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Introduction

Mathematical simulation of flows is important for the design, optimization and trouble shoot-
ing of glass melting furnaces. To gain insight into the glass melting process physical experi-
ments can be done. However, physical experiments are often very costly and time-consuming,
and there are circumstances under which certain physical quantities cannot be measured.
Simulation by Computational Fluid Dynamics (CFD) does not have these disadvantages. Al-
though CFD only approximates the true physics, it gives engineers in the glass industry great
insight into the transport phenomena occurring in glass melting furnaces.

At Process Physics at TNO TPD a CFD simulation package called X-stream is developed
for the glass industry. With this package the glass melt and the combustion space can be
simulated simultaneously. Besides solving the incompressible Navier-Stokes equations and
the energy equation, various other physical models can be solved, for example models for
turbulence, combustion and radiation.

To simulate the complex physical processes in a furnace with a high accuracy, many equa-
tions have to be solved, resulting in large computing times. To solve larger problems, parallel
computing can be done in X-stream. A domain decomposition approach is used to divide the
total problem into smaller problems, which can be computed in parallel on different processors.

In X-stream there is little experience with the domain decomposition algorithm used. The
main goal of the Master’s project research is get this experience and to improve this algorithm.
Because the Navier-Stokes equations are nonlinear, solving these equations is very time-
consuming. Therefore we focus in this research primarily on the Navier-Stokes equations.

The main goal of this interim Master’s thesis is to gain insight in the existing methods
to improve the X-stream domain decomposition algorithm and to decide the course of the
Master’s project.

The structure of this thesis is as follows. In Chapter 1 the mathematical model of a flow is
discussed briefly, followed by the numerical model in Chapter 2. In Chapter 3 discussion of
iterative methods for solving the systems of equations arising from discretization is presented.
Domain decomposition is treated in Chapter 4, followed by the description of some testcases
in Chapter 5. Chapter 6 concludes this thesis with a discussion of the continuation of the
Master’s project.
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Mathematical model of a flow

2.1 Introduction

In Section 2.2 the physical conservation laws are discussed briefly. As far as additional physical
models are concerned we restrict ourselves to a short treatment of the turbulence model in
Section 2.3. In Section 2.4 the basic idea of wall functions boundary conditions at solid walls
will be discussed without going into details. In Section 2.5 the connection with X-stream is
given.

2.2 Basic transport equations

The conservation equations of mass, momentum, energy and chemical species for a multicom-
ponent system can be found in various publications, for example Post [21], Twerda [25] and
Verweij [27]. For the derivations of these equations we refer to standard textbooks on fluid
dynamics, for example Bird [2], Batchelor [1], Ferziger & Perić [6] or Wesseling [38].

The conservation equations are given for a Cartesian coordinate system (x 1, . . . , xd), where
d is the number of space dimensions. Boldface Latin letters denote vectors, for example,
x = (x1, . . . , xd). We will use Einstein’s summation convention: when a subscript is repeated
in a term, a summation of d terms is implied. For example, the divergence of a vector field u

is given by

∂uj

∂xj
=

d∑

j=1

∂uj

∂xj
. (2.1)

Conservation of mass

Consider a multicomponent mixture consisting of N s species with massfractions Yα, α =
1, 2, . . . , Ns,

∑Ns

α=1 Yα = 1. The velocity of the mixture u is related to the artificial velocities
of the individual components uα by

u =

Ns∑

α=1

Yαuα .

The difference between uα and u is called the diffusion velocity of species α,

Uα = uα − u .
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The density of the mixture is denoted by ρ.
The conservation law of mass or the so-called continuity equation reads

∂ρ

∂t
+
∂(ρuj)

∂xj
= 0, (2.2)

where uj is the velocity of the mixture in j-direction.

Conservation of momentum

The momentum equations express the conservation of momentum of the flow. They read

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
=
∂σij

∂xj
+

Ns∑

α=1

(ρYαf
b,α
i ) ,

where σij is the stress tensor and f b,α
i is the body force per unit mass on species α in i-

direction. For Newtonian fluids σij is given by the following constitutive relation:

σij = −pδij + τij
= −pδij + 2µsij − (2

3µ− κbulk)skkδij ,
(2.3)

where p is the pressure, δij the Kronecker delta, µ the dynamic viscosity, κbulk the bulk
viscosity, τij the shear stress tensor and sij the rate-of-strain tensor, which reads

sij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
.

The bulk viscosity κbulk will be neglected. For each species α we will choose

f b,α
i = gi ,

where gi is the gravitational acceleration in i-direction. Using this assumption the momentum
equations becomes:

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
= −

∂p

∂xj
+
∂τij
∂xj

+ ρgi. (2.4)

The equations given by (2.4) and (2.3) are called the Navier-Stokes equations of motion.

Conservation of energy

Most of the time the fluid cannot be taken as isothermal, and conservation of energy must be
taken into account. The energy equation is given by

∂(ρE)

∂t
+
∂(ρujE)

∂t
=
∂(uiσij)

∂xj
−
∂qj
∂xj

+

Ns∑

α=1

(ρYαuif
b,α
i ) + Srad ,

where E is the total energy per unit mass, given by

E = e+
1

2
uiui ,
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where e is the internal energy and 1
2uiui the kinetic energy. The variable qj is the energy flux

in j-direction and Srad the radiative source term. Rewriting the energy equation in terms of
the enthalpy h, defined as

h = e+
p

ρ
,

evaluating σij and substituting f b,α
i = gi yields

∂

∂t
(ρh+

1

2
ρuiui − p) +

∂

∂xj
[ρuj(h+

1

2
uiui)] =

∂(τijui)

∂xj
−
∂qj
∂xj

+ ρuigi + Srad .

Now there will be made some assumptions considering the terms of the enthalpy energy
equation above.

The heat flux (minus the radiation heat) can be simplified by

qj = −
λ

cp

∂h

∂xj
,

where λ is the thermal conductivity and cp the specific heat at constant pressure. For Mach
numbers (|u|/c, with c the local speed of sound) smaller than 0.3, the flow is almost in-
compressible and terms with the kinetic energy 1

2uiui can be neglected. Also neglecting the
viscous dissipation term ∂(τijui)/∂xj and the gravitational term ρuigi, reduces the enthalpy
energy equation to

∂(ρh − p)

∂t
+
∂(ρujh)

∂xj
=

∂

∂xj

(
λ

cp

∂h

∂xj

)
+ Srad . (2.5)

Conservation of chemical species

The mass conservation law for a specie α is given by

∂(ρYα)

∂t
+
∂(ρujYα)

∂xj
= −

∂

∂xj
[ρYα(Uα)j ] + Sα,reac ,

where Sα,reac is a source (or sink) term representing the chemical reactions. In this equation
the multicomponent diffusion flux ρYα(Uα)j can be rewritten using Fick’s law,

ρYα(Uα)j = −ρDα
∂Yα

∂xj
,

where Dα is the diffusion coefficient of species α. Now the conservation equation of chemical
species becomes

∂(ρYα)

∂t
+
∂(ρujYα)

∂xj
=

∂

∂xj

(
ρDα

∂Yα

∂xj

)
+ Sα,reac . (2.6)

Note that this equation only has to be solved for Ns−1 species, because YNs = 1−
∑Ns−1

α=1 Yα.
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State equations

We have obtained a total of 5+Ns conservation equations: one for mass, three for momentum
(one for each coordinate direction), one for energy and Ns for chemical species. In total there
are 7 + Ns unknowns: ρ, uj (j = 1, 2, 3), p, h, e and Yα (α = 1, 2, . . . , Ns). The set of
equations is closed by two equations of state. For a gas the hydrodynamic equation of state
can be used, which is derived from the ideal gas law

p = ρR0T

Ns∑

i=α

Yα

Mα
,

where R0 is the universal gas constant and Mi the molar mass of species i. The second
equation relates the sensible enthalpy to the temperature,

hsens =

Ns∑

α=1

(∫ T

Tref

cp,α(θ)dθ

)
Yα ,

where Tref is a reference temperature, and cp,α the specific heat at constant pressure for species
α. we have choosen the reference enthalpy and temperature to be zero. This equation is called
the caloric equation of state.

General form of the conservation equations

The general form of the conservation equations of mass, momemtum, energy and chemical
species reads

∂(ρφ)

∂t
+
∂Fj

∂xj
= Sφ , (2.7)

where Fφ,j is the total flux of quantity φ in xj direction. The total flux is the sum of the
convective and the diffusive flux,

Fj = F con
j + F dif

j = ρujφ− Γφ
∂φ

∂xj
, (2.8)

where Γφ is the effective transport coefficient. For example for the continuity equation φ = 1,
Γφ = 0 and Sφ = 0.

2.3 Turbulence model

For sufficiently large Reynolds numbers flows show rapid apparently random fluctuations.
Such flows are called turbulent. For an introduction to turbulence see for example Nieuw-
stadt [18].

The timedependent Navier-Stokes equations still apply to turbulent flows and solving this
coupled set of equations for the flow would give a complete description of the fluid behaviour,
including the small-scale turbulence effects. However, a turbulent flow exhibits on a broad
range of length and time scales, and because of this a numerical solution of the complete set
of time-dependent conservation equations resolving all time and length scales is far beyond
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the current computer capacity when applied to most applications. In engineering, one is
fortunately not always interested in the instantaneous values of the flow variabeles, but most
of the time in statistical values, such as time-averaged values.

2.3.1 Reynolds and Favre decomposition

Now two decompositions of the quantity φ will be discussed: Reynolds decomposition and
Favre decomposition.

Reynolds decomposition

For a turbulent flow we split a quantity φ into a mean part and a fluctuating part,

φ = φ̄+ φ′ .

This decomposition is usually called the Reynolds decomposition. The Reynolds conditions
are defined by

(i) f + g = f + ḡ ,

(ii) αf = αf̄ ,

(iii)
∂f

∂s
=
∂f̄

∂s
,

(iv) fg = f̄ ḡ ,

where f and g are fluctuating quantities and α a constant.

The three most pertinent ways are to define the average φ̄ are time averaging, spatial
averaging and ensemble averaging. Time average is appropriate for stationary turbulence,
spatial average for homogeneous turbulence, and ensemble average is the most general type
of averaging.

In practice all problems involve inhomogeneous turbulence and often the bulk flow is said
to be stationary. That is the reason why very often time averaging is used,

φ̄T (x, t) =
1

T

∫ T/2

−T/2
φ(x, t+ τ)dτ .

A problem of the above definition is that it does not satisfy Reynolds condition (iv). Another
definition of the average that does satisfy all Reynolds conditions is ensemble averaging,

φ
E
(x, t) = lim

Ne→∞

1

Ne

Ne∑

i=1

φ(i)(x, t) ,

where Ne is the total number of turbulence-experiments and φ(i)(x, t) a realization in the
i-th experiment. Using the so called ergodic hypothesis for a stationary turbulent flow it is
assumed that

lim
T→∞

φ
T

= φ
E
.
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Favre decomposition

For turbulent flows with density variations due to temperature effects it is customary to use
density weighted or Favre averaged quantities. The Favre decomposition for a quantity φ
reads

φ = φ̃+ φ′′ ,

where the Favre average φ̃ is defined by

φ̃ =
ρφ

ρ̄
. (2.9)

The main advantage above the ordinary Reynolds decomposition is that explicit density
correlations are avoided in the averaged transport equations.

Relations

With the Reynolds conditions one can derive the relations

¯̄f = f̄ , ˜̃f = f̃ , f ′ = 0 , f̃ ′′ = 0 , f ′′ = f̄ − f̃ , ρf ′′ = 0 .

It follows that

fg = f̃ g̃ + f ′g′ ,

ρfg = ρ̄(f̃ g̃ + f̃ ′′g′′) = ρ̄f̃ g̃ + ρf ′′g′′ .

2.3.2 Reynolds averaged transport equations

Now Reynolds averaging combined with Favre decomposition will be applied to the conser-
vation equations given in Section 2.2.

Conservation of mass

Taking the mean of the continuity equation (2.2) and using the Reynolds conditions gives

∂ρ̄

∂t
+
∂(ρuj)

∂xj
= 0 . (2.10)

With ρuj = ρ̄ũj by (2.9) this equation becomes

∂ρ̄

∂t
+
∂(ρ̄ũj)

∂xj
= 0 . (2.11)

Conservation of momentum

Reynolds averaging the Navier-Stokes equations (2.4) and using Favre decomposition gives

∂(ρ̄ũi)

∂t
+

∂

∂xj
(ρ̄ũiũj + ρ̄ũ′′i u

′′
j) = −

∂p̄

∂xj
−
∂τ̄ij
∂xj

+ ρ̄gi ,
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where

τ̄ij = −µ

(
∂ūi

∂xj
+
∂ūj

∂xi

)
+

2

3
µ
∂ūi

∂xj
δij .

This equations are called the Reynolds averaged Navier-Stokes equations.

Conservation of energy

Reynolds averaging the enthalpy energy equation (2.5) using Favre decomposition yields

∂(ρ̄h̃)

∂t
+

∂

∂xj
(ρ̄ũj h̃+ ρ̄ũ′′jh

′′) =
∂

∂xj

(
λ

cp

∂h̄

∂xj

)
+ S̄rad . (2.12)

Conservation of species

Reynolds averaging the equation of chemical species (2.6) using Favre decomposition results
in

∂(ρ̄Ỹα)

∂t
+

∂

∂xj
(ρ̄ũj Ỹα + ρ̄u′jY

′
α) =

∂

∂xj

(
ρDα

∂Ỹα

∂xj

)
+ S̄α,reac . (2.13)

The terms ρ̄ũ′′i u
′′
j (the so called Reynolds stresses), ρ̄ũ′′jh

′′ and ρ̄ũ′′jY
′′
α introduced by the

Reynolds decomposition are unknown. In order to close the problem we need a turbulence
model to evaluate the unknown terms. A survey of turbulence modeling can be found in for
example Wilcox [39].

There are four main turbulence models: algebraic (or zero-equation) models, one-equation
models, two-equation models and second-order closure (or Reynolds stress) models. By def-
inition, a n-equation model signifies a model that requires solution of n additional partial
differential equations (PDEs). All the n-equation models are based on the Boussinesq closure
hypothesis, which reads for the Reynolds decomposition using Favre decomposition

−ρ̄ũ′′i u
′′
j = 2µts̃ij −

2

3
δij(ρ̃k̃ + µts̃kk) ,

where µt is the (dynamic) eddy viscosity, s̄ij is the Favre averaged strain-rate tensor and

k̃ the turbulent kinetic energy, given by k̃ = 1
2 ũ

′′
i u

′′
i . In second-order closure models the

Boussinesq’s closure hypothesis is abandoned, and differential equations are formulated for
the individual components of the Reynolds stress tensor.

2.3.3 Standard k-ε turbulence model

In this subsection a popular two-equation turbulence model will be treated briefly, the so-
called k-ε model. This model performs especially well for isotropic turbulent pipe flows.

