
Delft University of Technology

Faculty of Electrical Engineering, Mathematics and Computer Science

Delft Institute of Applied Mathematics

Improving the linear solver used in the interactive

wave model of a real-time ship simulator

A thesis submitted to the

Delft Institute of Applied Mathematics

in partial fulfillment of the requirements

for the degree

MASTER OF SCIENCE

in

APPLIED MATHEMATICS

by

ELWIN VAN ’T WOUT

Delft, the Netherlands

August 2009

Copyright c© 2009 by Elwin van ’t Wout. All rights reserved.





MSc THESIS APPLIED MATHEMATICS

“Improving the linear solver used in the interactive wave model

of a real-time ship simulator”

ELWIN VAN ’T WOUT

Delft University of Technology

Daily supervisor Responsible professor

Dr. ir. M. B. van Gijzen Prof. dr. ir. C. Vuik

Other thesis committee members

Dr. ir. H. X. Lin

Dr. ir. A. Ditzel

Dr. ir. A. van der Ploeg

August 2009 Delft, the Netherlands





Preface

This master’s thesis has been written for the degree of Master of Science in Applied Mathe-
matics at the faculty of Electrical Engineering, Mathematics and Computer Sciences of Delft
University of Technology. The graduation is done at the department of Numerical Analysis.
The actual research of the graduation project has been carried out at Maritime Research Insti-
tute Netherlands (MARIN) in Wageningen. MARIN is a company which serves the maritime
sector with innovative products. To maintain their position, advanced hydrodynamic and
nautical research is carried out. One of the research projects at MARIN is the development
of a new wave model to be used in the real-time ship simulator. To improve the computational
performance of the wave model, this graduation research has been performed.

I would like to thank MARIN for giving me the opportunity to perform my graduation
project there. It was a pleasant time working at the department Maritime Software Group.
Especially, I would like to thank my daily supervisors for their support during the project.
Auke Ditzel helped me with understanding the wave model and gave valuable comments on
the report. Auke van der Ploeg supported me during the research with his knowledge about
linear solvers. My questions about implementational aspects were well answered by Anneke
Sicherer. Gert Klopman introduced me to the wave model which he has developed.
I would also like to thank my supervisors at the TU Delft, Kees Vuik and Martin van Gijzen for
their contribution to the project. In particular Martin van Gijzen for his excellent supervision
of the graduation research. During my weekly visits to the TU Delft, we have had interesting
discussions about this project and mathematical research in general.

Elwin van ’t Wout,

Wageningen, August 2009.

v



vi



Contents

Preface v

1 Introduction 1

2 The variational Boussinesq model 3

2.1 Pressure functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Differential equations resulting from the variation principle . . . . . . . . . . 5

2.3 The Hamiltonian system for the surface potential . . . . . . . . . . . . . . . . 7

3 Vertical structure of the flow 11

3.1 General series model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Shallow water equations . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Parabolic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Cosine-hyperbolic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Linearized variational Boussinesq model 17

4.1 Average velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.1 Galilean invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Linearized general series model . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Linearized parabolic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4 Linearized cosine-hyperbolic model . . . . . . . . . . . . . . . . . . . . . . . . 21

4.5 Dispersion relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.6 Ship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 The model equations summarized 25

6 Boundary conditions 27

6.1 Closed boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.2 Open boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7 Numerical discretization 31

7.1 Computational domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.2 Spatial discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.2.1 Discretization of the boundaries . . . . . . . . . . . . . . . . . . . . . 33

7.3 Time integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.3.1 Initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8 Numerical linear algebra 37

8.1 Properties of the matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

8.2 Krylov subspace methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

8.3 Conjugate gradients method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

8.4 Preconditioners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

8.5 Preconditioned conjugate gradient method . . . . . . . . . . . . . . . . . . . . 42

vii



9 Diagonally scaled conjugate gradient method 45

9.1 Structure of the preconditioner . . . . . . . . . . . . . . . . . . . . . . . . . . 45

9.2 Spectrum of the diagonally scaled system . . . . . . . . . . . . . . . . . . . . 45

10 Relaxed incomplete Cholesky decomposition 49

10.1 Sparsity pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

10.2 Calculating the incomplete Cholesky decomposition . . . . . . . . . . . . . . 50

10.3 Eisenstat’s implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

10.4 The RICCG-method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

10.5 Spectral condition number of the RIC-decomposition . . . . . . . . . . . . . . 53

11 Repeated red-black preconditioner 57

11.1 Repeated elimination on red-black grids . . . . . . . . . . . . . . . . . . . . . 57

11.2 The RRB method as a preconditioner . . . . . . . . . . . . . . . . . . . . . . 60

11.3 Sparsity pattern of the RRB preconditioner . . . . . . . . . . . . . . . . . . . 61

11.4 Lumping procedure during RRB . . . . . . . . . . . . . . . . . . . . . . . . . 62

11.5 Spectral condition number of the RRB-k preconditioner . . . . . . . . . . . . 63

12 Deflation 65

12.1 Derivation of the deflation method . . . . . . . . . . . . . . . . . . . . . . . . 65

12.2 Properties of the deflation matrix . . . . . . . . . . . . . . . . . . . . . . . . . 65

12.3 The conjugate gradient method applied to singular systems . . . . . . . . . . 67

12.4 Deflated conjugate gradient method . . . . . . . . . . . . . . . . . . . . . . . 68

12.4.1 Deflated preconditioned conjugate gradient method . . . . . . . . . . . 68

12.5 Choice of deflation vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

12.6 Spectrum of the deflated matrices . . . . . . . . . . . . . . . . . . . . . . . . . 70

12.7 Implementation aspects of the deflation method . . . . . . . . . . . . . . . . . 71

13 Test problems 73

13.1 Open sea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

13.2 Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

13.2.1 Wave patterns due to varying water depth . . . . . . . . . . . . . . . . 75

13.3 IJssel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

14 Results 77

14.1 Criteria for the performance assessment . . . . . . . . . . . . . . . . . . . . . 77

14.2 Overall behaviour of the CG-method . . . . . . . . . . . . . . . . . . . . . . . 78

14.3 Varying the maximum level in RRB . . . . . . . . . . . . . . . . . . . . . . . 79

14.3.1 Use of Lapack routines . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

14.3.2 Cholesky decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 81

14.4 Influence of the relaxation parameter on RICCG . . . . . . . . . . . . . . . . 82

14.5 Varying the number of deflation vectors . . . . . . . . . . . . . . . . . . . . . 82

14.6 The deflated RICCG-method . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

14.6.1 Using Lapack inside the deflation method . . . . . . . . . . . . . . . . 85

14.6.2 Estimating the spectral condition number . . . . . . . . . . . . . . . . 85

14.7 The deflated RRB method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

14.8 Parallel RIC-preconditioner . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

viii



14.9 Termination criterium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
14.9.1 Absolute and relative criteria . . . . . . . . . . . . . . . . . . . . . . . 88
14.9.2 Termination criterium based on the preconditioned residual . . . . . . 90
14.9.3 Different residual norms . . . . . . . . . . . . . . . . . . . . . . . . . . 90

14.10Conluding remarks on the results . . . . . . . . . . . . . . . . . . . . . . . . . 90

15 Conclusions 93

16 Future research 95

A List of symbols used in the variational Boussinesq model 97

B Basic assumptions of the variational Boussinesq model 98

C Variational calculus 99

D Depth averaged velocity 100

E Detailed calculations for the Hamiltonian 101

E.1 Calculations for the general series model . . . . . . . . . . . . . . . . . . . . . 101
E.2 Calculations for the parabolic shape function . . . . . . . . . . . . . . . . . . 104
E.3 Calculations for the cosine-hyperbolic shape function . . . . . . . . . . . . . . 108
E.4 Calculations for the linearized Hamiltonian . . . . . . . . . . . . . . . . . . . 114

F Positive model parameters 116

G Pressure terms 118

H Derivation of the incomplete Cholesky decomposition 119

I Flop count for the RRB-k preconditioner 121

J Influence of rounding errors on the deflation method 123

ix



x



1 Introduction

Background The actual research for this master’s thesis has been carried out at the
Maritime Research Institute Netherlands. MARIN serves the maritime industry with inno-
vative products. One of the products MARIN supplies is a bridge simulator, which simulates
the movements of a ship in a wave field. These real-time navigation simulators are used for
research, consultancy and training purposes. The simulation technology has been developed
in-house and is an ongoing process of research and development.
The current wave model is based on the Fourier theory, applied to a predefined wave spectrum
and does only partially interact with objects. A new wave model is under development, which
depends on the bathymetry, resulting in more realistic wave patterns. The influence between
the motions of a ship and the waves is also modelled. To fullfill the requirement of real-time
calculations, the computational methods need to have a large efficiency.
The linear solver in the wave model takes a considerable amount of computation time. Impro-
ving the performance of the linear solver will be the main topic of research in this graduation
project. To investigate the properties of the linear system first a literature study about the
underlying wave model has been performed. This results in a full description of the wave
model and its numerical descretization. Then, the main properties of the implemented linear
solvers have been derived. By implementing some improvements of these solvers and imple-
menting the deflation method, a comparison of performance between the different methods
will be presented.

