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Abstract: Many models for nucleating and growing precipitates have been developed. Each
model with their own advantages and disadvantages. Only few of those models are made for
heterogeneous nucleation (on dislocations) and most of them are based on the mean radius
approach. In the literature study by Vonk (2016) one of these models (by Zurob et al. (2002)) was
explained, analysed and tested for different values of the model parameters and different initial
values. The model showed to be flexible, but still had some drawbacks, of which the mean radius
aspect was the most limiting. A new distribution model is developed in this master thesis, based
on the KWN model by Robson (2014) and Den Ouden et al. (2013). Even though the approach
has changed, the nucleation and growth rate were adopted from the model by Zurob et al. (2002),
which still included some drawbacks. Some of these drawbacks are eliminated by extending
the model and some are recommended for future work. The two main drawbacks that were
eliminated, were the lack of influence of all elements in the system and the competition between
nucleation sites and different precipitate compositions. All elements in the system influence
the nucleation and growth of the precipitates, even when the elements do not participate in the
precipitate. A multi-component model is the extension to capture this complexity (Den Ouden
et al. (2013)). Because most steel alloys contain many alloying elements, different precipitates can
occur simultaneously (for instance, N b(C , N ), Al N and MnS) and complex precipitates may exist,
like (N b,T i )(C , N ). Also precipitates may nucleate at various nucleation sites. A multi-precipitate
model is the extension to capture this complexity. The results of the simulations using the
distribution model and its extensions are analysed and compared, showing the flexibility of the
model. The implementation includes the multi-component and multi-precipitate extension, but
no model for complex precipitates yet.
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1
Introduction

Precipitates play a very important role in the process of steel making and the final product steel. They can
increase the strength of steel and decrease the growth of grains. Precipitation strengthening and small fer-
rite grains form the basis for the strength in High-Strength Low-Alloy (HSLA) steel, also named microalloying
steels. This product group finds wide applications in the automotive, construction and energy (pipelines)
industries. The main alloying elements for precipitates in HSLA steel are niobium, titanium and vanadium.
Moreover, precipitation strengthening is also increasingly being used as an additional strengthening mecha-
nism in Advanced High Strength Steels (AHSS). Controlling and optimization of precipitation for both the hot
rolling process as well as the annealing process is, therefore, essential.

Experiments on precipitation kinetics are time consuming, laborious and demand very special equipment.
Models which describe the precipitation kinetics are therefore an essential addition to the experimental tools.
Such models should (and can) reduce the development time for new steel grades, support the solution of
production problems, support the optimisation of processes and improve the design of experimental tests. It
would therefore be profitable to develop and improve new and existing models for (niobium) precipitation in
steel.

Precipitates can nucleate at different sites in steel: in grains, on grain boundaries, on dislocations, amongst
others. The nucleation of precipitates in grains is called homogeneous nucleation, and the nucleation of pre-
cipitates on dislocations and other defects in the steel is called heterogeneous nucleation. Several models for
the evolution of precipitates on different (nucleation) sites have been developed, but most of them return the
mean diameter and the density of the precipitates. This is a reasonable approximation as long as the radius
distribution is unimodal. Due to the complexity of the production process (i.e. multiple deformations) it is
very difficult to make an assumption about the form of the radius distribution. It even might be multimodal
under certain conditions. In that case, the mean radius approximation could return incorrect results and an
explicit evolution description of the radius distribution is desirable.

Den Ouden et al. (2013) constructed a model with distributions for the diameter of the precipitates, but pri-
marily for homogeneous nucleation. Since, heterogeneous nucleation seems to play a key role during plastic
deformation of steel, which occurs, for example, during the hot rolling process, the goal of this Master Thesis
is to make a new model with distributions for the radius of the precipitates, but now for heterogeneous nu-
cleation.

To understand the process of nucleating and growing precipitates on dislocations, a model by Zurob et al.
(2002) was implemented and analysed in Vonk (2016). This model is limited to the mean diameter and den-
sity of the precipitates and describes only niobiumcarbonitride precipitates, but it gives a good indication of
how the precipitates nucleate and grow and also describes the interaction with recovery and recrystallisation
(of dislocations). In this Master thesis the recommended improvements from Vonk (2016) are implemented
and the results are compared to the results obtained using the model based on Zurob et al. (2002).
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2 1. Introduction

The thesis exists of two main parts. The first part includes the model description and background information
of the problem. The model description is developed on the basis of Zurob’s model. In Zurob’s model, precip-
itation was only considered on dislocations, and, therefore, the first part of the theory will be explained for
this type of precipitation. In Chapter 2 preliminaries of metallurgy are introduced, like information on ther-
modynamics, phase diagrams and Gibbs free energy, but also information on dislocations and metalworking
techniques is given to fully understand the process of steel making and the processes where precipitation
plays a big role. Using this knowledge, a mathematical model is introduced in Chapter 3 describing the nu-
cleating and growing precipitates on dislocations. This mathematical model uses the distribution approach
as described by Robson (2014) and Den Ouden et al. (2013).

This model mathematical model was extended with a multi-component version in Chapter 4. Multi-com-
ponent, meaning that, all elements in the system are taken into account when describing the evolution of
precipitates. After the development of the mathematical model for nucleation on dislocations, the model
was extended to other nucleation sites in Chapter 5. The theory for the evolution of precipitates on these
sites is similar to the one for precipitates on dislocations, and the extension of the model can be considered
as a generalisation of Zurob’s model. Furthermore in Chapter 5, the model is extended to a multi-precipitate
version, meaning that, contrary to some models, multiple types of precipitates (N b(C , N ), Al N , MnS, etc.)
and multiple nucleation sites (dislocations, grain boundaries, grains, etc.) can be involved and analysed at
the same time. Chapters 6 and 7 complete the first part with the numerical methods for finding a solution to
the developed model and the computational issues that came along.

The second part of this thesis includes the simulation and numerical results and is structured as follows.
In Chapter 8 the results of the simulation with the basic mathematical model from Chapter 3 are given and
analysed. And in Chapters 9 and 10 the results of the simulation using the extensions from respectively Chap-
ters 4 and 5 are given and analysed. The second part is completed with the conclusions in Chapter 11 and
recommendations for future work in Chapter 12.
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2
Preliminaries in metallurgy

To model the nucleating and growing of precipitates on dislocations, one needs some preliminaries in met-
allurgy. This chapter starts with an introduction to the crystal structure of metals. Thereafter a discussion
is presented on thermodynamics and the phase diagram of steel. Then the diffusional concepts related to
alloys are explained, followed by a short explanation of precipitation reactions and how their kinetics is de-
termined by diffusion. These precipitation reactions can take place in two different ways: homogeneous and
heterogeneous, which will be explained for the case of precipitation on dislocations. Finally the process of
steel making is presented and it is shown where the precipitation reactions we focus on occur during this
process. The information presented in this chapter mostly originates from Porter and Easterling (1981) (es-
pecially Chapters 1, 2 and 5). Also some of the information originates from Den Ouden (2015) and the more
detailed information about dislocations comes from Hull and Bacon (2001).

2.1. Crystal Structure
Metals can have different crystal structures, of which the body-centred and face-centred cubic crystal struc-
ture (shown in Figure 2.1) are the most common.

Figure 2.1: A part of a metal with
a body-centred cubic (bcc)
crystal structure (left) and a

face-centred cubic (fcc) crystal
structure (right). Image from

Wikipedia (2016c).

Figure 2.2: Crystal structure with several
different defects.

Image from Shah (2012).

When a metal solidifies from the liquid state, such crystals start to grow in the metal. The longer the metal
takes to cool the larger the crystals grow in the metal. These crystals form the grains in the solid metal. Each
grain is a distinct crystal with its own orientation. The areas between the grains are known as grain boundaries
and are illustrated in Figure 2.2 (cross-section of the grains).

2.2. Thermodynamics and Phase Diagrams
To understand the concept of steel making and the process that takes place during the nucleating and growing
of precipitates in steel, we first need to understand the thermodynamics of these processes. The keywords
during this process are ‘free energy’ and ‘equilibrium’. However, for this we need four important definitions
to start with:
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Definition 2.1. A phase is a region of space where the physical properties and composition are homogeneous
and which is physically distinct from other parts of the system.

Definition 2.2. A system is an alloy that can exist as one phase or a mixture of phases.

Definition 2.3. A component of the system is one of the different elements or chemical compounds that make
up the system.

A system can have two types of thermodynamic properties:

1. Intensive properties, which are independent of size of the system, like the absolute temperature (T )
and the pressure (P ).

2. Extensive properties, which are directly proportional to the quantity of material in the system (number
of moles in the system), like volume (V ), internal energy (E), enthalpy (H), entropy (S) and free energy
(G).

Definition 2.4. A phase transformation is how one or more phases in an alloy (a system) change into a new
phase or mixture of phases.

In phase transformations we are always concerned with changes towards thermodynamic equilibrium, where
we mean equilibrium in the sense of the lowest free energy. For phase transformations that occur at constant
temperature and pressure, the relative stability of a system is determined by its Gibbs free energy (G), mea-
sured in Joules (J), and defined by

G = H −T S,

where H is the enthalpy, T the absolute temperature in Kelvin (K) and S the entropy of the system. The
enthalpy H is the sum of the internal energy E and the mechanical energy PV :

H = E +PV ,

where E is the internal energy of the system in Joules (J), both kinetic and potential, P is the pressure in the
system in Joules per cubic meter (J/m3) and V is the volume of the system in cubic meters (m3). It is good
to notice, that in condensed phases like solid and liquid, the value of PV is much smaller than the internal
energy E and the heat content of the system H is therefore close to this internal energy. When we plot the
Gibbs free energy for a spontaneous change in the state of a system (with constant T and P ), we get a graph
like in Figure 2.3.

Figure 2.3: Illustration of a spontaneous change in the state of a system and the associated states.
Image from Learning Geology (2015).

The driving force behind a phase transformation is the difference between the Gibbs free energy in a certain
(non-)equilibrium state of the system and the equilibrium state, where the state is in equilibrium when the
free energy of the system is at minimum, i.e.:

dG = 0.

The intermediate states dG 6= 0 are unstable. From mathematics we know that when dG = 0, we have found
a minimum or maximum, however we are only interested in the minimum free energy. Also, we can have
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a purely local minimum or a global minimum, which correspond to a metastable or a stable equilibrium
respectively. Given time, systems in a metastable state will transform to a stable state. However, the system
then first has to overcome the energy maximum between the metastable and stable state, which is called the
activation energy (Figure 2.3: Ea) and this energy barrier will determine the rate of the transformation.
Using the Gibbs free energy plots for different temperatures, a phase diagram for alloys can be constructed.
This derivation will not be given in this literature study, but an example can be found in Porter and Easterling
(1981).

Since the focus of this thesis will be on steel, the phase diagram for iron-carbon is given in Figure 2.4. In this
figure different phases of the system are shown for different temperatures (vertical axis) and different weight
percentages of carbon (horizontal)1. Examples of these phases are Austenite and Ferrite, which also corre-
spond to a crystal structure as described in Section 2.1 (Austenite ↔ γ↔ fcc, Ferrite ↔ α↔ bcc). However,
the probability that one has a system that is in such an equilibrium state is small. For a system to reach such a
state or for us to model it, we need to introduce the concept of diffusion. Some of these phase transformations
are not diffusion driven, but during this thesis we will only focus on diffusional phase transformations.

Figure 2.4: Phase diagram of iron-carbon (steel). Image from Nair (2015).

2.3. Diffusion
The concept of diffusion is based on the principle of the system wanting to reach the state with the lowest
Gibbs free energy. Diffusion is basically the random movement of atoms. Two types of diffusion can be dis-
tinguished: interstitial and substitutional diffusion. For this we need to understand the concept of interstitial
and substitutional atoms. Interstitial atoms are significantly smaller than the atoms of the solvent, and can
thereby move between the solvent atoms. Substitutional atoms are larger or of approximate equal size as the
solvent atoms and can thereby not move between the solvent atoms, but need vacancies to move around.
Both types of atoms are shown in Figure 2.5. Since the interstitial atoms are smaller, they force their way
between the solvent atoms, as shown in Figure 2.5a. This is called interstitial diffusion. The movement of
substitutional atoms is called substitutional diffusion and is illustrated in Figure 2.5b. Here a solute or sol-
vent atom will move to a vacant place in the solvent matrix. In this case a solute or solvent atom and a vacancy

1Some phase diagrams use a weight or molar fraction to measure the composition of the system.
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will interchange in position. Since substitutional diffusion needs vacancies which only appear in small num-
bers, whereas interstitial diffusion occurs without vacancies, substitutional diffusion rates are much lower
than interstitial diffusion rates in general.
For both types of diffusion we can assume that Fick’s second law can be used to model how diffusion causes
the concentration to change with time:

∂C

∂t
=∇· (D∇C ),

where C is the concentration of the solute atoms and D the diffusion constant of the solute atoms in m2/s. If
the diffusion constant has no variations with concentration of space, we find

∂C

∂t
= D∆C .

(a) Illustration of interstitial diffusion.

(b) Illustration of substitutional diffusion.

Figure 2.5: Different types of diffusion. Images from Cdan (2015).

2.4. Precipitation
In multi-component systems, like steel, many different phases can occur, which depends on the temperature.
Five types of phase transformations can occur between different phases, of which almost all of them take
place by diffusional nucleation and growth. However, we are primarily interested in the phase transformation
due to precipitation reactions, which can be described by

α→α∗+β,

where α is the phase before the transformation, and α∗ and β are the phases after the transformation. When
starting with a system in a supersaturated metastable solid phase α and a precipitation reaction occurs, the
resulting system will consist of the α∗ and β phases. Here α∗ is a solid phase with lower Gibbs energy than
α but with the same crystal structure and β is a (meta)stable precipitate phase. Looking back at the phase
diagram in Figure 2.4, an example of this could be the phase transformation from austenite to austenite with
ferrite (γ→ γ+α).

The evolution of precipitation can be divided in three general stages:

1. Nucleation: the appearance of precipitates from a supersaturated matrix.

2. Growth: the growing of precipitates. During this process the precipitates take atoms from the matrix to
grow until equilibrium between the precipitates and the matrix has been reached. The concentrations
of the precipitate-forming solutes will significantly decrease in the matrix.
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3. Coarsening: the growth of large precipitates at the expense of small precipitates, also known as Ostwald
ripening. At this stage the concentrations of the precipitate-forming solute atoms will remain almost
constant in the matrix. The driving force for coarsening is the reduction of the interfacial energy and
thereby the total free energy. By the growth of large precipitates and the disappearance of small ones
the total interfacial area is reduced, which reduces the free energy. This mostly happens if the concen-
trations (of the precipitates compounds) in the matrix are near the equilibrium concentration.

A fourth stage, (partial) dissolving, happens only in special occasions, for example when the volume fraction
of the precipitate increases above the equilibrium volume fraction. Some of these stages can take place at the
same time (for example nucleation and growth), so for the final model we also need the interaction between
these four stages.

2.5. Dislocations
The precipitation reaction, as described before, takes place by nucleation and growth. Two types of nucle-
ation can take place, namely homogeneous and heterogeneous (on defects) nucleation. The different types of
heterogeneous nucleation (on dislocations, on grain boundaries, on other precipitates and inclusions, etc.)
have lower activation energies than homogeneous nucleation, and, therefore, heterogeneous nucleation is
the main mechanism in solids and liquids. Therefore we will focus on heterogeneous nucleation in this the-
sis.

As described in Section 2.1, metal alloys have a crystal structure, however, all real crystals contain some sort of
imperfections which can have different shapes: point, line, surface or volume defects. These defects locally
disturb the arrangement of the atoms in the crystal structure and in this way have an important effect on
the properties of the metal alloys. These defects are the locations for heterogeneous nucleation. Some of
the defects like vacancies, dislocations, stacking faults and grain boundaries are shown in Figure 2.2. In this
thesis, the main focus will be on the nucleation and growth of precipitates on dislocations.

Figure 2.6: Combination of two types of dislocations.
Image from Rey (2015).

All these defects increase the free energy of the material, which is an unwanted effect. Each defect has his own
type of free energy contribution, for example a dislocation is associated with an increased elastic energy and
a grain boundary with an increased interface energy. The combination of a precipitate and the defect results
in a lower free energy (for a dislocation a lower elastic energy) and thereby reducing the total free energy of
the material. The equation for the energy change due to a heterogeneous reaction therefore becomes

∆G =V∆gv + Aγ+∆Gdi s , (2.1)

where ∆gv is the chemical free energy, Aγ the increase of free energy due to interfacial energy 1 and ∆Gdi s

the free energy release due to the reduction of the elastic energy associated with precipitation on dislocations.
The sign of ∆gv is dependent on the saturation of the matrix. It has a negative sign for an over-saturated ma-
trix and a positive sign for an under-saturated matrix. Further, we will assume in this thesis, that we deal with
incoherent particles and any misfit strain energy can be approximated by zero.

1The creation of a nucleus with area A will give a free energy increase of Aγ, assuming that the α-β interfacial energy is isotropic.
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To fully understand the energy changes due to nucleation on dislocations, we need more information about
dislocations and their geometry. Starting with the existing types of dislocations, Figure 2.6 shows both of
them:

1. An edge dislocation, and

2. a screw dislocation.

The edge dislocation can be simulated as follows: separate a crystal in two parts, along one of the lattice
planes, such that that the faces of the crystal are separated. Now an additional half-plane of atoms can be
inserted in this opening, which results in an edge dislocation. Both positive and negative edge dislocations
can exist, respectively meaning an additional half-plane from above the broken surface, illustrated with a ‘⊥′
or an additional half-plane from below the broken surface, illustrated with a ‘>′. It is good to point out, that
after an edge dislocation has formed, edge dislocations can move to the side of the crystal under a shearing
deformation of the crystal, as shown in Figure 2.7.

Figure 2.7: Illustration of the movement of an edge dislocation.
Image from Academic Resource Center (2015).

The screw dislocation can be seen as a simple displacement of part of the crystal structure, relative to the
other part of the crystal structure. As with edge dislocations, two directions of the dislocation can be dis-
tinguished. Contrary to the edge dislocations, however, screw dislocations are distinguished between left-
handed and right-handed, meaning the direction of the dislocation when looking down the dislocation line.
When a clockwise circuit is made round it, it is referred to as a right-handed screw dislocation and when a
counter-clockwise circuit is made round it, it is referred to as a left-handed screw dislocation. Mixtures of
both edge and screw dislocations also exist, as shown in Figure 2.6. To formally describe the dislocation, we
introduce the definition of the Burgers circuit.

Definition 2.5. The Burgers circuit is any atom-to-atom path, a closed loop, containing the dislocations in the
crystal structure (Figure 2.8).

Figure 2.8: Illustration of the Burgers vector for both type of dislocations. Left we see the edge dislocation
and right the screw dislocation. Image from Wikipedia (2016a).

Another important concept is that of the Burgers vector, which together with the Burgers circuit defines the
dislocation. The Burgers vector’s magnitude and direction is best understood when the dislocation-bearing
crystal structure is first visualised without the dislocation, that is, the perfect crystal structure. For this we
use Figure 2.8 as an illustration. In this perfect crystal structure, a rectangle is drawn surrounding the site
of the original dislocation’s origin. The lengths and widths of this rectangle are integer multiples of the unit-
cell-edge length. Once the surrounding rectangle (MNOP) is drawn, the dislocation can be introduced. This
dislocation will have the effect of deforming, not only the perfect crystal structure, but the rectangle as well.
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The MNOP-rectangle could have one of its sides disjointed from the perpendicular side, severing the connec-
tion of the length and width line segments of the rectangle at one of the rectangle’s corners, and displacing
each line segment from each other. What was once a rectangle before the dislocation was introduced, is now
an open geometric figure whose opening defines the direction and magnitude of the Burgers vector.

The Burgers vector is closely related to the dislocation density, since the dislocation density is defined as the
total length of dislocation line per unit volume of crystal. It is a parameter of interest, since it influences both
the nucleation and growth of precipitates on dislocations.

2.6. Metalworking Techniques
In the process of steel making, a series of metalworking techniques is used wherein precipitation reactions
play a role. The process will be explained in general and the parts which include these precipitation reactions
will be explained more thoroughly.

1. Reduction of iron oxides (ore) to iron metal

• Installation/process: blast furnace (around 2000 °C),

• Metallurgical processes: reduction reactions.

The process of steel making starts with iron ore. This represents a chemical composition consisting of
iron oxides (FexOy ). At high temperatures the carbon level in these oxides is reduced, resulting in pig
iron (liquid iron, containing around 4.4 wt% carbon) and CO2.

2. Lowering of carbon concentration and adding alloying elements

• Installation/process: basic oxygen steel plant (1550 °C),

• Metallurgical processes: oxidation, dissolution (of alloying elements).

The pig iron is transported to a steel mill, at which the carbon level in the iron is reduced. When the
pig iron arrives at the steel mill it is carbon-rich (around 4.4 wt-%), but for the pig iron to be called
steel, it has to be carbon-low (less than 2 wt-% carbon). To reduce the carbon in the mixture, we use the
following reaction

C +O2 →CO2.

In Figure 2.9 the process of blowing oxygen into the pig iron to get the reaction, is illustrated. Dur-
ing this process also several alloying elements like Ti (Titanium), Nb (Niobium) or V (Vanadium) are
added, to change the mechanical properties of the resulting steel. This is an important part to point
out, since especially these allloying elements are the ones that will form precipitates later on in the
process. The result of the so called Basic oxygen steelmaking (Wikipedia (2015c)) are then cast into big
slabs of around 230 mm thick and 10-20 ton. The structure of the resulting strips has large grains and
can already contain precipitates.

Figure 2.9: Principle of a LD (Linz-Donawitz) converter. Image from Wikipedia (2016e).



12 2. Preliminaries in metallurgy

3. Rolling of strip from 230 mm to 2-25 mm

• Installation/process: hot strip mill (850-1250 °C),

• Metallurgical processes: deformation, recrystallisation, recovery, precipitation, transformation
(oxidation).

The thick slabs will then arrive at the hot strip mill, where the slabs are heated to 1100-1250 °C and
rolled in a roughing and finishing mill to the final thickness between 2 and 25 mm. The deforming of
the steel is an application of elastic and/or inelastic deformation and can therefore be described with a
stress-strain relation.

Between the rolls, recrystallisation and recovery can take place. Recrystallisation is the process of re-
ducing dislocations (created by plastic deformation) by nucleation and growing of new, dislocation free,
grains whereas recovery is reducing the dislocation density by annihilation and redistribution. An il-
lustration of part of this process is shown in Figure 2.10. The last process of hot rolling, transformation,
is the process where the steel transforms from the austenite to the ferrite phase, and takes place at the
end of the hot strip rolling, when the strip is cooled down to around 600-700 °C.

Figure 2.10: Illustration of the hot rolling and the processes that take place during this process. Image from
Rendy Yusman (2011).

4. Rolling of strip from 2-25 mm to 0.2-1.5 mm (optional)

• Installation/process: cold strip mill and annealing line (20-150 °C),

• Metallurgical processes: deformation (cold strip mill), recrystallisation, recovery, precipitation,
transformation (annealing line).

The goal of this part of the process is to control the shape, size and thickness of the steel. The thickness
is reduced by cold rolling, which results in a hard and difficultly deformable strip. To recover the forma-
bility again, the rolled strip is annealed (600-750°C) where recovery, recrystallisation, precipitation and,
depending on the temperature, transformation will take place. Contrary to the metallurgical process
that took place at the hot strip mill, this process mainly takes place in the ferrite phase instead of the
austenite phase.

5. Coating and painting (optional)

• Installation: coating and painting line,

• Metallurgical processes: tempering (coating), hydrogen embrittlement (coating).

This part of the steel making process only concerns the protection and/or outlook of the strip and is
not relevant for the subject of this thesis.