In the k-ε model the eddy viscosity is defined as

µt = Cµρk̃
2/ε̃ ,

where Cµ is an empirical constant and ε the turbulent dissipation per unit mass, defined by

ε =
µ

ρ̄

˜∂u′′i
∂xj

∂u′′i
∂xj

.
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The equations for k̃ and ε̃ read

∂ρ̄k̃

∂t
+
∂(ρ̄ũj k̃)

∂xj
=

∂

∂xj

[(
µ+

µt

σk

)
∂k̃

∂xj

]
+ Pk − ρ̄ε̃ ,

∂ρ̄ε̃

∂t
+
∂(ρ̄ũj ε̃)

∂xj
=

∂

∂xj

[(
µ+

µt

σε

)
∂ε̃

∂xj

]
+ Cε1Pk

ε̃

k̃
− Cε2

ρ̄ε̃2

k̃
,

where Pk is the production of kinetic energy, given by

Pk = −ρ̄ũ′′i u
′′
j

∂ũi

∂xj
.

The constants σk and σε are turbulent Prandtl numbers and Cµ, Ck and Cε empirical con-
stants. In an analogous way the unknown terms in the turbulent conservation equations of
energy (2.12) and chemical species (2.13) can be modeled by posing

ρ̄ũ′′jh
′′ = −

µt

σh

∂h̃

∂xj
,

ρ̄ũ′′jY
′′
α = −

µt

σα

∂Ỹα

∂xj
,

where σh and σα are turbulent Prandtl numbers.

2.4 Solid wall boundary conditions

Often the no-slip boundary condition is used near solid walls, which means that the velocities
of the flow tend to the wall-velocities. This is only valid near solid walls if the Reynolds
number is small, so viscous effects must be taken into account. Using the standard k-ε
turbulence model (see Section 2.3.3) this causes a problem, because this model is only valid
for high Reynolds numbers (Re > 5000).

One way to solve this problem is to use a low Reynolds number turbulence model. How-
ever, these models are computingly very expensive because very fine grids near the solid walls
are required. A more appropriate way to solve this problem is to use the so-called wall func-
tion method, which will briefly be discussed now.

Let y+ be a dimensionless distance to the wall, given by

y+ =
ρyuτ

µ
,

where uτ is known as the friction velocity which is related to the wall shear-stress τ w by

uτ =

√
τw
ρ
.

The boundary layer, starting from the solid wall can be split into three regions of interest,
i.e.

1. viscous sublayer, 0 < y+ < 5,
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2. buffer layer, 5 < y+ < 30,

3. inertial (fully turbulent) sublayer, 30 < y+ < 1000.

The nearest-wall grid point is often chosen in the inertial sublayer, and not in the viscous
sublayer. One reason for this is that the viscous sublayer is generally not a region of our
interest. Another reason is that having a grid point in this layer will cause numerical problems
because of stretched grid cells.

The classical law of the wall, which is valid for the inertial sublayer, reads

U+ =
1

κ
ln y+ +B ,

with κ and B dimensionless empirical constants. The constant κ is called the Von Kármán
constant. Near the solid wall convection and diffusion of k and ε is neglected by the argu-
ment of local equilibrium between production and destruction. This leads to the following
expressions of k and ε in the wall region,

k =
u2

τ√
Cµ

, ε =
u3

τ

κy
.

The wall function for the enthalpy can be given by

qw = ρuτ
h− hw

σh
U+ + Pj ,

where qw is the wall heat flux, hw the enthalpy at the wall and Pj given by

Pj =
π/4

sin(π/4)

(
A+

κ

)1/2
σh

σh,lam
(σh,lam − σh) ,

where A+ is the empirical dimensionless Van Driest constant, and σ h,lam the laminar Prandtl
number.

2.5 Connection with X-stream

In X-stream all the basic conservation equations as discussed in Section 2.2 can be solved
for the glass melting process and the combustion process. Both two-equation and second-
order closure turbulence models are integrated. For turbulent flows Reynolds decomposition
is used and wall functions are applied. The other main physical models in X-stream are:
combustion, radiation, batch, electrical boosting, foam, bubbling, stirring, volatilization and
refractory corrosion.
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Finite volume discretization

3.1 Introduction

Generally three discretization methods can be distinguished for discretising partial differential
equations (PDEs): the finite difference method, the finite element method and the finite
volume method. In this chapter the Finite Volume (FV) method will be discussed, which is
in great detail treated in for example Patankar [20], Ferziger & Perić [6] or Wesseling [38].

In this chapter we will closely follow Wesseling [38] and entirely adopt his notation. For
simplicity we will use a Cartesian tensor notation: summation takes place over Greek indices
that occur twice in a term or product, for example

uα,α =

d∑

α=1

∂uα

∂xα
.

In Section 3.2 first the computing grid is described, which will be used throughout this
chapter. In Sections 3.3 and 3.4 respectively the discretizations of the general convection-
diffusion equation and the incompressible Navier-Stokes equations are described. In Section
3.5 the connection with X-stream is given.

3.2 The computing grid

In this chapter we restrict ourselves to the two-dimensional case for sake of simplicity. Gen-
eralisation to three dimensions is straightforward. We will use a cell-centred uniform grid,
see Figure 3.1. The rectangular domain Ω = L1 ×L2 is subdivided in rectangular cells of size
h1 × h2. The computing grid G is the set of cell-centres:

G = {x ∈ Ω : x = xj , j = (j1, j2) , jα = 1, 2, . . . ,mα , mα = Lα/hα} ,

with xj defined by

xj = (x1
j , x

2
j ) , x1

j = (j1 − 1/2)h1 , x2
j = (j2 − 1/2)h2 .

The cell with center xj is denoted by Ωj . Define

e1 ≡ (1/2, 0) , e2 ≡ (0, 1/2) .
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h1

h2

x1

x2

P

N

S

EW

Figure 3.1: A cell-centred grid. (• grid points; – finite volume boundaries.)

The value of a quantity ϕ in xj is denoted by ϕj , and ϕj+e1 is located at a cell face, namely
at

xj+e1 = (j1h1, (j2 − 1/2)h2) .

The cell at the ‘east’ side of Ωj is designated by Ωj+2e1 .

3.3 The convection-diffusion equation

3.3.1 Problem description

Taking ρ = 1, dropping the subscript of Γϕ, and renaming Sφ by q, the convection-diffusion
equation given by equation (2.7) and (2.8) can be written as

∂ϕ

∂t
+ (uαϕ),α − (Γϕ,α),α = q , x ∈ Ω ⊂ IRd , 0 < t ≤ T .

with T a given time. We assume that this equation is linear, with the quantity ϕ to be the
only unknown.

The dimensionless form of the above equation is

∂ϕ

∂t
+ Lϕ = q , Lϕ ≡ (uαϕ),α − (εϕ,α),α , (3.1)

where ε ≡ Pe−1 with Pe the Péclet number, given by

Pe =
UL

Γ
,

with L and U typical length and velocity scales.
The convection-diffusion equation is a so-called parabolic equation. However for 0 < Γ �

1, or Pe � 1 hyperbolic aspects are dominant. A kind of mixture of parabolic and hyperbolic
behaviour is typical for the convection-diffusion equation.

Initial conditions

The following initial condition is required at time t = 0, i.e.

ϕ(0,x) = ϕ0(x) , x ∈ Ω .
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Boundary conditions

One has to specify suitable boundary conditions (BCs) in order that the problem is well-
posed. First of all the BCs have to be chosen such that the problem has an unique solution.
For a second order equation, such as the general convection diffusion equation, this means
that we have to prescribe exactly one BC at each part of the domain Ω. Second, the problem
is well-posed if small perturbations in the data do not cause large changes in the solution.
Suitable boundary conditions for ε� 1 are given by, see Wesseling [38],

ϕ(t,x) = fin(t,x) , x ∈ ∂Ωin (Dirichlet) ,

ϕ(t,x) = fout(t,x) , x ∈ ∂Ωout (Dirichlet) , or ,

∂ϕ(t,x)

∂n
= gout(t,x) , x ∈ ∂Ωout (Neumann) ,

where n is the outward unit normal on the boundary ∂Ω, ∂Ω in is the inflow boundary (where
ujnj < 0) and ∂Ωout the outflow boundary (ujnj > 0).

3.3.2 Spatial and temporal discretization

Spatial discretization

We will now integrate Equation (3.1) over a cell Ω j . Integrating the first term in the left-hand
side (LHS) of (3.1) and using the midpoint rule gives

∫

Ωj

∂ϕ

∂t
dΩ ≈ h1h2

∂ϕj

∂t
.

Integrating the second term in the LHS of (3.1) and using Gauß’ divergence theorem yields

Lhϕj ≡
∫
Ωj

LϕdΩ =
[∫ x j+e1+e2

x j+e1−e2
−
∫ x j−e1+e2
x j−e1−e2

]
(u1ϕ− εϕ,1)dx2

+
[∫ x j+e1+e2

x j−e1+e2
−
∫ x j+e1−e2
x j−e1−e2

]
(u2ϕ− εϕ,2)dx1

= F 1|j+e1

j−e1
+ F 1|j+e2

j−e2
,

where Lh is defined as a discrete operator, and F α is the (numerical) flux. The surface
integrals in the above equation will be approximated by the midpoint rule. The diffusive flux,
for example at the ‘east’ side, can be approximated by

∫ x j+e1+e2

x j+e1−e2

(−εϕ,1)dx2 ≈ −ε(ϕj+2e1 − ϕj )
h2

h1
.

The convective flux can be approximated by an interpolation scheme, as will be described in
section 3.3.3.

Integrating the source term in the RHS of Equation (3.1) yields

∫

Ωj

qdΩ ≈ q̂j ≡ h1h2q(xj ) .
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Discretization in time

Applying spatial discretization to Equation (3.1) results in

dϕj

dt
+ Lhϕj = q̂j .

For discretization in time one can for example choose a first order (implicit) Euler back-
wards scheme,

(ϕ
(n)
j − ϕ

(n−1)
j )/τ + Lhϕ

(n)
j = q̂

(n)
j , n = 1, . . . , N , N ≡ T/τ ,

where τ is the time step.

3.3.3 Interpolation practices

Central and upwind discretization

There are various interpolation methods for approximating the convective flux. One way is
to use a central difference scheme (CDS), which reads for a uniform grid,

(uϕ)cds,j+e1 ≈
1

2
uj+e1(ϕj + ϕj+2e1) .

The CDS is O(h2
α) accurate. Another way is to use a upwind difference scheme (UDS), and

approximate uϕ by the value of the node upstream, i.e.

(uϕ)uds,j+e1 ≈




uj+e1ϕj if uj+e1 > 0 ,

−uj+e1ϕj+2e1
if uj+e1 ≤ 0 .

The UDS is O(hα) accurate.

Spurious wiggles

Writing the convection-diffusion equation in non-conservation form one can formulate te so-
called maximum principle, which can give us a priori information. By the sign of the source
term this principle tells us if the exact solution has a local maximum or minimum. If this is
true, wiggles in the numerical solution must be regarded as numerical artefacts.

Discretization of the convection-diffusion equation leads to a FV scheme. If this scheme
is of the so-called positive type, which can be verified by the scheme’s stencil, a discrete
maximum principle can be formulated that gives us the conditions for which numerical wiggles
may occur.

One can verify that for the convection-diffusion equation with a constant velocity field
the UDS is positive for all Péclet numbers and satisfies the discrete maximum principle, so
with this scheme no wiggles occur. On the other hand one can verify that the central scheme
introduces wiggles for

pj+eα
≡

|uj+eα
|hα

ε
≥ 2 , (3.2)

where p is called the dimensionless mesh Péclet number.
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Hybrid scheme

In order to have a discretisation scheme that doe not introduce wiggles, an option is to
choose an UDS. However, this is not a favourable option because this scheme is only first
order accurate and it also introduces numerical diffusion. Because the central scheme is
second order it is a good idea to use the upwind scheme for regions where p > 2 and the
central scheme elsewhere. Doing this we get the so-called hybrid difference scheme (HDS),
see for a more detailed description Patankar [20] or Wesseling [38],

(uϕ)hds,j+eα
≈ s(pj+eα

)(uϕ)uds,j+eα
+ (1 − s(pj+eα

))(uϕ)cds,j+eα
,

where s(pj+eα) is a switch function with the mesh Péclet number defined by (3.2).
For iterative convergence in nonlinear cases it is advisable to choose s(p) such that it

switches smoothly between 0 and 1. Furthermore one can show that the HDS is O(hα)
accurate.

Defect correction

Defect correction (also known as deferred correction) is a iterative method to improve the
accuracy of a lower order discretization, without having to solve for a higher order discretiza-
tion. More details on defect correction can be found in Wesseling [38]. Let the system
of equations corresponding to a lower and a higher order discretization for the stationary
convection-diffusion equation be denoted by, respectively,

L̄hϕ̄h = q̄h , Lhψh = qh .

Defect correction is given by

L̄hϕ
(0)
h = q̄h ,

L̄hϕ
(k)
h = qh + β(L̄h − Lh)ϕ

(k−1)
h , k = 1, . . . , ,

where 0 ≤ β ≤ 1 is a blending factor. If L̄h is first order accurate (for example UDS) and Lh

is a second order scheme (for example CDS), one can show that for β = 1 ϕ
(1)
h is of second

order accuracy.
Compared to a second order scheme, defect correction has the advantage that the resulting

system has better properties when solved with an iterative solver.

3.3.4 Convergence, consistency and stability

In order that the numerical scheme used with the temporal discretization is a good scheme,
it must be convergent. How this can be accomplished will now be discussed briefly.

Global and local truncation error

Truncation errors are errors that are caused by truncation (to truncate means to shorten by
cutting off) of an infinite process. The process we consider is where the maximum mesh size
goes to zero.
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The global truncation error e(n) is defined by

e(n) ≡ ϕ(n)
ex − ϕ(n) ,

where ϕ
(n)
ex is the algebraic vector which contains the exact solutions at the gridpoints, at

time tn. The local truncation error r (n) is defined by

r(n) ≡ Lhe(n) ,

where Lh is a discrete operator.

Convergence, consistency and stability

Let ‖ · ‖ be some norm. A numerical scheme is convergent if ‖e (n)‖ ↓ 0, n = 1, . . . , T/τ for
h ↓ 0 and τ ↓ 0. A scheme is called consistent if ‖r (n)‖ ↓ 0, n = 1, 2, . . . , T/τ and h ↓ 0.

Let δ(0) be a hypothetical arbitrary perturbation of ϕ(0), and let δ(n) be the resulting
perturbation of ϕ(n). Now a numerical scheme is called stable if δ (n) remains bounded as
n→ ∞ for all δ(0). Two useful definitions of stability are so-called zero-stability and absolute
stability. A scheme is called zero-stable if there exists a bounded function C(T ) and a function
τ0(h) such that for arbitrary δ(0)

‖δ(T/τ)‖h ≤ C(T )‖δ(0)‖h

for all τ ≤ τ0(h) and all h ≤ h0 for some fixed h0. The naming ‘zero-stability’ refers to the
fact that the limit h ↓ 0 is considered. A scheme is called absolutely stable if there exists a
constant C and a function τ0(h) such that

‖δ(n)‖h ≤ C‖δ(0)‖h

for h fixed, all n > 0 and all τ ≤ τ0(h). Absolute stability differs from zero-stability by
the fact that h is fixed. It is favourable te have zero-stability because when the scheme is
consistent (which is often not so difficult to prove) we can apply Lax’s equivalence theorem,
which reads

zero-stability + consistency ⇒ convergence ,

zero-stability ⇐ convergence .