Outline This thesis starts with the derivation of the recently developed wave model, called
the variational Boussinesq model. In Chapter 2 the basic principles of this model are de-
scribed. An important part in the derivation of the model is the insertion of a parameter for
the vertical structure of the fluid flow, described in Chapter 3. To reduce the computational
effort, in Chapter 4 a linearization of the model has been performed. The resulting set of
equations is listed in Chapter 5, followed by the horizontal boundaries of the model in Chap-
ter 6. To solve the differential equations for the wave field, the finite volume method has been
used to approximate the solution. This spatial discretization as well as the numerical time
integration has been described in Chapter 7. One of the model equations results in a linear
system of equations. To solve this large system efficiently, the conjugate gradient method has
been described in Chapter 8. Three different preconditioners are applied to this method and
their properties have been listed in the next sections: diagonal scaling in Chapter 9, relaxed
incomplete Cholesky in Chapter 10 and repeated red-black in Chapter 11. As explained in
Chapter 12, the deflation method can be combined with the preconditioners, resulting in
a better convergence. The linear solvers will be applied to the test problems presented in
Chapter 13. In Chapter 14 the main results of the different methods at several test problems
have been given. Conclusions of the graduation project will be given in Chapter 15. Some
suggestions for future research will be explained in chapter 16. Several appendices for more
background complete the thesis.
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2 The variational Boussinesq model

The recently developed wave model for use in the real-time ship simulator is based on a
variational Boussinesq model, as described in [21, 43, 44]. In this chapter the main theory
behind this model will be presented. First an expression of the pressure will be derived from
the Euler equations. The basic idea of the model is to minimize the pressure in the whole
fluid. The velocity and water level which the pressure is minimal for, satisfy a system of
partial differential equations. These equations will be used in the next chapters.
Starting point of the derivation of the model equations are the Euler equations

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p− g, (2.1)

which are valid for motions of ideal fluids and are a special case of the Navier-Stokes equations,
for inviscid incompressible flow [22]. The fluid velocity is given by u, ρ denotes the mass
density, p the pressure and g the gravitation. In Section 2.1 we will show that for irrotational
flows these equations can be rewritten as

∂φ

∂t
+

1

2
(∇φ)2 +

p

ρ
+ gz = 0, (2.2)

the instationary Bernoulli equation, with φ the velocity potential (u = ∇φ) and (∇φ)2 =
(∂φ∂x )2 + (∂φ∂y )2 + (∂φ∂z )

2. By integrating the pressure p over the whole domain we get the total
pressure

P(φ, ζ) :=

∫∫ ∫ ζ

−h

(
∂φ

∂t
+

1

2
(∇φ)2 + gz

)
dz dx dy. (2.3)

The vertical domain boundaries are the bottom (z = −h) and the water level (z = ζ). The
reference level z = 0 is around the mean water level. The horizontal boundaries are not
prescribed yet, this will be done in Chapter 6.
The basic idea of the variational Boussinesq model is to minimize the total pressure P. Hence
to find functions φ and ζ satisfying

min
φ,ζ

∫
P dt, (2.4)

which is called Luke’s variational formulation [24].
For functions, Fermat’s principle states that a zero derivative is a necessary (but not sufficient)
condition for a minimum. Similarly, a zero variation is a necessary condition for a minimal
functional [44]. Therefore, we have to search for functions φ and ζ such that

δφ

∫
P dt = 0 and δζ

∫
P dt = 0, (2.5)

with δφ and δζ denoting the first variation with respect to φ and ζ. These variations will be
calculated in Section 2.2.
Because the vertical structure of the flow is often known, the velocity potential can be written
as a series expansion in predefined vertical shape functions fm:

φ(x, y, z, t) = ϕ(x, y, t) +

M∑

m=1

fm(z, ζ)ψm(x, y, t). (2.6)

3



This expansion reduces the 3D-model to a 2D-model and is an important step in deriving the
variational Boussinesq model. In Chapter 3 we will elaborate more on this expansion.
Now, the variable φ is written in terms of ϕ and ψm. Together with ζ these are the basic
variables of the variational Boussinesq model. In Section 2.3 the minimization problem (2.4)
will be simplified by introducing the Hamiltonian H to

min
ϕ,ζ

∫ (∫∫
ϕ
∂ζ

∂t
dx dy −H(ϕ, ζ)

)
dt. (2.7)

With this expression, the basic equations of the variational Boussinesq model can be derived.
They read

∂ζ

∂t
− δϕH = 0, (2.8a)

∂ϕ

∂t
+ δζH = 0, (2.8b)

δψmH = 0. (2.8c)

This set of equations is called the Hamiltonian description [21]. The first equation is the
continuity equation, the second is similar to Bernoulli’s equation and the third leads to an
elliptic partial differential equation in ψm.

2.1 Pressure functional

In this section an expression for the pressure term will be derived for irrotational flows (see [13,
34]). This is done by rewritting the Euler equations (2.1), with gravitation the only external
force being considered. The Euler equations are a system of three coupled partial differential
equations for the velocity. By introducing a potential, which is a scalar function, the system
can be reduced to one partial differential equation. This equation is used to derive the total
pressure P as given in Equation (2.3).
The velocity potential φ(x, y, z, t) is implicitly defined by

∇φ := u. (2.9)

In order to define this correctly, one has to assume irrotational flow (see [13]):

∇× u = 0. (2.10)

Substituting the velocity potential (2.9), the Euler equations (2.1) can be written in a conser-
vation form [47]. The first term of the Euler equations can be rewritten as ∂∇φ

∂t = ∇∂φ
∂t , be-

cause of the smoothness of φ. Using a product rule1 for vectors, we find (u·∇)u = ∇(1
2(∇φ)2).

The mass density ρ is assumed to be constant over the whole domain, implying incompressible
flow [47]. Hence 1

ρ∇p = ∇(pρ). The gravitation can be written as g = ∇(gz). With these
identities, the Euler equations become

∇
(
∂φ

∂t
+

1

2
(∇φ)2 +

p

ρ
+ gz

)
= 0. (2.11)

1A vector dot product is given by [1] ∇(A ·B) = (A · ∇)B + (B · ∇)A+ A× (∇×B) +B × (∇× A). For
A = u and B = u this is equivalent with 1

2
∇(u · u) = (u · ∇)u + u × (∇× u). Using irrotational flow (2.10)

and the velocity potential (2.9) we now have (u · ∇)u = 1
2
∇((∇φ)2).

4



Because all three spatial derivatives are zero, the function depends only on time:

∂φ

∂t
+

1

2
(∇φ)2 +

p

ρ
+ gz = f(t). (2.12)

For the choice2 f(t) = 0 this is the Bernoulli equation (2.2). With P := −p
ρ we have

P (φ, z) =
∂φ

∂t
+

1

2
(∇φ)2 + gz. (2.13)

This is equal to the integrand in Equation (2.3), which gives an expression for the total
pressure P [34].

2.2 Differential equations resulting from the variation principle

The basic problem of the variational Boussinesq model is given by the variational formula-
tion (2.4). A necessary condition for the minimal value is that the first variation to φ and ζ
are zero. In this section the variations of the total pressure will be calculated. Equating these
first variations to zero will give a partial differential equation with boundary conditions at
the surface and bottom. The solution of this boundary value problem minimizes the total
pressure.
The derivation starts with calculating the variations. The first variation with respect to φ
has to be zero, i.e.,

0 = δφ

∫ ∫∫ ∫ ζ

−h
P (φ) dz dx dy dt

=

∫ ∫∫ ∫ ζ

−h

(
∂(δφ(φ))

∂t
+ δφ

(1

2
(∇φ)2

))
dz dx dy dt. (2.14)

For this derivation use has been made of some elementary rules in variational calculus (see
Appendix C). In order to derive the correct form of this equation, observe the following two
equations.
With Leibniz’s rule3, we have

∫ ζ

−h

∂(δφ(φ))

∂t
dz =

∂

∂t

∫ ζ

−h
δφ dz − δφ|z=ζ

∂ζ

∂t
+ δφ|z=−h

∂(−h)
∂t

. (2.15)

Applying Green’s theorem4 (c = δφ, u = ∇φ) gives

∫∫ ∫ ζ

−h
δφ

(1

2
(∇φ)2

)
dz dx dy =

∫∫∫

Ω
∇φ · ∇(δφ) dz dx dy

=

∫∫

Γ
∇φ · n δφ dx dy −

∫∫∫

Ω
(∇2φ) δφ dz dx dy (2.16)

with n denoting the unit outward normal. The domain is given by Ω = R
2 × [−h, ζ], with the

boundary Γ = {R3|z = −h, z = ζ}. In the horizontal plane boundaries have not been specified

2This choice is allowed because if one defines a new velocity potential φ′ := φ−
R

fdt, then ∂φ′

∂t
+ 1

2
(∇φ′)2 +

p

ρ
+ gz = 0 and ∇φ′ = ∇φ, so the same velocity profile [5].
3 d

dx

R b

a
fds =

R b

a

df

dx
ds+ f(b) db

dx
− f(a) da

dx
4
R

Ω
c ∇ · u dΩ = −

R

Ω
∇c · u dΩ +

H

Γ
c u · n dΓ

5



yet. For the computational model, these boundaries will be specified later in Chapter 6. By
substituting Equations (2.15) and (2.16) into Equation (2.14) we get

