b − Ay(k))‖2 ≤ ε, although the accuracy
remains the same. Examples of termination criteria that are scaling invariant are the relative
termination criterion, which reads

‖b −Ay(k)‖2

‖b −Ay(0)‖2
≤ ε , (3.9)

and the absolute termination criterion:

‖b −Ay(k)‖2

‖b‖2
≤ ε . (3.10)

Choosing ε ≡ ε/κ2(A) and using the relation ‖AB‖2 ≤ ‖A‖2‖B‖2, where ‖ · ‖2 is the matrix
norm induced by the 2-norm, it can be easily verified that the relative error satisfies

‖y − y(k)‖2

‖y‖2
≤ κ2(A)

‖b −Ay(k)‖2

‖b‖2
≤ κ2(A)ε ,

where κ2(A) = ‖A‖2‖A−1‖2 is the condition number of A, which equals λn/λ1 for the case A
is symmetric.

3.2. Methods for solving linear equation systems 23

=
M

L
1LW

LS

U N

SE

ME

MNWM
NMW

EU
M

SM

P P

Figure 3.1: Incomplete LU factorization for the SIP method.

3.2.2 SIP basic iterative method

The Strongly Implicit Procedure (SIP) is described in, for example, Ferziger & Perić [4]
and Kim & Lee [10]. This method is especially designed for algebraic equations that are
discretizations of PDEs and cannot be applied to generic systems of equations.

The SIP method is a BIM (3.2) which is based on the splitting A = M−N , with M being
an incomplete LU (ILU) factorization of A. This means that a lower triangular matrix LI

and an upper triangular matrix UI with diag(UI) = I are constructed, such that

M = LIUI ≈ A ,

so the non-zero pattern of LIUI corresponds to the non-zero pattern of A. Substituting
M = LIUI in the BIM (3.2) yields:

y(k) = y(k−1) + U−1
I L−1

I (b −Ay(k−1)) , (3.11)

or, equivalently:

for k = 1, . . . convergence do

r(k−1) = b −Ay(k−1);

Solve LIq = r(k−1);
Solve UIδy = q;

y(k) = y(k−1) + δy;
end for

Now the matrices LI and UI will be derived for a two-dimensional uniform grid, as defined in
Subsection 2.3.2, and a five-point computing molecule. The ILU factorization is of the form
as indicated in Figure 3.1, and a row of M corresponding to the (i, j)-th grid point is given
by

M i,j
S = Li,j

S ,

M i,j
SE = Li,j

S U i,j−1
E ,

M i,j
W = Li,j

W ,

M i,j
P = Li,j

S U i,j−1
N + Li,j

WU i−1,j
E + Li,j

P ,

M i,j
E = Li,j

P U i,j
E ,

M i,j
NW = Li,j

WU i−1,j
N ,

M i,j
N = Li,j

P U i,j
N .

(3.12)

24 3. Iterative solution methods

We now want Ny to be small. Writing out the (i, j)-th component of Ny results in

(Ny)i,j = N i,j
P yi,j +N i,j

S yi,j−1 +N i,j
W yi−1,j +N i,j

E yi+1,j +N i,j
N yi,j+1

M i,j
SEyi+1,j−1 +M i,j

NWyi−1,j+1 .
(3.13)

Now yi+1,j−1 and yi−1,j+1 will be approximated using Taylor series expansion. For yi+1,j−1

this yields

yi+1,j−1 ≈ yi,j + h1
dy

dx1
− h2

dy

dx2
,

≈ yi,j + h1
yi+1,j − yi,j

h1
− h2

yi,j − yi,j−1

h2
,

= yi+1,j + yi,j−1 − yi,j ,

(3.14)

and analogous for yi−1,j+1, this gives

yi−1,j+1 ≈ yi,j+1 + yi−1,j − yi,j . (3.15)

Multiplying the RHS of (3.14) and (3.15) with a parameter 0 < α < 1, results in the following
approximations

yi+1,j−1 ≈ α(yi+1,j + yi,j−1 − yi,j) ,

yi−1,j+1 ≈ α(yi,j+1 + yi−1,j − yi,j) .

With these approximations, (3.13) can be rewritten as

(Ny)i,j ≈ (N i,j
P − αM i,j

SE − αM i,j
NW)yi,j+

(N i,j
S + αM i,j

SE)yi,j−1 + (N i,j
W + αM i,j

NW)yi−1,j+

(N i,j
E + αM i,j

SE)yi+1,j + (N i,j
N + αM i,j

NW)yi,j+1 .

(3.16)

Setting each of the coefficients in the RHS of (3.16) to zero, then it follows from (3.12) that
the entries of N can be expressed in those of LI and UI:

N i,j
S = −αM i,j

SE = −αLi,j
S U i,j−1

E ,

N i,j
W = −αM i,j

NW = −αLi,j
WU i−1,j

N ,

N i,j
P = α(M i,j

SE +M i,j
NW) = α(Li,j

S U i,j−1
E + Li,j

WU i−1,j
N) ,

N i,j
E = −αM i,j

SE = −αLi,j
S U i,j−1

E ,

N i,j
N = −αM i,j

NW = −αLi,j
WU i−1,j

N .

(3.17)

Now, using M = A+N , (3.12) and (3.17), this results in

Li,j
S = Ai,j

S /(1 + αU i,j−1
E) ,

Li,j
W = Ai,j

W/(1 + αU i−1,j
N) ,

Li,j
P = Ai,j

P + α(Li,j
S U i,j−1

E + Li,j
WU i−1,j

N) − Li,j
S U i,j−1

N − Li,j
WU i−1,j

N ,

U i,j
E = (Ai,j

E − αLi,j
S U i,j−1

N)/Li,j
P ,

U i,j
N = (Ai,j

N − αLi,j
WU i−1,j

E)/Li,j
P .

(3.18)

3.2. Methods for solving linear equation systems 25

The approximations in (3.18) are second order accurate when α = 1, but for this α the SIP
method generally does not converge. Therefore, often 0.92 < α < 0.96 is chosen. Entries of
(3.18) whose indices are outside the index boundaries should be set equal to zero.

In Ferziger & Perić [4, page 120] a nice comparison of the SIP method to other popular
iterative solution methods can be found.

3.2.3 Krylov subspace methods

Define the computing work W to solve the linear system Ay = b, arising from the discretiza-
tion of an elliptic PDE, as

W = O(Nα) ,

with N the total number of unknowns and α a certain number. Obviously, a method is said
to have an optimal efficiency if α = 1.

In general, a BIM (3.2) converges slowly (α ≈ 2), but fortunately they can be accelerated.
Two classes of efficient methods to achieve this can be distinguished: multigrid methods and
Krylov subspace methods. Multigrid methods bring α down to the ideal case α = 1, Krylov
subspace methods bring α down close to α = 1. Although multigrid methods have an optimal
efficiency, they cost considerably more programming effort than Krylov subspace methods.
For a survey on (geometric) multigrid methods see Wesseling [36] and Wesseling [35]. Details
on Krylov subspace methods can be found in for example Golub & Van Loan [7], Saad [18],
van der Vorst [34], Vuik [30] or Vuik [23] (in Dutch).

Basic idea of Krylov methods

Consider Richardson’s iteration (3.6). Multiplication by −Ã and adding b̃ results in

b̃ − Ãy(k) = b̃ − Ãy(k−1) −Ar̃(k−1) ,

hence r̃(k) = (I − Ã)r̃(k−1). Using this, we observe that (3.6) can be written as

y(k) = y(0) + r̃(0) + r̃(1) + · · · + r̃(k−1)

= y(0) +
∑k−1

i=0 (I − Ã)ir̃(0)

∈ y(0) + span{r̃(0), Ãr̃(0), . . . , Ãk−1r̃(0)}
= y(0) + K(k)(Ã; r̃(0)) ,

(3.19)

where K(k)(Ã; r̃(0)) is called the Krylov subspace of dimension k belonging to the matrix
Ã and initial residual r̃(0). Methods that look for optimal approximations to y − y(0) in
K(k)(Ã; r̃(0)) are called Krylov subspace (projection) methods.

The Generalized Conjugate Residual (GCR) method

Consider the right-preconditioned system

AM−1ŷ = b, ŷ ≡My . (3.20)

26 3. Iterative solution methods

The preconditioned Richardson’s iteration for this system reads:

ŷ(k) = b − (I −AM−1)ŷ(k−1) = ŷ(k−1) + r̂(k−1) ,

with the residual r̂(k) ≡ b −AM−1ŷ(k) . Multiplication by −AM−1 and adding b results in

b −AM−1ŷ(k) = b −AM−1ŷ(k−1) −AM−1r̂(k−1) ,

hence
r̂(k) = (I −AM−1)r̂(k−1) = (I −AM−1)kr̂(0) .

Using this relation, and the fact that r̂(k) = r(k), results in

r(k) = r(0) − v , v ∈ Vk ≡ span{AM−1r(0), . . . , (AM−1)kr(0)} . (3.21)

In the GCR method, ‖r(k)‖2 = ‖r(0) − v‖2 is minimized over all v ∈ Vk. Since Vk is a linear
subspace, we can decompose r(0) uniquely as

r(0) = r(0)
v + r(0)

p , r(0)
v ∈ Vk, r(0)

p ∈ V ⊥

k .

Writing out

‖r(0) − v‖2
2 = (r(0)

v − v + r(0)
p , r(0)

v − v + r(0)
p) = (r(0)

v − v, r(0)
v − v) + (r(0)

p , r(0)
p) ,

it can be easily seen that this is minimal when v = r
(0)
v , and thus r(k) = r

(0)
p by (3.21). This

means that the following orthogonality relation holds:

r(k) ⊥ Vk . (3.22)

With this property, a general expression for the residuals r(k) and the iterands y(k) can be
determined. Let {v(1),v(2), . . . ,v(k)} be an orthonormal basis for Vk, i.e., (v(i),v(j)) = δi,j ,
then

r(k) = r(0) − r(0)
v = r(0) −

k
∑

j=1

γjv
(j) .

With the orthogonality relation (3.22), it follows that γj = (r(0),v(k)). We can write

γj = (r(0) −
j−1
∑

i=1

(r(0),v(i))v(i),v(j)) = (r(j−1),v(j))

and with this
r(k) = r(k−1) − (r(k−1),v(k))v(k) .

Since y(k) = A−1(b − r(k)), it follows that

y(k) = y(k−1) + (r(k−1),v(k))s(k), s(k) ≡ A−1v(k) .

The vectors v(1),v(2), . . . ,v(k) and s(1), s(2), . . . , s(k) remain to be determined.
For determining an orthonormal basis, for example classical Gram-Schmidt (CGS) can

be used. However, it can be shown that this method is unstable with respect to rounding
errors, see Hoffmann [8]. Methods that do not suffer from this problems are, for example,

3.2. Methods for solving linear equation systems 27

modified Gram-Schmidt (MGS) and reorthogonalized classical Gram-Schmidt (RCGS), see
Vuik & Frank [24] or Vuik et al. [29]. During the orthonormalization process, one has to
ensure that the condition As(k) = v(k) is preserved.

It can be easily shown that y(k) is exact when s(k) = A−1r(k−1), and therefore, we de-
termine s(k) by solving Ms(k) = r(k−1), where M is a preconditioner of A. All together, the
preconditioned GCR method is given by the following algorithm, see Wesseling [36].

Algorithm 3.1 (GCR method). Given a general non-singular matrix A, a vector b, a
preconditioner M , and an initial guess y(0) (Ay(0) ≈ b), this algorithm solves the linear
system Ay = b.

r(0) = b −Ay(0);
for k = 1, . . . , convergence do

Solve Ms(k) = r(k−1);

v(k) = As(k);

Orthonormalize s(k) and v(k) by, for example, MGS (Algorithm 3.2);

β = (r(k−1),v(k));

y(k) = y(k−1) + βs(k);

r(k) = r(k−1) − βv(k);
end for

y ≈ y(k);

The MGS method, which could be used in the GCR method, is given by the following
algorithm.

Algorithm 3.2 (MGS). Given the vectors s(k) and v(k), the sets {s(1), . . . , s(k−1)} and
{v(1), . . . ,v(k−1)}, this algorithm computes an orthonormal basis for {s(1), . . . , s(k)}, preserv-
ing the relation As(k) = v(k).

for j = 1, . . . , k − 1 do

α = (v(k),v(j));

v(k) := v(k) − αv(j);

s(k) := s(k) − αs(j);
end for

v(k) := v(k)/‖v(k)‖2;

s(k) := s(k)/‖s(k)‖2;

The RCGS orthonormalization method is given by Algorithm B.1 in Appendix B.

Computational work

The orthonormalization process used in Algorithm 3.1 could make the GCR algorithm ex-
pensive. First of all, the vectors v(1), . . . ,v(k) and s(1), . . . , s(k) need to be stored in memory
and with every iteration the memory usage increases. Secondly, the orthonormalization work
of the vectors increases with every iteration.

The storage and computational work can be reduced by applying the following techniques:

• Restarting: restart the GCR algorithm after kre iterations by removing v(1), . . . ,v(kre)

and s(1), . . . , s(kre).

28 3. Iterative solution methods

• Truncation: allow only ktr vectors v(j) and s(j), and replace the oldest vector by the
newest.

When restarting or truncation is applied the optimality property of the GCR algorithm gets
lost.

Robustness and convergence

Inspection of the GCR algorithm in combination with MGS orthonormalization shows that
break-down can occur if ‖v(k)‖2 = 0 or ‖s(k)‖2 = 0. This can happen if r(k−1) = r(k−2),
which is unlikely to happen in practice, unless the exact solution is reached, i.e., y(k−1) = y.
This means that the GCR method is very robust.

The preconditioned Conjugate Gradient (CG) method

In the special case that A is a symmetric positive definite (SPD) matrix, using the so-called
preconditioned conjugate gradient (CG) method is less expensive than the GCR method.
Compared to the GCR method, many references on the CG method can be found, see for
example Golub & Van Loan [7], Saad [18] van der Vorst [34] or Wesseling [36]. The CG
method is given by the following algorithm.

Algorithm 3.3 (CG method). Given a SPD n × n matrix A, a vector b, a SPD precon-
ditioner M , and an initial guess y(0) (Ay(0) ≈ b), this algorithm solves the linear system
Ay = b.

r(0) = b −Ay(0);

Solve Mq1 = r(0);

s(0) = q1;
for k = 1, . . . , convergence do

α = (r(k−1), q1)/(As(k−1), s(k−1));

y(k) = y(k−1) + αs(k−1);

r(k) = r(k−1) − αAs(k−1);

Solve Mq2 = r(k);

β = (r(k), q2)/(r
(k−1), q1);

s(k) = q2 + βs(k−1);
q1 := q2;

end for

y ≈ y(k);

Computational work, robustness and convergence

Since no orthonormalization is needed, an iteration with the CG method is less expensive
compared to the GCR method, and less memory is required.

Break-down does not occur in computing α and β, because A and M are SPD. Therefore
the CG solution method is robust.

3.2. Methods for solving linear equation systems 29

Concerning convergence, one can show that after k iterations, the error is bounded by
(see Saad [18, page 192] for a proof):

‖y − y(k)‖M−1A ≤ 2‖y − y(0)‖M−1A

(√
κ− 1√
κ+ 1

)k

,

where κ = κ2(M
−1A) = λn/λ1 is the spectral condition number of M−1A and the norm

‖y‖M−1A is given by ‖y‖M−1A ≡ (M−1Ay,y)
1

2 .

Choice of Krylov subspace method

For SPD matrices, the CG Krylov subspace method is the most efficient choice. For general
matrices, it is more difficult to decide which Krylov subspace method to use, because one can
choose from various methods all having their own advantages and disadvantages. In general,
the choice of a method will depend on the type of problem to solve and on the computer
architecture.

The GCR method described above is very robust, but the orthonormalization process
could make the GCR method expensive. A method, which produces the same iterates as
GCR and is less expensive, is the generalized minimal residual (GMRES) method, see for
example Golub & Van Loan [7], Saad [18], or Wesseling [36]. However, the GCR method has
two main advantages compared to GMRES:

1. The GCR method allows a variable preconditioner, GMRES does not.

2. The GCR method can be easily truncated, GMRES can not be easily truncated.

The first property is very important, because in practice systems involving the preconditioner
M are usually solved approximately, and therefore the preconditioning can be different in
every iteration, see for example Brakkee [2] or Vuik & Saghir [31].

The second property is of importance, because in general truncated GCR converges better
than restarted GMRES, especially when superlinear convergence occurs. See Vuik [30] for
more details.

3.2.4 Deflation method

Basic idea of deflation

In many problems, the convergence of iterative methods can be significantly slowed down
by the presence of several very small eigenvalues in the spectrum of the algebraic system of
equations to be solved. An example is given in Vuik et al. [32] and Vuik et al. [33], where a
porous media flow is simulated and a diffusion equation with extreme contrasts in the problem
coefficients is aimed to be solved. Discretization results in very ill-conditioned matrices for
which the CG method gives erroneous results.

Two preconditioning methods can be distinguished to correct the low-frequency eigenmode
components in the spectrum: coarse grid correction and deflation. Coarse grid correction is
the oldest of the two methods and has its origin from multigrid solution methods, see Wes-
seling [36]. A more recently developed method is the so-called deflation technique, which is

30 3. Iterative solution methods

originally proposed in Nicolaides [14]. Although both methods are quite similar, it can be
proven that, applying a deflation preconditioner results in a matrix with the most favorable
eigenvalue spectrum, see Nabben & Vuik [13]. From now on we restrict ourselves entirely to
the deflation method.

Consider the general system

Ay = b , (3.23)

and let the matrix Z be n × m, where m ≤ n. Furthermore, let Z be of rank m, i.e. Z
has linear independent columns. The columns of Z, the so-called deflation vectors, span the
deflation subspace, i.e., the space that approximates the eigenspace belonging to the smallest
eigenvalues and which is to be projected out of the residual. To do this we define the projectors

P = I −AZE−1ZT ,

Q = I − ZE−1ZTA ,
(3.24)

where them×mmatrix E is defined as E = ZTAZ, and I is the identity matrix of appropriate
size. To solve the system (3.23) using deflation, we write y = (I −Q)y +Qy, and since

(I −Q)y = Z(ZTAZ)−1ZTAy = ZE−1ZT b , (3.25)

can be computed immediately, we only need to compute Qy. In light of the identity AQ = PA
we can solve the system

PAỹ = Pb (3.26)

for ỹ, premultiply this by Q and add it to (3.25). We will refer to this system as the deflation
system.

Since PAZ = 0, this system is obvious singular, and therefore no unique solution exists.
However, it can be shown that Qy is unique (see for a proof Vermolen & Vuik [21] for the
case that A is SPD).

In Kaasschieter [9] and van der Vorst [34], it is noted that a positive semidefinite system
can be solved as long as it is consistent, i.e., as long as its RHS does not has components
in the null space span{Z} of PA. This is the case for (3.26), because the same projection is
applied to both sides of the non-singular system. In van der Vorst [34, page 147], it is shown
that a Krylov subspace method could be used to solve (3.26), because the null-space never
enters the iteration, and therefore the corresponding zero-eigenvalues do not influence the
convergence. Motivated by this fact, we define the effective condition number of the positive
semidefinite matrix PA by the ratio of its largest to smallest positive eigenvalue:

κeff(PA) =
λn

λm+1
.

Spectrum of the deflation matrix

Let λ1 ≤ · · · ≤ λn be the eigenvalues of A. Choose the eigenvectors vj of A such that
vT

j vi = δij , and define Z = [v1 · · ·vm]. Then we will show that the spectrum of PA satisfies

σ(PA) = {0, . . . , 0, λm+1, . . . , λn} .

3.2. Methods for solving linear equation systems 31

This can be seen as follows. For the choice Z containing m eigenvectors, it appears that

E = diag(λ1, . . . , λm) ,

which implies that P = I − AZE−1ZT = I − ZZT . Consider PAvj = (I − ZZT)λjvj for
j = 1, . . . , n. Since ZZT vj = vj , for j = 1, . . . ,m and ZZT vj = 0 for j = m + 1, . . . , n it
follows that

PAvj =

{

0, for j = 1, . . . ,m ,
λjvj , for j = m+ 1, . . . , n .

This shows that eigenvector deflation cancels the smallest m eigenvalues of the spectrum of
A, leaving the rest of the spectrum untouched.

Deflation and preconditioning

Deflation can also be combined with preconditioning, see Subsection 3.2.1. Suppose M
is a suitable preconditioner of A, then (3.26) can be replaced by: solve ỹ from the left-
preconditioned system

M−1PAỹ = M−1Pb

and form Qỹ, or solve ỹ from the right-preconditioned system

PAM−1ỹ = Pb ,

and form QM−1ỹ. Both systems can be solved by a Krylov subspace method, for example
by the GCR method.

Starting vectors

When the deflation system (3.26) is solved with an iterative solution method, a starting
vector is needed, see Subsection 3.2.1. A suitable choice is to take ỹ(0) = 0, because no
further information is given.

When an inital guess y(0) is given for the system (3.23), we solve

Au = f ,

where u ≡ y − y(0) and f ≡ b −Ay(0), and therefore we solve the deflation system

PAũ = Pf ,

for ũ and finally construct
y = (I −Q)u +Qũ + y(0) .

Solving systems involving the matrix E

When the system (3.26) is solved with a BIM or a Krylov subspace method, this involves the
computation of E−1, for example statements like

f = E−1g (3.27)

32 3. Iterative solution methods

have to be evaluated. In Nabben & Vuik [13, Section 3], it is shown that deflation works
correctly as long as E−1 is computed with a high accuracy. Since we never determine E−1

explicitly, this means that (3.27) is computed by solving Ef = g with a direct method, for
example by a simple LU factorization (see for example Golub & Van Loan [7, page 152]):

1. Compute E = LU ;
2. Solve Lq = g;
3. Solve Uf = q;

For completeness, the algorithms for evaluating these steps are given in Appendix B, by
respectively Algorithms B.2, B.3 and B.4.

Deflated iterative solution methods

The deflation method applied to the BIM (3.2) results into the following algorithm.

Algorithm 3.4 (Deflated BIM). Given a general matrix A, a vector b, a preconditioner
M , the projectors P and Q as in (3.24), and an initial guess y(0) (Ay(0) ≈ b). This algorithm
solves the linear system Ay = b.

r(0) = b −Ay(0)

ỹ(0) = 0;

r̃(0) = Pr(0)

for k = 1, . . . , convergence do

δỹ = M−1r̃(k−1);

ỹ(k) = ỹ(k−1) + δỹ;

r̃(k) = Pb − PAỹ(k);
end for

y ≈ (I −Q)A−1r(0) +Qỹ(k) + y(0);

When deflation is applied to the GCR Krylov subspace method (Algorithm 3.1), this
results in the Deflated GCR method (DGCR), given by the following algorithm.

Algorithm 3.5 (Deflated GCR method). Given a general matrix A, a vector b, a pre-
conditioner M , the projectors P and Q as in (3.24), and an initial guess y(0) (Ay(0) ≈ b).
This algorithm solves the linear system Ay = b.

r(0) = b −Ay(0)

ỹ(0) = 0;

r̃(0) = Pr(0);
for k = 1, . . . , convergence do

s(k) = M−1r̃(k−1);

v(k) = PAs(k)

Orthonormalize s(k) and v(k) by, for example, MGS (Algorithm 3.2);

β = (r̃(k−1),v(k));

ỹ(k) = ỹ(k−1) + βs(k);

r̃(k) = r̃(k−1) − βv(k);
end for

y ≈ (I −Q)A−1r(0) +Qỹ(k) + y(0);

3.3. Solving the stationary incompressible Navier-Stokes equations 33

For the case A is SPD, the CG method (Algorithm 3.3) combined with deflation could be
used. Since A is SPD, we can write Q = P T and therefore the Deflated CG (DCG) algorithm
becomes the following.

Algorithm 3.6 (Deflated CG method). Given an n×n SPD matrix A, a vector b, a SPD
preconditioner M , the projector P as in (3.24), and an initial guess y(0) (Ay(0) ≈ b). This
algorithm solves the linear system Ay = b.

r(0) = b −Ay(0) ;

ỹ(0) = 0;

r̃(0) = Pr(0);

p(0) = s(0) = M−1r̃(0);
for k = 1, . . . , convergence do

α = (r̃(k−1), s(k−1))/(p(k−1), PAp(k−1));

ỹ(k) = ỹ(k−1) + αp(k−1);

r̃(k) = r̃(k−1) − αPAp(k−1);

s(k) = M−1r̃(k);

β = (r̃(k), s(k))/(r̃(k−1), s(k−1));

p(k) = s(k) + βp(k−1)

end

y ≈ (I − P T)A−1r(0) + P T ỹ(k) + y(0);

3.3 Solving the stationary incompressible Navier-Stokes equa-

tions

There are various methods for iteratively solving the Navier-Stokes equations, see Ferziger
& Perić [4] and Wesseling [36]. A popular method used in commercial CFD packages is
the Semi-Implicit Method for Pressure-Linked Equations (SIMPLE). Many improved vari-
ants of the SIMPLE method have been proposed, for example the more efficient SIMPLE
Revised (SIMPLER) method. However, in engineering references, for example Patankar [16]
or Ferziger & Perić [4], it is not easy to verify which algebraic systems are actually solved,
because the presented algorithms are overrun with details. Therefore, a more mathematical
convenient way is to present the methods in a so-called distributive iteration framework.

For simplicity we restrict ourselves to the 2D case (d = 2). The DAS (2.25) can be written
as the following non-linear system:

N1 0 G1

0 N2 G2

GT
1 G

T
2 C

u1

u2

p

 =

b1

b2

b3

 , (3.28)

which we will denote by Āȳ = b. The SIMPLE method can be seen in a distributed iteration
framework as follows, see Wesseling [36, Sect. 7.6]. Instead of solving this system, we solve
the postconditioned system

ĀB̄ŷ = b , ȳ = B̄ŷ , (3.29)

34 3. Iterative solution methods

because this system is easier to solve iteratively than Āȳ = b. We choose B̄ as

B̄ =

I 0 −N−1
1 G1

0 I −N−1
2 G2

0 0 I

 , (3.30)

hence, ĀB̄ becomes

ĀB̄ =

N1 0 0
0 N2 0

GT
1 GT

2 C − ∑2
i=1G

T
i N

−1
i Gi

 . (3.31)

For the iterative solution to (3.29), the splitting

ĀB̄ = M̄ − T̄

is introduced, to which the following splitting of the original matrix corresponds:

Ā = M̄B̄−1 − T̄ B̄−1 .

This leads to the following iterative method for solving Āȳ = b:

ȳ(k) = ȳ(k−1) + B̄M̄−1(b − Āȳ(k−1)) . (3.32)

This iteration is called a distributive iteration, because the correction M̄−1(b − Āȳ(k−1)) is
distributed, by multiplication with B̄, over the elements of y(k).

In the original SIMPLE method, the matrices B̄ and M̄ for the iteration (3.32) are chosen
as follows. The Ni in (3.31) are obtained by Picard linearization1, in which the non-linear
terms in the momentum equations are linearized by:

(uαuβ)
(k)
j ≈ (uα

j)(k−1)(uβ
j)(k) .

As a consequence, Ni(u) is replaced by Q
(k−1)
i u

(k)
i , with Q

(k−1)
i a matrix that depends on

u(k−1). In (3.30) and (3.31), the terms N−1
i are replaced by N−1

i = D−1
i , Di ≡ diag(Qi), such

that the inverses are easy to compute. The term C−∑d
i=1G

T
i D

−1
i Gi in (3.31) is approximated

by −∑d
i=1G

T
i D

−1
i Gi, which we will denote by R for brevity. For these choices, B̄ and M̄ are

approximated by B and M :

B =

I 0 −D−1
1 G1

0 I −D−1
2 G2

0 0 I

 , M =

Q1 0 0
0 Q2 0
GT

1 GT
2 R

 , (3.33)

and Ā is approximated by A:

A =

Q1 0 G1

0 Q2 G2

GT
1 GT

2 C

 . (3.34)

Hence, in each non-linear iteration the postconditoned system

ABŷ = b , y = Bŷ , (3.35)

1Another possibility could be, for example, Newton-Raphson linearizaton.

3.3. Solving the stationary incompressible Navier-Stokes equations 35

is solved by the iteration process

y(k) = y(k−1) +BM−1(b −Ay(k−1)) , (3.36)

with B, M and A given by (3.33) and (3.34). Summarizing, the solution procedure can be
written as in the following algorithm.

Algorithm 3.7 (Linearization in the distributed iteration). Let ȳ(0) be an inital solu-
tion (Āȳ(0) ≈ b) to (3.28). Then this algorithm illustrates how linearization is applied in the
distributed iteration (3.32).

for k = 1, . . . , convergence do

B := B(y(k−1));

M := M(y(k−1));
Solve the system (3.35); (i)

end
ȳ ≈ y;

This algorithm is equivalent to the original SIMPLE algorithm when we choose B and M
according to (3.33) and perform one iteration with (3.36) to evaluate (i). This results in the
following algorithm, which can be found in, for example, Patankar [16] or Ferziger & Perić
[4].

Algorithm 3.8 (SIMPLE method). Given initial guesses u(0) and p(0) for, respectively,
the velocity and pressure field. Then this algorithm solves the non-linear system (3.28) for
the stationary incompressible Navier-Stokes equations.

for k = 1, . . . , convergence do

Qi := Qi(u
(k−1)
i), i = 1, . . . , d;

Solve Qiu
∗
i = bi −Gip

(k−1), i = 1, . . . , d; (ii)

Solve Rδp = bd+1 −
∑d

i=1G
T
i u∗

i − Cp(k−1); (iii)

u
(k)
i = u∗

i −D−1
i Giδp, i = 1, . . . , d;

p(k) = p(k−1) + δp; (iv)
end for

The variables u∗
i and δp in this algorithm, we will refer to as the pseudo-velocities and

the pressure-correction, respectively.