The main difficulty is to prove zero- or absolute stability. But under certain conditions one
can use Fourier or Von Neumann stability analysis to prove stability.

3.4 The incompressible Navier-Stokes equations

3.4.1 Problem description

Incompressible flow

The velocity field u(t,x) of the flow satisfies

u(t,x) =
∂x(t,y)

∂t
. (3.3)
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A physical property φ of a material particle is called a material property. The time derivative
of a material property is called the total derivative, and is denoted by Dφ/Dt. All material
particles have some φ, so φ is defined everywhere in the flow, and therefore is a scalar field
φ(t,x). We have

Dφ

Dt
=

∂

∂t
φ[t,x(t,y)] =

∂φ

∂t
+
∂xα(t,y)

∂t

∂φ

∂xα
,

which can be written with (3.3) as

Dφ

Dt
=
∂φ

∂t
+ uαφ,α .

An incompressible flow for a constant density is a flow for which

Dρ

Dt
= 0 .

Combining this with the dimensionless form of the continuity equation (2.1) this results in

uα
,α = 0 . (3.4)

For incompressible flow with variable density Dρ/Dt 6= 0, (ρuα),α = 0 is applied.

The Navier-Stokes equations

The dimensionless incompressible Navier-Stokes equations for a Newtonian rheology read:

∂(ρuα)

∂t
+ (ρuαuβ),β = −p,α + σαβ

,β + fα, σαβ = Re−1(uα
,β + uβ

,α) , (3.5)

where f is a body force, σαβ is the deviatoric stress tensor, and Re the dimensionless Reynolds
number, defined by

Re =
ρ0UL

µ
,

where ρ0 is a suitable value for the density, U respectively L typical length and velocity scales,
and µ is the dynamic viscosity.

Note that the Navier-Stokes equations are nonlinear, by the second term in the LHS of
Equation (3.5).

Initial conditions

For the momentum equations the following initial condition is required:

uα(0,x) = wα(x) , x ∈ Ω .

No-slip condition

At a solid surface we have the no-slip condition

uα(t,x) = vα(t,x) , x ∈ Ωsw ,

with vα(x) the local wall velocity.
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Free surface or symmetry plane conditions

At a free surface the tangential stress components are zero. Consider for the two-dimensional
case the special case that the free surface is fixed at y = a = constant. In that case the
normal velocity and the tangential stress σαβ, α 6= β are zero:

v(t, x, a) = 0 , uy(t, x, a) = 0 .

These conditions may also arise at a plane of symmetry.

Inflow conditions

Because the momentum equations resemble convection-diffusion equations for the velocities,
we use the same inflow BCs as in Section 3.3.1, i.e. Dirichlet conditions.

Outflow conditions

At the outflow boundary, apart from the pressure there is usually not enough physical infor-
mation available on which to base a sufficient number of BCs. Because of the resemblance
of Equation (3.5) to the convection-diffusion equation, it can be shown directly by applying
singular perturbation analysis that the ‘wrong’ information generated by the artificial outflow
BC propagates upstream by a distance of O(Re−1). So for highly turbulent flow, Re � 1, the
outflow condition does not have significantly influence on the solution, but for laminar low
Reynolds flow this is not the case. In order that the problem is well-posed it is advisable to
choose a (homogeneous) Neumann outflow BC for the stationary case, see Wesseling [38].

Compatibility condition

At each part of the boundary ∂Ω one has to prescribe exactly one boundary condition. If for
each part a normal velocity uαnα(t,x) is prescribed with n the outer normal, then it follows
from Equation (3.4) and Gauß’ theorem that the compatibility condition must be satisfied:

∫

∂Ω
unor(t,x)dS = 0 .

One can show that in order for Equations (3.5) to be well-posed, the normal velocity compo-
nent of the prescribed initial velocity field u 0(x) and the prescribed normal velocity compo-
nent must match at t = 0,

uα
0 (x)nα = unor

α (0,x)nα.

on parts of ∂Ω where the normal velocity is prescribed.

3.4.2 Discretization on a colocated grid

Colocated and staggered grids

There are two ways to arrange the unknowns on the grid: colocated arrangement and stag-
gered arrangement, see Figure 3.2. When all discrete unknowns are located in the cell-centres,
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Staggered gridColocated grid

: scalar variables +
velocities position and CV

: scalar variables position and CV

: v-velocity position and CV

: u-velocity position and CV

Figure 3.2: A twodimensional domain with a colocated grid arrangement (left) and a staggered
grid arrangement (right). (CV: control volume or cell.)

the grid is called a colocated grid (colocate = to locate together). When the pressure is lo-
cated in the cell-centres and the velocity components are located at the cell face centres, the
grid is called staggered.

We will restrict ourselves to a colocated grid and to incompressible flow with constant
density ρ = 1.

Discretization of the continuity equation

FV discretization of Equation (3.4) gives
∫

Ωj

uα
,αdΩ ≈ h2u

1|j+e1

j−e1
+ h1u

2|j+e2

j−e2
= 0 . (3.6)

Because the velocity components are situated in the cell centres, the cell face values in the
above equation need to be interpolated, e.g. by applying a CDS,

h2u
1|j+2e1

j−2e1
+ h1u

1|j+2e2

j−2e2
= 0 .

Discretization of the momentum equations

For simplicity we take f = 0 in (3.5), so we have to discretize

∂uα

∂t
+ F̄αβ

,β + p,α = 0 , F̄αβ = uαuβ − σαβ .

FV discretization yields
∫

Ωj

{
∂uα

∂t
+ F̄αβ

,β + p,α}dΩ ≈ h1h2

∂uα
j

∂t
+ h2F̄

α1|j+e1

j−e1
+ h2F̄

α2|j+e2

j−e2
+ hγp|

j+eα

j−eα
, (3.7)
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with γ 6= α. Just as for the discretization of the continuity equation the cell face values have
to be interpolated between cell centre values. For the pressure this is done as

pj+eα
≈

1

2
(pj + pj+2eα

) .

When α = β, the deviatoric viscous stress is approximated by

(σαα)j+e1 = (2Re−1uα
,α)j+e1 ≈ 2Re−1

j+e1
(uα

j+2e1
− uα

j )/hα .

For the inertia terms one can use the CDS,

(uαuβ)j+eβ
≈

1

2
[(uαuβ)j + (uαuβ)j+2eβ

] .

Spurious checkerboard pattern

Using the CDS to approximate the terms in Equations (3.6) and (3.7), causes a spurious
checkerboard pattern. Assuming that Re = constant and neglecting the boundary conditions,
one can show that

uα
j = (−1)j1+j2 exp{−

12

Re
(h−2

1 + h−2
2 )t} , p = (−1)j1+j2 ,

is a solution of the discretised Navier-Stokes equations (3.7). This shows that if Re � 1 the
checkerboard patron is damped slowly for the velocity, but not at all for the pressure. A way
to avoid checkerboard patterns is to use a staggered grid instead of a colocated grid. If we
do not want this, another option is to use the pressure-weighted interpolation method, which
will be discussed next.

Pressure weighted interpolation method

The pressure weighted interpolation (PWI) method (or Rhie & Chow interpolation after its
inventors) is to approximate the cell face velocities as follows,

uα
j+eα

=
1

2
(uα

j + uα
j+2eα

) + (
hβ

4aα
∆αp)|j+2eα

j
(no summation) , (3.8)

where ∆αpj = pj+2eα
− 2pj + pj−2eα

, β 6= α. See Appendix A.1 for a derivation. This
discretization method is O(h2

1 +h2
2) accurate. The second term in the RHS can be interpreted

as a regularizing term that excludes spurious patterns.
Substitution of (3.8) in (3.6) result in the following discretization of u α

,α with the PWI
method:

+ h2u
1|j+2e1

j−2e1
+ h1u

2|j+2e2

j−2e2

+ h2
2[(

1

2a1
∆1p)j+2e1 − (

1

a1
∆1p)j + (

1

2a1
∆1p)j−2e1 ]

+ h2
1[(

1

2a2
∆2p)j+2e2 − (

1

a2
∆2p)j + (

1

2a2
∆2p)j−2e2 ] = 0 .

(3.9)

See Appendix A.2 for a derivation of this equation.
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Boundary conditions and pressure

A disadvantage of the PWI method is that it requires some further specification of conditions
at boundaries, beyond what is given for the differential equations. Let (j = 1, j 2), so that the
‘west’ face of Ωj is part of the boundary. When the PWI method (3.8) is applied in (3.6) and
(3.7), pj−2e1 occurs, referring to a grid point outside the grid G. This value is approximated
by extrapolation from the interior,

pj−2e1 = 2pj − pj+2e1 ,

which is artificial since the differential equations are not accompanied by a boundary condition
for the pressure.

When the pressure distribution is required at the boundaries this can be obtained by
extrapolation from the interior, for example by

pj−e1 =
3

2
pj −

1

2
pj+2e1 .

For more details we refer to Wesseling [38].

Summary of equations

After spatial discretization, the following system of ordinary differential equations is obtained,

du

dt
+N(u) +Gp = b1(t) ,

Du + Cp = b2(t) ,
(3.10)

where N is a nonlinear algebraic operator arising from the discretization of the inertia and
viscous terms, G is a linear algebraic operator representing the discretization of the pressure
gradient, D and C are linear algebraic operators corresponding to the velocity terms and
pressure terms, respectively in the PWI discretization of the continuity equation. The terms
b1 and b2 are source terms, arising from the boundary conditions and body forces. The system
(3.10) contains both differential and algebraic systems and is therefore called a differential-
algebraic system (DAS).

3.5 Connection with X-stream

In X-stream the governing equations are discretized with the FV method on a colocated
grid. The grid is structured and boundary-fitted, see for details Ferziger & Perić [6] or
Wesseling [38]. Defect correction is applied: upwind discretization is blended with central
discretization. The PWI method is used to resolve the checkerboard problem for solving the
(nondimensionless) incompressible Navier-Stokes equations.
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Iterative solution methods

4.1 Introduction

The algebraic systems arising from FV discretization are generally very large and sparse,
because many grid points are required for accuracy. Therefore iterative methods are more
efficient and demand far less storage than direct methods, especially for the three-dimensional
case.

In this chapter we restrict ourselves entirely to iterative methods. In Section 4.2 iterative
methods for solving linear equations are discussed, without going into details. In Section 4.3
iterative solution methods for solving the non-linear system for the stationary incompressible
Navier-Stokes equations will be discussed. In Section 4.4 the connection with X-stream is
given.

4.2 Methods for solving linear equation systems

There exists various methods for solving linear algebraic systems, each having their own
advantages and disadvantages. Is this section, first the principle of basic iterative methods
is discussed in Subsection 4.2.1. Next, a class of efficient solution methods called Krylov
subspace methods in Subsection 4.2.2. These methods combined with deflation are discussed
in Subsection 4.2.3. In Subsection 4.2.4 the SIP method is treated.

4.2.1 Basic iterative methods

Stationary iterative methods

Consider the linear algebraic n× n system

Ay = b . (4.1)

Let a new iterand y(k) be computed by

y(k) = By(k−1) + c , (4.2)

where the matrix B and the vector c remain to be chosen. We want that the iterative method
is convergent, i.e. limk→∞ y(k) = y, so it is obviously necessary that y is a stationary point
of the iteration process (4.2). Therefore we have y = By + c, and hence c = (I − B)A−1b.
Rewriting (4.2) yields

My(k) = Ny(k−1) + b , (4.3)
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with M ≡ A(I−B)−1 and N ≡MB, so M−N = A, i.e. M−N is a splitting of A. Equation
(4.3) can be rewritten as

Mδy = b −Ay(k−1) , y(k) = y(k−1) + δy . (4.4)

Application of under- or overrelaxation with relaxation parameter α means that the RHS of
the first equation in (4.4) is multiplied by α, so

Mδy = α(b −Ay(k−1)) , y(k) = y(k−1) + δy . (4.5)

A method to solve (4.1) of the form (4.3), (4.4) or (4.5) is called a basic iterative method
(BIM).

Convergence and stop criterion

Let I denote the n× n identity matrix, then we have

B = M−1N = I −M−1A ,

and the global truncation error e(k) ≡ y − y(k) statisfies

e(k) = Be(k−1) ,

so convergence of a BIM is governed by B, which is called the iteration matrix. We have

‖e(k)‖ ≤ ‖Bk‖‖e(0)‖ ,

where ‖ · ‖ denotes a certain norm. Let σ(B) denote the eigenvalues of B and define the
spectral radius of B by ρ(B) ≡ max{|σ(B)|}. One can show that the spectral radius satisfies

ρ(B) = lim
k→∞

‖Bk‖1/k ,

and hence we see that we have convergence if and only if ρ(B) < 1. The smaller ρ(B), the
faster the convergence.

When the difference between two successive iterates is used as a stop criterion one can show
that this does not give a good indication of the precision achieved. It is better to derive a
stop criterion from the k-th residual, defined as r (k) ≡ b − Ay(k). For example, a suitable
stop criterion could be

‖r(k)‖/‖b‖ < ε ,

for a certain fixed tolerance ε > 0.

Convergence for the case that A is a special matrix

If the matrix A satisfies certain conditions one can prove that the BIM (4.3) is convergent.
The first condition is that the splitting

A = M −N
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is a so-called regular splitting, which is by definition the case if M −1 ≥ 0 and N ≥ 0. We will
call the splitting convergent if (4.3) converges. The other condition is that A is a so-called
Stieltjes matrix or M-matrix, which is defined as follows. The n × n matrix A is called an
M-matrix if aij ≤ 0, i 6= j, i, j = 1, 2, . . . , n, A non-singular and A−1 ≥ 0. Now one can prove
that the BIM (4.3) is convergent if the splitting A = M −N is regular and A is a M-matrix.

Often, it is not so easy to verify that A is a M-matrix, because the condition A−1 ≥ 0
is hard to check. Fortunately, one can prove the M-matrix property indirectly. If A is a
so-called K-matrix which is irreducible one can prove that A is a M-matrix. The definition
of a K-matrix is as follows. A matrix A is called a K-matrix if

aii > 0, i = 1, 2, . . . , n ,

aij ≤ 0, i, j = 1, 2, . . . , n, j 6= i ,

and ∑

j

aij ≥ 0, i = 1, 2, . . . , n ,

with strict inequality for at least one i. A matrix is called irreducible if the corresponding
system does not consist of subsystems that are independent of each other.

