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Abstract

In this Master thesis we will construct a model for a general two-phase flow in a porous
medium. The area of application of the model constructed in this Master thesis is rather
large. Two examples are:

1. Geotechnical engineers use this model for pumping oil out of the ground where water
is used as a wetting fluid. Adding the water enables the oil to be pumped more easily.
In this case the two-phases are mainly oil and water.

2. In a growing number of buildings engineers try to store energy by pumping water into
a large basin beneath the building. In these basins there is some fluid, usually gas,
present in the spaces where no water is stored. The applications in this thesis are based
upon this model.

The model for a two-phase flow in a porous medium consists of two coupled layers, which we
use two different numerical methods, one for each layer. Specifically, we use the discontinuous
Galerkin method to treat the transport layer and the finite element method to treat the
pressure layer. We then demonstrate the effectiveness of our model and methods applied to
a simplified heating/cooling problem.
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Groundwater extraction may not “fulfill the primary goal of returning ground
water to its beneficial uses.” - EPA [6].
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Chapter 1

Introduction

In this Master thesis we will construct a model for a general two-phase flow in a porous
medium. The area of application of the model constructed in this Master thesis is rather
large. Two examples are:

1. Geotechnical engineers use this model for pumping oil out of the ground where water
is used as a wetting fluid. Adding the water enables the oil to be pumped more easily.
In this case the two-phases are mainly oil and water.

2. In a growing number of buildings engineers try to store energy by pumping water into
a large basin beneath the building. In these basins there is some fluid, usually gas,
present in the spaces where no water is stored. The applications in this thesis are based
upon this model.

The model for a two-phase flow in a porous medium consists of two coupled layers, which we
use two different numerical methods, one for each layer.

Investigating the two-phase flow model reveals an interface between the two fluids. Using
numerical analysis to solve this model requires us to approximate only one of the two phases.
Approximating only one flow requires the ability to handle discontinuities. Using a standard
Galerkin, finite difference or finite volume approach will lead to wiggles and spurious oscilla-
tions. For finite difference and finite volume methods, limiters and upwind techniques have
been constructed see [8]. For the finite element method, Petrov methods, such as streamline
upwind Petrov Galerkin, are present, see for example [9]. These correction methods all have a
drawback for the implemented numerical method. Discontinuous Galerkin is a new numerical
method which is ideal for dealing with discontinuities, although a limiter is still required. The
advantage of the discontinuous Galerkin method is that the approximation is reconstructed
only per element. For the second layer we will use the finite element method, as this layer
has a smooth solution.

We give a brief outline of the type of equations we will use in our two-phase flow model,
which is a simplified model. Further details on the model will be given in Chapter 4. The
top layer of this model will consist of a linear transport equation of the form

ut + vux = 0.

1



2 CHAPTER 1. INTRODUCTION

For this equation we will use discontinuous Galerkin. As we already mentioned in the para-
graph above, in this equation we need to deal with a discontinuity. Other numerical methods
are also able to handel discontinuities, but it comes with extra computational cost or a strong
decrease of the order of the solution. Discontinuous Galerkin is able to deal with the discon-
tinuities using a high order approximation without deteriorating the order of the solution as
heavily near shocks. An other advantage of discontinuous Galerkin is the adaptivity of the
mesh and order of the approximation. The second layer will be of the form

∇ · (c∇u) = 0.

This equation is elliptic, and since current construction of finite element methods are more
suited to elliptic problems, we will apply the finite element method for this layer.

The outline of this thesis is as follows: In Chapter 2 a derivation of the Discontinuous
Galerkin method in one dimension will be given. Although the two-phase flow model will be
constructed in two dimensions, this derivation is presented as an introduction to the discon-
tinuous Galerkin method in two dimensions, which is given in Chapter 3. In Chapter 4 the
generic two-phase flow in a porous medium model will be constructed and finally in Chapter
5 an application of the model is presented. In Chapter 6 we summarize our results and present
some conclusions and further questions for further research.



Chapter 2

One dimensional discontinuous
Galerkin for advection equations

In this section we take a look at the discontinuous Galerkin method, abbreviated by DG, for
the scalar conservation law in one dimension. For more information we refer to [4].

2.1 The discontinuous Galerkin discretization

The idea behind the discontinuous Galerkin method is to approximate each cell not only by
one unknown but to approximate the value within each cell by some linear combination of
piecewise polynomials of degree at most k for some k ∈ N. Let us examine the following
simple model

ut + f (u)x = 0, x ∈ [0, 1], t ∈ (0, T ],
u (x, 0) = u0 (x) , ∀x ∈ [0, 1],

(2.1.1)
(2.1.2)

with periodic boundary conditions.

To derive the weak formulation, we first partition the interval (0, 1) by {xj+1/2}N
j=0. Next we

define Ij =
(
xj−1/2, xj+1/2

)
and ∆j = xj+1/2 − xj−1/2 for j = 1, . . . , N . Denote by ∆x the

maximum element size, max1≤j≤N ∆j . Define Vh to be the following finite dimensional space

Vh := V k
h ≡

{
v ∈ L1 (0, 1) : v|Ij ∈ P k (Ij) , j = 1, . . . , N

}
, (2.1.3)

such that Vh is the space of all functions v being piecewise polynomials on an interval Ij , of
degree at most k. For each time t ∈ (0, T ) we want our approximation of u to be in Vh. In
order to determine this approximation we first multiply (2.1.1) and (2.1.2) by some arbitrary
piecewise continuous function v and integrate over the interval Ij to obtain

∫

Ij

∂

∂t
u (x, t) v (x) dx +

∫

Ij

∂

∂x
f (u (x, t)) v (x) dx = 0, (2.1.4)
∫

Ij

u (x, 0) v (x) dx =
∫

Ij

u0 (x) v (x) dx. (2.1.5)

3



4 CHAPTER 2. ONE DIMENSIONAL DISCONTINUOUS GALERKIN

We apply integration by parts on the second integral in (2.1.4) to remove the spatial derivative
of the function f (u (x, t))

∫

Ij

∂

∂t
u (x, t) v (x) dx−

∫

Ij

f (u (x, t))
∂

∂x
v (x) dx +

f
(
u

(
xj+1/2, t

))
v

(
x−

j+1/2

)
− f

(
u

(
xj−1/2, t

))
v

(
x+

j−1/2

)
= 0, (2.1.6)

∫

Ij

u (x, 0) v (x) dx =
∫

Ij

u0 (x) v (x) dx.(2.1.7)

The functions v are only defined within each interval Ij and therefore we use x−j+1/2 to indicate
the point xj+1/2 approached from the left, and x+

j−1/2 to indicate the point xj−1/2 approached
from the right. In Figure 2.1 these points are illustrated.

xj−1/2 xj+1/2Ij

x−j−1/2 x+
j−1/2 x−j+1/2 x+

j+1/2
- ¾ - ¾

Figure 2.1: Illustration of cell Ij and location of x+
j−1/2 and x−j+1/2.

Next we replace our smooth functions v by test functions vh ∈ Vh and replace the exact
solution u by the approximation uh. The function uh now is discontinuous at the points
xj+1/2 for j = 0, . . . , N . Therefore, we need to replace the function f

(
u

(
xj+1/2, t

))
with a

numerical analogue that depends on both x−j+1/2 and x+
j+1/2. For this we define the function

h by
h (u)j+1/2 (t) := h

(
u

(
x−j+1/2, t

)
, u

(
x+

j+1/2, t
))

, (2.1.8)

where the function h is chosen by the user. The function has to be such that it converges to
the entropy solution. We consider two possible choices for h

• The Godunov flux:

hG (a, b) :=
{

mina≤u≤b f (u) , if a ≤ b,
maxa≥u≥b f (u) , if a > b.

• Upwind flux:

hUW (a, b) := f(a).

For the basis functions we take the Legendre polynomials Pl so that we can exploit their
L2-orthogonality in order to get a diagonal mass matrix

∫ 1

−1
Pl (x) Pm (x) dx =

(
2

2l + 1

)
δlm, (2.1.9)
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where δlm denotes the Kronecker delta function. We also note that we have the equalities
Pl(1) = 1 and Pl(−1) = (−1)l. In Figure 2.2 we show the first six Legendre polynomials on
the interval [-1,1].

Figure 2.2: The first six Legendre polynomials on [-1,1], where n denotes the order of the
polynomial.

Taking vh (x) = ϕm
j (x) and uh (x, t) =

∑k
l=0 ul

jϕ
l
j with ϕl

j = Pl

(
2(x−xj)

∆j

)
. We substitute

these basis functions and the equalities Pl(1) = 1 and Pl(−1) = (−1)l in (2.1.6) and (2.1.7)
to obtain

(
1

2m + 1

)
∂

∂t
um

j (t)− 1
∆j

∫

Ij

f (uh(x, t))
∂

∂x
ϕm

j (x)dx

+
1

∆j

{
h

(
uh(xj+1/2)

)
(t)− (−1)mh

(
uh(xj−1/2)

)
(t)

}
= 0, (2.1.10)

2m + 1
∆j

∫

Ij

u0(x)ϕm
j (x)dx = um

j (0), (2.1.11)

∀j ∈ {1, . . . , N}, m ∈ {0, . . . , k}.

This gives a system of equations which has to be solved for the variables um
j , ∀j ∈ {1, . . . , N},

∀m ∈ {0, . . . , k}. How this is done will be shown with an example in the next section.
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2.2 Application

In order to demonstrate the functionality of the discontinuous Galerkin method, we first
apply the given discontinuous Galerkin to a linear conservation equation

ut + ux = 0, x ∈ [0, 1], t ∈ (0, T ],
u(0, t) = u(1, t), ∀t ∈ (0, T ],
u(x, 0) = u0(x), ∀x ∈ [0, 1].