Underrelaxation

In the SIMPLE method (Algorithm 3.8) corrections of the velocities and the pressure could
be large, and therefore underrelaxation is required for the SIMPLE method to converge.

We will now discuss a widely used underrelaxation technique which is discussed in Patankar
[16] and Ferziger & Perić [4, page 112]. Rewrite the relaxed BIM (3.3) as follows:

My(k) = (M − αA)y(k−1) + αb .

Division by α results in
M

α
y(k) =

M − αA

α
y(k−1) + b . (3.37)

36 3. Iterative solution methods

Note that A can be decomposed as A = D −N , where D ≡ diag(A) and −N represents the
off-diagonal elements. When we choose M = D − αN , then Equation (3.37) becomes

(
D

α
−N)y(k) =

1 − α

α
Dy(k−1) + b . (3.38)

Solving this system for k = 1, 2, . . . generates the iterates. This kind of underrelaxation has
the advantage that it makes the matrix more diagonal dominant, which has a positive effect
on many iterative solution methods.

Convergence and termination criteria

Since the SIMPLE method can be seen as a distributive (basic iterative) method, SIMPLE
will generally converge slowly and the computing work is of O(N 2). One way to accelerate
SIMPLE, which can be integrated in an existing CFD package with relatively low program-
ming effort, is to use a Krylov subspace method. The basic idea is to evaluate (i) in Algorithm
3.7 by performing more than one iteration with a Krylov subspace method.

In Vuik et al. [26] and Vuik & Saghir [31], a GCR Krylov subspace acceleration of the
SIMPLE(R) method is considered, resulting in the GCR-SIMPLE(R) method. The GCR
method can be used, because it allows a variable preconditioner. In Vuik & Saghir [31], results
are presented for two industrial furnaces obtained with the TNO code WISH3D-GTM, which
has a staggered grid arrangement. For the industrial IFRF furnace, it turns out that GCR-
SIMPLE takes approximately a factor 4 less iterations, and costs a factor 2 less computing
time, compared to the unaccelerated SIMPLE method.

For colocated grids, a GCR acceleration of the SIMPLE method could also be considered.
However, this involves some new research, because no references can be found on how this
could be done. A start for this new research is given in Appendix C.

Besides making the residuals small, it is recommendable to make the velocity field also

sufficiently divergence free, i.e., to make
∑d

i=1G
T
i u

(k)
i sufficiently small, for instance

‖
d

∑

i=1

GT
i u

(k)
i ‖∞ < εV/H , 0 < ε� 1 ,

with ‖x‖∞ ≡ max{|x1|, . . . , |xn|}, V and H typical magnitudes for the velocity and domain,
and ε a certain fixed tolerance.

3.4 Connection with the X-stream code

The main structure of the X-stream code is given by Figure (3.3). The most outer loop,
referred to as time step loop, is only of importance when instationary flow is computed. The
middle loop, i.e., the grid level loop, resembles prolongation steps in a multigrid method,
see Figure 3.2. The basic idea is to provide a good starting vector for the finest grid by
interpolating the solution from a coarser to a finer grid.

In X-stream, the incompressible Navier-Stokes equations are solved with the SIMPLE method,
according to Algorithm 3.8. Underrelaxation of the form (3.38) is applied to the systems

3.4. Connection with the X-stream code 37

level 1

level 2

level 3

Figure 3.2: Multigrid prolongation operator in X-stream illustrated for three grids varying
from coarse (level 1) to fine (level 3).

(ii) for solving the pseudo-velocities. For solving the pressure-correction, the update (iv) is
replaced by

p(k) = p(k−1) + αpδp ,

with 0 < αp < 1 a chosen underrelaxation parameter.
The systems in the SIMPLE method can be solved with the SIP method, the CG method

and the Space Tri-Diagonal Matrix Algorithm (SPTDMA), see Patankar [16] or Ferziger
& Perić [4]. All these iterative solution methods are used within a domain decomposition
context, see Chapter 4.

In the X-stream code, a termination criterion of the form (3.8) is used for solving the
pressure-correction system. A relative termination criterion (3.9) is used for solving the
pseudo-velocities systems, as well as for all the remaining variables. However, a termination
criterion for the so-called inner iterations will in general not be satisfied, because usually a
predefined number of inner iterations and a very small tolerance is taken.

In X-stream, no explicit termination criterion is evaluated after the velocity and pressure
updates. Instead, the SIMPLE algorithm stops when the pseudo-velocities satisfy (3.9) and
the RHS of (iii) in Algorithm 3.8 is smaller than a given tolerance. The criterion for the
pressure is a physical one, because the RHS of (iii) represents more or less the divergence of
the velocity field, and will decrease to zero when the SIMPLE method converges.

38 3. Iterative solution methods

Converged?

Input

Compute flow

Compute
turbulence

Compute
energy

Compute other
independent vars

Compute
radiation

Compute
dependent vars

No

Output

Yes

O
u

te
r

it
er

at
io

n
 lo

o
p

Last time step?

Last grid level?

Yes

Yes

T
im

e
st

ep
 lo

o
p

G
ri

d
 le

ve
l l

o
o

p

No

No

Figure 3.3: Main flowchart of the X-stream code.

4

Domain decomposition methods

4.1 Introduction

The term domain decomposition (DD) is used differently by specialists in numerical analysis
of PDEs. In parallel computing, it means distributing data from a computing model over the
processors in a distributed memory computer. In asymptotic analysis, DD refers to the deter-
mination of which PDEs to solve. In preconditioning methods, DD refers only to the solution
method for the algebraic system of equations arising from the discretization. Note that all
these three interpretations may actually occur in one problem. We will restrict ourselves to
DD methods as iterative solution methods for solving PDEs, based on a decomposition of the
spatial domain of the problem into several subdomains.

There are several motivations for using DD:

• Ease of parallelization and good parallel performance.

• Simplification of problems on complicated geometry.

• Different physical models can be used in different subdomains.

• Local grid refinement can be easier implemented.

• Reduction of memory requirements, because the subproblem can be much smaller than
the total problem.

The structure of this chapter is as follows. In Section 4.2, the Schwarz method is discussed,
followed by a discussion of convergence aspects in Section 4.3. In Section 4.4, deflated Krylov-
Schwarz methods are treated in a DD context. In Section 4.5, DD for the stationary Navier-
Stokes equations is described. Finally, in Section 4.6, the connection with the X-stream code
is given.

4.2 Alternating Schwarz methods

A survey on DD methods can be found in, for example, Smith [19], Chan [3], or Saad [18].
Basically two types of DD methods can be distinguished: overlapping and non-overlapping
methods. Overlapping DD methods are known as Schwarz alternating methods, which are
iterative methods. Non-overlapping methods can be divided into so-called substructuring
methods, which are direct methods, and so-called Schur-complement methods, which are it-
erative methods. Non-overlapping methods differ from overlapping methods by solving an

40 4. Domain decomposition methods

Ω1 Ω2

Γ2

Γ1

Figure 4.1: An overlapping decomposition of the domain.

additional interface equation. We will restrict ourselves entirely to the Schwarz methods.

The Schwarz method dates from 1870 and was originally intended as an analytical method.
In its original form it is known as the multiplicative Schwarz method, which will be described
next.

Multiplicative Schwarz method

In general, a DD method aims to solve the differential equation

Ly = b in Ω , (4.1)

with suitable BCs on ∂Ω. The domain Ω is decomposed into subdomains Ω̄ = Ω̄1 ∪ · · · ∪ Ω̄k,
where Ω is open, and Ωi are open subsets of Ω. The simplest form of L is minus the Laplacian
−∆, resulting in the Poisson equation. For simplicity, we restrict ourselves to Dirichlet BCs
y = g on ∂Ω. Other BCs can be treated with ease. For sake of simplicity we only consider
two subdomains Ω̄ = Ω̄1 ∪ Ω̄2.

Overlapping Schwarz DD methods use an overlapping decomposition of the domain Ω into
subdomains such that Ω1 ∩ Ω2 6= ∅. The part of the boundary of Ωi which is located in the
interior of Ωj (j 6= i) is denoted by Γi, see Figure 4.1.

The alternating Schwarz method begins with selecting an initial guess y
(0)
2 for the values

in Ω2. Then iteratively for k = 1, . . . one solves the subproblem,

Ly(k)
1 = b on Ω1 ,

y
(k)
1 = y

(k−1)
2 on Γ1 ,

y
(k)
1 = g on ∂Ω1 \ Γ1 ,

(4.2)

for y
(k)
1 , followed solving of the subproblem,

Ly(k)
2 = b on Ω2 ,

y
(k)
2 = y

(k)
1 on Γ2 ,

y
(k)
2 = g on ∂Ω2 \ Γ2 .

(4.3)

4.2. Alternating Schwarz methods 41

The k-th iterate is then defined by

y(k)(x1, x2) =

y
(k)
1 (x1, x2) if (x1, x2) ∈ Ω \ Ω2 ,

y
(k)
2 (x1, x2) if (x1, x2) ∈ Ω2 .

It can be shown (see Chan [3]) that for the elliptic operator L, the iterates {y(k)} converge
linearly to the true solution y on Ω, that is

‖y − y(k)‖L ≤ ρk‖y − y(0)‖L ,

where ρ < 1 depends on the choice of Ω1 and Ω2.

The discrete form of (4.1) is denoted by

Ay = b , (4.4)

where A represents the discretization of the continuous operator L and the BCs on the total
domain. We restrict ourselves to the case that the grids of the subdomains coincide in the
overlap area.

The algebraic Schwarz algorithm will be described in matrix notation. Let I1 and I2 be
the index sets of the unknowns in the interior of Ω1 and Ω2 respectively. The total number
of unknowns is n = |I| = |I1 ∪ I2| and ni denotes the number of unknowns in subdomain Ωi.
For the case of (generous) overlap I1 ∩ I2 6= ∅.

Denote by RT
i a trivial extension matrix of dimension n× ni, defined as

(RT
i yi)k =

(yi)k if k ∈ Ii ,

0 else ,

for yi ∈ IRni . The entries of the matrix RT
i consist of ones and zeros with at most one ‘1’

in each row. The transpose Ri is a trivial restriction matrix which restricts a full length
vector of size n to a subdomain vector of size ni, by selecting the components of the vector
corresponding to Ii. Note that RiR

T
i = Ini

, while RT
i Ri 6= In. Also note that the matrices

Ri are never formed in practice.

Now the local subdomain matrices can be written in terms of the global matrix A and the
restriction matrices Ri as

A11 = R1AR
T
1 , A22 = R2AR

T
2 .

The algebraic Schwarz iteration starts with an initial guess y(0) and constructs a sequence of
approximations for k = 1, 2, . . . as follows:

y(k− 1

2
) = y(k−1) +RT

1 A
−1
11 R1(b −Ay(k−1)) , (4.5)

y(k) = y(k− 1

2
) +RT

2 A
−1
22 R2(b −Ay(k− 1

2
)) . (4.6)

For the cell-centered case that the two subdomains have a single grid line in common (see
Figure 4.2), I1 ∩ I2 = ∅, this iteration is a classical block Gauß-Seidel iteration (see Vuik [30,

42 4. Domain decomposition methods

1Ω 2Ω 1Ω 2Ω

Cell-centered Vertex-centered

Figure 4.2: Cell-centered and vertex-centered discretization in the case of two subdomains.
(• grid points; — finite volume boundaries; - - common grid line.)

page 21]). For I1 ∩ I2 6= ∅, this iteration corresponds to a block Gauß-Seidel iteration with
overlapping blocks.

Define the matrix

Pi = RT
i A

−1
ii RiA, i = 1, 2 ,

then the global error e(k) for (4.5)–(4.6) can be written as

e(k− 1

2
) = (I − P1)e

(k−1) , (4.7)

e(k) = (I − P2)e
(k− 1

2
) . (4.8)

The matrices Pi represent projection operators (P 2
i = Pi). Combining (4.7) and (4.8) yields

e(k) = (I − P2)(I − P1)e
(k−1) ,

thus the iteration matrix is (I − P2)(I − P1), explaining why the algorithm is called multi-
plicative.

The iteration process (4.5)–(4.6) can be written as

y(k) = y(k−1) +M−1
gs (b −Ay(k−1)) , (4.9)

with M−1
gs A ≡ I − (I −P2)(I −P1). For the case I1 ∩ I2 = ∅, iteration (4.9) solves the system

[

A11 A12

A21 A22

] [

y1

y2

]

=

[

b1

b2

]

, (4.10)

where A11 and A22 represent the subdomain discretization matrices and A12 and A21 represent
the coupling between the subdomains. For this case the preconditioner Mgs is given by

Mgs =

[

A11 0
A21 A22

]

.

Note that the multiplicative Schwarz method does not lend itself for parallelization, because
of the preconditioner.

4.3. Convergence aspects 43

Additive Schwarz method

The additive Schwarz method is governed by computing the residual for y(k−1) in (4.6),

y(k− 1

2
) = y(k−1) +RT

1 A
−1
11 R1(b −Ay(k−1)) , (4.11)

y(k) = y(k− 1

2
) +RT

2 A
−1
22 R2(b −Ay(k−1)) . (4.12)

This iteration corresponds to a block Gauß-Jacobi iteration (see Vuik [30]), with overlapping
blocks. Writing this in terms of the error e(k) gives

e(k) = (I − P1 − P2)e
(k−1) ,

which explains why the algorithm is called additive. Rewriting (4.11)–(4.12) results in

y(k) = y(k−1) +M−1
jac (b −Ay(k−1)) , (4.13)

with M−1
jacA ≡ P1 + P2. For the case I1 ∩ I2 = ∅, the preconditioner Mjac is given by

Mjac =

[

A11 0
0 A22

]

. (4.14)

The additive Schwarz method lends itself well for parallelization, compared to the multiplica-
tive case.

In general, the Schwarz domain decomposition method can be interpreted as a method for
solving the preconditioned system

M−1Ay = M−1b ,

with M−1 = M−1
jac or M−1 = M−1

gs for, respectively, the additive and multiplicative case.

4.3 Convergence aspects

4.3.1 Local coupling

It can be observed that the multiplicative Schwarz method converges approximately twice
as fast as the additive Schwarz method, see for example Smith [19] and Verweij [22] for
comparisons. However, both Schwarz methods converge slowly, because they can be seen as
BIMs, see Subsection 3.2.1.

Therefore, it is advisable to accelerate them, for example by a Krylov subspace method,
see Subsection 3.2.3. In general, domain decomposition accelerated by a Krylov subspace
method is called a Krylov-Schwarz method. Equivalently, Krylov-Schwarz means that domain
decomposition is used as a preconditioner for a Krylov subspace method. Krylov-Schwarz ac-
celeration can be interpreted as a method to increase local coupling, in which each subdomain
only interacts through coupling with its neighbors.

44 4. Domain decomposition methods

82× 28× 44×

Figure 4.3: Three decompositions of a square into 16 subdomains.

4.3.2 Global coupling

For matrices arising from the discretization of elliptic PDEs, global coupling between the
subdomains is important. Elliptic problems have the property that a slight modification in
the data at a certain area (for example at a boundary) influences the solution on the entire
domain. In terms of the Schwarz method, this means that new information computed at a
subdomain has to propagate to all other subdomains in a fast way.

Since in each Schwarz iteration, information can only travel through one interface from
a subdomain A to a subdomain B, the convergence rate decreases when the number of sub-
domains between A and B increases. Several methods exist to increase the global coupling
between subdomains.

Choosing the right decomposition

An obvious way to minimize the loss of convergence is to decompose the original domain into
a decomposition, which has an equal number of subdomains in every dimension as much as
possible. See for example Figure 4.3, in which a square is decomposed into three decompo-
sitions. The two decompositions 2 × 8 and 8 × 2 have a large number of subdomains in one
dimension, and are therefore less favorable than the 4× 4 decomposition, which has an equal
number of subdomains in every dimension. Another disadvantage of the first two decompo-
sitions is that the total interface size is greater than that of the 4 × 4 decomposition, which
results in more communication between processors in a parallel computing environment.

Increasing the size of overlap

One way to increase global coupling is to increase the amount of overlap of the subdomains.
However, a drawback of overlapping subdomains is that the computing work increases propor-
tionally to the size of overlap, because in each iteration several unknowns are computed more
than once. This is the main reason why many authors consider a simple Schwarz DD with
minimal overlap, see Brakkee [2] and Verweij [22]. How this method works, will be illustrated
by Figure 4.4.

In this figure a cell-centered discretization is given with boundary nodes, which resembles
a colocated grid arrangement, see Figure 2.2. The shaded cells denote ghost cells, also called
halo-cells. Let there an initial guess being given on the entire domain. Then the additive
Schwarz method goes as follows:

4.3. Convergence aspects 45

for k = 1, . . ., convergence do
Build the RHS of the system for subdomain 1 and solve;
Build the RHS of the system for subdomain 2 and solve;
Update the ghost cells of subdomain 1 and 2;

end

For the multiplicative case, the solution process is given by:

for k = 1, . . ., convergence do
Build the RHS of the system for subdomain 1 and solve;
Update the ghost cells of subdomain 2;
Build the RHS of the system for subdomain 2 and solve;
Update the ghost cells of subdomain 1;

end

Hence, the difference between the additive and multiplicative Schwarz method lies in the
number of updates in each Schwarz iteration. Since for the additive case the ghost cells are
updated after a Schwarz iteration, the subdomain solutions can be computed in parallel on
different processors.

Coarse grid correction and deflation

An interpretation for the loss in convergence is, that each subdomain contributes to a small
eigenvalue in the spectrum of the global matrix. Therefore, a coarse grid correction precon-
ditioning or a deflation preconditioning can be applied to remove those small eigenvalues, see
Subsection 3.2.4. It turns out that coarse grid correction and deflation make the convergence
rate more or less independent on the number of subdomains. Because of arguments presented
in Nabben & Vuik [13], where deflation is compared to coarse grid correction, we restrict
ourselves to the deflation technique.

4.3.3 Inaccurate subdomain solution

In the original Schwarz method, it is assumed that the subdomain problems are solved accu-
rate enough. However, solving the subdomain problems inaccurately can reduce the comput-
ing time significantly, see for example Brakkee [2] and Verweij [22].

When solving the subdomain problems inaccurately, one has to be aware that the iteration
processes (4.9) and (4.13) are implemented in a correct way. In general, Schwarz domain
decomposition is typically implemented as

M̃y(k) = (M −A)y(k−1) + b , (4.15)

where the first RHS term (M−A)y(k−1) represents the discretization of the internal boundary
conditions, which is always exact, and the LHS term M̃y(k) indicates the inaccurate solution of
the subdomain problems using some type of linear system solver. In general, the stationary
solution to (4.15) satisfies the disturbed system (A + M̃ − N)y = b instead of Ay = b.
Therefore, with inaccurate subdomain solutions, the difference between M̃ and M may be
quite large, and the computed solution y may have a large error. Instead of (4.15), we must
use the iteration

y(k) = y(k−1) + M̃−1(b −Ay(k−1)) .

46 4. Domain decomposition methods

Subdomain 1 Subdomain 2

: Interior nodes
: Internal boundary nodes
: External boundary nodes
: Virtual cells

Figure 4.4: Decomposition of the domain into two subdomains. The dashed line denotes the
block interface and the shaded cells are the ghost cells.

With inaccurate subdomain solution, we have

M̃ = M̃gs =

[

Ã11 0

A21 Ã22

]

or M̃ = M̃jac =

[

Ã11 0

0 Ã22

]

.

When we use a Krylov-Schwarz method with inaccurate subdomain solution, two main strate-
gies can be distinguished for approximating the subdomain solutions:

1. Apply one or a few iterations of a linear convergent BIM, for instance, of the SIP
method.

2. Solve the subdomain problems with a (preconditioned) Krylov subspace method to a
fixed tolerance, to a variable tolerance, or for a predetermined number of iterations.

It can be shown that strategy 2 can only be applied to a Krylov-Schwarz method, which
allows a variable preconditioner. For example, the GCR-Schwarz method is such a method,
while the GMRES-Schwarz method is not, see Brakkee [2] for more details.

4.4 Deflated Krylov-Schwarz domain decomposition

Motivated by the previous section, we restrict ourselves to a simple cell-centered additive
Schwarz DD method with minimal overlap. Furthermore, we apply the following methods for
improving the convergence rate and reducing the computing time of the Schwarz method:

• Accelerate the Schwarz method with minimal overlap by a Krylov subspace method.

• Apply the deflation technique to make the convergence rate of the DD independent on
the number of subdomains.

4.4. Deflated Krylov-Schwarz domain decomposition 47

• Solve the subdomain problems inaccurately with a predefined number of iterations of a
basic iterative method.

For general matrices, a suitable Krylov subspace method is the GCR method, see Subsection
3.2.4. Combined with deflation and with inaccurate subdomain solution, the Deflated GCR
method (Algorithm 3.5) can be rewritten in a domain decomposition context as follows.

Algorithm 4.1 ((Deflated) GCR-Schwarz method). Given a general matrix A, and the
vectors y and b, such that the system Ay = b is of the form (4.10). Let y(0) be an initial guess
such that Ay(0) ≈ b. For deflation, define the matrix Z. Then this algorithm accelerates the
additive Schwarz method with minimal overlap for solving the linear system Ay = b.

r(0) = b −Ay(0);

Solve ZTAZq1 = ZT r(0); // Contribution deflation

r(0) := r(0) −AZq1; // Contribution deflation

y(0) = 0; // Contribution deflation
for k = 1, . . . , ngcrschw do

Solve Amms
(k)
m = r(k−1) inaccurately, m = 1, . . . , nblock;

v(k) = As(k);

Solve ZTAZq2 = ZT v(k); // Contribution deflation

v(k) := v(k) −AZq2; // Contribution deflation

Orthonormalize s(k) and v(k) by applying, for example, MGS (Algorithm 3.2);

β = (r(k−1),v(k));

y(k) = y(k−1) + βs(k);

r(k) = r(k−1) − βv(k);
end for

y ≈ y(k)

Solve ZTAZq2 = ZTAy(k−1); // Contribution deflation

y ≈ y(k−1) + y(0) + Z(q1 − q2); // Contribution deflation

The GCR-Schwarz algorithm without deflation is obtained by removing the statements
provided with the comment ‘Contribution deflation’.

For the case that the matrix is SPD, the CG Krylov subspace method is most suitable,
see Subsection 3.2.3. Rewriting Algorithm 3.6, results into the following algorithm.

Algorithm 4.2 ((Deflated) CG-Schwarz method). Given a SPD matrix A, the vectors
y and b, such that the system Ay = b is of the form (4.10). Let y(0) be an initial guess
such that Ay(0) ≈ b. For deflation define the matrix Z. Then this algorithm accelerates the
additive Schwarz method with minimal overlap for solving the linear system Ay = b.

r(0) = b −Ay(0);

Solve ZTAZq1 = ZT r(0); // Contribution deflation

r(0) := r(0) −AZq1; // Contribution deflation

y(0) = 0; // Contribution deflation

Solve Amms
(0)
m = r(0) inaccurately, m = 1, . . . , nblock;

p(0) = s(0);
for k = 1, . . . , ncgschw do

v(k−1) = Ap(k−1);

48 4. Domain decomposition methods

Solve ZTAZq2 = ZT v(k−1); // Contribution deflation

v(k−1) := v(k−1) −AZq2; // Contribution deflation

α = (r(k−1), s(k−1))/(p(k−1),v(k−1))

y(k) = y(k−1) + αp(k−1);

r(k) = r(k−1) − αv(k−1);

Solve Amms
(k)
m = r(k) inaccurately, m = 1, . . . , nblock;

β = (r(k), s(k))/(r(k−1), s(k−1));

p(k) = s(k) + βp(k−1);
end for

y ≈ y(k)

Solve ZTAZq2 = ZTAy(k); // Contribution deflation

y ≈ y(k) + y(0) + Z(q1 − q2); // Contribution deflation

Note that till now, we have said nothing about the choice of the matrix Z. Several
authors consider so-called subdomain deflation, see for example Nicolaides [14], Mansfield
[12] and Vuik & Frank [28]. For this choice, each coefficient of the matrix Z is given by

zij =

{

1 , i ∈ Ij ,
0 , i /∈ Ij ,

(4.16)

where Ij is the index set of the unknowns in the interior of subdomain Ωj . For example,
consider the case of two subdomains, each containing n grid cells. Then Z is 2n×2 and given
by

Z =

[

1 0
0 1

]

,

where 1 and 0 denote vectors of length n, containing respectively all ones and all zeros.
Although in literature, this kind of deflation is usually referred to as subdomain deflation,

we will call this constant deflation (CD) from now on. For constant deflation, we will refer to
the DGCR-Schwarz method (Algorithm 4.1) and DCG-Schwarz method (Algorithm 4.2) as
respectively CDGCR-Schwarz and CDCG-Schwarz, or simply as CDGCR and CDCG.

In Chapter 5 we will go into more detail on choosing the deflation vectors.

A note on Krylov subspace acceleration and parallel computing

In parallel computing several aspects are of importance, for instance: speedup, efficiency,
scalability, communication, synchronization, grain size, load balance, etc. We will not go in
details on parallel computing, but refer to Kumar [11] or Vuik [30] for an introduction.

Since Krylov subspace methods mainly consist of matrix-vector multiplications and in-
ner products, this results in additional communication between processors compared to the
unaccelerated Schwarz method.

Matrix-vector multiplications can be done in parallel by local (nearest-neighbor) commu-
nication, in which each processor communicates with its neighbor. For inner products, each
processor has to communicate with all processors, which makes global communication most
expensive. Therefore, inner products should be avoided as much as possible.

For the GCR Krylov subspace method, the number of inner products can be reduced by
truncation or restarting, see Subsection 3.2.3. When the interconnection network is slow, one
could also choose for the RCGS orthonormalization method (Algorithm B.1), see Frank &
Vuik [5], Vuik & Frank [24] or Vuik et al. [29].

4.5. Domain decomposition for the incompressible Navier-Stokes equations 49

4.5 Domain decomposition for the incompressible Navier-Stokes

equations

Domain decomposition for the SIMPLE method, given by Algorithm 3.8, can be achieved
in a straightforward way. In every iteration of the SIMPLE method, in total d + 1 systems
of equations have to be solved, where d is the spatial dimension: d for solving the pseudo-
velocities and 1 for solving the pressure-correction.

For the Schwarz method with minimal overlap, the systems in Algorithm 3.8 are of the
form (4.10) with A = Qi from (ii) and y = u∗

i , or A = R from (iii) and y = δp.
All the systems involved can be solved with the Schwarz method. Since in general, the

matrix Qi is non-symmetric we could also use the GCR-Schwarz Krylov subspace method
(Algorithm 4.1) to solve the pseudo -velocities. However, generally the systems involving Qi

are not very difficult to solve.
The system for solving the pressure-correction is generally most time-consuming in the

SIMPLE method, because the corresponding matrix R resembles a discrete Poisson opera-
tor. By arguments discussed in Section 4.3, we can use a Deflated Krylov-Schwarz subspace
method to solve this system. If R is symmetric, the DCG-Schwarz method (Algorithm 4.2)
is likely to be efficient. If R is non-symmetric, the DGCR-Schwarz method (Algorithm 4.1)
could be chosen.

4.6 Connection with the X-stream code

In the X-stream code, a Schwarz DD method with the following properties is implemented:

• Unaccelerated additive Schwarz method with minimal overlap.

• Inaccurate subdomain solution according to iteration (4.15) by a single iteration of SIP,
SPTDMA or CG.

• Block-structured grid.

• Local grid refinement can be done at block level.

• Application of different models on different blocks.

• Parallellized using the MPI (Message Passing Interface) standard.

For more details and an implementation description, see Verweij [22].
In X-stream, a set of subdomains (blocks) for which a same model is applied is referred to

as ‘domain’. For the solution to the Navier-Stokes equations a Schwarz iteration is referred
to as an ‘inner iteration’ and a SIMPLE iteration as an ‘outer iteration’.

A global flowchart of the current solution procedure for solving the Navier-Stokes equations
in X-stream is given by Figure 4.5. The abbreviations LC and GC denote respectively local
and global communication between the processors in a parallel computing environment.

The SIMPLE stabilization iteration (SSI) refers to a method for improving convergence
of the pressure-correction system. Each SSI iteration can be seen as a SIMPLE step without
solving the pseudo-velocities. Although this method appears quite effective, no references
could be found on this method.

50 4. Domain decomposition methods

Residuals small
enough?

Input

Update external
boundaries

Solve (u*) and
compute residual

Solve (v*) and
compute residual

Solve (w*) and
compute residual

Correct u, v, w, p

Solve (δp) and
compute residual

No

Output

Yes

O
u

te
r

it
er

at
io

n

S
IM

P
L

E
 s

ta
b

ili
za

ti
o

n
 it

er
at

io
n

Solve system
per block

Build system
per block

Update
ghost cells

In
n

er
 it

er
at

io
n

1 iteration
SIP /

SPTDMA /
CG

Compute
residual

LC

GC

Solve (variable) and
compute residual

Figure 4.5: Flowchart of the solution procedure in X-stream for solving the stationary incom-
pressible Navier-Stokes equations. (LC: local communication; GC: global communication.)