4.2.2 Krylov subspace methods

Define the computing work W to solve the linear system (4.1) as

W = O(Nα) ,

with N the total number of equations and α a certain number. Now it can be shown that
for BIMs, for discretizations of elliptic PDEs, in general α ≈ 2. This means that in general
BIMs converge slowly, but fortunately BIMs can be accelerated. There are two ways to do
this: multigrid acceleration and Krylov subspace acceleration. Multigrid methods bring α
down to the ideal case α = 1, but are in general more difficult to implement. For a survey
on (geometric) multigrid methods see for example Wesseling [37]. Krylov subspace methods
come close to α = 1 and are much easier to implement. A detailed survey on Krylov subspace
methods can be found in for example Golub & Van Loan [9], Saad [22] or Vuik [28] (in Dutch).

In this chapter we restrict ourselves entirely to Krylov methods.

Basic idea of Krylov methods

Multiplying (4.3) by M−1 gives

y(k) = M−1Ny(k−1) +M−1b , (4.6)

and the exact solution y satisfies

y = M−1Ny +M−1b . (4.7)

When we subtract (4.7) from (4.6) we can write

y(k) − y = M−1N(y(k−1) − y) = (M−1N)k(y(0) − y) = (I −M−1A)k(y(0) − y) . (4.8)



28 4. Iterative solution methods

Define the polynomal of degree k by

pk(X) = (I −X)k , (4.9)

where X is a n×n matrix. By this we see that pk(0) = I, where ‘0’ denotes the n×n matrix
containing only zeros. Now we can write (4.8) as

y(k) = pk(M
−1A)(y(0) − y) + y ,

which can be written as

y(k) = y(0) + [I − pk(M
−1A)]A−1r(0) ,

= y(0) + [I − pk(M
−1A)](M−1A)−1M−1r(0) ,

= y(0) + qk−1(M
−1A)M−1r(0),

where the polynomal qk is defined as

qk(X) = [I − pk(X)]X−1 .

Note that qk(0) = I. So we can write the iterand y(k) as

y(k) = y(0) + qk−1(M
−1A)M−1r(0) ,

= y(0) + a0M
−1r(0) + a1(M

−1A)(M−1r(0)) + . . .

+ak−1(M
−1A)k−1(M−1r(0)) ,

where a0, a1, . . . , ak−1 are certain coeffients. So we see that

y(k) ∈ y(0) + span{M−1r(0),M−1A(M−1r(0)), . . . , (M−1A)k−1(M−1r(0))} .

The space
K(k)(A; r(0)) ≡ span{r(0), Ar(0), . . . , Ak−1r(0)}

is called the Krylov space of dimension k, belonging to A and r (0). For BIMs one has

y(k) ∈ y(0) +K(k)(M−1A;M−1r(0)) .

Methods that look for optimal approximations to y − y (0) in K (k)(A; r(0)) are called Krylov
subspace methods.

Preconditioning

Consider the BIM (4.3). This can be rewritten as

y(k) = M−1Ny(k−1) +M−1b = By(k−1) +M−1b ,

which is called a preconditioned Richardson’s iteration. The Richardson’s iteration can be
viewed as a technique for solving the system

(I −B)y = M−1A ,
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or equivalently by substituting B

M−1Ay = M−1b .

This system, which has the same solution as the original system, is called a preconditioned
system and M is called the (left) preconditioner. In literature the term preconditoner has
a double meaning. Besides referring to the preconditioning matrix, the entire BIM is often
called a preconditioner.

One requirement for M is that M−1x is inexpensive to solve. Another requirement is
that M−1 is spectrally equivalent to A−1. The preconditioner has to be chosen in such a
way that M−1A resembles more the identity matrix and therefore has a smaller condition
number than A, that is, κ(M−1A) ≡ λmax/λmin is significantly smaller than κ(A). Also the
preconditioner has te be chosen such that the eigenvalue spectrum of M −1A is more clustered
than the spectrum of A.

The preconditioned GCR method

For a general symmetric or nonsymmetric matrix A the generalized conjugate residual (GCR)
Krylov subspace method can be used to solve the linear system Ay = b. For the norm ‖ · ‖
we take the Euclidian norm, defined as

‖x‖2 ≡
√

(x,x) ≡ (x2
1 + . . .+ x2

n)1/2 .

The preconditioned GCR (PGCR) method is given by the following algorithm, see for example
Saad [22] or Wesseling [38].

Algorithm 4.1 (PGCR). Given a general symmetric or non-symmetric n× n matrix A, a
vector b, a preconditioner M , and an initial guess y 0 (Ay(0) ≈ b). This algorithm solves the
linear system Ay = b.

r(0) = b −Ay(0);
for k = 1, . . . , convergence do

Solve Ms(k) = r(k−1);

v(k) = As(k);

[v(k), s(k)] := orthonorm[v(k), s(k), {v(1), . . . ,v(k−1)}, {s(1), . . . , s(k−1)}];
β = (r(k−1),v(k));

y(k) = y(k−1) + βs(k);

r(k) = r(k−1) − βv(k);
end for

y ≈ y(k−1);

The routine orthonorm refers to the orthonormalization process used. It is left open in
the above algorithm, because there are several ways to do this. Three main orthonormalization
methods can be distinguished: modified Gram-Schmidt (MGS), reorthogonalized classical
Gram-Schmidt (RCGS) and Householder, see for example Vuik & Frank [29] or Vuik e.a
[34]. The MGS method is most common used and for this method the routine orthnonorm
becomes
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function [v, s] = orthonorm[v, s, {v(1), . . . ,v(k−1)}, {s(1), . . . , s(k−1)}]
for j = 1, . . . , k − 1 do

α = (v,v(j));

v := v − αv(j);

s := s − αs(j);
end for

v := v/‖v(k)‖2;

s := s/‖s(k)‖2;

Computational work

The orthonormalization process used in Algorithm 4.1 could make the PGCR algorithm ex-
pensive. First of all, the vectors v (1), . . . ,v(k) and s(1), . . . , s(k) need to be stored in memory
and with every iteration the memory usage increases. Secondly, the orthonormalization work
of the vectors increases with every iteration.

The storage and computing work can be reduced by applying the following techniques:

• Restarting: stop the PGCR algorithm after kres iterations and remove v(1), . . . ,v(kres)

and s(1), . . . , s(kres).

• Truncation: allow only ktrunc vectors vj and sj , and replace an old vector by a new one.

When restarting or truncation is applied the optimality property of the PGCR algorithm gets
lost.

Robustness and convergence

Inspection of the PGCR algorithm in combination with MGS orthonormalization shows that
break-down can occur if ‖v(k)‖2 = 0 or ‖s(k)‖2 = 0. This can happen if r(k−1) = r(k−2),
which is unlikely to happen in practice, or if the exact solution is reached, i.e. y (k−1) = y.
This means that the (P)GCR method is very robust.

Concerning convergence of Krylov subspace methods one can show that convergence is
monotone,

‖r(k)‖ ≤ ‖r(k−1)‖ .

The preconditioned CG method

In the special case that A is a symmetric positive definite (SPD) matrix, using the so-called
preconditioned conjugate gradient (PCG) method is less expensive than the PGCR method.
Compared to the PGCR method much literature on the PCG method can be found, see for
example Golub & Van Loan [9], Saad [22] or Wesseling [38]. The PCG method is given by
the following algorithm.

Algorithm 4.2 (PCG). Given a SPD n×n matrix A, a vector b, a SPD preconditioner M ,
and an initial guess y (0) (Ay(0) ≈ b), this algorithm solves the linear system Ay = b.
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r(0) = b −Ay(0);

Solve Mq1 = r(0);

s(0) = q1;
for k = 1, . . . , convergence do

α = (r(k−1), q1)/(As(k−1), s(k−1));

y(k) = y(k−1) + αs(k−1);

r(k) = r(k−1) − αAs(k−1);

Solve Mq2 = r(k);

β = (r(k), q2)/(r
(k−1), q1);

s(k) = q2 + βs(k−1);
q1 := q2;

end for

y ≈ y(k−1);

Computational work, robustness and convergence

Because no orthonormalization is needed, an iteration with the PCG method is far less ex-
pensive compared to the PGCR method, and less memory is required. Break-down does not
occur in computing α and β, because A and M are SPD. Therefore the PCG algorithm is
robust. Concerning convergence, one can show that

‖y(k) − y‖M−1A ≤ 2

[√
κ(M−1A) − 1√
κ(M−1A) + 1

]k

‖y(0) − y‖M−1A ,

where ‖x‖M−1A ≡
√

(M−1Ax,x).

4.2.3 Deflated Krylov subspace methods

The deflation method is originally proposed in Nicolaides [17]. In the late nineties this method
had a rebirth as an application for solving elliptic layered problems with extreme contrasts in
the coefficients, see for example Vuik et al. [30] or Vuik et al. [36]. The matrix of the system
arising from discretization was ill-conditioned because of the large jumps in the coefficients.
It was observed that solving the system with a conventional (preconditioned) Krylov subspace
method gave erratic convergence behaviour. Removing the smallest eigenvalues of the matrix
by the deflation technique solved this problem.

Now the basic idea of deflation will be discussed briefly.

Basic idea of deflation

Consider the linear algebraic n× n system

Ay = b , (4.10)

where A is an general matrix. Let P and Q be given by

P ≡ I −AZ(Y TAZ)−1Y T ,

Q ≡ I − Z(Y TAZ)−1Y TA ,



32 4. Iterative solution methods

where Z and Y are suitable matrices. Note that for a symmetric matrix A and Y = Z, the
Q is equal to P T . The matrices P and Q have the following properties,

• P and Q are projectors, thus P 2 = P and Q2 = Q ,

• PAZ = Y TP = 0, Y TAQ = QZ = 0 ,

• PA = AQ .

To solve the system (4.10) using deflation, note that y can be written as

y = (I −Q)y +Qy

and that (I − Q)y = Z(Y TAZ)−1Y TAy = Z(Y TAZ)−1Y T b can be computed immediately.
In light of the identity AQ = PA we can solve the deflated system

PAy = Pb .

Because PAZ = 0 and therefore Ker(PA) does not contain only the zero vector, this system
does not have an unique solution. We denote this non-unique solution by ỹ, resulting in

PAỹ = Pb . (4.11)

Although this system does not have an unique solution it can be shown that Q ỹ is unique
and is equal to Qy (see for a proof Vermolen & Vuik [26] for the case that A is SPD).

Deflation can be combined with preconditioning. Suppose M is a suitable preconditioner
of A, then (4.11) can be replaced by: solve ỹ from

M−1PAỹ = M−1Pb

and form Qỹ, or solve ũ from
PAM−1ũ = Pb ,

and form QM−1ũ. Both systems can be solved by a Krylov subspace method.
Note that when the deflated system (4.11) is solved with a Krylov subspace method one

always has to take ỹ(0) = 0. Also note that when an initial guess y (0) 6= 0 is chosen, one has
to solve the deflated system

PAṽ = Pf ,

where v ≡ y − y(0) and f ≡ b −Ay(0) in order that system (4.10) is solved rightly.
We will restrict ourselves to the deflated PGCR algorithm (DPGCR) for the case that A

and M are general matrices, and to the deflated PCG algorithm (DPCG) for the case A and
M are SPD. The following algorithm is the deflated variant of Algorithm (4.1).

Algorithm 4.3 (DPGCR). Given a general symmetric or non-symmetric n× n matrix A,
a vector b, a preconditioner M , projectors P and Q, and an initial guess y (0) (Ay(0) ≈ b).
This algorithm solves the linear system Ay = b.

r(0) = b −Ay(0)

ỹ(0) = 0;

r̃(0) = Pr(0);
for k = 1, . . . , convergence do
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s(k) = M−1r̃(k−1);

v(k) = PAs(k)

[v(k), s(k)] := orthonorm[v(k), s(k), {v(1), . . . ,v(k−1)}, {s(1), . . . , s(k−1)}];

β = (r̃(k−1),v(k));

ỹ(k) = ỹ(k−1) + βs(k);

r̃(k) = r̃(k−1) − βv(k);
end for

y ≈ (I −Q)A−1r(0) +Qỹ(k−1) + y(0);

The deflated variant of Algorithm (4.2) is given by the following algorithm.

Algorithm 4.4 (DPCG). Given a general symmetric or non-symmetric n× n matrix A, a
vector b, a preconditioner M , projectors P and Q for the case Y = Z, and an initial guess
y(0) (Ay(0) ≈ b). This algorithm solves the linear system Ay = b.

r(0) = b −Ay(0) ;

ỹ(0) = 0;

r̃(0) = Pr(0);

p(0) = s(0) = M−1r̃(0);
for k = 1, . . . , convergence do

α = (r̃(k−1), s(k−1))/(p(k−1), PAp(k−1));

ỹ(k) = ỹ(k−1) + αp(k−1);

r̃(k) = r̃(k−1) − αPAp(k−1);

s(k) = M−1r̃(k);

β = (r̃(k), s(k))/(r̃(k−1), s(k−1));

p(k) = s(k) + βp(k−1)

end

y ≈ (I −Q)A−1r(0) +Qỹ(k−1) + y(0);

Choosing the subspaces Z and Y

There are various possibilities to choose the subspaces Y and Z. In general application Y is
often chosen equal to Z. The columns of Z are usually called deflation vectors. There are
various ways to choose these vectors. For example approximate eigenvectors can be chosen.
We will not go into further details, but refer to for example Vuik et al. [30] and Vuik et al.
[36].

4.2.4 SIP

The Strongly Implicit Procedure (SIP) is described in for example Ferziger & Perić [6] and Kim
& Lee [12]. This method is especially designed for algebraic equations that are discretizations
of PDEs and does not apply to generic systems of equations.

The SIP method is based on the splitting, A = M −N , with M being an incomplete LU
(ILU) factorization of A. This means that we want to construct a lower triangular matrix L I

and an upper triangular matrix UI with diag(UI) = I, such that

M = LIUI ≈ A ,
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Figure 4.1: Incomplete LU factorization for the SIP method.

so the nonzero pattern of LIUI corresponds to the nonzero pattern of A. Therefore we have

M = LIUI = A−N ,

with N the remainder matrix. Substituting M = L IUI and N in the BIM (4.3) yields the
following iterative method,

LIUIy
(k) = Ny(k−1) + b , (4.12)

or, equivalently,

for k = 1, . . . convergence do

r(k−1) = b −Ay(k−1);

Solve LIq
(k) = r(k−1);

Solve UIδy = q(k);

y(k) = y(k−1) + δy;
end for

In order that (4.12) is convergent, A must be an M-matrix or an irreducible K-matrix and
the splitting must be regular, i.e. (LIUI)

−1 ≥ 0 and N ≥ 0.

Now the SIP method will be derived for a two-dimensional uniform grid, as defined in Section
3.2, and a five-point computing molecule. The ILU factorisation is in the form as in Figure
4.1 and a row of M corresponding to the (i, j)-the grid point is given by

M i,j
S = Li,j

S ,

M i,j
SE = Li,j

S U i,j−1
E ,

M i,j
W = Li,j

W ,

M i,j
P = Li,j

S U i,j−1
N + Li,j

WU i−1,j
E + Li,j

P ,

M i,j
E = Li,j

P U i,j
E ,

M i,j
NW = Li,j

WU i−1,j
N ,

M i,j
N = Li,j

P U i,j
N .