∫ ∫∫ (
∂

∂t

∫ ζ

−h
δφ dz − δφ|z=ζ

∂ζ

∂t
− δφ|z=−h

∂h

∂t

)
dx dy dt

+

∫ (∫∫ (
−
∫ ζ

−h
(∇2φ) δφ dz

)
dx dy +

∫∫

Γ
(∇φ · n) δφ dx dy

)
dt =

∫
∂

∂t

(∫∫∫

Ω
δφ dx dy dz

)
dt−

∫ ∫∫∫

Ω
(∇2φ) δφ dx dy dz dt

−
∫ ∫∫

z=ζ

∂ζ

∂t
δφ dx dy dt+

∫ ∫∫

z=ζ
(∇φ · n) δφ dx dy dt

−
∫ ∫∫

z=−h

∂h

∂t
δφ dx dy dt+

∫ ∫∫

z=−h
(∇φ · n) δφ dx dy dt = 0. (2.17)

The integral containing the time derivative vanishes because the variations w.r.t. φ and ζ are
zero at the start and end point in time [24]. For arbitrary variations δφ, Equation (2.17) is
satisfied when

∆φ = 0, for − h < z < ζ; (2.18a)

∂ζ

∂t
= ∇φ · ns, for z = ζ; (2.18b)

∂h

∂t
= ∇φ · nb, for z = −h; (2.18c)

with ns and nb denoting the unit outward normals at the surface and bottom, respectively.
They read

ns =
1√

(∇ζ)2 + 1

[
−∂ζ
∂x

− ∂ζ

∂y
1

]T
, (2.19a)

nb =
1√

(∇h)2 + 1

[
−∂h
∂x

− ∂h

∂y
− 1

]T
. (2.19b)

Written out, Equations (2.18) read

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (2.20a)

√
(∇ζ)2 + 1

∂ζ

∂t
= −u∂ζ

∂x
− v

∂ζ

∂y
+ w for z = ζ, (2.20b)

√
(∇h)2 + 1

∂h

∂t
= −u∂h

∂x
− v

∂h

∂y
− w for z = −h. (2.20c)

The first equation is the continuity equation, which relates to mass conservation for incom-
pressible flow [29]. The second equation states that no particles can leave the water surface
and is called the kinematic boundary condition. The third equation resembles the imperme-
ability of the sea bottom.

6



Equations (2.20) result from requirement (2.14) of zero variation of P w.r.t φ. Similarly, the
first variation of P w.r.t. ζ should be zero:

∫ ∫∫ (
δζ

∫ ζ

−h

(
∂φ

∂t
+

1

2
(∇φ)2 + gz

)
dz

)
dx dy dt = 0,

∫ ∫∫ ((
∂φ

∂t
+

1

2
(∇φ)2 + gz

)∣∣∣∣
z=ζ

δζ

)
dx dy dt = 0,

∂φ

∂t
+

1

2
(∇φ)2 + gz = 0 for z = ζ. (2.21)

This is equal to P (z=ζ) = 0, so zero pressure at the sea surface. This is called the dynamic free
surface condition. Note that the pressure at the surface is not really zero, but atmospheric [22];
so the pressure considered here is the pressure compared to the atmospheric pressure5.

2.3 The Hamiltonian system for the surface potential

The basic quantities in the model as presented yet, are the velocity potential φ(x, y, z, t)
and the surface elevation ζ(x, y, t). Note that φ depends on three spatial dimensions. Three
dimensional problems are computationally considerably more difficult than two-dimensional
problems. Therefore, the number of spatial dimensions of the model are reduced by writing
the velocity potential as a series expansion in vertical shape functions fm:

φ(x, y, z, t) = ϕ(x, y, t) +

M∑

m=1

fm(z)ψm(x, y, t), (2.22)

The vertical shape functions have to represent the vertical structure of fluid flows, which
often has a characteristic shape. Two different models for the vertical shape functions will
be explained in more detail in Chapter 3. In this section we will focus on the variable ϕ, so
assume M = 0.

The Lagrangian and the Hamiltonian are defined in this section in order to rewrite the pressure
term in a more favorable form. Calculating the minimal value of the total pressure will lead
to a system of two Hamiltonian equations.

The surface velocity potential ϕ, introduced in the series expansion (2.22), is defined by

ϕ(x, y, t) := φ(x, y, z=ζ(x, y, t), t). (2.23)

Note that the gradient of the surface potential ∇ϕ does not equal the velocity at the sur-
face (∇φ)|z=ζ , because ∇ϕ = ∇φ|z=ζ + ∂φ

∂z |z=ζ∇ζ.
In order to rewrite the total pressure P from Equation (2.3), let’s consider the kinetic en-
ergy K(ϕ, ζ) which is implicitly defined by (see [43])

K(ϕ, ζ) := min
φ

{K(φ, ζ) | φ = ϕ at z = ζ}, (2.24)

5The choice of P = 0 at the surface can be justified by looking at the velocity potential φ′ := φ − pat,
with pa the atmospheric pressure at the surface. Note that ∇φ′ = ∇φ, so it does not change the velocity.
Substituting φ′ in (2.21), gives ∂φ

∂t
− pa + 1

2
(∇φ)2 + gz = 0, so P (z = ζ) = pa as desired. Note that the

atmospheric pressure pa is assumed to be constant.
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with

K(φ, ζ) :=

∫∫ (∫ ζ

−h

1

2
(∇φ)2 dz − φ|z=−h

∂h

∂t

)
dx dy. (2.25)

This constrained minimization problem is governed by the zero first variation of K w.r.t. φ,
which can be reduced to

−
∫∫∫

Ω
(∇2φ)δφ dx dy dz +

∫∫

Γ
(∇φ · n)δφ dx dy −

∫∫

z=−h

∂h

∂t
δφ dx dy = 0. (2.26)

The constraint of the minimization problem (2.24) yields the essential boundary condition φ =
ϕ at z = ζ; so δφ|z=ζ = 0. Hence, the equations

∆φ = 0, for − h < z < ζ; (2.27a)

φ = ϕ, for z = ζ; (2.27b)

∂h

∂t
= ∇φ · nb, for z = −h; (2.27c)

satisfy the kinetic minimization problem (2.24). Observe that this system is similar to Equa-
tion (2.18).

With the introduction of the kinetic energy (2.25) the total pressure P(φ, ζ) from (2.3) can
be written as

P(φ, ζ) =

∫∫ ∫ ζ

−h

∂φ

∂t
dz dx dy +

∫∫ (∫ ζ

−h

1

2
(∇φ)2 dz +

∫ ζ

−h
gz dz

)
dx dy

=

∫∫ (
∂

∂t

∫ ζ

−h
φ dz − φ|z=ζ

∂ζ

∂t
− φ|z=−h

∂h

∂t

)
dx dy

+

∫∫ (∫ ζ

−h

1

2
(∇φ)2 dz +

[
1

2
gz2

]ζ

z=−h

)
dx dy

= −
∫∫ (

φ|z=ζ
∂ζ

∂t
−
∫ ζ

−h

1

2
(∇φ)2 dz + φ|z=−h

∂h

∂t
− 1

2
g(ζ2 − h2)

)
dx dy +

∂

∂t

∫∫ ∫ ζ

−h
φ dz dx dy

= −
(∫∫

φ|z=ζ
∂ζ

∂t
dx dy −K(φ, ζ) −

∫∫
1

2
g(ζ2 − h2)dx dy

)
+
∂

∂t

∫∫ ∫ ζ

−h
φ dz dx dy. (2.28)

The last integral, containing the time derivative of φ, vanishes because the variation w.r.t. φ
and ζ are zero at the end points of the time interval, as in Equation (2.17).

The model uses the minimal value of P, which can be rewritten as

min
φ,ζ

∫
P(φ, ζ) dt = min

ϕ,ζ

∫ (
−
∫∫

ϕ
∂ζ

∂t
dx dy −H(ϕ, ζ)

)
dt, (2.29)

with the Hamiltonian H defined by

H(ϕ, ζ) := K(ϕ, ζ) +

∫∫
1

2
g(ζ2 − h2)dx dy. (2.30)

Note that the component 1
2gh

2 can be omitted, because the variations w.r.t. ϕ and ζ are zero.
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Now, with the definition of the Hamiltonian (2.30) and the kinetic energy (2.25), we have
reduced the variational principle (2.4) for φ and ζ to a variational principle in ϕ and ζ:

min
ϕ,ζ

∫ (∫∫
ϕ
∂ζ

∂t
dx dy −H(ϕ, ζ)

)
dt. (2.31)

This is known as a canonical action principle for the canonical variables ϕ and ζ [44]. The
functional is also called the Lagrangian

L(ϕ, ζ) :=

∫ (∫∫
ϕ
∂ζ

∂t
dx dy −H(ϕ, ζ)

)
dt. (2.32)

In order to obtain the minimal value of the total pressure, the first variation of the Lagrangian
w.r.t. ϕ and ζ should vanish. The zero variation w.r.t. ϕ reads

δϕ

∫ (∫∫
ϕ
∂ζ

∂t
dx dy −H(ϕ, ζ)

)
dt = 0,

hence

∂ζ

∂t
= δϕH(ϕ, ζ). (2.33)

The zero variation w.r.t ζ reads

δζ

∫ (∫∫
ϕ
∂ζ

∂t
dx dy −H(ϕ, ζ)

)
dt = 0,

∫∫ (
−
∫
∂ϕ

∂t
δζ dt+ ϕδζ|tend

)
dx dy =

∫
δζH(ϕ, ζ) dt,

hence

∂ζ

∂t
= −δζH(ϕ, ζ). (2.34)

Summarizing, the zero variations w.r.t. ϕ and ζ result in

∂ζ

∂t
= δϕH(ϕ, ζ), (2.35a)