5

Numerical experiments with domain decomposition

for the Poisson equation

5.1 Introduction

In this chapter, the DD methods, as described in the preceding chapter, are applied to the
1D and 2D Poisson equation. The main reason for doing this, is to gain insight into these
methods. The numerical experiments are done using the package MATLAB (MATrix LAB-
oratory). This package is used since MATLAB has a huge number of build-in routines for
matrix analysis, and programming in MATLAB is elementary. Therefore, we can mainly fo-
cus on the behavior of the DD algorithms, and the algorithms can be easily verified for their
correctness. All experiments are done on a Pentium III 450MHz machine, having 256 MB of
internal memory.

The structure of this chapter is as follows. The setup for the experiments is given in Section
5.2. In Section 5.3 the results are discussed for the Poisson equation with homogeneous
Dirichlet BCs, in Section 5.4 the same is done for the case of homogeneous Neumann BCs.
Finally, the connection with the X-stream code is given in Section 5.5.

5.2 The 2D Poisson equation and setup

Consider the simple geometry of a unit square for which we have a constant number of
subdomains in each dimension (see Subsection 4.3.2). The Poisson equation for this geometry
reads:

∆y(x) = b(x) , x ∈ Ω ≡ (0, 1) × (0, 1) . (5.1)

For simplicity, we restrict ourselves to a cell-centered equidistant grid with a grid spacing h
(see Figure 2.1 for the case h1 = h2). Consider a finite volume discretization of Equation
(5.1) using a 5-point computational molecule:

−1
−1 4 −1 .

−1
(5.2)

Partitioning is done as illustrated in Figure 5.1, for the case of a 2 × 2 decomposition of a
6×6 grid. The subdomains are numbered from bottom-left to top-right. A global numbering
of the grid points for the total domain is used, for which the grid points are numbered from
bottom to top in each subdomain.

52 5. Numerical experiments with domain decomposition for the Poisson equation

20

26

2322

1 2

4 6

7 8 9

3

5

Subdomain 1 Subdomain 2

Subdomain 3 Subdomain 4

10 11

13 15

16 17 18

12

14

19

24

25 27

21 28 29

31 33

34 35 36

30

32

Figure 5.1: Example partitioning of a 2×2 decomposition, and 3×3 grid cells per subdomain.

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

nz = 156

Figure 5.2: Non-zero pattern of the matrix A, for the case of a decomposition and grid as in
Figure 5.1.

5.3. The Dirichlet problem 53

In this chapter, we consider homogeneous Dirichlet BCs and homogeneous Neumann BCs.
For the Dirichlet problem we take

y(x) = 0 , x ∈ ∂Ω , (5.3)

and for the Neumann problem

∂y(x)

∂n
= 0 , x ∈ ∂Ω , (5.4)

where n denotes the outward unit normal on the boundary.
The Dirichlet BCs are implemented as follows, see Figure 5.1. Consider an unknown with

a connection across the (external) boundary, i.e., with a connection to a virtual point (or
ghost point). Although we only have a homogeneous Dirichlet condition at the boundary, we
take the value in the ghost point equal to the value at the boundary, i.e. zero1. Therefore,
for an unknown near the boundary, the computational molecule is equal to (5.2) without the
connections across the boundaries.

For the Neumann condition, we let the value of the ghost point to be equal to the unknown
near the boundary. Hence, the computational molecule (5.2) has no connections pointing
outward of the boundary, and the central element 4 is then reduced by 1 for each missing
connection.

Partitioning and discretization for the example of Figure 5.1, results in a system

Ay = −h2b , (5.5)

with the matrix A, given by

A =

A11 A12 A13 ∅
A21 A22 ∅ A24

A31 ∅ A33 A34

∅ A42 A43 A44

.

The non-zero pattern of A is shown in Figure 5.2.
In our experiments, we will take −h2b as a vector with random entries between 0 and 1.

We will denote this vector simply by b.

5.3 The Dirichlet problem

In Subsection 5.3.1, the choice of deflation vectors is discussed. Next, the results for the eigen-
value spectra and the iterative solution methods are presented in Subsection 5.3.2, followed
by some further observations in Subsection 5.3.3.

5.3.1 Choice of deflation vectors

Choosing the deflation vectors for obtaining an efficient iterative solution method is not a
trivial task. Several considerations have to be taken into account. For our purpose, we want
the matrix Z to satisfy the following properties:

1. The matrix Z should be problem independent and inexpensive to construct.

1This treatment of the homogeneous Dirichlet BCs seems to be conform to Frank & Vuik [6].

54 5. Numerical experiments with domain decomposition for the Poisson equation

2. Generalization to the 3D case should be possible, regarding the X-stream code.

3. The matrix Z should be chosen such that E = ZTAZ is non-singular, because systems
involving E need be computed by a direct method. This is especially important for the
Neumann problem, see Section 5.4.

4. The span of the columns of Z should approximate the eigenspace belonging to the
smallest eigenvalues as good as possible, effecting the rest of the spectrum as little as
possible.

5. The gain in iterations for this choice of Z should result in lower wall-clock times.

Property 4 is difficult to obtain, because little theory is developed on how the choice of Z is
related to the spectrum of PA. However, for the case that A is SPD, a few bounds for the
eigenvalues have been proven, see Nicolaides [14] and Frank & Vuik [5]. We will go into more
details in Subsection 5.3.3. Property 5 can depend on a number of interacting factors: the
convergence rate of the iterative solution method, the number of deflation vectors, the number
of grid cells per subdomain, and the solution method used to solve the systems involving E.

The question is: how can we choose Z such that the above properties are satisfied?

Constant deflation vectors combined with linear deflation vectors

Many authors consider constant deflation (CD deflation), for which Z is taken as in (4.16), see
Subsection 4.3.2. We will now illustrate CD deflation for the 1D case, which is most suitable
for illustrating the basic concept. In the left plot of Figure 5.4, an example is given for the
case of two subdomains with each 4 grid cells. For each subdomain, exactly one deflation
vector is defined having elements that are constant in the grid points on the corresponding

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

nz = 33

CD

0 5 10 15 20 25

0

5

10

15

20

25

nz = 297

CLD

Figure 5.3: Non-zero pattern of E for the 1D case of 3 subdomains. Left: E for CD deflation;
right: E for CLD deflation.

5.3. The Dirichlet problem 55

Subdomain 1 Subdomain 2Subdomain 1Subdomain 2

Constant Linear

Figure 5.4: Deflation vectors for the 1D example of two subdomains with 4 grid cells per
subdomain. Left: CD deflation; right: CLD deflation.

subdomain, and zero elements in the grid points on the other subdomain. For this example,
the matrix Z is given by, when the grid points are numbered according to Figure 5.1:

ZCD =

1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1

.

The value 1 in Z can be replaced by some different non-zero value, since the matrix PA only
depends on span{Z}. In the left plot of Figure 5.3, an example of the non-zero pattern of E
is given for the 1D case of 3 subdomains.

Generalization to the more dimensional case is straightforward: for a subdomain, we
simply take the elements of the deflation vector to be constant in the grid nodes.

Approximation of an eigenvalue is done as follows. Consider the 1D case for 3 subdomains,
then the top plot of Figure 5.5 shows an example of an eigenvector belonging to the smallest
eigenvalue, approximated by CD deflation. We see that CD gives a rough approximation of
this eigenvector. This motivates us to augment the subspace spanned by the constant de-
flation vectors with linear deflation vectors. By this, we can approximate the eigenvector as
depicted in the bottom plot of Figure 5.5.

Figure 5.4 shows how the linear deflation vectors are defined. A linear deflation vector is
defined on each subdomain by increasing each element linearly for increasing grid points.
The matrix Z, for which the columns span the space consisting both the constant and the
linear vectors, we will denote by constant linear deflation (CLD). For the case of Figure 5.4,
this matrix is given by:

56 5. Numerical experiments with domain decomposition for the Poisson equation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

CD

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

CLD

Figure 5.5: Illustration of how the eigenvector belonging to the smallest eigenvalue can be
approximated. Top: approximation by constant vectors. Bottom: approximation by linear
combinations of constant and linear vectors.

ZCLD =

1 1 0 0
1 2 0 0
1 3 0 0
1 4 0 0
0 0 1 1
0 0 1 2
0 0 1 3
0 0 1 4

.

Hence, per subdomain we have two deflation vectors: one constant and one linear. Note that
the values of the linear deflation vectors does not matter as long as the vector is linear, since
only span{Z} counts. In the right plot of Figure 5.3, an example of the non-zero pattern of
E is given for the 1D case of 3 subdomains.

Generalization to 2D and 3D is not so straightforward anymore, compared to CD defla-
tion. However, it appears that in two dimensions Z should consists of 3 vectors: one constant,
and one linear vector in each of the two dimensions. For the 3D case, it appears that we need
4 deflation vectors: one constant and one linear vector in each of the three dimensions.

In the following subsection, we will compare CD deflation with CLD deflation for the 2D case.
First, a short comparison of the eigenvalues is given. To illustrate that the choice of Z is not
trivial, we will also compare CLD deflation with another choice for Z.

How this Z is constructed, is illustrated by Figure 5.6 for the 1D case. For this example,
the constant deflation vector is splitted into two separate vectors for each subdomain. By
this, an eigenvector can be approximated as depicted in Figure 5.7. For the 2D case we will
split the constant deflation vector into three vectors, in order to obtain the same number of
deflation vectors as for CLD deflation. For brevity, we will refer to this choice of Z as 3CD
deflation.

Secondly, we will compare the additive Schwarz method, the GCR-Schwarz method and

5.3. The Dirichlet problem 57

Subdomain 1 Subdomain 2

Figure 5.6: Two constant deflation vectors per subdomain, for the 1D case of two subdomains
and 4 grid cells per subdomain.

the CG-Schwarz method, as discussed in Chapter 4, for a fixed problem size and a varying
number of decompositions.

5.3.2 Eigenvalue spectra and iterative solution methods compared

Consider the case of a 3 × 3 decomposition of a 9 × 9 grid. Consider the matrix P =
I−AZE−1ZT for the case of CD and CLD deflation, denoted by PCD respectively PCLD. Let
the eigenvalues for this example be ordered as λ1 ≤ · · · ≤ λ81. Then the eigenvalue spectra
of the M−1

jacA, M−1
jacPCDA, and M−1

jacPCLDA are given by Figure 5.8, were Mjac is the block
Gauß-Jacobi preconditioner.

We observe the expected clustering around 1, as mentioned in Subsection 3.2.1. Fur-
themore, we see that λ1, . . . , λ9 are set to zero for CD deflation, and λ1, . . . , λ27 for CLD
deflation. This has the effect that several eigenvalues of M−1

jacA are changed. We observe

that the smallest non-zero eigenvalue of M−1
jacPCLDA is larger than λ1, and that the largest

eigenvalue is smaller than λ81. This means that the effective condition number of M−1
jacPCLDA

is the smallest of the two deflation choices, and is therefore the most favorable. Figure D.1
of Appendix D.1 shows the three different spectra for the unpreconditioned case.

The spectra for CLD deflation is compared to 3CD deflation in Figure 5.9. Clearly, we
see that 3CD deflation results into a less favorable spectrum compared to CLD deflation. For
this reason, we will restrict ourselves entirely to CD and CLD deflation.

Now consider a small fixed problem size of a 12×12 grid. The effective condition numbers,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

3CD

Figure 5.7: Illustration of how the eigenvector belonging to the smallest eigenvalue can be
approximated using two constant deflation vectors per subdomain.

58 5. Numerical experiments with domain decomposition for the Poisson equation

for three decompositions, are given by the following table:

κeff 2 × 2 3 × 3 4 × 4

A 67.83 67.83 67.83

M−1
jacA 13.00 17.94 23.29

PCDA 25.51 12.61 7.45

M−1
jacPCDA 3.62 2.91 2.46

PCLDA 9.66 5.56 3.51

M−1
jacPCLDA 2.23 1.97 1.84

Table 5.1: Effective condition numbers for three decompositions. The Dirichlet problem is
considered and a 12 × 12 grid is taken.

From this table we can conclude the following. As expected, the condition number of A
is independent on the number of subdomains, because the condition number is independent
on the ordering used. We see the the preconditioning of A becomes worse for an increasing
number of subdomains. This is because Mjac does not contain the coupling matrices, for
which the number increases for an increasing number of subdomains.

Furthermore, we see that the condition numbers for CLD deflation are better compared
to CD deflation, illustrating our previous observation. We observe that the effective con-
dition number of M−1

jacPCDA and M−1
jacPCLDA slightly improves for an increasing number of

subdomains. From this, we expect that the deflated GCR-Schwarz and CG-Schwarz are well
scalable. Furthermore, the difference between these conditions numbers decreases for an in-
creasing number of subdomains. Hence, we expect that CD deflation and CLD deflation
results in a more similar performance for an increasing number of subdomains.

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

index of eigenvalue

va
lu

e
of

 e
ig

en
va

lu
e

eigenvalues of M
jac
−1A

eigenvalues of M
jac
−1P

CD
A

eigenvalues of M
jac
−1P

CLD
A

Figure 5.8: Eigenvalue spectra for the preconditioned case, for the case of no deflation, CD
deflation and CLD deflation. The Dirichlet problem is considered for a 9× 9 grid and a 3× 3
decomposition.

5.3. The Dirichlet problem 59

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

index of eigenvalue

va
lu

e
of

 e
ig

en
va

lu
e

eigenvalues of M
jac
−1A

eigenvalues of M
jac
−1P

3CD
A

eigenvalues of M
jac
−1P

CLD
A

Figure 5.9: Eigenvalue spectra for the preconditioned case, for the case of no deflation, CLD
deflation and 3CD deflation. The Dirichlet problem is considered for a 9× 9 grid and a 3× 3
decomposition.

Iterative solution methods compared for a fixed problem size

In the preceding, we concluded that deflation reduces the effective condition numbers consid-
erably. We will now investigate what influence this effect has on the Deflated Krylov-Schwarz
methods. The methods we will compare are the GCR-Schwarz method, the CG-Schwarz
method and the additive unaccelerated Schwarz method. These three methods are combined
with CD and CLD deflation, resulting in, respectively, Algorithm 4.1, Algorithm 4.2, and
Algorithm 3.4.

The subdomain problems are solved using a BIM with a standard ILU preconditioning.
A fixed number of iterations are performed for solving the subproblems: 15, 5 or 2, see Sub-
section 4.3.3. Restarted GCR and truncated GCR are considered for 5 search directions. For
example, with no deflation we denote this algorithms by respectively GCR(5r) and GCR(5t).
Furthermore, MGS orthonormalization is applied. The unaccelerated Schwarz method will be
denoted by simply ILU. A zero starting vector is used for all methods as well as for obtaining
the subdomain solution. Furthermore, an absolute termination criterion (3.10) for a tolerance
of 10−6 is taken. The maximum number of iterations was set to 250 iterations. We consider
a 60 × 60 grid and four different decompositions: 2 × 2, 3 × 3, 4 × 4 and 5 × 5.

In Table D.1 in Appendix D.2, the Schwarz iterations, as well as the wall-clock time (in paren-
theses) are given. Figure 5.12 shows the scalability results for the GCR-Schwarz, GCR(5t)-
Schwarz, CG-Schwarz and ILU method, for the case of two subdomain iterations. The ILU
method without deflation is not shown in this figure, since this method does not converge in
less than 250 iterations. Figures 5.10 and 5.11, respectively, show the converge behavior for
respectively the Krylov-Schwarz methods and the ILU method, for the case of 2 subdomain

60 5. Numerical experiments with domain decomposition for the Poisson equation

iterations taken.

From Figure 5.10 and Table D.1, we conclude we the GCR-Schwarz and CG-Schwarz methods
perform quite similarly. Furthermore, we see that CLD deflation results in the best conver-
gence behavior. Noticeable is that the ILU method performs very poorly compared to GCR
and CG. On the other hand, the CDILU method performs very well for the case of 16 and
25 subdomains. From Figure 5.12, we conclude that the Deflated Krylov-Schwarz methods
are well scalable, and that the convergence rate is more or less independent on the number of
subdomains. This is conform our expectations from Table 5.1.

Concerning wall-clock times, we observe that the wall-clock time for the GCR-Schwarz
method is minimal for a 4 × 4 decomposition. Likely, there are optimal decompositions for
the deflation methods such that the wall-clock time is minimal. Furthermore, we observe that
much time is gained by solving the subdomain inaccurately, and that the number of iterations
does not significantly increases for the case of 9, 16 and 25 subdomains. From this, we
conclude that we solve the subdomain solutions too inaccurate with 2 iterations, for the case
of 4 subdomains. Note, that the wall-clock times are strange when we compare, for example,
the timings for 4 subdomains and 9 subdomains. Doing the same number of iterations requires
approximately a factor 2 to 4 more wall-clock time. A possible explanation for this behavior
is the implementation of the couplings, for which elements in the corresponding arrays need
to be searched. This costs a lot of ‘if’ statements and ‘for’ loops, which are very expensive in
MATLAB.

0 10 20 30 40 50 60
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

iteration number

re
si

du
al

 ||
b−

A
y(k

) || 2/|b
|| 2

CG
GCR
CDCG
CDGCR
CLDCG
CLDGCR

Figure 5.10: Residuals for the GCR-Schwarz and CG-Schwarz methods considering no de-
flation, CD deflation, and CLD deflation. The results are for the Dirichlet case and for a
5× 5 decomposition of a 60× 60 grid. Two iterations for solving the subdomain problems are
taken.

5.3. The Dirichlet problem 61

0 20 40 60 80 100
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

iteration number

re
si

du
al

 ||
b−

A
y(k

) || 2/|b
|| 2

ILU
CDILU
CLDILU

Figure 5.11: Residuals for the ILU method considering no deflation, CD deflation, and CLD
deflation. The results are for the Dirichlet case and for a 5 × 5 decomposition of a 60 × 60
grid. Two iterations for solving the subdomain problems are taken.

 2 x 2 3 x 3 4 x 4 5 x 5
0

50

100

150

ite
ra

tio
ns

GCR

GCR
CDGCR
CLDGCR

 2 x 2 3 x 3 4 x 4 5 x 5
0

50

100

150

ite
ra

tio
ns

GCR(5t)

GCR(5t)
CDGCR(5t)
CLDGCR(5t)

 2 x 2 3 x 3 4 x 4 5 x 5
0

50

100

150

ite
ra

tio
ns

CG

CG
CDCG
CLDCG

 2 x 2 3 x 3 4 x 4 5 x 5
0

50

100

150

200

250

300

ite
ra

tio
ns

ILU

CDILU
CLDILU

Figure 5.12: Scalability results for the solution methods for the Dirichlet problem.

62 5. Numerical experiments with domain decomposition for the Poisson equation

The additional work and storage due to deflation

Deflation introduces additional work and storage, see for example Algorithm 4.1. We will
now give a rough estimation for the overhead deflation introduces.

Let d be denoted as the spatial dimension, as usual. In general, DD is implemented as
follows. A matrix Aii, representing the discretization on a subdomain i, is usually very sparse
and therefore only the diagonals (2d+ 1) are stored. Because of the sparsity of the coupling
matrices Aij , i 6= j, only the non-zero elements are stored in an array. A subdomain topology
data structure is used to connect the subdomains, see Brakkee [2, Sect. C.1.2] for an example.

We restrict ourselves to a domain which has the unit length in each dimension. Fur-
thermore we consider a uniform grid. Consider a decomposition of M subdomains in each
dimension of equal size, thus consisting in total of M d subdomains. Let n be the number
of grid cells each subdomain has in one dimension, hence nd is the number of grid cells per
subdomain. Furthermore, let m be the number of deflation vectors per subdomain, for which
only the non-zero elements are stored in an array. For simplicity, consider the case that a
full LU factorization is applied to factorize E = ZTAZ, and that the result is stored in a
matrix L and a matrix U . We will neglect matrix vector multiplications involving coupling
matrices, and we roughly assume that a multiplication of Aii with a vector takes (4d+ 2)nd

floating point operations (flops), ignoring boundary effects. The number of flops for the LU
factorization, the LU forward– and backward–solution, can be found in, for example, Golub &
Van Loan [7, page 152]. By this, the extra work (in flops) and storage (in memory positions)
due to deflation, can be summarized by the following table:

Statements Work Storage

Construct Z mMdnd

Compute AZ (4d+ 2)mMdnd mMdnd

Compute E 2mMdnd m2M2d

LU factorization of E 2
3m

3M3d 2m2M2d

Solve Eq1 = ZT r(0) 2m2M2d mMd

r(0) := r(0) −AZq1 (2m+ 1)Mdnd

Solve Eq2 = ZT v 2m2M2d mMd

v := v −AZq2 (2m+ 1)Mdnd

Compute Ay(k) (4d+ 2)Mdnd Mdnd

Solve Eq2 = ZTAy(k) 2m2M2d mMd

y := y + y(0) + Z(q1 − q2) (2m+ 2)Mdnd

Table 5.2: A rough estimation for the additional work and storage deflation introduces.

From this table we conclude that for n�M , CLD deflation roughly costs three times as
much as work for the 2D case than CD deflation, and four times as much in the 3D case. We
also conclude that for the 3D case, terms with M 2d and M3d could become significantly large
for a large number of subdomains. Therefore, work and storage for the solving the systems
involving E could become expensive. One way to decrease computing time is to use a band /
profile LU factorization of E, when the subdomain numbering is structured. A way to reduce
storage is to simply overwrite the matrix A with the LU factorization.

5.3. The Dirichlet problem 63

0 10 20 30 40 50 60
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

iteration number

re
si

du
al

 ||
b−

A
y(k

) || 2/|b
|| 2

CG
GCR
CDCG
CDGCR
CLDCG
CLDGCR

Figure 5.13: The effect of choosing an old search direction as a starting vector for solving the
subdomain problems. The results are for the Dirichlet case and for a 5 × 5 decomposition of
a 60 × 60 grid. Two iterations for solving the subdomain problems are taken.

5.3.3 Further observations

Choice of starting vector for solving the subdomain problems

In Subsection 3.2.1, it was mentioned that when no further information is available for choos-
ing a starting vector, it is advisable to choose the zero vector. However, for solving the search
directions in the GCR-Schwarz and CG-Schwarz, one could think that such information is
available, i.e. the (orthonormalized) search directions of the previous iteration. Consider the
case of a 5× 5 decomposition of a 60× 60 grid, and let the subdomain problems be solved by
two iterations. Taking the starting vector equal to the old search direction, this results in a
convergence behavior as depicted in Figure 5.13. We observe that the GCR-Schwarz method
performs less good compared to the case of a zero starting vector (see Figure 5.10), while the
CG-Schwarz method does not converge at all. From this observation, we conclude that a zero
starting vector is most preferable for solving the subdomain problems.

A splitting of A for the 1D case and CLD deflation

In Frank & Vuik [5], the following theorem is proven, which gives us a bound for the spectrum
of PA:

Theorem 5.1. Let A be a symmetric positive definite matrix, P defined by (3.24), and
suppose there exists a splitting A = M + N such that M and N are symmetric positive
semidefinite with Null(M) = span{Z} the null space of M . Then

λi(M) ≤ λi(PA) ≤ λi(M) + λmax(PN) . (5.6)

64 5. Numerical experiments with domain decomposition for the Poisson equation

Moreover, the effective condition number of PA is bounded by

κeff(PA) ≤ λn(A)

λm+1(M)
. (5.7)

Proof. See Theorem 2.2 in Vuik & Frank [24].

This theorem can give us important insight into the interpretation of the deflation method.
In Vuik & Frank [24], an example is given for a splitting of a matrix A, where A is the matrix
resulting from the discretization of the Dirichlet problem. Let Σ(Mjac) be denoted as the
vector containing the row sums of Mjac, the block Gauß-Jacobi preconditioner. Then the
following splitting satisfies the conditions of Theorem 5.1 for the case of CD deflation:

A = M +N , M ≡Mjac − Σ(Mjac) . (5.8)

A block of Mii can be interpreted as a discretization for a Neumann problem on a subdomain.
With (5.6) and (5.7), this splitting tells us that CD effectively decouples the original system
into a set of independent Neumann problems on the subdomains, with convergence governed
by the ‘worst’ conditioned Neumann problem.

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4

index of eigenvalue

va
lu

e
of

 e
ig

en
va

lu
e

eigenvalues of A
eigenvalues of P

CLD
A

eigenvalues of M

Figure 5.14: Eigenvalue spectra for the splitting for the case of CLD deflation. The 1D
Dirichlet problem is considered for 4 subdomains and 10 grid cells per subdomain, and the
unpreconditioned case is considered.

5.4. The Neumann problem 65

The question one could ask now is: can we also find a suitable splitting for the case of CLD
deflation that satisfies the conditions of Theorem 5.1? For the 1D case this seems possible,
and the blocks Mii of M could be chosen as:

Mii =

n−2
n−1 −1 0 · · · 0 1

n−1

−1 2 −1 0

0 −1
. . .

. . .
...

...
. . .

. . . −1 0
0 −1 2 −1
1

n−1 0 · · · 0 −1 n−2
n−1

,

where n is the number of grid cells per subdomain. Numerical experiments indicate that the
conditions of Theorem 5.1 are satisfied for this splitting. Furthermore, they indicate that
PN = 0, and therefore Equation (5.6) can be replaced by λi(PA) = λi(M). From this, it
follows that, κeff(PA) = κeff(M).

Figure 5.14 shows an example for the case of 4 subdomains, each containing 10 grid cells.
The eigenvalue spectra of A, PA and M are given, illustrating our observations.

Numerical experiments using Mjac also indicate that the preconditioned version of Theo-
rem 5.1 holds, as given in Frank & Vuik [5, Theorem 2.3]. Figure D.3 in Appendix D.1 gives
an illustration for our example.

A proof and an interpretation for all these observations do not seem straightforward, and
also a generalization to the 2D and 3D case is not obvious. Therefore, this is left for further
research.

5.4 The Neumann problem

In Subsection 5.4.1, first the choice of deflation vectors is discussed. Then the results for
the eigenvalue spectra and the iterative solution methods are presented in Subsection 5.4.2.
Finally, some further observations with MATLAB are discussed in Subsection 5.4.3.

5.4.1 Choice of deflation vectors

When homogeneous Neumann BCs are chosen, the matrix A turns out to be singular. The
solution of the system Ay = b is determined up to a constant, and the vector with all 1’s is
an eigenvector of A with eigenvalue 0. The system has a solution if, and only if, the vector
b ∈ ran(A). When this is the case, then the system is called consistent. Two methods can be
distinguished to solve a non-consistent system, see Kaasschieter [9] and van der Vorst [34].

The first method is to fix one entry of y, deleting the corresponding row and column of
A, adjusting b and solving the resulting non-singular system. However, it turns out that this
can have an infavorable effect on the convergence behavior of the solution method used.

A better approach is to adjust b by projecting b onto ran(A) and make it orthogonal to
the eigenvector corresponding to the zero eigenvalue:

b ≡ b − (b, e)e , (5.9)

where e is the relevant eigenvector, such that ‖e‖2 = 1.

66 5. Numerical experiments with domain decomposition for the Poisson equation

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

nz = 28

CD

0 5 10 15 20 25

0

5

10

15

20

25

nz = 280

CLD

Figure 5.15: Non-zero pattern of E for CD (left) and CLD (right) for the 1D case of three
subdomains, when the first constant deflation vector is removed.

The singularity of A has some consequences for our choice of the matrix Z. When Z is
chosen for CD and CLD deflation as in Subsection 5.3.1, we have e ∈ span(Z), and therefore
the matrix E = ZTAZ is singular. This introduces a problem, when solving the systems
involving E with a direct solution method. Therefore, we have to modify Z such that E is
non-singular. We will consider two options to overcome this difficulty:

1. Removing a constant deflation vector for one subdomain.

2. Adjusting one entry in a constant deflation vector for one subdomain.

Consider the case of 2 subdomains and 4 grid cells per subdomain. For the first option we
take Z for the CD and CLD case as:

ZCD =

0
0
0
0
1
1
1
1

, ZCLD =

1 0 0
2 0 0
3 0 0
4 0 0
0 1 1
0 1 2
0 1 3
0 1 4

. (5.10)

For a 1D example of three subdomains, the non-zero pattern of the matrix E for CD and
CLD is given by Figure 5.15. This figure shows that this choice of Z results in an E for which
the first row and column are canceled, compared to the Dirichlet case.

5.4. The Neumann problem 67

For the second option, one can take, for example:

ZCD =

1 + ε 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1

, ZCLD =

1 + ε 1 0 0
1 2 0 0
1 3 0 0
1 4 0 0
0 0 1 1
0 0 1 2
0 0 1 3
0 0 1 4

, (5.11)

with ε some number.

Consider a 60 × 60 grid consisting of 5 × 5 subdomains, and take Z analogous to (5.11)
with ε = 10−6. Then Figure 5.16 shows the convergence behavior of the GCR-Schwarz and
the CG-Schwarz methods with CD and CLD deflation. We observe a strange jump in the
residuals. For this example, the condition number of E is equal to 1.10 · 1015 and 1.14 · 1017

for the CD and CLD case, respectively. Numerical experiments show, that from such large
values of κ(E), strange convergence behavior occurs.

In Figure 5.17, the influence of κ(E) is illustrated for adjustments 1 and 2 of Z, varying
ε from −50 to +50. We observe that the graphs are more or less symmetric. A peak occurs
at ε = 0, and in a small bandwidth around this value κ(E) is most sensitive. When we
compare CD deflation to CLD deflation, we see that κ(E) for CLD deflation is larger for both
adjustments of Z. Furthermore, κ(E) for CLD deflation seems less sensitive for a decreasing
number of grid cells per subdomain. Comparing both adjustment of Z, we see that the
asymptotes of the functions in ε more or less coincide with κ(E), for the case of removing the
first constant deflation vector.