(4.13)

The (i, j)-the component of Ny is

(Ny)i,j = N i,j
P yi,j +N i,j

S yi,j−1 +N i,j
W yi−1,j +N i,j

E yi+1,j +N i,j
N yi,j+1

M i,j
SEyi+1,j−1 +M i,j

NWyi−1,j+1 .
(4.14)



4.2. Methods for solving linear equation systems 35

Now yi+1,j−1 and yi−1,j+1 will be approximated using Taylor series expansion. For y i+1,j−1

this yields

yi+1,j−1 ≈ yi,j + h1
dy

dx1
− h2

dy

dx2
,

≈ yi,j + h1
yi+1,j − yi,j

h1
− h2

yi,j − yi,j−1

h2
,

= yi+1,j + yi,j−1 − yi,j ,

(4.15)

and analogous for yi−1,j+1 this gives

yi−1,j+1 ≈ yi,j+1 + yi−1,j − yi,j , (4.16)

Multiplying the RHS of (4.15) and (4.16) with a parameter 0 < α < 1 results in the following
approximations

yi+1,j−1 ≈ α(yi+1,j + yi,j−1 − yi,j) ,

yi−1,j+1 ≈ α(yi,j+1 + yi−1,j − yi,j) ,

With this approximations (4.14) can be rewritten as

(Ny)i,j ≈ (N i,j
P − αM i,j

SE − αM i,j
NW)yi,j+

(N i,j
S + αM i,j

SE)yi,j−1 + (N i,j
W + αM i,j

NW)yi−1,j+

(N i,j
E + αM i,j

SE)yi+1,j + (N i,j
N + αM i,j

NW)yi,j+1 .

(4.17)

Setting each of the coefficients in the RHS of (4.17) to zero, then it follows from (4.13) that
the entries of N can be expressed in those of LI and UI,

N i,j
S = −αM i,j

SE = −αLi,j
S U i,j−1

E ,

N i,j
W = −αM i,j

NW = −αLi,j
WU i−1,j

N ,

N i,j
P = α(M i,j

SE +M i,j
NW) = α(Li,j

S U i,j−1
E + Li,j

WU i−1,j
N ) ,

N i,j
E = −αM i,j

SE = −αLi,j
S U i,j−1

E ,

N i,j
N = −αM i,j

NW = −αLi,j
WU i−1,j

N .

(4.18)

Now, using M = A−N , (4.13) and (4.18), this results in

Li,j
S = Ai,j

S /(1 + αU i,j−1
E ) ,

Li,j
W = Ai,j

W/(1 + αU i−1,j
N ) ,

Li,j
P = Ai,j

P + α(Li,j
S U i,j−1

E + Li,j
WU i−1,j

N ) − Li,j
S U i,j−1

N − Li,j
WU i−1,j

N ,

U i,j
E = (Ai,j

E − αLi,j
S U i,j−1

N )/Li,j
P ,

U i,j
N = (Ai,j

N − αLi,j
WU i−1,j

E )/Li,j
P .

(4.19)

The approximations in (4.19) are second order accurate when α = 1, but for this α the SIP
method is generally not convergent. That is why often 0.92 < α < 0.96 is chosen. Entries of
(4.19) whose indices are outside the index boundaries should be set equal to zero.
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4.3 Solving the stationary incompressible Navier-Stokes equa-

tions

There are various methods for iteratively solving the Navier-Stokes equations. A popular
method used in engineering is the Semi-Implicit Method for Pressure-Linked Equations (SIM-
PLE). Many improved variants of SIMPLE has been proposed, like for example the SIMPLE
Revised (SIMPLER) method. However, in engineering literature, for example Patankar [20]
or Ferziger & Perić [6], it is not easy to verify which algebraic systems are actually solved
because the presented algorithms are overrun with details. Therefore, a more mathematically
convenient way is to present them in a so-called distributive iteration framework.

In this section we will only focus on SIMPLE. First the original SIMPLE algorithm is
written in an linear algebra framework. Next we will show that SIMPLE can be written as
classical distributive iterative method.

Deleting the time dependence in (3.10) gives the following system to be solved:
[
N G
D C

] [
u

p

]
=

[
b1

b2

]
. (4.20)

This nonlinear system has to be solved iteratively. First this system has to be linearized.
To linearize N(u) various methods can be chosen, for example the Newton-Raphson

method or the Picard method. We will restrict ourselves only to Picard iteration. The
non-linear terms in the momentum equations can be linearized as follows,

(uαuβ)
(k)
j ≈ (uα

j )(k−1)(uβ
j )(k) .

As a consequence N(u) gets replaced by L(k−1)u(k), with L(k−1) a matrix that depends on
u(k−1). By this (4.20) becomes

[
L(k−1) G
D C

] [
u(k)

p(k)

]
=

[
b1

b2

]
. (4.21)

This system will be denoted by Ay = b. The Navier-Stokes equations can be solved by the
following algorithm.

Algorithm 4.5 (Picard iteration). Let u(0) and p(0) be initial guesses of respective the
velocity and pressure field. Then this algorithm solves the nonlinear system (4.20) for the
stationary incompressible Navier-Stokes equations as follows.

for k = 1, . . . , convergence do

Construct L = L(u(k−1));
Solve system (4.21);

end do

y ≈ y(k−1);

The linear system 4.21 cannot be easily iteratively solved, because C in A is not a K-
matrix and therefore A is not an M-matrix. This means that it is not trivial to design a
convergent iterative method to solve this system.

The SIMPLE algorithm in its original form is obtained by performing only one iteration
to solve (4.21) in each Picard iteration. Let L (k−1) be denoted by L for brevity, and let
L̂ ≡ diag(L). Then the following algorithm describes SIMPLE.



4.3. Solving the stationary incompressible Navier-Stokes equations 37

Algorithm 4.6 (SIMPLE). Given initial guesses u (0) and p(0) of respective the velocity
and pressure field. Then this algorithm solves the nonlinear system (4.20) for the stationary
incompressible Navier-Stokes equations.

for k = 1, . . . , convergence do

L := L(u(k−1));

Solve Lu(k) = b1 −Gp(k−1);

Solve (C −DL̂−1G)δp = b2 −Du(k);

u(k) := u(k) − αuL̂
−1Gδp;

p(k) = p(k−1) + αpδp;
end for

Distributive iteration

A linear system
Ay = b , (4.22)

is postconditioned as follows:
AB̄ȳ = b , y = B̄ȳ , (4.23)

where B̄ is the postconditioning matrix. The matrix B̄ is chosen in such a way that (4.23) is
easier to solve iteratively than (4.22). For example one can choose AB̄ to be an M-matrix,
while A is not. Splitting the matrix AB̄ in (4.23) yields

AB̄ = M̄ − N̄ ,

corresponding to the following splitting of the original matrix,

A = M̄B̄−1 − N̄B̄−1 .

Defining M ≡ M̄B̄−1 and N ≡ N̄B̄−1 and substituting this in the BIM (4.3) gives

M̄B̄−1y(k) = N̄B̄−1y(k−1) + b . (4.24)

When we subtract M̄B̄−1y(k−1) from the LHS and RHS of (4.24) we can rewrite this equation
as

M̄B̄−1(y(k) − y(k−1)) = b −Ay(k−1) .

Multiplying the RHS of this equation with a relaxation parameter α gives

y(k) = y(k−1) + αB̄M̄−1(b −Ay(k−1)) . (4.25)

Let y(0) be a certain initial guess, then the distributive iteration procedure is as follows,

for k = 1, . . . , convergence do

r(k−1) = b −Ay(k−1);

Solve M̄δy = r(k−1);
δy := B̄δy;

y(k) = y(k−1) + αδy;
end for

The method (4.25) is called a distributive iteration because the correction M̄−1(b−Ay(k−1))
is distributed by multiplication with αB̄, over the elements of y(k).
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Distributive iteration for the stationary Navier-Stokes equations

Let A be the matrix of the system (4.21). We choose a matrix B̄ in (4.25) such that AB̄ is
of block-triangular form,

AB̄ =

[
Q 0
R S

]
.

A possible choice for B̄ is

B̄ =

[
I B̄12

0 B̄22

]
, (4.26)

resulting in

AB̄ =

[
L LB̄12 +GB̄22

D DB̄12 + CB̄22

]
.

Choosing B̄ such that LB̄12 +GB̄22 = 0 gives

B̄12 = −L−1GB̄22 ,

resulting in

AB̄ =

[
L 0
D (C −DL−1G)B22

]
. (4.27)

The SIMPLE method is obtained by choosing B̄22 = I, so that (4.27) becomes

AB̄ =

[
L 0
D C −DL−1G

]
.

A suitable approximation M̄ of AB̄ is

M̄ =

[
L 0

D C −DL̂−1G

]
, (4.28)

By this and B̄22 = I the matrix B̄ given by (4.26) becomes

B̄ =

[
I −L̂−1G
0 I

]
. (4.29)

Now the SIMPLE method is given by (4.25) with M̄ (4.28) and B̄ (4.29) and the SIMPLE
algorithm in the distributed iteration framework is as follows.

Algorithm 4.7 (SIMPLE as a distributed iteration). Let u(0) and p(0) be respectively
initial estimations of the velocity and pressure field. This algorithm solves the non-linear
system (4.20) for the stationary incompressible Navier-Stokes equations.

for k = 1, . . . , convergence do

L := L(u(k−1)), L̂ = diag(L);

r
(k)
u = b1 − Lu(k) −Gp(k); \\ r(k) = b − y(k)

r
(k)
p = b2 −Du(k) − Cp(k);

Solve Lδu = r
(k)
u ; \\ Solve M̄δy = b −Ay(k)

Solve (C −DL̂−1G)δp = r
(k)
p −Dδu;
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δu := δu − L̂−1Gδp; \\δy = B̄δy

u(k) = u(k−1) + αuδu \\ y(k+1) = y(k) + αδy

p(k) = p(k−1) + αpδp;
end for

Many variants of the SIMPLE method can also be described in the presented distributed
iteration framework, see for example Vuik et al. [31] or Vuik & Saghir [35] for a description
of the SIMPLER method.

Convergence, computing work and stopcriterion

One can show that SIMPLE converges slowly and that the computing work is of O(N 2), just
like BIMs. Fortunately, like BIMs, the SIMPLE method lends itself well for acceleration by
Krylov subspace methods or multigrid.

Besides making the residuals small it is recommendable to make the velocity field also
sufficiently divergence free, i.e. to make Du(k) sufficiently small, for instance

‖Du(k)‖∞ < εV/H , 0 < ε� 1 ,

with ‖x‖∞ ≡ max{|x1|, . . . , |xn|}, V and H typical magnitudes for the velocity and domain,
and ε a certain fixed tolerance. See for more details Wesseling [38].

4.4 Connection with X-stream

In X-stream the SIP method, the CG method and the Tri-Diagonal Matrix Algorithm (TDMA)
are used to solve linear sytems of equations. Details on the TDMA method can be found in for
example Patankar [20] or Ferziger & Perić [6]. The CG method is not much used because the
involving systems are generally not SPD. In most applications the TDMA method performs
less well than SIP, and therefore generally the SIP method is used.

In X-stream the incompressible Navier-Stokes equations are solved with SIMPLE in com-
bination with defect correction. This is done by a domain decomposition approach, as will
be discussed in the next chapter.
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5

Domain decomposition methods

5.1 Introduction

The term domain decomposition (DD) is used differently by specialists in numerical analysis
of PDEs. In parallel computing it means decomposing data from a computing model among
the processors in a distributed memory computer. In asymptotic analysis DD refers to the
determination of which PDEs to solve. In preconditioning methods DD refers only to the so-
lution method for the algebraic system of equations arising from the discretisation. Note that
all three of these interpretations may actually occur in one problem. We will restrict ourselves
to DD methods as iterative solution methods for solving PDEs based on a decomposition of
the spatial domain of the problem into several subdomains.

There are several motivations for using DD:

• Ease of parallelization and good parallel performance.

• Simplification of problems on complicated geometry.

• Different physical models can be used in different subdomains.

• Local grid refinement can be implemented with more ease.

• Reduction of memory requirements, because the subproblem can be much smaller than
the total problem.

The structure of this chapter is as follows. In Section 5.2 basic DD methods are discussed
briefly, followed by DD for the stationary Navier-Stokes equations in Section 5.3. In Section
5.4 the connection with X-stream is given.

5.2 Basic domain decomposition methods

A survey on DD methods can be found in for example Smith [23], Chan [5] or Saad [22].
Basically two types of DD methods can be distinguished: overlapping and non-overlapping
methods. Overlapping DD methods are known as Schwarz alternating methods, which are
iterative methods. Non-overlaping methods can be divided into so-called substructuring meth-
ods, which are direct methods, and so-called Schur-complement methods, which are iterative
methods. Non-overlapping methods differ from overlapping methods by solving an additional
interface equation.
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Ω1 Ω2

Γ2

Γ1

Figure 5.1: An overlapping decomposition of the domain.

In this section we restrict ourselves entirely to one-level DD mehods. In Subsection 5.2.1
the basic Schwarz method is discussed, followed by Schur complement methods in Subsection
5.2.2. In Subsection 5.2.3 convergence properties of the Schwarz method are treated, without
going into details.

5.2.1 Alternating Schwarz methods

The simplest DD method is the alternating Schwarz method, which dates from 1870 and was
originally intended as a analytical method. The Schwarz method in its original form is known
as the multiplicative Schwarz method, which will be described next.

Multiplicative Schwarz method

DD aims to solve the differential equation

Lu = f in Ω , (5.1)

with suitable BCs on ∂Ω. The domain Ω is decomposed into subdomains Ω̄ = Ω̄1 ∪ · · · ∪ Ω̄k,
where Ω is open, and Ωi are open subsets of Ω. The simplest form of L is minus the Laplacian
−∆, resulting in the Poisson equation. For simplicity, we restrict ourselves to Dirichlet BCs
u = g on ∂Ω. Other BCs can be treated with ease. We only consider two subdomains
Ω̄ = Ω̄1 ∪ Ω̄2.

Overlapping Schwarz DD methods uses an overlapping decomposition of the domain Ω
into subdomains such that Ω1 ∩ Ω2 6= ∅. The part of the boundary of Ωi which is located in
the interior of Ωj (j 6= i) is denoted by Γi, see Figure 5.1.

The alternating Schwarz method begins by selecting an initial guess u
(0)
2 for the values in

Ω2. Then iteratively for k = 1, . . . one solves the subproblem,





Lu
(k+1)
1 = f on Ω1 ,

u
(k+1)
1 = u(k) on Γ1 ,

u
(k+1)
1 = g on ∂Ω1 \ Γ1 ,

(5.2)
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for u
(k)
1 , followed by the solution of the subproblem,





Lu
(k+1)
2 = f in Ω2 ,

u
(k+1)
2 = u(k+1) on Γ2 ,

u
(k+1)
2 = g on ∂Ω2 \ Γ2 .

(5.3)

The k-th iterate is then defined by

u(k)(x, y) =




u

(k)
1 (x, y) if (x, y) ∈ Ω \ Ω2 ,

u
(k)
2 (x, y) if (x, y) ∈ Ω2 .