3
KWN model

In Vonk (2016) the precipitation model by Zurob et al. (2002) was implemented and analysed. The model
distinguishes two stages in the precipitation process: in the first stage precipitates nucleate and grow, while
the total volume fraction increases, whereas, in the second stage, named coarsening, the volume fraction
remains almost constant and large precipitates grow at the cost of small precipitates. A coarsening function is
used to describe the switch between the two stages. Even though the results we found using this precipitation
model seemed to be realistic and predicted the experimental data quite well after fitting, for applications to
modern steel grades like the simulation of the production process of HSLA steels, the assumptions in the
Zurob model needed a number of improvements and extensions:

• Because most steel alloys contain many alloying elements, different precipitates can occur simultane-
ously (for instance, N b(C , N )1, Al N and MnS) and complex precipitates may exist, like (N b,T i )(C , N ).
Also precipitates may nucleate at various nucleation sites. However, in the Zurob model, only one type
of precipitate is considered at the time. To correctly simulate the nucleation and growth of precipitates
it is necessary to extend the precipitate evolution model in three different ways:

1. All elements in the system influence the nucleation and growth of the precipitates, even when
the elements do not participate in the precipitate. The growth rate for example is influenced by
the diffusion coefficients and concentrations of all elements in the system. A multi-component
model is the extension to capture this complexity (Den Ouden et al. (2013)).

2. Describing more than one type of precipitate simultaneously (for instance N b(C , N ), Al N and
MnS), and at different nucleation sites (for instance grain boundaries, dislocations and on grains),
which we call the multi-precipitate model.

3. Complex precipitates may exist, like (N b,T i )(C , N ). The model should be capable of dealing with
complex precipitates in a general matter, but the thermodynamical models belonging to individ-
ual complex precipitates will not be implemented, except for the N bC N precipitate, since it was
used in the models by Zurob et al. (2002), Kranendonk (2005) and Vonk (2016) as well. Thermody-
namic models for other complex precipitates are a nice extension for further work.

• The evolution of precipitates in the Zurob model is based on the mean radius approximation. This is
a reasonable approximation as long as the radius distribution is unimodal. Due to the complexity of
the production process (i.e. multiple deformations) it is very difficult to make an assumption about the
form of the radius distribution. It even might be multimodal under certain conditions. In that case, the
mean radius approximation could return incorrect results and an explicit evolution description of the
distribution is desirable. We therefore develop a model using distributions for the radius of the preci-
pitates (for homogeneous nucleation such an implementation has already been given by Den Ouden
et al. (2013)). This model will incorporate the extensions of the precipitate evolution model described
above and is described for austenite simulations.

1In this thesis abbreviated by N bC N .

13
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Taking these considerations into account, the following steps are performed in this thesis:

C.1 Make a new model, based on the approximations in the nucleation rate made by Zurob et al. (2002), in
which the evolution of the mean radius will be replaced by the distributions of the radii. (Chapter 3)

C.2 Extend the new model with a multi-component version. (Chapter 4)

C.3 Extend the new model with a multi-precipitate version, meaning multiple precipitates with varying
composition and nucleation at multiple nucleation sites. (Chapter 5)

In this chapter a new model with distributions is introduced for alloys with one type of precipitate. For this
we choose the N bC N precipitate, since this type of precipitate was also used in the model by Zurob et al.
(2002). To accomplish the first step (item C.1), we start by introducing a new model: the KWN (Kampmann
and Wagner (1991)) model in the form as used by Robson (2014). This model describes the evolution of
the distribution during nucleation, growth and coarsening of precipitates. For this we introduce a function
φ(R, t ) which denotes the number density distribution of precipitates with radius R and at time t . Based on
the KWN model, but using the approximations for the nucleation and growth rate from Zurob et al. (2002),
we construct a model which includes this functionφ(R, t ). The main physical features of the KWN model are:

• All particles are spherical and classified by their radii in meters (m).

• The time evolution in seconds (s) of the model is described by the partial differential equation

∂φ

∂t
=−∂[vφ]

∂R
+S, (3.1)

in which φ≡ φ(R, t ) in m−4 denotes the number density distribution of precipitates with radius R and
at time t . Note that this is not a probability density function and will not always integrate to one, but to
the precipitate number density at time t . v ≡ v(R, t ) in ms−1 represents the growth rate of precipitates
with radius R and at time t and S ≡ S(R, t ) in m−4s−1 is a source function representing nucleation
for the number density distribution of newly appearing precipitates with radius R at time t . By using
this formulation of the evolution of the distribution of the precipitate radius, coarsening is implicitly
incorporated and therefore no coarsening function is needed.

• The value of the source function S is based on the nucleation rate and a function indicating the radius
at which nucleation takes place. The source function is given by (Den Ouden et al. (2013))

S(R, t ) = I (t )δ(R −R∗(t )), (3.2)

in which I (t ) denotes the nucleation rate of the precipitates following from Zurob et al. (2002) and Vonk
(2016) and will be explained later on. R∗(t ) is the critical radius following from Vonk (2016) and δ is the
Dirac delta function.

3.1. Nucleation
Following Vonk (2016), we assume that the time-dependent nucleation rate I (t ) for precipitates, as used in
Equation (3.2), is given by

I (t ) = (Ntot al −N )Zβ∗ exp

(−∆G∗

kB T

)
, (3.3)

with the following properties:

• (Ntot al −N ) is the number of nucleation sites that is currently available. In this equation Ntot al is the
total number of nucleation sites that is available and is approximated by

Ntot al =
Fρ

b
, (3.4)

where b is the length of the Burgers vector, F a fitting parameter and ρ the dislocation density. N (t ) is
the precipitate number density and can be retrieved from the number density distribution φ using

N (t ) =
∞∫

0

φ(R, t )dR. (3.5)
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The precipitate mean radius R̄(t ) can be retrieved in a similar fashion. We use the bar over the R to
emphasise we refer to the mean radius at time t.

R̄(t ) = 1

N (t )

∞∫
0

Rφ(R, t )dR, (3.6)

• ∆G∗ is the free energy barrier needed for the nucleation to take place, also known as the activation

energy and will be explained later. The term exp
(
−∆G∗
kB T

)
is thereby the probability that a nucleus with

critical size will appear.

• Z is the Zeldovich non-equilibrium factor and β∗ is the rate of atomic attachment to the critical nu-
cleus. The Zeldovich factor describes the probability that a nucleus of critical size (at the maximum of
the energy barrier) will continue to grow and not dissolve. β∗ is the rate at which elements attach to the
nucleus causing it to grow, giving an indication of the rate of nucleation. Due to the assumption that
the precipitates are spherical, the approximation for Zβ∗ (for N bC N precipitates) is given by (Zurob
et al. (2002))

Zβ∗ ≈ Dpi pe,N b xM
N b

a2 , (3.7)

where Dpi pe,N b is the diffusion coefficient of niobium along the dislocation (since it is the slowest dif-
fusing element and hence assumed rate-determining), xM

N b the molar fraction of niobium in the matrix
and a the matrix lattice constant.

• kB is the Boltzman constant and T is the temperature given in K .

Combining the approximations given above, we find the following time-dependent nucleation rate I (t ):

I (t ) = (Ntot al −N )

(
Dpi pe,N b xM

N b

a2

)
exp

(−∆G∗

kB T

)
(3.8)

The activation energy ∆G∗, found in the nucleation rate (Equation (3.8)), and the associated critical radius
R∗, used in the source function (Equation (3.2)), are estimated from the expression for the free energy of
precipitate formation (Equation (2.1)):

∆G =V∆gv + Aγ+∆Gdi s . (2.1)

where V and A are respectively the volume and the area of the precipitate, ∆gv is the chemical free energy,
also known as the chemical driving force, γ the interface energy, and ∆Gdi s the free energy release due to the
reduction of the elastic energy associated with precipitation on dislocations.
The chemical driving force in the energy balance for heterogeneous nucleation is estimated by

∆gv =− kB T

vN bC N
ln

(
matrix product

solubility product

)
:=− Rg T

vm,N bC N
ln(saturation). (3.9)

The matrix product is the product of the concentrations (in weight percentages) of the precipitate compounds
in the matrix to the power of their stoichiometric ratio x (the ratio of carbon and nitrogen in the precipitate
at equilibrium)

matrix product = w t%N bM (w t%C M )x (w t%N M )1−x , (3.10)

and the solubility product of the complex precipitate (meaning that it can be considered as a mixture of two
(or) more precipitates, which consists of two elements) is related to the separate solubility products via (Hudd
et al. (1971))

K (N bC N ) = K (N bC )x K (N bN )1−x xx (1−x)1−x , (3.11)

=
(

w t%N bE q w t%C E q

x

)x (
w t%N bE q w t%N E q

1−x

)1−x

xx (1−x)1−x , (3.12)

= w t%N bE q (w t%C E q )x (w t%N E q )1−x . (3.13)
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The saturation is the quotient of the matrix product and the solubility product, and can be rewritten as

saturation = w t%N bM

w t%N bE q

(
w t%C M

w t%C E q

)x (
w t%N M

w t%N E q

)1−x

. (3.14)

Therefore, the saturation gives an indication of how close the matrix concentrations are to their equilibrium
concentration. Under isothermal conditions the system will move to a state of equilibrium and, thus, the
saturation will tend to one.
The equilibrium concentration in the matrix w t%N bE q can be found by solving the following equation from
Hudd et al. (1971):

(w t%N bE q )4(MC MN )+ (w t%N bE q )3(−2w t%N bMC MN +w t%C MN MN b +w t%N MC MN b)

+ (w t%N bE q )2(−MN b MN ∗K (N bC )−MN b MC K (N bN )+ (w t%N b)2MC MN −w t%C w t%N bMN MN b

−w t%N w t%N bMC MN b)+w t%N bE q (w t%N bMN b MN K (N bC )+K (N bN )w t%N bMC MN b

−w t%N K (N bC )M 2
N b −w t%C K (N bN )M 2

N b)+K (N bC )K (N bN )M 2
N b = 0, (3.15)

where the solubility products K (N bN ) and K (N bC ) are temperature dependent, and the initial weight per-
centages for Nb, C and N are used. The solvus temperature Tsol , the maximum temperature at which pre-
cipitates can form, is found by substituting w t%N b0 for w t%N bE q in Equation (3.15) and solving for the
temperature.
The free energy release due to the reduction of the elastic energy associated with dislocations used in Equa-
tion (2.1) is defined as (Zurob et al. (2002))

∆Gdi s =−µb2R ln(R/b)

2π(1−ν)
− µb2R

5
, (3.16)

leading to the energy balance for nucleation on dislocations:

∆G =V∆gv + Aγ− µb2R ln(R/b)

2π(1−ν)
− µb2R

5
, (3.17)

where ν is the Poisson ratio and µ the shear modulus. A schematic representation of the energy changes of
precipitate forming as a function of the precipitate radius (Equation (3.17)) is given in Figure 3.1, where it can
be seen that the activation energy ∆G∗ is the maximum of ∆G .

Figure 3.1: Schematic representation of the energy changes ∆G . Image from Perez et al. (2008).

We take the derivative of ∆G with respect to R, given in Equation (3.18) (note that ∆gv and γ do not depend
on R), and set it equal to zero to find the critical radius (associated with the maximum of ∆G), where after we
substitute the radius back into Equation (3.17) to find the activation energy ∆G∗.

d(∆G)

dR
= 4πR2∆gv +8πRγ− µb2

2π(1−ν)
(ln(R/b)+1)− µb2

5
= 0 (3.18)
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Since, this equation is nonlinear and a (simple) analytic solution is not available, we solve it using a numerical
method. The function can be easily differentiated, which makes Newton’s method suitable for this problem.
As an initial value we use the critical radius for homogeneous nucleation −2γ

∆gv
(Den Ouden et al. (2013)).

3.2. Growth
In the previous section the nucleation rate I (t ), incorporated in the source function S(R, t ) was discussed. The
growth rate v , as used in the calculation of the precipitate distribution φ is approximated by (Vonk (2016))

v(φ,R, t ) = dR

d t
= De f f ,X

R

C M
X −C R

X

C P
X −C R

X

, (3.19)

where the concentrations C and effective diffusion coefficient refer to the elements in the precipitate (N b, C ,
N ). The growth rate is directly dependent on R and indirectly dependent on φ through the concentrations.
The effective diffusion coefficient De f f for precipitates on dislocations is defined by

De f f ,X = Dpi pe,Xπb2ρ+Dbulk,X (1−πb2ρ), (3.20)

where the dislocation density ρ is taken constant for now and Dpi pe and Dbulk are respectively the diffu-
sion coefficients in the dislocation and bulk. Because the diffusion coefficient of N b is orders of magnitude
smaller than of C and N , N b will determine the growth rate of the precipitates. C M is the concentration of
the growth determining solute in the matrix, C P the concentration of this solute in the precipitate and C R the
concentration of this solute in the matrix at the precipitate/matrix interface.

To calculate the concentration at the precipitate/matrix interface, we start with the growth rate (Equation
(3.19)) for each element X (N b, N and C ) separately:

v = De f f ,X

R

C M
X −C R

X

C P
X −C R

X

⇒ C R
X = De f f ,X C M

X − vRC P
X

De f f ,X − vR
. (3.21)

This results in three equations (for N b, N and C ) with four unknowns: v , C R
N b , C R

N and C R
C , for which no

unique solution is found. To find a fourth equation, we start from Equation (3.18) and rewrite it:

∆gv =−2γ

R
+ µb2

8π2(1−ν)R2 (ln(R/b)+1)+ µb2

20πR2 . (3.22)

Using the definition of ∆gv (Equation (3.9)) and replacing the matrix product with the interface product (i.e.
the product of the concentrations at the precipitate-matrix interface), we get

− Rg T

vm,N bC N
ln

(
interface product

solubility product

)
=−2γ

R
+ µb2

8π2(1−ν)R2 (ln(R/b)+1)+ µb2

20πR2 , (3.23)

where

interface product = w t%N bR (w t%C R )x (w t%N R )1−x . (3.24)

The weight percentage of an element X in the matrix is found using:

w t%X M = C M
X MX

ρaus
, (3.25)

where ρaus is the mass density of austenite.

Combining the three equations for the growth rates (Equation (3.21)) with the equation for the energy changes
(Equation (3.23)), results in four equations with four unknowns: v , C R

N b , C R
N and C R

C , which we can solve.
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We use the bisection method to solve the following equation:

interface product

solubility product
−exp

(
−vm,N bC N

Rg T

(
−2γ

R
+ µb2

8π2(1−ν)R2 (ln(R/b)+1)+ µb2

20πR2

))
= 0, (3.26)

which is a non-linear function of v via the interface product, since the interface concentrations in the inter-
face product depend on v via Equation (3.21). Using this bisection method, we get back the growth rate v ,
and thereby via Equation (3.21) the interface concentrations. Even though the bisection method is know to
be very slow and convergences non monotonic, it has the advantages of a low number of function evaluations
in one step and guarantees convergences. Later on, in Chapter 7, we will see that even though a method like
Ridders (Wikipedia (2015b)) has more function evaluations per time, the resulting computation time is lower.

In the current calculation of the interface concentrations only the elements that participate in the precip-
itate have influence on these interface concentrations. In Chapter 4, the calculation of the interface con-
centrations is adjusted, such that also the elements that do not participate in the precipitate influence the
calculations.



4
Multi-component KWN model

Now that we have made a new model, based on the approximations in the nucleation rate made by Zurob
et al. (2002), in which the evolution of the mean radius was be replaced by the distributions of the radii, we
extend it to a multi-component version. Transforming the original model to a multi-component model is
done by extending the standard KWN model and Equations (3.1) and (3.2) such that they account for mul-
tiple elements. This means that not only the elements participating in the precipitate have influence on the
nucleation and growth rate, but all elements in the system do.

4.1. Nucleation
Following Chapter 3, we assume that the time-dependent nucleation rate I (t ) for precipitates, used in the
source function, is given by:

I (t ) = (Ntot al −N )Zβ∗ exp

(−∆G∗

kB T

)
. (3.3)

Some of the approximations and calculations done in this nucleation rate do not only depend on elements
participating in the precipitates, but on all elements in the system. To account for this effect, we adjust the
approximations of the Zeldovich factor, the rate of atomic attachment and the activation energy.

Parameters Z and β∗

Z is the Zeldovich non-equilibrium factor and β∗ is the rate of atomic attachment to the critical nucleus. In
the non-multi-component version by Zurob et al. (2002) Zβ∗ was approximated by

Zβ∗ ≈ Dpi pe xM
N b

a2 , (4.1)

where Dpi pe is the diffusion coefficient in the dislocation, xM
N b the molar fraction of niobium in the matrix

and a the matrix lattice constant. This choice of using the properties of niobium was based on the assump-
tion that only niobium has an influence on Z and β∗, since it is the slowest diffusing element and hence
rate-determining. A better approximation would be to incorporate all elements in the matrix. However,
Den Ouden et al. (2013) showed that the difference between an approximation based on the slowest diffu-
sion element and an approximation based on all elements was not that large. The approximation chosen by
Zurob et al. (2002), however, was not physically justified, hence we use a different approximation, where Z
and β∗ are approximated separately.

19
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The Zeldovich factor was found using the definition by Russell (1980) and the following derivation1

Z =
√

−1

2πkB T

(
d 2

d N 2 (∆G)

)∣∣∣∣
R∗

, (4.2a)

=
√

−1

2πkB T

(∆G)′′(R∗)

(R∗)4

v2
at

16π2 , (4.2b)

= vat

2π
√

kB T

√
−R∗∆gv −γ+ µb2

16π2(1−ν)R∗

(
1

R∗

)2

, (4.2c)

where vat is the atomic volume of the precipitate and the other variables as defined earlier and in the nomen-
clature at the end of this thesis. A more extensive derivation of the Zeldovich factor can be found in Appendix
A. For the rate of atomic attachment to the critical nucleus β∗, we use the definition proposed by Russell
(1980):

β∗ = 4π(R∗)2λa

a2 , (4.3)

where λa is the effective frequency of a structural unit of precipitate type per unit area. This effective fre-
quency is chosen to be dependent on the slowest diffusion element X (i.e. the element with the lowest diffu-
sion coefficient) and is given by

λa = DX ,pi pe xM
X

a2 , (4.4)

where DX ,pi pe is the pipe diffusion coefficient of element X , xM
X the molar fraction of element X in the matrix

and a the lattice constant. This leads to

β∗ = 4π(R∗)2DX ,pi pe xM
X

a4 . (4.5)

For the product Zβ∗ we find

Zβ∗ = vat

2π
√

kB T

√
−R∗∆gv −γ+ µb2

16π2(1−ν)R∗

(
1

R∗

)2 4π(R∗)2DX ,pi pe xM
X

a4 , (4.6)

= vat√
kB T

√
−R∗∆gv −γ+ µb2

16π2(1−ν)R∗
2DX ,pi pe xM

X

a4 (4.7)

Comparing this approximation to the approximation from Zurob et al. (2002), we find Figure 4.1. The approx-
imation by Zurob et al. (2002) lies below the approximation of Zβ∗ when using the separate approximations
of Z and β∗. How this effects the final results, will be discussed in Chapter 9.

Figure 4.1: Approximations of Zβ∗ by Zurob et al. (2002) and as described in this thesis, for multiple values
of the molar fraction of an element in the matrix.

1The derivative indicated with the accent is with respect to the precipitate radius R.
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Activation energy
∆G∗ is the energy barrier needed to be overcome for nucleation to take place, also known as the activation
energy. The activation energy ∆G∗, found in the nucleation rate (Equation (3.8)), and the associated critical
radius R∗, found in the source function (Equation (3.2)), are estimated using the expression for the free energy
of precipitate formation (Equation (2.1)):

∆G =V∆gv + Aγ+∆Gd . (2.1)

The value of the chemical energy ∆gv is found using Equation (3.9). In this equation we use the weight
percentages of the elements in the matrix and in equilibrium. The weight percentage of an element X in the
matrix was found using:

w t%X M = C M
X MX

ρaus
, (3.25)

where ρaus is the mass density of austenite. However, this takes into account the concentration of the total
system, whereas we would like to calculate the weight percentage in the matrix and the precipitate based
respectively on the concentrations in the matrix and the precipitate. For each element X ∈ΨP ⊆Ψ, where
ΨP is the set of all elements in the precipitate andΨ is the set of all elements in the system, we use:

w t%X M = C M
X MX∑

Y ∈Ψ
C M

Y MY
and w t%X P = C P

X MX∑
Y ∈ΨP

C P
Y MY

. (4.8)

Using these conversions from concentration to weight percentages, leads to a multi-component version of
the activation energy.
Combining all multi-component approximations leads to the following multi-component nucleation rate

I (t ) = (Ntot al −N )
vat√
kB T

√
−R∗∆gv −γ+ µb2

16π2(1−ν)R∗
2DX ,pi pe xM

X

a4 exp

(−∆G∗

kB T

)
, (4.9)

where the subscript X refers to the slowest diffusing element in the precipitate considered.

4.2. Growth
In the previous section the nucleation rate I (t ), used in the source function S(R, t ) was discussed. As de-
scribed in Chapter 3, the growth rate v as used in the calculation of the precipitate distribution φ is defined
by Equation (3.19):

v(φ,R, t ) = dR

d t
= De f f ,X

R

C M
X −C R

X

C P
x −C R

x
. (3.19)

The growth rate (Equation (3.19)) also holds for elements that do not participate in the precipitate. However,
since the concentration of those elements in the precipitate is equal to zero, the growth rate changes to

v(φ,R, t ) = dR

d t
= De f f ,X

R

C M
X −C R

X

−C R
X

, (4.10)

for elements that do not participate in the precipitate. In solving the growth rate for the elements in the
precipitate we have to use an additional equation to be able to find a unique solution. We use the rewritten
equation for the free energy:

− Rg T

vm,N bC N
ln

(
interface product

solubility product

)
=−2γ

R
+ µb2

8π2(1−ν)R2 (ln(R/b)+1)+ µb2

20πR2 , (4.11)

where

interface product = w t%N bR (w t%C R )x (w t%N R )1−x . (4.12)



22 4. Multi-component KWN model

In this equation we use the weight percentages of the elements participating in the precipitate. However, as
described in the previous section, for the conversion from concentration to weight percentages we need the
concentrations of all elements in the system, also those that do not participate in the precipitate:

w t%X R = C R
X MX∑

Y ∈Ψ
C R

Y MY
. (4.13)

Meaning that we need to find the interface concentrations of all elements in the matrix, i.e. the growth rate
for all elements in the matrix, leading to Ne equations. This means that for the interface concentration calcu-
lations we have Ne equations for the growth rate of each element and Ne +1 unknowns: v and the interface
concentration of each of those Ne elements. Again we use the equation for the free energy (Equation (2.1)) as
an additional equation (number Ne +1) to be able to solve the system of equations. In this way we derive a
multi-component version of the growth rate.



5
Multi-precipitate KWN model

In this chapter, we extend the multi-component model to a version which includes the modelling of different
types of precipitates. Throughout this section, we use the following definition

Definition 5.1. A type of precipitate p is the unique combination of the composition of the precipitate, like
N bC N , Al N and MnS, and the site at which it nucleates, like on dislocations, on grain boundaries and in
grains.

Therefore, when a precipitate of the same composition occurs at two different nucleation sites, it is seen as
two types of precipitates with two separate distributions.

For each precipitate type p we use the model for nucleation and growth as described in Chapters 3 and 4. Due
to the multi-component properties of this model, no additional model is needed for the interaction between
the individual models of each precipitate type. The main features of the multi-precipitate (composition and
nucleation site) KWN model are:

• All particles are spherical and classified by their radii in meters (m).

• The time behaviour in seconds (s) of the model is described by the partial differential equation

∂φp

∂t
=−∂[vpφp ]

∂R
+Sp , (5.1)

in which φp ≡ φp (R, t ) in m−4 denotes the number density distribution of a precipitate with radius R
and at time t , vp ≡ vp (φ,R, t ) in ms−1 represents the growth rate of a precipitate with radius R and at
time t . Further Sp ≡ Sp (R, t ) in m−4s−1 is a source function for a precipitate representing nucleation for
the number density distribution of newly appearing precipitates with radius R at time t . The subscript
p refers to one unique combination of a precipitate type (composition) and nucleation site as defined
in Definition 5.1.