From this simple sensitivity analysis, we conclude that solving systems involving E can be
done by removing the first deflation vector of Z, or by adjusting the first entry in the constant
deflation vector such that |ε| is large. Furthermore, we conclude that CLD is more sensitive
to the second option. The question one could ask is: what influence do both adjustments of
Z have on the performance of the deflation method? Numerical experiments show that the
performance is similar, i.e., when ε is chosen such that κ(E) � 1016, the convergence rate
for both adjustments is similar.

Other questions that remain are: what and how many constant deflation vector should we
remove from Z? What and how many entries of Z should we modify? And, perhaps, what is
the behavior concerning rounding errors? These questions are left for further research. From
now on, we will choose the option to leave the first deflation vector, since this seems to be
the safest option.

68 5. Numerical experiments with domain decomposition for the Poisson equation

0 10 20 30 40 50 60
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

iteration number

re
si

du
al

 ||
b−

A
y(k

) || 2/|b
|| 2

ε = 10−6

CDCG
CDGCR
CLDCG
CLDGCR

Figure 5.16: Convergence behavior of the GCR-Schwarz and CG-Schwarz methods with CD
and CLD deflation for the Neumann problem. A 60× 60 grid consisting of 5× 5 subdomains
is considered, and one entry of the first constant deflation vector of Z is set to 1 + 10−6.

−50 0 50
10

0

10
5

10
10

10
15

ε

κ(
E

)

2 x 2; CD

−50 0 50
10

0

10
5

10
10

10
15

ε

κ(
E

)

2 x 2; CLD

−50 0 50
10

0

10
5

10
10

10
15

ε

κ(
E

)

5 x 5; CD

−50 0 50
10

0

10
5

10
10

10
15

ε

κ(
E

)

5 x 5; CLD

Figure 5.17: Sensitivity of the choice of Z on κ(E) for the Neumann problem, when we replace
one entry of the constant deflation vector by 1+ ε. A ‘· · · ’ denotes κ(E) for the case that the
first constant deflation vector is removed.

5.4. The Neumann problem 69

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

index of eigenvalue

va
lu

e
of

 e
ig

en
va

lu
e

eigenvalues of M
jac
−1A

eigenvalues of M
jac
−1P

CD
A

eigenvalues of M
jac
−1P

CLD
A

Figure 5.18: Eigenvalue spectra for the preconditioned case, for the case of no deflation, CD
deflation and CLD deflation. The Neumann problem is considered for a 9×9 grid and a 3×3
decomposition.

5.4.2 Eigenvalue spectra and iterative solution methods compared

Eigenvalue spectra compared

The eigenvalue spectra for M−1
jacA, M−1

jacPCDA, and M−1
jacPCLDA for the preconditioned case

and a 3 × 3 decomposition of a 9 × 9 grid are given by Figure 5.18. Figure D.4 in Appendix
D.2 shows the spectra for the unpreconditioned case. Note that the first eigenvalue of A is
zero. Furthermore, we observe that the spectra are quite similar compared to the Dirichlet
problem, see Figure 5.8.

Now consider the case of a 12× 12 grid for three different decompositions, just as for the
Dirichlet case. The effective condition numbers for M−1

jacA, M−1
jacPCDA, and M−1

jacPCLDA are
given by the following table:

κeff 2 × 2 3 × 3 4 × 4

A 115.39 115.39 115.39

M−1
jacA 9.33 18.24 27.22

PCDA 29.31 13.39 7.73

M−1
jacPCDA 6.26 4.76 3.97

PCLDA 14.62 6.63 3.85

M−1
jacPCLDA 2.37 2.30 2.02

Table 5.3: Effective condition numbers for three decompositions. The Neumann problem is
considered and a 12 × 12 grid is taken.

70 5. Numerical experiments with domain decomposition for the Poisson equation

Compared to Table 5.1, we see that the matrices all have a larger condition number.
However, the same conclusions as for Table 5.1 can be made.

Iterative solution methods compared for a fixed problem size

For the following results, the random RHS vector b is made consistent according to (5.9). As
a termination criterion, the absolute termination criterion is taken for solving the deflated
system. Table D.2 shows the results for the fixed problem size, analogous to Table D.1 for
the Dirichlet case. Figure 5.21 shows the corresponding scalability results. Compared to the
Dirichlet case, the same conclusions hold, although in general more iterations are needed.

Figure 5.19 shows the convergence behavior of the GCR-Schwarz and CG-Schwarz meth-
ods, for the case of no deflation, CD deflation, and CLD deflation. Figure 5.20 does the same
for the ILU method. Compared to Figures 5.10 and 5.11, we see comparable convergence
behaviors.

0 10 20 30 40 50 60
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

iteration number

re
si

du
al

 ||
b−

A
y(k

) || 2/|b
|| 2

CG
GCR
CDCG
CDGCR
CLDCG
CLDGCR

Figure 5.19: Residuals for the GCR-Schwarz and CG-Schwarz methods considering no de-
flation, CD deflation, and CLD deflation. The results are for the Neumann case and for a
5× 5 decomposition of a 60× 60 grid. Two iterations for solving the subdomain problems are
taken.

5.4. The Neumann problem 71

0 20 40 60 80 100
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

iteration number

re
si

du
al

 ||
b−

A
y(k

) || 2/|b
|| 2

ILU
CDILU
CLDILU

Figure 5.20: Residuals for the ILU method considering no deflation, CD deflation, and CLD
deflation. The results are for the Neumann case and for a 5 × 5 decomposition of a 60 × 60
grid. Two iterations for solving the subdomain problems are taken.

 2 x 2 3 x 3 4 x 4 5 x 5
0

50

100

150

ite
ra

tio
ns

GCR

GCR
CDGCR
CLDGCR

 2 x 2 3 x 3 4 x 4 5 x 5
0

50

100

150

ite
ra

tio
ns

GCR(5t)

GCR(5t)
CDGCR(5t)
CLDGCR(5t)

 2 x 2 3 x 3 4 x 4 5 x 5
0

50

100

150

ite
ra

tio
ns

CG

CG
CDCG
CLDCG

 2 x 2 3 x 3 4 x 4 5 x 5
0

50

100

150

200

250

300

ite
ra

tio
ns

ILU

CDILU
CLDILU

Figure 5.21: Scalability results for the solution methods, for solving the Poisson equation
with homogeneous Neumann BCs on a 60 × 60 grid.

72 5. Numerical experiments with domain decomposition for the Poisson equation

5.4.3 Further observations

Strange convergence behavior of the Schwarz method

For the Neumann problem, it can be observed that the additive Schwarz method behaves
strangely, concerning the subdomain solution. Consider the case of 15 × 15 grid consisting
of 3 × 3 subdomains. Figure 5.22 shows the convergence behavior of the additive Schwarz
method, for the case the subdomain problems are solved by performing, respectively, 1, 2, 5,
and 15 iterations. It can be observed that for 15 iterations, the Schwarz method does not
seem to converges anymore. This is strange behavior, since one does not expect the method
to converge slower for an increasing accuracy of the subdomain solutions. For comparison,
Figure 5.23 shows how the Schwarz method behaves for the Dirichlet problem. No strange
convergence behavior can be observed, although the convergence for 15 subdomain iterations
seems slightly worse, compared to 5 iterations. However, this is likely to be caused by the
fact that for each curve a different random b is taken.

0 50 100 150 200 250
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

iteration number

re
si

du
al

 ||
b−

A
y(k

) || 2/|b
|| 2

ILU(1)
ILU(2)
ILU(5)
ILU(15)

Figure 5.22: Convergence behavior of the ILU method, for an increasing number of iterations
for solving the subdomain problems. The results are for the Neumann case considering a 3×3
decomposition of a 15 × 15 grid.

5.4. The Neumann problem 73

0 50 100 150 200 250
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

iteration number

re
si

du
al

 ||
b−

A
y(k

) || 2/|b
|| 2

ILU(1)
ILU(2)
ILU(5)
ILU(15)

Figure 5.23: Convergence behavior of the ILU method, for an increasing number of iterations
for solving the subdomain problems. The results are for the Dirichlet case considering a 3×3
decomposition of a 15 × 15 grid.

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

index of eigenvalue

va
lu

e
of

 e
ig

en
va

lu
e

eigenvalues of A
eigenvalues of P

CD
A

eigenvalues of M

Figure 5.24: Eigenvalue spectra for the same splitting used for the Dirichlet case, but now
for the Neumann case. The unpreconditioned case is considered.

74 5. Numerical experiments with domain decomposition for the Poisson equation

A splitting of A for the 2D case and CD deflation

An interesting question is the following: does Theorem 5.1 also hold for the Neumann case,
i.e., for the case that A is symmetric positive semidefinite? This seems to be the case for the
splitting given by (5.8).

Numerical experiments show that for this splitting, all the conditions of Theorem 5.1 are
satisfied, except the condition that A should be SPD. Figure 5.24 illustrates the observation
that bound (5.6) is satisfied. Figure D.5 also indicates that the preconditioned version of
Theorem 5.1 holds.

A proof for these observations is left as further research. Compared to the Dirichlet case,
the most crucial part in the proof appears to be the proof of ‖P‖2 = 1.

5.5 Connection with the X-stream code

In the X-stream code, solving the pressure-correction system (see (iii) in Algorithm 3.8)
is most time-consuming. Therefore, our main goal is to accelerate the DD methods in X-
stream, as discussed in Chapter 4. Since the pressure-correction system has an elliptic nature,
we considered the Poisson equation in this chapter. Furthermore, we took an ILU additive
Schwarz method, since this method is comparable to the additive Schwarz method using SIP
in X-stream, which is the default solution method. Furthermore, the 2D case is considered,
which gives a good indication what to expect for the 3D case.

Simple experiments with MATLAB for a pipe flow testcase (which will be described in the
next chapter) show that the pressure-correction matrix is singular, having a zero eigenvalue
with a corresponding eigenvector containing all ones. Experiments also indicate that the
RHS vector is consistent. This is the main reason why the Neumann case is considered in
this chapter. Furthermore, it is not completely clear whether the pressure-correction matrix
is symmetric or not. This appears difficult to verify in a large CFD code. Therefore, we also
considered the CG-Schwarz method in this chapter.

6

Deflated Krylov-Schwarz domain decomposition for

the Navier-Stokes equations

6.1 Introduction

In this Chapter, Deflated Krylov-Schwarz DD is applied to the pressure-correction system in
the X-stream code.

In Section 6.2, first some details are given on the implementation of both methods, followed
by three testcases in Section 6.3. In Section 6.4, results for these testcases are discussed for
solving the pressure-correction system. Finally, in Section 6.5 results are presented for the
number of outer iterations (see Figure 3.3) and total wall-clock time.

6.2 Some implementation aspects

During the Master’s project, the GCR-Schwarz and CG-Schwarz methods combined with CD
and CLD deflation are implemented in the X-stream code. The implementation is done such
that systems can be solved for different variables. The GCR-Schwarz method can be both
truncated or restarted and MGS orthonormalization is applied. For solving the subdomain
solutions, the SIP, SPTDMA and CG methods can be used. We restrict ourselves entirely to
solving the subdomain problems using 1 SIP iteration.

All the implementation is done, such that the code can be run in parallel according to the
MPI standard. Both Krylov-Schwarz methods without deflation run in parallel. However,
the deflation routines do not work yet for the parallel case, due to an MPI routine which has
to be tested first.

The implementation is done in a similar way as described in Subsection 5.3.2. We will only
give a brief treatment. Consider the multi-processor case, in which each processor is assigned
to exactly one subdomain. On each processor m, the matrix Amm is stored as well as the
coupling matrices Amj , m 6= j, which are stored as single arrays containing only non-zero
elements.

The deflation method is implemented in X-stream such that the deflation vectors are in the
directions of the grid lines, instead of the Cartesian coordinates. Since the grid is structured,
this can be easily implemented. Furthermore, we remove a constant deflation vector for the
first subdomain to avoid singularity of E. For the CLD case, we also remove a linear deflation
vector for a direction in which there is only one grid cell. This is also done to avoid singularity

76 6. Deflated Krylov-Schwarz domain decomposition for the Navier-Stokes equations

Figure 6.1: Three decomposition for the pipe flow testcase: 1× 1× 1, 2× 2× 2 and 4× 4× 4.

of E.

After constructing the deflation vectors, processor m computes the corresponding block-
row of AZ1. This requires nearest neighbor communication between processors, in which
values of the deflation vectors are sent to all neighboring subdomains through the ghost cells.
Next, each processor computes the non-zero row elements of E. This can be done without
communication. Then, the elements of E are distributed over all processors, requiring global
communication. On each processor, the matrix E is built using the non-zero pattern of E,
which is stored locally. A simple LU factorization is done on each processor. In the X-stream
code, both the L matrix as the U are stored, and no further attention has been given to
optimize the LU factorization. Systems involving E are solved on each processor, requiring
global communication for constructing the RHS vector.

6.3 Three testcases in X-stream

In Subsection 6.3.1, three testcases in X-stream are described, for which the GCR-Schwarz
and CG-Schwarz methods will be extensively tested. In Subsection 6.3.2, parameter variation
of the relaxation parameters is done.

6.3.1 Testcase descriptions

Varying from relatively simple to complex, the testcases we will consider are: a pipe flow,
a buoyancy-driven cavity flow and a glass tank model. Only stationary, laminar flow is
considered for these testcases, and all grids are orthogonal. We will restrict ourselves to the
first and coarsest gridlevel for all testcases, for sake of simplicity (see Figure 3.3).

Testcase I: Pipe flow

In this testcase (X-stream reference XTC-35), the stationary incompressible Navier-Stokes
equations are solved for a unit cube.

The geometry is 3D and is given by, in respectively x, y and z-direction, 1 [m] × 1 [m]
× 1 [m]. The inlet is located at x = 0, the outlet at x = 1. The four remaining boundaries

1Note that this is slightly different from what is done in Frank & Vuik [5], where the columns of Z are
stored on each processor.

6.3. Three testcases in X-stream 77

Figure 6.2: The computed velocity field (left) and pressure field (right) for the pipe flow
problem.

are all walls. A uniform 16 × 16 × 16 grid is taken, and we consider three decompositions:
1 × 1 × 1, 2 × 2 × 2 and 4 × 4 × 4, as depicted in Figure 6.1.

We assume that the flow has a constant density of ρ = 1.0 [kg m−3] and a dynamic
viscosity µ = 1.0 [kg m−1 s−1]. Let u, v, and w be respectively the velocity in x, y and z
direction. At the inlet, we take the Dirichlet BCs u = 1 [m s−1], v = w = 0 [m s−1]. At the
walls, we take no-slip conditions, i.e., u = v = w = 0 [m s−1]. At the outlet, homogeneous
BCs are taken for u, v and w. By this, the Reynolds’ number is 1, which makes the flow
laminar. Furthermore, we assume no gravitation contribution and an initial velocity and
pressure field of zero. Figure 6.2 shows the resulting velocity and pressure field, respectively.

Testcase II: Buoyancy-driven cavity flow

The equations to be solved for this testcase (X-stream reference XTC-33) are the stationary
incompressible Navier-Stokes equations and the stationary energy equation.

The geometry is a 1 [m] × 1 [m] 2D plate. Since the X-stream code is 3D instead of 2D,
we take one grid cell in the z-direction and apply a symmetry condition. By this, we assume
that we solve a 2D problem in X-stream. We will take a 60×60 uniform grid and the following
three decompositions: 1 × 1, 2 × 2 and 4 × 4, see Figure 6.3.

The basic idea of a buoyancy-driven cavity flow is, that free convection occurs due to

Figure 6.3: Three decompositions for the buoyancy-driven cavity flow: 1× 1, 2× 2 and 4× 4.

78 6. Deflated Krylov-Schwarz domain decomposition for the Navier-Stokes equations

Figure 6.4: The velocity field (left) and pressure field (right) for the buoyancy-driven cavity
flow.

a temperature difference between a ‘hot’ wall and a ‘cold’ wall. The heated fluid is rising
along the hot wall, while cooled fluid is falling along the cold wall. Let T1 be denoted as the
temperature of the left hot wall, and T0 the temperature of the right cold wall. We assume
that the Boussinesq approximation holds, and that the density varies linear with temperature:

ρ(T) = ρ0 − ρ0β(T1 − T0) ,

where ρ0 is the reference density. The rate of circulation of the flow depends on the Rayleigh
number, which is defined for a unit square as

Ra =
ρ2gβ(T1 − T0)

µ2
Pr ,

with Pr denotes the Prandtl number. We take the constants

µ = 1.0 · 10−3 [kg m−1 s−1] ,
cp = 7.1 · 102 [m2 s−2 K−1] ,
λ = 1.0 [kg m s−3 K−1] ,

where cp is the specific heat and λ the heat conductivity, and by this we have Pr = 0.71.
Furthermore, we choose

g = 9.81 [m s−2] ,
β = 0.001 [K−1] ,

where g is the gravitation constant. Taking T1 = 1.436 [K] and T0 = 0 [K] for the temperature
BCs, we have Ra = 1.0 · 106. We also assume that the top and bottom walls are adiabatic,
and therefore take homogeneous Neumann BCs for the temperature. The flow is said to be
laminar. For the velocities we take u = v = 0 at the wall, i.e., a no-slip condition. Figure 6.4
shows the resulting velocity and pressure fields.

Testcase III: Glass tank model

For this testcase (X-stream reference XTC-07), the stationary incompressible Navier-Stokes
equations and the stationary energy equation are solved. The flow considered is a buoyant
laminar flow. The density, as well as the dynamic viscosity, depends on the temperature.

6.3. Three testcases in X-stream 79

Figure 6.5: Geometry of the glass tank.

The geometry of the glass tank is as in Figure 6.5. The overall dimensions in respectively
x, y and z-direction is 7 [m] × 1 [m] × 3 [m]. The red areas correspond to the inlet of the
glass fractions and the outlet of the melted glass. The glass inlet runs from x = 0 [m] to
x = 1 [m] over the entire width of the tank. The glass outlet is located at x = 7 [m] and is
centered in z-direction with a width of 0.6 [m] and height of 0.25 [m]. A grid with a total of
10,500 grid cells is used, and the domain is decomposed into 18 blocks, as depicted in Figure
6.6.

Since the testcase is complex, we restrict ourselves only to a global treatment of the
BCs. At the inlet, homogeneous Dirichlet BCs are taken for the velocities and a linear profile
Dirichlet condition for the temperature in the x-direction. At the glass outlet, a homogeneous
Neumann condition is taken for all velocities. At the glass surface, homogeneous Dirichlet
conditions are taken for the velocity components and a piecewise linear profile Dirichlet con-
dition in the x-direction. For the walls, no-slip conditions for the velocities are taken and a
homogeneous Neumann condition for the temperature.

Figure 6.7 shows the velocity and pressure field. Note that the velocities point upward at
the glass surface. This is physically incorrect, because no glass could leave the tank at the
surface. Probably, this is caused by the insufficiency of the PWI method for buoyant flows,
or by the fact that linear extrapolation of the pressure at the glass surface is not accurate
enough.

80 6. Deflated Krylov-Schwarz domain decomposition for the Navier-Stokes equations

Figure 6.6: Subdomain topology for the glass tank model, in which the domain is decomposed
into 18 blocks.

Figure 6.7: Velocities (top) and pressure (bottom) for the glass tank model.

6.3. Three testcases in X-stream 81

6.3.2 Parameter variation

When solving a complex problem, usually several variables need to be underrelaxed (see
Section 3.3). How the relaxation parameters have to be chosen can be a difficult and time-
consuming task, especially when a large number of variables are being solved and the grid is
large. This is because the settings are directly linked to the convergence behavior of the outer
iteration process. When one chooses the parameters too high, the risk exists that the method
diverges. When one chooses them too low, this can result in a large number of outer iterations,
and therefore, into large wall-clock times. This is the reason why parameter variation is of
importance in order to obtain a convergent result, and in a minimal number of iterations and
computing time. Parameter variation has been done for the three testcases.

For the parameter variation we take, more or less, the default settings of X-stream. For
solving all the variables, the additive Schwarz method is used with inaccurate subdomain
solution obtained by one SIP step. From now on, we will refer to this method as simply
SIP(1). All variables, except the pressure-correction, are solved by 5 inner iterations. The
pressure-correction system is solved by 10 iterations of SIP(1). All the inner iterations are
performed, without applying a termination criterion. Convergence is reached if the residuals
are smaller than 10−6. No effort has been taken to look at the monitor points for convergence.
The number of SSI iterations for Testcase I has been taken equal to 1, for Testcase II and II
this value is 10.

Testcase I: Pipe flow

Parameter variation is done for a 4 × 4 × 4 decomposition. For this testcase, we have under-
relaxation parameters for the pseudo-velocities and the pressure. For simplicity, we consider
the relaxation parameter for the three pseudo-velocities to be the same, and denote this by
αu. The relaxation parameter for the pressure is called αp. The maximum number of outer
iterations is set to 500. Figure 6.8 shows the outer iterations as well as the wall-clock times
for the relaxation parameter variation. Optimal values of αu and αp appear to be given by
the following table:

αu αp

0.7 0.5

Table 6.1: Relaxation parameters for Testcase I obtained by parameter variation, considering
a 4 × 4 × 4 decomposition.

Testcase II: Buoyancy-driven cavity flow

Parameter variation is done for a 4 × 4 decomposition. The involving relaxation parameters
are: αu, αp, αρ and αe, where αρ respectively αe are the relaxation parameters for the density
and energy.

The maximum number of iterations was set to 5000. Figure 6.9 shows the outer iterations
for different combinations of these parameters. A value at 5000 iterations means that the
convergence criterion was not satisfied after 5000 iterations. It can be observed that the
number of outer iterations is proportional to the wall-clock time, see Figure E.1 of Appendix

82 6. Deflated Krylov-Schwarz domain decomposition for the Navier-Stokes equations

E. This is what to be expected, since all outer iterations are equally expensive, due to the
fact that the termination criterion for the inner iterations is never used. Optimal values for
αu, αp, αρ and αe appear to be:

αu αp αρ αe

0.5 0.7 1.0 1.0

Table 6.2: Relaxation parameters for Testcase II obtained by parameter variation, considering
a 4 × 4 decomposition.

The fact that the density does not need to be underrelaxed, is probably because the
variation in the density is small due to the large reference density ρ0.

Testcase III: Glass tank model

The involving relaxation parameters are: αu, αp, αρ, αe and αµ, where αµ is the relaxation
parameter for the dynamic viscosity. For this testcase, the maximum number of outer it-
erations was set to 1000. Figure 6.10 shows the result of the parameter variation analysis.
Figure E.2 in Appendix E shows again that the computing time is proportional to the outer
iterations. The following relaxation parameters seem to be optimal:

αu αp αρ αe αµ

0.7 0.3 0.1 1.0 0.1

Table 6.3: Relaxation parameters for Testcase III obtained by parameter variation.

It can be observed that the convergence of the outer iterations is very sensitive to the
choice of αe. It was observed that parameter variation for αe = 0.9 resulted in outer iteration
residuals which stayed constant.

0.4 0.6 0.8 1
0

100

200

300

400

α
p

ou
te

r
ite

ra
tio

ns

α
u
 = 0.5

α
u
 = 0.6

α
u
 = 0.7

0.4 0.6 0.8 1
0

50

100

150

200

α
p

w
al

l−
cl

oc
k

tim
e

(s
ec

)

α
u
 = 0.5

α
u
 = 0.6

α
u
 = 0.7

Figure 6.8: Results for the parameter variation of the relaxation parameters. Left: concerning
outer iterations; right: concerning total wall-clock times. Testcase I is considered for a 4×4×4
decomposition.

6.3. Three testcases in X-stream 83

0.2 0.4 0.6 0.8
0

1000

2000

3000

4000

5000

α
p

ou
te

r
ite

ra
tio

ns

αρ = 0.9; α
e
 = 1.0

α
u
 = 0.3

α
u
 = 0.5

α
u
 = 0.7

0.2 0.4 0.6 0.8
0

1000

2000

3000

4000

5000

α
p

ou
te

r
ite

ra
tio

ns

αρ = 0.9; α
e
 = 0.9

α
u
 = 0.3

α
u
 = 0.5

α
u
 = 0.7

0.2 0.4 0.6 0.8
0

1000

2000

3000

4000

5000

α
p

ou
te

r
ite

ra
tio

ns

αρ = 1.0; α
e
 = 1.0

α
u
 = 0.3

α
u
 = 0.5

α
u
 = 0.7

0.2 0.4 0.6 0.8
0

1000

2000

3000

4000

5000

α
p

ou
te

r
ite

ra
tio

ns

αρ = 1.0; α
e
 = 0.9

α
u
 = 0.3

α
u
 = 0.5

α
u
 = 0.7

Figure 6.9: Parameter variation for the number of outer iterations. Testcase II is considered
for a 4 × 4 decomposition.

0.2 0.4 0.6 0.8
0

200

400

600

800

1000

α
p

ou
te

r
ite

ra
tio

ns

αµ = 0.1; αρ = 0.1; α
e
 = 1.0

α
u
 = 0.3

α
u
 = 0.5

α
u
 = 0.7

0.2 0.4 0.6 0.8
0

200

400

600

800

1000

α
p

ou
te

r
ite

ra
tio

ns

αµ = 0.2; αρ = 0.2; α
e
 = 1.0

α
u
 = 0.3

α
u
 = 0.5

0.2 0.4 0.6 0.8
0

200

400

600

800

1000

α
p

ou
te

r
ite

ra
tio

ns

αµ = 0.1; αρ = 0.2; α
e
 = 1.0

α
u
 = 0.3

α
u
 = 0.5

0.2 0.4 0.6 0.8
0

200

400

600

800

1000

α
p

ou
te

r
ite

ra
tio

ns

αµ = 0.2; αρ = 0.1; α
e
 = 1.0

α
u
 = 0.3

α
u
 = 0.5

α
u
 = 0.7

Figure 6.10: Parameter variation for the number of outer iterations, considering Testcase III.

84 6. Deflated Krylov-Schwarz domain decomposition for the Navier-Stokes equations

6.4 Results for the number of inner iterations

In this section, the GCR-Schwarz method and the CG-Schwarz method, with and without
CD and CLD deflation, are compared to three iterative solution methods used in X-stream:
the SIP(1) method, the SPTDMA(1) method and the CG(1) method. The SIP(1) method is
default in X-stream and most commonly used. The CG(1) method is not often used, since
this method can only be used for SPD matrices.

First, the solution of the Poisson equation in X-stream is discussed briefly in Subsection
6.4.1. Then, the results for the three testcases are presented in Subsection 6.4.2 for solving
the pressure-correction system. All the timing results in this chapter are done on a Pentium
III machine.

6.4.1 Solving the 3D Poisson equation

Consider the 3D Poisson equation with homogeneous Dirichlet BCs for the grid of Testcase
I with a 4 × 4 × 4 decomposition, see Subsection 6.3.1. The pressure-correction matrix for
this testcase was used to construct the Poisson matrix in a ‘quick and dirty’ way, by simply
overwriting the main diagonal elements with 6 and the non-zero off-diagonal elements with
−1. The RHS vector was build by using a simple combination of the grid cell indices.

Figure 6.11 shows the results for the three current methods in X-stream, for the case of 30
inner iterations. Figure 6.12 respectively Figure 6.13, show the results for the GCR-Schwarz
and CG-Schwarz, using no deflation, CD deflation and CLD deflation. The results are as to
be expected from the numerical experiments done in Chapter 5.

We see a significantly large improvement in convergence rate compared to the SIP(1),
SPTDMA(1) and CG(1) additive Schwarz methods. Furthermore, it can be observed that
the GCR-Schwarz and CG-Schwarz methods with deflation have a significantly better perfor-
mance than without deflation. However, this seems likely to be caused by the large number
of subdomains, i.e., 64 in total. Note the small jump of the residual in the first iteration for
the CLD deflation case.

Table E.1 in Appendix E.2 gives a complete comparison for all the methods concerning
inner iterations and wall-clock times. The left table shows the termination criteria for all
the solution methods after 30 iterations. The right table shows the required iterations and
wall-clock time for a solution method to obtain the same termination criterion as SIP(1)
has after 10 and 20 iterations respectively. Also the GCR-Schwarz method with restarting
and truncation is considered. It turns out that truncation for only one search direction is
sufficient, see Figure 6.14.

When we take a closer look at the timing results in Table E.1 (right table), we see that the
CG-Schwarz and GCR-Schwarz methods with CD deflation are more efficient than without
deflation. The methods with CD deflation are also quite competitive compared to the solution
methods in X-stream. Furthermore, we conclude from this table that CLD deflation is very
expensive for this case, up to a factor 5 more wall-clock time compared to the case without
deflation. Although this table gives us a good indication, it should be noted that the measured
times are very small and likely sensitive to disturbances.

6.4. Results for the number of inner iterations 85

0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

10
1

iteration number

re
si

du
al

 ||
b−

A
y(k

) || 2/|b
|| 2

SIP(1)
SPTDMA(1)
CG(1)

Figure 6.11: The residuals of the SIP(1), SPTDMA(1) and CG(1) methods for solving the
Poisson equation on the same grid as for Testcase I, using a 4 × 4 × 4 decomposition.