(2.2.1)
(2.2.2)
(2.2.3)

For the function h we use the upwind flux to weakly enforce continuity. We use a piecewise
linear approximation which gives us k = 1. Furthermore, we partition the interval (0, 1) in
N ∈ N equally spaced elements and thus we have (0, 1) = (xj−1/2, xj+1/2)N

j=1.
1 Since each

interval ∆j has the same length, we have ∆j = 1
N = ∆x, ∀j.

Equations (2.1.10) and (2.1.11) now simplify to

(
1

2m + 1

)
∂

∂t
um

j (t)− 1
∆x

k∑

l=0

ul
j

∫

Ij

ϕl
j

∂

∂x
ϕm

j (x)dx

+
1

∆x

{
k∑

l=0

ul
jϕ

l
j(xj+1/2)− (−1)m

k∑

l=0

ul
j−1ϕ

l
j−1(xj−1/2)

}
= 0, (2.2.4)

2m + 1
∆x

∫

Ij

u0(x)ϕm
j (x)dx = um

j (0), (2.2.5)

∀j ∈ {1, . . . , N}, m ∈ {0, . . . , k}.

We note that we do not have to use the notation x+
j−1/2 etc. for the boundary points since

the Legendre polynomials are defined on the boundary.

We will solve this system by determining the initial coefficients first. In order to do so
we determine the integrals

∫
Ij

u0(x)ϕm
j (x)dx exactly. Having determined the initial values we

can derive the mass and stiffness matrix. For the mass matrix we simply have

Mml =
1

2m + 1
δml. (2.2.6)

Due to the spatial integral we obtain the following stiffness matrix

Sml =
1

∆x

∫

Ij

ϕl
j

∂

∂x
ϕm

j dx,

⇒
S =

[
0 0
2

∆x 0

]
. (2.2.7)

Next we have two matrices, A and B, corresponding to the flux of the current cell and the
previous cell. We have Auj + Buj−1:

1
∆x

[
1 1
1 1

]
uj +

1
∆x

[ −1 −1
1 1

]
uj−1, uj =

(
u0

j

u1
j

)
. (2.2.8)

1This is the same as writing (0, 1) =
SN

j=1(xj−1/2, xj+1/2).
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Finally we apply a simple Euler forward scheme for the time derivative to obtain

Muj(tnew) = (M −∆tA + ∆tS)uj(told)−∆tBuj−1(told). (2.2.9)

This system has the size of the order of the approximation. The mass matrix is the same for
every element. Therefore one defines the inverse immediately, rather than the inverse mass
matrix per element and per time step. This will give us

M−1 = (2m + 1)δml, (2.2.10)

and we solve per element and per time step

uj(tnew) = M−1 (M −∆tA + ∆tS)uj(told)−M−1∆tBuj−1(told). (2.2.11)

2.3 Comparison to standard Galerkin

In this section we will make a small comparison of the discontinuous Galerkin method and
the finite element method, abbreviated by FEM, in one dimension.

The most obvious difference between DG and FEM is the location of the unknowns and
the reconstruction of the solution using the approximated values. Since DG is discontinuous
over the elements the solution is represented as piecewise polynomials although the initial
condition is continuous. This is shown in Figure 2.3. In this figure we show what happens
when DG and the FEM determine the initial values for the coefficients of the solution. As
initial condition we used

u0(x) = 5 + sin(2πx). (2.3.1)

Figure 2.3: Initial values for coefficients with initial condition (2.3.1) for discontinuous
Galerkin (left) and the finite element method (right) using linear approximation and five
elements.

One can clearly see that the initial solution is not continuous anymore when applying discon-
tinuous Galerkin. We have only taken five elements on purpose, since this effect will not be
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noticeable anymore when using a large number of elements. The advantage of using discon-
tinuous Galerkin is shown in Figure 2.4. Here we used the discontinuous initial condition

u0(x) =
{

5, if x ≤ 0.5;
0, otherwise.

(2.3.2)

Furthermore we used six elements to have to the discontinuity exactly between two elements.
In this figure we see that using discontinuous Galerkin will result in being able to reconstruct

Figure 2.4: Initial values for coefficients with initial condition (2.3.2) for discontinuous
Galerkin (left) and the finite element method (right) with linear elements.

the initial condition perfectly, whereas the finite element method has a large slope on the
interval [0.5, 0.66], depending on the element size.

We will also note some important differences between discontinuous Galerkin and the finite
element method with respect to the discretization. First of all there is a difference in the
spaces for the test- and basis function we use. In finite elements the space of test- and basis
functions does not need to be the same, whereas this is the case in discontinuous Galerkin.
Furthermore, there is a difference in the basis functions. In DG we use piecewise polynomial
basis functions per element, whereas in finite elements the basis functions are defined as
piecewise polynomial on the entire region, although they will be equal to zero for the major-
ity of the domain. Finally, we note that with the FEM, when doing the discretization, we
obtain a sum of the solution in the endpoints of the region where we have to apply boundary
conditions, whereas with DG we will have this sum for each element where we use some flux
function.

Finishing this section we will make some remarks on computational cost. Since this is highly
dependent on the programmer and the language used, we will only note the differences but
we will not draw any conclusions. We have seen that the mass-matrix in DG is independent
of the size of the element and the solution. Therefore we have to determine the inverse of
this matrix only once because this matrix will be of size (k + 1)× (k + 1), this will not have
a very high computational cost. Using finite elements the matrix will be much larger, having
a size equal to the number of nodes used. However, this matrix is independent of the solu-
tion as well, and therefore needs to be inverted only once as well, if one uses a explicit time
integration method. One can also use a iterative method. However, this needs to be applied
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at every time step.
Using the discontinuous Galerkin method, the solution at the new time step of each element
is independent of the solution at the new time step of the other elements. Therefore one can
solve system (2.2.11) more easily in parallel. However, since we always need an explicit time
integration method for DG, we will always have to satisfy stability criteria.

2.4 Shock Detection

Upon taking a discontinuous initial condition when using the discontinuous Galerkin method
applied to a linear first order hyperbolic equation we will have wiggles near discontinuities
that develop over time. In practice this may lead to nonlinear instabilities and to nonphysical
solutions like negative concentrations or pressures, see for example Figure 2.5. Since limiting
reduces the quality of the solution in smooth regions, we try to determine only these regions
where limiting is needed. We will construct this shock detector based on [3].

The derivation of the shock detector does not depend on the number of dimensions. Therefore
we will derive the procedure for multi dimensions and indicate cells by Ω instead of I, the lat-
ter being convenient for the one dimensional case only. We also use Q for the approximation.
Let us look at a given problem on a certain cell Ωj . We partition the boundary ∂Ωj of this
cell into two parts. The first part is, denoted by ∂Ω−j , where we have inflow and therefore
(v ·n) < 0. The other part is where we have outflow, (v ·n) > 0, which we denote by ∂Ω+

j . Ac-
cording to [3] smooth solutions of hyperbolic conservation laws show strong superconvergence
phenomena at outflow boundaries such that

1
|∂Ω+

j |
∫

∂Ω+
j

(Qj − q) dΓ = O(h2k+1). (2.4.1)

Here, |∂Ω+
j | denotes the length/area of ∂Ω+

j . Further, k is again the order of the approxima-
tion and h is the size of an element. Note that q is the exact solution of the equation and
Qj is the discontinuous Galerkin value of q on Ωj . We will use this information to detect
locations of shocks. For example consider a jump in Qj across ∂Ω−j . We split up this integral
into an integral of the inflow on the element and an integral of the outflow of the neighboring
element. We do so since the order of both contributions is known. Hence, we examine

Ij =
∫

∂Ω−j
(Qj −Qnbj) dΓ =

∫

∂Ω−j
(Qj − q) dΓ +

∫

∂Ω+
nbj

(q −Qnbj) dΓ. (2.4.2)

In this equation Qnbj stands for the value of Q in a neighboring element of Ωj with common
boundary ∂Ωj,nbj . We know from equation (2.4.1) that the second integral in this equation is
O(h2k+2). Furthermore we know that the first integral across the inflow boundary is O(hk+2)
so Ij is O(hk+2) for smooth solutions on ∂Ω−j as shown in [1]. However, if q is discontinuous
near ∂Ωj then q − Qj and/or q − Qnbj will be O(1). Using this information we construct a
discontinuity detector by normalizing Ij to some convergence rate and the solution Ωj :

Ij =

∣∣∣
∫
∂Ω−j

(Qj −Qnbj) dΓ
∣∣∣

h(k+1)/2|∂Ω−j |‖Qj‖
. (2.4.3)
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We know that in smooth regions Ij → 0, and so Ij → 0 as well, if h → 0 or k →∞. However
near a discontinuity we have Ij →∞. The discontinuity detection scheme we use is then

{ Ij > 1 ⇒ q is discontinuous,
Ij < 1 ⇒ q is smooth.

(2.4.4)

2.5 Application of the shock detector to a scalar conservation
equation

We will apply this shock detector to equation (2.2.4) to test the performance of this strategy.
We note the following:

• The boundary ∂Ω−j consists of one point, xj−1/2, hence, the term |∂Ω−j | drops out;

• For the norm, we take the element average, as shown in equation (2.5.1);

• The integral is an integral over one point, so the integral reduces to
Qj(x−j−1/2)−Qj−1(x+

j−1/2);

For the element average we have the following

‖Qj‖ =
1

∆j

∫ xj+1/2

xj−1/2

Qj(x)dx,

=
1

∆j

∫ xj+1/2

xj−1/2

u0
j + u1

j

2(x− xj)
∆j

dx,

=
1

∆j

∫ xj+1/2

xj−1/2

u0
jdx,

= u0
j . (2.5.1)

So we see the norm reduces to u0
j , when taking only linear piecewise polynomials.2

As a first test we take the following initial condition:

u(x, 0) =
{

5, if x < 0.5,
1, otherwise.