• The value of the source function Sp is given by

Sp (R, t ) = Ip (t )δ(R −R∗
p (t )), (5.2)

in which Ip (t ) denotes the nucleation rate of a precipitate, R∗
p (t ) the critical radius of that precipitate

and δ is the Dirac delta function.

The precipitate number density Np (t ) can be retrieved for each precipitate type p separately using the distri-
bution for that specific type of precipitate.

Np (t ) =
∞∫

0

φp (R, t )dR. (5.3)

23
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The precipitate mean radius R̄p (t ) can be retrieved in a similar fashion. We use the bar over the R to empha-
sise we are dealing with the mean radius.

R̄p (t ) = 1

Np (t )

∞∫
0

Rφp (R, t )dR, (5.4)

Even though no additional model for interaction between the individual models for each precipitate type is
needed, the different precipitate types depend on each other via the matrix concentrations, which change
during the simulation. When only one type of precipitate is considered in the simulation, we can use the
following equation to find the current matrix concentration of element X

C M
X = C 0

X −C P
X fv

1− fv
, (5.5)

where fv means the volume fraction, defined by

fv =
∞∫

0

4

3
πR3φdR. (5.6)

However, when simulating different precipitate types at the same time, the concentration of an element X
in the matrix can depend on multiple precipitates. We use the following adjusted mass balance to find the
concentration of an element X in the matrix

C M
X =

C 0
X − ∑

p∈Θ
C P (p)

X f p
v

1− ∑
p∈Θ

f p
v

, (5.7)

where Θ is the set of all precipitate types considered in the model, C P (p)
X

1 the concentration of element X in

precipitate type p and f p
v the volume fraction of precipitate type p.

5.1. Various precipitate compositions
In the introduction of the multi-precipitate model, we defined a type of precipitate as the unique combina-
tion of a composition of a precipitate and the nucleation site at which it nucleates. In this section, we will
only consider types of precipitates which differ in composition, but all nucleate at the same site, namely on
dislocations.

5.1.1. Nucleation rate
The nucleation rate I (t ) is defined equal to the nucleation rate in Chapter 4, and is defined for each precipitate
as:

Ip (t ) = (N tot al − ∑
p∈Θ

Np )Zpβ
∗
p exp

(−∆G∗
p

kB T

)
, (5.8)

where the subscript p refers to the type of precipitate and Θ is the set of precipitates. The definitions of
N tot al , Zp , β∗

p and ∆G∗
p are equal to those used in Chapter 4, but their values can change due to composition

dependent parameters, like diffusion coefficients. These composition dependent parameters will be given
later on in this section.

5.1.2. Growth rate
In the previous section the nucleation rate Ip (t ), incorporated in the source function Sp (R, t ) was discussed.
The growth rate vp as used in the calculation of the precipitate number density distribution φp is a generali-
sation to the growth rate as given in Chapter 3 (Equation (3.19)):

vp (φ,R, t ) = dRp

d t
= De f f ,X

Rp

C M
X −C R(p)

X

C P (p)
X −C R(p)

X

. (5.9)

1The superscript P refers to the precipitate itself, whereas the subscript p refers the type of precipitate.
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where p stands for the precipitate type considered. This growth rate holds for all elements in the matrix.
However, the concentrations on the interface and the concentration in the precipitate of those elements are
calculated for precipitate type p. For the elements that are not in precipitate type p, the growth rate therefore
changes to

vp = dRp

d t
= De f f ,X

Rp

C M
X −C R(p)

X

−C R(p)
X

. (5.10)

For the growth rate is it important to use the correct calculation of the matrix concentration as stated in
Equation (5.7).

5.1.3. Composition dependent parameters
In the nucleation rate some parameters depend on the composition of the precipitate.
The activation energy, ∆G∗, is based on the free energy of precipitate formation on dislocations:

∆Gp =V∆(gv )p + Aγp − µb2R ln(R/b)

2π(1−νp )
− µb2R

5
. (3.17)

For all types of precipitates (composition), this equation is defined the same. However, the value of the pa-
rameters, like ν, the poisson ratio, is different for each type of precipitate.
The composition also influences the value of β∗

p , since it is based on the slowest diffusing element in the
precipitate:

β∗
p = 4π(R∗)2DX ,pi pe xM

X

a2 . (5.11)

An overview of all changing parameters, for the compositions of the precipitates we consider, is given in
Table 5.1. Most of the parameters originate from Zurob et al. (2002), Cheng (2003) and Den Ouden (2015).
The interfacial energies of Al N and MnS are found using the derivation by Cheng (2003) (in Section 5.1.3 of
his work).

Table 5.1: Precipitate type dependent variables and parameters.

NbC NbN AlN MnS NbCx N1−x

ν 0.293 0.293 0.25 0.3 0.293

log(K (T )) 2.06− 6700
T 2.80− 8500

T 1.03− 6740
T 4.092− 10590

T
x log(KN bC )+ (1−x) log(KN bN )
+x log(x)+ (1−x) log(1−x)

vm 13.39×10−6 12.72×10−6 12.563×10−6 21.805×10−6 xvm,N bC + (1−x)vm,N bN

γ
1.0058

−0.4493×10−3T
0.9717

−0.4340×10−3T
0.8707

−0.3×10−3T
1.1412

−0.4×10−3T
2.5×10−5(Tsol −T )1.5 +0.375

5.2. Various nucleation sites
As defined in the introduction of this chapter, a type of precipitate p refers to a unique combination of the
composition of a precipitate and the site at which it nucleates. Since precipitates with the same composition
can occur at different nucleation sites, this leads to a separate equation for each precipitate type p.

The model used previously in this thesis describes the nucleation on dislocations, but nucleation on grain
boundaries and in grains (Den Ouden et al. (2013)) is also considered to be of great influence. Nucleation
on other precipitates or inclusions is not considered here, because the area available for nucleation is much
lower than the grain boundary area. Interphase nucleation during austenite to ferrite transformation requires
the introduction of special models and is recommended for future work.

The nucleation rate, growth rate and various variables for the chosen nucleation sites are given in this section.
Both the nucleation rate and the growth rate have the same form as in Chapter 4, but have different values
and descriptions for the individual parameters. Some of the parameters only depend on the composition,
some only depend on the nucleation site and some depend on both.
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5.2.1. Nucleation
For each precipitate type p the nucleation rate I (t ) is defined as:

Ip (t ) = (N tot al
si te − ∑

p∈Θsi te

Np )Zpβ
∗
p exp

(−∆G∗
p

kB T

)
, (5.12)

whereΘsi te is the set of all precipitates that nucleate at a particular nucleation site (of precipitate type p). To
illustrate the definition ofΘsi te , we given an example. Assume we have a simulation with:

• N bC N on dislocations, on grain boundaries and homogeneous nucleation,

• MnS on dislocations, and on grain boundaries,

• Al N on dislocations, and homogeneous nucleation,

and look at precipitate type p1, chosen as N bC N on dislocations. Then Θsi te =Θdi s is the set of all N bC N ,
MnS and Al N precipitates on dislocations. When we look at another precipitate type p2, chosen as MnS on
grain boundaries, Θsi te = Θg b is the set of all N bC N and MnS precipitates on grain boundaries, since Al N
are not chosen to nucleate on grain boundaries.
The definitions of the parameters in the nucleation rate that are nucleation site dependent will be described
below.

Number of available nucleation positions
The nucleation rate depends on the maximum number of available nucleation positions minus the number
of nucleation positions already occupied. The number of occupied nucleation positions is found by summing
over the precipitates types in a specific nucleation site. We use Figure 5.1 as an illustration. The set of all types
of precipitates in indicated by Θ. This can be divided in three groups: Θdi s , Θg b and Θhom , corresponding
to all precipitate types that respectively nucleate on dislocations, on grain boundaries and in grains. When
a precipitate type p nucleates on grain boundaries and therefore lies in Θg b , we sum over all precipitates
that also lie in Θg b to find the number of nucleation positions occupied. We take the sum over all precipi-
tates at one certain nucleation site, since only those precipitates occupy nucleation positions for that specific
precipitate type, independent of their composition.

Figure 5.1: Illustration of the set of all precipitates, grouped by the site they nucleate on.

N tot al
si te is the number of available nucleation positions at a specific site for a precipitate type p and is defined

as the product of a fitting parameter Fsi te and an approximation of the number of nucleation positions. Since,
the number of available nucleation positions depends on the nucleation site, and we assume it is indepen-
dent of the composition of the precipitate type, the subscript si te is used. The fitting factor is introduced
because of the uncertainty of the correct formula of the maximum number density per site.
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The following definitions are used:

• Dislocations (Zurob et al. (2002)):

N tot al
di s = Fdi s

ρ

b
, (5.13)

where b is the length of the Burgers vector, and ρ the dislocation density.

• Grain boundaries:

N tot al
g b = Fg b

3

2a2Rg r ai n
, (5.14)

where Rg r ai n is the radius of a grain and a the matrix lattice parameter.

• Homogeneous nucleation:

N tot al
hom = Fhom

4

a3 . (5.15)

Activation energy
Since the free energy of precipitate formation depends on the site where the precipitate is formed, also the
activation energy and the critical radius vary. Generally speaking, the free energy of precipitate formation is
given by

∆G =V∆gv + Aγ+∆Gsi te , (5.16)

where ∆Gsi te is the free energy change due to nucleation on that specific site. Taking the derivative of this
equation to R and setting it equal to zero, returns the activation energy and the critical radius.
For nucleation on dislocations the derivation of the activation energy and the critical radius has been done in
Section 3.1, but for the completeness of this section some equations are reproduced. The free energy change
due to nucleation on dislocations is given by

∆Gsi te =∆Gdi s =−µb2R ln(R/b)

2π(1−ν)
− µb2R

5
, (3.16)

which leads to the total free energy of precipitate formation

∆G = 4

3
πR3∆gv +4πR2γ− µb2R ln(R/b)

2π(1−ν)
− µb2R

5
. (3.17)

The activation energy and corresponding critical radius are found using the derivative of this equation to R
and setting it equal to zero, as described in Section 3.1:

d(∆G)

dR
= 4πR2∆gv +8πRγ− µb2

2π(1−ν)
(ln(R/b)+1)− µb2

5
= 0. (3.18)

For nucleation on grain boundaries the free energy change due to the release of grain boundary energy at the
position of the precipitate is given by

∆Gsi te =∆Gg b =−πR2γg b , (5.17)

which leads to the total free energy of precipitate formation

∆G = 4

3
πR3∆gv +4πR2γ−πR2γg b , (5.18)
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where γg b is the grain boundary energy. The value of γg b depends on the material considered. In the case
of austenite we take the value of 0.75 J/m2. Taking the derivative of the equation to R and setting it equal to
zero, leads to the activation energy and critical radius for nucleation on grain boundaries:R∗

g b = γg b−4γ
2∆gv

,

∆G∗
g b = π(−γg b+4γ)3

12∆g 2
v

.
(5.19)

For homogeneous nucleation, the free energy due to nucleation does not exists (∆Gsi te = 0) and the free
energy of precipitate formation is defined by

∆G =V∆gv + Aγ. (5.20)

Taking the derivative of this equation to R and setting it equal to zero, leads to the activation energy and
critical radius for homogeneous nucleation: R∗

hom = −2γ
∆gv

,

∆G∗
hom = 16πγ3

3∆g 2
v

.
(5.21)

Parameters Z and β∗
Zp and β∗

p are respectively the Zeldovich factor and the rate of atomic attachment, both dependent on pre-
cipitate type p. As described in Section 5.1 β∗ depends on the slowest diffusing element, and includes the
diffusion coefficient for that element:

β∗
p = 4π(R∗)2Dsi te,X xM

X

a2 . (5.22)

As the subscript si te in Dsi te,X indicates, different diffusion coefficients are used for different nucleation
sites. For nucleation on dislocations, on grain boundaries and homogeneous nucleation we take the pipe
diffusion coefficient, the grain boundary diffusion coefficient and the bulk diffusion coefficient respectively.
For all sites we again take the diffusion coefficient of the slowest diffusing element.
The Zeldovich factor is based on the free energy of precipitate formation, via the general formula for the
Zeldovich factor (Russell (1980))

Zp =
√

−1

2πkB T

(
d 2

d N 2 (∆G)p

)∣∣∣∣
R∗

, (5.23)

where R∗ is the critical radius and ∆G is the free energy of precipitate formation. For nucleation on disloca-
tions, the Zeldovich factor is derived in Chapter 4. For homogeneous nucleation the Zeldovich factor can be
found in various studies in literature, such as Den Ouden et al. (2013) and Russell (1980), and is given by

Z = vat
p
γ

2π
√

kB T

(
1

R∗

)2

, (5.24)

where vat is the atomic volume of the precipitate, kB the Boltzman constant and T the temperature. We
derive the Zeldovich factor for nucleation on grain boundaries, using the free energy of precipitate formation
for nucleation on grain boundaries given before.

Z =
√

−1

2πkB T

(
d 2

d N 2 (∆G)

)∣∣∣∣
R∗

, (5.25a)

=
√

−1

2πkB T

(8πR∗∆gv +8πγ−2πγg b)

(R∗)4

v2
at

16π2 , (5.25b)

= vat

2π
√

kB T

√
γ− 1

4
γg b

(
1

R∗

)2

. (5.25c)

(5.25d)

A more extensive derivation of the Zeldovich factor can be found in Appendix A.
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This leads to the following Zeldovich factors for the various nucleation sites we are considering:

Zsi te =


vat

2π
p

kB T

√
−R∗∆gv −γ+ µb2

16π2(1−ν)R∗
( 1

R∗
)2

for dislocations,

vat

2π
p

kB T

√
γ− 1

4γg b
( 1

R∗
)2

for grain boundaries,

vat

2π
p

kB T

p
γ

( 1
R∗

)2
for homgeneous nucleation.

(5.26)

5.2.2. Growth
In the previous section the nucleation rate Ip (t ), incorporated in the source function Sp (R, t ) was discussed.
Similar to the growth rate for precipitates with different compositions, we find for vp :

vp (φ,R, t ) = dRp

d t
= Dsi te,X

Rp

C M
X −C R

X

C P
X −C R

X

, (5.27)

where p stands for the precipitate type considered1. The growth rate holds for each elements in the system.
However, the concentrations on the interface and the concentration in the precipitate are calculated for pre-
cipitate type p. The growth rate for elements that are not in this precipitate type p therefore changes to

vp (φ,R, t ) = dRp

d t
= Dsi te,X

Rp

C M
X −C R

X

−C R
X

. (5.28)

When the precipitates on dislocations and on grain boundaries grow, they also take up elements from the
bulk. We therefore use an effective diffusion coefficient for growth on dislocations and growth on grain
boundaries and the bulk diffusion coefficient for homogeneous nucleation. The effective diffusion coeffi-
cient is defined as

De f f = f si te
v Dsi te + (1− f si te

v )Dbulk , (5.29)

where f si te
v is the volume fraction of the specific site in the system. This is a new parameter belonging to a

nucleation site and should not be confused with the volume fraction of the precipitate.
The volume fraction of dislocations is approximated using the dislocation density and the dislocation pipe
radius Rcor e

f di s
v = Vdi s

Vs y s
, (5.30)

= πR2
cor eρVs y s

Vs y s
,

=πR2
cor eρ,

where Rcor e is approximated by b (Zurob et al. (2002)), the burgers vector. The volume fraction of the grain
boundaries is approximated using the radius of a grain Rg r ai n and the thickness of the grain boundary δg b .

f g b
v = Vg b

Vs y s
, (5.31)

= Ag bδg b

Vs y s
,

=
Vs y s

3
2Rg r ai n

δg b

Vs y s
,

= 3δg b

2Rg r ai n
,

1The superscript P refers to the precipitate itself, whereas the subscript p refers the type of precipitate.
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where we use that the area of a grain boundary Ag b is defined as

Ag b = Ag r ai n

2
Ng r ai n , (5.32)

= 2πR2
g r ai n

Vs y s

4/3πR3
g r ai n

,

=Vs y s
3

2Rg r ai n
.

This leads to the following list of diffusion coefficients in the growth rate (Equation (5.27)):

Dsi te,X =


Dpi peπb2ρ+Dbulk (1−πb2ρ) for dislocations,

Dg b
3δg b

2Rg r ai n
+Dbulk (1− 3δg b

2Rg r ai n
) for grain boundaries,

Dbulk for homogeneous,

(5.33)

where δg b is the thickness of the grain boundary and Rg r ai n the radius of a grain (≈ 10 micrometer). The
diffusion coefficient (bulk, pipe or grain boundary) of the slowest diffusing element is used in the effective
diffusion coefficient.
When solving the growth rate for nucleation on dislocations, we combined Equation (5.27) with the solubility
product, corrected for the Gibbs-Thomson effect, to get a unique solution for all element concentrations:

interface product

solubility product
−exp

(
−vm,p

Rg T

(
−2γ

R
+ µb2

8π2(1−ν)R2 (ln(R/b)+1)+ µb2

20πR2

))
= 0. (3.26)

For nucleation on grain boundaries we use a similar derivation as for nucleation on dislocations. We start
with the derivative of Equation (5.18), the equation for the free energy release of precipitation formation on
grain boundaries, and rewrite it:

d∆G

dR
= 4πR2∆gv +8πRγ−2πRγg b = 0, (5.34)

−4πR2∆gv = 8πRγ−2πRγg b , (5.35)

∆gv =−2γ

R
+ γg b

2R
(5.36)

Using the definition of ∆gv (Equation (3.9)), we find the required additional equation:

interface product

solubility product
−exp

(
−vm,p

Rg T

(
−2γ

R
+ γg b

2R

))
= 0. (5.37)

Following this same procedure, gives for homogeneous nucleation

interface product

solubility product
−exp

(
−vm,p

Rg T

(
−2γ

R

))
= 0, (5.38)

which is the common Gibbs-Thomson effect.

5.2.3. Nucleation site dependent parameters
As stated before, we consider three different nucleation sites: dislocations, grain boundaries and homoge-
neous nucleation. For different precipitate compositions we found different values of some parameters, like
the poisson ratio ν and the interfacial energy γ. However, the nucleation site only has influence on the dif-
fusion coefficients. For example, dislocations and grain boundaries can be seen as element highways in the
crystal structure.
For all the elements in the system, we need the diffusion coefficients at the three different nucleation sites
given before. The diffusion coefficient is generally described by the Arrhenius relation:

D = D0 exp

(−Qd

Rg T

)
, (5.39)
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where Rg is the gas constant, T the temperature in Kelvin, D0 is the maximum diffusion coefficient (at infinite
temperature) in m2/s and Qd the activation energy for diffusion in J/mol. The diffusion coefficients on the
three nucleation sites are given in Table 5.2. Some of the grain boundary diffusion coefficients in literature
are given in m3/s, with the following definition:

sδg bDg b = (sδg bDg b)0 exp

(−Qg b

Rg T

)
(5.40)

These value have to be divided by the thickness of the grain δg b and a segregation factor s. For the thickness
of the grain we take a value of 3a ≈ 10−9, where a is the matrix lattice constant and for the segregation factor
we take the value one. For the pipe diffusion coefficient we also find a deviating definition in literature (Kaur
et al. (1989))

πR2
cor e Dpi pe f −1

d = (πR2
cor e Dpi pe f −1

d )0 exp

(−Qd

Rg T

)
, (5.41)

where Rcor e is the dislocation pipe radius, and fd the correlation factor for dislocation diffusion. To retrieve
D0 from this equation we have to divide the pre-factor (πR2

cor e Dpi pe f −1
d )0 by πR2

cor e f −1
d . Following Zurob

et al. (2002) we approximate the dislocation pipe radius by the burgers vector b and let fd be equal to one.
Comparing the bulk diffusion coefficients to the pipe and grain boundary diffusion coefficients for various
temperatures in Figure 5.2, we find that the pipe and grain boundary diffusion coefficients are indeed higher
than the bulk diffusion coefficients, as mentioned before (highway in the crystal structure).

Figure 5.2: Diffusion coefficients for various temperatures, elements and sites.

Table 5.2: Diffusion coefficients (bulk, pipe and grain boundary) in austenite. D0 is given in m2/s and Qd is
given in kJ/mol. The values originate from LeClaire and Neumann (1990), Zurob et al. (2002), Murch (2001),

Cheng (2003), Kucera and Stransky (1981) and Kaur et al. (1989).

Element Dbulk : D0 Dbulk : Qd Dpi pe : D0 Dpi pe : Qd Dg b : D0 Dg b : Qd

Nb 0.83×10−4 266.5 4.1×10−4 172.5 (a) (a)
C 0.48×10−4 155.5 (c) (c) (c) (c)
N 0.91×10−4 168.56 (c) (c) (c) (c)
Si 7.0×10−6 243 (c) (c) (c) (c)

Mn 0.16×10−4 224.6 (c) (c) (b) (b)
P 6.3×10−4 193.4 (c) (c) 5.49×10−7 74.31
S 0.5×10−4 209.3 (c) (c) 1.01×10−2 96.23
Al 2.51×10−4 253.4 3.4×10−6 82.01 3.0×10−4 167.4
Fe 0.49×10−4 284.1 (c) (c) 8.25×10−4 180.5
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(a) For N b (niobium) we have found two measurements of diffusion data on grain boundaries in Kaur et al.
(1989): sδg bDg b = 1.20×10−19 m3/s at 1288.5 K and sδg bDg b = 7.40×10−20 m3/s at 1210 K. Fitting the
Arrhenius relation (Equation (5.39)) through these points, results in the following diffusion coefficient
dependent on temperature

Dg b = 1.8906×10−7 exp

(−79691

Rg T

)
. (5.42)

Since this method is only based on two data points (at high temperatures), the accuracy of this diffusion
coefficient can be doubted.

Figure 5.3: Fit of the Arrhenius line through niobium diffusion data.

(b) Pandit (2011) and Murch (2001) describe that during experimental work they discovered that grain
boundary diffusivity for substitutional atoms like Cr , Mn, Ni and Mo in austenite to be within a factor
3 of the Arrhenius line described by (δg bDb)0 = 5.4×10−14 m3/s and Qd = 155 kJ/mol. Since no other
information for these elements is found, we use this Arrhenius line for the grain boundary diffusivity of
Mn (manganese).

(c) For some of the elements no dislocation and/or grain boundary diffusivity data is available. We use the
following approximation:

{
Dpi pe =α(T )Dbulk ,

Dg b =β(T )Dbulk ,
(5.43)

where α and β are temperature dependent parameters, that are based on the ratios of the known bulk
and pipe diffusion coefficients and the known bulk and grain boundary diffusion coefficients of the
other elements respectively. The values of α and β are given in Table 5.3 and plotted in Figure 5.4, to-
gether with the average values of α and β. We use these averages multiplied with the bulk diffusion
coefficient for the elements of which we do not know the pipe and/or grain boundary diffusion coeffi-
cient. One should be careful using such an approximation, since it can influence the final results.

Table 5.3: α(T ) and β(T ) for the elements in the system, when available.

Element α(T ) β(T )

Nb 5.06exp
(

94000
Rg T

)
P 8.71×10−4 exp

(
119090

Rg T

)
S 202.00exp

(
113070

Rg T

)
Al 1.35×10−2 exp

(
171390

Rg T

)
1.20exp

(
86000
Rg T

)
Fe 16.84exp

(
103600

Rg T

)
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(a) α(=
Dpi pe
Dbulk

) for different temperatures (b) β(=
Dg b

Dbulk
) for different temperatures

Figure 5.4: α(T ) and β(T ) for the elements in the system, when available.

The diffusion coefficients of the elements in the matrix largely influence the growth of the precipitates. When
the multi-component version of the model is used, each element, and thereby each diffusion coefficient, in-
fluences the growth rate. The approximations that are used for the diffusion coefficients are based on few
data points or no data is even available. For such an important parameter in the model it is therefore recom-
mended, for future work, to perform experiments to find the missing diffusion coefficients.





6
Numerical Methods

In this thesis we are looking for a solution to the evolution problem introduced and described in Chapter 3:

∂φ

∂t
=−∂[vφ]

∂R
+S, (3.1)

Since this partial differential equation (PDE) is non-linear in φ, we find an approximation of the solution
using a numerical method. In this chapter we will start with the introduction of multiple PDE solvers, and
describe which one we choose to use and why. Thereafter we will do an analysis of the resulting discretised
system and an overview of the various algorithms used will be given.