0 5 10 15 20 25 30

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iteration number

re
si

du
al

 ||
b−

A
y(k

) || 2/|b
|| 2

SIP(1)
GCR
CDGCR
CLDGCR

Figure 6.12: The residuals of the SIP(1), GCR, CDGCR and CLDGCR methods for solving
the Poisson equation on the same grid as for Testcase I, using a 4 × 4 × 4 decomposition.

86 6. Deflated Krylov-Schwarz domain decomposition for the Navier-Stokes equations

0 5 10 15 20 25 30

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iteration number

re
si

du
al

 ||
b−

A
y(k

) || 2/|b
|| 2

SIP(1)
CG
CDCG
CLDCG

Figure 6.13: The residuals of the SIP(1), CG, CDCG and CLDCG methods for solving the
Poisson equation on the same grid as for Testcase I, using a 4 × 4 × 4 decomposition.

0 5 10 15 20 25 30

10
−5

10
0

iteration number

||b
−

A
y(k

) || 2/|b
|| 2

GCR
GCR(1t)
GCR(1r)

0 5 10 15 20 25 30

10
−10

10
0

iteration number

||b
−

A
y(k

) || 2/|b
|| 2

CDGCR
CDGCR(1t)
CDGCR(1r)

0 5 10 15 20 25 30

10
−10

10
0

iteration number

||b
−

A
y(k

) || 2/|b
|| 2

CLDGCR
CLDGCR(1t)
CLDGCR(1r)

Figure 6.14: GCR-Schwarz methods compared for restarting and truncating for one search
direction. Top plot: GCR; middle plot: CDGCR; bottom plot: CLDGCR.

6.4. Results for the number of inner iterations 87

6.4.2 Solving the pressure-correction system

For all the results presented in this subsection the determined relaxation parameters as in
Subsection 6.3.2 are used.

Testcase I: Pipe flow

Consider the case of a 4 × 4 × 4 decomposition. The results presented here are for the
pressure-correction system in the second outer iteration. This is done, since it can be ob-
served that the convergence behavior of all the solution methods for the first outer iteration
is significantly different from the other iterations. This is likely caused of the zero initial fields.

Figure 6.15 shows the results for the three solution methods in X-stream, for the case of 30
inner iterations. Figures 6.16 and 6.17, respectively, show the results for the GCR-Schwarz
and CG-Schwarz methods, using no deflation, CD deflation and CLD deflation. The results
are very similar to the results for solving the Poisson equation. Again, we see good convergence
behavior with CD and CLD deflation compared to the current solution methods in X-stream.
We also see that, in general, the GCR method performs better than the CG method.

Tables E.2 and E.3 in Appendix E.2 show more details on the comparisons for the three
decompositions. Also truncated and restarted GCR-Schwarz is considered. Just as for the
Poisson problem, it can be observed that truncation for only one search direction is most
efficient, see Figure E.3 of Appendix E. From Table E.3, we conclude that the CD and
CLD method make the convergence behavior more or less independent on the number of
subdomains. This is illustrated by Figure 6.18. Note that the GCR-Schwarz and the CG-
Schwarz method without deflation do not have good scalability properties. Furthermore, note
that both Krylov-Schwarz methods have good performances for the case of 1 subdomain.

Concerning wall-clock times, we conclude from Table E.3 that the CLD deflation becomes
more expensive for an increasing number of subdomains. For 1 subdomain, deflation is more
expensive than no deflation, and truncated GCR-Schwarz seems to be most efficient. For
64 subdomains, CLD becomes very expensive, and truncated GCR appears to be the most
efficient method considering 20 iterations of SIP(1).

In Figure 6.16 it can been seen that the convergence for the CLDGCR method stagnates from
iterate 23. Possibly, this strange effect is caused by removing one constant deflation vector
from Z. Figure 6.20 shows the convergence behavior for the case we do not remove a constant
deflation vector, but change one element into 1 + ε, where ε = 0.001. For the GCR-Schwarz
method, we observe that the residuals become constant at a certain iteration, after which it
declines again. The effect in Figure 6.16 seems quite similar, although less extreme. Possibly,
this effect depends on the number of grid cells per subdomain (see Section 5.4).

Analogous to our observations in Chapter 5, it can be observed that it is advisable to
take the zero starting vector for solving the subdomain problems. Figure 6.19 shows the
result for the GCR-Schwarz method when we take an old, orthonormalized, search direction
as the starting vector. Comparing this figure to Figure 6.16, we observe that this choice has a
negative influence on the performance of the deflation methods. For the CG-Schwarz method,
we see that the residuals even stay horizontal, see Figure E.6 in Appendix E.

88 6. Deflated Krylov-Schwarz domain decomposition for the Navier-Stokes equations

0 5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

10
1

iteration number

re
si

du
al

 ||
b−

A
y(k

) || 2/|b
|| 2

SIP(1)
SPTDMA(1)
CG(1)

Figure 6.15: The residuals for the SIP(1), SPTDMA(1) and CG(1) methods for solving the
pressure-correction system. Testcase I is considered for a 4 × 4 × 4 decomposition.

0 5 10 15 20 25 30
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iteration number

re
si

du
al

 ||
b−

A
y(k

) || 2/|b
|| 2

SIP(1)
GCR
CDGCR
CLDGCR

Figure 6.16: The residuals for the SIP(1), GCR, CDGCR and CLDGCR methods for solving
the pressure-correction system. Testcase I is considered for a 4 × 4 × 4 decomposition.

6.4. Results for the number of inner iterations 89

0 5 10 15 20 25 30
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iteration number

re
si

du
al

 ||
b−

A
y(k

) || 2/|b
|| 2

SIP(1)
CG
CDCG
CLDCG

Figure 6.17: The residuals for the SIP(1), CG, CDCG and CLDCG methods for solving the
pressure-correction system. Testcase I is considered for a 4 × 4 × 4 decomposition.

 1 x 1 x 1 2 x 2 x 2 4 x 4 x 4

10
−10

10
−5

10
0

||b
−

A
y(k

) || 2/|b
|| 2

SIP(1), SPTDMA(1) and CG(1)

SIP(1)
SPTDMA(1)
CG(1)

 1 x 1 x 1 2 x 2 x 2 4 x 4 x 4

10
−10

10
−5

10
0

||b
−

A
y(k

) || 2/|b
|| 2

GCR

GCR
CDGCR
CLDGCR

 1 x 1 x 1 2 x 2 x 2 4 x 4 x 4

10
−10

10
−5

10
0

||b
−

A
y(k

) || 2/|b
|| 2

GCR(1t)

GCR(1t)
CDGCR(1t)
CLDGCR(1t)

 1 x 1 x 1 2 x 2 x 2 4 x 4 x 4

10
−10

10
−5

10
0

||b
−

A
y(k

) || 2/|b
|| 2

CG

CG
CDCG
CLDCG

Figure 6.18: Scalability results for Testcase I considering three decompositions. The pressure-
correction system is considered.

90 6. Deflated Krylov-Schwarz domain decomposition for the Navier-Stokes equations

0 5 10 15 20 25 30
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iteration number

re
si

du
al

 ||
b−

A
y(k

) || 2/|b
|| 2

SIP(1)
GCR
CDGCR
CLDGCR

Figure 6.19: Convergence behavior for the SIP(1), GCR, CDGCR and CLDGCR methods,
when an old search direction is taken as a starting vector. Testcase I is considered for a
4 × 4 × 4 decomposition.

0 5 10 15 20 25 30
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iteration number

re
si

du
al

 ||
b−

A
y(k

) || 2/|b
|| 2

ε = 0.001

CDGCR(1t)
CLDGCR(1t)
CDCG
CLDCG

Figure 6.20: The residuals for the GCR(1t)-Schwarz and CG-Schwarz methods when one
element in the constant deflation vector is set to 1 + 10−3. The pressure-correction system
for Testcase I is considered using a 4 × 4 × 4 decomposition.

6.4. Results for the number of inner iterations 91

Testcase II: Buoyancy-driven cavity flow

Consider the case of a 4× 4 decomposition, then Figures 6.21, 6.22 and 6.23 show the results
for solving the pressure-correction system using, respectively, the current solution methods
in X-stream, the GCR-Schwarz method and the CG-Schwarz method.

From Figure 6.21, we conclude that the X-stream solution methods converge very poorly
for this testcase. Figure 6.22 shows a good converge behavior for the GCR-Schwarz method
with CD and CLD deflation. Note the jump of the residual for CLD deflation in the first
iteration. Figure 6.23 shows that the CG-Schwarz method performs less well than the GCR-
Schwarz method. This observation, together with the fact that the CG(1) has a bad conver-
gence behavior, seems to indicate that the pressure-correction matrix is possibly not symmet-
ric for this testcase.

Tables E.4 and E.5 in Appendix E.2 show a comparision of the solution methods for
three different decompositions. Figure 6.24 shows the scalability results. We clearly see
the effect that the convergence rate improves for an increasing number of subdomains, when
considering the Deflated GCR-Schwarz method. This is especially the case for CLD deflation.
Again, we see from Table E.5 that only one truncation vector is more or less sufficient for the
GCR-Schwarz method, especially when deflation is applied, see Figure E.4 of Appendix E.
Concerning computing time, we conclude from Table E.5 that restarted and truncated GCR-
Schwarz with CLD deflation is the most efficient method combination for all decompositions.

0 5 10 15 20 25 30
10

−2

10
−1

10
0

10
1

iteration number

re
si

du
al

 ||
b−

A
y(k

) || 2/|b
|| 2

SIP(1)
SPTDMA(1)
CG(1)

Figure 6.21: The residuals of the SIP(1), SPTDMA(1) and CG(1) methods for solving the
pressure-correction system. Testcase II is considered for a 4 × 4 decomposition.

92 6. Deflated Krylov-Schwarz domain decomposition for the Navier-Stokes equations

0 5 10 15 20 25 30
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

iteration number

re
si

du
al

 ||
b−

A
y(k

) || 2/|b
|| 2

SIP(1)
GCR
CDGCR
CLDGCR

Figure 6.22: The residuals of the SIP(1), GCR, CDGCR and CLDGCR methods for solving
the pressure-correction system. Testcase II is considered for a 4 × 4 decomposition.

0 5 10 15 20 25 30
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

iteration number

re
si

du
al

 ||
b−

A
y(k

) || 2/|b
|| 2

SIP(1)
CG
CDCG
CLDCG

Figure 6.23: The residuals of the SIP(1), CG, CDCG and CLDCG methods for solving the
pressure-correction system. Testcase II is considered for a 4 × 4 decomposition.

6.4. Results for the number of inner iterations 93

 1 x 1 2 x 2 4 x 4

10
−5

10
0

||b
−

A
y(k

) || 2/|b
|| 2

SIP(1), SPTDMA(1) and CG(1)

SIP(1)
SPTDMA(1)
CG(1)

 1 x 1 2 x 2 4 x 4

10
−5

10
0

||b
−

A
y(k

) || 2/|b
|| 2

GCR

GCR
CDGCR
CLDGCR

 1 x 1 2 x 2 4 x 4

10
−5

10
0

||b
−

A
y(k

) || 2/|b
|| 2

GCR(1t)

GCR(1t)
CDGCR(1t)
CLDGCR(1t)

 1 x 1 2 x 2 4 x 4

10
−5

10
0

||b
−

A
y(k

) || 2/|b
|| 2

CG

CG
DCG
CLDCG

Figure 6.24: Scalability results for Testcase II considering three decompositions. The pressure-
correction system is considered.

Testcase III: Glass tank model

Figures 6.25, 6.26 and 6.27 show the results for solving the pressure-correction system us-
ing, respectively, the solution methods of X-stream, the GCR-Schwarz and the CG-Schwarz
methods.

In Figure 6.25, we see that the SIP(1) method converges quite well, compared to Testcase
I and II. In Figure 6.26, it can be observed that the GCR-Schwarz with CD deflation has a
similar convergence rate compared to the case of no deflation. Furthermore, a relatively large
jump in the residual in the first iteration for the CLDGCR-Schwarz method can be observed.
A similar jump can be seen in Figure 6.27 for the CLDCG-Schwarz method.

Table E.6 in Appendix E.2 shows a comparison for all the solution methods. Concerning
iterations, truncated GCR-Schwarz for one search direction is most efficient, see Figure E.5
in Appendix E. Concerning wall-clock time, this method is most efficient compared to 20
iterations with the SIP(1) method.

94 6. Deflated Krylov-Schwarz domain decomposition for the Navier-Stokes equations

0 5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

10
1

iteration number

re
si

du
al

 ||
b−

A
y(k

) || 2/|b
|| 2

SIP(1)
SPTDMA(1)
CG(1)

Figure 6.25: The residuals of the SIP(1), SPTDMA(1), and CG(1) methods for solving the
pressure-correction system. Testcase III is considered.

0 5 10 15 20 25 30
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

iteration number

re
si

du
al

 ||
b−

A
y(k

) || 2/|b
|| 2

SIP(1)
GCR
CDGCR
CLDGCR

Figure 6.26: The residuals of the SIP(1), GCR, CDGCR, and CLDGCR methods for solving
the pressure-correction system. Testcase III is considered.

6.4. Results for the number of inner iterations 95

0 5 10 15 20 25 30
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

iteration number

re
si

du
al

 ||
b−

A
y(k

) || 2/|b
|| 2

SIP(1)
CG
CDCG
CLDCG

Figure 6.27: The residuals of the SIP(1), CG, CDCG and CLDCG methods for solving the
pressure-correction system. Testcase III is considered.

96 6. Deflated Krylov-Schwarz domain decomposition for the Navier-Stokes equations

6.5 Results for the number of outer iterations

In Subsection 6.4.2, results were presented for the number of inner iteration for solving the
pressure-correction system. An interesting question is the following: how is the solution of
the pressure-correction system for different solution methods related to the total number of
outer iterations and total wall-clock time?

Our approach to answer this question is as follows. We take the underrelaxation parame-
ters for the three testcases as in Subsection 6.3.2. We will vary the number of inner iterations
for the pressure-correction using the SIP(1) method and the GCR-Schwarz method for the
case of no deflation, CD deflation and CLD deflation. Furthermore, we will vary the number
of SSI iterations. The effect for different settings on the total number of outer iterations and
the total wall-clock time is investigated. We will restrict ourselves to the treatment of the
GCR-Schwarz method for which truncation is done for one search direction, see Subsection
6.4.2. All timing results presented in this chapter were obtained on a Pentium IV 2.53 GHz
machine with 1 Gb of internal memory.

Testcase I: Pipe flow

We restrict ourselves to the case of a 4 × 4 × 4 decomposition. Experiments show that for
the other decompositions the number of outer iterations is similar using SIP(1) and the same
relaxation parameters. However, the wall-clock time is largest for the case of 64 subdomains.

Figure 6.30 shows the results for the number of outer iterations. For the case of deflation, a
significant insensitivity can be observed. For the SIP(1) and the GCR(1t) methods without
deflation this does not hold. In Figure 6.31, the corresponding wall-clock times are depicted.
We see that the GCR(1t)-Schwarz method with CLD is most expensive, followed by CD
deflation and the case of no deflation. In Figure 6.28, the outer iteration residuals are given
for the case of 10 inner iterations SIP(1), and SSI = 1. In Figure 6.29, the same is done
for the CDGCR(1t) method, taking 1 inner iteration and SSI = 1. For these settings the
SIP(1) method and the CDGCR(1t) method appear optimal. Note that less oscillations in
the residuals for the case of CD deflation can be observed.

Figure 6.32 shows the percentages time for solving the pressure correction system, of the
total wall-clock time, using the SIP(1) method and GCR(1t)-Schwarz method. It can be
observed that the percentage time increases for an increasing number of inner iterations. In
Figure 6.33, the same is done for the CDGCR(1t)-Schwarz and CLDGCR(1t)-Schwarz meth-
ods (top plots). We see that the CLDGCR-Schwarz method takes a large part of the total
solution time.

Interesting is to know the amount of work for solving the system due to the deflation methods.
This is also illustrated in Figure 6.33 (bottom plots). We observe that CLD deflation is more
expensive than CD deflation. Furthermore, a decrease in percentages for an increasing number
of inner iterations can be observed. One possible explanation for this behavior is that for less
inner iterations, the initialization of the deflation method becomes expensive.

6.5. Results for the number of outer iterations 97

0 10 20 30 40 50 60 70 80 90
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

outer iterations

re
si

du
al

10 inner iteration SIP for δp, SSI = 1

u velocity
v velocity
w velocity
pressure

Figure 6.28: The residuals of the outer iterations, taking 10 inner iterations with the SIP(1)
method for solving the pressure-correction system, and SSI = 1. Testcase I is considered for
a 4 × 4 × 4 decomposition.

0 10 20 30 40 50 60 70 80 90
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

outer iterations

re
si

du
al

1 inner iteration CDGCR(1t) for δp, SSI = 1

u velocity
v velocity
w velocity
pressure

Figure 6.29: The residuals of the outer iterations, taking 1 inner iteration with the
CDGCR(1t) method for solving the pressure-correction system, and SSI = 1. Testcase I
is considered for a 4 × 4 × 4 decomposition.

98 6. Deflated Krylov-Schwarz domain decomposition for the Navier-Stokes equations

0 10 20 30
0

50

100

150

200

250
SIP

inner iterations δp

ou
te

r
ite

ra
tio

ns

SSI = 1
SSI = 2

0 10 20 30
0

50

100

150

200

250
GCR(1t)

inner iterations δp

ou
te

r
ite

ra
tio

ns

SSI = 1
SSI = 2

0 10 20 30
0

50

100

150

200

250
CDGCR(1t)

inner iterations δp

ou
te

r
ite

ra
tio

ns

SSI = 1
SSI = 2

0 10 20 30
0

50

100

150

200

250
CLDGCR(1t)

inner iterations δp

ou
te

r
ite

ra
tio

ns

SSI = 1
SSI = 2

Figure 6.30: The number of outer iterations for different values of pressure-correction inner
iterations and SSI iterations, comparing the SIP(1), GCR(1t), CDGCR(1t) and CLDGCR(1t)
methods. Testcase I is considered for a 4 × 4 × 4 decomposition.

0 10 20 30
0

50

100

150

200

250
SIP

inner iterations δp

w
al

l−
cl

oc
k

tim
e

(s
ec

)

SSI = 1
SSI = 2

0 10 20 30
0

50

100

150

200

250
GCR(1t)

inner iterations δp

w
al

l−
cl

oc
k

tim
e

(s
ec

)

SSI = 1
SSI = 2

0 10 20 30
0

50

100

150

200

250
CDGCR(1t)

inner iterations δp

w
al

l−
cl

oc
k

tim
e

(s
ec

)

SSI = 1
SSI = 2

0 10 20 30
0

50

100

150

200

250
CLDGCR(1t)

inner iterations δp

w
al

l−
cl

oc
k

tim
e

(s
ec

)

SSI = 1
SSI = 2

Figure 6.31: The total wall-clock time for different values of pressure-correction inner iter-
ations and SSI iterations, comparing the SIP(1), GCR(1t), CDGCR(1t) and CLDGCR(1t)
methods. Testcase I is considered for a 4 × 4 × 4 decomposition.

6.5. Results for the number of outer iterations 99

0 10 20 30
0

20

40

60

80

100
SIP

inner iterations δp

%
 ti

m
e

of
 to

ta
l s

ol
ut

io
n

tim
e SSI = 1

SSI = 2

0 10 20 30
0

20

40

60

80

100
GCR(1t)

inner iterations δp

%
 ti

m
e

of
 to

ta
l s

ol
ut

io
n

tim
e SSI = 1

SSI = 2

Figure 6.32: The percentage time for solving the pressure-correction system of the total wall-
clock time, for the SIP(1) and GCR(1t) methods. Testcase I is considered for a 4 × 4 × 4
decomposition.

0 10 20 30
0

20

40

60

80

100
CDGCR(1t)

inner iterations δp

%
 ti

m
e

of
 to

ta
l s

ol
ut

io
n

tim
e SSI = 1

SSI = 2

0 10 20 30
0

20

40

60

80

100
CLDGCR(1t)

inner iterations δp

%
 ti

m
e

of
 to

ta
l s

ol
ut

io
n

tim
e SSI = 1

SSI = 2

0 10 20 30
0

20

40

60

80

100
CDGCR(1t)

inner iterations δp

%
 ti

m
e

C
D

 o
f s

ol
ut

io
n

tim
e

δp SSI = 1
SSI = 2

0 10 20 30
0

20

40

60

80

100
CLDGCR(1t)

inner iterations δp

%
 ti

m
e

C
LD

 o
f s

ol
ut

io
n

tim
e

δp SSI = 1
SSI = 2

Figure 6.33: Top: the percentage time for solving the pressure-correction system of the total
wall-clock time, for the CDGCR(1t) and CLDGCR(1t) methods. Bottom: the percentage
time for deflation of the time for solving the pressure-correction system, for the CDGCR(1t)
and CLDGCR(1t) methods. Testcase I is considered for a 4 × 4 × 4 decomposition.

100 6. Deflated Krylov-Schwarz domain decomposition for the Navier-Stokes equations

Testcase II: Buoyancy-driven cavity flow

We restrict ourselves to a 4× 4 decomposition. It can be noted that large differences in outer
iterations and wall-clock times can be observed for the three different decompositions.

In Figure 6.36, the results for the number of outer iterations are given. It can be observed
that the outer iterations are constant for the CLD case for different settings of the number of
pressure-correction iterations and SSI iterations. Hence, we observe a similar behavior as for
Testcase I. The same behavior can, more or less, be seen with CD deflation. For GCR(1t) and
SIP(1) without deflation this can not be observed. In Figure 6.37, the corresponding wall-
clock times are depicted. We conclude that the wall-clock times for CD and CLD deflation
are practically the same. In Figure 6.34, the outer iteration residuals are given for the case
of 10 inner iterations SIP(1), and SSI = 9. These are the optimal values for the SIP method.
In Figure 6.35, the same is done for the optimal values of the CLDGCR(1t) method, i.e.,
taking 1 inner iteration and SSI = 1. We observe a much better convergence behavior with
less oscillations, and a gain in wall-clock time of a factor 4.

Figure 6.38 gives the percentages time for solving the pressure correction system, of the
total wall-clock time, using the SIP(1) method and GCR(1t)-Schwarz method. In Figure
6.39, the same is done for the CDGCR(1t)-Schwarz and CLDGCR(1t)-Schwarz methods and
the percentages due to deflation are given. We conclude that the percentages of the total
wall-clock times for these methods do not differ much. The bottom plots of Figure 6.39 show
that CLD is approximately twice as expensive as CD deflation. However, this effect seems
negligible.

Testcase III: Glass tank model

Figure 6.42 shows the results for the number of outer iterations. Again, we see that the
outer iterations are insensitive to the setting of the CLDGCR(1t) iterations for solving the
pressure correction and the SSI number. In Figure 6.43, the corresponding wall-clock times
are depicted, showing that CD and CLD deflation are practically equally expensive. In Figure
6.40, the outer iteration residuals are given for the case of 20 inner iteration SIP(1), and SSI
= 1. Figure 6.41 shows the residuals for one CLDGCR(1t)-Schwarz iteration and SSI = 1.
We observe that the convergence behavior is slightly better compared to the SIP(1) method,
since a lower outer iteration termination criterion can be reached in less iterations. However,
more oscillations in the residuals for the energy can be observed.

Figure 6.44 shows the percentages time for solving the pressure correction system of the
total wall-clock time, using the SIP(1) method and GCR(1t)-Schwarz method. In Figure
6.33, the same is done for the CDGCR(1t)-Schwarz and CLDGCR(1t)-Schwarz methods and
the percentages due to deflation are given. Again, we see that the GCR-Schwarz methods are
equally expensive.

6.5. Results for the number of outer iterations 101

0 200 400 600 800 1000 1200 1400 1600
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

outer iterations

re
si

du
al

10 inner iterations SIP for δp, SSI = 9

u velocity
v velocity
pressure
energy

wall−clock time = 862 sec.

Figure 6.34: The residuals of the outer iterations, taking 10 inner iterations with the SIP(1)
method for solving the pressure-correction system, and SSI = 9. Testcase II is considered for
a 4 × 4 decomposition.

0 200 400 600 800 1000 1200 1400 1600
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

outer iterations

re
si

du
al

1 inner iteration CLDGCR(1t) for δp, SSI = 1

u velocity
v velocity
pressure
energy

wall−clock time = 206 sec.

Figure 6.35: The residuals of the outer iterations, taking 1 inner iteration with the
CLDGCR(1t) method for solving the pressure-correction system, and SSI = 1. Testcase
II is considered for a 4 × 4 decomposition.

102 6. Deflated Krylov-Schwarz domain decomposition for the Navier-Stokes equations

0 10 20 30
0

1000

2000

3000

4000

5000
SIP

inner iterations δp

ou
te

r
ite

ra
tio

ns

SSI = 5
SSI = 10

0 10 20 30
0

1000

2000

3000

4000

5000
GCR(1t)

inner iterations δp

ou
te

r
ite

ra
tio

ns

SSI = 1
SSI = 5
SSI = 10

0 10 20 30
0

1000

2000

3000

4000

5000
CDGCR(1t)

inner iterations δp

ou
te

r
ite

ra
tio

ns

SSI = 1
SSI = 5
SSI = 10

0 10 20 30
0

1000

2000

3000

4000

5000
CLDGCR(1t)

inner iterations δp

ou
te

r
ite

ra
tio

ns

SSI = 1
SSI = 5
SSI = 10

Figure 6.36: The number of outer iterations for different values of pressure-correction inner
iterations and SSI iterations, comparing the SIP(1), GCR(1t), CDGCR(1t) and CLDGCR(1t)
methods. Testcase II is considered for a 4 × 4 decomposition.

0 10 20 30
0

500

1000

1500

2000

2500

3000
SIP

inner iterations δp

w
al

l−
cl

oc
k

tim
e

(s
ec

)

SSI = 5
SSI = 10

0 10 20 30
0

500

1000

1500

2000

2500

3000
GCR(1t)

inner iterations δp

w
al

l−
cl

oc
k

tim
e

(s
ec

)

SSI = 1
SSI = 5
SSI = 10

0 10 20 30
0

500

1000

1500

2000

2500

3000
CDGCR(1t)

inner iterations δp

w
al

l−
cl

oc
k

tim
e

(s
ec

)

SSI = 1
SSI = 5
SSI = 10

0 10 20 30
0

500

1000

1500

2000

2500

3000
CLDGCR(1t)

inner iterations δp

w
al

l−
cl

oc
k

tim
e

(s
ec

)

SSI = 1
SSI = 5
SSI = 10

Figure 6.37: The total wall-clock time for different values of pressure-correction inner iter-
ations and SSI iterations, comparing the SIP(1), GCR(1t), CDGCR(1t) and CLDGCR(1t)
methods. Testcase II is considered for a 4 × 4 decomposition.

6.5. Results for the number of outer iterations 103

0 10 20 30
0

20

40

60

80

100
SIP

inner iterations δp

%
 ti

m
e

of
 to

ta
l s

ol
ut

io
n

tim
e SSI = 5

SSI = 10

0 10 20 30
0

20

40

60

80

100
GCR(1t)

inner iterations δp

%
 ti

m
e

of
 to

ta
l s

ol
ut

io
n

tim
e SSI = 1

SSI = 5
SSI = 10

Figure 6.38: The percentage time for solving the pressure-correction system of the total wall-
clock time, for the SIP(1) and the GCR(1t) method. Testcase II is considered for a 4 × 4
decomposition.

0 10 20 30
0

20

40

60

80

100
CDGCR(1t)

inner iterations δp

%
 ti

m
e

of
 to

ta
l s

ol
ut

io
n

tim
e SSI = 1

SSI = 5
SSI = 10

0 10 20 30
0

20

40

60

80

100
CLDGCR(1t)

inner iterations δp

%
 ti

m
e

of
 to

ta
l s

ol
ut

io
n

tim
e SSI = 1

SSI = 5
SSI = 10

0 10 20 30
0

20

40

60

80

100

inner iterations δp

%
 ti

m
e

C
D

 o
f s

ol
ut

io
n

tim
e

δp SSI = 1
SSI = 5
SSI = 10

0 10 20 30
0

20

40

60

80

100

inner iterations δp

%
 ti

m
e

C
LD

 o
f s

ol
ut

io
n

tim
e

δp SSI = 1
SSI = 5
SSI = 10

Figure 6.39: Top: the percentage time for solving the pressure-correction system of the total
wall-clock time, for the CDGCR(1t) and CLDGCR(1t) methods. Bottom: the percentage
time for deflation of the time for solving the pressure-correction system, for the CDGCR(1t)
and CLDGCR(1t) methods. Testcase II is considered for a 4 × 4 decomposition.

104 6. Deflated Krylov-Schwarz domain decomposition for the Navier-Stokes equations

0 50 100 150 200 250

10
−8

10
−6

10
−4

10
−2

10
0

10
2

outer iterations

re
si

du
al

20 inner iterations SIP for δp, SSI = 1

u velocity
v velocity
w velocity
pressure
energy

wall−clock time = 453 sec.

Figure 6.40: The residuals for the outer iterations, taking 10 inner iterations with the SIP(1)
method for solving the pressure-correction system, and SSI = 1. Testcase III is considered.

0 50 100 150 200 250

10
−8

10
−6

10
−4

10
−2

10
0

10
2

outer iterations

re
si

du
al

1 inner iteration CLDGCR(1t) for δp, SSI = 1

u velocity
v velocity
w velocity
pressure
energy

wall−clock time = 446 sec.

Figure 6.41: The residuals of the outer iterations, taking 1 inner iteration with the
CLDGCR(1t) method for solving the pressure-correction system, and SSI = 1. Testcase
III is considered.