∂ϕ

∂t
= −δζH(ϕ, ζ), (2.35b)

with the Hamiltonian density H given by
∫∫

H dxdy = H. These equations are the first two
of the Hamiltonian description (2.8). The other one will be derived in next chapter.
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3 Vertical structure of the flow

In Chapter 2 the Hamiltonian description (2.35) has been derived from the Euler equa-
tions (2.1). In Equation (2.22) the velocity potential φ has been written in the form of a
series in vertical shape functions. These shape functions will be analyzed in more detail in
this chapter. First, a general model will be considered in Section 3.1. Then, two different
choices of shape functions will be discussed, namely the parabolic and cosine-hyperolic model
in Section 3.2 and 3.3, respectively.
With the surface velocity potential (2.23), the series expansion of φ reads

φ(x, y, z, t) = ϕ(x, y, t) +
M∑

m=1

fm(z)ψm(x, y, t), (3.1a)

fm = 0 for z = ζ(x, y, t). (3.1b)

The shape functions fm have to be prescribed and represent the vertical velocity shape.
Because of (3.1b), all shape functions fm depend on ζ and therefore we have ∇fm = ∂fm

∂ζ ∇ζ.
Moreover, the shape functions fm may also depend on h and shape parameters κm. The
functions ψm are not known a priori and therefore become variables for the total pressure.
This affects the minimization problem (2.4), consequently, the minimization problem (2.7)
changes to

min
ϕ,ζ,ψ1,ψ2,...,ψM

∫ (∫∫
ϕ
∂ζ

∂t
dx dy −H(ϕ, ζ, ψ1, ψ2, . . . , ψM )

)
dt, (3.2)

for the Hamiltonian H. The minimized functional is called the Lagrangian (see Equa-
tion (2.32)). The zero variations of the Lagrangian w.r.t. ϕ and ζ yield Equations (2.35).
Because the first term of the Lagrangian is independent of ψm, the zero variation w.r.t. ψm
yields a zero variation of the Hamiltonian w.r.t. ψm. Hence, we get the following set of
equations

∂ζ

∂t
− δϕH(ϕ, ζ, ψ1, . . . , ψM ) = 0, (3.3a)

∂ϕ

∂t
+ δζH(ϕ, ζ, ψ1, . . . , ψM ) = 0, (3.3b)

δψmH(ϕ, ζ, ψ1, . . . , ψM ) = 0 for m = 1, 2, . . . ,M. (3.3c)

These equations describe the variational Boussinesq model for fluid motions with a predefined
vertical shape.

3.1 General series model

The Hamiltonian system (3.3) is written in a variational form. For computational purposes,
the variations of the Hamiltonian density functional H should be written out in terms of the
basic variables ϕ, ζ and ψm. First, this will be done for the general case. In Sections 3.2
and 3.3 the shape function will be chosen according to two different models.
Let’s assume that the bottom does not change directly in time, so ∂h

∂t = 0, and let’s assume
a mildly sloping bottom profile as well, i.e., ∇h = 0. With these assumptions and using
Hamiltonian (2.30) and the kinetic energy (2.25), the Hamiltonian density reads

H(ϕ, ζ, ψm) =

∫ ζ

−h

1

2

(
∇
(
ϕ+

M∑

m=1

fmψm

))2

dz +
1

2
g(ζ2 − h2). (3.4)
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The Hamiltonian density (3.4) can now be written as

H(ϕ, ζ, ψm) =
1

2
(h+ ζ)(∇ϕ)2 +

1

2

M∑

m,n=1

Fmn∇ψm · ∇ψn +
1

2
(∇ζ)2

M∑

m,n=1

Gmnψmψn

+
1

2

M∑

m,n=1

Kmnψmψn + ∇ϕ ·
M∑

m=1

Pm∇ψm + ∇ϕ · ∇ζ
M∑

m=1

Qmψm

+∇ζ ·
M∑

m,n=1

Rmnψn∇ψm +
1

2
g(ζ2 − h2), (3.5)

with Fmn, Gmn,Kmn, Pm, Qm and Rmn functionals given by

Fmn :=

∫ ζ

−h
fmfn dz, (3.6a)

Gmn :=

∫ ζ

−h

∂fm
∂ζ

∂fn
∂ζ

dz, (3.6b)

Kmn :=

∫ ζ

−h

∂fm
∂z

∂fn
∂z

dz, (3.6c)

Pm :=

∫ ζ

−h
fm dz, (3.6d)

Qm :=

∫ ζ

−h

∂fm
∂ζ

dz, (3.6e)

Rmn :=

∫ ζ

−h
fm

∂fn
∂ζ

dz. (3.6f)

For a thorough derivation, see Appendix E.1.

Note that Rmn is the only integral being non-symmetric in m and n and that the functionals
depend on ζ, because the integrals are over the vertical fluid domain from depth h to water
level ζ.

With the general Hamiltonian density (3.5), the Hamiltonian system (3.3) can now be rewrit-
ten in terms of the basic variables ϕ, ζ and ψm (see Appendix E.1). Subsequently, the
continuity equation (3.3a) reads

∂ζ

∂t
+ ∇ ·

(
(h+ ζ)∇ϕ+

M∑

m=1

Pm∇ψm + ∇ζ
M∑

m=1

Qmψm

)
= 0. (3.7)

The second equation (3.3b) from the Hamiltonian system becomes

∂ϕ

∂t
+

1

2
(∇ϕ)2 + gζ + R = 0, (3.8)

which is equivalent to the Bernoulli equation (2.21), but now with an extra non-hydrostatic
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term R(x, y, t), given by

R :=
1

2

M∑

m,n=1

F ′
mn∇ψm · ∇ψn +

1

2

M∑

m,n=1

(
(∇ζ)2G′

mn +K ′
mn

)
ψmψn

+∇ϕ ·
M∑

m=1

(
P ′
m∇ψm +Q′

mψm∇ζ
)

+ ∇ζ ·
M∑

m,n=1

R′
mnψn∇ψm

−∇ ·
( M∑

m=1

Qmψm∇ϕ+

M∑

m,n=1

(
Rmnψn∇ψm +Gmnψmψn∇ζ

))
, (3.9)

with prime indicating a variation w.r.t. ζ, so F ′
mn =

δζFmn

δζ .

Equation (3.3c), given by the zero first variation of the Hamiltonian w.r.t. ψℓ, can be written
as

Qℓ ∇ϕ · ∇ζ +

M∑

m=1

(
Kℓm + (∇ζ)2Gℓm

)
ψm + ∇ζ ·

M∑

m=1

Rmℓ∇ψm

−∇ ·
( M∑

m=1

Fℓm∇ψm + Pℓ∇ϕ+
M∑

m=1

Rℓmψm∇ζ
)

= 0, (3.10)

for ℓ = 1, 2, . . . ,M .

Equations (3.7), (3.8) and (3.10) are the main equations of the general variational Boussinesq
model, in terms of the vertical shape functions fm. In sections 3.2 and 3.3 two different
models of the vertical shape fm will be considered.

3.1.1 Shallow water equations

The equations in the variational Boussinesq model, as described above, are a generalization
of the more well-known shallow water equations. The main difference is in modelling the
vertical structure of the fluid flow. In the Boussinesq model, the shape functions fm(z) and
the variables ψm(x, y, t) give the vertical motions, allowing variations in the vertical velocity
of the fluid. The shallow water equations uses vertically averaged velocities instead [13].
Therefore, no changes in vertical motions can be derived from the shallow water equations.

To reduce the variational Boussinesq model to the shallow water equation, one has to ignore ψ,
that is, omit all terms with ψ and Equation (3.10). Substitute the velocity for the potential
and differentiate Equation (3.8) to both x and y. Then, for irrotational flow, equations (3.7)
and (3.8) become

∂ζ

∂t
+
∂(h + ζ)u

∂x
+
∂(h + ζ)v

∂y
= 0, (3.11a)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ g

∂ζ

∂x
= 0, (3.11b)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ g

∂ζ

∂y
= 0, (3.11c)

which are the shallow water equations [22]; see also Appendix G.
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3.2 Parabolic model

The first model considered for the vertical shape is a parabolic one [20]. For this model, the
shape function is given by

f (p) :=
1

2
(z − ζ)

(
1 +

h+ z

h+ ζ

)
. (3.12)

Note that we have f = 0 at z = ζ and that the series expansion consists of only one shape func-
tion, so M = 1. When the parabolic shape (3.12) is substituted into the Hamiltonian (3.4),
one gets

H(p) =
1

2
(h+ ζ)

(
∇ϕ− 2

3
ψ∇ζ − 1

3
(h+ ζ)∇ψ

)2

+
1

90
(h+ ζ) (ψ∇ζ − (h+ ζ)∇ψ)2 +

1

6
(h+ ζ)ψ2 +

1

2
g(ζ2 − h2). (3.13)

In Appendix E.2 the derivation of this Hamiltonian is shown, as well as the derivation of the
Hamiltonian system, given by

∂ζ

∂t
+ ∇ ·

(
(h+ ζ)

(
∇ϕ− 2

3
ψ∇ζ − 1

3
(h+ ζ)∇ψ

))
= 0, (3.14a)