6.1. Numerical methods to solve PDE
Generally speaking, one can use four approaches for finding a solution for a PDE: the finite volume method
(FVM), the finite difference method (FDM), the finite element method (FEM) and the Discontinuous Galerkin
(GD) (or spectral method). For all four methods, values are calculated at discrete mesh points in the radius do-
main. However, traditional FDMs have the disadvantages that they cannot handle discontinuities and energy
and mass are not rigorously conserved. For FEMs this mass and energy conservation is not straightforward
either and one has to take special care to ensure a conservative solution. The FVM is based on the fact that
many physical laws are conservation laws, i.e. what goes into one cell on one side needs to leave the same
cell on another side. Following this idea, one ends up with a formulation that consists of flux conservation
equations defined in an averaged sense over the cells. In this way the method guarantees the conservation
of fluxes through a particular control volume. The GD method also gives conversation of mass. However,
this method is especially applicable if the solution has discontinuities, which is not the case for our problem.
More information on the given numerical methods can be found in Leveque (2007), Van Kan et al. (2014) and
Wikipedia (2016d).
In this thesis we will use the finite volume method, combined with an upwind method. Although, the finite
volume method, as well as the upwind method are theoretically first order in both time and place, we use
these methods as they are simple methods, preserve the stability and more importantly monotonicity1 of the
numerical solution unconditionally and guarantee conservation. Another advantage of this method is that it
is easily formulated for non-uniform grids.

6.2. Radius domain
Since precipitates nucleate with a critical radius, the focus of the solution will be in the neighbourhood of
this radius. Precipitates with a radius much larger than the critical radius will be little found. We would like
to create a radius domain, such that the number density distribution can be represented in more detail at
small radii. This leads to a logarithmic (non-uniform) radius domain. As described in the previous section,
the finite volume method can easily be formulated for non-uniform grids.

1A method is called monotonicity-preserving if Qn
i ≥ Qn

i+1 for all i implies that Qn+1
i ≥ Qn+1

i+1 for all i , where n is the time step and Qi
is the approximation in cell i . It is guarantees that any discontinuities cannot become oscillatory, but at most smeared in future time
steps (Leveque (2007)).
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The radius domain, chosen in the range from 0.1 nm to 1×104 nm, is divided in multiple cells with a logarith-
mic distance ∆R(i ), i.e.

∆R(i +1)

∆R(i )
= constant > 1,as illustrated in Figure 6.1.

Two radius vectors are used during the implementation:

• R(i), describing the centre points of the cells, where i numbers the cells in the radius domain.

• Re(i), describing the edges of the cells.

This is needed since the solution of the differential equation is given at the centre points, but other unknowns
such as the growth rate are given at the cell edges. Precipitates with a critical radius neither grow or dissolve,
precipitates with a radius smaller than the critical radius dissolve and precipitates with a radius larger than
the critical radius start to grow. This means that the growth rate equals zero for radii equal to the critical
radius, negative for radii smaller than the critical radius and positive for radii larger than the critical radius.

Figure 6.1: Illustration of the radius domain.

As the figure indicates, we use a vertex-centered finite volume method, meaning that the cells are surrounding
the node point, lying in the middle of the cell, at which the volume average value φi (R, t ) is calculated.

6.3. Discretisation of the PDE
Now that we have defined the radius domain, we discretise the PDE, such that we can find the volume average
value, i.e. approximation to the solution at the node points described in the previous section.

Starting from Equation (3.1):

∂φ

∂t
=−∂[vφ]

∂R
+S, (3.1)

we choose n points in the particle radius domain in the manner as described in Section 6.2 and letφ be a col-
umn vector containing the n unknowns. We integrate both sides of the equation over a cell Ωi (surrounding
a point i ) in the radius domain:

∫
Ωi

∂φ

∂t
dR =

∫
Ωi

−∂(φv)

∂R
dR +

∫
Ωi

SdR. (6.1)

Approximating each part of Equation 6.1, yields the following expressions

• For the time derivative ∫
Ωi

∂φ

∂t
dR ≈∆Ri

dφi

d t
, (6.2a)
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• For the growth term (using Leveque (2007))∫
Ωi

−∂(φv)

∂R
dR = −(φv)

∣∣
Γi

,

=−((φv)i+ 1
2
− (φv)i− 1

2
),

≈−[(v−
i+ 1

2
φi+1 + v+

i+ 1
2
φi )− (v−

i− 1
2
φi + v+

i− 1
2
φi−1)],

=−[−v+
i− 1

2
φi−1 + (v+

i+ 1
2
− v−

i− 1
2

)φi + v−
i+ 1

2
φi+1],

= v+
i− 1

2
φi−1 − (v+

i+ 1
2
− v−

i− 1
2

)φi − v−
i+ 1

2
φi+1. (6.2b)

The growth rates vi− 1
2

and vi+ 1
2

are respectively the growth rates at Re(i) and Re(i+1). Also, in these

equations the superscripts + and − mean the positive and negative part respectively. The positive part
and negative part of a number a are defined as{

a+ = max(a,0),

a− = min(a,0).

• For the source function ∫
Ωi

SdR =
∫
Ωi

δ(R −R∗)I (t )dR = I (t )1R∗∈Ωi , (6.2c)

where 1 is the indicator function.

We have discretised Equation (3.1), which can now be written as

∂φ

∂t
= Aφ+S. (6.3)

The matrix A, an n ×n matrix, and the column vector S, an n ×1 vector are both non-linear functions of φ
and defined as

Ai ,i−1(φ) = 1

∆Ri
v+

i− 1
2

(φ) for i = 2, . . . ,n, (6.4a)

Ai ,i (φ) =− 1

∆Ri
v+

i+ 1
2

(φ)+ 1

∆Ri
v−

i− 1
2

(φ) for i = 1, . . . ,n, (6.4b)

Ai ,i+1(φ) =− 1

∆Ri
v−

i+ 1
2

(φ) for i = 1, . . . ,n −1, (6.4c)

Si (φ) = 1

∆Ri
I (ti )1R∗∈Ωi , for i = 1, . . . ,n −1, (6.4d)

and Ai , j (φ) = 0 if not defined above.

6.4. Eigenvalue analysis
If we investigate the properties of the matrix A combined with the properties of the growth rate v and critical
radius R∗ at a certain time, we can distinguish the following three situations

• For eachΩi with R < R∗, R ∈Ωi we have vi− 1
2

, vi+ 1
2
< 0.

• For eachΩi with R∗ ∈Ωi we have vi− 1
2
< 0 and vi+ 1

2
> 0.

• For eachΩi with R > R∗, R ∈Ωi we have vi− 1
2

, vi+ 1
2
> 0.

Let i be such that we have the first situation. For each Ωi with R < R∗, R ∈Ωi we have vi− 1
2

, vi+ 1
2
< 0. Then

we find for the upper diagonal:

Ai ,i+1(φ) =− 1

∆Ri
v−

i+ 1
2

(φ) (6.5a)

=− 1

∆Ri
vi+ 1

2
(φ),
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for the lower diagonal

Ai+1,i (φ) = A(i+1),(i+1)−1(φ) (6.5b)

= 1

∆Ri+1
v+

(i+1)− 1
2

(φ)

= 1

∆Ri+1
v+

i+ 1
2

(φ)

= 0,

and for the main diagonal

Ai ,i (φ) =− 1

∆Ri
v+

i+ 1
2

(φ)+ 1

∆Ri
v−

i− 1
2

(φ) (6.5c)

= 1

∆Ri
vi− 1

2
(φ).

This means that for the first case we only have an element on the upper and main diagonal in A(φ). Now let i
be such that we have the second situation. For eachΩi with R∗ ∈Ωi we have vi− 1

2
< 0 and vi+ 1

2
> 0. Then we

find for the upper diagonal:

Ai ,i+1(φ) =− 1

∆Ri
v−

i+ 1
2

(φ) (6.6a)

= 0,

for the lower diagonal

Ai ,i−1(φ) = 1

∆Ri
v+

i− 1
2

(φ) (6.6b)

= 0,

and for the main diagonal

Ai ,i (φ) =− 1

∆Ri
v+

i+ 1
2

(φ)+ 1

∆Ri
v−

i− 1
2

(φ) (6.6c)

=− 1

∆Ri
vi+ 1

2
(φ)+ 1

∆Ri
vi− 1

2
(φ).

This means that for the second situation we only have the main diagonal. Now let i be such that we have the
third situation. For eachΩi with R > R∗, R ∈Ωi we have vi− 1

2
, vi+ 1

2
> 0. Then we find for the upper diagonal:

Ai ,i+1(φ) =− 1

∆Ri
v−

i+ 1
2

(φ) (6.7a)

= 0,

for the lower diagonal

Ai+1,i (φ) = Ai+1,i+1−1(φ) (6.7b)

= 1

∆Ri+1
v+

i+1− 1
2

(φ)

= 1

∆Ri+1
v+

i+ 1
2

(φ)

= 1

∆Ri+1
vi+ 1

2
(φ),

and for the main diagonal

Ai ,i (φ) =− 1

∆Ri
v+

i+ 1
2

(φ)+ 1

∆Ri
v−

i− 1
2

(φ) (6.7c)

=− 1

∆Ri
vi+ 1

2
(φ).



6.5. Backward Euler 39

This means that for the third case we have a lower and main diagonal, leading to the three-block structure of
A(φ) depicted as (× indicates a possibly non-zero value)


U B

0 L

=



× ×
× ×

× ×
×
× ×

× ×
× ×

 , (6.8)

where U is an upper-diagonal matrix, L a lower-diagonal matrix and B a matrix with possibly one non-zero
value.
The time-dependent eigenvalues of this block matrix are given by the eigenvalues of the individual blocks U
and L (Wikipedia (2015a)). From the structure of the individual blocks we know, the eigenvalues are on the
diagonal, resulting in following eigenvalues:

λi =− 1

∆Ri
v+

i+ 1
2

(φ)+ 1

∆Ri
v−

i− 1
2

(φ) (6.9)

Again we can distinguish the three situations:

• For eachΩi with R < R∗, R ∈Ωi we have vi− 1
2

, vi+ 1
2
< 0, so

λi = 1

∆Ri
vi− 1

2
(φ), (6.10)

with vi− 1
2
< 0, so negative eigenvalues.

• For eachΩi with R∗ ∈Ωi we have vi− 1
2
< 0 and vi+ 1

2
> 0, so

λi =− 1

∆Ri
vi+ 1

2
(φ)+ 1

∆Ri
vi− 1

2
(φ), (6.11)

are negative eigenvalues, since vi− 1
2
< 0 ⇒ 1

∆Ri
vi− 1

2
(φ) < 0 and vi+ 1

2
> 0 ⇒− 1

∆Ri
vi+ 1

2
(φ) < 0.

• For eachΩi with R > R∗, R ∈Ωi we have vi− 1
2

, vi+ 1
2
> 0, so

λi =− 1

∆Ri
vi+ 1

2
(φ), (6.12)

with vi+ 1
2
> 0, so negative eigenvalues.

This shows that the eigenvalues are negative and real for all i , meaning that any time integration method
can be made stable by reducing the time step, as long as the stability region of the method includes (part of)
the negative real axis (Vuik et al. (2015)). Furthermore, Vonk (2016) found that the Backward Euler method
gives the best results for the physical problem we are solving and so we will again use this Backward Euler
method, where we solve the obtained non-linear equation using Picard’s Fixed Point method. We combine
the Backward Euler method with a variable time step selection as will be described later on.

6.5. Backward Euler
When solving the equation

dY

d t
= f (Y , t ), (6.13)

the implicit backward Euler method is defined by 1

Yn+1 = Yn +∆t f (tn+1,Yn+1), where Yn+1 ≈ Y (tn+1) and tn+1 = tn +∆t . (6.14)

1Note that the new time is also found in this step.
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Applying the Backward Euler method to our discretised differential Equation (6.3), we find Equation (6.15).
Notice that the subscript n +1 in (6.15) now refers to the n +1 time step and not the individual elements of A
anymore.

φn+1 =φn +∆t (An+1φn+1 +Sn+1), (6.15)

where

φn+1 ≈φ(tn+1), An+1 ≈ A(φn+1, tn+1) and Sn+1 ≈ S(φn+1, tn+1). (6.16)

We solve this equation using Picard’s Fixed Point method. The fixed point method states that we can find a
fixed point p of a function g if we start with an initial point p(0) and use the iteration p(k) by p(k) = g (pk−1).
If this sequence converges to p and g is continuous it holds that p = g (p) and we have found a fixed point p
(Vuik et al. (2015)). Applying the Fixed Point method to Equation (6.14), we find

φk+1
n+1 = g (φk

n+1), k = 0,1, ... (6.17a)

=φk
n +∆t (Ak

n+1φ
k
n+1 +Sk

n+1) (6.17b)

as the Picard’s iteration step. In this iteration, k indicates the fixed point iteration and n the time step. During
the first simulations, we found that the computation times were too high and we adjusted Picard’s Fixed Point
method, as will be described in Chapter 7.

Even though the Backward Euler method is numerically quite stable, an additional method is needed to guar-
antee a high accuracy. To keep the truncation error below a certain user-defined tolerance level, the step size
is chosen adaptively, meaning that it adapts to the truncation error. Another advantage of using an adaptive
time step, is the automatic increase of the time step when limited changes appear in the approximation of
the solution, i.e. it increases the efficiency of the solving method. An approximation for the truncation error
is given by

τn+1 = ||φn+1 − φ̃n+1||∞, (6.18)

where φ and φ̃ are two numerical methods. To apply this adaptive step size, we need a second numerical
method to compare it to our Backward Euler method. We choose the Backward Euler method itself for this,
but using two smaller step sizes h

2 leading to two solutions, at time tn + ∆t
2 and time tn + ∆t

2 + ∆t
2 = tn +∆t ,

which we can then compare to the one step Backward Euler at time tn +∆t . Subsequently we use a tolerance
parameter to determine whether we accept or reject our approximation:

TOL = percentage · ||φn+1||∞. (6.19)

Since we find two solutions φn+1 and φ̃n+1 at tn+1, we can choose which solution to use as a final solution
for that specific time step. We choose to use the solution obtained using the two smaller time steps, since it
is more accurate. This leads to Algorithm 6.1, where the parameters ∆tst ar t , α β, percentage and tend are set
by the user.

6.6. Multi-precipitate
As described in Chapter 5, multiple types of precipitates can nucleate and grow at several nucleation sites at
the same time. Each precipitate type at a specific nucleation site gives one distribution, leading to a set of
distributions when simulating multiple precipitate types and/or nucleation sites. For example, we would like
to simulate three types of precipitates: AlN, MnS, and NbCN, where each precipitate can nucleate at three
sites: dislocations, grain boundaries and in the grains. This leads to 9 distributions:

φAl N ,di s φAl N ,g b φAl N ,hom φMnS,di s φMnS,g b φMnS,hom φN bC N ,di s φN bC N ,g b φN bC N ,hom

We solve the 9 partial differential equations related to these distributions simultaneously, meaning that in
one Backward Euler step, all 9 distributions should be accepted or the time step is changed. In Algorithm 6.2
we see the adjusted version of the Backward Euler algorithm for multiple types of precipitates and multiple
nucleation sites. We compute the solutions simultaneously, since the distribution of one precipitate has in-
fluence on the distribution of another precipitate via the matrix concentrations. Also the Picard iteration is
executed simultaneously for the same reason, leading to Algorithm 6.3 for the Picard iterations.
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Algorithm 6.1: Euler Backward with adaptive time step algorithm

1 Set ∆t =∆tst ar t;
2 while time(j)+∆t < tend
3 Compute φn+1/2 via Picard;
4 Compute φn+1/2+1/2 =φn+1 based on φn+1/2 via Picard;
5 Compute φ̃n+1 via Picard; %Use φn+1/2+1/2 as initial guess for the

BE method
6 Compute τn+1;
7 Compute TOL;
8 if τn+1 >β TOL
9 Reject φn+1;

10 Set ∆t = ∆t/2;
11 elseif τn+1 > TOL
12 Accept φn+1;
13 Set ∆t= ∆t ·0.9 · (TOL/τn+1)1/2;
14 Set n = n+1;
15 elseif τn+1 > TOL/α
16 Accept φn+1;
17 Set n = n+1;
18 else
19 Accept φn+1;
20 Set ∆t= ∆t ·0.9 · (TOL/τn+1)1/2/α;
21 Set n = n+1;
22 end
23 end
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Algorithm 6.2: Euler Backward with adaptive time step algorithm

1 Set ∆t =∆tst ar t;
2 while time(n)+∆t < tend
3 for prec = [all precipitates types (compositions)]
4 for site = [all sites at which that precipitate nucleates]
5 Compute φn+1/2 via Picard;
6 Compute φn+1/2+1/2 =φn+1 based on φn+1/2 via Picard;
7 Compute φ̃n+1 via Picard; %Use φn+1/2+1/2 as initial guess

for the BE method
8 Compute τn+1;
9 Compute TOL;

10 if Picard returns no solution
11 ∆t =∆/2
12 Reset time step
13 end
14 end
15 end
16 if any(τn+1 >β TOL)
17 Reject all φn+1;
18 Set ∆t = ∆t/2;
19 Reset time step
20 elseif all(τn+1 > TOL)
21 Accept all φn+1;
22 Set ∆t= ∆t ·0.9 · (TOL/τn+1)1/2;
23 Set n = n+1;
24 elseif all(τn+1 > TOL/α)
25 Accept all φn+1;
26 Set n = n+1;
27 else
28 Accept all φn+1;
29 Set ∆t= ∆t ·0.9 · (TOL/τn+1)1/2/α;
30 Set n = n+1;
31 end
32 end
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Algorithm 6.3: Picard algorithm for multiple distributions

1 while solution available
2 if the new distribution is not allowed % Concentrations and/or

volume fractions are physically incorrect
3 no solution can be found
4 solution(prec,site) = 0;
5 return to Backward Euler algorithm
6 end
7 for prec = [all precipitates types (compositions)]
8 for site = [all sites at which that precipitate nucleates]

9 φk+1
n+1 =φk

n +∆t (Ak
n+1φ

k
n+1 +Sk

n+1);
10 Compute REL ERR between φk+1

n+1 and φk
n+1;

11 Compute TOL;
12 if REL ERROR <= TOL
13 solution(prec,site) = 1;
14 end
15 end
16 end
17 if sum(sum(solution)) == total_sites % All distributions have a

correct solution
18 solution found
19 return to Backward Euler algorithm
20 else % Picard iteration continues
21 continue
22 end
23 end





7
Computational issues

During the first simulations, using the algorithms described in the previous chapter, a number of computa-
tional issues arose. In this chapter, these issues will be explained and solutions are proposed. After applying
the improvements mentioned in this chapter, simulations are done of which the results can be found in Chap-
ters 8, 9 and 10.

7.1. Precipitate nucleation size
In Zurob et al. (2002), the size at which precipitates start to nucleate was set at R̃ = α ·R∗, where α was cho-
sen as 1.05. This was done to avoid numerical instability of the algorithm and is physically justified since it
accounts for the fact that nucleated precipitates can only grow if their radius is slightly larger than the nu-
cleation radius. In our numerical approach this translates to determining the size class [R j∗− 1

2
,R j∗+ 1

2
] which

incorporates the radius R̃, and adding precipitates to it. Using this radius, we replace the source function in
Equation (3.2) with

S(R, t ) = δ(R − R̃c (t ))I (t ), (7.1)

where R̃c represents the centre of the size class which includes R̃. R̃ can be seen as an adjusted critical radius
and as stated before, was chosen by Zurob et al. (2002) as 1.05R∗. In some literature on precipitation, the
adjusted critical radius R̃ was chosen as RkB T , where the value kB T is assumed to be a very small number,
meaning that the adjusted radius is slightly bigger than the critical radius. Based on this idea, we test two new
approaches for the adjusted critical radius, based on physical approximations:

• Find the adjusted critical radius RkB T at which the corresponding free energy is kB T lower than the ac-
tivation energy ∆G∗ (see Figure 7.1). (Found in various publications, these include Maugis and Gouné
(2005).)

• Find the adjusted critical radius RkB T by using the approximation of the change in the number of atoms
in the precipitate. (see Figure 7.2).

For the first approach we solve the following equation for the energy balance using the Newton-Raphson
method:

(∆G∗−kB T ) =V∆gv + Aγ− µb2RkB T ln(RkB T /b)

2π(1−ν)
− µb2RkB T

5
, (7.2)

which after substitution and rewriting gives

f (RkB T ) =−∆G∗+kB T + (
4

3
π(RkB T )3)∆gv + (4π(RkB T )2)γ− µb2RkB T ln(RkB T /b)

2π(1−ν)
− µb2RkB T

5
= 0. (7.3)

For the Newton-Raphson method we need the derivative of the function f when solving f (x) = 0 for x. Dif-
ferentiating Equation (7.3) with respect to RkB T yields

d f

dRkB T
= 4π(RkB T )2∆gv +8πRkB Tγ−

µb2

2π(1−ν)

(
ln

(
RkB T

b

)
+1

)
− µb2

5
. (7.4)
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As an initial guess we take the critical radius R∗ multiplied by a factor 1.05, to make sure we find a radius
greater than the critical radius1.

Figure 7.1: Free energy curve againt the radius.
Figure 7.2: Free energy curve against the number of

atoms in the precipitate.

The second approach of finding a critical radius RkB T is by using the Zeldovich factor and the change in
the number of atoms in the precipitate. The Zeldovich factor for nucleation on dislocations was derived in
Chapter 4:

Z = vat

2π
√

kB T

√
−R∗∆gv −γ+ µb2

16π2(1−ν)R∗

(
1

R∗

)2

(7.5)

Using this Zeldovich factor we set the adjusted critical radius RkB T as

RkB T = 1

2Z

vat

4π(R∗)2 +R∗. (7.6)

The first term in this equation follows from Russell (1980) which states that the change in the number of
atoms in the precipitate can be approximated by 1/(2Z ) when decreasing the free energy by kB T (illustrated
in Figure 7.1). Using this approximation we find the increase in critical radius given above:

{
N = 1

vat

4
3π(R∗)3 := f (R),

d N = f ′(R)dR ⇒ dR = d N
f ′(R) ,

⇒ dR = d N

f ′(R)
= 1

2Z

vat

4π(R∗)2 . (7.7)

We will compare both the results of the simulations and the computation time using the different approxi-
mations of RkB T :

1. RkB T = 1.05R∗, as done by Zurob et al. (2002). (1.05 Zurob et al. (2002))

2. Finding the radius at which the corresponding activation energy is kB T lower than the activation energy
∆G∗. (Newton (with ∆G))

3. Using the approximation of the change in the number of atoms in the precipitate d N . (Zeldovich factor)

The approximations were compared in simulations, using a N bC N precipitate nucleating on dislocations.
The results are given in Figure 7.3 and the computation times in Table 7.1. From Figure 7.3 we see there is
no large change in the results, neither in the precipitate number density nor in the precipitate mean diam-
eter, caused by a different choice of RkB T . Also, looking at the computation time we see no clear standout.
However, we would like to be able to choose the best approach from the three and see whether the general
approximation of 1.05R∗ by Zurob et al. (2002) is comparable to the other two physical based approximations.

1Note that there might also be a radius smaller than the critical radius which agrees with Equation (7.3).
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Method Run 1 (s) Run 2 (s) Run 3 (s) Run 4 (s) Run 5 (s) Average

1.05 (Zurob et al. (2002)) 75 70 72 65 67 69.8
Newton (with ∆G) 74 68 67 66 77 70.4
Zeldovich factor 70 69 71 72 69 70.2

Table 7.1: Computation times of a 100,000 seconds simulation using different approximations for the
adjusted critical radius RkB T .

(a) Precipitate number density.

(b) Precipitate mean diameter.

Figure 7.3: Simulation results with different approximations of RkB T .