6.5. Results for the number of outer iterations 105

0 10 20 30
0

200

400

600

800
SIP

inner iterations δp

ou
te

r
ite

ra
tio

ns

SSI = 1
SSI = 5
SSI = 10

0 10 20 30
0

200

400

600

800
GCR(1t)

inner iterations δp

ou
te

r
ite

ra
tio

ns

SSI = 1
SSI = 5
SSI = 10

0 10 20 30
0

200

400

600

800
CDGCR(1t)

inner iterations δp

ou
te

r
ite

ra
tio

ns

SSI = 1
SSI = 5
SSI = 10

0 10 20 30
0

200

400

600

800
CLDGCR(1t)

inner iterations δp

ou
te

r
ite

ra
tio

ns

SSI = 1
SSI = 5
SSI = 10

Figure 6.42: The number of outer iterations for different values of pressure-correction inner
iterations and SSI iterations, comparing the SIP(1), GCR(1t), CDGCR(1t) and CLDGCR(1t)
methods. Testcase III is considered.

0 10 20 30
0

500

1000

1500

2000

2500

3000
SIP

inner iterations δp

w
al

l−
cl

oc
k

tim
e

(s
ec

)

SSI = 1
SSI = 5
SSI = 10

0 10 20 30
0

500

1000

1500

2000

2500

3000
GCR(1t)

inner iterations δp

w
al

l−
cl

oc
k

tim
e

(s
ec

)

SSI = 1
SSI = 5
SSI = 10

0 10 20 30
0

500

1000

1500

2000

2500

3000
CDGCR(1t)

inner iterations δp

w
al

l−
cl

oc
k

tim
e

(s
ec

)

SSI = 1
SSI = 5
SSI = 10

0 10 20 30
0

500

1000

1500

2000

2500

3000
CLDGCR(1t)

inner iterations δp

w
al

l−
cl

oc
k

tim
e

(s
ec

)

SSI = 1
SSI = 5
SSI = 10

Figure 6.43: The wall-clock time for different values of pressure-correction inner iterations
and SSI iterations, comparing the SIP(1), GCR(1t), CDGCR(1t) and CLDGCR(1t) methods.
Testcase III is considered.

106 6. Deflated Krylov-Schwarz domain decomposition for the Navier-Stokes equations

0 10 20 30
0

20

40

60

80

100
SIP

inner iterations δp

%
 ti

m
e

of
 to

ta
l s

ol
ut

io
n

tim
e SSI = 1

SSI = 5
SSI = 10

0 10 20 30
0

20

40

60

80

100
GCR(1t)

inner iterations δp

%
 ti

m
e

of
 to

ta
l s

ol
ut

io
n

tim
e SSI = 1

SSI = 5
SSI = 10

Figure 6.44: The percentage time for solving the pressure-correction system of the total wall-
clock time, for the SIP(1) and the GCR(1t) methods. Testcase III is considered.

0 10 20 30
0

20

40

60

80

100
CDGCR(1t)

inner iterations δp

%
 ti

m
e

of
 to

ta
l s

ol
ut

io
n

tim
e SSI = 1

SSI = 5
SSI = 10

0 10 20 30
0

20

40

60

80

100
CLDGCR(1t)

inner iterations δp

%
 ti

m
e

of
 to

ta
l s

ol
ut

io
n

tim
e SSI = 1

SSI = 5
SSI = 10

0 10 20 30
0

20

40

60

80

100

inner iterations δp

%
 ti

m
e

C
D

 o
f s

ol
ut

io
n

tim
e

δp SSI = 1
SSI = 5
SSI = 10

0 10 20 30
0

20

40

60

80

100

inner iterations δp

%
 ti

m
e

C
LD

 o
f s

ol
ut

io
n

tim
e

δp SSI = 1
SSI = 5
SSI = 10

Figure 6.45: Top: the percentage time for solving the pressure-correction system of the total
wall-clock time, for the CDGCR(1t) and CLDGCR(1t) methods. Bottom: the percentage
time for deflation of the time for solving the pressure-correction system, for the CDGCR(1t)
and the CLDGCR(1t) methods. Testcase III is considered.

7

Conclusions and recommendations

7.1 Conclusions

In this thesis, Deflated Krylov subspace methods were discussed. These methods can be used
to accelerate additive Schwarz domain decomposition (DD) methods.

To gain insight into these techniques, these methods were applied to solve the Poisson
equation with homogeneous Dirichlet boundary conditions (BCs) as well as homogeneous
Neumann BCs. The MATLAB package was used for 1D and 2D numerical experiments. Two
Krylov-Schwarz methods were implemented in MATLAB: the GCR-Schwarz and CG-Schwarz
method. These methods were compared to the unaccelerated Schwarz method. Both the
Krylov-Schwarz methods as the unaccelerated Schwarz method were combined with deflation.
Next to constant deflation (CD), also a combination of constant with linear deflation vectors
(CLD) was considered. The following conclusions can be drawn from these experiments for
the Dirichlet problem:

1. The condition number for CLD deflation is better than the condition number for CD
deflation.

2. From all experiments we conclude that CG-Schwarz and GCR-Schwarz perform similar.
Concerning convergence rate, all the methods perform best with CLD deflation, fol-
lowed by CD deflation. Concerning wall-clock times, the CLD method is more efficient
for a large number of grid cells, than a small number of grid cells, per subdomain. Fur-
thermore, it is noticeable that the unaccelerated Schwarz method improves significantly
concerning convergence behavior and wall-clock time when this method is combined
with deflation. For a fixed problem size, scalability is obtained for the Krylov-Schwarz
methods combined with CD and CLD deflation. There seems to be an optimal de-
composition for the case of CD and CLD deflation such that the wall-clock time is
minimal.

3. One observation is that choosing an old search direction in the Krylov-Schwarz methods
as a starting vector for the subdomain problems, results in less good convergence be-
havior. Another observation was made that a splitting could be found for the 1D case
for CLD deflation, which gives us a bound for the spectrum of the deflation system.
This seems to hold for both the unpreconditioned as the preconditioned case.

For the Neumann problem the same conclusions can be made as in conclusion 2. Fur-
thermore, the following conclusions can be drawn from the experiments for the Neumann
problem:

108 7. Conclusions and recommendations

4. Sensitivity analysis shows that two options can be used to overcome the singularity in
the deflation method due to the Neumann BCs: removing a constant deflation vector
or adjusting one element in the constant deflation vector. The convergence behavior for
the solution methods is similar for both options, when the second option is applied by
making one element significantly larger or smaller compared to the other elements.

5. It can be observed that the unaccelerated Schwarz method behaves strangely regarding
the accuracy of the subdomain solutions. When the solutions become too accurate,
the convergence rate of this method decreases. Furthermore, it was observed that the
splitting for the CD case can be used conform the Dirichlet problem. This seems to
hold for both the unpreconditioned as for the preconditioned case.

For a comparison to the 2D case the 3D Poisson equation with homogeneous Dirichlet
BCs was considered in X-stream. Both the GCR-Schwarz and CG-Schwarz methods were
implemented in X-stream. Compared to the MATLAB experiments 1 iteration of the SIP
method was used to solve the subdomain problems inaccurately, instead of a constant number
of iterations of a basic iterative method with an standard ILU preconditioning. CD deflation
and CLD deflation were combined with the Krylov-Schwarz methods. The following can be
concluded:

6. Concerning convergence, it can be concluded that the unaccelerated Schwarz method
performs disappointingly. The Krylov-Schwarz methods perform conform MATLAB
experiments. Concerning wall-clock times, the Krylov-Schwarz methods with CLD de-
flation are considerably more expensive than with CD deflation.

Next to these numerical experiments to gain insight into Deflated Krylov-Schwarz meth-
ods, these techniques were used to accelerate the domain decomposition for solving the
pressure-correction system in X-stream. Both the GCR-Schwarz and CG-Schwarz methods
were implemented. These methods were compared to the three unaccelerated Schwarz meth-
ods, using 1 iteration of the SIP method, the SPTDMA method and the CG method to solve
the subdomain problems. For the Krylov-Schwarz methods, one SIP iteration is used. Only
the Krylov-Schwarz methods were combined with CD deflation and CLD deflation. The effect
of restarting and truncation was investigated for the GCR-Schwarz methods. The following
conclusions can be made:

7. The pressure-correction system in X-stream appears to be singular, having one zero
eigenvalue and an eigenvector containing all 1’s. Also, the pressure-correction seems
consistent. It is not clear whether the matrix is symmetric or not.

8. Two methods can be used succesfully such that the deflation method can be applied
to the singular pressure-correction system: removing one constant deflation vector or
adjusting one element of the constant deflation vector. The second method appears to
be the safest method for the 3D case.

9. Concerning convergence behavior, it can be concluded that the convergence behavior of
the unaccelerated Schwarz methods is disappointing. The GCR-Schwarz method with
deflation has the best convergence properties. Furthermore, the CG-Schwarz method
performs less good compared to the GCR-Schwarz method. For the GCR-Schwarz
method, it seems to be sufficient to truncate only for one search direction. Scalability

7.2. Recommendations 109

for CD and CLD deflation was shown for both Krylov-Schwarz methods. Concern-
ing wall-clock times, we can conclude that the Krylov-Schwarz methods with deflation
are in general more efficient than without deflation. Furthermore, the Krylov-Schwarz
methods are competitive compared to the unaccelerated Schwarz method.

10. When an old search direction is chosen as a starting vector for the subdomain problems,
this results in unfavorable convergence behavior compared to taking the zero starting
vector. This is conform the MATLAB experiments. Furthermore, we observe that CLD
deflation can result in a significantly large jump in the residual in the first iteration.

Since the GCR-Schwarz method with only one truncation vector has the best performance
among the Krylov-Schwarz methods, this method is used to investigate the influence of solving
the pressure-correction system on the total number of ‘SIMPLE iterations’ (outer iterations)
and total wall-clock time. The effect of CD deflation and CLD deflation is investigated, and
the results are compared to the default solution in X-stream, i.e., the unaccelerated Schwarz
method using 1 SIP iteration. Next to the number of Schwarz iterations (inner iterations),
the number of SSI iterations is varied. The following can be concluded on the number of
outer iterations and the total wall-clock time:

11. The number of outer iterations, for the GCR-Schwarz method with CLD deflation, is
insensitive to the number of inner iterations, using CLD deflation, and the number of
SSI iterations. For CD deflation a comparable effect is observed, although the method is
somewhat more sensitive. Less oscillations were observed in the outer iteration residuals
with deflation. For the GCR-Schwarz method without deflation and the unaccelerated
Schwarz method this behavior does not occur. Therefore, we conclude that CLD de-
flation and CD deflation have a stabilizing effect on the outer iteration convergence
behavior.

12. It was shown that a large number of outer iterations and wall-clock time can be gained
by solving the pressure-correction system with a Deflated Krylov-Schwarz method.

From all the conclusions made in this section, it becomes clear that the Deflated GCR-
Schwarz method is superior concerning convergence behavior and is competitive concerning
wall-clock times.

7.2 Recommendations

The following recommendations can be made:

1. Concerning parallelization, first the deflation routines have to be tested with the MPI
routine. Then the performance of the GCR-Schwarz and CG-Schwarz methods with
deflation need to be tested in parallel. Furthermore, the RCGS orthonormalization can
be implemented, which requires less global communication between processors.

2. Deflation could be applied to the energy equation as well, which is elliptic for some
cases.

3. The deflation methods could be tested for non-orthogonal grids. When necessary, the
deflation vectors could be constructed such that they follow the Cartesian components.

110 7. Conclusions and recommendations

4. The GCR-SIMPLE method, which is implemented for the largest part, could be finished.

5. The additive Schwarz method in X-stream could be implemented in a slightly different
way, which seems more convenient for inaccurate solution of the subdomain problems.

6. Research could be done on proving the splitting for CLD for the Dirichlet problem, and
the splitting for CD for the Neumann problem. Generalization to higher order deflation
vectors could be considered. Also the jump in the residual for the first iteration is left
for further research.

A

PWI method

A.1 Derivation of the PWI method

In this section, the PWI method given by Equation (2.23) is derived. The basic idea of PWI
is to approximate the cell face velocity components by a central discretization and adding
and subtracting an extra term involving the pressure,

uα
j+eα

≈ 1

2
(uα

j + uα
j+2eα

) + (
h1h2

aα
p,α)j+eα

− (
h1h2

aα
p,α)j+eα

.

The second and third term in the above equation are approximated differently. The second
term is approximated by

(
h1h2

aα
p,α)j+eα

≈ 1
2 [(
h1h2

aα
p,α)j+2eα

+ (
h1h2

aα
p,α)j] ,

= 1
2 [(
h1h2

aα
)j+2eα

(p,α)j+2eα
+ (

h1h2

aα
)j (p,α)j] ,

= 1
2 [(
h1h2

aα
)j+2eα

pj+4eα
− pj

2hα
+ (

h1h2

aα
)j
pj+2eα

− pj−2eα

2hα
] ,

= 1
2 [(

hβ

2aα
)j+2eα

(pj+4eα
− pj) + (

hβ

2aα
)j (pj+2eα

− pj−2eα
)] ,

(A.1)

and the third term by

(
h1h2

aα
p,α)j+eα

≈ (
h1h2

aα
)j+eα

(p,α)j+eα
,

= 1
2 [(
h1h2

aα
)j+2eα

+ (
h1h2

aα
)j]
pj+2eα

− pj
hα

,

= 1
2 [(

hβ

2aα
)j+2eα

(2pj+2eα
− 2pj) + (

hβ

2aα
)j (2pj+2eα

− 2pj)] .

(A.2)

Subtracting expression (A.2) from (A.1) results in

1
2 [(

hβ

2aα
)j+2eα

(pj+4eα
− 2pj+2eα

+ pj) + (
hβ

2aα
)j (−pj+2eα

− pj−2eα
+ 2pj)]

= (
hβ

4aα
∆αp)|j+2eα

j ,

and by this Equation (2.23) is derived.

112 A. PWI method

A.2 Discretization of the continuity equation with the PWI

method

In this section, the discretised coninuity equation with the PWI method given by Equation
(2.24) is derived. Writing out Equation (2.21) yields

h2(u
1
j+e1

− u1
j−e1

) + h1(u
2
j+e2

− u2
j−e2

) = 0 . (A.3)

Approximation of the first term with the PWI method (2.23) gives

h2(u
1
j+e1

− u1
j−e1

) = h2([
1
2(u1

j + u1
j+2e1

) + (
h2

4a1
∆1p)|j+2e1

j]

−[12(u1
j−2e1

+ u1
j) + (

h2

4a1
∆1p)|jj−2e1

]

= 1
2h2u

1|j+2e1

j−2e1

+h2
2[(

1

4a1
∆1p)j+2e1

− (
1

2a1
∆1p)j + (

1

4a1
∆1p)j−2e1

] ,

(A.4)

and the second term in Equation (A.3) can analogous be written as

h1(u
2
j+e2

−u2
j−e2

) =
1

2
h1u

2|j+2e2

j−2e2
+h2

1[(
1

4a2
∆2p)j+2e2

− (
1

2a2
∆2p)j +(

1

4a2
∆2p)j−2e2

] . (A.5)

Substitution of (A.4) and (A.5) in Equation (A.3) results in

1
2h2u

1|j+2e1

j−2e1
+ 1

2h1u
2|j+2e2

j−2e2

+ h2
2[(

1

4a1
∆1p)j+2e1

− (
1

2a1
∆1p)j + (

1

4a1
∆1p)j−2e1

]

+ h2
1[(

1

4a2
∆2p)j+2e2

− (
1

2a2
∆2p)j + (

1

4a2
∆2p)j−2e2

] = 0 .

When this equation is multiplied by a factor 2, this results in (2.24).

B

RCGS algorithm and LU factorization algorithms

Algorithm B.1 (RCGS). Given the vectors s(k) and v(k), the sets {s(1), . . . , s(k−1)} and
{v(1), . . . ,v(k−1)}, this algorithm computes an orthonormal basis for {s(1), . . . , s(k)}, preserv-
ing the relation As(k) = v(k).

for m = 1, 2 do

β = (v(k),v(k));
for i = 1, . . . , k − 1 do

αi = (v,v(j));
end for

β := (β − ∑k−1
i=1 α

2
i)

1

2 ;

v(k) := β−1(v − ∑k−1
i=1 αiv

(i));

s(k) := β−1(s − ∑k−1
i=1 αis

(i));
end for

v(k) := v(k)/‖v(k)‖2;

s(k) := s(k)/‖s(k)‖2;

Algorithm B.2 (LU decomposition). Given an n×n matrix A, and the n×n matrices L
and U , containing only zero coefficients. Then this algorithm computes an LU factorization
of A.

for k = 1, . . . , n− 1 do
for i = k + 1, . . . , n do

L(i, k) = A(i, k)/A(k, k);
end for
for j = k + 1, . . . , n do

for i = k + 1, . . . , n do
U(i, j) = A(i, j) − L(i, k)A(k, j);

end for
end for
L(k, k) = 1;

end for
L(n, n) = 1;

Algorithm B.3 (Forward-substitution). Given an n × n matrix L which is unit lower
triangular, and a vector b. Then this algorithm solves the system Ly = b.

for i = 1, . . . , n do

114 B. RCGS algorithm and LU factorization algorithms

for j = 1, . . . , i− 1 do
y(i) = b(i) − L(i, j)y(j);

end for
end for

Algorithm B.4 (Back-substitution). Given an n×n matrix U , which is upper triangular,
and a vector b. Then this algorithm solves the system Uy = b.

for i = n, . . . , 1 do
for j = i+ 1, . . . , n do

y(i) = ({b(i) − U(i, j)y(j)}/U(i, i);
end for

end for

C

GCR-SIMPLE method on a colocated grid

The GCR-SIMPLE method for a colocated grid arrangement can be obtained in a similar
way as for the staggered case, see Vuik & Saghir [31].

In this paper, a diagonal scaling of the system (3.29) is considered, mainly because the
Dirichlet BCs for the velocities were implemented in a rather untidy way. A condition uP = gP
in a point P was imposed by adding a large real number cmax to the main diagonal entry of
the coefficient matrix, and adding cmaxgP to the RHS vector. This had a negative effect on
the solvers used to solve the systems in the GCR-SIMPLE method. With a diagonal scaling,
much better results were observed, also due to the fact that diagonal scaling leads to a better
behavior with respect to rounding errors.

With diagonal scaling, the postconditioned system (3.35) is replaced by

D−1
ABABŷ = D−1

ABb , y = Bŷ , (C.1)

where D−1
AB ≡ diag(AB)−1. With the splitting D−1

ABAB = D−1
ABM −D−1

ABN , applying right-
preconditioning to this system results in:

(D−1
ABA)(D−1

ABMB−1)−1ȳ = D−1
ABb , y = (D−1

ABMB−1)−1ȳ . (C.2)

This system is of the form (3.20), and therefore, the GCR-SIMPLE algorithm with scaling is
obtained by taking A ≡ D−1

ABA, b ≡ D−1
ABb, and M ≡ D−1

ABMB−1 in Algorithm (3.1), which
results into the following algorithm.

Algorithm C.1 (GCR-SIMPLE method with diagonal scaling). Let the matrix A be
given by (3.34), and the vector b as in (3.5), and let B and M be given by (3.33). Let y(0)

be an initial solution, such that Ay(0) ≈ b. Then this algorithms solves Ay = b.

r(0) = D−1
AB(b −Ay(0));

for k = 1, . . . , ngcrsimple do

Solve D−1
ABMq = r(k−1);

s(k) = Bq;

v(k) = D−1
ABAs(k);

Orthonormalize s(k) and v(k) by, for example, MGS (Algorithm 3.2);

β = (r(k−1),v(k));

y(k) = y(k−1) + βs(k);

r(k) = r(k−1) − βv(k);
end for

y ≈ y(k);

116 C. GCR-SIMPLE method on a colocated grid

In this algorithm q is an auxiliary variable. Diagonal scaling for the colocated case is not
so obvious, as we will illustrate now. Consider

AB =

Q1 0 G1 −Q1D
−1
1 G1

0 Q2 G2 −Q2D
−1
2 G2

GT
1 GT

2 R̂

 ,

where R̂ = R in the staggered case and R̂ = R + C in the colocated case, with R given by
R = −∑2

i=1G
T
i D

−1
i Gi. Since D1 = diag(Q1) and D2 = diag(Q2) in the SIMPLE method,

and we therefore should take

DAB =

D1 0 0
0 D2 0
0 0 D3

 ,

with D3 ≡ diag(R) for the staggered case and D3 ≡ diag(C +R) for the colocated case. The
problem for the colocated grid is that the matrix C is not explicitly available. Therefore,
one could choose DAB = diag(R), just like in the staggered case. However, when ‖C‖ is not
negligible compared to ‖R‖, it is not known what effect this shall have on the performance
of the GCR-SIMPLE algorithm.

The following algorithm is a detailed version of Algorithm C.1. The matrices denoted by
are the contributions to the diagonal scaling. Removing those matrices, results in the

GCR-SIMPLE algorithm without diagonal scaling.

Algorithm C.2 (GCR-SIMPLE method with diagonal scaling (detailed)). Let the
matrix A be given by (3.34), and the vector b as in (3.29), and let Qi and R and Di be given
as in (3.33). Let y(0) be an initial solution, such that Ay(0) ≈ b. Then this algorithm solves
Ay = b.

r
(0)
i = D−1

i (bi −Gip
(0) −Qiu

(0)
i), i = 1, . . . , d;

r
(0)
d+1 = D−1

d+1 (bd+1 −
∑d

i=1G
T
i u

(0)
i − Cp(0));

for k = 1, . . . , ngcrsimple do

Solve D−1
i Qiqi = r

(k−1)
i , i = 1, . . . , d;

Solve D−1
d+1 Rqd+1 = r

(k−1)
d+1 − D−1

d+1

∑d
i=1G

T
i qi;

s
(k)
i = qi −D−1

i Giqd+1, i = 1, . . . , d;

s
(k)
d+1 = qd+1;

v
(k)
i = D−1

i (Qis
(k)
i +Gis

(k)
d+1), i = 1, . . . , d;

v
(k)
d+1 = D−1

d+1 (
∑d

i=1G
T
i s

(k)
i + Cs

(k)
d+1);

Orthonormalize s(k) and v(k) by, for example, MGS (Algorithm 3.2);

β = (r(k−1),v(k));

y(k) = y(k−1) + βs(k);

r(k) = r(k−1) − βv(k);
end for

y ≈ y(k);

It is shown in Vuik & Saghir [31] that taking only a small number of GCR-SIMPLE steps is
sufficient, and reduces the amount of work and storage introduced by the orthonormalization

117

method. In this paper, it is also stated that for good performance of the GCR-SIMPLE(R)
method a pressure BC should be chosen at an outlet.

During the Master’s project, the largest part of the implementation of the GCR-SIMPLE
method in the X-stream code is done. For making a new method to work, it is always
advisable to start with an elementary problem. A suitable setup is given by Testcase I (see
Subsection 6.3.1), with the unit cube divided into a small number of cells (e.g. 2 cells in
each dimension). For this testcase, it turns out that the pressure is smooth enough and no
PWI is necessary to obtain a correct checkerboard-free solution. A problem to overcome in
the X-stream code seems to be the treatment of the pressure. Since the code is based on the
SIMPLE method, pressure correction is used for correcting boundary velocities and fluxes.
However, the GCR-SIMPLE method does not explicitly provide pressure correction as the
SIMPLE method.

118 C. GCR-SIMPLE method on a colocated grid

D

Figures and tables numerical experiments

D.1 Figures

0 10 20 30 40 50 60 70 80

1

2

3

4

5

6

7

index of eigenvalue

va
lu

e
of

 e
ig

en
va

lu
e

eigenvalues of A
eigenvalues of P

CD
A

eigenvalues of P
CLD

A

Figure D.1: Eigenvalue spectra for the case of no deflation, CD deflation, and CLD defla-
tion. The Dirichlet problem is considered for a 9 × 9 grid and 3 × 3 subdomains, and the
unpreconditioned case is considered.

120 D. Figures and tables numerical experiments

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

index of eigenvalue

va
lu

e
of

 e
ig

en
va

lu
e

eigenvalues of A
eigenvalues of P

3CD
A

eigenvalues of P
CLD

A

Figure D.2: Eigenvalue spectra for the case of no deflation, CLD deflation, and 3CD defla-
tion. The Dirichlet problem is considered for a 9 × 9 grid and 3 × 3 subdomains, and the
unpreconditioned case is considered.

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

index of eigenvalue

va
lu

e
of

 e
ig

en
va

lu
e

eigenvalues of M
jac
−1A

eigenvalues of M
jac
−1P

CLD
A

eigenvalues of M
jac
−1M

Figure D.3: Eigenvalue spectra for the splitting for the case of CLD deflation. The 1D
Dirichlet problem is considered for 4 subdomains and 10 grid cells per subdomain, and the
preconditioned case is considered.

D.1. Figures 121

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

index of eigenvalue

va
lu

e
of

 e
ig

en
va

lu
e

eigenvalues of A
eigenvalues of P

CD
A

eigenvalues of P
CLD

A

Figure D.4: Eigenvalue spectra for the case of no deflation, CD deflation, and CLD defla-
tion. The Neumann problem is considered for a 9 × 9 grid and 3 × 3 subdomains, and the
unpreconditioned case is considered.

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

index of eigenvalue

va
lu

e
of

 e
ig

en
va

lu
e

eigenvalues of M
jac
−1A

eigenvalues of M
jac
−1P

CD
A

eigenvalues of M
jac
−1M

Figure D.5: Eigenvalue spectra for the same splitting used for the Dirichlet case, but now for
the Neumann case. The preconditioned case is considered.

122 D. Figures and tables numerical experiments

D.2 Tables

D.2. Tables 123

Method S.d. iter. 2 × 2 3 × 3 4 × 4 5 × 5

GCR 15 30 (285.06) 36 (239.36) 42 (237.66) 47 (254.86)

CG 15 32 (309.39) 37 (248.27) 44 (248.65) 48 (259.14)

ILU 15 – (–.–) – (–.–) – (–.–) – (–.–)

CDGCR 15 28 (269.85) 28 (189.93) 27 (157.31) 25 (141.88)

CDCG 15 28 (275.94) 30 (206.79) 28 (166.15) 26 (150.55)

CDILU 15 182 (1648.10) 163 (1063.08) 110 (619.12) 98 (532.94)

CLDGCR 15 23 (227.07) 22 (157.25) 21 (135.33) 20 (136.22)

CLDCG 15 23 (234.20) 23 (168.13) 22 (144.78) 19 (134.62)

CLDILU 15 83 (764.34) 72 (485.27) 64 (381.07) 54 (326.76)

GCR 5 32 (206.80) 38 (138.14) 43 (113.15) 49 (116.33)

CG 5 33 (215.97) 43 (154.01) 45 (114.84) 49 (111.06)

ILU 5 – (–.–) – (–.–) – (–.–) – (–.–)

CDGCR 5 29 (190.53) 31 (116.34) 28 (77.99) 25 (65.47)

CDCG 5 30 (199.82) 32 (120.45) 28 (77.89) 25 (65.53)

CDILU 5 236 (1417.90) 180 (630.54) 127 (326.92) 101 (238.76)

CLDGCR 5 24 (163.51) 22 (90.41) 21 (71.46) 20 (75.09)

CLDCG 5 24 (167.58) 23 (95.79) 22 (75.14) 20 (76.02)

CLDILU 5 108 (660.76) 85 (313.95) 72 (207.24) 47 (143.57)

GCR 2 41 (225.91) 46 (125.89) 50 (86.45) 52 (76.01)

GCR(5t) 2 59 (305.44) 59 (234.92) 64 (101.78) 71 (94.31)

GCR(5r) 2 113 (578.80) 84 (223.33) 121 (190.71) 110 (145.17)

CG 2 44 (241.12) 46 (121.88) 52 (83.44) 54 (71.35)

ILU 2 – (–.–) – (–.–) – (–.–) – (–.–)

CDGCR 2 34 (190.42) 32 (90.51) 30 (55.80) 27 (45.26)

CDGCR(5t) 2 41 (217.23) 36 (100.68) 30 (53.66) 27 (44.00)

CDGCR(5r) 2 75 (389.21) 46 (126.99) 36 (63.27) 33 (52.01)

CDCG 2 38 (212.62) 36 (99.96) 31 (56.02) 27 (44.49)

CDILU 2 – (–.–) 205 (544.81) 149 (242.93) 126 (178.29)

CLDGCR 2 26 (151.87) 24 (75.68) 22 (54.05) 21 (58.27)

CLDGCR(5t) 2 28 (155.99) 26 (81.02) 22 (53.17) 21 (57.67)

CLDGCR(5r) 2 34 (186.25) 31 (94.25) 27 (61.79) 23 (60.80)

CLDCG 2 28 (165.17) 25 (78.98) 23 (55.80) 21 (58.06)

CLDILU 2 136 (704.42) 75 (210.80) 77 (148.41) 50 (103.65)

Table D.1: Iterative solution methods compared for a fixed problem size of a 60× 60 grid, for
the Dirichlet problem. Four decompositions are considered and the subdomain solutions are
obtained by 15, 5, and 2 iterations with a ILU BIM. Iterations are given and wall-clock times
are in parentheses (sec.) A ‘–’ denotes that the method did no convergence in less than 250
iterations.