(5.4)

It can be shown (see Chan [5] for some references) that for self-adjoint elliptic operator L,
the iterates {u(k)} converge linearly to the true solution u on Ω, that is

‖u− u(k)‖L ≤ ρk‖u− u(0)‖L ,

where ρ < 1 depends on the choice of Ω1 and Ω2.

The discrete form of (5.1) is denoted by

Au = f , (5.5)

where A represents the discretization of the continuous operator L and BCs on the global
domain. We restrict ourselves to the case that the grids of the subdomains coincide in the
overlap area.

The algebraic Schwarz algorithm will be described in matrix notation. Let I 1 and I1 the
index sets of the unknowns in the interior of Ω1 and Ω2 respectively. The total number of
unknowns is n = |I| and ni denotes the number of unknowns in subdomain Ωi. For the case
of (generous) overlap I1 ∩ I2 6= ∅.

Denote by RT
i a trival extension matrix of dimension n× n i, defined as

(RT
i ui)k =





(ui)k if k ∈ I ,

0 else ,

for ui ∈ IRni . The entries of the matrix RT
i consist of ones and zeroes with at most one

‘1’ in each row. The transpose Ri is a trivial restriction matrix which restricts a full length
vector of size n to a subdomain vector of size ni, by selecting the components of the vector
corresponding to Ii. Note that RiR

T
i = Ini

, while RT
i Ri 6= In. Also note that the matrices

Ri are never formed in practice.

Now the local subdomain matrices can be written in terms of the global matrix A and the
restriction matrices Ri as

A11 = R1AR
T
1 , A22 = R1AR

T
1 .



44 5. Domain decomposition methods

1Ω 2Ω 1Ω 2Ω

Cell-centred Vertex-centred

Figure 5.2: Cell-centred and vertex-centred discretization in the case of two subdomains. (•
grid points; — finite volume boundaries; - - common grid line.)

The algebraic Schwarz iteration starts with an initial guess u (0) and constructs a sequence of
approximations as follows,

u(k+ 1
2
) = u(k) +RT

1A
−1
11 R1(f −Au(k)) , (5.6)

u(k+1) = u(k+ 1
2
) +RT

2 A
−1
22 R2(f −Au(k+ 1

2
)) . (5.7)

For the cell-centred case that the two subdomains have a single grid line in common (see
Figure 5.2), I1∩I2 = ∅, this iteration is a classical block Gauß-Seidel iteration. For I 1∩I2 6= ∅
this iteration corresponds to a block Gauß-Seidel iteration with overlapping blocks.

Define the matrix
Pi = RT

i A
−1
i RiA, i = 1, 2 ,

then the global error e(k) for (5.6)–(5.7) can be written as

e(k+ 1
2
) = (I − P1)e

(k) , (5.8)

e(k+1) = (I − P2)e
(k+ 1

2
) . (5.9)

The matrices Pi represent projection operators (P 2
i = Pi). Combining (5.8) and (5.9) yields

e(k+1) = (I − P1)(I − P2)e
(k) ,

thus the iteration matrix is (I−P1)(I−P2), which is why the algoritihm is called multiplicative.
The iteration process (5.6)–(5.7) can be written as a preconditioned Richardson’s iteration,

u(k+1) = u(k) +M−1
gs (f −Au(k)) ,

with M−1
gs A ≡ I − (I − P2)(I − P1). For the case I1 ∩ I2 = ∅, the preconditioner Mgs is a

lower block triangular matrix of A. Note that the multiplicative Schwarz method does not
lend itself for parallellization, because of the preconditioner.

Additive Schwarz method

The additive Schwarz method is governed by computing the residual for u (k) in (5.7),

u(k+ 1
2
) = u(k) +RT

1 A
−1R1(f −Au(k)) , (5.10)

u(k+1) = u(k+ 1
2
) +RT

2A
−1R2(f −Au(k)) . (5.11)
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Ω1 Ω2Γ

Figure 5.3: A nonoverlapping decomposition of the domain.

This iteration corresponds to a block Jacobi iteration (with overlapping blocks). Writing this
in terms of the error e(k) gives

e(k+1) = (I − P1 − P2)e
(k) ,

which explains why the algorithm is called additive. Rewriting (5.10)–(5.11) as a precondi-
tioned Richardson’s iteration results in

u(k+1) = u(k) +M−1
jac (f −Au(k)) ,

with M−1
jacA ≡ P1 + P2. Note that the additive Schwarz method lends itself well for parallel-

lization, compared to the multiplicative Schwarz algorithm. However, concerning convergence
it can be observed that the multiplicative Schwarz method converges faster that the additive
Schwarz method.

Krylov subspace acceleration

From the alternating Schwarz method we derived the preconditioned system

M−1Au = M−1f ,

with M−1 = M−1
jac or M−1 = M−1

gs . This preconditioned system can be accelerated by for
example a Krylov subspace method.

5.2.2 Schur complement methods

Nonoverlapping DD is based on a decomposition of Ω such that Ω̄ = Ω̄1 ∪ Ω̄1 and Ω∩Ω = ∅,
see Figure 5.3.

Now briefly the basic idea of Schur complement methods will be discussed. We restrict
ourselves to the Neumann-Dirichlet DD method. It can be shown that for second order elliptic
operators L = −∇ · a(x, y)∇u Equation (5.1) is satisfied on the whole domain if (5.2) holds
for the subdomains and if both u and its normal derivative a∂u/∂n are continuous across the
interface Γ, where n is the outward normal of subdomain Ω1 on Γ. The alternating Neumann-

Dirichlet method begins by selecting an initial guess u
(0)
2 for the values in Ω2. Then iteratively



46 5. Domain decomposition methods

for k = 1, . . . one solves the subproblem





Lu
(k+1)
1 = f on Ω1 ,

aleft
∂u

(k+1)
1
∂n = aright

∂u
(k)
2

∂n on Γ ,

u
(k)
1 = g on ∂Ω1 \ Γ ,

for u
(k+1)
1 , followed by the solution of the subproblem,





Lu
(k+1)
2 = f in Ω2 ,

u
(k+1)
2 = u

(k+1)
1 on Γ ,

u
(k+1)
2 = g on ∂Ω2 \ Γ .

The (k+1)-th iterate is defined as (5.4). Now the algebraic framework of Schur complements
methods will be discussed briefly. Take a vertex-centred discretization (see Figure 5.2), so
that there are unknowns on the interface Γ. If we order the unknowns based on the index sets
Ī1 = I1 \ I2, Ī2 = I2 \ I1 and Ī3 = I1 ∩ I2 and assume for example a five point discretization
stencil, (5.5) has the block structure



K11 ∅ K13

∅ K22 K23

K31 K32 K33


u = b , with u =



u1

u2

u2


 .

By block-Gauß elimination of unknowns in Ī1 and Ī2, we obtain the Schur complement system
for the variables in Ī3 which are located on the interface,

(K33 −K31K
−1
11 K13 −K32K

−1
22 K23)u3 = b̄3 ,

with b̄3 ≡ b3 − K31K
−1
11 b1 − K32K

−1
22 b2, and the matrix of this system is called the Schur

complement matrix. Schur complement methods aim to solve this system of equations.

It can be shown that the Schwarz method with minimal overlap is a Neumann-Dirichlet
method for a suitable preconditioner.

From now on we will restrict ourselves only to the Schwarz method.

5.2.3 Convergence properties

Local coupling between subdomains

The local coupling between the unknowns of the subdomains of the Schwarz DD method
presented in the previous section can be increased. Because the Schwarz method can be
seen as just a block Gauß-Seidel (multiplicative Schwarz) or block Jacobi (additive Schwarz)
BIM, one obvious way is to accelerate the Schwarz method by a Krylov subspace or multigrid
acceleration.
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Inaccurate subdomain solution on subdomains

In every Schwarz iteration a linear system has to be solved corresponding to a subdomain
problem. The Schwarz method is originally based on solving the subdomains problems ac-
curately. However, solving the subdomain problems inaccurately can reduce the computing
work drasticly, see for example Brakkee [3] and Verweij [27]. This is because it turns out that
decreasing the number of subdomain iterations does not significantly increase the number of
Schwarz iterations. In other words, the number of subdomain iterations and the Schwarz itera-
tions can be practically made independent of each other, resulting in a decrease of computing
work. This ‘dependence’ dependents on the topology of the domain and the acceleration
technique used for the Schwarz method.

It turned out in Brakkee [3] that reduction in computing work is most favourable when
the Schwarz method is accelerated by the GCR Krylov subspace method. This method
has good scalability properties: increasing the number of subdomains does not significantly
affect the dependence of the Schwarz and the subdomain iterations. This compared to the the
unaccelerated Schwarz method, for which the decrease in computing work is less for increasing
numbers of subdomains. Note that the accuracy of the subdomain solution cannot be made
arbitrary small because from a certain accuracy the Schwarz method will diverge.

Global coupling between subdomains

For matrices resulting from discretisation of elliptic PDEs, global communication between
the subdomains or global coupling is important. Elliptic problems have the property that a
modification in the data at a certain area or point (for example a BC) influences the solution
on the entire domain. In terms of the Schwarz method this means that new information
calculated at a subdomain has to be transferred to all other subdomains in a fast way. Because
information of a subdomain A can only travel through one interface in each Schwarz iteration
to a subdomain B, the convergence decreases when the number of subdomains between A and
B increases. So for an increasing number of subdomains the global coupling of the subdomains
decreases.

In general there are two techniques for increasing global coupling: increasing subdomain
overlap or using a so-called coarse grid correction. Increasing subdomain overlap makes the
DD method more or less independent of the subdomain grid size for a constant decomposition.
An important drawback of this method is that the amount of computing work increases
proportionally to the size of overlap. A better option is to apply a coarse grid correction,
which can be distinguished in two methods: multigrid coarse grid correction and deflation
coarse grid correction.

Multigrid coarse grid correction, or simply coarse grid correction for a DD results in a
two-level algorithm. The basic idea is to construct a preconditioner that smooths both low
and high frequency error components. For the additive Schwarz method the block Jacobi pre-
conditioner is used as smoother, see for more details Smith [23]. Other references are Nabben
[16], Jenssen & Weinerfelt [10] and Padiy et al. [19]. A drawback of the multigrid coarse
grid correction is that the geometry of the coarser grid has to be explicitly known in order to
construct a preconditioner by interpolation. This can bring difficulties with implementation.

Another coarse grid correction approach is to use a coarse grid correction based on defla-
tion, as described in Section 4.2.3. It turns out that deflation in combination with DD gives
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better results compared to coarse grid correction and is easier to implement.

Deflation and domain decomposition

Various publications can be found on deflation in combination with domain decomposition
and parallel computing. Some useful references are Frank & Vuik [8], Vuik & Frank [32], Vuik
& Frank [33] and Vermolen & Vuik [26]. Other references are Mansfield [14], Mansfield [15]
and Keyes [11].

Choosing the the subspaces Z and Y , as described in Section 4.2.3, is usually done at
subdomain level. In general Y = Z is taken. The choice of Z that has proven to be successful
for non-overlapping Schwarz methods is,

zm(i) = 1 , xi ∈ Ωm ,

zm(i) = 0 , xi /∈ Ωm .

This is referred to as subdomain deflation. In this stage of the research we will not go into
further details.

5.3 Domain decomposition for the incompressible Navier-Stokes

equations

In this section the additive Schwarz DD method is combined with the SIMPLE method (Algo-
rithm 4.7) for solving the incompressible Navier-Stokes equations. The system to be solved in
one Picard iteration is given by (4.21). Compared to the single-domain case, the matrices L,
G, D and C contain block matrices corresponding to couplings between subdomains. For the
two-dimensional Navier-Stokes equations (d = 2) and for the case of two (non-overlapping)
subdomains (nblock = 2) the system explicitly becomes

A =



L1 0 G1

0 L2 G2

D1 D2 C


 =




(L11)1 (L12)1 0 0 (G11)1 (G12)1
(L21)1 (L22)1 0 0 (G21)1 (G22)1

0 0 (L11)2 (L12)2 (G11)2 (G12)2
0 0 (L21)2 (L22)2 (G21)2 (G22)2

(D11)1 (D12)1 (D11)2 (D12)2 C11 C12

(D21)1 (D22)1 (D21)2 (D22)2 C21 C22



, (5.12)

y =



u

v

p


 =




u1

u2

v1

v2

p1

p2



, b =




b1

b2

b3


 =




(b1)1
(b1)2
(b2)1
(b2)2
(b3)1
(b3)2



. (5.13)

For reasons given in the previous sections, we accelerate the additive Schwarz method by the
PGCR method (Algorithm 4.1) or with the DPGCR method (Algorithm 4.3) when a deflation
coarse grid correction is necessary. The resulting methods are referred to as the PGCR-
Schwarz method and the DPGCR-Schwarz method, respectively. The SIMPLE method is
accelerated by the PGCR method, resulting in the PGCR-SIMPLE.
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First we will have to choose if we apply DD in SIMPLE, or SIMPLE in DD. Only literature
could be found on DD in SIMPLE, for example Teigland [24]. Although the second option
seems interesting we drop this method and continue with DD in SIMPLE. For more details
on the PGCR-SIMPLE in the (D)PGCR-Schwarz method, see Appendix B.

First PGCR-SIMPLE will be discussed. For L̂−1
i in the matrices B̄ and M̄ we take for L̂i

L̂i = diag(Li), i = 1, . . . , d ,

resulting for the case of d = 2 and nblock = 2 in

B̄ =



I 0 −L̂−1

1 G1

0 I −L̂−1
2 G2

0 0 I


 (5.14)

and

M̄ =



L 1 0 0
0 L2 0

D1 D2 C −
∑2

i=1DiL̂
−1
i Gi


 . (5.15)

The matrix M̄B−1 is taken as a preconditioner in the PGCR method (Algorithm 4.1), result-
ing in the PGCR-SIMPLE algorithm. Within each PGCR-SIMPLE iteration k = 1, . . . , ngcr1
the search directions s(k) = B̄M̄−1r(k−1) has to be computed. The vector s(k) can be com-
puted by applying the following distributive step

Solve M̄q = r(k−1);

s(k) = B̄q;

where q is an auxiliary variable. Substitution of M̄ (5.15) and B̄ (5.14) yields

1. Solve Liqi = r
(k−1)
i , i = 1, . . . , d;

2. Solve (C −
∑d

i=1DiL̂
−1
i Gi)qd+1 = rd+1 −

∑d
i=1Diqi;

3. s(k) = B̄q;

Now DD is applied to the systems in steps 1 and 2: for the d systems in (1) the PGCR al-
gorithm is used with the block Jacobi preconditioner blockdiag(L i), for the system in (2) the
DPGCR algorithm is used with the block Jacobi preconditioner blockdiag(C−

∑d
i=1DiL̂

−1
i Gi).

This is done because the matrix in the system of step 2 can been seen as a discrete Laplacian
operator.

Writing out the distributive steps to avoid computations of inverses leads to the following
algorithm. Note that deflation is only written out till a certain level; systems involving the
matrix Z are not explicitly written out.