In Figures 7.4 and 7.5 we compare the factor
RkB T

R∗ to the factor 1.05 initiated by Zurob et al. (2002). We see that
at the beginning of the simulation the physical approximations lead to higher factors for RkB T . Looking at the
results in Figure 7.3 this higher factor translates to a slightly lower bend in the precipitate number density
and a slightly lower precipitate mean diameter. However, as stated before the differences are minimal. As the
simulation continues, the factor in Figures 7.4 and 7.5 decrease and even drop below 1.05. Since the RkB T

term is connected to nucleation, and no nucleation occurs anymore after a few seconds, the influence of
the factor dropping below 1.05 can not be seen in the results. We choose to use the approximation that uses
the Zeldovich factor, since this factor is also used in the multi-component version of the KWN model, it is a
physically based approximation and has a comparable computation time to the other two methods.
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Figure 7.4: Factor
RkB T

R∗ in time, where RkB T is found using the Zeldovich factor.

Figure 7.5: Factor
RkB T

R∗ in time, where RkB T is found using Newton’s method.

7.1.1. Compensation for the loss of nucleated precipitates
Besides the choice of size class to which the newly nucleated precipitates are added, a second difficulty ap-
pears. When adding precipitates to the chosen size class, a problem occurs when the critical radius R∗ lies in
that same size class. We use Figure 7.6 as an illustration. If the two radii R∗ and RkB T are incorporated in the
same cell, the newly nucleated precipitates are added to that cell (illustrated by the green striped rectangle).
At the left side of this cell the growth rate is negative, but at the right side of this cell the growth rate is posi-
tive, meaning that in the next time step (tn+1), a part of the newly nucleated precipitates will disappear again
(illustrated by the yellow shaded part of the green striped rectangle), since part of these precipitates have a
radius smaller than the critical radius, and thus a negative growth rate. This loss of nucleated precipitates is
a side effect of the FVM method caused by the averaging over one cell of this method. It is an undesirable
effect because precipitates with a radius RkB T are intended to be stable and to grow. To compensate for this
loss, we add more nuclei than actually needed (indicated by the dark green stripes), since we know a part will
disappear again. The part of the compensation that will stay behind after growth and shrinkage (precipitates
with radius larger than the critical radius and illustrated by the second yellow shaded rectangle) needs to be
equal in size as the part that disappears. Therefore the two yellow shaded rectangles should be the same in
size, leading to the following nucleation rate

Ĩ (t ) =∆Ri
I (t )

Re(i +1)−R∗ (7.8)

If the radii are incorporated in different cells, the nuclei are added to a different cell (a cell that lays right of
the cell which incorporates R∗), meaning that all of the nucleated precipitates stays in the system and no
compensation is needed.
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(a) First timestep.

(b) Second timestep.

(c) Second timestep with adjusted nucleation rate.

Figure 7.6: Illustration of the compensation of nucleation, because of the incorporation of the critical radii
R∗ and RkB T in the same cell.

7.2. Computation time
During the first simulations we had a great difficulty in running simulations for large simulation times. To
give an indication: it took around 240 seconds to calculate 10 simulation seconds, whereas we would like to
have around 100,000 simulation seconds to compare it to experimental data and earlier obtained results. The
next improvements were introduced to lower the computation time.

7.2.1. Picard iteration
The long computation time was mainly caused by the intensive calculations done in the right-hand side of
the Picard iteration.

φk+1
n+1 =φn +∆t (Ak

n+1φ
k
n+1 +Sk

n+1) (7.9)

To reduce the computation time, we adjust the Picard iterate by solving part of the right-hand side for the
next iteration

φk+1
n+1 =φn +∆t (Ak

n+1φ
k+1
n+1 +Sk

n+1)] (7.10)

Rewriting this equation yields the new Picard’s step

[I −∆t Ak
n+1]φk+1

n+1 =φn +∆tSk
n+1 (7.11)

To solve Equation (7.11) the matrix [I −∆t Ak
n+1] must be inverted, which sounds even more intensive than

the calculations before. However, due to the block structure of A this invert is straight-forward and not as
time consuming as the matrix multiplication done in Equation (7.9).
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7.2.2. Growth rate
Besides the computation time of the Picard iteration itself, the calculations inside the Picard step are also
time consuming. Especially the calculation of the growth rate is very intensive. The growth rate was found by
solving non-linear Equation (3.26) for the growth rate v .

interface product

solubility product
−exp

(
−vm,N bC N

Rg T

(
−2γ

R
+ µb2

8π2(1−ν)R2 (ln(R/b)+1)+ µb2

20πR2

))
= 0, (7.12)

which is a function of v via the interface product, since the interface concentrations in the interface product
depend on v via Equation (3.21).
We test the following root finding methods and compare the computation times:

• Newton’s Method, a root finding method which uses the first derivative of the function that is evaluated
and is defined by

xn+1 = xn − f (xn)

f ′(xn)
. (7.13)

(Vuik et al. (2015))

• Bisection Method, a bracketing method which repeatedly bisects a given interval (by dividing it in two
equal parts) and then select a sub-interval in which a root must lie (Vuik et al. (2015)).

• Ridders’ Method, a bracketing method which repeatedly bisects a given interval in a smart way and then
select a sub-interval in which a root must lie. This method converges quadratically, when the function
is well-behaved close to the root. It uses the midpoint of the original interval and a fourth point defined
by

x4 = x3 + (x3 −x1)
sign( f (x1)− f (x2)) f (x3)√

f (x3)2 − f (x1) f (x2)
(7.14)

(Wikipedia (2015b)).

• Dekker’s Method, a method that combines the bisection method with the secant method. The secant
method is defined as

xn+1 = xn − f (xn)
xn −xn−1

f (xn)− f (xn−1)
(7.15)

and can be seen as an approximation of Newton’s method. In the first step we use the solution of the
previous time step as the value for xn−1. Dekker’s method chooses the best iterate from the bisection
and the secant method under some restrictions (Wikipedia (2016b)).

During the simulation we found a time at which Newton’s method converged so slowly that no solution could
be found. In Figure 7.7 the iteration points are shown, which show that due to the slope of the function the
iterates are jumping from one side to the other, but do not get close to the root fast enough. The Newton’s
method will therefore not be used in the calculation of the growth rate.

Figure 7.7: Newton iteration that fails after a maximum number of iterations.
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We compare the three root finding methods that are left by running the simulation 5 times for each method
and look at the average computation time of each method in Table 7.2.

Method Run 1 (s) Run 2 (s) Run 3 (s) Run 4 (s) Run 5 (s) Average

Bisection Method 118 117 116 116 116 116.6
Ridders’ Method 58 61 75 67 66 65.4
Dekker’s Method 118 116 113 112 112 114.2

Table 7.2: Computation times of a 100,000 seconds simulation using different root finding methods for the
growth rate.

It shows that the Ridders’ method is by the far the fastest method of the three root-finding methods. The
bisection and the Dekker’s method give comparable results. Looking at the number of times the Dekker’s
method choose the secant iterate over the bisection iterate, we find 0. Meaning that the Dekker’s method
actually reduces to the bisection method in our simulation and therefore gives comparable results to the
single bisection method. Using the Ridders’ method, we find the growth rates as given in Figures 7.8a and
7.9a at respectively t = 0 s and at t = 100,000 s.

(a) The growth rate at the cell edges. (b) The growth rate at the cell, zoomed in.

Figure 7.8: The growth rate at the cell edges at time is zero on different axes.

(a) The growth rate at the cell edges. (b) The growth rate at the cell edges, zoomed in.

Figure 7.9: The growth rate at the cell edges at time is 100,000 s on different axes.

When the concentrations of the elements in the precipitate are near their equilibrium concentration, coars-
ening takes places, i.d. the growth of large precipitates at the expense of small precipitates. The driving force
for coarsening is the reduction of the interfacial energy and thereby the total free energy. By the growth of
large precipitates and the disappearance of small ones the total interfacial area is reduced, which reduces
the free energy. In the model by Zurob et al. (2002), an artificial coarsening function is introduced to capture
this phenomenon, based on assumptions about the coarsening regime. However, in the distribution model
presented in this work, the coarsening mechanism is naturally incorporated. The growth rate captures this
mechanism: precipitates with a radius corresponding to a positive growth rate will grow and precipitates with
a radius corresponding to a negative growth rate will dissolve. In Chapter 8 the differences in the precipitate
number density as well as in the precipitate mean diameter will be given, using the artificial coarsening func-
tion in the mean radius approach by Zurob et al. (2002) and the naturally incorporated coarsening in the
distribution approach by Kampmann and Wagner (1991).
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Going back to the growth rates found in Figures 7.8a and 7.9a at respectively t = 0 s and at t = 100,000,
we are mostly interested in the radius at which the growth rate equals zero, since this indicates the switch
between growth or dissolution. To get a better view on the positive growth rates corresponding to growth of
the precipitates, we adjust the vertical axis and find Figures 7.8b and 7.9b. We find that the radius at which the
growth rate equals zero increases, meaning that the switch between growing and dissolving moves to larger
precipitates. This is as expected since the growth rate involves a 1/R term, leading to a smaller growth rate v
for a larger radius R. The maximum value of the growth rate will decrease over time, since the concentration
of niobium in the matrix decreases. This is confirmed by the height of the bump in Figures 7.8b and 7.9b, the
highest value of the growth rate after 0 seconds lies around 0.2×10−9 whereas the highest value is 1.3134×
10−12 after 100,000 seconds.

7.3. Critical radius
During simulation we found that Newton’s method would sometimes return a complex number for the critical
radius. It was unclear if this is caused by a numerical implementation error, or no critical radius should
actually be found due to the physical condition of the system. To find out, we look at the behavior of d(∆G)

dR
(Equation (3.18)) for different values of the chemical energy ∆gv , since we expect this variable will influence
the behavior of the function. We distinguish two cases: ∆gv < 0 and ∆gv > 0. This first case is the most
common one in publications and in the situation of nucleation and precipitate growth. The second case
is less frequent investigated and could occur for example when we deal with a under-saturated system for
instance after a sudden temperature rise. In the case of a positive chemical energy, no nucleation should take
place, but dissolution of the precipitates.

In Figure 7.10a we plot the value of d(∆G)
dR for negative values of ∆gv varying between −2.1298×109 (∆gv at

time is zero for our simulation) and 0. It seems that for some values we do find a root (which corresponds to
the critical radius for that specific ∆gv ) and for some value we do not. However, zooming out far enough in
Figure 7.10b we see that there does exist a root, but at a very large radius. When using Newton’s method it
occurred that the initial value was taken too small and the method would converge to the minimum at the left
side of the function, instead of converging to the far right root. Adjusting the initial value in this case would
be appropriate.
In Figure 7.11 we plot the value of d(∆G)

dR for values of ∆gv varying between 0 and 2.1298×109 (|∆gv | at time is
zero for our simulation). As we said before, no nucleation should take place and therefore we also expect to
find no root. Figure 7.11 confirms this as there are no roots for the function for any value of ∆gv > 0.
Using this information, we adjust our algorithm of finding the critical radius. In Figure 7.13, a flowchart is
given, which describes the new process. We use that there exists a root when the function has a maximum
and a minimum (first derivative of the function, i.e. the second derivative to R, equal to zero).

7.3.1. New computation time
Combining all improvements described in this chapter and optimising the code lead to a great reduction of
the computation time. We ran the simulation for the N bC N precipitate, without multi-component or multi-
precipitate extension. Before the adjustments it took around 240 seconds to calculate 10 simulation seconds,
whereas now it takes around 21 seconds to calculate 100,000 simulation seconds1.

1For the simulation we use MATLAB 2016b on Windows®



7.3. Critical radius 53

(a) Negative ∆gv .

(b) Negative ∆gv (zoomed out).

Figure 7.10: Value of d(∆G)
dR for negative values of ∆gv varying between −2.1298×109 and 0. The lines

correspond to decreasing values of ∆gv looking from the top line to the bottom line, where the top line
corresponds to ∆gv = 0 and the bottom line corresponds to ∆gv =−2.1298×109.

Figure 7.11: Positive ∆gv .

Figure 7.12: Value of d(∆G)
dR for positive values of ∆gv varying between 0 and 2.1298×109. The lines

correspond to decreasing values of ∆gv looking from the top line to the bottom line, where the top line
corresponds to ∆gv = 2.1298×109 and the bottom line corresponds to ∆gv = 0.
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Find root of d(∆G)
dR

∆gv

No root for orig-
inal function

Roots of d 2(∆G)
dR2

Complex or real?

No min or max 1 min and 1 max

Slope via d 2(∆G)
dR2 .

No root for orig-
inal function

Root for orig-
inal function

Use Newton
with standard

initial value

Root for original
function, right
of maximum

Use Newton,
with initial value

slightly higher
than maximum

posit
ive negative

com
plex real

posit
ive negative

Figure 7.13: Flowchart concerning the calculation of the critical radius.
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To verify the quantitative and qualitative behavior of the distribution approach introduced in Chapter 3, we
compare the results for the precipitate number density and precipitate mean diameter to the results ob-
tained using the models from Kranendonk (2005) and Vonk (2016), both based on the mean radius approach
by Zurob et al. (2002). For the comparison we use the configuration of the parameters given in Table 8.1
(precipitation parameters1), Table 8.2 (numerical parameters of which the meanings can be found in the
nomenclature at the end of this thesis) and Table 8.3 (the composition of the alloy used).

The composition of the alloy used in simulations by Zurob et al. (2002) and Kranendonk (2005) is equal to the
one used in this thesis, except from the initial weight percentage of Al . Zurob et al. (2002) and Kranendonk
(2005) used an initial weight percentage of 0 for Al , but because we would like to simulate Al N precipitates
in future chapters, we choose a slightly higher value of 0.01. This will not have a large influence on the results
obtained for the N bC N precipitates since no multi-component mechanisms are used yet.

Table 8.1: Precipitation parameters used in the
simulations.

Parameter Value Unit

T 1123.15 (850 ◦C) K
Rg 8.31441 J/(K mol)
ρ 3.27×1014 1/m2

kB 1.38×10−23 J/K
ν 0.293
F 1.32×10−3

Na 6.022142×1023 1/mol
vm,N bC 13.39×10−6 m3/mol
vm,N bN 12.72×10−6 m3/mol

b 2.53144×10−10 m
N (0) 0 1/m3

R(0) R∗ m

Table 8.2: Numerical parameters used in the
simulations.

Parameter Value Unit

∆tst ar t 1×10−3 s
α 2
β 3/2

tst ar t 0 s
tend 100,000 s

percentage 0.05 %

Table 8.3: Alloy composition of alloy N1 used in the simulations in weight percentages.

C Si Mn P S Nb Al N Fe
0.076 0.06 1.34 0.0058 0.0026 0.03 0.01 0.0061 98.4695

In the simulations done by Kranendonk (2005) and Vonk (2016), it was assumed that precipitation only takes
place at dislocations, the system was supersaturated and no precipitates were present at the start of the sim-
ulation (N (0) = 0). We use a zero vector forφ at time is zero for the distribution approach, which is equivalent

1The temperature, time and composition dependent parameters are found in Appendix B.
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to N (0) = 0 because of the definition of the precipitate number density:

N (t ) =
∞∫

0

φ(R, t )dR. (8.1)

To fairly compare the obtained results we do not use the adjusted critical radius initiated in Chapter 7, but the
old approximation by Zurob et al. (2002) of 1.05R∗. The other improvements initiated in that chapter were
just to improve the computation time and will therefore be used.

8.1. Comparison of results to Kranendonk (2005) and Vonk (2016)
The comparison between the three models, the distribution model by Robson (2014), the mean radius model
by Kranendonk (2005) (Tata Steel) and the mean radius model by Vonk (2016), is given below and the results,
both the precipitate number density as well as the precipitate mean diameter, are given in Figure 8.1.

• Approach

– Vonk (2016): Mean radius approach (Zurob et al. (2002)) with Backward Euler.

– Kranendonk (2005): Mean radius approach (Zurob et al. (2002)) with Runge-Kutta 4.

– This work: Distributions approach (Robson (2014), Den Ouden et al. (2013)) with Backward Euler.

• Calculation interface concentration

– Vonk (2016): Variable C and N interface concentration.

– Kranendonk (2005): C and N interface concentration equal to their matrix concentration.

– This work: Variable C and N interface concentration.

• Differential equations during coarsening

– Vonk (2016) - (based on Deschamps and Brechet (1999)):

dR

d t
= 4

27

C E q
N b

C P
N b −C E q

N b

R0Dbulk

R2 , (8.2)

d N

d t
= 1

R

dR

d t

(
R0C M

N b

R(C P
N b −C M

N b)

(
3

4πR3 −N

)
−3N

)
. (8.3)

– Kranendonk (2005) - (based on Zurob (2003)):

dR

d t
= De f f

R

C R
N b −C R27/23

N b

C P
N b −C E q

N b

, (8.4)

d N

d t
= 1

R

dR

d t

R∗ ln
(

w t%N bM

w t%N bE q

)
C M

N b

R(C P
N b −C M

N b)

(
3

4πR3 −2N + 4

3
πR3N 2

)
−3N

 . (8.5)

– This work: Coarsening is not defined in distribution approach, but is naturally incorporated.

Looking at the results obtained in Figure 8.1, it seems that the model by Vonk (2016) has a mismatch in the
precipitate density and a lower precipitate diameter at long times, expected to be caused by a different coars-
ening regime. Comparing the coarsening regime of Vonk (2016) and Kranendonk (2005), we find two main
differences: the use of a effective diffusion coefficient in Kranendonk (2005) compared to a bulk diffusion
coefficient in Vonk (2016), and the equations in general. We apply two adjustments and compare the results.
The first adjustment is the use of the effective diffusion coefficient in the growth rate in the coarsening regime
and the second adjustment is the use of the differential equations from Kranendonk (2005) for the precipitate
diameter R and the precipitate density N in the coarsening regime, which also uses the effective diffusion
coefficient. This gives the results found in Figure 8.2.
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We find that both adjustments give the desired result, as the mismatch in the precipitate density and precip-
itate mean diameter is decreased. We suspect that the use of the effective diffusion coefficient has a large
influence on the results, despite of the equations used in the coarsening regime. To confirm this expectation
we also plot the precipitate number density and precipitate mean diameter in Figure 8.3, using the bulk dif-
fusion coefficient in both descriptions (Vonk (2016) and Kranendonk (2005)). We indeed find that the use of
the bulk diffusion coefficient in the equations for the coarsening regime by Kranendonk (2005) gives the same
results as when using the bulk diffusion coefficient in the equations for the coarsening regime by Vonk (2016).
We conclude that the descriptions of the coarsening regime, by Kranendonk (2005) and Vonk (2016), give the
same results and in general agree with the results obtained using the distribution model, as long as the (same)
effective diffusion coefficient is used. When the precipitates on dislocations and on grain boundaries have
grown since nucleation, they also take up elements from the bulk. Using an effective diffusion coefficient
for growth on dislocations and growth on grain boundaries is therefore well substantiated and we may safely
assume that the results obtained using the distribution model are correct and describe the coarsening regime
well. This conclusion is shared by Perez et al. (2008), who also verified that the distribution approach gives
correct results.
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(a) Precipitate number density.

(b) Precipitate mean diameter.

Figure 8.1: Simulation results with distribution approach by Robson (2014) using Backward Euler compared
to simulation results with mean-radius approach from Zurob et al. (2002) by Kranendonk (2005) (Tata Steel)
using Runge-Kutta 4 and the mean-radius approach from Zurob et al. (2002) by Vonk (2016) using Backward

Euler.
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(a) Precipitate number density.

(b) Precipitate mean diameter.

Figure 8.2: Simulation results with distribution approach by Robson (2014) using Backward Euler compared
to simulation results with mean-radius approach from Zurob et al. (2002) by Vonk (2016) using Backward
Euler and an effective diffusion coefficient in the growth rate and the mean-radius approach from Zurob

et al. (2002) by Vonk (2016) using Backward Euler and the differential equations during the coarsening
regime from Kranendonk (2005).
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(a) Precipitate number density.

(b) Precipitate mean diameter.

Figure 8.3: Simulation results with the mean-radius approach from Zurob et al. (2002) by Kranendonk (2005)
(Tata Steel) using Runge-Kutta 4 and the mean-radius approach from Zurob et al. (2002) by Vonk (2016)
using Backward Euler. In both approaches we use the bulk diffusion coefficient in the growth rate in the

coarsening regime.
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8.2. Number density distribution
Now that we have verified that the results found using the distribution model follow the results found using
the mean approach model and vice versa, we analyse the behaviour of the number density distribution dur-
ing precipitation. In precipitation we can define four stages: nucleation: the appearance of precipitates from
a supersaturated matrix, growth: the growing of the precipitates, coarsening: the growth of large precipitates
at the expense of small precipitates and (partial) dissolving. This last stage only happens in special occasions
and will therefore not be considered in this section.

As Zurob et al. (2002) noted, each stage has its own characteristics: during nucleation, the precipitate number
density increases, during pure growth the number density stays constant and the mean diameter increases
and finally during the coarsening stage the precipitate number density decreases, while the mean diameter
increases. In Figure 8.4 we globally indicated the three different stages of precipitation in the plot of the
precipitate number density as a function of the time. These characteristics can also be found in the number
density distribution. We plot the distribution right after nucleation, during growth and during coarsening, in
Figure 8.5.

Figure 8.4: Illustration of different stages in precipitation.

Directly after nucleation (after 0.001 seconds, Figure 8.5a), the number density distribution has a large peak
slightly right of the critical radius as expected, since the nucleated precipitates can only grow if their radius
is slightly larger than the nucleation radius and are therefore added to a size class right of the critical radius
(see Chapter 7).
During the second stage of precipitation, growth (Figure 8.5b), the peak of the number density distribution
starts to move to the right, since the precipitate grow. In the figure it looks as if the total number of precipitates
decreases, however if we look at the precipitates number density for these times in Table 8.4, the number of
precipitates even slightly increases. This is because there is still some nucleation and not just pure growth.
As described in Chapter 3, coarsening is naturally incorporated in the distribution model. Looking at the
change of the distributions during the coarsening stage in Figure 8.5c we find that both the height of the
peak, as well as the width of the peak decreases, which indicates that the precipitate number density de-
creases. Table 8.5 confirms this and thereby shows that precipitates are dissolving. When we zoom in and
indicate the maxima of the number distributions at the various times (Figure 8.5d), we see that the maximum
is moving to the right, which shows that at the same time precipitates dissolve (number density decreases)
and precipitates grow, i.e. coarsening takes place.

Table 8.4: The precipitate number density for different times during the growth stage of precipitation.

Time (s) 0.06 0.1367 0.2078 0.3740 0.6432
Precipitate number density (×1021 1/m3) 1.5089 1.6551 1.6943 1.7041 1.7047

Table 8.5: The precipitate number density for different times during the coarsening stage of precipitation.

Time (s) 32782 33282 34282 36282 38782
Precipitate number density (×1020 1/m3) 3.6541 3.6027 3.5041 3.3222 3.1195
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Remarkably is also the change in the shape of the precipitate size distribution: just after nucleation the dis-
tribution looks like a delta-distribution, but when the precipitates grow the distribution is much more like a
log-normal distribution. During the coarsening stage the distribution is quite similar to the predicted LSW
distribution. Both log-normal and LSW distribution are non-symmetric but with a different skewness: the
log-normal distribution has a sharp rise before the mode (the radius, at which the distribution has its max-
imum) and a long tail for radii larger than the mode, while the LSW distribution has a gentle slope for radii
smaller than the mode and a steep drop to zero for radii larger than the mode. If size distributions can be
measured accurately, the difference in skewness of the distributions also suggests that by comparing the ex-
perimental and simulated distribution an estimate can be made at what stage in the precipitate evolution a
material was at the end of a temperature scheme.
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8.3. PTT diagram
Now that we have implemented and tested the distribution model, we use the results of a set of tempera-
tures to construct a PTT (precipitation-time-temperature) curve, which involves the times when precipita-
tion starts and finishes. This PTT curve can be used to adjust the processes of steel making. If one wants to
optimise the precipitation in ferrite during annealing after cold rolling, precipitation in austenite during hot
rolling should be minimised. A PTT diagram can give an indication of the minimum cooling rate during and
after hot rolling to prevent or minimise precipitation in austenite for a specific composition. We construct
the PTT curve, using the following steps and accompanying illustration in Figure 8.6.