(2.5.2)

After 100 time steps we obtain the results in Figure 2.5. The red + signs in this figure indicate
where the shock detection method indicates a discontinuity. This figure clearly shows us that
taking a discontinuous initial condition leads to wiggles, and furthermore it shows us that the
shock detection method quite accurately indicates the positions where limiting is needed, for
simple examples. However this shock detection method also has a drawback. When we take
an initial condition with some large, but smooth slopes, the detector may indicate some slopes
as discontinuities. The limiter method may adjust the coefficients where it is not needed.
Figure 2.6 is a nice example of this case. In this example we have chosen the following initial
condition:

u(x, 0) = 5 + sin(12πx). (2.5.3)

2This shows us that using only constant polynomials will in fact give us the finite volume method.
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Figure 2.5: Solution of (2.2.4) with initial condition (2.5.2) after 100 time steps.

Figure 2.6: Solution of (2.2.4) with initial condition (2.5.3) after 100 time steps.
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It is quite clear that the large slopes are indicated as shocks. At first sight however, it seems
rather strange that only the bottom peaks are indicated as discontinuities, and not the upper
peaks as well. This is due to the definition of the indicator Ij . In this definition we divide
by the norm of Qj and in one dimension this is the same as the absolute value of the zeroth
coefficient. At the top peaks this value is 1.5 times as large as at the bottom peaks, so
the indicator value is here 1.5 times lower than the bottom peaks. This factor leads to not
indicating the top peaks as shocks.

2.6 Limiter

Now that we have a method to determine shocks, we need a method to limit near these shocks.
We implement the limiter discussed in [7]. The idea behind this limiter is to start limiting, in
each cell where it is needed, at the highest coefficient. The limiter stops if the limited value
is the same as the coefficient. We determine the limited value ũl

j by

ũl
j = minmod

(
ul

j , u
l−1
j+1 − ul−1

j , ul−1
j − ul−1

j−1

)
, (2.6.1)

where the minmod function is defined by

minmod(a, b, c) :=
{

sgn(a)min(|a|, |b|, |c|), if sgn(a) = sgn(b) = sgn(c),
0, otherwise,

(2.6.2)

We compare the value ul
j to a forward and backward difference of the values of one order

lower. We do not need to divide these differences by the distance, since this is already done
in the derivation of the discontinuous Galerkin method. We start in each cell at l = k and
stop the limiting procedure if either the limited value is the same as the original coefficient,
ũl

j = ul
j , or we have arrived at the lowest order, so l = 0.

2.7 Overview

We give a brief overview of how the different methods in this chapter are used. We present
this in a pseudo-code algorithm as in Algorithm 2.7.1. In this algorithm the solution u is
stored as a matrix. The columns indicate the values for the cells. The rows indicate the
coefficients of the different orders. By u(i, :) we mean all coefficients of element i. This
algorithm is implemented at every time step. As one can see this algorithm is applicable to
every order.

We start by putting all the coefficients into a new matrix called unew. The limited values
will be based on u itself and will be stored in unew. In this way, each cell will only use the
data from applying the limiter. Next we set the coefficients of the zeroth element to the same
coefficients of the last element. The zeroth element does not exist, but we need to set this,
in order to be able to apply the limiter on the first element. Similarly we set the (n + 1)-th
coefficients equal to the first coefficients, because we have periodic boundary conditions.

Then we start an iteration over the elements to determine the coefficients on the new time
step. On line five and six we set the approximated value of the cell and its left neighbor
equal to zero. We calculate the approximation at the inflow boundary. Using the properties
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Algorithm 2.7.1 Pseudo-code algorithm for one dimensional shock detection and limiting.
unew = u
u(0, :) = u(n, :)
u(n + 1, :) = u(1, :)
for j = 1 to n do

5: uj = 0;
uj−1 = 0;
for l = 0 to order do

uj = uj + (−1)lu(j, l)
uj−1 = uj−1 + u(j − 1, l)

10: end for
normuj = norm(u(j, :))
radius = (h/2)((order+1)/2)

Ij = abs(uj − uj−1)/(radius · normuj)
if Ij > 1 then

15: for l = order to 1 do
repl = minmod(u(j, l), u(j + 1, l − 1)− u(j, l − 1), u(j, l − 1)− u(j − 1, l − 1))
if repl 6= u(j, l) then

unew(j, l) = repl
else

20: break
end if

end for
end if

end for
25: u = unew

Pl(1) = 1 and Pl(−1) = (−1)l of Legendre polynomials.

Next we determine the norm by some function. This is done to keep the algorithm ap-
plicable for higher orders. We also determine the factor radius, where h is just the element
length. With this data we can determine the indicator Ij . On line 14 we check whether
limiting is needed. If so, we iterate over the coefficients starting at the highest. We apply
the minmod function and check whether this results is different. If so we save the new value
in unew and continue. Otherwise we stop and go to the next element. When all limiting is
done we restore the matrix u with all limited values.

2.8 Results

We apply this method to the simple scalar conservation law as in equation (2.2.4) and examine
the two separate cases of Section 2.5. For the discontinuous initial condition we see the results
in Figure 2.7. We see that the limiter works quite well. It is expected that with this limiter
there will still be some smearing, but the wiggles are completely gone and the smearing is
within the boundaries. Figure 2.8 nicely illustrates the drawback of this method. In the
right figure we clearly see that the bottom peaks are limited and therefore these peaks look
somewhat flattened out.
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Figure 2.7: Solution of (2.2.4) with initial condition (2.5.2) after 100 time steps without(left)
and with(right) limiting.

Figure 2.8: Solution of (2.2.4) with initial condition (2.5.3) after 100 time steps without(left)
and with(right) limiting.



Chapter 3

Two dimensional discontinuous
Galerkin for advection equations

In this chapter we will investigate the Discontinuous Galerkin method applied to the advection
equation in two dimensions.

3.1 The discontinuous Galerkin discretization

We examine the following system on the unit square:

ut +∇ · (vu) = 0, x ∈ (0, 1)× (0, 1), t ∈ (0, T ],
u(x, 0, t) = u(x, 1, t), t ∈ (0, T ]
u(0, y, t) = u(1, y, t), t ∈ (0, T ]
u(x, y, 0) = u0(x, y), x, y ∈ (0, 1)

(3.1.1a)
(3.1.1b)
(3.1.1c)
(3.1.1d)

with v = (v1, v2)T some constant velocity vector. This is a linear version of ut +∇ · f(u) = 0.
For a derivation of this general equation we refer to [4]. To approximate the solution we first
determine a triangulation of the unit square. Then, we multiply equation (3.1.1a) by some
test function v and we integrate over an element Ωj to obtain

d

dt

∫

Ωj

uvdΩ +
∫

Ωj

(∇ · (vu))vdΩ = 0. (3.1.2)

We denote by Vh the finite dimensional space of all piecewise linear functions on Ωj . We
substitute v = vh ∈ Vh and u = uh ∈ Vh and we apply Green’s theorem to obtain

d

dt

∫

Ωj

uhvhdΩ−
∫

Ωj

vuh · ∇vhdΩ +
∫

∂Ωj

vhuhv · ndΓ = 0, ∀vh ∈ Vh. (3.1.3)

We note that we can replace the integral over the boundary ∂Ωj by a sum of integrals over
the edges ∫

∂Ωj

vhuhv · n dΓ =
∑

e∈∂Ωj

∫

e
vhuhv · ne dΓ. (3.1.4)

15
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In this equation ne denotes the outward normal vector on edge e. We remark that uh is
discontinuous at the element boundaries and therefore equation (3.1.4) is not well defined.
Therefore we need to replace the term uhv · ne in this integral by the numerical flux he

he = he

(
uh

(
t, xint(Ωj), yint(Ωj)

)
, uh

(
t, xext(Ωj), yext(Ωj)

))
, (3.1.5)

which we will define in equation (3.1.10). We now have

d

dt

∫

Ωj

uhvhdΩ−
∫

Ωj

vuh∇vhdΩ +
∑

e∈∂Ωj

∫

e
vhhe dΓ = 0, ∀vh ∈ Vh. (3.1.6)

Within element Ωj , we substitute uh(x, y, t) =
∑3

k=1 uj,k(t)ϕk(x, y) and vh(x, y) = ϕi(x, y),
i = 1, . . . , 3 where ϕi(x, y) is the linear function which takes the value one at the midpoint
mi of edge i and the value zero at midpoints of the other two edges.

We still need to replace the integrals by quadrature rules. For the boundary integral we
apply the following Gaussian quadrature rule:

∫ 1

−1
g(x)dx ≈ g

(−1√
3

)
+ g

(
1√
3

)
. (3.1.7)

We parameterize edge e = (emin, emax) by e = emin+emax
2 + s

(
emax−emin

2

)
for s ∈ [−1, 1]. Using

this parametrization and the quadrature (3.1.7) we obtain for a general edge e = (emin, emax)
∫

e
g(x)dx ≈ |e|

2
g

(
emin + emax

2
− 1√

3

(
emax − emin

2

))

+
|e|
2

g

(
emin + emax

2
+

1√
3

(
emax − emin

2

))
. (3.1.8)

For the integral over the interior of an element we use the three midpoint rule

∫

Ωj

g(x, y)dΩ ≈ |Ωj |
3

3∑

i=1

g(mi), (3.1.9)

where |Ωj | denotes the area of element Ωj . We now define the numerical flux function he.
We use the simple Lax-Friedrichs flux

he(a, b) =
1
2
[a v · ne + b v · ne − αe · (b− a)]. (3.1.10)

In this flux function we take for a the approximated value of u at some position xref on the
edge. For b we take the approximated value in the neighboring element at the same position
xref . The constant αe is the numerical viscosity constant which should be an estimate of the
largest eigenvalue of the Jacobian ∂

∂uuh(t, x, y)v · ne for (t, x, y) in a neighborhood of edge e.
Since we have ∂

∂uuh(t, x, y)v = v, we take αe to be the largest eigenvalue of v×ne in absolute
value.