∂ϕ

∂t
+

1

2

(
∇ϕ− 2

3
ψ∇ζ − 2

3
(h+ ζ)∇ψ

)2

+
1

6

(
1 +

1

5
(∇ζ)2

)
ψ2 − 1

45

(
(h+ ζ)∇ψ + ψ∇ζ

)2

+∇ ·
(

(h+ ζ)
(2

3
∇ϕ− 7

15
ψ∇ζ − 1

5
(h+ ζ)∇ψ

)
ψ

)
+ gζ = 0, (3.14b)

(h+ ζ)ψ
(1

3
+

7

15
(∇ζ)2

)
−
(2

3
(h+ ζ)∇ϕ− 1

5
(h+ ζ)2∇ψ

)
· ∇ζ

+∇ ·
(

1

3
(h+ ζ)2∇ϕ− 1

5
(h+ ζ)2ψ∇ζ − 2

15
(h+ ζ)3∇ψ

)
= 0. (3.14c)

As derived in (D.4), the depth averaged horizontal velocity U for a parabolic shape reads

U(x, y) = ∇ϕ− 2

3
ψ∇ζ − 1

3
(h+ ζ)∇ψ. (3.15)

With this, the first equation (3.14a) becomes

∂ζ

∂t
+ ∇ ·

(
(h+ ζ)U

)
= 0. (3.16)

This equation represents mass conservation, for a time independent bottom shape [22] (see
also Equation (3.11)). The second equation (3.14b) represents the Bernoulli equation. The
third equation (3.14c) is an elliptic partial differential equation, because the second-order
derivatives of ψ are in the form of the Laplace operator [45].
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3.3 Cosine-hyperbolic model

Another physically realistic choice for the vertical shape function is a cosine-hyperbolic
one [21], given by

f (c) := cosh(κ(h+ z)) − cosh(κ(h + ζ)), (3.17)

with κ(x, y, t) a shape parameter. In Section 4.5 it will be explained that the parameter κ is
related to the wave number.
Note that the cosine-hyperbolic model is related to the parabolic model by limκ→0

f(c)

κ2(h+ζ)
=

f (p). At the water surface, the condition f |z=ζ = 0 is satisfied. At the bottom, the boundary

condition (2.18c) can be written as |nb|∂h∂t = −∇ϕ · ∇h − ∂f
∂ζ ψ∇ζ · ∇h − f∇ψ · ∇h − ∂f

∂zψ

at z = −h. With the mild slope condition ∇h = 0 this reduces to ψ ∂f∂z |z=−h = 0, which is
satisfied by both the parabolic and cosine-hyperbolic shape functions.
In Appendix E.3 the derivation of the Hamiltonian system with a cosine-hyperbolic shape
function is given. The resulting system reads

∂ζ

∂t
+ ∇ ·

(
(h+ ζ)U

)
= 0, (3.18a)

∂ϕ

∂t
+

1

2
U2 + gζ +

1

2
κ2S2ψ2 +

1

2
D2(∇ψ)2

−κ(h+ ζ)U ·
((

S − D
κ(h+ ζ)

)
∇ψ + κ Cψ∇ζ

)
+ ∇ ·

(
κ(h + ζ)SUψ

)
= 0, (3.18b)

−κ (h+ ζ)S
(
∇ϕ−D∇ψ − κSψ∇ζ

)
· ∇ζ

+
1

2
κ
(
S C − κ(h+ ζ)

)
ψ + ∇ ·

(
(h+ ζ)D (∇ϕ− κSψ∇ζ)

)

+∇ ·
(

1

κ

( S2

κ(h+ ζ)
−D2κ(h+ ζ) − 1

2
κ(h+ ζ) − 1

2
SC
)
∇ψ
)

= 0, (3.18c)

with the functionals

D := cosh(κ(h + ζ)) − sinh(κ(h + ζ))

κ(h+ ζ)
, (3.19a)

S := sinh(κ(h + ζ)), (3.19b)

C := cosh(κ(h + ζ)). (3.19c)

The depth-averaged velocity used in the equations is given by

U := ∇ϕ−D∇ψ − κSψ∇ζ, (3.20)

as derived in (D.6).
Equations (3.14) and (3.18) give two different models for the non-linear variational Boussinesq
model. In Chapter 4 they will be linearized to get the model equations.
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4 Linearized variational Boussinesq model

The variational Boussinesq model presented in the previous chapters resulted in a system of
three equations (3.7),(3.8),(3.10). This non-linear Hamiltonian system is the basis for the
variational Boussinesq model. In order to simplify these equations and thus reducing the
computational effort, the Hamiltonian will be linearized.

4.1 Average velocity

The velocity of the fluid is given by u = ∇Φ. The velocity of the fluid motion can be divided
in two components, namely an average velocity consisting mainly of the current and a smaller
term for the velocity due to wave motions. So

∇Φ = Ũ + ∇φ̃, (4.1)

with Ũ(x, y, t) the average horizontal velocity and ∇φ̃ the velocity of the fluid due to wave
motions. The average velocity Ũ is not the same as the depth averaged velocity U, presented
in Appendix D, because Ũ has also been averaged over time. Nevertheless, it may depend on
time, but not as quick as the other variables.

As in Equation (3.1), the potential φ̃ will be written in the form of a surface velocity po-
tential ϕ̃ and a series expansion in vertical shape functions fm (m = 1, 2, . . . ,M). The two
models for the vertical shape function, parabolic (3.12) and cosine-hyperbolic (3.17), both
consist of only one shape function. We thus take M = 1 in the following, so

φ̃(x, y, z, t) = ϕ̃(x, y, t) + f(z)ψ(x, y, t), (4.2a)

f = 0 for z = ζ. (4.2b)

In Equation (3.1b) the vertical shape function f was taken zero at the actual water level ζ.
As an approximation, we assume the shape function to be zero-valued at the mean water
level ζ, as seen in Equation (4.2b). The advantage of this approximation is that f does not
depend on ζ, so ∂f

∂ζ = 0.

The horizontal gradient of f now becomes ∇f = ∂f
∂h∇h + ∂f

∂ζ
∇ζ. We have the mild slope

condition for the bottom ∇h = 0 and an additional assumption of ∇ζ = 0, implying an
almost constant average water level. Hence, the horizontal gradient of the vertical shape
function f is zero.

From now on, the tildes will be omitted for convenience. However, one should keep in mind
that there is a slight distinction, given by the current Ũ, between the potential ϕ used in the
remainder of this report and the one used previously.

In order to get the linearized Hamiltonian system, substitute the velocity potential (4.1)
in Equation (3.3). The main term in the Hamiltonian (2.30) is 1

2(∇Φ)2 from the kinetic
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energy (2.25) and can be rewritten as

∫ ζ

−h

1

2
(∇Φ)2dz =

∫ ζ

−h

1

2
(U + ∇φ)2dz

=

∫ ζ

0

(
1

2
U2 + U · ∇(ϕ+ fψ) +

1

2

(
∇(ϕ+ fψ)

)2
)
dz

+

∫ 0

−h

(
1

2
U2 + U · ∇(ϕ+ fψ) +

1

2

(
∇(ϕ+ fψ)

)2
)
dz

=
1

2
ζU2 + ζU · ∇ϕ+ U · ∇ψ

∫ ζ

0
fdz +

∫ ζ

0

(
1

2
(∇ϕ+ f∇ψ)2 +

1

2
(f ′ψ)2

)
dz

+
1

2
hU2 + hU · ∇ϕ+ U · ∇ψ

∫ 0

−h
fdz +

∫ 0

−h

(
1

2
(∇ϕ+ f∇ψ)2 +

1

2
(f ′ψ)2

)
dz

(4.3)

Some terms of this expression can already be omitted.

• The term 1
2hU

2 has zero variations w.r.t. ϕ, ζ and ψ and will therefore not appear in
the Hamiltonian system.

• Because f = 0 at z = ζ̄, the term U · ∇ψ
∫ ζ
0 fdz vanishes.

• The integral
∫ ζ
0

(
1
2(∇ϕ+ f∇ψ)2 + 1

2 (f ′ψ)2
)
dz has a cubic contribution in the Lagrangian

and therefore quadratic contribution in the model equations. By performing a lineariza-
tion, this integral will vanish.

We end up with the linearized Lagrangian

L0 =

∫ (∫∫
ϕ
∂ζ

∂t
dx dy −

∫∫ (
1

2
ζU2 + hU · ∇ϕ+ U · ∇ψ

∫ 0

−h
f dz + ζU · ∇ϕ

+

∫ 0

−h

(
1

2
(∇ϕ+ f∇ψ)2 +

1

2
(f ′ψ)2

)
dz +

1

2
g(ζ2 − h2)

)
dx dy

)
dt. (4.4)

As explained in the next section, more terms of this linearized Lagrangian will be omitted.