• The volume fraction of precipitates as a function of time
is calculated for a constant temperature. This is indicated
in the top picture by the black line.

• Two times on this curve are selected: the time where the
volume fraction is 5% of the equilibrium volume fraction
and the time where the volume fraction is 95% of the equi-
librium volume fraction. These criteria can differ per re-
searcher, some choose 1% and 99% percent as start and
end percentages respectively. In the top picture, the equi-
librium volume fraction is indicated by the green line, and
the 5% and 95% criteria by the red lines. If the time at
which the volume fraction is exactly 5% or 95% of the
equilibrium volume fraction is not available, interpola-
tion is used to find the specific time.

• The previous step is repeated for various temperatures, in
every step leading to two data points. These points are
plotted in a time-temperature diagram, in which all the
data points for the same equilibrium volume fraction per-
centage are connected with each other, giving two (black)
curves as shown in the bottom picture.

Figure 8.6: Illustration of the construction of a
PTT curve.

If nucleation on grain boundaries and dislocations is considered, an additional first step is added: values for
the grain size and dislocation density are chosen. During the simulation these quantities remain constant.

From literature we know that the temperature has an influence on both the activation energy and the diffu-
sion coefficient, each with opposite effect: on one hand, increasing the temperature decreases the probability
of forming new nuclei, which decreases the nucleation rate. On the other hand, increasing the temperature
increases the diffusivity, making it easier to form new nuclei, which increases the nucleation rate.
In the literature study by Vonk (2016) a PTT diagram for nucleation on dislocations was constructed. The
mean radius approach was used for this and we found an unexpected hard switch between the temperature
at which the diffusion coefficient had a larger influence, to the temperature where the activation energy had a
larger influence. This hard switch leads to a non-symmetrical shape of the PTT diagram, when using a linear
time scale. In the literature most PTT diagrams are plotted using a base 10 logarithmic scale for the time axis.
However, when using such a logarithmic time scale, we found the result to be even more non-symmetric,
in contradiction to the symmetrical PTT diagrams found in literature. In the literature study by Vonk (2016)
some possible cause were given:

• In the literature the data points at high temperatures are too sparse to estimate the correct trend as
function of the temperature or these data points are not even present.

• A large error is made in the interpolation to find the time at which 5% and 95% of the equilibrium
volume fraction is reached.

• The mean radius approach gives inaccurate results for the PTT diagram.

To check if the problem is caused by the usage of the mean radius approach, we construct the PTT diagram
using the results of the distribution approach. The volume fractions for different temperatures are given in
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Figure 8.7 and the resulting PTT diagram is given in Figure 8.8. Again we find the non-symmetrical shape
in the PTT diagram on the linear time axis and an even more non-symmetrical shape in the PTT diagram
using the a base 10 logarithmic time scale. The PTT diagram seems to exist of two parts, the part above
900 °C and the part below 900 °C. Each of these two parts has a parabolic shape (despite the time scale),
but the two parts do not fit together, specifically the curve belonging to the 95% of the equilibrium volume
fraction. We may conclude that this effect is not caused by the choice of modelling approach (mean radius or
distribution approach). Other causes described above are still possible. In Chapter 10, we also construct the
PTT diagrams for nucleation on grain boundaries and for homogeneous nucleation to see whether we find
similar non-symmetrical diagrams or if we find more symmetrical results.

Figure 8.7: Volume fraction in time for different temperatures using the distribution approach on
dislocations.
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(a) Precipitate-time-temperature curve on a linear time scale.

(b) Precipitate-time-temperature curve on a logarithmic time scale.

Figure 8.8: The precipitate-time-temperature curve using the distribution approach on dislocations.
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Multi-component KWN model

All elements in the system influence the nucleation and growth of the precipitates, even when the elements
do not participate in the precipitate. The growth rate for example is influenced by the diffusion coefficients
and concentrations of all elements in the system. The binary KWN model as described in Chapter 3 did not
include the influence of non-precipitate elements on the system. In this thesis an extension of the model
was made, such that the influence of all elements is taken into account when simulating the nucleation and
growth of precipitates. For the details on this model we refer to Chapter 4. This multi-component model was
implemented, of which the results can be found in this chapter.

For all simulations in this chapter, we use the matrix composition before precipitation and other initial and
numerical values as described in Chapter 8. To correctly analyse the effect of the adjustments we make to the
original model, we adjust the model step by step. The first adjustment is taking into account other elements
in the system and not only the elements in the precipitate during the calculations of the concentrations. We
refer to Sections 4.1 and 4.2 for the details of these adjustments. Implementing the adjustments in the cal-
culation of the concentration gives the results presented in Figure 9.1. The multi-component version of Zβ∗
as described in Section 4.1 is not yet used. The results show that there is very little influence from the adjust-
ment made in the calculation of the concentrations.

When we also implement the adjusted approximation for the Zeldovich factor Z and the rate of atomic at-
tachment β∗ as described in Section 4.1, we find the results in Figure 9.2. Again, no large differences can be
seen. For the simulations in this chapter we use a constant weight percentage for the elements that do not
participate in the precipitate. In later chapters we will simulate combinations of precipitate compositions,
leading to a varying weight percentages of multiple elements, possibly leading to more visible effects in the
results caused by the multi-component mechanism in the model. Also, in the equation for β∗ we use the dif-
fusion coefficient along dislocations, since we believe the atoms move through the dislocation since diffusion
along a dislocation is much faster than through the bulk:

β∗ = 4π(R∗)2DX ,pi pe xM
X

a4 . (9.1)

However, one could also argue that the atoms move along the dislocation as well as through the bulk. This
would lead to using an effective diffusion coefficient in the equation for β∗:

β∗ = 4π(R∗)2DX ,e f f xM
X

a4 . (9.2)

If we use this description for the atomic attachment, we see that large differences occur between the basic
binary KWN model and the adjusted multi-component KWN model1 (Figure 9.3). To fit the model to exper-
imental data, Zurob et al. (2002) uses 5 data points for the precipitate mean diameter. However, if we adjust
the data fitting parameter F (in the simulation called Fpr ec ) in a range of 0.01-0.02 in Figure 9.4, we note it has

1The choice of effective diffusion coefficient can also have a big influence on the results. For future work various descriptions of the
effective diffusion coefficient could be tested and the results compared.
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large influence on the precipitate density, but little influence on the precipitate mean diameter. This means
that changing the fitting parameter such that the mean diameter fits the data points (or binary KWN model),
can have a big influence on the precipitate number density.
Since we do not have experimental data on the precipitate number density, we can not draw any conclusion
on the fitting. Zurob et al. (2002) uses an indirect approach to verify the values of the precipitate number
density with reality. Via the recrystallisation and recovery model he retrieves the softening fraction. For the
softening fraction, experimental data are available, and he could adjust the fitting parameter such that both
the mean diameter and the softening fraction agree with the data. Since our model is not yet coupled to
the recrystallisation and recovery models, the possibilities for validation are restricted. Therefore we use
the model that agrees best with the model made by Zurob et al. (2002), the model with the pipe diffusion
coefficient, since we know that this model agrees with the experimental on both the mean diameter and the
softening fraction. For future work, more experimental work should be done on more variables, such that
verification and data fitting of the model can be executed correctly.

(a) Precipitate number density.

(b) Precipitate mean diameter.

Figure 9.1: Simulation results using the binary KWN model from Chapter 3 and the multi-component KWN
model from Chapter 4 without the adjusted approximation for Z and β∗.
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(a) Precipitate number density.

(b) Precipitate mean diameter.

Figure 9.2: Simulation results using the binary KWN model from Chapter 3 and the multi-component KWN
model from Chapter 4 with the adjusted approximation for Z and β∗ (based on Dpi pe ).
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(a) Precipitate number density.

(b) Precipitate mean diameter.

Figure 9.3: Simulation results using the binary KWN model from Chapter 3 and the multi-component KWN
model from Chapter 4 with the adjusted approximation for Z and β∗ (based on De f f ).
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(a) Precipitate number density.

(b) Precipitate mean diameter.

Figure 9.4: Simulation results using the binary KWN model from Chapter 3 and the multi-component KWN
model from Chapter 4 with the adjusted approximation for Z and β∗ (based on De f f ) for various values of

Fpr ec .
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Multi-precipitate KWN model

Because most steel alloys frequently contain many alloying elements, different precipitates can occur simul-
taneously (for instance, N bC N , Al N , MnS). The multi-component KWN model was therefore extended to
simulate multiple precipitates types at the same time. However, each of these precipitates can also nucleate
at multiple sites, like dislocation, grain boundaries and in grains. Also incorporating this complexity to the
model, lead to the so called multi-precipitate KWN model. For the details on this model we refer to Chapter 5.

Part of the multi-precipitate model is the implementation of nucleation on grain boundaries and homo-
geneous nucleation. Using these implementations, the PTT diagrams for nucleation on grain boundaries
and homogeneous nucleation are constructed to compare to the PTT diagram for nucleation on dislocations
given in Chapter 8. Thereafter, the results of the implementation of the complete multi-component, multi-
precipitate model are given, with several combinations of precipitate compositions and nucleation sites to
illustrate the possibilities of the model and the interaction between various precipitate compositions, various
nucleation sites, and combinations. Also, we will introduce a non-isothermal time dependent temperature
scheme influencing the model parameters through time and thereby the final results. Finally, we will sim-
ulate the dissolution of precipitates in a preheat furnace in the hot strip mill, by calculating the precipitate
evolution during a (non-isothermal) time dependent temperature scheme for such a furnace.

For the simulations in this section we use the matrix composition before precipitation and other initial and
numerical values described in Chapter 8, completed with the values of the fitting parameters given in Table
10.1 and the varying parameters and equations described in Chapter 5. We use the value of the fitting param-
eter for dislocation also for the other two nucleation sites, since we have no experimental data available for
nucleation on grain boundaries and homogeneous nucleation to fit the model to.

Table 10.1: Fitting parameters used in the simulations.

Parameter Value

Fdi s 1.32×10−3

Fg b 1.32×10−3

Fhom 1.32×10−3

For each precipitate type (unique combination of precipitate composition and nucleation site) we give the
results, consisting of the precipitate number density N (t ), the precipitate mean radius R̄(t ), the volume frac-
tion fv (t ) and the saturation. Each of these variables is directly or indirectly derived from the number density
distribution φ:

N (t ) =
∞∫

0

φ(R, t )dR (10.1)

R̄(t ) = 1

N (t )

∞∫
0

Rφ(R, t )dR, (10.2)
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fv (t ) =
∞∫

0

4

3
πR3φ(R, t )dR, (10.3)

saturation = matrix product

solubility product
, (10.4)

where the matrix product is derived using the volume fraction, via Equation (5.7):

C M
X =

C 0
X − ∑

p∈Θ
C P (p)

X f p
v

1− ∑
p∈Θ

f p
v

. (5.7)

10.1. PTT diagram
In Chapter 8, we constructed the PTT diagram for nucleation on dislocations (Figure 8.8). The PTT diagram
had an unexpected non-symmetrical shape (using the distribution approach), which was also found by Vonk
(2016) (using the mean radius approach). In Chapter 5, the description of the model for nucleation on grain
boundaries and homogeneous nucleation was introduced, as part of the multi-precipitate model. Using these
descriptions, we construct PTT diagrams for N bC N precipitates with nucleation on grain boundaries and
with homogeneous nucleation, to see whether also these nucleation sites give non-symmetrical PTT dia-
grams. The description of how to construct such a PTT diagram can be found in Section 8.3.

The temperatures chosen for the construction of the PTT diagram lie between the minimum temperature
of austenite, since our model is currently developed for austenite simulations, and the solvus temperature.
The solvus temperature depends on the composition of the precipitate, since it is found using the solubility
product which is different for each precipitate composition. Also, the weight percentages of the elements
participating in the precipitate are taken into account during the calculation of the solvus temperature. The
solvus, but also on the initial weight percentages of the precipitate elements. For the initial alloy composition
as described in Table 8.3, we find the following solvus temperatures for the different precipitate compositions.
We use the N bC N precipitate in the comparison of the different PTT diagrams for nucleation on dislocations,
nucleation on grain boundaries and homogeneous nucleation.

N bC N bN Al N MnS N bC N

Tsol (°C) 1030.1 1027.0 1017.7 1257.1 1093.9

Table 10.2: Solvus temperatures for the different precipitate compositions for alloy N1 (Table 8.3).

As described in Section 8.3, we know that the temperature influences the probability of nuclei forming, so
does the diffusion coefficient, each with opposite effect on the nucleation rate. Increasing the temperature
makes the probability of forming new nuclei smaller, which lowers the lower nucleation rate. On the other
hand, increasing the temperature increases the diffusion coefficient, making it easier to form new nuclei,
which increases the higher nucleation rate. In Figure 10.1 the volume fraction for different temperatures for
nucleation on grain boundaries is given. We see a turning point at around 925 °C. Below this temperature,
the influence from the diffusion coefficient is larger and the nucleation rate increases and after this point we
find the influence from the activation energy is larger, leading to a lower nucleation rate. The switch between
these situations is similar to the switch found for nucleation on dislocations.

Looking at the resulting PTT diagram in Figure 10.2, we find the same non-symmetrical shape for higher
temperatures as found for nucleation on dislocations. We use a base 10 logarithmic time scale, since it is often
used in literature. In agreement with the results found for nucleation on dislocations, the non-symmetrical
shape is mainly caused by the 95% points, corresponding to the time at which the volume fraction is equal
to 95% of the equilibrium volume fraction. The time at which the volume fraction of the 975 °C simulation
reaches this 95% of the equilibrium volume fraction is even later than the time at which the volume fraction of
the 1000 °C reaches the 95% of the equilibrium fraction, causing an even more irregular PTT diagram. When
we zoom in on the evolution of the volume fraction in time for the 975 °C simulation, we find Figure 10.3
and note that there exists a small plateau in the volume fraction, instead of a constant increase (indicated by
the arrow). The volume fraction at this plateau still increases, but due to the use of a logarithmic time scale
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this results in a constant line. The naming ’plateau’ therefore seems a bit ambiguous, but we will use it to
easily refer to this part of the plot of the volume fraction. The slower increasing volume fraction (the plateau)
postpones the moment at which the volume fraction reaches 95% of the equilibrium volume fraction. For
the other temperatures in Figure 10.1, this small plateau also exists for all simulations, but the size differs. At
lower temperatures the plateau seems to have vanished, but this is caused by the scale of the plot.

Figure 10.1: Volume fraction in time for different temperatures using the distribution approach on grain
boundaries.

Figure 10.2: The precipitate-time-temperature curve using the distribution approach on grain boundaries.

The plateau in the volume fraction exists at the moment when nucleation has already stopped, but coarsening
is not yet fully active, leading to a slower increasing volume fraction. It seems that the temperature influences
the strength of this effect and thereby the size of the plateau. As stated in Section 8.3, some researchers use
different reference percentages of the equilibrium volume fraction to construct the PTT diagram. They use
1% and 99% instead of respectively 5% and 95% used in this study. The shape of the PTT diagram might be
influenced by this choice and would become more symmetric, since the effect of the plateau is decreased.
However, when we plot the PTT diagram for multiple reference percentages in Figure 10.4, using the same 10
simulation temperatures as before, we find the same non-symmetrical shape for each reference percentage.
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Figure 10.3: Volume fraction in time at 975 °C, zoomed in on the part where the volume fraction is close to
95% of the equilibrium volume fraction.

Figure 10.4: PTT diagrams for multiple percentages of the equilibrium volume fraction for nucleation on
grain boundaries. The colours in the legend correspond to different percentages of the equilibrium volume

fraction. For example 0.1 corresponds to 10% of the equilibrium volume fraction.
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When plotting the PTT diagram for nucleation on dislocations using multiple percentages we find Figure
10.5. We find non-symmetrical shapes for the PTT diagrams for all percentages, as we expected from the
earlier found PTT diagram (Figure 8.8). The cusps on the lines are caused by the interpolation technique
used. To get a more detailed and smooth image, one must run the simulation for more temperatures.

Figure 10.5: PTT diagrams for multiple percentages of the equilibrium volume fraction for nucleation on
dislocations. The colours in the legend correspond to different percentages of the equilibrium volume

fraction.

In Figure 10.6 the volume fractions for different temperatures for homogeneous nucleation are given. We do
not find the plateaus in the volume fraction, as we did find for nucleation on dislocations and on grain bound-
aries. The resulting PTT diagram in Figure 10.7, shows this gives a more symmetrical shape. When plotting
other PTT diagrams for homogeneous nucleation with different reference percentages, we find Figure 10.8.
For all percentages we find the more or less symmetrical shape in the PTT diagram. Again, we find the cusps
in the PTT diagram caused by the interpolation technique.

In general, it seems as if for non-homogeneous nucleation we find a non-symmetrical PTT diagram and for
homogeneous nucleation we find a symmetrical PTT diagram. However, this should be further investigated.

Figure 10.6: Volume fraction in time for different temperatures using the distribution approach for
homogeneous nucleation.
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Figure 10.7: The precipitate-time-temperature curve using the distribution approach for homogeneous
nucleation.

Figure 10.8: PTT diagrams for multiple percentages of the equilibrium volume fraction for homogeneous
nucleation. The colours in the legend correspond to different percentages of the equilibrium volume

fraction.
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10.2. Various precipitate compositions
As described in the introduction of this section, different precipitate compositions1 can occur simultaneously.
We will illustrate the interaction between the different precipitate compositions, by first simulating the three
precipitates (Al N , MnS, N bC N ) separately at one nucleation site, namely on dislocations, and thereafter the
three precipitates simultaneously at this site. We choose only one nucleation site, since it is just to illustrate
the influence of multiple precipitate compositions and the capabilities of the model. Other combinations of
precipitate compositions and nucleation site can also be used.

10.2.1. Simulation
The implementation used for nucleation of one precipitate originates from Chapter 4 (including the multi-
component version of Zβ∗), and the implementation used for the nucleation of the three precipitates simul-
taneously originates from Section 5.1. For the simulation we use a dislocation density (ρ) of 3.27×1014 1/m2

and a temperature of 850 °C. Futhermore, we use the initial and numerical values from Chapter 8. The results
of the simulation are found in Figures 10.9 to 10.16.

Al N
In Figure 10.13 the results for nucleation of the Al N precipitates are presented. In each plot, both the sim-
ulation with only nucleation of the Al N precipitates, as well as the simulation with nucleation of the three
precipitates are presented. Looking at the number density, it seems as if nucleation of the Al N starts much
earlier when competition is taken into account. However, this is mainly caused by the large difference in or-
der of magnitude of the vertical scales. The number density of the simulation with competition is an order
of magnitude 4 times smaller than the number density of the simulation without competition, which is a di-
rect effect of the nucleation N bC N that apparently has the preference of nucleating. When using the same
y-axes for both results, we find Figure 10.9 and see that the real difference in the starting time of nucleation is
a lot smaller. The competition still causes an advanced nucleation, which is probably caused by the indirect
competition with the other precipitate compositions via the multi-component mechanism.

A clear cause of the advanced nucleation is hard to find, because of the complexities and cross dependencies
of the model. A possible cause could be that the interaction of the different precipitates. The MnS precipitates
nucleate earlier than the other precipitate compositions in the individual simulations. This also happens
when simulation the three precipitate compositions at the same time. Earlier nucleation of MnS (compared
to the other two) causes the concentrations of the other elements in the matrix to be relatively higher in
this simulation than for the individual simulations of Al N and N bC N precipitates. This results in a slightly
less negative growth rate for precipitates with a radius smaller than the critical radius (as shown in Figure
10.10). Due to a less negative growth rate for small precipitates, the small precipitates dissolve slower, leading
to a higher number density and larger mean radius. On the other hand, since the other elements in the
matrix (not Mn ans S) form more stable precipitates, the concentration of Mn and S becomes relatively
higher in the simulation than for the simulation without competition, also leading to more MnS precipitates.
This leads to a reinforcing effect for all precipitates and an earlier increase in the precipitate number density.
Later on in the simulation, the decrease in the nucleation rate damps this interaction effect, the growth rates
becomes equal, and the precipitate number density reaches its maximum. This same effect is seen in both
the precipitate number density of N bC N , as well as for MnS. The strength of the effect depends on the
precipitate.

The volume fraction of the Al N precipitates is again orders of magnitude smaller when taking competition
into account. From the saturation and the volume fraction, we see that the plateau in the number density
is not caused by the kinetics of the Al N , but by the competition, since both the saturation and the volume
fraction did not reached an equilibrium level yet.
The size of the Al N precipitates (Figure 10.13b) is larger than expected from experimental data and literature.
This is caused by a high diffusion coefficient, leading to a higher growth rate for longer times. Comparing the
growth rate of the Al N precipitates with and without competition of other precipitate compositions, for a
precipitate with a radius of 1×10−8 m, we find Figure 10.11. In the beginning of the simulation, the compe-
tition causes the growth rate to decrease earlier, but due to the high diffusion coefficient and the influence

1In this thesis a precipitate compositions mean different kinds of precipitates, and not one kind precipitate like N bCx N1−x with varying
x and y .
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of the other elements in the system, the growth rate is larger for longer times for the simulation with compe-
tition, than for the simulation without competition of other precipitate compositions. This causes the Al N
precipitates to keep growing at a higher rate, leading to larger precipitates.

Figure 10.9: The results of the simulation for Al N precipitation with (red line) and without (blue line)
competition of other precipitate compositions, using the same y-axis for both results.

Figure 10.10: The growth rate of Al N precipitates with radius 2.2149×10−10 m, which is smaller than the
critical radius at the starting time. The simulation with (red line) and without (blue line) competition of

other precipitate compositions on dislocations are compared.

Figure 10.11: The growth rate of Al N precipitates for a precipitate with radius 1×10−8 m, which is larger
than the critical radius at the starting time. The simulation with (red line) and without (blue line)

competition of other precipitate compositions on dislocations are compared.
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MnS
In Figure 10.14 the results for nucleation of the MnS precipitates are presented. In each plot, both the sim-
ulation with only nucleation of the MnS precipitates, as well as the simulation with nucleation of the three
precipitates are presented. If we compare the simulation with and without the interaction with other preci-
pitates, we note that when the MnS is influenced by the other two precipitates, the plateau in the precipitate
number density decreases. This is caused by competition over nucleation positions, since the other precipi-
tates (Al N and N bC N ) nucleate on the same nucleation sites, namely on dislocations. Furthermore we find
that nucleation starts earlier when competition is taken into account as we also saw for Al N precipitates.
Again this is caused by slower dissolving precipitates due to a less negative growth rate for precipitates with a
radius smaller than the critical radius (Figure 10.12). Both the equilibrium level of the saturation and the vol-
ume fraction are reached at roughly the same time, since the MnS experiences no competition for elements
from N bC N and Al N .

Figure 10.12: The growth rate of MnS precipitates with radius 2.2149×10−10 m, which is smaller than the
critical radius at the starting time. The simulation with (red line) and without (blue line) competition of

other precipitate compositions on dislocations are compared.

N bC N
In Figure 10.15 the results for nucleation of the N bC N precipitates are presented. In each plot, both the sim-
ulation with just nucleation of the N bC N precipitates, as well as the simulation of the N bC N precipitates
in combination with the nucleation of the Al N and MnS precipitates are presented. We note that when the
N bC N is influenced by the other two precipitates, the plateau in the precipitate number density decreases,
mainly caused by competition for the N atoms. The order of magnitude, however, is comparable. Next to
the direct competition between the N bC N and the Al N precipitates for the N atoms, also competition over
the available nucleation positions exists, as the other precipitates (Al N and MnS) nucleate at the same nu-
cleation site. The precipitates that do exist are slightly larger, than those that exist for the simulation without
influence of the other two precipitate compositions. Less precipitates, but larger in size, leads to a similar
volume fraction as confirmed by the figure. Also the saturation plots are similar for both with and without
competition of the other precipitate compositions.