For the mass matrix we have

Mij =
∫

Ωj

ϕkϕidΩ =
|Ωj |
3

δik. (3.1.11)
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For the stiffness matrix we obtain

Sij =
∫

Ωj

vϕk∇ϕidΩ =
|Ωj |
3

v · ∇ϕi

3∑

l=1

ϕk(ml) =
|Ωj |
3

v · ∇ϕi. (3.1.12)

For the right hand side we obtain

Fi = −
∑

e

|e|
4

[
uh

(
t, x

int(Ωj)
e1

)
v · ne + uh

(
t, x

ext(Ωj)
e1

)
v · ne

]
ϕi(xe1)

− |e|
4

αe ·
(
uh

(
t, x

ext(Ωj)
e1

)
− uh

(
t, x

int(Ωj)
e1

))
ϕi(xe1)

+
|e|
4

[
uh

(
t, x

int(Ωj)
e2

)
v · ne + uh

(
t, x

ext(Ωj)
e2

)
v · ne

]
ϕi(xe2)

− |e|
4

αe ·
(
uh

(
t, x

ext(Ωj)
e2

)
− uh

(
t, x

int(Ωj)
e2

))
ϕi(xe2), (3.1.13)

with for edge e = (emin, emax)

e1 =
emin + emax

2
− 1√

3

(
emax − emin

2

)
, (3.1.14)

e2 =
emin + emax

2
+

1√
3

(
emax − emin

2

)
. (3.1.15)

In Figure 3.1 we show the location of e1 and e2 based on emin and emax for a general triangle.
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Figure 3.1: Location of e1 and e2 for a general edge e = (emin, emax).

Using Euler forward we need to solve the system

M
uk+1 − uk

∆t
= Suk + F k, (3.1.16)
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for each element in our mesh. If one takes a higher order approximation, then the time
integration method needs to be of a higher order as well.

3.2 Comparison to standard Galerkin

Similar to Section 2.3, where we made a comparison between discontinuous Galerkin and the
finite element method in one dimension, we will make a comparison in two dimensions in this
section.

Again we start by stating the difference in the location of the unknowns. With the FEM
the unknowns are located at the element vertices, consisting of linear basis functions, whereas
with DG the unknowns are located at the midpoints of the edges. For a quadratic approxima-
tion we need to add more unknowns to each element. With DG these unknowns are added at
the vertices of the elements, whereas with the finite element method we add these unknowns
at the midpoints. So for a quadratic approach the locations of the unknowns are identical for
DG and FEM.

Similar to one dimension we also have a difference in the basis- and test functions. For
finite elements these basis functions are again defined on the entire region and do not have
to be from the same space as the test functions. Petrov-Galerkin methods are all about using
different spaces for the basis- and test functions. The Streamline Upwind Petrov Galerkin
method may even be the most common method. For discontinuous Galerkin, the two spaces
are the same and the functions are defined only on the element itself. Again we have dis-
continuity over the elements for the DG method. This can be seen for instance in Figure 3.2
in the left picture. This picture also illustrates a drawback of DG when reconstructing the
solution in order to make a plot. We have determined the solution at the vertices and plotted
the solution per element. Having two midpoints with the value zero and one midpoint with
the value one, the vertices will have values 1, 1,−1. Having just one midpoint with the value
zero, and two midpoints have the value one, the vertices will have values 2, 0, 0. So the re-
constructed solution appears to give us physically incorrect values, whereas the discontinuous
Galerkin method gives us values between zero and one.

Also in two dimension we use piecewise polynomial basis functions per element with DG,
whereas in finite elements the basis functions are defined as piecewise polynomial on the en-
tire region, although they will be equal to zero for the majority of the domain. Furthermore
we have a integral over the boundary of the region where we apply boundary conditions versus
a sum over the edges where we use some flux function.

Making a comparison based on computational cost we will also have the same differences
in global, with some minor adjustments. The mass matrix does depend on the size of an
element in two dimensions. However, this can be ignored by dividing equation (3.1.16) by
Ωj . Using this the mass matrix is no longer dependent on the size of the element and can be
inverted very cheaply which needs to be done only once. Again the system needs to be solved
for each element, which can be done in parallel.
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Figure 3.2: Illustration of discontinuous initial condition with discontinuous Galerkin.

3.3 Shock detection

As in one dimension, we want a method that is able to detect the location of shocks such that
we can apply our limiter only in these regions. In Section 2.4 we discussed a shock detector
for a general dimension. Therefore we use the indicator in equation (2.4.3) given by

Ij =

∣∣∣
∫
∂Ω−j

(uj − unbj) dΓ
∣∣∣

h(k+1)/2|∂Ω−j |‖uj‖
. (3.3.1)

For h we take the radius of the circumscribed circle of element Ωj . For the norm we take
the maximum norm of the local solution maxima at the integration points. These integra-
tion points are the midpoints of the boundaries. We know that at midpoint mi we have
uj(xi, yi, t) =

∑3
k=1 uj,k(t)ϕk(xi, yi) = uj,i(t). This reduces the norm to

‖uj‖ = max
1≤i≤3

|uj,i|. (3.3.2)

The integral in the numerator in (3.3.1) can be calculated exactly upon using approximations
for the variables uj and unbj . For an edge ei, where we have inflow, we determine the integral
as follows:
∫

ei

(uj(x, y, t)− unbj(x, y, t)) dΓ =
∫

ei

uj(x, y, t) dΓ−
∫

ei

unbj(x, y, t) dΓ,

=
∫

ei

3∑

k=1

uj,k(t)ϕk(x, y) dΓ−
∫

ei

3∑

k=1

unbj,k(t)ϕk(x, y) dΓ.
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Two of these basis functions have the value zero at mi, and since they are linear, the integral
over the edge will be equal to zero. The third basis function, ϕi(x, y), will have the value one
at mi and hence the integral will be equal to uj,i|ei|. Hence, finally we have

∫

ei

(uj(x, y, t)− unbj(x, y, t)) dΓ = |ei|(uj,i(t)− unbj,i(t)). (3.3.3)

3.4 Limiter

Using the shock detector in the previous section allows us to limit the approximations of
elements only where limiting is needed. We will derive this limiter using [4]. This limiter
is based on the approximated solution instead of purely on the coefficients. If we were to
construct a limiter based on the coefficients like in one dimension, we need a higher order
approximation.

We start by examining Figure 3.31, in which we deal with element Ω0 and its neighbors
Ω1, Ω2 and Ω3. In this figure, ci denotes the element center of Ωi.

Figure 3.3: Illustration of limiting for element Ω0

We have
m1 − c0 = α1(c1 − c0) + α2(c2 − c0), (3.4.1)

for some coefficients α1 and α2 which only depend on the midpoint m1 for a given geometry.
Since uh is linear per element we have

uh(m1)− uh(c0) = α1(uh(c1)− uh(c0)) + α2(uh(c2)− uh(c0)). (3.4.2)
1This figure has been constructed after a similar figure in [4].



3.4. LIMITER 21

We define the cell averages ūΩj by

ūΩj =
1
|Ωj |

∫

Ωj

uhdΩ = uh(cj), j = 0, 1, 2, 3. (3.4.3)

We now have

ũh(m1,Ω0) = uh(m1)− ūΩ0 , (3.4.4)
∆ū(m1,Ω0) = α1(ūΩ1 − ūΩ0) + α2(ūΩ2 − ūΩ0). (3.4.5)

We see that ūh = uh − ūΩ0 is the approximated value minus the cell average. Since we use a
linear approximation this should consist of the slopes of the solution.

For (x, y) ∈ Ω0 we can now write

uh(x, y) =
3∑

i=1

uh(mi)ϕi(x, y) = ūΩ0 +
3∑

i=1

ũh(mi, Ω0)ϕi(x, y). (3.4.6)

This we will use in the actual reconstruction of the limited value in equations (3.4.10) and
(3.4.16).

For continuous initial conditions we should have ũh(m1,Ω0) = ∆ū(m1, Ω0). However for
discontinuous initial conditions we might have ũh(m1, Ω0) 6= ∆ū(m1, Ω0).

To approximate the second term in the right-hand side of equation (3.4.6), we define the
TVB modified minmod function by

minmodTVB(a1, a2, . . . , am) := minmod
(
a1, a2 + sgn(a2)Mh2, . . . , am + sgn(am)Mh2)

)
,

(3.4.7)
where the function minmod is defined as

minmod(a1, . . . , am) :=
{

sgn(a1)min(|a1|, . . . , |am|), if sgn(a1) = . . . = sgn(am),
0, otherwise.

(3.4.8)

The minmod function is a very common limiter in finite volume methods. For more informa-
tion on this limiter and limiting with finite volumes we refer to [8].
In the TVB modified minmod function again we use the radius of the circumscribed circle of
element Ωj for h. M is a constant that should be an upper bound for the second derivative of
local solution extrema. We note that for small values of M we have order reduction whereas
high values of M may allow spurious oscillations in the solution.

Using the TVB modified minmod function we determine the quantities ∆i

∆i = minmodTVB (ũh(mi, Ω0), ν∆ū(mi, Ω0)) . (3.4.9)

In this function ν should be larger than one. Based on [4] we take ν = 1.5. We now examine
two separate cases. For

∑3
i=1 ∆i = 0 we simply set

uh(x, y) = ūΩ0 +
3∑

i=1

∆iϕi(x, y), (3.4.10)
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or even more simply u0,i = ūΩ0 + ∆i for i = 1, . . . , 3.

In case we have
∑3

i=1 ∆i 6= 0, we compute

pos =
3∑

i=1

max(0,∆i), (3.4.11)

neg =
3∑

i=1

max(0,−∆i), (3.4.12)

θ+ = min
(

1,
neg
pos

)
, (3.4.13)

θ− = min
(

1,
pos
neg

)
, (3.4.14)

∆̂i = θ+ max(0, ∆i)− θ−max(0,−∆i). (3.4.15)

We now set

uh(x, y) = ūΩ0 +
3∑

i=1

∆̂iϕi(x, y), (3.4.16)

or u0,i = ūΩ0 + ∆̂i for i = 1, . . . , 3. For more information on this limiter we refer to [4].