4.1.1 Galilean invariance

The model is made in an fixed frame of reference. One can also take a frame of reference
comoving with the current, or with a ship. When the velocity of this moving frame is constant,
one speaks of a Galilean transformation [25]. We want the model to be equivalent in both
frames, which is called Galilean invariance. This requirement can only hold when some of
the terms in the linearized Lagrangian are omitted.
A Galilean transformation is a transformation from the frame (x, y, z, t) to (x̃, ỹ, z̃, t̃) given
by (see [25])

x̃ = x− Ũ t, (4.5a)

ỹ = y − Ṽ t, (4.5b)

z̃ = z, (4.5c)

t̃ = t, (4.5d)
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with Ũ , Ṽ constant velocities of the moving frame.
The derivatives in the moving frame will become

∂

∂x
=
∂x̃

∂x

∂

∂x̃
=

∂

∂x̃
and

∂

∂y
=
∂ỹ

∂y

∂

∂ỹ
=

∂

∂ỹ
, (4.6)

so ∇ = ∇̃.
For the time derivative, we have

∂

∂t
=
∂t̃

∂t

∂

∂t̃
+
∂x̃

∂t

∂

∂x̃
+
∂ỹ

∂t

∂

∂ỹ
=

∂

∂t̃
− Ũ

∂

∂x̃
− Ṽ

∂

∂ỹ
=

∂

∂t̃
− Ũ · ∇. (4.7)

Observe that in a variational setting, we have
∫ ∫∫

ϕ
∂ζ

∂t
dx dy dt =

∫ ∫∫
−ζ ∂ϕ

∂t
dx dy dt, (4.8)

by partial integration.
Applying the Galilean transformation (4.5) to this integral gives

∫ ∫∫
−ζ ∂ϕ

∂t
dx dy dt =

∫ ∫∫
−ζ̃
(
∂ϕ̃

∂t̃
− Ũ · ∇̃ϕ̃

)
dx̃ dỹ dt̃

=

∫ ∫∫ (
ϕ̃
∂ζ̃

∂t̃
+ ζ̃Ũ · ∇̃ϕ̃

)
dx̃ dỹ dt̃. (4.9)

Using this expression, application of the Galilean transformation to the linearized Lagrangian (4.4)
yields

L̃0 =

∫ (∫∫
ϕ̃
∂ζ̃

∂t̃
dx̃ dỹ +

∫∫
ζ̃Ũ · ∇̃ϕ̃ dx̃ dỹ −

∫∫ (
1

2
ζ̃U2 + h̃U · ∇̃ϕ̃+ U · ∇̃ψ̃

∫ 0

−h
f dz

+ζ̃U · ∇̃ϕ̃+

∫ 0

−h

(
1

2
(∇̃ϕ̃+ f∇̃ψ̃)2 +

1

2
(f ′ψ̃)2

)
dz +

1

2
g(ζ̃2 − h̃2)

)
dx̃ dỹ

)
dt̃. (4.10)

Let’s consider a frame of reference moving with the average velocity, i.e., Ũ = U. Then the
linearized Lagrangian becomes

L̃0 =

∫ (∫∫
ϕ̃
∂ζ̃

∂t̃
dx̃ dỹ −

∫∫ (∫ 0

−h

(
1

2
(∇̃ϕ̃+ f∇̃ψ̃)2 +

1

2
(f ′ψ̃)2

)
dz +

1

2
g(ζ̃2 − h̃2)

+
1

2
ζ̃U2 + h̃U · ∇̃ϕ̃+ U · ∇̃ψ̃

∫ 0

−h
f dz

)
dx̃ dỹ

)
dt̃. (4.11)

Note that the term ζU · ϕ has now vanished. However, there are still some terms in the
Lagrangian depending on the average velocity. To make the linearized Lagrangian Galilean
invariant, these three terms have to be omitted. This yields

L0 =

∫ (∫∫
ϕ
∂ζ

∂t
dx dy −

∫∫ (
ζU · ∇ϕ

+

∫ 0

−h

(
1

2
(∇ϕ+ f∇ψ)2 +

1

2
(f ′ψ)2

)
dz +

1

2
g(ζ2 − h2)

)
dx dy

)
dt, (4.12)
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the linearized Lagrangian, invariant under a Galilean transformation.
With this expression (4.12), the linearized Hamiltonian can be written as

H0 =

∫∫ (
ζU · ∇ϕ+

∫ 0

−h

(1

2
(∇ϕ+ f∇ψ)2 +

1

2
(f ′ψ)2

)
dz +

1

2
g(ζ2 − h2)

)
dx dy. (4.13)

Similar to (3.3), the linearized Hamiltonian system reads

∂ζ

∂t
− δϕH0 = 0, (4.14a)

∂ϕ

∂t
+ δζH0 = 0, (4.14b)

δψH0 = 0. (4.14c)

These three equations are the basis of the linear variational Boussinesq model. In the next
sections the shape models we have discussed in Chapter 3 are applied to these equations.

4.2 Linearized general series model

The Hamiltonian system (3.3) has been changed into a linearized equivalent (4.14). This
system is given in terms of the variations of the linearized Hamiltonian. First, these varia-
tions are calculated in terms of the basic variables. This will be done for the general series
model (4.2). The derivations are shown in more detail in Appendix E.4.
The linearized Hamiltonian for the general series model is given by (see Equation (E.33)):

H0 =

∫∫ (
ζU · ∇ϕ+

1

2
h (∇ϕ−D0∇ψ)2

+
1

2

(
N0 − hD2

0

)
(∇ψ)2 +

1

2
M0ψ

2 +
1

2
g(ζ2 − h2)

)
dx dy, (4.15)

with the functionals

D0 := −1

h

∫ 0

−h
f dz, (4.16a)

M0 :=

∫ 0

−h
f ′2 dz, (4.16b)

N0 :=

∫ 0

−h
f2 dz. (4.16c)

Note that these functionals are independent of the basic variables ϕ, ζ and ψ and are therefore
constants.
The zero variations of the linearized Lagrangian give (see Equation (E.38))

∂ζ

∂t
+ ∇ ·

(
ζU + h∇ϕ− hD0 ∇ψ

)
= 0, (4.17a)

∂ϕ

∂t
+ U · ∇ϕ+ gζ = 0, (4.17b)

M0 ψ + ∇ ·
(
hD0 ∇ϕ−N0 ∇ψ

)
= 0. (4.17c)

These are the three basic equations of the linearized variational Boussinesq model for general
vertical series.
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4.3 Linearized parabolic model

The linearized Hamiltonian system (4.14) for the general series model will now be applied to
the parabolic model (3.12). The functionals (4.16) can be evaluated with the integrals given
in Appendix E.2. We have

D(p)
0 =

1

3
h, (4.18a)

M(p)
0 =

1

3
h, (4.18b)

N (p)
0 =

2

15
h3. (4.18c)

The linearized parabolic Hamiltonian now becomes

H(p)
0 =

∫∫ (
ζU · ∇ϕ+

1

2
h
(
∇ϕ− 1

3
h∇ψ

)2

+
1

90
h3(∇ψ)2 +

1

6
hψ2 +

1

2
g(ζ2 − h2)

)
dx dy. (4.19)

The linearized parabolic Hamiltonian system is given by

∂ζ

∂t
+ ∇ ·

(
ζU + h∇ϕ− 1

3
h2 ∇ψ

)
= 0, (4.20a)

∂ϕ

∂t
+ U · ∇ϕ+ gζ = 0, (4.20b)

hψ + ∇ ·
(
h2∇ϕ− 2

5
h3 ∇ψ

)
= 0. (4.20c)

This system contains the model equations for parabolic-shaped fluid flow.

4.4 Linearized cosine-hyperbolic model

For the cosine-hyperbolic model (3.17), the linearized Hamiltonian system will be derived by
substituting the parameters (4.16) in Equation (4.17). The functionals are derived with the
integrals given in Appendix E.3. We have

D(c)
0 = C0 −

S0

κh
, (4.21a)

M(c)
0 =

1

2
κS0 C0 −

1

2
κ2h, (4.21b)

N (c)
0 = −3

2

1

κ
S0 C0 +

1

2
h+ h C2

0 , (4.21c)

with the functionals

S0 := sinh(κh), (4.22a)

C0 := cosh(κh). (4.22b)
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The linearized Hamiltonian is calculated by substituting these parameters in Equation (4.15)
and reads

H(c)
0 =

∫∫ (
ζU · ∇ϕ+

1

2
h

(
∇ϕ−

(
C0 −

S0

κh

)
∇ψ
)2

+
1

4
κ
(
S0 C0 − κh

)
ψ2

+
1

2

(
− 3

2

1

κ
S0 C0 +

1

2
h+

S0

κ

(
2C0 −

S0

κh

))
(∇ψ)2 +

1

2
g
(
ζ2 − h2

)
)
dx dy. (4.23)

With Equation (4.17), the linearized cosine-hyperbolic Hamiltonian system becomes

∂ζ

∂t
+ ∇ ·

(
ζU + h∇ϕ− h

(
C0 −

S0

κh

)
∇ψ
)

= 0, (4.24a)

∂ϕ

∂t
+ U · ∇ϕ+ gζ = 0, (4.24b)

1

2
κ
(
S0 C0 − κh

)
ψ + ∇ ·

((
h C0 −

S0

κ

)
∇ϕ−

(1

2
h− 3

2

1

κ
S0 C0 + h C2

0

)
∇ψ
)

= 0. (4.24c)

Similar to (4.20), these are the main equations of the cosine-hyperbolic model.

4.5 Dispersion relation

In the cosine-hyperbolic model (3.17), the shape parameter κ has been introduced, which may
depend on the horizontal coordinates x and y as well as time t. This parameter has to be
defined, either as input, or as a function of the basic variables. In this section, we will derive
that κ can be related to the characteristic wave number.
Let’s consider a harmonic wave:

ζ = a sin(ωt− kx), (4.25)

with a denoting the amplitude, ω the frequency and k the wave number. A harmonic wave can
also be written in terms of the wave length L and period T , by substituting k = 2π

L and ω = 2π
T .