Combination of precipitate compositions
To be able to compare the nucleation of the three precipitates at one nucleation site, we plot the properties
of each precipitate in one figure. This results in Figure 10.16. The precipitate number density of the three
precipitate compositions shows that the three precipitates start to nucleated around the same time (10−4 s).
Furthermore we see that the N bC N precipitate is more stable than the Al N precipitate. This effect is seen in
the number density, but even more in the volume fraction. Also, when the MnS precipitates start to coarsen
(number density decreases, and mean diameter increases), the newly available sites are than occupied by
the N bC N precipitates, leading to a temporarily increase in the number density of N bC N . The increase
is only temporarily, since the volume fraction of N bC N had already reached an equilibrium and the Al N
precipitates start to grow. The number density of the Al N precipitates is the lowest of the three precipitate
compositions taken into account, but the precipitates that do exist are of a greater size than those of the
other two precipitate compositions, which is mainly caused by the high effective diffusion coefficient of Al
for nucleation on dislocations.
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10.3. Various nucleation sites
Besides the interaction between various precipitate compositions, also the nucleation on one nucleation site
influences the nucleation on other nucleation sites. We will illustrate the interaction between different nu-
cleation sites, by first simulating one of the precipitates, N bC N , at each site separately, and thereafter at the
three nucleation sites, on dislocations, on grain boundaries and in the matrix, simultaneously. We choose
only one precipitate, since it is just to illustrate the influence of multiple nucleation sites and the capabilities
of the model. Other combinations of nucleation site and precipitate composition can also be used. We use
the initial and numerical values from Chapter 8 for the simulations.

10.3.1. Simulation
For the simulation we use a temperature of 850 °C, a dislocation density (ρ) of 3.27×1014 1/m2, the radius of
a grain (Rg r ai n) of 10−6 m and a grain thickness (δg b)of 3a, where a is the lattice constant of austenite. The
results of the simulation are found in Figures 10.17b to 10.21. Since the saturation is a property of the matrix,
as it describes the ratio of the matrix and the equilibrium concentrations, it is equal for all nucleation sites.

Machine precision
In the first simulations which included the interaction with other nucleation sites, we found a strange behav-
ior in for example the mean diameter of the precipitates at dislocations (Figure 10.17a). However, when we
look at the volume fraction of the precipitates at dislocations on a double-logarithmic scale (both the x- and
y-axes), we find that the volume fraction becomes so small (below the machine precision, see Figure 10.17b)
that the mean radius does not matter anymore. For this reason we omit the results in the plots, where the
volume fraction is below the machine precision. This also holds for other nucleation sites.

(a) Mean diameter of N bC N precipitates at dislocations.

(b) Volume fraction of N bC N precipitates at dislocations on a double-logarithmic
scale, together with the machine precision.

Figure 10.17: Simulations of the N bC N precipitates at dislocations.
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Dislocations
In Figure 10.18 the results for nucleation on dislocations are presented. In each plot, both the simulation with
only nucleation on dislocations, as well as the simulation with nucleation on the three nucleation sites are
presented. The implementation used for only nucleation on dislocation originates from Chapter 4, and the
implementation used for nucleation at the other two sites is given in Section 5.2.
The number density of the N bC N precipitates on dislocations reaches the same maximum plateau for both
simulations, with and without competition of other sites. However, when competition of other sites is taken
into account, we find a steep decrease in the number density a lot earlier than for the simulation without
competition. A first thought could be that coarsening is taking place a lot earlier, but the mean diameter
speaks against this. Also the volume fraction shows that it is not coarsening, but the precipitates actually
start to dissolve. From the volume fraction we furthermore see that the precipitation starts earlier when
competition is taken into account. This is the same effect as we saw for the competition between precipitate
compositions in Section 10.2.

Grain boundaries
In Figure 10.19 the results for nucleation on grain boundaries are presented. In each plot, both the simulation
with only nucleation on grain boundaries, as well as the simulation with nucleation on the three nucleation
sites are presented. The implementation used for just nucleation on grain boundaries and nucleation at the
three sites originates from Section 5.2.
The number density of the N bC N on grain boundaries reaches the same maximum plateau for both simu-
lations, with and without competition of other sites. However, when competition of other sites is taken into
account, we find a steep decrease in the number density takes place at much earlier times than for the simula-
tion without competition. For nucleation on dislocations we saw a comparable result (Figure 10.18a), which
was caused by the dissolving of precipitates. For nucleation on grain boundaries we find that it is actually
early coarsening, since the mean diameter increases. Also the volume fraction reaches the equilibrium level
earlier, meaning that the nucleation on grain boundaries is accelerated when competition of other nucleation
sites is added to the system.

Homogeneous nucleation
In Figure 10.20 the results for homogeneous nucleation are presented. In each plot, both the simulation with
just nucleation on dislocations, as well as the simulation with nucleation on the three nucleation sites are pre-
sented. The implementation used for homogeneous nucleation and nucleation at the three sites originates
from Section 5.2.
The number density of the N bC N for homogeneous nucleation shows a strange behavior. It seems as if the
values for precipitate number density and volume fraction at early times for the simulation with competition
is much higher than the value at early times for the simulation without competition. However, the order
of magnitude shown on the axes, says the opposite. This same effect was seen in the results of the Al N
precipitation (Figure 10.13). The number density of the precipitates is of such a small order of magnitude,
that we can state that homogeneous nucleation is negligible, when precipitates can also nucleate at other
sites. The volume fraction stresses this even more, since it is of an even smaller order of magnitude (∼ 10−14).

Combination of nucleation sites
To be able to compare the nucleation of the N bC N precipitate at the various nucleation sites, we plot the
properties of the precipitation evolution at each site in one figure. This results in Figure 10.21. We find that
nucleation on dislocations and nucleation on grain boundaries both reach their maximum plateau, and the
precipitate number density of homogeneous nucleation is a lot smaller. However, when we look at the mean
diameter of all three nucleation sites, we find that the precipitates on grain boundaries grow a lot further than
those at the other two nucleation sites. For longer time, nucleation on grain boundaries is clearly favoured
over the other two nucleation sites. When we look at the individual volume fractions, we find that for both
homogeneous nucleation and nucleation on dislocations, the volume fraction is lowered by competition.
The precipitate number density and volume fraction, for nucleation on dislocations, are mostly hindered
by the competition at longer times. The determining factor for this is the activation energy, which is lower
for grain boundaries than for dislocations and homogeneous nucleation for longer times. One can conclude
that for longer times, precipitation on grain boundaries wins over the other two nucleation sites. As explained
before, the saturation is a property of the matrix and is therefore equal for all nucleation sites when simulated
together (Figure 10.21).
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10.4. Various precipitate compositions and various nucleation sites
Now that we have illustrated the interaction of different precipitates and the interaction of different nucle-
ation sites, we would like to combine both implementations. However, when simulating the three precipi-
tates, N bC N , Al N and MnS at the three nucleation sites, the computation time is drastically increased to
such a level that it would take more than two weeks of computation time. The MnS precipitate is causing
most of the time increase, since the calculation of the growth rate for this precipitate is more time consuming
than that of the other two precipitates. The difference is caused by the molar volume of MnS, which is twice
the molar volume of N bC N or Al N . This causes the model to demand a higher accuracy, leading to a higher
computation time. Also the ratio of the diffusion coefficients of Mn and S is much lower than for N b and C
and N , which also influences the growth rate. When we compare the growth rates at time is zero, for each
precipitate without competition between precipitates with nucleation only on dislocations, we find Figure
10.22. The growth rate of MnS is three orders of magnitude larger than that of Al N , and even six orders of
magnitude larger than that of N bC N . Also the bend in the growth rate is more strict for MnS, leading to a
harder division between the (slowly) growing precipitates and (fast) dissolving precipitates, which requires
the higher accuracy.

Since the simulation has a more illustrative character, we choose to only simulate the two precipitates, N bC N
and Al N , using Section 5.1 but at all three nucleation sites (dislocations, grain boundaries, homogeneous
nucleation) using Section 5.2. For future work it would be recommended to do further research on the com-
putation time increase caused by MnS and potential solutions, since latest research shows that MnS may
play a role in grain refinement and precipitation hardening (Rodionova et al. (2016)), potentially leading to
lower costs in steel production.

(a) Al N

(b) MnS
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(c) N bC N

Figure 10.22: Growth rates of individual precipitates at dislocations at time is zero, plotted at the cell edges.

10.4.1. Simulation
For the simulation we use a temperature of 850 °C, a dislocation density (ρ) of 3.27×1014 1/m2, the radius
of a grain (Rg r ai n) of 10−6 m and a grain thickness (δg b)of 3a, where a is the lattice constant of austenite.
We use the initial and numerical values given in Chapter 8. Furthermore, the implementation used for just
nucleation on grain boundaries and nucleation at the three sites originates from Section 5.2 and for nucle-
ation on dislocations from Chapter 4. The results of the simulations at the three nucleation sites are given in
Figures 10.23 and 10.24 for Al N , in Figure 10.25 for N bC N , and in Figure 10.26 for both N bC N and Al N . The
simulation had a computation time of around 21 hours1 for 1×105 simulation seconds.

Al N
In Figure 10.23 the results for Al N precipitation at the three nucleation sites are presented. In each plot,
both the simulation with only nucleation on one site, as well as the simulation with nucleation on the three
nucleation sites are presented.
We find that the precipitate number density of Al N is reduced by the competition with N bC N and other
nucleation sites. The precipitate number density for the simulation with competition are not even visible.
When plotting the densities separately for each site, we find Figure 10.24a. For the single simulation, with only
Al N , we find that nucleation at grain boundaries results in the highest number density. When competition is
added, the precipitate number density is largely decreased for all nucleation sites. Also the volume fraction is
much lower when competition between sites and precipitate competition is added. In one figure the volume
fraction of the simulations with competition are not even visible. As we did for the precipitate number density,
we plot the results separately for each site in Figure 10.24b. Again, for each nucleation site the volume fraction
is largely decreased when competition is added. The large decrease in number density and volume fraction is
caused by the direct competition with N bC N for the N atoms. This effect is larger than we saw in Section 10.2,
since the N bC N can now also grow on grain boundaries, leading to a higher competition for the available
nucleation positions, and therefore taking up even more elements.

Looking at the size of the precipitates in Figure 10.23b, we find the precipitates grow faster when competi-
tion is added to the system, caused by the indirect competition from the multi-component property of the
model. As we saw earlier, the growth rate stays at a higher level for longer times when competition is added.
The precipitates at dislocations are the largest, for both the simulation with and without competition. This is
caused by the high effective diffusion coefficient of Al for nucleation on dislocations. When comparing the
diffusion coefficient for nucleation on dislocations in Figure 5.2, we find that the pipe diffusion coefficient
of Al is orders of magnitude larger than grain boundary and bulk diffusion coefficients. Using an effective
diffusion coefficient, as described in Section 5.2.2, should damp this effect, but comparing the effective dif-
fusion coefficients in Table 10.3 shows this damping effect is not enough. As stated in Section 5.2.2 it is an

1For the simulation we use MATLAB 2016b on Windows®.
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essential point for future research to find correct values for the diffusion coefficients. This simulation shows
furthermore that the damping effect of the effective diffusion coefficient in this case is not enough and fur-
ther investigation of the diffusion coefficients is necessary to see whether a different definition of the effective
diffusion coefficient should be used.

Nucleation site Effective diffusion coefficient in m2/s

Dislocations 3.4718×10−14

Grain boundaries 1.2153×10−15

Bulk 4.1050×10−16

Table 10.3: Effective diffusion coefficient of Al at 850 °C for various nucleation sites.

The saturation shows that when competition is added, the saturation drops earlier, but does not reach the
equilibrium level of one within the chosen time range.

N bC N
In Figure 10.25 the results for N bC N precipitation at the three nucleation sites are presented. In each plot,
both the simulation with only nucleation on one site, as well as the simulation with nucleation on the three
nucleation sites are presented.
We find that the precipitate number density of N bC N is influenced in various ways (Figure 10.25a. The maxi-
mum level for nucleation on dislocations and grain boundaries is still reached, but homogeneous nucleation
is almost zero. This agrees with the results we found when just observing competition due to various nucle-
ation sites. The nucleation on dislocations and on grain boundaries is slightly delayed, when compared with
the simulation without interaction between precipitates. This is actually in contrast to the results we found
in Section 10.3. This is due to the competition with Al N , that was not present in that section. The mean
diameter is also influenced by the competition. The precipitates that are formed are much smaller than with-
out competition when compared at the same time. Only for nucleation on grain boundaries we clearly see a
mean diameter above zero, around 0.5×10−8 m. The volume fraction gives similar results, and shows that the
grain boundaries are favoured over the dislocations and over homogeneous nucleation when competition of
other precipitate compositions is present.

Al N and N bC N
In Figure 10.26 the results for both Al N and N bC N precipitation with competition between the precipitates
and nucleation sites are presented.
When combining the plots for N bC N and Al N with competition, we find that N bC N precipitates on disloca-
tions and on grain boundaries are favoured. Al N precipitates do start to nucleate later on in the simulation,
but its volume of fraction is orders of magnitude smaller than that of N bC N . Furthermore we find that the
N bC N precipitates reach their equilibrium saturation within the used simulation time, while the Al N preci-
pitates do not reach their equilibrium saturation within the used simulation time due to competition.

10.4.2. Result interpretation
The results in this section (Figure 10.23 - Figure 10.26) should be mainly interpreted qualitatively, since accu-
rate quantitative results not only depend on the composition and temperature, but also on accurate values of
the fitting parameters in Table 10.1 and the diffusion coefficients in Section 5.2.2. It is not expected that the
fitting parameters found when fitting experimental data to the model will differ much in order of magnitude.
However, the diffusion coefficients and effective diffusion coefficient can have large influences on the results,
as already seen for Al N precipitates. From the results and literature, we find that homogeneous precipita-
tion is dominated by precipitation on dislocations and on grain boundaries. Therefore, experimental data for
validating and improving the models, should concentrate on these nucleation sites.
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(a) Precipitate number density.

(b) Precipitate volume fraction.

Figure 10.24: The results of the simulation for the Al N precipitates with and without interaction with other
precipitate with a different composition and various nucleation sites, plotted at each nucleation site

individually.
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10.5. Simulation of a non-isothermal case
In the production of steel, the temperature is of great importance. To show the capabilities of the model and
the effect on the final results, we enter two time-dependent temperature schemes into the model. There is
one main restriction on the temperature scheme we choose, since we the model is currently only developed
for austenite (see Figure 2.4 for the range of temperatures). We choose two different temperature schemes,
where the first temperature scheme stays below the solvus temperature (Section 10.5.1) and the second tem-
perature scheme increase to above the solvus temperature (Section 10.5.2).

10.5.1. Simulation temperature scheme I
The first temperature scheme is a linear temperature increase as shown in Figure 10.27. It starts at 850 °C and
linearly increases to 1000 °C in 140 minutes (=8400 s), where after the temperature stays at a constant 1000
°C. As stated before, the maximum temperature in this temperature scheme is below the solvus temperatures
of all precipitates considered in this thesis, see Table 10.2.

Figure 10.27: Lineair temperature increase I.

For the simulation we use two precipitates, N bC N and Al N , at all three nucleation sites discussed in this
thesis: on dislocations, on grain boundaries and homogeneous nucleation. We use a a dislocation density (ρ)
of 3.27×1014 1/m2, the radius of a grain (Rg r ai n) of 10−6 m and a grain boundary thickness (δg b)of 3a, where
a is the lattice constant of austenite. We use the initial and numerical values given in Chapter 8. Furthermore,
the implementation used for just nucleation on grain boundaries and nucleation at the three sites originates
from Section 5.2 and for nucleation on dislocations from Chapter 4. The results of the individual precipi-
tate compositions with and without temperature increase are given in Figures 10.28 (for Al N ) and 10.29 (for
N bC N ). The combined results are given in Figure 10.30. For the interpretation of the simulation results, the
solvus temperatures of the precipitates involved for the chosen alloy N1 (Table 8.3), are given in Table 10.2.

Al N
In Figure 10.28 the results for Al N precipitation at the three nucleation sites with a temperature increase are
presented. In each plot, both the simulation with a constant temperature of 850 °C, as well as the simulation
with a temperature increase are presented.
Due to the temperature increase, the decrease in precipitate number density is advanced. This leads to a
faster decreasing saturation, which even reaches the equilibrium level. However, the volume fraction and
the precipitate mean diameter decrease after time, in contrast to the results for a constant temperature. The
influence of the temperature increase shows is equal for the different sites, except for the precipitate number
density for homogeneous nucleation. However, due to the low nucleation density of 10−15 this is not relevant.

N bC N
In Figure 10.29 the results for N bC N precipitation at the three nucleation sites with a temperature increase
are presented. In each plot, both the simulation with a constant temperature, as well as the simulation with
a temperature increase are presented.
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Whereas the results of Al N are equally influenced by the temperature increase for all nucleation sites, the
results of N bC N are not. The results for N bC N for homogeneous nucleation and nucleation on disloca-
tions show no difference between the isothermal and non-isothermal scheme. In contrast, the results for
nucleation on grain boundaries show differences between the isothermal and non-isothermal scheme. The
coarsening stage is slightly delayed, but the growth in the precipitate mean diameter is slowed down. This
leads to a decreasing volume fraction due to the dissolution of precipitates. After the dissolution the volume
fraction is increasing again.

Al N and N bC N
In Figure 10.30 the results for both Al N and N bC N precipitation at the three nucleation sites with a temper-
ature increase are presented.
The interaction between the precipitates is not influenced by the temperature increase. The results are com-
parable to the results found in Section 10.4 till short before 104 seconds. At that moment the temperature
increases to such a level that the kinetics slightly change, as can for example be seen in the mean diameter of
the Al N precipitates (Figure 10.30b) and the volume fraction (Figure 10.30c). The site with the largest volume
fraction differs per precipitate. For Al N precipitates nucleation on grain dislocations gives the highest vol-
ume fraction, whereas for N bC N precipitates nucleation on dislocations gives the highest volume fraction.
For N bC N precipitation we saw the same behavior in Section 10.3, where nucleation on grain boundaries
gave the highest volume fraction when competition between nucleation sites is added. This is mainly caused
by the size of the precipitates, which is higher when competition is added.
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10.5.2. Simulation temperature scheme II
The second temperature scheme is again a linear temperature increase as shown in Figure 10.31. It starts at
from 850 °C and linearly increases to 1350 °C in 30 seconds, where after the temperature stays at a constant
1350 °C. The end temperature of this temperature scheme is above the solvus temperature of all precipitates,
see Table 10.2. As described in Chapter 2, precipitation takes place at the hot rolling mill amongst others.
When preheating steel slabs, precipitates (especially N b, V and T i precipitates) should dissolve as much as
possible. The second temperature scheme simulates this progress, where first precipitates are formed and
thereafter precipitates should dissolve.

Figure 10.31: Lineair temperature increase II.

For the simulation we use two precipitates, N bC N and Al N , at only one nucleation site, namely on disloca-
tions. The solvus temperatures of these precipitates are illustrated in the temperature scheme in Figure 10.31.
We use a a dislocation density (ρ) of 3.27×1014 1/m2 and the initial and numerical values given in Chapter
8. Furthermore, the implementation for nucleation on dislocations originates from Chapter 4. The results of
the individual precipitate compositions with and without temperature increase are given in Figures 10.35 (for
Al N ) and 10.36 (for N bC N ). The combined results are given in Figure 10.37.

Al N
In Figure 10.35 the results for Al N precipitation on dislocations with a temperature increase are presented.
In each plot, both the simulation with a constant temperature of 850 °C, as well as the simulation with a
temperature increase are presented.
From Figure 10.31 we find that the temperature will increase to above the solvus temperature of Al N after
around 10 seconds. Looking at the results in Figure 10.35 this is exactly the moment where the precipitate
number density, the volume fraction and the mean diameter show a strong decrease. This is caused by the
dissolving of precipitates at a temperature above the solvus temperature. Indicating the separation between
formation of precipitates and dissolving of precipitates gives Figure 10.32.

Figure 10.32: Linear temperature increase II, with indication of the precipitate formation time range (blue)
and the precipitate dissolving time range (red) of Al N precipitates.
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The saturation is the ratio of the matrix product and the solubility product. For higher temperatures the
solubility product increases faster, see Figure 10.33, and faster than the matrix product, leading to a faster
decrease in saturation than for a constant temperature of 850 °C. For temperatures high above the solvus
temperature the precipitates are not stable and the term saturation does not apply.

Figure 10.33: The solubility product of Al N for different temperatures between 1120 K (≈ 850 °C) and 1620
(≈ 1350 °C).

N bC N
In Figure 10.36 the results for N bC N precipitation on dislocations with a temperature increase are presented.
In each plot, both the simulation with a constant temperature of 850 °C, as well as the simulation with a
temperature increase are presented.
From Figure 10.31 we find that the temperature will increase to above the solvus temperature of N bC N after
around 10 seconds. Looking at the results in Figure 10.36 this is exactly the moment where the precipitate
number density, the volume fraction and the mean diameter show a strong decrease, caused by the dissolving
of precipitates at a temperature near the solvus temperature. For higher temperatures the solubility product
increases faster, see Figure 10.34, and faster than the matrix product. This leads to a faster decrease in the
saturation, when comparing it to a simulation with a constant temperature of 850 °C.

Figure 10.34: The solubility product of N bC N for different temperatures between 1120 K (≈ 850 °C) and 1620
(≈ 1350 °C).

Al N and N bC N
As we also saw for the first temperature scheme (Section 10.5.1), the interaction between the precipitates is
not hindered by the temperature increase. The results are similar to those found in earlier simulations.
The precipitate number density and volume fraction of both precipitates drop to zero when the temperature
increases to above the solvus temperature. The mean diameter also shows a large decrease, but also a little
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bump for the N bC N precipitates. This is caused by the large decrease in Al N leading to a short growth of the
N bC N precipitates. This effect is only temporarily, since the N bC N precipitates also dissolve, because of the
increasing temperature.

When comparing the moment of the large decrease in the precipitate number density, mean diameter, and
volume fraction in Figures 10.37a, 10.37b and 10.37c respectively, we find that the drop for the N bC N preci-
pitates comes slightly later than that for the Al N precipitates. This is caused by the moment when the tem-
perature increases to above the solvus temperature. From Figure 10.31 we find that the solvus temperature of
Al N is reached earlier than that of N bC N .

The decrease in saturation, i.e. ratio of the matrix product and solubility product, is advanced by the temper-
ature increase, as can be seen for both precipitates. This is caused by the fast increasing solubility product for
increasing temperature, see Figures 10.33 and 10.34. From Figure 10.37d we find that the moment that the
saturation drops below one corresponds to the moment when the temperature increases to above the solvus
temperature.
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10.6. Dynamical dislocation density
The model described in this thesis is based on the model by Robson (2014) and Den Ouden (2015). However,
the model development started at the model of Zurob et al. (2002). The definition of the nucleation rate and
growth rate for example originate from Zurob et al. (2002). Zurob et al. (2002) introduced a model which
did not only describe the kinetics of precipitation on dislocations, but also linked it to a recrystallisation and
recovery model. Adding these recrystallisation and recovery to the current model would complete the model,
but also make the implementation a lot more extensive and beyond the scope of this thesis.

To get an impression of the effect of a dynamical dislocation density, we enter a (user defined) time dependent
dislocation density into the model and analyse the effects. We choose two types of dynamic (time-dependent)
dislocation densities. The first type is an increasing step-by-step dynamic dislocation density and the second
type is a more realistic, decreasing dynamical dislocation density.

The dislocation density ρ occurs twice in the precipitation model.

1. In the maximum number of potential nucleation sites Ntot al , which is defined by (Equation (3.4))

Ntot al =
Fρ

b
.

2. In the effective diffusion coefficient De f f , which is defined by (Equation (3.20))

De f f = Dpi peπb2ρ+Dbulk (1−πb2ρ).

For the simulation we use two precipitate compositions N bC N , and Al N , and at only one nucleation site,
namely dislocations.

10.6.1. Simulation step-by-step dislocation density
For the simulation we use a temperature of 850 °C and the initial and numerical values given in Chapter 8.
Furthermore, the implementation originates from Chapter 4.
The step-by-step dislocation density as we used in our simulation is given in Figure 10.38.