3.5 Overview

Again we give an overview how to apply the shock detector and limiter after a time step
integration has been done. We present this overview in a pseudo-code algorithm as in Algo-
rithms 3.5.1 and 3.5.2. In contrast to Section 2.7 it is not convenient any more to apply the
slope detector and limiter in the same iteration. Therefore we apply the shock detector sepa-
rately of the limiter and we store the results of the shock detector in an array called indicated.

Again we store our solution u in a matrix. This matrix has dimensions number of elements×
3. Each row corresponds to an element and the columns correspond to the three midpoints.
Furthermore we use a matrix called elem neighbor having the same dimensions. In this ma-
trix we store per element and per edge the element number of the neighboring element on
that edge. In Algorithm 3.5.1 we start by iterating over the elements. For each element we
determine the norm. Then we loop over the edges in line number 6. For each edge we calcu-
late the length of the edge and the outward normal vector on that edge. Next we determine
whether we have inflow in line 10. If we do not have inflow we skip the remainder of this
iteration by the continue command. If we have inflow we add the length of the edge to
length gamma minus which denotes the total length of all edges where we have inflow. Also
we determine the largest edge. Next we determine the neighboring element on the edge and
using equation (3.3.3) we determine the value of

∫
ej

(uielem − unbielem) dΓ and add this to
int, the value of the total integral across all edges where we have inflow. Having done this
for all three edges we set the radius of the circumscribed circle. We determine the indicator
with all calculated variables in line 18. At last we set in the indicated array a one for a shock
and a zero otherwise.
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Algorithm 3.5.1 Pseudo-code algorithm for 2D shock detection
for ielem = 1 to number of elements do

int = 0
length gamma minus = 0
max edge = 0

5: norm = max(|u(ielem, 1)|, |u(ielem, 2)|, |u(ielem, 3)|)
for jedge = 1 to 3 do

determine length edge
max edge = max(max edge, length edge)
determine normal

10: if v · normal ≥ 0 then
continue

end if
length gamma minus = length gamma minus + length edge
neigh elem = elem neighbor(ielem, jedge)

15: int = int + length edge · (u(ielem, jedge)− u(neigh elem, jedge))
end for
radius = max edge/2
Ind = |int|/(radius · length gamma minus · norm)
if Ind > 1 then

20: indicated(ielem) = 1
else

indicated(ielem) = 0
end if

end for

For the limiter we look at Algorithm 3.5.2. In this algorithm we use a matrix center coords
which has dimensions number of elements× 2. In this matrix for each row the center of the
corresponding element is saved.

In Algorithm 3.5.2 we start by setting ν and M which we need to apply equations (3.4.9) and
(3.4.7). Next we iterate over the elements. For each element we check whether a shock has
been detected and we skip the remainder of the loop if this is not the case. We determine ϕ1,
ϕ2 and ϕ3 and, using the coordinates of the center of the element, we calculate the approxi-
mated solution at the center in line number 10. We repeat this process for the neighboring
elements where we use the ϕ′is of the neighboring element.

Using the coordinates of the midpoint of the edge and the centers of neighboring elements we
construct a matrix and righthand side to determine α1 and α2 as in equation (3.4.1). With
these values of α1 and α2 we determine ∆ū1 and we repeat the procedure for ∆ū2 and ∆ū3

for which we need to determine α1 and α2 again as well.

Next we determine ũ1 and with the minmodTVB function we calculate ∆1. This process
is repeated as well to calculate ∆2 and ∆3. Finally we check in line 30 whether we can limit
directly or need to adjust the variables ∆i first. In case we need to adjust these variables
we take the sum over the positive values and the sum over the negative values. Then we
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Algorithm 3.5.2 Pseudo-code algorithm for 2D limiting
nu = 1.5
M = 100
for ielem = 1 to number of elements do

if indicated(ielem) == 0 then
5: continue

end if
determine phi 1, phi 2 and phi 3
xc = center coords(ielem, 1)
yc = center coords(ielem, 2)

10: uk0 = u(ielem, 1) · phi 1(xc, yc)+ u(ielem, 2) · phi 2(xc, yc) + u(ielem, 3) · phi 3(xc, yc)
determine uk1, uk2 and uk3 similarly

determine m1x and m1y
neigh elem1 = elem neighbor(ielem, 1)

15: neigh elem2 = elem neighbor(ielem, 2)
xn1 = center coords(neigh elem1, 1)
yn1 = center coords(neigh elem1, 2)
xn2 = center coords(neigh elem2, 1)
yn2 = center coords(neigh elem2, 2)

20: mat = [[xn1− xc xn2− xc]; [yn1− yc yn2− yc]]
RHS = [m1x− xc; m1y − yc]
solve mat · alpha = RHS for alpha = [alpha1; alpha2]
deltau1 = alpha1 · (uk1− uk0) + alpha2 · (uk2− uk0)
determine deltau2 and deltau3 similarly

25:

uhtilde1 = u(ielem, 1)− uk0
delta1 = minmodTVB(uhtilde1, nu · deltau1)
determine delta2 and delta3 similarly
sum delta = delta1 + delta2 + delta3

30: if sum delta 6= 0 then
pos = max(0, delta1) + max(0, delta2) + max(0, delta3)
neg = max(0,−delta1) + max(0,−delta2) + max(0,−delta3)
theta plus = min(1, neg/pos)
theta min = min(1, pos/neg)

35: delta1 = theta plus ·max(0, delta1)− theta min ·max(0,−delta1)
delta2 = theta plus ·max(0, delta2)− theta min ·max(0,−delta2)
delta3 = theta plus ·max(0, delta3)− theta min ·max(0,−delta3)

end if
u(ielem, 1) = delta1 + uk0

40: u(ielem, 2) = delta2 + uk0
u(ielem, 3) = delta3 + uk0

end for
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determine θ+ and θ− as in equations (3.4.13) and (3.4.14) respectively. Finally we calculate
the adjusted values for ∆i and limit the coefficients of the approximation within this element.

3.6 Results

We start testing Discontinuous Galerkin with a simple continuous initial condition. This way
we can see that any imperfections are due to a wrong implementation and not due to the
method. As initial condition we take

u(x, y, 0) = 5 + sin(2πx) sin(2πy). (3.6.1)

Furthermore we take

v =
(

1
1

)
. (3.6.2)

In Figure 3.4 we see the result of solving (3.1.16) for 100 time steps with the continuous
initial condition. The surface plot shows what we would expect. We can now investigate

Figure 3.4: Initial condition (3.6.1) (left) and solution of (3.1.16) after 100 time steps.

what happens if we take a discontinuous initial condition. For this, we take

u(x, y, 0) =
{

5, if x + y < 1;
0, otherwise.

(3.6.3)

as our initial condition. In Figure 3.5 we see the discontinuous initial condition on the left.
On the right we see a plot of the mesh where the red dots indicate the elements where a shock
has been detected. We see that the shock along the line x+y = 1 is not detected. However we
have not yet applied any time integration in this result. So for every midpoint of an element
on this line the corresponding coefficient has exactly the same value as the coefficient in that
midpoint of the neighboring element. Therefore the numerator of the indicator will always
be zero and thus a shock can not be detected. This is not a disaster since after already one
time step integration the shock along the line x + y = 1 will be detected. This is shown in
Figure 3.6. Finally we look at the approximation after time integration, see the results in
Figure 3.7. In this figure we see on the left the result if we don’t apply a limiter. This plot
clearly shows wiggles. On the right we see the approximation when applying a limiter. Now
the wiggles have disappeared.
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Figure 3.5: Initial condition (3.6.3) (left) and shock detection of initial condition (right).

Figure 3.6: Shock detection after time integration.

Figure 3.7: Solution of (3.1.16) with initial condition (3.6.3) after 100 time steps without and
with limiting.



Chapter 4

Two-phase flow in a porous medium

Having investigated Discontinuous Galerkin in two dimensions we can now construct the
model for a general two-phase flow in a porous medium. Using [2] we will make a model for
this two-phase flow after which we will apply discontinuous Galerkin.

4.1 Constructing the model

We use a multi-phase flow for the flow of two phases.

We have on some domain Ω and some time interval (0, T ]

ϕ
∂S1

∂t
+∇ · q1(S1) = 0, (4.1.1a)

ϕ
∂S2

∂t
+∇ · q2(S2) = 0, (4.1.1b)

where S1 + S2 = 1. Furthermore, we have a boundary and initial condition

S1(x, t) = f(x), ∀x ∈ Γ1, ∀t ∈ (0, T ],
S1(x, 0) = S0(x), ∀x ∈ Ω,

(4.1.2a)
(4.1.2b)

with Γ = Γ1∪Γ2∪Γ3.1 Since the equation is of first order we only have a boundary condition
on the inflow boundary, Γ1. Furthermore, since we have S1 + S2 = 1 we do not need any
boundary or initial conditions for S2. In these equations we model the saturation of phase 1
and phase 2 by S1 and S2 respectively. The constant ϕ indicates the porosity of the porous
medium, which is independent of the fluid flowing through the medium. The functions q1

and q2 model the volumetric f low through the porous medium. For these functions q1 and
q2 we have Darcy’s Law. This law gives us

q1 = −κ1

µ1
∇(p1 + ρ1gz), (4.1.3)

q2 = −κ2

µ2
∇(p2 + ρ2gz). (4.1.4)

Taking a two dimensional area with a fixed depth we will be able to neglect the terms ρ1gz
and ρ2gz. Furthermore, we have κα, α = 1, 2, being the permeability of the porous medium

1We need the boundaries Γ2 and Γ3 later on, so it is convenient to already define them here.

27
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compared to phase α. The viscosity of phase α is indicated by µα.

