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Introduction: 

Partial differential equations (PDE), in particular Hamilton-Jacobi-Bellman (HJB) equations, are 

widely used for stochastic optimal control in finance, for example, hedging, pension funds 

management and high frequency trading. The solution of HJB gives optimality of a control with 

respect to an objective function. Their analytical solution is often unavailable, and numerical 

methods are required to solve such PDEs. However, classical numerical methods (e.g., finite 

difference/element method) become inefficient when solving high dimensional HJBs due to the 

curse of dimensionality, that is, the grid-based PDE discretization methods become exponentially 

expensive with the increasing dimension. Think of hedging a basket option in finance, where 

multiple risky underlying assets are involved. Alternatively, HJB PDEs can be transformed to their 

associated stochastic differential equations (SDE) by Feynman-Kac theorem, and Monte-Carlo 

simulation-based algorithms [3] can be used in the case of multiple dimensional problems (mainly 

for medium-size), which may become time-consuming in very high dimensions.  

 

Recently deep learning methods have made tremendous achievements as an advanced numerical 

technique to solve high dimensional PDEs, for instance, Physics-informed neural networks to solve 

PDEs [4], deep backward dynamic programming [2], deep backward stochastic differential equation 

[1]. The latter two methods rely on the following two facts: the connection between PDE and 

associated SDE, a neural network as a function approximator. There are still some challenging 

problems, for example, how to deal with HJBs in the case of stochastic control with jump-diffusion 

models (e.g., stock price jumps [5]), best practice to set up deep learning for HJBs (e.g., fully 

connected deep neural networks are found unstable when solving high dimensional PDEs in [1]).  

 

This Msc thesis will be focused on developing deep learning-based numerical techniques to solve 

HJB equations and its applications in finance.  

 

Objectives: 

1. Derive HJB equations for stochastic optimal control problems (dynamic programming, Ito 

lemma, etc).  

2. Study deep learning algorithms (neural networks, stochastic gradient descent, etc) 

3. Review/implement recent developments in deep learning for solving HJB, e.g., deep backward 

dynamic programming, deep backward stochastic differential equation, by applying Feynman-

Kac theorem and deep neural networks, etc. 

4. Develop neural networks-based numerical methods for high dimensional HJB for stochastic 

optimal control without or with jumps (numerical analysis, program codes, best practice).  

5. Perform numerical experiments for some applications in finance. 
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Milestone:  

6. Derive HJB equations for stochastic optimal control problems (dynamic programming, Ito 

lemma, etc).  

7. Study deep learning algorithms (neural networks, stochastic gradient descent) 

8. Review recent developments in deep learning-based algorithms for solving HJB, e.g., deep 

backward dynamic programming, deep backward stochastic differential equation, based on 

Feynman-Kac theorem, deep neural networks, etc. 

9. Develop numerical methods for high dimensional HJB (stochastic optimal control without or 

with jumps, numerical analysis, program codes)  

10. Perform implementation for applications in finance.  