Figure 10.38: Time dependent step-by-step (increasing) dislocation density .

The maximum level of the dislocation density is 3.27×1014 1/m2, which is equal to the constant dislocation
density we have chosen in earlier simulations. We started the simulation with a matrix free of precipitates.
Since the step-by-step dislocation density is zero at the beginning of the simulation for a short time period
and we only consider precipitation on dislocations, no precipitates can nucleate in this first time interval. In
this way we postpone the nucleation of the N bC N precipitates. The results for the step-by-step dislocation
density are found in Figure 10.39.
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Al N
We find that nucleation only starts when the dislocation density is larger than zero, as expected, since we
only consider nucleation on dislocations. The precipitate number density has a large increase at the moment
when the dislocation density is larger than zero and nucleation starts, and stays at a stable level after that.
The precipitate mean diameter keeps increasing, even when the precipitate number density has stabilised,
meaning coarsening is not yet active, and pure growth takes place. Looking at the volume fraction and the
saturation, the equilibrium levels are not yet reached within the given time range. Postponing the nucleation
by using a step-by-step increasing dislocation density instead of a constant dislocation density of 3.27×1014

1/m2, does not have big effects on the results for larger times. This is caused by the relatively long time
intervals that are chosen for the step-by-step dislocation density. Choosing smaller time intervals for each
step could increase the visibility of the effects of the step-by-step dislocation density increase.

N bC N
As for the Al N precipitates, nucleation only starts when the dislocation density is larger than zero. In contrast
to the Al N precipitates, coarsening does take place, since the precipitate number density decreases, where
the precipitate mean diameter increases. Looking at the volume fraction and the saturation of N bC N we see
that the equilibrium levels are reached within the given time range, agreeing with the fact that coarsening
takes place and no nucleation exists anymore. Postponing the nucleation by using a step-by-step increasing
dislocation density causes a very fast nucleation, no pure growth, but a similar coarsening behavior to that
found using a constant dislocation density.

Al N and N bC N
The precipitate number density of N bC N is orders larger than that of Al N , agreeing with earlier results. Even
though the dislocation density is low in the beginning, the N bC N precipitates still reach the equilibrium
saturation level of one, in contrast to the Al N precipitates, which do not reach their equilibrium saturation
level within the given time range.
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(a) Precipitate number density.

(b) Precipitate mean diameter.
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(c) Precipitate volume fraction. (The x-axis is narrowed, to show more detail where
the volume fraction is away from zero.)

(d) Saturation. (The x-axis is narrowed, to show more detail where
the saturation is away from its starting level.)

Figure 10.39: The results of the simulation for the Al N (blue line) and N bC N (red line) precipitates, where
we use a step-by-step time dependent dislocation density and simulate only at one nucleation site: on

dislocations.
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10.6.2. Simulation realistic dislocation density
Besides the step-by-step time dependent dislocation density, we introduce a second type dynamical disloca-
tion density. This dynamical dislocation density was obtained using the model by Zurob et al. (2002), thus,
including the coupling between precipitation and recrystallisation and recover. The simulation and corre-
sponding results from this model are found by Kranendonk (2005). In the current model, coupling to recovery
and recrystallisation is yet absent: this dislocation density is only used to demonstrate the possibilities of the
model. Next to the fact that the simulations in this section are multi-precipitate, it should be emphasised that
the results of Kranendonk (2005) do include the coupling of the kinetics of dislocations and precipitation, and
therefore can not be compared to the results found in this thesis. The dislocation density as function of the
time is given in Figure 10.40.

For the simulation we use a temperature of 850 °C and the initial and numerical values given in Chapter 8.
Furthermore, the implementation originates from Chapter 4. The results for the realistic dislocation density
are found in Figure 10.42.

Figure 10.40: Time dependent dislocation density based on data by Kranendonk (2005) (decreasing).

The results in 10.42 are very similar to the results found in Section 10.2 for the individual precipitate compo-
sitions and the interaction between them. We find that the nucleation, growth and coarsening stages are not
hindered by the decreasing dislocation density at the end of the simulation. The decrease in the dislocation
density is too little and comes too late to have a large influence. When using a faster decreasing dislocation
density, as given in Figure 10.411, the effect is better visible, as shown in Figures 10.43 and 10.44.

Figure 10.41: Fast decreasing, time dependent dislocation density.

1Note that the y-axes of Figures 10.40 and 10.41 are different. The minimum value of Figure 10.40 is 1.8×1014, while the minimum value
of Figure 10.41 is 0.
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Since the goal of this section is to show the effects of a dynamic dislocation density, we will further elaborate
on the results of the simulation using the fast decreasing dislocation density presented in Figures 10.43 and
10.44.

Al N
In Figure 10.43 the results for Al N precipitation on dislocations with a decreasing dislocation density are
presented. In each plot, both the simulation with a constant dislocation density of 3.27×1014 1/m2, as well
as the simulation with a decreasing dislocation density are presented.
Due to the decreasing dislocation density, we find that the precipitates that nucleate have a smaller diameter.
This agrees with the volume fraction that is orders smaller when a decreasing dislocation density is chosen.
Also the saturation is influenced, since the drop in saturation at the end of the time range is not present
anymore caused by the decreasing dislocation density. The precipitate number density is not influenced by
the dislocation density.

N bC N
In Figure 10.44 the results for N bC N precipitation on dislocations with a decreasing dislocation density are
presented. In each plot, both the simulation with a constant dislocation density of 3.27×1014 1/m2, as well
as the simulation with a decreasing dislocation density are presented.
The precipitate number density of N bC N is influenced by the decreasing dislocation density. The precipitate
number density stays longer at the constant maximum level, and coarsening is delayed, also causing smaller
precipitates within the same time range. This does not influence the volume fraction and the saturation,
which still reach their equilibrium levels.

Al N and N bC N
The precipitate mean diameters of both precipitates are lower, caused by delayed coarsening kinetics. The
Al N precipitates are the most hindered by the decreasing dislocation density, as shown by its volume fraction
and saturation.
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(a) Precipitate number density.

(b) Precipitate mean diameter.
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(c) Precipitate volume fraction.

(d) Saturation.

Figure 10.42: The results of the simulation for the Al N (blue line) and N bC N (red line) precipitates, where
we use a time dependent dislocation density based on results found by Kranendonk (2005) and a constant

dislocation density. We simulate only at one nucleation site: on dislocations.
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11
Concluding remarks

In the literature study by Vonk (2016) a precipitation model by Zurob et al. (2002) was implemented and
analysed. From this study it became clear that the Zurob model needed a number of improvements and ex-
tensions for applications to modern steel grades. The mean radius approach used in this model was the most
limiting element of this model. In this master thesis a distribution model was developed, based on the KWN
model by Robson (2014) and Den Ouden et al. (2013), to describe the precipitation without the limitation of
a mean radius approach.

The distribution model contains the following partial differential equation, describing the time evolution of
a newly introduced function φ,

∂φ

∂t
=−∂[vφ]

∂R
+S, (3.1)

in which φ≡φ(R, t ) in m−4 denotes the number density distribution of precipitates with radius R and at time
t . v is the growth rate describing the growing and dissolving of precipitates, while S is a source function de-
scribing the nucleating of precipitates.

While the mathematical approach has changed, the physical model is the same as the model by Zurob et al.
(2002): the nucleation and growth rate were adopted from this model, with modifications to remove some
drawbacks of the model. Some of these drawbacks were eliminated by extending the model and some im-
provements are recommended for future work. The two main drawbacks that were eliminated from the model
in this thesis were the lack of influence of all elements in the system and the lack of competition between dif-
ferent nucleation sites and between different precipitate compositions. The complexity belonging to the first
drawback was captured by introducing a multi-component model. In this extension all elements in the sys-
tem influence the nucleation and growth of the precipitates, even when the elements do not participate in the
precipitate. This effect was also not taken into account in the basic KWN model described by Robson (2014).

The complexity belonging to the second drawback, was captured by introducing a multi-precipitate model.
This multi-precipitate model consists of two parts: competition between different precipitate compositions
and competition between different nucleation sites. Competition between different precipitate composi-
tions exists because most steel alloys contain many alloying elements, and therefore different precipitates
can occur simultaneously, for instance, N b(C , N ), Al N and MnS. Also precipitates may nucleate at various
nucleation sites. In this thesis, we limit ourselves to nucleation on dislocations, on grain boundaries and
homogeneous nucleation. Nucleation on other precipitates or inclusions is not considered here, because
the area available for nucleation is much lower than the grain boundary area. Interphase nucleation during
austenite to ferrite transformation requires the introduction of special models and is recommended for future
work.
For the multi-precipitate extension we get an additional partial differential equation for each complexity (pre-
cipitate composition or side) that is added. The additional PDEs are of exactly the same form, but (some-
times) with different parameters. Since the partial differential equation (PDE) is non-linear in φ, we have to
find an approximation of the solution using a numerical method. We introduced multiple PDE solvers, and
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described why we choose the finite volume method combined with the Backward Euler method and Picard’s
fixed point iteration. Thereafter, we gave an analysis of the resulting (discretised) system and an overview of
the various algorithms used. During the implementation computational issues arose, but after adjustments
in the implementation these issues were solved. Also, increasing the speed of the computation.

Various combinations of precipitate compositions and nucleation sites have been simulated to see the effect
on the results and the performance of the implementation. Temperature curves and dynamic dislocation
densities were introduced to show the flexibility of the model. All results of the simulations could be quali-
tatively interpreted. Also, the model is quite robust, but the computation time can increase drastically when
more complexities are introduced (like a changing temperature, multiple precipitate compositions or multi-
ple nucleation sites). This is mainly because of the non-linear equations in the model, like the critical radius
and the growth rate, that have to be solved in every time step during the simulation. To get correct results, the
accuracy of the model had to be increased, leading to an even higher computation time.



12
Future work

For this work a lot of useful knowledge was gathered on the nucleation and growth of precipitates on disloca-
tions and other nucleation sites. Using this knowledge a model was developed and tested. The work that was
done in this thesis was a step in the right direction, but there is still a lot of work ahead to develop a real-time
model including all aspects of precipitation. In this chapter, some concrete examples are given of improve-
ments to the model given in this thesis. Not just by improving the current model, but also by extending it in
various ways.

12.1. Improvements current model
As described in Chapter 3 and in the literature study prior to this thesis (Vonk (2016)), the precipitation model
by Zurob et al. (2002) needed improvement on multiple aspects. The most essential improvement was done
in this thesis: the introduction of the distribution approach over the mean radius approach. However, some
other improvements still need to be performed.

As stated before, the nucleation and growth rate were adopted from the model by Zurob et al. (2002). Zurob
et al. (2002) used approximations for various parameters in the nucleation rate in the mean radius approach,
like the Zeldovich factor Z and the maximum number of available sites Ntot al . The approximations in nucle-
ation rate which were used by Zurob et al. (2002), were also applied in the first version of our model:

I (t ) = (Ntot al −N )

(
Dpi pe,N b xM

N b

a2

)
exp

(−∆G∗

kB T

)
(3.8)

One of the approximations in this nucleation rate was improved in Chapter 4: the Zeldovich factor. It was
changed to a multi-component and nucleation site dependent parameter. However, introduction of these
extensions did not lead to large differences with the model without these extensions. Other approximations
were not yet analysed and/ or improved, of which some examples of these approximations are given below.

• First, Ntot al , is the maximum number of available sites, and it involves an adjustable factor F which has
no direct physical meaning. Kranendonk (2005) found a value for F of about three orders of magnitude
lower than the expected value of around 1, if only dislocations are considered as nucleation sites. For
nucleation at other sites we have also incorporated a fitting parameter for the maximum number of
available nucleation sites. To find the correct values for the fitting parameters for nucleation at other
sites, we need enough (and correct) experimental data, which is not yet available.

• A second approximation is that of the chemical driving force∆gv in the activation energy∆G∗. This ap-
proximation influences the value of the fitting parameter F , but there is still a scientific debate around
the correct formulation of the chemical driving force. A different way of describing this chemical driv-
ing force was used by Den Ouden et al. (2013). The approximation for the free energy release due to the
reduction of the elastic energy associated with precipitation on dislocations in the activation energy is
also questioned, since in the approximation in the present model, it is assumed that the precipitate on
dislocation is spherical, whereas studies show a more spheroidal or needle like shape of the precipitate
on this site.
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There also exists several descriptions of the nucleation rate. Robson (2014) for example, assumes a different
time-dependent nucleation rate, which includes an incubation time for precipitation. All above approxima-
tions and the choice of nucleation rate could influence the final results. Fitting the results to experimental
data could then lead to a different value of the fitting parameter, but it is yet unknown in what order and trend
it might change. Further research on this subject is therefore needed.

As stated in the concluding remarks the computation time can increase drastically when more complexities
are introduced. For simulations with simple time-temperature schemes and without dislocation dynamics,
this might not be a large problem. However, when one would like to use this model as a real-time simulation
of what is happening during the steel making process, lowering the computation time becomes an increasing
necessity. Since the calculation of the growth rate is the most time-consuming, this would be a good focus
point to start with.

12.2. Extensions current model
The current model could be further improved, but also a wide range of extensions to the model is possible, of
which the most important are given below.

• Since nucleation on dislocations is of great importance, it is necessary to take the evolution of the dislo-
cation density also into account. In this thesis, we investigated the influence of a user-defined dynamic
dislocation density, but a more realistic time evolution of the dislocation density is described by the re-
crystallisation and recovery models by Zurob et al. (2002). These recrystallisation and recovery models
have to be coupled to the (distribution based) precipitation model.

• A serious assumption in both the mean radius as well in the distribution approach is the spherical
shape of the precipitates. Since the precipitates grow at different nucleation sites, one would expect
the shape of the precipitate to adjust to the site. For precipitates at dislocations for example, we expect
spheroidal shaped precipitates. Developing algorithms for the dynamics of non-spherical precipitate
evolution, which keeps the computation time within reasonable values, is a nice challenge.

• The simulations in this thesis are done in austenite, but some applications ask for simulations in fer-
rite. The model as described in this thesis is, in principle, applicable to both phases, and therefore this
extension will only require the adjustment of some parameters. A more complex extension is the im-
plementation of phase-transformations. In this way a more realistic temperature curve can be used,
which for example, involves a phase-transformation from ferrite to austenite or vice versa (interphase
precipitation).

• The model described in this thesis incorporated various precipitates compositions, of which one was
a complex precipitate (N b(C , N )). However, the kinetics of this complex precipitate were specified for
this specific precipitate only. A good extension would be to develop a more generic description of the
kinetics of complex precipitates, which can then be incorporated in the current model. This generic de-
scription of the kinetics of complex precipitates could than be extended with a temperature dependent
stoichiometric ratio.

• Besides the three nucleation sites discussed in this thesis, nucleation on dislocations, nucleation on
grain boundaries and homogeneous nucleation, precipitates can also nucleate at other (larger) preci-
pitates and inclusions. Even though, we believe the three that were chosen are the most important sites
where nucleation takes place, it would be nice to complete the model with even more nucleation sites,
like nucleation on other precipitates and/or inclusions, and interphase nucleation.

12.3. Parameters and model validation
The model developed during this thesis is a good and solid basis for the simulation of precipitation at various
nucleation sites. However, to use this model as a predictor or even real-time simulator, the model needs
validation with experimental data. The experimental data currently available is very limited. Without proper
fitting of the model to experimental data, it is hard to verify and use the obtained results for prediction.
The results obtained are greatly influenced by the choice of the fitting parameter F , which can only be cor-
rectly chosen when fitted to experimental data. Using a part of newly generated experimental data to fit the
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model using this fitting parameter and using a second part to verify the forecasts of the model, would make
the model more reliable and good to use.
Also other parameters in the model were approximated or based on very little experimental data. The best
examples of this are the diffusion coefficients, for which we found very little information in the literature.
Executing experiments on this subject would largely increase the reliability of the model and its simulations.





A
Derivation of the Zeldovich factor

As a definition for the Zeldovich factor we use that of Russell (1980):

Z =
√

−1

2πkB T

(
d 2

d N 2 (∆G)

)∣∣∣∣
R∗

. (A.1)

We start with the derivative to the number density N :

d 2

d N 2 =
(

d

dR

dR

d N

)2

, (A.2)

where the derivative of the mean radius R to the number density N is found using the volume of the precipi-
tate. In general, the volume of a precipitate is defined as

V = 4

3
πR3, (A.3)

or using the atomic volume of the precipitate as

V = vat N . (A.4)

Combining these definitions gives

R =
(

3

4π
vat N

)1/3

(A.5)

Starting with the first derivative to N , we find

d

d N
= d

dR
· dR

d N
, (A.6)

= d

dR
· d

d N

(
3

4π
vat N

)1/3

, (A.7)

= d

dR
· 1

3

(
3

4π
vat N

)−2/3 3vat

4π
, (A.8)

= d

dR
·
(

3

4π
vat N

)−2/3 vat

4π
. (A.9)

Now substituting Equations (A.4) and (A.3) in this equation yields

d

d N
= d

dR
·
(

3

4π

4π

3
R3

)−2/3 vat

4π
, (A.10)

= d

dR
·R−2 vat

4π
, (A.11)
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which means for the second derivative to N we find

d 2

d N 2 =
(

d

dR
·R−2 vat

4π

)2

, (A.12)

= R−4 v2
at

16π2

d 2

dR2 . (A.13)

Substituting this result into the definition of the Zeldovich factor gives

Z =
√

−1

2πkB T

v2
at

16π2(R∗)4

(
d 2

dR2 (∆G)

)∣∣∣∣
R∗

, (A.14)

= vat

4π
√

kB T

√
−1

2π

(
d 2

dR2 (∆G)

)∣∣∣∣
R∗

(
1

R∗

)2

, (A.15)

as a more generic and more applicable definition of the Zeldovich factor.

For each nucleation site we will use this definition to find the correct equation for the Zeldovich factor.

A.1. Dislocations

Z =
√

−1

2πkB T

(
d 2

d N 2 (∆G)

)∣∣∣∣
R∗

, (A.16a)
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√
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= vat

2π
√

kB T

√
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)2

. (A.16d)

A.2. Grain boundaries

Z =
√

−1

2πkB T
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, (A.17a)
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= vat

4π
√

kB T
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(
1

R∗

)2

, (A.17d)

= vat

2π
√

kB T

√
1

4
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(
1

R∗

)2

, (A.17e)

= vat

2π
√

kB T

√
γ− 1

4
γg b

(
1

R∗

)2

. (A.17f)
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A.3. Homogeneous

Z =
√

−1

2πkB T

(
d 2

d N 2 (∆G)

)∣∣∣∣
R∗

, (A.18a)

= vat
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kB T

√
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R∗

(
1
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, (A.18b)

= vat
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(
1
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, (A.18c)

= vat

4π
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kB T

√
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(
1

R∗

)2

, (A.18d)

= vat

2π
√

kB T

p
γ
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1
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B
Standard settings as used in the simulation

for N bC N precipitates

Solubility products

K (N bC ) = 103.42− 7900
T

K (N bN ) = 102.80− 8500
T

Mass densities

ρN bC N = MN b +xMC + (1−x)MN

vm,N bC N
g/m3

ρaus = (8283.8−0.5785 ·T ) ·1000 g/m3

Lattice constant

a = (0.36306+0.078xc )(1+ (24.9−50xc )(T −1000)×10−6)×10−9 m

Molar volumes

vm,N bC N = xvm,N bC + (1−x)vm,N bN m3/mol

vm,aus = 1

4
Na a3 m3/mol

Interface energy

γ= 2.5×10−5(Tsol −T )1.5 +0.375 J/m2

Shear modulus

µ= 81×109
(
1−0.91

T −300

1810

)
Pa

Diffusion coefficients

Dpi pe = 4.1×10−4 exp

(−172500

Rg T

)
m2/sec

Dbulk = 0.83×10−4 exp

(−266500

Rg T

)
m2/sec

In the mean radius approach, we use the following coarsening function1:

Fc = 1−erf

(
4

(
R

R0
ln

(
C M

N b

C E q
N b

)
−1

))
(with restrictions from Kranendonk (2005)).

1For more details on the coarsening function we refer to Vonk (2016).
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Nomenclature

Numerical symbols

α Parameter used in the adaptive time step algorithm

β Parameter used in the adaptive time step algorithm

∆Ri Size of radius cell i m

∆t Time step s

∆tst ar t Initial time step s

φn Short for φ(tn) 1/m4

τ Approximation of the truncation error

An Short for A(φn , tn)

Ri Center of radius cell i m

Rei Edge of radius cell i m

Sn Short for S(φn , tn) 1/3s

tn n-th discrete time s

tend End time s

tst ar t Starting time s

T OL Tolerance level for the Picard iteration

Precipitation related symbols

αn Numerical factor, accounting for the fact that nucleated precipitates can grow only if their
radius is slightly larger than the nucleation radius

β∗ Rate of atomic attachment to a growing precipitate

∆G Free energy of precipitate formation J

∆G∗ Activation energy for the nucleation of a precipitate (on a dislocation) J

∆Gn Free energy release due to nucleation on a specific site, like dislocations (∆Gd ) and grain
boundaries (∆Gg b) J

∆gv Driving force for precipitation J/m3

δg b Thickness of a grain m

γ Interfacial energy between precipitate and matrix J/m2

γg b Interfacial energy of the grain boundary J/m2

µ Shear modulus of steel Pa

ν Poisson ratio

φ(R, t ) Number density distribution of precipitates with radius R and at time t 1/m4
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Ψ Set of all elements in the system.

ρ Dislocation density 1/m2

ρaus Mass density of austenite g/m3

τ Incubation time for heterogeneous nucleation s

Θ Set of all precipitate types in the system.

a Lattice constant of austenite m

b Burgers vector m

C 0
X Initial concentration of element X in the matrix mol/m3

C M
X Concentration of element X in the matrix mol/m3

C P
X Concentration of element X in precipitates mol/m3

C R
X Equilibrium concentration of element X with average radius R, also called interface concen-

tration mol/m3

C R27/23
X Equilibrium concentration of element X with average radius 27

23 R

C E q
X Equilibrium concentration of element X in the matrix at infinite time mol/m3

D0 Maximum diffusion coefficient (at infinite temperature) m2/s

Dbulk,X Diffusion coefficient in the bulk of element X m2/s

De f f ,X Effective diffusion coefficient of element X m2/s

Dpi pe,X Diffusion coefficient in the pipe of element X m2/s

fv Volume fraction

Fsi te Fitting parameter (smaller than 1) for a specific nucleation site

I (t ) Nucleation rate 1/m3s

kB Boltzmann constant J/K

Kp (T ) Solubility product of precipitate type p at temperature T

MX Molar weight of element X g/mol

N (t ) Number density of precipitates as a function of time 1/m3

Ntot al Maximum number density of precipitation per unit volume 1/m3

Qd Activation energy for diffusion J/mol

R̃ Adjusted radius used to avoid numerical instabilities m

R̄(t ) Mean radius of precipitates over time m

R∗ Critical precipitate nucleus radius for heterogeneous nucleation at a dislocation m

R∗
h Critical precipitate nucleus radius for homogeneous nucleation m

Rg Gas constant J/(K mol)

Rg r ai n The radius of a grain m

RkB T Adjusted critical radius with a corresponding activation energy kB T lower than the activa-
tion energy beloning to the real critical radius m
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S(t ) Source function describing the nucleation of precipitates 1/3s

T Temperature K

t Time s

Tsol Solvus temperature K

v Growth rate m/s

vat Atomic volume of precipitate type p m3

vm,p Molar volume of precipitate type p m3/mol

w t%X 0 Initial weight percentage of element X

w t%X M Weight percentage of element X in the matrix

w t%X E q Equilibrium weight percentage of element X in the matrix at infinite time

w t%X R Equilibrium weight percentage of element X with average radius R, also called interface
weight percentage

x Stoichiometric ratio of carbon and nitrogen in the precipitate niobiumcarbonitride (NbCx N1−x )
at equilibrium

xM
X Molar fraction of X in the matrix

Z Zeldovich factor
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