When considering a two-dimensional plane wave in a moving fluid, the absolute frequency ω
changes in a relative (or intrinsic) frequency σ. This relation is given by ω = σ+kUn with Un
the component of the current in the wave direction [13]. For a given angle θ between current
and the direction of wave propagation, we have Un = |U| cos(θ).
The wave number k and relative frequency σ are related to each other. For linear wave theory,
this dispersion relation is given by (see [13])

σ2 = gk tanh(kh). (4.26)

For the variational Boussinesq model, given by Equation (4.17), the dispersion relation reads
(see [18])

σ2 = ghk2M0 + k2(N0 − hD2
0)

M0 + k2N0
. (4.27)

Substituting the parameters (4.21) for the cosine-hyperbolic model, we get (see [21])

σ2 = gκ
k2

κ2

κh

(
S

(c)
0 C

(c)
0

κh − 1

)(
1 − k2

κ2

)
+ 2k

2

κ2S(c)
0 D(c)

0

(
S

(c)
0 C

(c)
0

κh − 1

)(
1 − k2

κ2

)
+ 2k

2

κ2 C(c)
0 D(c)

0

. (4.28)
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When substituting κ = k in Equation (4.28). the exact dispersion relation (4.26) is obtained.
At first sight, taking k for the shape parameter κ seems to be a good choice. However,
this is not very practical because in reality there is not one wave number. Real waves are
a superposition of a lot of harmonic waves with different wave numbers. A straightforward
solution is to deal with κ as an input variable, which should be taken as close as possible to
the expected characteristic wave number.
For small κ we have limκh→0 f

(c) = 0, because |z|, |ζ| ≤ h. A zero shape function f will give
an undetermined ψ. To avoid this, the parameter κ may not be taken too small. With some
trial a bound of

κ ≥ π

2h
(4.29)

can be obtained [19, 17]
Therefore, κ is defined as the maximum of π

2h and an input parameter κc.

4.6 Ship

In the previous sections the variational Boussinesq model for water waves has been presented.
A moving ship has not been included yet in this wave model. In this section, a method for
incorporating a moving ship, which interacts with the wave pattern, is discussed. It will
model a ship as a pressure pulse on the water surface.
In the pressure functional, given by Equation (2.13), a source term is added. The pressure of
a ship on the water surface specifies this term. When the model is adapted to this different
pressure term, the Bernoulli equations (4.17b) will change to

∂ϕ

∂t
+ U · ∇ϕ+ gζ = Ps, (4.30)

with Ps := −ps

ρ and ps the predefined pressure modelling the ship. Note that ps is zero outside
the area of the ship. For a derivation of this equation, see Appendix G.
To define ps, one can look at the hydrostatic pressure ph = ρg(ζ − d) at depth d. Then,
assuming a zero water level, we have Ph(d) = gd. Hence, one can model a ship with draft ds
by taking Ps = gdsα(x, y), with α(x, y) a shape function with one in the middle of the ship
and zero on the horizontal boundary of the ship. The function α is similar to a Heaviside
function, but with a smooth transition at the edges, for example α = 1 − sin12(π2 r), with r
the scaled distance to the center of the ship.
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5 The model equations summarized

In Chapter 2 the variational Boussinesq model has been derived. Minimizing the total pressure
yielded a Hamiltonian system. The vertical structure of the fluid flow has been introduced in
Chapter 3 for two different shape functions: the parabolic and cosine-hyperbolic model. The
linearization, explained in Chapter 4, simplified the Hamiltonian system. For convenience,
the resulting equations will be summarized in this section.
The model results in the three model equations (4.17), adapted with Equation (4.30) of the
ship, reads

∂ζ

∂t
+ ∇ ·

(
ζU + h∇ϕ− hD0 ∇ψ

)
= 0, (5.1a)

∂ϕ

∂t
+ U · ∇ϕ+ gζ = Ps, (5.1b)

M0 ψ + ∇ ·
(
hD0 ∇ϕ−N0 ∇ψ

)
= 0, (5.1c)

for the three basic variables water level ζ, surface velocity potential ϕ and vertical structure ψ.
The functionals depend on the choice of the vertical shape model. For a parabolic vertical
velocity, we have Equation (4.18), i.e.,

D(p)
0 =

1

3
h, (5.2a)

M(p)
0 =

1

3
h, (5.2b)

N (p)
0 =

2

15
h3. (5.2c)

Note that the parameters are always positive for positive water depth (h > 0).
For the cosine-hyperbolic model, we have Equation (4.21), so

D(c)
0 = cosh(κh) − sinh(κh)

κh
, (5.3a)

M(c)
0 =

1

2
κ sinh(κh) cosh(κh) − 1

2
κ2h, (5.3b)

N (c)
0 = −3

2

1

κ
sinh(κh) cosh(κh) +

1

2
h+ h (cosh(κh))2. (5.3c)

In Appendix F, it has been shown that D(c)
0 ,M(c)

0 ,N (c)
0 ≥ 0 ∀κ, h ∈ R

+ and D(c)
0 ,M(c)

0 ,N (c)
0 =

0 ⇔ κh = 0. So for the cosine-hyperbolic model, the parameters are positive for positive water
depth.
The first two model equations (5.1a),(5.1b) have a first order time derivative and up to second
order spatial derivatives. In Section 7.3, the numerical discretization of it will be derived with
the finite volume method and the leapfrog method.
The third model equation (5.1c) is an elliptic partial differential equation in ψ. The numerical
discretization of it will lead to a linear system of equations. To solve this efficiently, an iterative
method will be used. Building an efficient linear solver for this elliptic equation will be the
main goal for this project.
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6 Boundary conditions

In Section 2.2 the boundary conditions at the surface and the bottom have been derived. In
the horizontal direction, boundaries have not been specified yet. However, the computational
domain will be finite and therefore horizontal boundaries should be introduced.

Boundaries can be divided mainly in two different categories: closed and open boundaries.
Closed boundaries are boundaries like the shore and breakwaters. No water can flow through
these boundaries. Through open boundaries water can propagate freely. These are in fact no
physical boundaries, but imposed by the finite computational domain.

In the derivation of the Hamiltonian system, Green’s theorem has been applied to rewrite the
equations. Because the undefined horizontal domain, no integral over the horizontal boundary
occurred in the derivation. For a domain Ω enclosed by the boundary Γ, application of Green’s
theorem will give a boundary integral.

Because energy can leave and enter the domain through the boundaries, the linearized La-
grangian (4.12) will change in

L0 =

∫ (∫∫

Ω
ϕ
∂ζ

∂t
dx dy −H0 +

∫

Γ
(ϕFζ + ζFϕ + ψFψ) ds

)
dt, (6.1)

with F the fluxes through the boundary [19].

The derivations explained in Chapter 4 and written out in Appendix E are briefly redone for
the bounded Lagrangian (6.1). The unit outward vector on the boundary Γ is denoted by n.

Note that the first term in the Lagrangian (6.1) will not lead to a boundary integral, therefore
it suffices to look at the zero variations of the linearized Hamiltonian (4.15). The zero variation
w.r.t ϕ is given by

δϕH0 =

∫∫
(ζU · ∇δϕ+ h (∇ϕ−D0∇ψ) · ∇δϕ) dx dy

= −
∫∫

Ω
(∇ · ζU δϕ + ∇ · h (∇ϕ−D0∇ψ) δϕ) dx dy

+

∫

Γ
(n · ζU δϕ + n · h (∇ϕ−D0∇ψ) δϕ) ds. (6.2)

The integral over Ω leads to the continuity equation (4.17a), the integral over Γ will be dealt
with in this chapter.

The zero variation of the Hamiltonian w.r.t ζ (see Equation (E.36)) does not result in a
boundary integral.

Taking the zero variation of the Hamiltonian w.r.t ψ gives

δψH0 =

∫∫ (
h (∇ϕ−D0∇ψ) · (−D0∇δψ) +

(
N0 − hD2

0

)
∇ψ · ∇δψ + M0ψ δψ

)
dx dy

=

∫∫

Ω

(
∇ · (hD0 (∇ϕ−D0∇ψ)) δψ −∇ ·

((
N0 − hD2

0

)
∇ψ
)
δψ + M0ψ δψ

)
dx dy

+

∫

Γ

(
n · (hD0 (∇ϕ−D0∇ψ)) δψ − n ·

((
N0 − hD2

0

)
∇ψ
)
δψ
)
ds. (6.3)

The integral over Ω yields the elliptic differential equation (4.17c).
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The variations should be zero for minimal pressure, therefore the integrand of the boundary
integrals in Equations (6.2) and (6.3) should equal the fluxes on the boundary Γ, i.e.,

(
ζU + h∇ϕ− hD0 ∇ψ

)
· n = Fζ , (6.4a)

(
hD0 ∇ϕ−N0 ∇ψ

)
· n = Fψ. (6.4b)

In the next sections the fluxes Fζ and Fψ are chosen according to the type of boundary.

Note that there are only two boundary conditions, whereas there are three equations. This is
because with ψ = 0, the first two model equations (5.1a) and (5.1b) become a hyperbolic set
of equations, which requires one boundary condition [19]. The third model equation (5.1c) is
an elliptic one and therefore requires an additional boundary condition.

The boundary conditions (6.4) can be rewritten as

h
(
N0 − hD2

0

)
∇ϕ · n = N0 Fζ + hD0 Fψ −N0 ζU · n, (6.5a)(

N0 − hD2
0

)
∇ψ · n = D0 Fζ + Fψ −D0 ζU · n. (6.5b)

This shows that two boundary conditions are sufficient, because condition (6.4a) can be used
for the continuity equation (5.1a), condition (6.5a) for the Bernoulli equation (5.1b) and
condition (6.4b) for the elliptic equation (5.1c).