124 D. Figures and tables numerical experiments

Method S.d. iter. 2 × 2 3 × 3 4 × 4 5 × 5

GCR 15 33 (314.50) 42 (280.83) 48 (272.98) 53 (290.07)

CG 15 35 (338.17) 42 (282.37) 49 (276.93) 54 (291.38)

ILU 15 (–.–) (–.–) (–.–) (–.)

CDGCR 15 28 (269.36) 31 (209.87) 29 (168.62) 26 (147.25)

CDCG 15 29 (284.79) 32 (220.58) 29 (171.15) 27 (155.72)

CDILU 15 161 (1481.13) 151 (975.31) 118 (654.66) 102 (546.35)

CLDGCR 15 23 (226.96) 23 (163.46) 21 (134.73) 20 (136.77)

CLDCG 15 22 (224.87) 22 (161.97) 21 (138.75) 19 (134.46)

CLDILU 15 84 (783.78) 57 (381.29) 69 (402.44) 49 (294.02)

GCR 5 41 (264.85) 46 (168.40) 50 (132.98) 56 (134.35)

CG 5 42 (271.88) 54 (193.33) 54 (137.48) 56 (126.82)

ILU 5 (–.–) (–.–) (–.–) (–.)

CDGCR 5 34 (222.23) 34 (127.10) 30 (83.05) 26 (67.83)

CDCG 5 37 (243.10) 34 (127.70) 30 (82.72) 27 (70.14)

CDILU 5 212 (1312.72) 183 (634.11) 125 (316.42) 104 (242.00)

CLDGCR 5 26 (175.88) 23 (93.71) 21 (70.63) 20 (74.75)

CLDCG 5 25 (173.57) 23 (95.79) 21 (71.68) 21 (78.22)

CLDILU 5 118 (741.61) 69 (252.11) 65 (184.49) 58 (168.01)

GCR 2 57 (314.72) 56 (154.61) 62 (109.19) 62 (92.44)

GCR(5t) 2 70 (375.03) 82 (222.88) 89 (139.01) 90 (117.43)

GCR(5r) 2 124 (659.27) 125 (334.06) 141 (219.70) 202 (261.72)

CG 2 66 (356.96) 68 (178.01) 72 (114.52) 76 (99.80)

ILU 2 – (–.–) – (–.–) – (–.–) – (–.)

CDGCR 2 43 (239.42) 35 (98.87) 32 (58.56) 28 (46.63)

CDGCR(5t) 2 46 (251.11) 37 (101.17) 32 (55.97) 28 (44.49)

CDGCR(5r) 2 66 (355.81) 51 (137.37) 42 (71.62) 36 (55.15)

CDCG 2 47 (259.91) 39 (108.92) 34 (60.26) 29 (46.69)

CDILU 2 – (–.–) 231 (604.01) 148 (238.32) 125 (174.67)

CLDGCR 2 30 (173.24) 25 (77.89) 23 (54.82) 20 (56.02)

CLDGCR(5t) 2 34 (192.68) 26 (79.04) 23 (53.39) 20 (55.03)

CLDGCR(5r) 2 45 (250.63) 33 (97.38) 27 (60.36) 23 (59.71)

CLDCG 2 31 (180.71) 27 (83.76) 24 (56.30) 21 (56.02)

CLDILU 2 191 (1019.58) 111 (300.44) 60 (116.17) 59 (116.11)

Table D.2: Iterative solution methods compared for a fixed problem size of a 60× 60 grid, for
the Neumann problem. Four decompositions are considered and the subdomain solutions are
obtained by 15, 5, and 2 iterations with a ILU BIM. Iterations are given and wall-clock times
are in parentheses (sec.). A ‘–’ in the table denotes that the method did no convergence in
less than 250 iterations.

E

Figures and tables results in X-stream

E.1 Figures

0.2 0.4 0.6 0.8
0

500

1000

1500

2000

2500

3000

α
p

w
al

l−
cl

oc
k

tim
e

(s
ec

)

αρ = 0.9; α
e
 = 1.0

α
u
 = 0.3

α
u
 = 0.5

α
u
 = 0.7

0.2 0.4 0.6 0.8
0

500

1000

1500

2000

2500

3000

α
p

w
al

l−
cl

oc
k

tim
e

(s
ec

)

αρ = 0.9; α
e
 = 0.9

α
u
 = 0.3

α
u
 = 0.5

α
u
 = 0.7

0.2 0.4 0.6 0.8
0

500

1000

1500

2000

2500

3000

α
p

w
al

l−
cl

oc
k

tim
e

(s
ec

)

αρ = 1.0; α
e
 = 1.0

α
u
 = 0.3

α
u
 = 0.5

α
u
 = 0.7

0.2 0.4 0.6 0.8
0

500

1000

1500

2000

2500

3000

α
p

w
al

l−
cl

oc
k

tim
e

(s
ec

)

αρ = 1.0; α
e
 = 0.9

α
u
 = 0.3

α
u
 = 0.5

α
u
 = 0.7

Figure E.1: The influence of parameter variation on the wall-clock times. Testcase II is
considered for a 4 × 4 decompositon.

126 E. Figures and tables results in X-stream

0.2 0.4 0.6 0.8
0

500

1000

1500

2000

2500

α
p

w
al

l−
cl

oc
k

tim
e

(s
ec

)

αµ = 0.1; αρ = 0.1; α
e
 = 1.0

α
u
 = 0.3

α
u
 = 0.5

α
u
 = 0.7

0.2 0.4 0.6 0.8
0

500

1000

1500

2000

2500

α
p

w
al

l−
cl

oc
k

tim
e

(s
ec

)

αµ = 0.2; αρ = 0.2; α
e
 = 1.0

α
u
 = 0.3

α
u
 = 0.5

0.2 0.4 0.6 0.8
0

500

1000

1500

2000

2500

α
p

w
al

l−
cl

oc
k

tim
e

(s
ec

)

αµ = 0.1; αρ = 0.2; α
e
 = 1.0

α
u
 = 0.3

α
u
 = 0.5

0.2 0.4 0.6 0.8
0

500

1000

1500

2000

2500

α
p

w
al

l−
cl

oc
k

tim
e

(s
ec

)

αµ = 0.2; αρ = 0.1; α
e
 = 1.0

α
u
 = 0.3

α
u
 = 0.5

α
u
 = 0.7

Figure E.2: The influence of parameter variation on the wall-clock times. Testcase III is
considered.

0 5 10 15 20 25 30

10
−5

10
0

iteration number

||b
−

A
y(k

) || 2/|b
|| 2

GCR
GCR(1t)
GCR(1r)

0 5 10 15 20 25 30

10
−10

10
0

iteration number

||b
−

A
y(k

) || 2/|b
|| 2

CDGCR
CDGCR(1t)
CDGCR(1r)

0 5 10 15 20 25 30

10
−10

10
0

iteration number

||b
−

A
y(k

) || 2/|b
|| 2

CLDGCR
CLDGCR(1t)
CLDGCR(1r)

Figure E.3: GCR-Schwarz methods compared using restarting and truncation for only one
search direction, for solving the pressure-correction system. Testcase I is considered for a
4 × 4 × 4 decompositon.

E.1. Figures 127

0 5 10 15 20 25 30
10

−4

10
−2

10
0

iteration number

||b
−

A
y(k

) || 2/|b
|| 2

GCR
GCR(1t)
GCR(1r)

0 5 10 15 20 25 30

10
−5

10
0

iteration number

||b
−

A
y(k

) || 2/|b
|| 2

CDGCR
CDGCR(1t)
CDGCR(1r)

0 5 10 15 20 25 30

10
−5

10
0

iteration number

||b
−

A
y(k

) || 2/|b
|| 2

CLDGCR
CLDGCR(1t)
CLDGCR(1r)

Figure E.4: GCR-Schwarz methods compared using restarting and truncation for only one
search direction, for solving the pressure-correction system. Testcase II is considered for a
4 × 4 decompositon.

0 5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

iteration number

||b
−

A
y(k

) || 2/|b
|| 2 GCR

GCR(1t)
GCR(1r)

0 5 10 15 20 25 30
10

−4

10
−2

10
0

iteration number

||b
−

A
y(k

) || 2/|b
|| 2

CDGCR
CDGCR(1t)
CDGCR(1r)

0 5 10 15 20 25 30

10
−5

10
0

iteration number

||b
−

A
y(k

) || 2/|b
|| 2

CLDGCR
CLDGCR(1t)
CLDGCR(1r)

Figure E.5: GCR-Schwarz methods compared using restarting and truncating for only one
search direction, for solving the pressure-correction system. Testcase III is considered.

128 E. Figures and tables results in X-stream

0 5 10 15 20 25 30
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iteration number

re
si

du
al

 ||
b−

A
y(k

) || 2/|b
|| 2

SIP(1)
CG
CDCG
CLDCG

Figure E.6: Convergence behavior of the CG-Schwarz method, when an old search direction
is taken as a starting vector. Testcase I is considered for a 4 × 4 × 4 decompositon.

E.2 Tables

E.2. Tables 129

crit. crit.
Method 1 iter. 30 iter.

SIP(1) 0.86 1.20 ·10−1

CG(1) 1.51 1.18 ·10−3

SPTDMA(1) 0.86 9.50 ·10−1

CG 1.40 2.02 ·10−5

CDCG 0.72 6.02 ·10−10

CLDCG 0.28 2.37 ·10−12

GCR 0.86 9.84 ·10−7

CDGCR 0.59 1.87 ·10−11

CLDGCR 0.27 2.09 ·10−14

GCR(1r) 0.86 9.38 ·10−2

CDGCR(1r) 0.59 3.34 ·10−5

CLDGCR(1r) 0.27 9.52 ·10−9

GCR(1t) 0.86 7.94 ·10−6

CDGCR(1t) 0.59 2.99 ·10−11

CLDGCR(1t) 0.27 2.36 ·10−14

GCR(3r) 0.86 2.03 ·10−4

CDGCR(3r) 0.59 2.58 ·10−11

CLDGCR(3r) 0.27 2.11 ·10−14

GCR(3t) 0.86 2.71 ·10−5

CDGCR(3t) 0.59 1.87 ·10−11

CLDGCR(3t) 0.27 2.11 ·10−14

10 iter. 20 iter.
Method SIP(1) SIP(1)

SIP(1) 10 (2.70) 20 (5.11)

CG(1) 10 (2.70) 12 (3.30)

SPTDMA(1) – (–.–) – (–.–)

CG 6 (5.61) 8 (7.11)

CDCG 2 (3.30) 3 (4.11)

CLDCG 1 (19.90) 2 (21.20)

GCR 4 (3.71) 6 (5.51)

CDGCR 2 (2.80) 3 (3.51)

CLDGCR 1 (19.50) 2 (20.70)

GCR(1r) 8 (6.61) 18 (14.40)

CDGCR(1r) 2 (2.80) 4 (4.41)

CLDGCR(1r) 1 (19.50) 2 (20.70)

GCR(1t) 5 (4.51) 6 (5.21)

CDGCR(1t) 2 (2.80) 3 (3.61)

CLDGCR(1t) 1 (19.50) 2 (20.80)

GCR(3r) 6 (5.31) 7 (6.01)

CDGCR(3r) 2 (2.80) 3 (3.51)

CLDGCR(3r) 1 (19.50) 2 (20.70)

GCR(3t) 4 (3.81) 6 (5.31)

CDGCR(3t) 2 (2.80) 3 (3.51)

CLDGCR(3t) 1 (19.50) 2 (20.70)

Table E.1: Left table: absolute termination criteria of the solution methods after 1 and 30
iterations, for solving the 3D Poisson equation. Right table: iterations required and wall-clock
time in parentheses (·10−1 sec.), to obtain the same criterion as the SIP(1) method has after
10 and 20 iterations.

130 E. Figures and tables results in X-stream

1 × 1 × 1 2 × 2 × 2 4 × 4 × 4

crit. crit. crit. crit. crit. crit.
Method 1 iter. 30 iter. 1 iter. 30 iter. 1 iter. 30 iter.

SIP(1) 0.35 4.86 ·10−3 0.46 1.80 ·10−2 0.63 5.93 ·10−2

CG(1) 0.91 1.25 ·10−2 0.81 1.28 ·10−2 0.88 1.03 ·10−2

SPTDMA(1) 0.54 9.90 ·10−2 0.54 1.90 ·10−1 0.65 5.30 ·10−1

CG 0.56 2.51 ·10−8 0.54 1.05 ·10−4 0.78 4.26 ·10−3

CDCG 0.56 2.51 ·10−8 0.57 2.36 ·10−6 0.71 1.48 ·10−7

CLDCG 0.33 7.49 ·10−9 0.46 2.16 ·10−7 0.27 4.75 ·10−10

GCR 0.34 1.67 ·10−12 0.45 3.30 ·10−7 0.61 2.28 ·10−5

CDGCR 0.34 1.67 ·10−12 0.46 2.41 ·10−9 0.59 5.58 ·10−11

CLDGCR 0.26 2.64 ·10−13 0.42 1.16 ·10−11 0.26 1.86 ·10−11

GCR(1r) 0.34 6.55 ·10−5 0.45 8.38 ·10−5 0.61 5.21 ·10−4

CDGCR(1r) 0.34 6.55 ·10−5 0.46 1.07 ·10−4 0.59 3.63 ·10−6

CLDGCR(1r) 0.26 7.78 ·10−7 0.42 8.17 ·10−6 0.26 5.94 ·10−9

GCR(1t) 0.34 2.65 ·10−9 0.45 4.24 ·10−6 0.61 2.06 ·10−4

CDGCR(1t) 0.34 2.65 ·10−9 0.46 1.52 ·10−8 0.59 1.25 ·10−10

CLDGCR(1t) 0.26 5.93 ·10−12 0.42 1.28 ·10−10 0.26 1.87 ·10−11

GCR(3r) 0.34 7.25 ·10−8 0.45 1.26 ·10−4 0.61 8.80 ·10−3

CDGCR(3r) 0.34 7.25 ·10−8 0.46 8.11 ·10−7 0.59 7.36 ·10−9

CLDGCR(3r) 0.26 1.03 ·10−10 0.42 4.33 ·10−9 0.26 1.87 ·10−11

GCR(3t) 0.34 2.02 ·10−10 0.45 3.21 ·10−6 0.61 6.27 ·10−5

CDGCR(3t) 0.34 2.02 ·10−10 0.46 1.15 ·10−8 0.59 6.33 ·10−11

CLDGCR(3t) 0.26 6.63 ·10−12 0.42 6.14 ·10−11 0.26 1.87 ·10−11

Table E.2: Absolute termination criteria of the solution methods after 1 and 30 iterations,
for solving the pressure-correction system. Testcase I is considered.

E.2. Tables 131

1 × 1 × 1 2 × 2 × 2 4 × 4 × 4

10 iter. 20 iter. 10 iter. 20 iter. 10 iter. 20 iter.
Method SIP(1) SIP(1) SIP(1) SIP(1) SIP(1) SIP(1)

SIP(1) 10 (0.90) 20 (1.80) 10 (1.40) 20 (2.30) 10 (2.50) 20 (5.31)

CG(1) 24 (1.70) 29 (1.90) 23 (2.00) 27 (2.60) 18 (4.41) 20 (5.31)

SPTDMA(1) – (–.–) – (–.–) – (–.–) – (–.–) – (–.–) – (–.–)

CG 4 (0.90) 6 (1.30) 8 (2.50) 10 (3.00) 10 (8.61) 11 (9.51)

CDCG 4 (1.20) 6 (1.60) 6 (2.20) 7 (2.50) 4 (4.71) 4 (4.71)

CLDCG 3 (1.30) 5 (1.80) 4 (2.40) 5 (2.70) 2 (21.20) 2 (20.90)

GCR 4 (0.90) 5 (1.10) 6 (1.90) 8 (2.80) 5 (4.61) 8 (7.11)

CDGCR 4 (1.00) 5 (1.30) 5 (1.90) 6 (2.30) 4 (4.51) 4 (4.51)

CLDGCR 3 (1.20) 4 (1.40) 4 (2.10) 4 (2.10) 2 (21.00) 2 (20.90)

GCR(1r) 6 (1.20) 11 (2.00) 10 (2.90) 16 (4.11) 8 (6.81) 17 (13.40)

CDGCR(1r) 6 (1.40) 11 (2.30) 8 (2.50) 11 (3.30) 5 (5.41) 6 (5.71)

CLDGCR(1r) 3 (1.10) 5 (1.50) 4 (2.00) 6 (2.60) 2 (20.60) 3 (22.00)

GCR(1t) 4 (0.80) 5 (1.00) 6 (1.80) 8 (2.20) 5 (4.61) 9 (7.41)

CDGCR(1t) 4 (0.80) 5 (1.20) 5 (1.80) 6 (2.10) 4 (4.51) 4 (4.41)

CLDGCR(1t) 3 (1.20) 4 (1.40) 4 (2.00) 4 (2.00) 2 (20.80) 2 (20.70)

GCR(3r) 5 (1.00) 7 (1.40) 6 (1.80) 9 (2.60) 6 (4.91) 9 (7.61)

CDGCR(3r) 5 (1.30) 7 (1.60) 6 (2.00) 6 (2.30) 4 (4.51) 4 (4.41)

CLDGCR(3r) 3 (1.20) 4 (1.40) 4 (1.90) 5 (2.40) 2 (21.00) 2 (20.90)

GCR(3t) 4 (0.80) 5 (1.10) 7 (2.20) 8 (2.50) 5 (4.41) 8 (7.11)

CDGCR(3t) 4 (1.10) 5 (1.50) 5 (1.80) 6 (2.00) 4 (4.51) 4 (4.51)

CLDGCR(3t) 3 (1.20) 4 (1.40) 4 (2.10) 4 (2.10) 2 (21.00) 2 (20.90)

Table E.3: Required inner iterations for solving the pressure-correction system and wall-clock
time in parentheses (·10−1 sec.), to obtain the same absolute termination criterion as the
SIP(1) method has after 10 and 20 iterations. Testcase I is considered.

132 E. Figures and tables results in X-stream

1 × 1 2 × 2 4 × 4

crit. crit. crit. crit. crit. crit.
Method 1 iter. 30 iter. 1 iter. 30 iter. 1 iter. 30 iter.

SIP(1) 0.34 1.10 ·10−1 0.39 2.00 ·10−1 0.47 2.60 ·10−1

SPTDMA(1) 0.51 2.00 ·10−1 0.52 2.10 ·10−1 0.53 2.30 ·10−1

CG(1) 0.87 1.02 0.87 1.03 0.87 1.03

CG 0.95 1.96 ·10−4 0.92 2.56 ·10−3 0.91 3.51 ·10−2

CDCG 0.93 1.95 ·10−4 1.01 9.52 ·10−4 1.07 2.75 ·10−4

CLDCG 0.21 1.24 ·10−2 0.23 9.91 ·10−3 0.25 5.03 ·10−3

GCR 0.34 2.12 ·10−5 0.38 1.71 ·10−4 0.47 4.95 ·10−4

CDGCR 0.34 2.12 ·10−5 0.59 2.53 ·10−5 0.71 1.58 ·10−6

CLDGCR 0.21 1.13 ·10−6 0.23 2.32 ·10−7 0.25 7.65 ·10−9

GCR(1r) 0.34 7.92 ·10−2 0.39 7.26 ·10−2 0.47 1.20 ·10−1

CDGCR(1r) 0.34 7.92 ·10−2 0.59 9.96 ·10−3 0.71 5.62 ·10−4

CLDGCR(1r) 0.21 1.50 ·10−3 0.23 4.49 ·10−5 0.24 7.42 ·10−7

GCR(1t) 0.34 6.92 ·10−5 0.39 1.46 ·10−2 0.47 1.78 ·10−2

CDGCR(1t) 0.34 6.92 ·10−5 0.59 1.23 ·10−4 0.71 8.78 ·10−6

CLDGCR(1t) 0.21 9.28 ·10−6 0.23 5.20 ·10−7 0.24 1.49 ·10−8

GCR(3r) 0.34 2.26 ·10−2 0.40 1.50 ·10−2 0.47 7.90 ·10−2

CDGCR(3r) 0.34 2.26 ·10−2 0.59 2.35 ·10−4 0.71 4.75 ·10−4

CLDGCR(3r) 0.21 1.27 ·10−4 0.23 4.86 ·10−6 0.24 2.90 ·10−7

GCR(3t) 0.34 4.45 ·10−5 0.39 3.36 ·10−3 0.47 2.81 ·10−3

CDGCR(3t) 0.34 4.45 ·10−5 0.59 5.69 ·10−5 0.71 2.62 ·10−6

CLDGCR(3t) 0.21 3.43 ·10−6 0.23 3.74 ·10−7 0.25 1.19 ·10−8

Table E.4: Absolute termination criteria of the solution methods after 1 and 30 iterations,
for solving the pressure-correction system. Testcase II is considered.

E.2. Tables 133

1 × 1 2 × 2 4 × 4

10 iter. 20 iter. 10 iter. 20 iter. 10 iter. 20 iter.
Method SIP(1) SIP(1) SIP(1) SIP(1) SIP(1) SIP(1)

SIP(1) 10 (0.90) 20 (1.80) 10 (0.90) 20 (1.90) 10 (1.10) 20 (2.10)

CG(1) – (–.–) – (–.–) – (–.–) – (–.–) – (–.–) – (–.)

SPTDMA(1) – (–.–) – (–.–) 12 (1.30) 22 (2.40) 5 (0.70) 10 (1.30)

CG 8 (1.50) 8 (1.50) 13 (2.50) 13 (2.50) 16 (4.51) 16 (4.21)

CDCG 8 (1.70) 8 (1.50) 7 (1.60) 7 (1.70) 4 (1.50) 5 (1.80)

CLDCG 3 (1.10) 3 (1.10) 1 (0.80) 2 (1.10) 1 (1.20) 1 (1.20)

GCR 5 (0.80) 7 (1.40) 6 (1.40) 8 (1.90) 5 (1.50) 7 (2.10)

CDGCR 5 (1.20) 7 (1.70) 6 (1.60) 6 (1.60) 4 (1.30) 4 (1.50)

CLDGCR 2 (0.90) 2 (0.80) 1 (0.80) 2 (1.00) 1 (1.10) 1 (1.10)

GCR(1r) 7 (1.10) 13 (2.10) 7 (1.30) 9 (1.60) 7 (1.90) 10 (2.40)

CDGCR(1r) 7 (1.20) 13 (2.30) 11 (2.10) 11 (2.20) 7 (2.20) 8 (2.30)

CLDGCR(1r) 2 (0.80) 2 (0.90) 1 (0.80) 2 (1.00) 1 (1.10) 1 (1.10)

GCR(1t) 5 (0.90) 7 (1.30) 7 (1.40) 8 (1.60) 7 (2.00) 10 (2.80)

CDGCR(1t) 5 (1.10) 7 (1.50) 6 (1.40) 7 (1.70) 4 (1.30) 4 (1.50)

CLDGCR(1t) 2 (0.80) 2 (0.90) 1 (0.80) 2 (1.00) 1 (1.10) 1 (1.10)

GCR(3r) 5 (0.90) 7 (1.30) 7 (1.40) 9 (1.70) 7 (1.90) 10 (2.80)

CDGCR(3r) 5 (1.10) 7 (1.40) 6 (1.10) 7 (1.50) 4 (1.40) 5 (1.70)

CLDGCR(3r) 2 (0.90) 2 (0.80) 1 (0.80) 2 (1.00) 1 (1.10) 1 (1.10)

GCR(3t) 5 (1.00) 7 (1.30) 6 (1.20) 9 (1.90) 6 (1.80) 9 (2.60)

CDGCR(3t) 5 (1.30) 7 (1.50) 6 (1.50) 6 (1.50) 4 (1.40) 4 (1.50)

CLDGCR(3t) 2 (0.90) 2 (0.80) 1 (0.80) 2 (1.00) 1 (1.10) 1 (1.10)

Table E.5: Required inner iterations for solving the pressure-correction and wall-clock time
in parentheses (·10−1 sec.), to obtain the same absolute termination criterion as the SIP(1)
method has after 10 and 20 iterations. Testcase II is considered.

134 E. Figures and tables results in X-stream

crit. crit.
Method 1 iter. 30 iter.

SIP(1) 0.48 9.01 ·10−3

CG(1) 0.98 2.13 ·10−2

SPTDMA(1) 0.43 5.10 ·10−1

CG 0.91 3.01 ·10−2

CDCG 0.54 4.88 ·10−3

CLDCG 0.12 3.38 ·10−5

GCR 0.48 2.43 ·10−3

CDGCR 0.42 1.36 ·10−4

CLDGCR 0.10 3.95 ·10−7

GCR(1r) 0.48 7.92 ·10−3

CDGCR(1r) 0.42 6.93 ·10−3

CLDGCR(1r) 0.10 3.38 ·10−4

GCR(1t) 0.48 4.65 ·10−3

CDGCR(1t) 0.42 1.07 ·10−3

CLDGCR(1t) 0.10 1.40 ·10−6

GCR(3r) 0.48 6.26 ·10−3

CDGCR(3r) 0.42 2.00 ·10−3

CLDGCR(3r) 0.10 4.80 ·10−6

GCR(3t) 0.48 3.78 ·10−3

CDGCR(3t) 0.42 3.22 ·10−4

CLDGCR(3t) 0.10 5.90 ·10−7

10 iter. 20 iter.
Method SIP(1) SIP(1)

SIP(1) 10 (3.20) 20 (6.11)

CG(1) 14 (3.91) 21 (5.71)

SPTDMA(1) – (–.–) – (–.–)

CG 5 (4.61) – (–.–)

CDCG 4 (4.61) 12 (10.80)

CLDCG 2 (4.41) 4 (6.11)

GCR 5 (4.41) 8 (7.51)

CDGCR 4 (4.41) 7 (7.51)

CLDGCR 2 (4.01) 4 (6.01)

GCR(1r) 8 (6.11) 10 (7.51)

CDGCR(1r) 7 (6.41) 15 (12.20)

CLDGCR(1r) 2 (4.01) 5 (6.51)

GCR(1t) 5 (4.31) 8 (6.51)

CDGCR(1t) 4 (4.21) 7 (6.71)

CLDGCR(1t) 2 (4.01) 4 (5.71)

GCR(3r) 6 (5.01) 10 (8.21)

CDGCR(3r) 4 (4.31) 8 (7.41)

CLDGCR(3r) 2 (4.01) 5 (6.71)

GCR(3t) 5 (4.61) 8 (7.11)

CDGCR(3t) 4 (4.31) 7 (7.61)

CLDGCR(3t) 2 (4.01) 4 (5.91)

Table E.6: Left table: absolute termination criteria of the solution methods after 1 and 30
iterations, for solving the pressure-correction system. Right table: iterations required and
wall-clock time in parentheses (·10−1 sec.), to obtain the same criterion as the SIP(1) method
has after 10 and 20 iterations. Testcase III is considered.