We also have an irreducible phase saturation level for the phase flows. This means
that below this saturation level, a phase is unable to flow when subjected to a potential pα.
In reality the phase does flow if the saturation is below this level. However, the velocity is so
low that it is hardly noticeable and therefore we are able to neglect this velocity.

The phase-permeabilities κ1 and κ2 depend on the saturation as stated earlier. We have,
for a saturation level of one, that these variables are equal to the one-phase permeability
κ. As one can imagine some fluids flow easier through soil than other fluids. Therefore,
we introduce the relative permeability κ1 = κκr1 and κ2 = κκr2. For a saturation level
smaller than or equal to the irreducible phase saturation, S1c or S2c, we should have κr1 = 0
respectively κr2 = 0. For S1 > S1c or S2 > S2c the relative permeability κr1 respectively κr2

will increase monotonically. For these functions there are many relations based on the fluids
one investigates. However we will use the following simplified relations from [2]:

κr1 = κ′r1S1e, (4.1.5a)
κr2 = κ′r2S2e, (4.1.5b)

S1e =
S1 − S1c

1− S1c − S2c
, (4.1.5c)

S2e =
S2 − S2c

1− S1c − S2c
. (4.1.5d)

In this equation the variables κ′r1 and κ′r2 will depend on the fluids and are in general not
equal. To satisfy the irreducible phase saturation condition we can rewrite

κr1′ =
{

κr1′ , if S1 > S1c,
0, otherwise,

, (4.1.6)

κr2′ =
{

κr2′ , if S2 > S2c,
0, otherwise.

(4.1.7)

For more complex relations for the relative permeability we refer to [2].
In total we now have for q1 and q2

q1 = −κκ′r1S1e

µ1
∇p1, (4.1.8)

q2 = −κκ′r2S2e

µ2
∇p2. (4.1.9)

For different phases one usually has a difference in the pressures. Therefore one defines
the capillary pressure function pcap which is defined as the difference in pressure across the
interface between the non-wetting and wetting phase for two immiscible fluids. In oil-water
systems, water will be the wetting phase whereas in gas-liquid systems the liquid, which might
be oil, will be the wetting phase. In our case we will assume that phase one is the wetting
fluid. This gives us

pcap = p2 − p1. (4.1.10)

Having a non-zero capillary pressure will remove the discontinuity in the equation. The
capillary pressure is with respect to coordinates only depending on the height and since we
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take our region at a fixed depth it is justifiable to take the capillary pressure equal to zero.
This is also discussed in [5]. So we have

p1 = p2 =: p. (4.1.11)

4.2 Solving the partial differential equations in the model

In order to solve the model and we need to state boundary and initial conditions. We will
apply the model to a test region Ω = [0, 1] × [0, 1]. Since the model is only of first order,
we need just one boundary condition which will be a Dirichlet boundary condition. Since we
are investigating a flow problem, we will apply the boundary condition only to a part of the
boundary where we have inflow. We denote this part of the boundary by Γ1. Since we have
S1 + S2 = 1 we only need to solve this model for one phase and we can reconstruct the other
phase. Therefore we will solve this model only for the wetting fluid, which is assumed to be
phase 1. This gives us

ϕ
∂S1

∂t
+∇ · q1(S1) = 0, x ∈ Ω, t ∈ (0, T ],

ϕ
∂S2

∂t
+∇ · q2(S2) = 0, x ∈ Ω, t ∈ (0, T ],

S1(x, t) = f(x), ∀x ∈ Γ1, ∀t > 0,

S1(x, 0) = S0(x), ∀x ∈ Ω.

(4.2.1a)

(4.2.1b)

(4.2.1c)
(4.2.1d)

with S1 + S2 = 1. Adding equation (4.2.1a) to equation (4.2.1b) gives us

ϕ
∂S1

∂t
+∇ · q1(S1) + ϕ

∂S2

∂t
+∇ · q2(S2) = 0, (4.2.2)

which can be rewritten as

ϕ
∂(S1 + S2)

∂t
+∇ · (q1(S1) + q2(S2)) = 0. (4.2.3)

However, since S1 + S2 = 1 this reduces to

∇ · (q1(S1) + q2(S2)) = 0. (4.2.4)

Substituting equation (4.1.8) and equation (4.1.9) into equation (4.2.4) gives

−∇ ·
(

κκ′r1S1e

µ1
∇p1 +

κκ′r2S2e

µ2
∇p2

)
= 0. (4.2.5)

Using equation (4.1.11), the actual equation we will need to solve

−∇ ·
((

κκ′r1S1e

µ1
+

κκ′r2S2e

µ2

)
∇p

)
= 0, (4.2.6)
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for p where we have p1 = p2 = p. We now also need boundary conditions for the pressure. In
the same region Ω we solve the following system

−∇ ·
((

κκ′r1S1e

µ1
+

κκ′r2S2e

µ2

)
∇p

)
= 0, x ∈ Ω, t ∈ (0, T ],

p(x) = p0(x), x ∈ Γ1,

−
(

κκ′r1S1e

µ1
+

κκ′r2S2e

µ2

)
∂p

∂n
(x) = Q1, x ∈ Γ2,

−
(

κκ′r1S1e

µ1
+

κκ′r2S2e

µ2

)
∂p

∂n
(x) = 0, x ∈ Γ3.

(4.2.7a)

(4.2.7b)

(4.2.7c)

(4.2.7d)

Note that in this system we have a fixed pressure at the boundary where we have inflow of the
saturation. Furthermore we have outflow at boundary Γ2. So in general Q1 will be negative.
Boundary Γ3 will be isolated. Although it may not be clear on first sight, p is depends on
time. Equation (4.2.7a) is depending on the saturation S1 and S2 which are dependent on
time.

4.2.1 Solving the equation for the saturation

Now we have constructed system (4.2.7) to solve for the pressure, we will be able to start
solving system (4.1.1) numerically. Therefore, we will apply the two dimensional discontinuous
Galerkin method to equation (4.2.1a), which is ϕ∂S1

∂t +∇· q1(S1) = 0, assuming that we know
∇p. We make this derivation similar to Section 3.1. We start by determining a triangulation
of the area. Next we multiply this equation by a test function v and integrate over an element
Ωj to obtain

ϕ
d

dt

∫

Ωj

S1vdΩ +
∫

Ωj

(∇ · q1(S1))vdΩ = 0. (4.2.8)

Again we denote by Vh the finite dimensional space of all piecewise linear functions on the
element Ωj . We substitute into equation (4.2.8) v = vh ∈ Vh and Sh ∈ Vh ≈ s1, where Sh

denotes the numerical approximation for S1, and we apply Green’s theorem to obtain

ϕ
d

dt

∫

Ωj

ShvhdΩ−
∫

Ωj

q1(Sh)∇ · vhdΩ +
∫

∂Ωj

q1(Sh)vh · ndΓ = 0, ∀vh ∈ Vh. (4.2.9)

Again we can replace the integral over the boundary ∂Ωj by a sum of integrals over the edges
of the element

ϕ
d

dt

∫

Ωj

ShvhdΩ−
∫

Ωj

q1(Sh)∇ · vhdΩ +
∑

e∈∂Ωj

∫

e
q1(Sh)vh · nedΓ = 0, ∀vh ∈ Vh. (4.2.10)

The vector ne again denotes the outward normal vector on edge e. We remark that Sh is
discontinuous at the element boundaries and therefore equation (4.2.10) is not well defined.
Therefore we need to replace the term q1(Sh) · ne in this integral by the numerical flux he

he = he

(
Sh

(
t, xint(Ωj), yint(Ωj)

)
, Sh

(
t, xext(Ωj), yext(Ωj)

))
(4.2.11)
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For interior element edges we will use the Lax-Friedrichs flux function as in equation (3.1.10)

he(a, b) =
1
2
[q1(a) · ne + q1(b) · ne − αe · (b− a)]. (4.2.12)

For edges on the boundary of [0, 1]× [0, 1] we will simply use

he(a) = q1(a). (4.2.13)

In this flux function we take for a the approximated value of S at some position xref on the
edge. For b we take the approximated value in the neighboring element at the same position
xref . The constant αe is the numerical viscosity constant which should be an estimate of the
largest eigenvalue of the Jacobian ∂

∂S q1(Sh)(t, x, y)·ne for (t, x, y) in a neighborhood of edge e.

Using the derivation as we have done in two dimensions in Chapter 3, we need to solve

MStnew
1 = MStold

1 + ∆t
(
S + F told

)
. (4.2.14)

We note that the stiffness matrix will in fact be a vector in this derivation. The integral∫
Ωj

q1(Sh)∇ · vhdΩ gives us

Si =
∫

Ωj

q1

(
3∑

k=1

Sj,k(t)ϕk(x, y)

)
∇ · ϕi(x, y)dΩ,

=
|Ωj |
3
∇ϕi ·

3∑

l=1

q1

(
3∑

k=1

Sj,kϕk(xl)

)
,

=
|Ωj |
3
∇ϕi ·

3∑

l=1

q1(Sj,l). (4.2.15)

4.2.2 Solving for the pressure

In the previous subsection we have solved system (4.2.14) for the saturation of the wetting
phase at the new time step, assuming we had already determined the gradient of the pressure
p in each element. In this subsection we will solve system (4.2.7) in order to actually know
the pressure. For this system we will use the finite element method, since the pressure will
always be continuous.

We have the following system for the pressure

−∇ ·
((

κκ′r1S1e

µ1

κκ′r2S2e

µ2

)
∇p

)
= 0, x ∈ Ω

p(x) = p0(x), x ∈ Γ1,

−
(

κκ′r1S1e

µ1
+

κκ′r2S2e

µ2

)
∂p

∂n
(x) = Q1, x ∈ Γ2,

−
(

κκ′r1S1e

µ1
+

κκ′r2S2e

µ2

)
∂p

∂n
(x) = 0, x ∈ Γ3.