Algorithm 5.1 (DPGCR-Schwarz in PGCR-SIMPLE). Consider the system Ay =
b resulting from the discretisation of the Navier-Stokes equations in one Picard iteration.
Let y(0) be an initial guess of this system, Y = Z and Z a certain subspace. Then this
algorithm describes in pseudo code how the deflated PGCR Krylov subspace accelerated
additive Schwarz DD method is applied within the PGCR accelerated SIMPLE.

r
(0)
i = bi − Liy

(0)
i −Giy

(0)
d+1, i = 1, . . . , d;

r
(0)
d+1 = bd+1 −

∑d
i=1Diy

(0)
i − Cy

(0)
d+1;



50 5. Domain decomposition methods

for k = 1, . . . , ngcr1 do

qi = pgcrschw[Li, r
(k−1)
i , q̂i], i = 1, . . . , d;

qd+1 = dpgcrschw[C −
∑d

i=1DiL̂
−1
i Gi, rd+1 −

∑d
i=1Diqi, q̂d+1];

s
(k)
i = αi(qi − L̂−1

i Giqd+1), i = 1, . . . , d;

s
(k)
d+1 = αd+1qd+1;

v
(k)
i = Lis

(k)
i +Gis

(k)
d+1, i = 1, . . . , d;

v
(k)
d+1 =

∑d
i=1Dis

(k)
i + Cs

(k)
d+1;

[v(k), s(k)] := orthonorm1[v(k), s(k), {v(1), . . . ,v(k−1)}, {s(1), . . . , s(k−1)}];
β = (r(k−1),v(k));

y(k) = y(k−1) + βs(k);

r(k) = r(k−1) − βv(k);
end for

y ≈ y(k−1);

function ȳ = pgcrschw[Ā, b̄, ȳ(0)]

r̄(0) = b̄ − Āȳ(0);
for l = 1, . . . , ngcr2 do

Solve Āmms̄
(l)
m = r̄

(l−1)
m (inaccurately), m = 1, . . . , nblock;

v̄(l) = Ās̄(l);

[v̄(l), s̄(l)] := orthonorm2 [v̄(l), s̄(l), {v̄(1), . . . , v̄(l−1)}, {s̄(1), . . . , s̄(l−1)}];

β̄ = (r̄(l−1), v̄(l));

ȳ(l) = ȳ(l−1) + β̄s̄(l);

r̄(l) = r̄(l−1) − β̄v̄(l);
end for

ȳ ≈ ȳ(l−1);

function ȳ = dpgcrschw[Ā, b̄, ȳ(0)]

ỹ(0) = 0;

r̄(0) = b̄ − Āȳ(0);

Solve ZT ĀZq̄1 = ZT r̄(0);

r̃(0) = r̄(0) −AZq1;
for l = 1, . . . , ngcr2 do

Solve Āmms̄
(l)
m = r̃(l−1) (inaccurately), m = 1, . . . , nblock;

Solve ZT ĀZq̄2 = ZT Ās̄(l);

v̄(l) = Ā(s̄(l) − Zq̄2);

[v̄(l), s̄(l)] := orthonorm3 [v̄(l), s̄(l), {v̄(1), . . . , v̄(l−1)}, {s̄(1), . . . , s̄(l−1)}];
β̄ = (r̃(l−1), v̄(l));

ỹ(l) = ỹ(l−1) + β̄s̄(l);

r̃(l) = r̃(l−1) − β̄v̄(l);
end for

Solve ZT ĀZq̄3 = ZT Āỹ(l−1);

ȳ ≈ Z(q̄1 − q̄3) + ỹ(l−1) + ȳ(0);

In the above algorithm the routines dpcgrschw and pgcrschw are called when PGCR-
Schwarz DD is applied with respective deflation and without deflation. In the third argument
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of this routines an initial guess is provided. The routines orthonorm1, orthonorm2 and
orthonorm3 refer to the orthonormalization process used, see Section 4.2.2.

The relaxation parameters αi, i = 1, . . . , d in the PGCR-SIMPLE loop refer to the velocity
components, the relaxation parameter αd+1 to the pressure. When applying a Krylov subspace
acceleration it is expected that less relaxation is necessary, so it is likely that relaxation
parameters closer to 1 can be chosen.

The solution procedure for solving the incompressible Navier-Stokes is given by the fol-
lowing algorithm.

Algorithm 5.2 (Picard iteration for DPGCR-Schwarz in PGCR-SIMPLE). Let y (0)

be an initial guess. Then this algorithm solves the non-linear system (4.20) for the stationary
incompressible Navier-Stokes equations.

for k = 1, . . . , convergence do

Solve A(y(k−1))y(k) = b with DPGCR-Schwarz in PGCR-SIMPLE (Algorithm 5.1);
end do

y ≈ y(k−1);

Before solving the new system in Algorithm 5.2 it can be necessary to perform a diagonal
scaling. This can improve performance of the PGCR-SIMPLE algorithm, see for example
Vuik & Saghir [35] for details.

Some aspects on parallel computing

In parallel computing several aspects are of importance, for example: speedup, efficiency,
scalability, communication and load balance. We will not go in details on parallel computing,
but refer to a standard textbook, for example Kumar [13].

As mentioned before, GCR acceleration and deflation lead to additional work and mem-
ory storage. When Algorithm 5.1 is parallellized one has to take that into account. Memory
storage is generally of less importance than additional work because computers contain more
and more memory. Additional work that requires global or local (nearest neighbor) commu-
nication is of more importance in parallel computing. In Algorithm 5.1 global communication
especially occurs in the GCR algorithms during the orthonormalization process when inner
products has to be calculated. Local communication occurs in all the loops in the algorithm
where matrix vector multiplications are required.

In general one wants to minimize global communication, because global communication
is most expensive. Because there are different orthonormalization algorithms it is therefore
obvious to choose the most efficient one, see Frank & Vuik [7], Vuik & Frank [29] or Vuik
e.a [34]. It is advisable to use the RCGS or MGS orthonormalization process, depending on
the parallel computer and the number of unknowns per processor. However, one has to keep
in mind that a decrease of communication cost does not always guarantees an increase of
the overall parallel performance, because the time won could be lost again by the additional
computing work or by load imbalance.

5.4 Connection with X-stream

In X-stream a Schwarz DD method with the following properties is implemented:
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Block 1 Block 2

: Interior nodes
: Internal boundary nodes
: External boundary nodes
: Halo-cells

Figure 5.4: Decomposition of the domain in two blocks with the halo-cells (shaded). The
dashed line denotes the block interface.

• one-level

• additive

• minimal overlap

• unaccelerated

• cell-centred

• block-structured

• inaccurate subdomain with SIP or TDMA

• local grid refinement at block level

• application of different models on different blocks

• parallellized with MPI (Message Passing Interface)

For more details we refer to Verweij [27] or Twerda [25]. We will only go into more detail on
the decomposition used, as depicted in Figure 5.4 for the case of two blocks. The shaded cells
denote virtual cells called halo-cells. The Schwarz method goes as follows. First the internal
boundary nodes are updated for block 1, then values for the interior nodes of block 1 are
computed. After this, the values of the internal boundary nodes of block 2 are updated by
this values, i.e. copied to the halo-cells of block 2. Then the values of the internal nodes of
block 2 are computed, and the process repeats. In X-stream this process can be executed in
parallel.
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Figure 5.5: Flowchart of the solution procedure in X-stream for solving the stationary incom-
pressible Navier-Stokes equations. (LC: local communication; GC: global communication.)

In X-stream a set of subdomains (blocks) for which a same model is applied is referred to
as ‘domain’. For the solution of the Navier-Stokes equations a Schwarz iteration iteration is
reffered to as an ‘inner iteration’ and a SIMPLE iteration as an ‘outer iteration’.

A global flowchart of the current solution procedure for solving the Navier-Stokes equations
in X-stream is given by Figure 5.5. The ‘SIMPLE stabilization iteration’ refers to a method
for improving convergence of the pressure system. The abbreviations LC and GC denote
respectively local and global communication between the processors.

In Figure 5.6 a possible flowchart for the DPGCR-Schwarz method in the PGCR-SIMPLE
(Algorithm 5.1) is given. Note that in only the routine pgcrschwarz is drawn, the routine
dpgcrschwarz goes in a similar way.
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Figure 5.6: Possible flowchart of the improved solution procedure in X-stream for solving the
stationary incompressible Navier-Stokes equations. (LC: local communication; GC: global
communication.)
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Test cases in X-stream

In this chapter three testcases in X-stream will be described briefly. The most simple testcase
is given in Section 6.1. In Section 6.2 a more complicated testcase is described concerning
the flow in a cavity, followed by a glass tank simulation in Section 6.3.

6.1 Constant density flow in an unit cube

In this testcase (X-stream reference XTC-35) the stationary incompressible Navier-Stokes
equations are solved for an unit cube. The flow has a constant density, is laminar, and no
buoyancy is considered.

The geometry is three-dimensional and is given by in respectively x, y and z-direction 1
[m] × 1 [m] × 1 [m]. The inlet is located at z = 0, the outlet at z = 1. The four remaining
boundaries are all walls.

For the velocity components uniform Dirichlet BCs are taken at the inlet and homogeneous
Neumann BCs at the outlet and at the walls.

Figure 6.1 shows the geometry, as well as the resulting velocity field when two blocks are
taken.

Figure 6.1: Geometry and velocity field for a constant density flow in an unit cube.
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Figure 6.2: The resulting velocity field (arrows) and temperatures (color) for the square cavity.

6.2 Variable density buoyant flow in a square cavity

The equations to be solved in this testcase (X-stream reference XTC-33) are the stationary
incompressible Navier-Stokes equations and the stationary energy equation. The flow consid-
ered has a variable density depending on the temperature, is laminar, and buoyancy effects
are taken into account.

Adiabatic

Adiabatic

T + ∆T T 

Figure 6.3: Temperature BCs for the cavity. (left wall: hot; right wall: cold.)

The geometry is a three-dimensional square plate in width of one cell. BCs for the temper-
ature are depicted in Figure 6.3. For the hot and cold wall Dirichlet conditions are taken, for
the adiabatic walls homogeneous Neumann conditions. For the velocities at all walls no-slip
Dirichlet conditions are taken. Because of the temperature difference of the cold and hot wall
natural convection occurs resulting in a circulation flow.

The resulting velocity field and the temperature distribution is given in Figure 6.2. The
computations are done only for one block.

6.3 Simulation of a flow in a glass tank

In this testcase (X-stream reference XTC-07) the stationary incompressible Navier-Stokes
equations and the stationary energy equation are solved. The flow considered is a buoyant
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Figure 6.4: Geometry of the glass tank.

Figure 6.5: The resulting velocities (arrows) and temperatures (color) in the glass tank.

laminar flow. The density as well as the dynamic viscosity depend on the temperature.
The geometry of the glass tank is as in Figure 6.4. The overall dimensions in respectively

x, y and z-direction is 7 [m] × 1 [m] × 3 [m]. The red areas correspond to the inlet of the
glass fractions and the outlet of the melted glass. The glass inlet runs from x = 0 [m] to
x = 1 [m] over the entire width of the tank. The glass outlet is located at x = 7 [m] and is
centred in z-direction with a width of 0.6 [m] and height of 0.25 [m].

At the inlet homogeneous Dirichlet BCs are taken for the velocities and a linear profile
Dirichlet condition for the temperature in the x-direction. At the glass outlet a homoge-
neous Neumann condition is taken. At the glass surface homogeneous Dirichlet conditions
are taken for the velocity components and a piecewise linear profile Dirichlet condition in
the x-direction. For the walls no-slip Dirichlet conditions for the velocities are taken and
homogeneous Neumann conditions for the temperature.

Figure 6.5 shows the velocity field and the temperatures for the case eighteen blocks are
used.
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Continuation of the Master’s project

In the following six months of the Master’s project the current X-stream DD algorithm is
targeted to be accelerated. This will be primary done for the stationary incompressible Navier-
Stokes equations. Roughly the plan for the continuation of the Master’s project consists of
the following three steps.

Step 1: Implementation of DPGCR-Schwarz (MGS and RCGS) for the pressure

In this step the Master’s project will be mainly focussed. This step is divided into the following
substeps.

1. Implementation and testing the DPGCR-Schwarz algorithm in Matlab.

2. Implementation of the PGCR-Schwarz algorithm (MGS and RCGS) in X-stream.

3. Testing the PGCR-Schwarz algorithm.

4. Implementation of the DPGCR-Schwarz algorithm.

5. Testing the DPGCR-Schwarz algorithm.

6. Analysis of parameter variation on the total number of SIMPLE iterations.

7. Parallellization.

8. Testing parallellization.

9. Analysis of parameter variation on the total wall-clock time.

The implementation and testing step in Matlab is only done to check the DPGCR-Schwarz
algorithm for possible errors. In Matlab the DPGCR-Schwarz algorithm will be implemented
for the two-dimensional Poisson problem on a small number of subdomains. Note that the
implementation and testing of the DPGCR-Schwarz algorithm is done in two substeps: first
PGCR-Schwarz is implemented and tested, second deflation is added and tested. The main
reason for this is that one wants to keep the code structured as much as possible.

After testing DPGCR-Schwarz with the the most simple testcase (see Section 6.1), a
parameter variation analysis is carried out for all the three testcases in order to analyse the
effect of changing parameters on the total number of SIMPLE iterations. The parameters to
be varied are: number of subdomains, subdomain topology, grid point distribution, deflation
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vectors, number of PGCR-Schwarz iterations and pressure relaxation parameter. For a large
number of DPGCR-Schwarz iterations also the restarting / truncation parameters has to be
considered.

The next substep is to parallellize the code followed by some testing and a final parameter
variation analysis in order to analyse the effect of the parameters on the total wall-clock time.
In this analysis also differences between the MGS and RCGS will be analysed.

Step 2: Implementation of PGCR-SIMPLE (MGS and RCGS)

The second step is to implement the PGCR-SIMPLE in X-stream according to the following
substeps

1. Implementation of the PGCR-SIMPLE.

2. Testing the PGCR-SIMPLE.

3. Analysis of parameter variation on the total number of Picard iterations.

4. Parallellization.

5. Testing paralellization.

6. Analysis of parameter variation on the total wall-clock time.

After implementation and testing PGCR-SIMPLE in X-stream an analysis of parameter vari-
ation is being performed. The same parameters as in step 1 are being varied, in addition
with a new parameter: the number of PGCR-SIMPLE iterations. Note that no restarting
/ truncation has to be carried out, because the total number of PGCR-SIMPLE iterations
are kept small. After parallellization and testing the final substep is to perform a parameter
variation analysis in order to analyse the effect on the parameters on the wall-clock time.
Just like in step 2 also differences between MGS and RCGS will be analysed. Note that
the parallel performance differences between MGS and RCGS are likely to be small because
generally only a small number of PGCR-SIMPLE iterations are required.