Nomenclature

Roman symbols

Symbol Description Units

a sum of coefficients in the PWI method [—]
A matrix of the linear system [—]
b source term in the DAS [—]
B iteration matrix [—]
B postconditioning matrix [—]
cp specific heat at constant pressure [m2 s−2 K−1]
C linear algebraic operator in DAS arising from PWI [—]
d number of space dimensions [—]
D linear algebraic operator in DAS for the velocities [—]
D diagonal matrix [—]
e internal energy per unit mass [m2 s−2]
e auxiliary variable for denoting grid positions [—]
e global truncation error [—]
E total energy per unit mass [m2 s−2]
E matrix in deflation method [—]
f body force [kg m−2 s−2]
f dimensionless body force [—]
f inhomogeneous term in differential equation [—]
g gravitational acceleration [m s−2]
g boundary value [—]
G linear algebraic operator in DAS [—]
h cell size [—]
I identity matrix [—]
I index set [—]
k iteration number [—]
l iteration number [—]
L length scale [m]
L discrete operator [—]
L approximation of the non-linear operator N [—]
m block number [—]
M preconditioner [—]
n unit normal on a surface [—]
n dimension system of equations [—]

136 Nomenclature

nblock total number of blocks [—]
N number [—]
N non-linear algebraic operator in DAS [—]
N remainder matrix in the splitting [—]
N number of algebraic equations [—]
p pressure [kg m−1 s−2]
p dimensionless pressure [—]
p mesh Péclet number [—]
P projector in deflation method [—]
q energy flux [kg s−4]
q source term in transport equation
q dimensionless source term in transport equation [—]
q auxiliary variable [—]
Q projector in deflation method [—]
Q linearized momentum equations [—]
r residual [—]
R pressure-correction matrix [—]
R trivial extension matrix [—]
Re Reynolds number [—]
s rate-of-strain [m s−2]
s search direction Krylov method [—]
S surface [—]
t time [s]
t dimensionless time [—]
T temperature [K]
u velocity [m s−1]
u dimensionless velocity [—]
u unknown [—]
U length scale for the velocity [m s−1]
v velocity [m s−1]
v dimensionless velocity [—]
v variable in Krylov method [—]
W computing work [—]
x coordinate [m]
x dimensionless coordinate [—]
x auxiliary variable [—]
y initial position of a particle [—]
y unknown [—]
Y matrix in deflation method [—]
Z matrix in deflation method [—]

Greek symbols

Symbol Description Units

α relaxation parameter [—]
α parameter in orthonormalization process [—]

137

Γ effective transport coefficient
Γ artificial boundary [—]
δ small parameter [—]
δ Kronecker delta function [—]
∆ operator in the PWI method [—]
ε inverse of the Péclet number [—]
ε small disturbance [—]
κ (effective) condition number [—]
λ thermal conductivity [kg m s−3 K−1]
λ eigenvalue [—]
µ dynamic viscosity [kg m−1 s−1]
ρ density [kg m−3]
ρ dimensionless density [—]
σ stress tensor [kg m−1 s−2]
σ dimensionless stress tensor [—]
σ eigenvalue spectrum [—]
τ shear-stress tensor [kg s−2]
φ property of a material
ϕ property of a material
ϕ dimensionless property of a material [—]
Ω domain [—]

Abbreviations

Abbreviation Description

BC Boundary Condition
BIM Basic Iterative Method
CG Conjugate Gradient
CD Constant Deflation
CDCG Constant Deflated Conjugate Gradient
CDGCR Constant Deflated Generalized Conjugate Residual
CLD Constant Linear Deflation
CLDCG Constant Linear Deflated Conjugate Gradient
CLDGCR Constant Linear Deflated Generalized Conjugate Residual
CDS Central Difference Scheme
CFD Computational Fluid Dynamics
DCG Deflated Conjugate Gradient
DGCR Deflated Generalized Conjugate Residual
DAS Differential-Algebraic System
DD Domain Decomposition
FV Finite Volume
GCR Generalized Conjugate Residual
LHS Left-Hand Side
MGS Modified Gram-Schmidt
MPI Message Passing Interface
PDE Partial Differential Equation

138 Nomenclature

PSD Positive Definite
RCGS Reorthogonalized Classical Gram-Schmidt
RHS Right-Hand Side
SIMPLE Semi-Implicit Method for Pressure-Linked Equations
SIP Strongly Implicit Procedure
SPD Symmetric Positive Definite
SPTDMA Space Tri-Diagonal Matrix Algorithm
UDS Upwind Difference Scheme

List of Figures

2.1 A cell-centered grid. (• grid points; – finite volume boundaries.) 9

2.2 A two-dimensional domain with a colocated grid arrangement (left) and a stag-
gered grid arrangement (right). (CV: control volume or cell.) 14

3.1 Incomplete LU factorization for the SIP method. 23

3.2 Multigrid prolongation operator in X-stream illustrated for three grids varying
from coarse (level 1) to fine (level 3). 37

3.3 Main flowchart of the X-stream code. 38

4.1 An overlapping decomposition of the domain. 40

4.2 Cell-centered and vertex-centered discretization in the case of two subdomains.
(• grid points; — finite volume boundaries; - - common grid line.) 42

4.3 Three decompositions of a square into 16 subdomains. 44

4.4 Decomposition of the domain into two subdomains. The dashed line denotes
the block interface and the shaded cells are the ghost cells. 46

4.5 Flowchart of the solution procedure in X-stream for solving the stationary
incompressible Navier-Stokes equations. (LC: local communication; GC: global
communication.) . 50

5.1 Example partitioning of a 2×2 decomposition, and 3×3 grid cells per subdomain. 52

5.2 Non-zero pattern of the matrix A, for the case of a decomposition and grid as
in Figure 5.1. 52

5.3 Non-zero pattern of E for the 1D case of 3 subdomains. Left: E for CD
deflation; right: E for CLD deflation. 54

5.4 Deflation vectors for the 1D example of two subdomains with 4 grid cells per
subdomain. Left: CD deflation; right: CLD deflation. 55

5.5 Illustration of how the eigenvector belonging to the smallest eigenvalue can be
approximated. Top: approximation by constant vectors. Bottom: approxima-
tion by linear combinations of constant and linear vectors. 56

5.6 Two constant deflation vectors per subdomain, for the 1D case of two subdo-
mains and 4 grid cells per subdomain. 57

5.7 Illustration of how the eigenvector belonging to the smallest eigenvalue can be
approximated using two constant deflation vectors per subdomain. 57

5.8 Eigenvalue spectra for the preconditioned case, for the case of no deflation, CD
deflation and CLD deflation. The Dirichlet problem is considered for a 9 × 9
grid and a 3 × 3 decomposition. 58

140 List of Figures

5.9 Eigenvalue spectra for the preconditioned case, for the case of no deflation,
CLD deflation and 3CD deflation. The Dirichlet problem is considered for a
9 × 9 grid and a 3 × 3 decomposition. 59

5.10 Residuals for the GCR-Schwarz and CG-Schwarz methods considering no de-
flation, CD deflation, and CLD deflation. The results are for the Dirichlet case
and for a 5× 5 decomposition of a 60× 60 grid. Two iterations for solving the
subdomain problems are taken. 60

5.11 Residuals for the ILU method considering no deflation, CD deflation, and CLD
deflation. The results are for the Dirichlet case and for a 5 × 5 decomposition
of a 60 × 60 grid. Two iterations for solving the subdomain problems are taken. 61

5.12 Scalability results for the solution methods for the Dirichlet problem. 61
5.13 The effect of choosing an old search direction as a starting vector for solving

the subdomain problems. The results are for the Dirichlet case and for a 5× 5
decomposition of a 60 × 60 grid. Two iterations for solving the subdomain
problems are taken. 63

5.14 Eigenvalue spectra for the splitting for the case of CLD deflation. The 1D
Dirichlet problem is considered for 4 subdomains and 10 grid cells per subdo-
main, and the unpreconditioned case is considered. 64

5.15 Non-zero pattern of E for CD (left) and CLD (right) for the 1D case of three
subdomains, when the first constant deflation vector is removed. 66

5.16 Convergence behavior of the GCR-Schwarz and CG-Schwarz methods with CD
and CLD deflation for the Neumann problem. A 60×60 grid consisting of 5×5
subdomains is considered, and one entry of the first constant deflation vector
of Z is set to 1 + 10−6. 68

5.17 Sensitivity of the choice of Z on κ(E) for the Neumann problem, when we
replace one entry of the constant deflation vector by 1 + ε. A ‘· · · ’ denotes
κ(E) for the case that the first constant deflation vector is removed. 68

5.18 Eigenvalue spectra for the preconditioned case, for the case of no deflation, CD
deflation and CLD deflation. The Neumann problem is considered for a 9 × 9
grid and a 3 × 3 decomposition. 69

5.19 Residuals for the GCR-Schwarz and CG-Schwarz methods considering no de-
flation, CD deflation, and CLD deflation. The results are for the Neumann
case and for a 5× 5 decomposition of a 60× 60 grid. Two iterations for solving
the subdomain problems are taken. 70

5.20 Residuals for the ILU method considering no deflation, CD deflation, and CLD
deflation. The results are for the Neumann case and for a 5× 5 decomposition
of a 60 × 60 grid. Two iterations for solving the subdomain problems are taken. 71

5.21 Scalability results for the solution methods, for solving the Poisson equation
with homogeneous Neumann BCs on a 60 × 60 grid. 71

5.22 Convergence behavior of the ILU method, for an increasing number of iterations
for solving the subdomain problems. The results are for the Neumann case
considering a 3 × 3 decomposition of a 15 × 15 grid. 72

5.23 Convergence behavior of the ILU method, for an increasing number of iterations
for solving the subdomain problems. The results are for the Dirichlet case
considering a 3 × 3 decomposition of a 15 × 15 grid. 73

5.24 Eigenvalue spectra for the same splitting used for the Dirichlet case, but now
for the Neumann case. The unpreconditioned case is considered. 73

List of Figures 141

6.1 Three decomposition for the pipe flow testcase: 1× 1× 1, 2× 2× 2 and 4× 4× 4. 76
6.2 The computed velocity field (left) and pressure field (right) for the pipe flow

problem. 77
6.3 Three decompositions for the buoyancy-driven cavity flow: 1×1, 2×2 and 4×4. 77
6.4 The velocity field (left) and pressure field (right) for the buoyancy-driven cavity

flow. 78
6.5 Geometry of the glass tank. 79
6.6 Subdomain topology for the glass tank model, in which the domain is decom-

posed into 18 blocks. 80
6.7 Velocities (top) and pressure (bottom) for the glass tank model. 80
6.8 Results for the parameter variation of the relaxation parameters. Left: con-

cerning outer iterations; right: concerning total wall-clock times. Testcase I is
considered for a 4 × 4 × 4 decomposition. 82

6.9 Parameter variation for the number of outer iterations. Testcase II is considered
for a 4 × 4 decomposition. 83

6.10 Parameter variation for the number of outer iterations, considering Testcase III. 83
6.11 The residuals of the SIP(1), SPTDMA(1) and CG(1) methods for solving the

Poisson equation on the same grid as for Testcase I, using a 4 × 4 × 4 decom-
position. 85

6.12 The residuals of the SIP(1), GCR, CDGCR and CLDGCR methods for solving
the Poisson equation on the same grid as for Testcase I, using a 4 × 4 × 4
decomposition. 85

6.13 The residuals of the SIP(1), CG, CDCG and CLDCG methods for solving
the Poisson equation on the same grid as for Testcase I, using a 4 × 4 × 4
decomposition. 86

6.14 GCR-Schwarz methods compared for restarting and truncating for one search
direction. Top plot: GCR; middle plot: CDGCR; bottom plot: CLDGCR. . . 86

6.15 The residuals for the SIP(1), SPTDMA(1) and CG(1) methods for solving the
pressure-correction system. Testcase I is considered for a 4×4×4 decomposition. 88

6.16 The residuals for the SIP(1), GCR, CDGCR and CLDGCR methods for solv-
ing the pressure-correction system. Testcase I is considered for a 4 × 4 × 4
decomposition. 88

6.17 The residuals for the SIP(1), CG, CDCG and CLDCG methods for solving the
pressure-correction system. Testcase I is considered for a 4×4×4 decomposition. 89

6.18 Scalability results for Testcase I considering three decompositions. The pressure-
correction system is considered. 89

6.19 Convergence behavior for the SIP(1), GCR, CDGCR and CLDGCR methods,
when an old search direction is taken as a starting vector. Testcase I is con-
sidered for a 4 × 4 × 4 decomposition. 90

6.20 The residuals for the GCR(1t)-Schwarz and CG-Schwarz methods when one
element in the constant deflation vector is set to 1 + 10−3. The pressure-
correction system for Testcase I is considered using a 4 × 4 × 4 decomposition. 90

6.21 The residuals of the SIP(1), SPTDMA(1) and CG(1) methods for solving the
pressure-correction system. Testcase II is considered for a 4 × 4 decomposition. 91

6.22 The residuals of the SIP(1), GCR, CDGCR and CLDGCR methods for solving
the pressure-correction system. Testcase II is considered for a 4 × 4 decompo-
sition. 92

142 List of Figures

6.23 The residuals of the SIP(1), CG, CDCG and CLDCG methods for solving the
pressure-correction system. Testcase II is considered for a 4 × 4 decomposition. 92

6.24 Scalability results for Testcase II considering three decompositions. The pressure-
correction system is considered. 93

6.25 The residuals of the SIP(1), SPTDMA(1), and CG(1) methods for solving the
pressure-correction system. Testcase III is considered. 94

6.26 The residuals of the SIP(1), GCR, CDGCR, and CLDGCR methods for solving
the pressure-correction system. Testcase III is considered. 94

6.27 The residuals of the SIP(1), CG, CDCG and CLDCG methods for solving the
pressure-correction system. Testcase III is considered. 95

6.28 The residuals of the outer iterations, taking 10 inner iterations with the SIP(1)
method for solving the pressure-correction system, and SSI = 1. Testcase I is
considered for a 4 × 4 × 4 decomposition. 97

6.29 The residuals of the outer iterations, taking 1 inner iteration with the CDGCR(1t)
method for solving the pressure-correction system, and SSI = 1. Testcase I is
considered for a 4 × 4 × 4 decomposition. 97

6.30 The number of outer iterations for different values of pressure-correction inner
iterations and SSI iterations, comparing the SIP(1), GCR(1t), CDGCR(1t) and
CLDGCR(1t) methods. Testcase I is considered for a 4 × 4 × 4 decomposition. 98

6.31 The total wall-clock time for different values of pressure-correction inner iter-
ations and SSI iterations, comparing the SIP(1), GCR(1t), CDGCR(1t) and
CLDGCR(1t) methods. Testcase I is considered for a 4 × 4 × 4 decomposition. 98

6.32 The percentage time for solving the pressure-correction system of the total
wall-clock time, for the SIP(1) and GCR(1t) methods. Testcase I is considered
for a 4 × 4 × 4 decomposition. 99

6.33 Top: the percentage time for solving the pressure-correction system of the total
wall-clock time, for the CDGCR(1t) and CLDGCR(1t) methods. Bottom: the
percentage time for deflation of the time for solving the pressure-correction sys-
tem, for the CDGCR(1t) and CLDGCR(1t) methods. Testcase I is considered
for a 4 × 4 × 4 decomposition. 99

6.34 The residuals of the outer iterations, taking 10 inner iterations with the SIP(1)
method for solving the pressure-correction system, and SSI = 9. Testcase II is
considered for a 4 × 4 decomposition. 101

6.35 The residuals of the outer iterations, taking 1 inner iteration with the CLDGCR(1t)
method for solving the pressure-correction system, and SSI = 1. Testcase II is
considered for a 4 × 4 decomposition. 101

6.36 The number of outer iterations for different values of pressure-correction inner
iterations and SSI iterations, comparing the SIP(1), GCR(1t), CDGCR(1t)
and CLDGCR(1t) methods. Testcase II is considered for a 4 × 4 decomposition.102

6.37 The total wall-clock time for different values of pressure-correction inner iter-
ations and SSI iterations, comparing the SIP(1), GCR(1t), CDGCR(1t) and
CLDGCR(1t) methods. Testcase II is considered for a 4 × 4 decomposition. . 102

6.38 The percentage time for solving the pressure-correction system of the total wall-
clock time, for the SIP(1) and the GCR(1t) method. Testcase II is considered
for a 4 × 4 decomposition. 103

List of Figures 143

6.39 Top: the percentage time for solving the pressure-correction system of the total
wall-clock time, for the CDGCR(1t) and CLDGCR(1t) methods. Bottom: the
percentage time for deflation of the time for solving the pressure-correction sys-
tem, for the CDGCR(1t) and CLDGCR(1t) methods. Testcase II is considered
for a 4 × 4 decomposition. 103

6.40 The residuals for the outer iterations, taking 10 inner iterations with the SIP(1)
method for solving the pressure-correction system, and SSI = 1. Testcase III
is considered. 104

6.41 The residuals of the outer iterations, taking 1 inner iteration with the CLDGCR(1t)
method for solving the pressure-correction system, and SSI = 1. Testcase III
is considered. 104

6.42 The number of outer iterations for different values of pressure-correction inner
iterations and SSI iterations, comparing the SIP(1), GCR(1t), CDGCR(1t)
and CLDGCR(1t) methods. Testcase III is considered. 105

6.43 The wall-clock time for different values of pressure-correction inner iterations
and SSI iterations, comparing the SIP(1), GCR(1t), CDGCR(1t) and CLDGCR(1t)
methods. Testcase III is considered. 105

6.44 The percentage time for solving the pressure-correction system of the total
wall-clock time, for the SIP(1) and the GCR(1t) methods. Testcase III is
considered. 106

6.45 Top: the percentage time for solving the pressure-correction system of the total
wall-clock time, for the CDGCR(1t) and CLDGCR(1t) methods. Bottom: the
percentage time for deflation of the time for solving the pressure-correction
system, for the CDGCR(1t) and the CLDGCR(1t) methods. Testcase III is
considered. 106

D.1 Eigenvalue spectra for the case of no deflation, CD deflation, and CLD defla-
tion. The Dirichlet problem is considered for a 9×9 grid and 3×3 subdomains,
and the unpreconditioned case is considered. 119

D.2 Eigenvalue spectra for the case of no deflation, CLD deflation, and 3CD defla-
tion. The Dirichlet problem is considered for a 9×9 grid and 3×3 subdomains,
and the unpreconditioned case is considered. 120

D.3 Eigenvalue spectra for the splitting for the case of CLD deflation. The 1D
Dirichlet problem is considered for 4 subdomains and 10 grid cells per subdo-
main, and the preconditioned case is considered. 120

D.4 Eigenvalue spectra for the case of no deflation, CD deflation, and CLD defla-
tion. The Neumann problem is considered for a 9×9 grid and 3×3 subdomains,
and the unpreconditioned case is considered. 121

D.5 Eigenvalue spectra for the same splitting used for the Dirichlet case, but now
for the Neumann case. The preconditioned case is considered. 121

E.1 The influence of parameter variation on the wall-clock times. Testcase II is
considered for a 4 × 4 decompositon. 125

E.2 The influence of parameter variation on the wall-clock times. Testcase III is
considered. 126

144 List of Figures

E.3 GCR-Schwarz methods compared using restarting and truncation for only one
search direction, for solving the pressure-correction system. Testcase I is con-
sidered for a 4 × 4 × 4 decompositon. 126

E.4 GCR-Schwarz methods compared using restarting and truncation for only one
search direction, for solving the pressure-correction system. Testcase II is con-
sidered for a 4 × 4 decompositon. 127

E.5 GCR-Schwarz methods compared using restarting and truncating for only one
search direction, for solving the pressure-correction system. Testcase III is
considered. 127

E.6 Convergence behavior of the CG-Schwarz method, when an old search direc-
tion is taken as a starting vector. Testcase I is considered for a 4 × 4 × 4
decompositon. 128

List of Tables

5.1 Effective condition numbers for three decompositions. The Dirichlet problem
is considered and a 12 × 12 grid is taken. 58

5.2 A rough estimation for the additional work and storage deflation introduces. . 62

5.3 Effective condition numbers for three decompositions. The Neumann problem
is considered and a 12 × 12 grid is taken. 69

6.1 Relaxation parameters for Testcase I obtained by parameter variation, consid-
ering a 4 × 4 × 4 decomposition. 81

6.2 Relaxation parameters for Testcase II obtained by parameter variation, con-
sidering a 4 × 4 decomposition. 82

6.3 Relaxation parameters for Testcase III obtained by parameter variation. . . . 82

D.1 Iterative solution methods compared for a fixed problem size of a 60 × 60
grid, for the Dirichlet problem. Four decompositions are considered and the
subdomain solutions are obtained by 15, 5, and 2 iterations with a ILU BIM.
Iterations are given and wall-clock times are in parentheses (sec.) A ‘–’ denotes
that the method did no convergence in less than 250 iterations. 123

D.2 Iterative solution methods compared for a fixed problem size of a 60 × 60
grid, for the Neumann problem. Four decompositions are considered and the
subdomain solutions are obtained by 15, 5, and 2 iterations with a ILU BIM.
Iterations are given and wall-clock times are in parentheses (sec.). A ‘–’ in the
table denotes that the method did no convergence in less than 250 iterations. 124

E.1 Left table: absolute termination criteria of the solution methods after 1 and 30
iterations, for solving the 3D Poisson equation. Right table: iterations required
and wall-clock time in parentheses (·10−1 sec.), to obtain the same criterion as
the SIP(1) method has after 10 and 20 iterations. 129

E.2 Absolute termination criteria of the solution methods after 1 and 30 iterations,
for solving the pressure-correction system. Testcase I is considered. 130

E.3 Required inner iterations for solving the pressure-correction system and wall-
clock time in parentheses (·10−1 sec.), to obtain the same absolute termination
criterion as the SIP(1) method has after 10 and 20 iterations. Testcase I is
considered. 131

E.4 Absolute termination criteria of the solution methods after 1 and 30 iterations,
for solving the pressure-correction system. Testcase II is considered. 132

E.5 Required inner iterations for solving the pressure-correction and wall-clock time
in parentheses (·10−1 sec.), to obtain the same absolute termination criterion
as the SIP(1) method has after 10 and 20 iterations. Testcase II is considered. 133

146 List of Tables

E.6 Left table: absolute termination criteria of the solution methods after 1 and 30
iterations, for solving the pressure-correction system. Right table: iterations
required and wall-clock time in parentheses (·10−1 sec.), to obtain the same
criterion as the SIP(1) method has after 10 and 20 iterations. Testcase III is
considered. 134

Bibliography

[1] Bird, R.B., et al. (2001). Transport Phenomena. New York: Wiley, second edition.

[2] Brakkee, E. (1996). Domain Decomposition for the Incompressible Navier-Stokes Equa-
tions. PhD thesis. Delft: Delft University Press.

[3] Chan, T.F. and T.P. Mathew (1994). ‘Domain decomposition algorithms’. Acta Numer-
ica, Vol. 1, pp. 61–141.

[4] Ferziger, J.H. and M. Perić (1999). Computational Methods for Fluid Dynamics. Heidel-
berg: Springer, second edition.

[5] Frank, J. and C. Vuik (1999). ‘Parallel implementation of a multiblock method with
approximate subdomain solution’. Appl. Numer. Math., Vol. 30, pp. 403–423.

[6] Frank, J. and C. Vuik (2001). ‘On the construction of deflation-based preconditioners’.
SIAM J. Sci. Comput., Vol. 23, pp. 442–462.

[7] Golub, G.H. and C.F. Van Loan (1996). Matrix Computations. Baltimore: The John
Hopkins University Press, third edition.

[8] Hoffmann, W. (1989). ‘Iterative Algorithms for Gram-Schmidt Orthogonalization’. Com-
puting, Vol. 41, pp. 335–348.

[9] Kaasschieter, E.F. (1988). ‘Preconditioned conjugate gradients for solving singular sys-
tems’. J. Comp. Applied Math., North-Holland, pp. 265–275.

[10] Kim, S. and H-C. Lee (2000). ‘On Accuracy of Operator Splitting Techniques for Un-
steady Navier-Stokes Equations’. TEAM seminar, Department of Mathematics, Univer-
sity of Kentucky.

[11] Kumar, V. et al. (1994). Introduction to Parallel Computing: Design and Analysis of
Algorithms. Redwood City: Benjamin Cummings.

[12] Mansfield, L. (1990). ‘On the conjugate gradient solution of the Schur complement system
obtained from domain decomposition’. SIAM J. Numer. Anal., Vol. 7, No. 6, pp. 1612–
1620.

[13] Nabben, R., C. Vuik (2003) ‘A comparison of Deflation and Coarse Grid Correction’. To
be published.

[14] Nicolaides, R.A. (1987). ‘Deflation of Conjugate Gradients with Applications to Bound-
ary Value Problems’. SIAM J. Numer. Anal., Vol. 24, No. 2, pp. 355–365.

148 Bibliography

[15] Padiy, A., O. Axelsson and B. Polman (2000). ‘Generalized Augmented Matrix Precon-
ditioning Approach and its Application to Iterative Solution of Ill-Conditioned Algebraic
Systems’. SIAM J. Matrix Anal. Appl., Vol. 22, No. 3, pp. 793–818.

[16] Patankar, S.V. (1980). Numerical Heat Transfer and Fluid Flow. New York: McGraw-
Hill.

[17] Post, L. (1988). Modelling of flow and combustion in a glass melting furnace. PhD thesis.
Delft: Delft University Press.

[18] Saad, Y. (2000). Iterative Methods for Sparse Linear Systems. Boston: PWS Publishing
Company, second edition.

[19] Smith, B.F., et al. (1996). Domain Decomposition: Parallel Multilevel Methods for El-
liptic Partial Differential Equations. New York: Cambridge University Press.

[20] Twerda, A. (2000). Advanced computing methods for complex flow simulation. PhD thesis.
Delft: Delft University Press.

[21] Vermolen, F.J. and C. Vuik (2001). The influence of deflation vectors at interfaces on the
deflated conjugate gradient method. Report of the Department of Applied Mathematical
Analysis, ISSN 1389-6520, Delft University of Technology.

[22] Verweij, R.L. (1999). Parallel Computing for furnace simulations using domain decom-
position. PhD thesis. Delft: Delft University Press.

[23] Vuik, C. (1996). Voortgezette numerieke lineaire algebra. Lecture notes (in Dutch) course
‘Voortgezette numerieke lineaire algebra‘, Delft University of Technology.

[24] Vuik, C. and J. Frank (1999). ‘A Parallel Implementation of the Block Preconditioned
GCR Method’. Proc. 7th int. conf. HPCN, Berlin: Springer, Lecture Notes in Computer
Science 1593, pp. 1052–1060.

[25] Vuik, C., A. Segal et al. (1999). ‘An efficient preconditioned CG method for the solution
of layered problems with extreme contrasts in the coefficients’. J. Comp. Phys., Vol. 152,
pp. 385–403.

[26] Vuik, C., A. Saghir et al. (2000). ‘The Krylov accelerated SIMPLE(R) method for flow
problems in industrial furnaces’. Int. J. Numer. Meth. Fluids, Vol. 33, pp. 1027–1040.

[27] Vuik, C. and J. Frank (2000). ‘Deflated ICCG methods applied to problems with extreme
contrasts in the coefficients’. Proc. 16th IMACS World Congress, Lausanne.

[28] Vuik, C. and J. Frank (2001). ‘Coarse grid acceleration of a parallel block preconditioner’.
Future Generation Computer Systems, Vol. 17, pp. 933–940.

[29] Vuik, C., J. Frank and A. Segal (2001). ‘A parallel block-preconditioned GCR method
for incompressible flow problems’. Future Generation Computer Systems, Vol. 18, pp.
31–40.

[30] Vuik, C. (2002). Iterative solution methods. Lecture notes PhD course ‘Computational
Fluid Dynamics II’ at the J.M. Burgerscentrum, Delft University of Technology.

Bibliography 149

[31] Vuik, C. and A. Saghir (2002). The Krylov accelerated SIMPLE(R) method for incom-
pressible flow. Report 02-01 of the Department of Applied Mathematical Analysis, ISSN
1389-6520, Delft University of Technology.

[32] Vuik, C., A. Segal, and J.A. Meijerink (1998). ‘An efficient preconditioned CG method for
the solution of layered problems with extreme contrasts in the coefficients’. Report 98-20
of the Department of Applied Mathematical Analysis, Delft University of Technology.

[33] Vuik, C., A. Segal, et al. (2002). ‘A comparison of various deflation vectors applied
to elliptic problems with discontinuous coefficients’. Appl. Numer. Math., Vol. 41, pp.
219–233.

[34] Vorst, H.A. van der (2003). Iterative Krylov Methods for Large Linear systems. Cam-
bridge: Cambridge University Press.

[35] Wesseling, P. (1991). An Introduction to Multigrid Methods. Chichester: Wiley.

[36] Wesseling, P. (2001). Principles of Computational Fluid Dynamics. Heidelberg: Springer.

150 Bibliography

Summary

At the Department of Process Physics at TNO TPD, a large CFD simulation package, called
X-stream, is being developed for the glass industry to simulate flows in glass furnaces. The
involving equations are the incompressible Navier-Stokes equations, the energy equation, and
other equations arising from additional physical models related to the process of glass melting.
These equations are discretised with the Finite Volume Method on a colocated grid.

Solving the discretised incompressible Navier-Stokes equations is time consuming, because
they are non-linear. In X-stream, the SIMPLE method is used to solve the non-linear system
of equations. This is an iterative method where the system in each iteration (outer iteration)
is split up into linear systems for the pseudo-velocities and the pressure-correction. The lin-
ear systems are solved with a domain decomposition (DD) approach (inner iteration). A DD
method is an iterative method in which the spatial domain is decomposed into subdomains for
which the equations are solved. In X-stream, an additive Schwarz DD method with minimal
overlap is used, in combination with inaccurate subdomain solution.

Due to the elliptic nature of the pressure-correction equation, the Schwarz method converges
slowly and the rate of convergence depends on the number of subdomains. Therefore, the
main goal in the Master’s project is to accelerate the Schwarz method in X-stream. First
of all, a new technique called deflation is applied to the pressure-correction system to make
the convergence independent on the number of subdomains. In this method, eigenvectors are
approximated corresponding to the smallest eigenvalues, and these eigenvalues, which slow
down the convergence, are removed. In the Master’s project, these eigenvectors are approx-
imated by both constant vectors per subdomain and a combination of constant and linear
vectors per subdomain. Secondly, the additive Schwarz method to solve the deflated system
is accelerated by a GCR and CG Krylov subspace method. The resulting method is called a
Deflated Krylov-Schwarz DD method.

In X-stream, both the GCR-Schwarz and CG-Schwarz with deflation are implemented. First
of all, the effect these methods have on solving the pressure-correction system is investigated.
Concerning convergence behavior, the Deflated GCR-Schwarz method is superior compared
to the default Schwarz method in X-stream. Using constant and linear deflation results in a
better convergence rate compared to only constant deflation. Concerning computing time, the
Deflated Krylov-Schwarz methods are competitive compared to the default Schwarz method.
Furthermore, it was shown that deflation results in a convergence behavior which is more or
less independent on the number of subdomains. Secondly, the dependency of the outer itera-
tions on the number of inner iterations, for solving the pressure-correction equation with the
Deflated GCR-Schwarz method, and the number of so-called SIMPLE stabilization iterations,
is investigated. A SIMPLE stabilization iteration (SSI), which is used in X-stream, is an ad-

152 Summary

ditional ‘SIMPLE iteration’ for solving the pressure. The results show that a large number
of outer iterations and computing time can be gained by applying Deflated GCR-Schwarz
acceleration, compared to the default Schwarz method in X-stream. Furthermore, the results
show that the Deflated GCR-Schwarz method makes the number of outer iterations indepen-
dent on the number of inner iterations and SSI iterations. This effect is largest for the case of
constant and linear deflation. We therefore conclude that the Deflated GCR-Schwarz method
introduces a large robustness. Finally, it was also observed that this method results in less
oscillations in the outer iteration residuals.

It can be concluded that the main goal in the Master’s project is achieved: Deflated Krylov-
Schwarz DD acceleration results in superior convergence behavior compared to the default
Schwarz DD method in X-stream, and wall-clock time can be gained.