(4.2.16a)

(4.2.16b)

(4.2.16c)

(4.2.16d)
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We start by multiplying equation (4.2.16a) by a test function v, subject to v|Γ1 = 0, and
we integrate over the entire domain Ω to obtain

∫

Ω
−∇ ·

((
κκ′r1S1e

µ1
+

κκ′r2S2e

µ2

)
∇p

)
vdΩ = 0. (4.2.17)

Next we apply Green’s theorem which gives us
∫

Ω

(
κκ′r1S1e

µ1
+

κκ′r2S2e

µ2

)
∇p · ∇vdΩ =

∫

Γ

(
κκ′r1S1e

µ1
+

κκ′r2S2e

µ2

)
∇p · nvdΓ. (4.2.18)

We split the boundary Γ in Γ1, Γ2 and Γ3. On Γ1 we have p = p0 so v = 0. On Γ3 we have
0 =

(
−κκ′r1S1e

µ1
− κκ′r2S2e

µ2

)
∂p
∂n =

(
−κκ′r1S1e

µ1
− κκ′r2S2e

µ2

)
∇p · n. So only the integral over the

boundary Γ2 will not vanish. Substituting
(
−κκ′r1S1e

µ1
− κκ′r2S2e

µ2

)
∂p
∂n = Q1 on Γ2 will give us

∫

Ω

(
κκ′r1S1e

µ1
+

κκ′r2S2e

µ2

)
∇p · ∇vdΩ =

∮

Γ2

Q1vdΓ. (4.2.19)

We now substitute p(x, t) =
∑N+Nb

j=1 pj(t)ϕj(x), with Nb the number of boundary nodes, and
v = ϕi(x) for i = 1, . . . , N in equation (4.2.19) to obtain

N+Nb∑

j=1

pj

∫

Ω

(
κκ′r1S1e

µ1
+

κκ′r2S2e

µ2

)
∇ϕj · ∇ϕidΩ =

∮

Γ2

Q1ϕidΓ, i = 1, . . . , N. (4.2.20)

We will write this system as Sp = F . For the element stiffness matrix Sel we have

Sel
ij =

∫

Ωel

(
κκ′r1S1e

µ1
+

κκ′r2S2e

µ2

)
∇ϕj · ∇ϕidΩ,

= ∇ϕj · ∇ϕi
|Ωj |
3

3∑

k=1

(
κκ′r1S1e

µ1
+

κκ′r2S2e

µ2

)
(xk). (4.2.21)

For the element right hand side vector F el we obtain

F el
i =

∮

Γel

Q1ϕidΓ,

=
|Γel|
2

Q1(xk). (4.2.22)

Having solved Sp = F for the pressure we need to determine the gradient of the pressure. We
examine the linear basis functions we used

ϕi(x, y) = αi + βix + γiy. (4.2.23)

Using this relation we can determine the gradient of the pressure per element by

∇pelj =
3∑

k=1

(
βk

γk

)
pk. (4.2.24)
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4.3 Overview

As we have seen in the previous section we have examined two systems. Both systems depend
on the solution of the other system. Therefore we need to solve both systems at every time
step. Since an initial condition is given for the saturation, we start in each time step by solving
Sp = F and determining the gradient of the pressure from equation (4.2.24). Hereafter, we
can solve (4.2.14) for one time step. If necessary, we can now apply the shock detector and the
limiter for the saturation. Then the process is repeated at the next time step. In Algorithm
4.3.1 we give a simplistic overview of the coupling of these systems. We store the saturation
in a matrix S1 with three values per row for the three unknowns. The gradient of the pressure
is stored in a vector grad pressure of length number of elements.

Algorithm 4.3.1 Pseudo-code algorithm for 2D phase flow in a porous medium
determine S1

for itime = 1 to Tend do
determine grad pressure
determine S1

5: apply shock detector
apply limiter

end for

The saturation can also be stored at the end of each time step. If necessary one can reconstruct
the solution for the corner points or Gaussian points2 first.

4.4 Shock detector and limiter

We will use the shock detector as discussed in Section 3.3. However, this shock detector
assumes that every element has a neighbor on every edge. So we need to make a slight
adjustment for elements on the boundary. We adjust the shock detector by flagging every
element with an edge on the boundary as detected.

Furthermore, we will use the limiter from Section 3.4. This limiter is also based on the
assumption that every element has a neighbor on every edge. So we need to adjust the
limiter as well. We have to use a grid where every element has at most one edge on the
boundary. If an element would have two edges on the boundary, we would be unable to use
the limiter, since we need at least two neighboring elements to determine the slopes between
the solutions on the elements. So we assume that every element has at most one edge on
the boundary. We constructed the limiter so that each edge uses the neighboring element,
and the next edge and element, when going clockwise over the edges. We need to adjust this
to the next non-boundary edge. Although we will not be able to determine a limited value
for the unknowns at the edges, we will be able to limit the other two unknowns in those
elements. In Algorithm 4.4.1 we give an overview for limiting of elements with an edge on
the boundary. In this algorithm we assume that the element number ielem is given, and that
limiting is needed. Furthermore, we assume edge two to be on the boundary.

2Just as in one dimension, these points are located halfway between the midpoint of the edge and the
element center.
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Algorithm 4.4.1 Pseudo-code algorithm for 2D limiting of an element with edge number
two on the boundary

nu = 1.5
M = 100

determine phi 1, phi 2 and phi 3
5: xc = center coords(ielem, 1)

yc = center coords(ielem, 2)
uk0 = u(ielem, 1) · phi 1(xc, yc) + u(ielem, 2) · phi 2(xc, yc) + u(ielem, 3) · phi 3(xc, yc)
determine uk1 and uk3 similarly

10: determine m1x and m1y
neigh elem1 = elem neighbor(ielem, 1)
neigh elem3 = elem neighbor(ielem, 3)
xn1 = center coords(neigh elem1, 1)
yn1 = center coords(neigh elem1, 2)

15: xn3 = center coords(neigh elem3, 1)
yn3 = center coords(neigh elem3, 2)
mat = [[xn1− xc xn3− xc]; [yn1− yc yn3− yc]]
RHS = [m1x− xc;m1y − yc]
solve mat · alpha = RHS for alpha = [alpha1; alpha2]

20: deltau1 = alpha1 · (uk1− uk0) + alpha2 · (uk3− uk0)
mat = [[xn3− xc xn1− xc]; [yn3− yc yn1− yc]]
solve mat · alpha = RHS for alpha = [alpha1; alpha2]
deltau3 = alpha1 · (uk3− uk0) + alpha2 · (uk1− uk0)

25: uhtilde1 = u(ielem, 1)− uk0
delta1 = minmodTVB(uhtilde1, nu · deltau1)
uhtilde3 = u(ielem, 3)− uk0
delta3 = minmodTVB(uhtilde3, nu · deltau3)

30: u(ielem, 1) = delta1 + uk0
u(ielem, 3) = delta3 + uk0
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4.5 Results

In this section we will show a simple result of solving system (4.1.1). In the next chapter we
will show some more realistic applications. In order to be able to solve this system we have
to define some parameters. Again, in the next chapter, we will clarify the choice of these
parameters. We have chosen

ϕ = 0.4, (4.5.1a)
µ1 = 0.0012 [kg ·m−1 · s−1], (4.5.1b)
µ2 = 2 · 10−5[kg ·m−1 · s−1], (4.5.1c)
κ = 10−3 [m2], (4.5.1d)

κ′r1 = 0.5, (4.5.1e)
κ′r2 = 0.01, (4.5.1f)
S1c = 0.15, (4.5.1g)
S2c = 0.05. (4.5.1h)

Furthermore, we have to define the boundaries and the boundary conditions. We choose for
the boundaries Γ1 = Γ(x = 0) and Γ3 = Γ(x = 1). As initial condition we take

S1(x, 0) = 0, ∀x ∈ Ω. (4.5.2)

As boundary conditions we use

S1(x, t) = 1, ∀x ∈ Γ1, ∀t > 0,

p(x) = 1, ∀x ∈ Γ1,(
−κκ′r1S1e

µ1
− κκ′r2S2e

µ2

)
∂p

∂n
(x) = −10, x ∈ Γ2.

(4.5.3)
(4.5.4)

(4.5.5)

In Figure 4.1 we show the results of solving the two-phase flow in a porous medium using
the above mentioned parameters and boundary- and initial conditions. The solution is not

Figure 4.1: Solution of (4.1.1) after 100 time steps left and corresponding pressure right.

entirely smooth and it looks if the limiter is not working properly. However for this problem
we can not assume to obtain a fully smooth solution. In Figure 4.2 we show the same result
where we did not apply the limiter. So we can conclude that the limiter does the job quite
well.
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Figure 4.2: Solution of (4.1.1) after 100 time steps without limiting.



Chapter 5

Application of the two-phase flow
in a porous medium model

In this chapter we will apply the model for a generic two-phase flow in a porous medium from
Chapter 4 to a realistic example.

5.1 Background

In order to store energy, the faculty of EEMCS uses four large pumps to store cold and warm
water in the ground. Two of these pumps only work with warm water, and two of them only
deal with cold water. Roughly speaking we can sketch the situation during the winter as in
Figure 5.1. One can see from the sketch that there are two pumps which pump warm water
which are opposite to each other. The same is true for the cold water pumps. The area
between the bubbles is air. Furthermore, it is crucial that the bubbles of water never overlap
since the water will be mixed and the resulting temperature will be useless. We also know
that the edges of the basin are made of clay. The permeability of clay is so low that we can
view the basin as completely isolated. One may wonder why the four bubbles of water are
not separated by clay as well. We can see the answer from Figure 5.2. This figure illustrates
the same basin during the summer. As one can see, there are some areas which are occupied
by cold water in the summer and occupied by warm water in the winter. If we were to split
the basin into four smaller basins separated by clay, the total area of all basins would need
to be significantly larger.