Step 3: Implementation of PGCR-Schwarz (MGS and RCGS) for the velocities

The last step is to to implement the PGCR-Schwarz algorithm for the velocities. This step
is expected to give the least increament of the multi-block performance. The following steps
will be carried out

1. Implementation of the PGCR-Schwarz algorithm.

2. Testing the PGCR-Schwarz algorithm.

3. Analysis of parameter variation on the total number of Picard iterations.

4. Parallellization.

5. Testing parallellization.

6. Analysis of parameter variation on the total wall-clock time.
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The analysis of parameter variation after the implementation and testing PGCR-Schwarz
introduces some more parameters to vary: number of PGCR-Schwarz iterations for each ve-
locity component, velocity relaxation parameter for each velocity. The parameter variation
analysis after parallellization also introduces some new parameters if the number of PGCR-
Schwarz iterations is large: restarting / truncation parameter, MGS or RCGS.

From the above steps it should be clear that parameter variation plays an important role in the
accelerating a multi-block algorithm. Even for a simple multi-block algorithm for solving the
Navier-Stokes equations it is not always obvious what parameters to choose and most of them
are chosen by means of trial-and-error. At each point one accelerates a multi-block algorithm
more parameters are introduced resulting in a more complex algorithm. The problem is that
most of the parameters are problem dependent and choosing the parameters becomes more
difficult.
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A

PWI method

A.1 Derivation of the PWI method

In this section the PWI method given by Equation (3.8) is derived. The basic idea of PWI is
to approximate the cell face velocity components by a central discretization and adding and
subtracting an extra term involving the pressure,

uα
j+eα

≈
1

2
(uα

j + uα
j+2eα

) + (
h1h2

aα
p,α)j+eα

− (
h1h2

aα
p,α)j+eα

.

The second and third term in the above equation are approximated differently. The second
term is approximated by

(
h1h2

aα
p,α)j+eα

≈ 1
2 [(
h1h2

aα
p,α)j+2eα

+ (
h1h2
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(A.1)

and the third term by
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(A.2)

Subtracting expression (A.2) from (A.1) results in

1
2 [(
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− 2pj+2eα
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2aα
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4aα
∆αp)|j+2eα

j ,

and by this Equation (3.8) is derived.
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A.2 Discretization of the continuity equation with the PWI

method

In this section the discretised coninuity equation with the PWI method given by Equation
(3.9) is derived. Writing out Equation (3.6) yields

h2(u
1
j+e1

− u1
j−e1

) + h1(u
2
j+e2

− u2
j−e2

) = 0 . (A.3)

Approximation of the first term with the PWI method (3.8) gives
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(A.4)

and the second term in Equation (A.3) can be analogous be written as
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Substitution of (A.4) and (A.5) in Equation (A.3) results in
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When this equation is multiplied by a factor 2, this results in (3.9).
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PGCR-SIMPLE in DPGCR-Schwarz

The system formed by (5.12) and (5.13) can be rearranged into the mathematically equivalent
system

A =




(L11)1 0 (G11)1 (L12)1 0 (G12)1
0 (L11)2 (G11)2 0 (L12)2 (G12)2

(D11)1 (D11)2 C11 (D12)1 (D12)2 C12

(L21)1 0 (G21)1 (L22)1 0 (G22)1
0 (L21)2 (G21)2 0 (L22)2 (G22)2

(D21)1 (D21)2 C21 (D22)1 (D22)2 C22



,y =




u1

v1

p1

u2

v2

p2



, b =




(b1)1
(b2)1
(b3)1
(b1)2
(b2)2
(b3)2



.

This matrix is of the form

A =

[
A11 A12

A21 A22

]
,

where A12 and A21 represent coupling between the two subdomains. The idea is now to apply
the PGCR accelerated additive Schwarz DD method with a block Jacobi preconditioner to
this system in combination with a deflation coarse grid correction. In each Schwarz iteration
systems of the form

Ammȳm = b̄m, m = 1, . . . ,M ,

has to be solved. Seen the structure of Amm an obvious choice is to do this with the PGCR
accelerated SIMPLE. In PGCR-SIMPLE search directions of the form

s̄(l) = B̄M̄−1r̄(l−1)

has to be computed, where the matrices B̄ and M̄ for a matrix Amm for the case of d = 2
and nblock = 2 are given by

B =



I 0 −(L̂mm)−1

1 (Gmm)1
0 I −(L̂mm)−1

2 (Gmm)2
0 0 I


 ,

and

M =




(Lmm)1 0 0
0 (Lmm)2 0

(Dmm)1 (Dmm)2 Cmm −
∑2

k=1(Dmm)k(L̂mm)−1
k (Gmm)k


 ,

where
(L̂mm)i = diag[(Lmm)i], i = 1, . . . , d .

The search directions s̄(l) are computed by performing the distributive step
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Solve M q̄ = r̄(l−1);

s̄(l) = Bq̄;

where q̄ is an auxiliary variable. The following algorithm describes in pseudo code the result-
ing PGCR-SIMPLE in the DPGCR-Schwarz algorithm.

Algorithm B.1 (PGCR-SIMPLE in DPGCR-Schwarz). Consider the rearranged sys-
tem Ay = b resulting from the discretization of the Navier-Stokes equations in one Picard
iteration. Let y(0) be an initial guess of this system, Y = Z and Z a certain subspace. Then
this algorithm describes in pseudo code how the PGCR Krylov subspace accelerated SIMPLE
is applied in the deflated PGCR accelerated additive Schwarz method.

ỹ(0) = 0;

r(0) = b −Ay(0);

Solve ZTAZq1 = ZT r(0);

r̃(0) = r(0) −AZq1;
for k = 1, . . . , ngcr1 do

s
(k)
m = pgcrsimple[Amm, r̃

(k−1)
m , ŝ

(k)
m ], m = 1, . . . , nblock;

Solve ZTAZq2 = ZTAs(k);

v(k) = A(s(k) − Zq2);

[v(k), s(k)] = orthonorm1[v(k), s(k), {v(1), . . . ,v(k−1)}, {s(1), . . . , s(k−1)}];
β = (r̃(k−1),v(k));

ỹ(k) = ỹ(k−1) + βs(k);

r̃(k) = r̃(k−1) − βv(k);
end for

Solve ZTAZq3 = ZTAỹ(k−1);

y = Z(q1 − q3) + ỹ(k−1) + y(0);

ȳ = function pgcrsimple[Ā, b̄, ȳ(0)]

r̄(0) = b̄ − Āȳ(0);
for l = 1, . . . , ngcr2 do

Solve L̄iq̄i = r̄
(l−1)
i , i = 1, . . . , d;

Solve (C −
∑d

i=1 D̄i
ˆ̄L−1

i Ḡi)q̄d+1 = r̄
(l−1)
d+1 −

∑d
i=1 D̄iq̄i;

s̄
(l)
i = αi(q̄i −

ˆ̄L−1
i Ḡiq̄d+1), i = 1, . . . , d;

s̄
(l)
d+1 = αd+1q̄d+1;

v̄(l) = As̄(l);

[v̄(l), s̄(l)] := orthonorm2 [v̄(l), s̄(l), {v̄(1), . . . , v̄(l−1)}, {s̄(1), . . . , s̄(l−1)}];
β̄ = (r̄(l−1), v̄(l));

ȳ(l) = ȳ(l−1) + β̄s̄(l);

r̄(l) = r̄(l−1) − β̄v̄(l);
end for

ȳ = ȳ(l−1);

In the third argument of the routine pgcrsimple an initial guess is provided. The routines
orthonorm1 and orthonorm2 refer to the orthonormalization process used, see Section
4.2.2.

The following algorithm describes the solution procedure for the Navier-Stokes equations.
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Algorithm B.2 (Picard iteration for PGCR-SIMPLE in DPGCR-Schwarz). Let
y(0) be an initial guess. Then this algorithm solves the non-linear system (4.20) for the
stationary incompressible Navier-Stokes equations.

for k = 1, . . . , convergence do

Solve A(y(k−1))y(k) = b with PGCR-SIMPLE in DPGCR-Schwarz (Algorithm B.1);
end for

y ≈ y(k−1);

No literature could be found on the above approach for solving the Navier-Stokes equa-
tions. It is possible that this approach results in weaker local coupling between the unknowns
of the subdomains. Also it is questionable how deflation deals with the elliptic part of the
Navier-Stokes equations and increases the global communication between the subdomains.
However, this approach could be interesting and perhaps deserves some further investigation.
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Nomenclature

Roman symbols

Symbol Description Units Chapter

a sum of coefficients in the PWI method [—] 3
A matrix of the linear system [—] 4, 5
b source term in the DAS [—] 3, 4, 5
B iteration matrix [—] 4
B postconditioning matrix [—] 4, 5
cp specific heat at constant pressure [m2 s−2 K−1] 2
C linear algebraic operator in DAS arising from PWI [—] 3, 4, 5
d number of space dimensions [—] 2, 3, 5
D diffusion coefficient [m2 s−1] 2
D linear algebraic operator in DAS for the velocities [—] 3, 4, 5
e internal energy per unit mass [m2 s−2] 2
e auxiliary variable for denoting grid positions [—] 3
e global truncation error [—] 3, 4, 5
E total energy per unit mass [m2 s−2] 2
f body force [kg m−2 s−2] 2
f dimensionless body force [—] 3
f inhomogeneous term in differential equation [—] 5
g gravitational acceleration [m s−2] 2
g boundary value [—] 5
G linear algebraic operator in DAS [—] 3, 4, 5
h enthalpy per unit mass [m2 s−2] 2
h cell size [—] 3
I identity matrix [—] 4, 5
I index set [—] 5
k turbulent kinetic energy per unit mass [m2 s−2] 2
k iteration number [—] 4, 5
l iteration number [—] 5
L length scale [m] 3
L discrete operator [—] 3
L approximation of the nonlinear operator N [—] 4, 5
m block number [—] 5
M molar mass [kg mole−1] 2
M preconditioner [—] 4, 5
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n unit normal on a surface [—] 3
n dimension of the system [—] 4

nblock total number of blocks [—] 5
ngcr1 total number of PGCR-SIMPLE iterations [—] 5
ngcr2 total number of (D)PGCR-Schwarz iterations [—] 5
N number [—] 2
N nonlinear algebraic operator in DAS [—] 3, 4, 5
N remainder matrix in the splitting [—] 4
N number of algebraic equations [—] 4
p pressure [kg m−1 s−2] 2
p dimensionless pressure [—] 3
p mesh Péclet number [—] 3
P production of energy [kg m−1 s−3] 2
q energy flux [kg s−4] 2
q source term in transport equation 3
q dimensionless source term in transport equation [—] 3
q auxiliary variable [—] 4, 5
r residual [—] 4, 5
R trivial extension matrix [—] 5
Re Reynolds number [—] 3
R0 universal gas constant [m2 s−2 K−1] 2
s rate-of-strain [m s−2] 2
s search direction Krylov method [—] 4, 5
S surface [—] 3
t time [s] 2, 3
t dimensionless time [—] 3
T temperature [K] 2
u velocity [m s−1] 2, 3
u dimensionless velocity [—] 3
u unknown [—] 5
U diffusion velocity [m s−1] 2
U length scale for the velocity [m s−1] 3
v velocity [m s−1] 2
v dimensionless velocity [—] 3
v variable in Krylov method [—] 4, 5
W computing work [—] 4
x coordinate [m] 2, 3
x dimensionless coordinate [—] 3
x auxiliary variable [—] 4
y initial position of a particle [—] 3
y unknown [—] 4
Y mass fraction [—] 2
Y subspace in deflation method [—] 4
Z subspace in deflation method [—] 4
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Greek symbols

Symbol Description Units Chapter

α number for chemical species [—] 2
α relaxation parameter [—] 4, 5
α parameter in orthonormalization process [—] 4
Γ effective transport coefficient 2, 3
Γ artificial boundary [—] 5
δ small parameter [—] 3, 4
∆ operator in the PWI method [—] 3
ε turbulent dissipation energy per unit mass [m2 s−3] 2
ε inverse of the Péclet number [—] 3
κ condition number [—] 4
λ thermal conductivity [kg m s−3 K−1] 2
µ dynamic viscosity [kg m−1 s−1] 2, 3
µt dynamic eddy viscosity [kg m−1 s−1] 2
ρ density [kg m−3] 2
ρ dimensionless density [—] 3
σ stress tensor [kg m−1 s−2] 2
σ dimensionless stress tensor [—] 3
σ turbulent Prandtl number [—] 2
τ shear-stress tensor [kg s−2] 2
τ time step [—] 3
φ property of a material 2, 3
ϕ property of a material 3
ϕ dimensionless property of a material [—] 3
Ω domain [—] 3, 5

Subscripts

Subscript Description Chapter

cds abbreviation for central difference scheme 3
E abbreviation for east 3
gs abbreviation for Gauß-Seidel 5
h reference to enthalpy 2
j reference to direction 2, 3
j reference to a grid point 3

jac abbreviation for Jacobi 5
k reference to turbulent kinetic energy 2
N abbreviation for north 3, 4

NW abbreviation for northeast 4
P reference to node in cell 4

rad abbreviation for radiative 2
reac abbreviation for reaction 2
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s abbreviation for species 2
S abbreviation for south 3, 4

SE abbreviation for southeast 4
uds abbreviation for upwind difference scheme 3
W abbreviation for west 3
α reference to a specie α 2
α reference to a coordinate 3
β reference to a coordinate 3
ε reference to the turbulent dissipation 2
φ reference to a material property 2
µ reference to the dynamic viscosity 2

Superscripts

Superscript Description Chapter

b abbreviation for body force 2, 3
i reference to position of node in i-direction 4
j reference to position of node in j-direction 4
T transpose 4
α reference to a coordinate 3
β reference to a coordinate 3

Overlines

Overline Description Chapter

′ Reynolds fluctuation 2
′′ Favre fluctuation 2
¯ Reynolds average 2
¯ reference to postconditioning 3
¯ closure 5
¯ reference to Schwarz 5
ˆ approximation 4, 5
˜ Favre average 2
˜ reference to solution of deflated system 4, 5

Abbreviations

Abbreviation Description

BC Boundary Condition
BIM Basic Iterative Method
CG Conjugate Gradient
CDS Central Difference Scheme
CFD Computational Fluid Dynamics
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DAS Differential-Algebraic System
DD Domain Decomposition
DPGCR Deflated Preconditioned Generalized Conjugate Residual
FV Finite Volume
GC Global Communication
GCR Generalized Conjugate Residual
HDS Hybrid Difference Scheme
LC Local Communication
LHS Left-Hand Side
MGS Modified Gram-Schmidt
MPI Message Passing Interface
PCG Preconditioned Conjugate Gradient
PDE Partial Differential Equation
PGCR Preconditioned Generalized Conjugate Residual
DPCG Deflated Preconditioned Conjugate Gradient
RCGS Reorthogonalized Classical Gram-Schmidt
RHS Right-Hand Side
SIMPLE Semi-Implicit Method for Pressure-Linked Equations
SIMPLER Semi-Implicit Method for Pressure-Linked Equations Revised
SIP Strongly Implicit Procedure
SPD Symmetric Positive Definite
TDMA Tri-Diagonal Matrix Algorithm
UDS Upwind Difference Scheme
XTC X-stream Test-Case