When cold water is needed for air-conditioning, the cold water pumps start retrieving water.
The porter uses a tool by which he gives the temperature needed in each room. Furthermore,
the tool registers the temperature of the retrieved water and then determines the amount of
water that needs to be pumped out each hour to achieve this temperature. This water will
be heated by using the air-conditioner and the two warm water pumps will pump this heated
water back into the ground. When there is need for warm water the process will be reversed.

5.2 Upscaling

In reality we have a three dimensional basin in which the water is stored. However, it is much
easier and faster to solve a two dimensional model. Therefore we can apply upscaling. This
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Figure 5.1: Sketch of winter layout.

Figure 5.2: Sketch of summer layout.
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subject is widely discussed in [5]. We will explain the general idea of this method.

With upscaling one integrates the three dimensional equation over the height and models
the saturation by the average saturation, S̄1, over the height. Assuming we have a constant
porosity and permeability we have

S̄1 =
1

|z2 − z1|
∫ z2

z1

S1dz. (5.2.1)

We write the term q1 as q1 = −λ(S1)∇p for notational convenience. Looking at the x-
derivative of the pressure, we now obtain

q̄1,x =
1

|z2 − z1|
∫ z2

z1

−λ(S1)
∂p

∂x
dz, (5.2.2)

=
1

|z2 − z1|
∫ z2

z1

−λ(S1)dz
∂p

∂x
. (5.2.3)

Since λ is linear depending on S1 we can exchange integration and the function λ. This gives
us

q̄1,x = −λ(S̄1)
∂p

∂x
. (5.2.4)

For the y-derivative of we obtain a similar result

q̄1,y = −λ(S̄1)
∂p

∂y
. (5.2.5)

However, for the z-derivative it appears that the integral will be zero. Using this we can
model the three dimensional model as a two dimensional model with an average saturation.

5.3 Choosing the parameters

In Section 4.5 we assumed some values for the parameters in the model. In this section we
will clarify how these values were chosen.

We start with the porosity, ϕ. Typical values for soil are between 0.36 and 0.43. For
simplicity, we take a value well within these bounds, that is 0.40.

Next we have the viscosity of the two flows. For water with a temperature of 20 degrees
Celsius this value is equal to 0.001[kg · m−1 · s−1]. For water with a temperature of 6 de-
grees Celsius the viscosity is 0.0014[kg ·m−1 · s−1]. These are the ideal temperatures for the
flow of warm and cold water. In reality these temperatures are closer to each other, and
so are the viscosities. We model the two flows of water as one flow, and therefore we take
µ1 = 0.0012 [kg ·m−1 · s−1]. The flow of air is usually far less viscous. A typical value for the
viscosity of air is 2 · 10−5. So µ2 = 2 · 10−5 [kg ·m−1 · s−1].

Next we have the permeability of soil. This is highly dependent upon the type of soil
and usually varies throughout a basin. In Section 5.5 we will investigate what happens when
the permeability is not constant. For now, we assume that the permeability is constant
with a value of 10−3, therefore κ = 0.001 [m2].
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For the relative permeability we also have the parameters κ′r1 and κ′r2. For water this
value is equal to 0.5, and therefore κ′r1 = 0.5. For a gaseous fluid, this value is low. We have
κ′r2 = 0.01.

This leaves us with the irreducible phase saturation. For water a typical value is 0.15,
for air we take 0.05.

5.4 Results

In this section we will solve the model from Chapter 4 for a two-phase flow in a porous medium
applied to the water storage model. This water storage model actually has four pumps inside
the basin instead of on the boundary. Therefore we will make the basin somewhat smaller
such that the four pumps will be located at the corners of the region Ω.

For the initial condition we take

S1(x, y, t) =





1, if x ≤ 0.2 and y ≤ 0.2,
1, if x ≥ 0.8 and y ≥ 0.8,
1, if x ≤ 0.4 and y ≥ 0.6,
1, if x ≥ 0.6 and y ≤ 0.4,
0, otherwise,

∀x, y ∈ Ω, t > 0. (5.4.1)

On the boundary Γ1 we have

Γ1 = {x = 0, 0 ≤ y ≤ 0.2}
∪ {0 ≤ x ≤ 0.2, y = 0}
∪ {x = 1, 0.8 ≤ y ≤ 1}
∪ {0.8 ≤ x ≤ 1, y = 1}. (5.4.2)

On the boundary Γ2 we have

Γ2 = {x = 1, 0 ≤ y ≤ 0.4}
∪ {0.6 ≤ x ≤ 1, y = 0}
∪ {x = 0, 0.6 ≤ y ≤ 1}
∪ {0 ≤ x ≤ 0.4, y = 1}. (5.4.3)

The boundary conditions for pressure are

p(x) = 1, ∀x ∈ Γ1,(
−κκ′r1S1e

µ1
− κκ′r2S2e

µ2

)
∂p

∂n
(x) = −10, ∀x ∈ Γ2.

(5.4.4)

(5.4.5)

In Figure 5.3 we show the initial condition and the boundaries Γ1 and Γ2. We divide the
region Ω into N ×N squares where each square is made of eight triangular elements as shown
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Figure 5.3: Initial condition (5.4.1).

Figure 5.4: Single square (left) and entire mesh (right).

Figure 5.5: Solution of (4.1.1) after 100 time steps left and corresponding pressure right.
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in Figure 5.4. In this figure we show a single square on the left and the entire mesh for N = 15
on the right. Now solving the model using the given boundary- and initial conditions will
give us the result in Figure 5.5. This figure is not that clear on first sight. If we investigate
this figure we note that solution on the x = 0, y = 0 and x = 1, y = 1 corner has expanded.
Furthermore, we note that the solution on the remaining two corners has been diminished by
the air-phase. However, this solution has flattened out instead of completely withdrawing.
There are two explanations for the phenomena. First of all we have to deal with the irre-
ducible water saturation. When the saturation level of water gets below the irreducible
water saturation the flow of water stops moving. So there will be some residual water left
because of this treshold. The second reason has to deal with the viscosity of the air-phase.
Due to the very small viscosity of air, the air-flow does not exercise enough force on the flow
of water. Therefore, it partially flows together with the water-flow.

Last we note that the solution is not physically not entirely correct. We have seen in the
results section of the previous chapter that this might happen. Actually not using the limiter
will blow the solution up to 1027 on at least one element. Using different values for ν and M
in the limiter might limit the solution better.

5.5 Effect of permeability

In this section we investigate the effect of having a non-constant permeability. However,
in Section 5.2 we assumed a constant permeability. Therefore, we have to be cautious ad-
justing the permeability so that we are able to still use upscaling.

We begin by splitting the region [0, 1]× [0, 1] into separate domains with different permeabil-
ities. For y ≤ 0.5 we still have κ = 10−3 [m2]. For y > 0.5 we will now have κ = 5 · 10−3 [m2].
So the permeability will be 5 times as large. By taking the permeability equal across the
entire height, we will not have issues with upscaling.

All of the other parameters are the same as in Section 5.4. However, we use different bounda-
ries, boundary conditions and initial condition, so we can show the effect of different perme-
abilities more clearly. As in Section 4.5 we have chosen for the boundaries Γ1 = Γ(x = 0) and
Γ3 = Γ(x = 1). As initial condition we have taken

S1(x, 0) = 0, ∀x ∈ Ω. (5.5.1)

For the boundary conditions we take

S1(x, t) = 1, ∀x ∈ Γ1, ∀t > 0,

p(x) = 1, ∀x ∈ Γ1,(
−κκ′r1S1e

µ1
− κκ′r2S2e

µ2

)
∂p

∂n
(x) = −10, ∀x ∈ Γ2.

(5.5.2)
(5.5.3)

(5.5.4)

In Figure 5.6 we show the results. This figure clearly shows that part of the solution is flowing
faster where we have a higher permeability.
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Figure 5.6: Solution of (4.1.1) with a non-constant permeability after 100 time steps left and
corresponding pressure right.
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Chapter 6

Conclusions

This chapter summarizes the results we have obtained in this thesis.

In this thesis we have constructed a model for a general two-phase flow in a porous medium. In
Chapter 5 we have used this model in an application on the water storage beneath the faculty
of EEMCS. We have used discontinuous Galerkin in order to make a numerical approximation
of the solution of this model. In Chapters 2 and 3 we have derived the discontinuous Galerkin
method in one and two dimensions as a basis for the two-phase flow model.

In the application of the two-phase flow model we have demonstrated what happens when we
have two pumps, located on two opposite sides, pumping in water and two pumps, located
at the other two corners, extracting water. We have seen that the water-phase is diminished
by to the two pumps which are extracting water, which is partially due to the force exercised
by the air-phase. Furthermore, we have seen that some small amount of water remains in the
basin, which is physically sound. This is partially due to the water saturation getting below
the irreducible water saturation and partially due to the small viscosity of air-phase.
We have also see that the other two bubbles of water are expanding like we would expect.

We have also investigated the effect of having a non-constant permeability of the soil. We
have seen that the fluid flows faster through soil with a higher permeability.

In order to obtain a solution we have used the discontinuous Galerkin method for the satura-
tion. We have seen that discontinuous Galerkin with a limiter is suitable for solving equations
with a discontinuity. However, the limiter needs to be adapted for regions with non-periodic
boundary conditions. Applying the discontinuous Galerkin method to a two-phase flow model
adds an extra difficulty. The pressure will now have to be non-constant. This makes it more
difficult for the limiter to obtain limited values for the coefficients. But we still are confident
in the result obtained from the discontinuous Galerkin method.

Further research consists in cerating a more realistic model. In this way the two-phase
flow model can model more complex phenomena, such as relative permeability. Also,
the capillary pressure could be included. With respect to the numerical method a higher
order approximation can be used. With a higher order approximation the limiter discussed in
Chapter 2 can also be expanded for two dimensions, as the limiter only uses the coefficients
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and not the reconstructed solution. For the limiter from Section 3.4 there can be experimen-
ted with values for specific constants like the upper bound for the second derivative. Also,
a comparison in computational cost can be made between discontinuous Galerkin and the
finite element method.
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