6.1 Closed boundaries

In Chapter 2 the impermeability of the water bottom (2.20c) was derived as a condition of
zero normal flow at the bottom surface. Closed boundaries in the horizontal plane behave
similarly. At these boundaries the fluid cannot flow through the boundary, yielding a zero
normal velocity. Examples of these boundaries are shores, cliffs, walls and piers. For closed
boundaries, the following condition has to be satisfied:

u · nc = 0 or
∂φ

∂n

∣∣∣∣
Γc

= 0 (6.6)

with Γc the closed part of the boundary and nc the unit outward normal on it. These boundary
conditions are also called reflective boundary conditions, because incoming waves will reflect
back into the domain.

With the expression of the velocity potential φ in Equation (4.2), the boundary condition (6.6)
can be written as (U + ∇ϕ + f∇ψ) · nc = 0. The current U is an input-variable, and it is
assumed that U · nc = 0 holds. The boundary condition is than satisfied when

∇ϕ · nc = 0 and ∇ψ · nc = 0. (6.7)

Substituting boundary conditions (6.7) in Equation (6.5) gives

Fζ = 0 and Fψ = 0. (6.8)

So another way of characterizing closed boundaries is by imposing zero fluxes at the boundary.
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6.2 Open boundaries

When modelling an open sea, there are no physical boundaries. Because the computational
domain has to be finite, artificial boundaries are included, which are called open boundaries.
Waves and water particles can propagate freely through these boundaries. The fluxes at the
boundary will therefore be nonzero in general. Because the outgoing flow should vanish, these
boundaries are also called absorbing boundaries.
Because they are not natureal, absorbing boundaries are quite difficult to build. Especially
for non-uniform flows there will always be some reflection, therefore these boundaries are
often called weakly-reflective boundaries. The type of weakly-reflective boundary used in this
model is the Sommerfeld boundary condition [19].
Let’s consider a quantity q(x, y, t), representing a simple wave-like pattern. Its wave velocity

is given by c = c0

[
cos(θ)
sin(θ)

]
with c0 > 0 the wave speed and θ the angle of the propagation

direction. Wave phenomena satisfy the wave equation

∂2q

∂t2
= c20

(
∂2q

∂x2
+
∂2q

∂y2

)
. (6.9)

Solutions of this differential equations are of the form

q(x, y, t) = q̃

(
cos(θ)

c0
x+

sin(θ)

c0
y − t

)
. (6.10)

The argument of q̃ is called the characteristic.
The Sommerfeld condition reads

cos(θ)
∂q

∂t
+ c0

∂q

∂n
= 0, (6.11)

with ∂q
∂n = ∇q · n and n the unit outward normal at the boundary.

At the boundaries, the wave field q can be decoupled in an ingoing and an outgoing wave
field, denoted by qin and qout. The outgoing wave field, which has to be absorbed, is now
given by qout = q − qin. Applying the Sommerfeld condition to the outgoing wave field yields

cos(θ)
∂q

∂t
+ c0

∂q

∂n
= cos(θ)

∂qin
∂t

+ c0
∂qin
∂n

. (6.12)

Taking q = Fζ and q = Fψ gives the Sommerfeld boundary conditions for the open boundaries.
Incoming waves should therefore be prescribed in the form of Fζ,in and Fψ,in. The parameters θ
and c0 have to be prescribed by characteristic values, although ideally they are calculated at
each stage.
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7 Numerical discretization

In the previous chapters the model has been presented, leading to the model equations (5.1).
In this chapter, the numerical discretization of these equations will be presented (see [19]). To
start with, a computational domain is introduced. As spatial discretization, the finite volume
method will be used. The leapfrog method will be used for the time integration.

7.1 Computational domain

The computational domain will be taken rectangular, with size Lx × Ly. On this domain an
equidistant grid is used with nodes on the boundary. In the x-direction there are Nx grid
points and in the y-direction there are Ny grid points. Because the mesh is equidistant, the

mesh sizes are ∆x = Lx

Nx−1 and ∆y =
Ly

Ny−1 in the x- and y-direction, respectively.

The nodes are numbered by (m,n) with m = 1, 2, . . . , Nx and n = 1, 2, . . . , Ny. Node (1, 1)
is positioned at the physical coordinates (x, y) = (0, 0) and node (Nx, Ny) corresponds
to (x, y) = (Lx, Ly).

7.2 Spatial discretization

The model equations (5.1) are discretized with the finite volume method. The rectangular
volumes are centered around the grid points and have size ∆x× ∆y. The derivatives will be
approximated with centered differences yielding a five-point stencil.

Because the grid is rectangularly structured, one can use the following notation of the nodes:

center: ζC := ζ(m,n), (7.1a)

east: ζE := ζ(m+1,n), (7.1b)

north: ζN := ζ(m,n+1), (7.1c)

west: ζW := ζ(m−1,n), (7.1d)

south: ζS := ζ(m,n−1). (7.1e)

Note that the names of the wind directions are according to the computational domain. This
can be different with the physical wind directions.

An overbar notation is used to indicate the mean of two nodes:

ζE :=
ζE + ζC

2
, ζN :=

ζN + ζC
2

, ζW :=
ζW + ζC

2
, and ζS :=

ζS + ζC
2

. (7.2)

For the other variables, the overbar notation is used similarly. Note that because of the
equidistant grid, these are central averages on the edges of the finite volumes.

To illustrate the finite volume method used, it will be written out for some terms of the model
equations. Let’s consider an arbitrary volume Ωmn with boundary Γmn, centered around an
internal grid point. The discretization of the boundaries will be done in Section 7.2.1.

Term without spatial derivatives will be evaluated as

∫∫

Ωmn

∂ζ

∂t
dx dy ≈ ∂ζC

∂t
∆x∆y. (7.3)

So these terms are approximated by the value in the center multiplied with the volume size.
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Terms with a first order spatial derivative are rewritten with Gauss’s divergence theorem6

and approximated with the central averages (7.2), for example

∫∫

Ωmn

∇ · (ζU) dx dy =

∫

Γmn

ζU · n ds

≈ ζE UE ∆y + ζN VN ∆x− ζW UW ∆y − ζS VS ∆x. (7.4)

The second order spatial derivatives are also rewritten in terms of a boundary integral. The
normal derivatives on the boundary are approximated by central differences. For example

∫∫

Ωmn

∇ · (h∇ϕ) dx dy =

∫

Γmn

h
∂ϕ

∂n
ds

≈
(
hE

ϕE − ϕC
∆x

)
∆y +

(
hN

ϕN − ϕC
∆y

)
∆x

+

(
hW

ϕW − ϕC
∆x

)
∆y +

(
hS

ϕS − ϕC
∆y

)
∆x. (7.5)

In the second model equation (5.1b), the term U · ∇ϕ occurs. In its discretized form this
term reads

∫∫

Ωmn

U · ∇ϕ dx dy ≈
(

1

2

((
U
∂ϕ

∂x

)
E

+
(
U
∂ϕ

∂x

)
W

)
+

1

2

((
V
∂ϕ

∂y

)
N

+
(
V
∂ϕ

∂y

)
S

))
∆x∆y

≈ 1

2

(
UE

ϕE − ϕC
∆x

− UW
ϕW − ϕC

∆x
+ VN

ϕN − ϕC
∆y

− VS
ϕS − ϕC

∆y

)
∆x∆y.

(7.6)

The first approximation is done by first evaluating the integrand in the center, equivalent to
the terms without spatial differencing. Then the averages (U ∂ϕ

∂x )C ≈ 1
2((U ∂ϕ

∂x )E + (U ∂ϕ
∂x )W )

and (V ∂ϕ
∂y )C ≈ 1

2((V ∂ϕ
∂y )N + (V ∂ϕ

∂y )S) are applied. For the second approximation in Equa-
tion (7.6), use has been made of central differencing.

6
R

Ω
∇ · u dΩ =

R

Γ
u · n dΓ, for a domain Ω with boundary Γ and the unit outward normal n.
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Now the Hamiltonian system (5.1) can be approximated for the internal elements by

∆x∆y
∂ζC
∂t

+
1

2
UE ∆y ζE +

1

2
VN ∆x ζN − 1

2
UW ∆y ζW − 1

2
VS ∆x ζS

+

(
1

2
UE ∆y +

1

2
VN ∆x− 1

2
UW ∆y − 1

2
VS ∆x

)
ζC

+
∆y

∆x
hE ϕE +

∆x

∆y
hN ϕN +

∆y

∆x
hW ϕW +

∆x

∆y
hS ϕS

−
(

∆y

∆x
hE +

∆x

∆y
hN +

∆y

∆x
hW +

∆x

∆y
hS

)
ϕC

−∆y

∆x
hE D0E ψE − ∆x

∆y
hN D0N ψN − ∆y

∆x
hW D0W ψW − ∆x

∆y
hS D0S ψS

+

(
∆y

∆x
hE D0E +

∆x

∆y
hN D0N +

∆y

∆x
hW D0W +

∆x

∆y
hS D0S

)
ψC = 0, (7.7a)

∆x∆y
∂ϕC
∂t

+
1

2
UE∆y ϕE +

1

2
VN∆xϕN − 1

2
UW∆y ϕW − 1

2
VS∆xϕS

−
(

1

2
UE∆y +

1

2
VN∆x− 1

2
UW∆y − 1

2
VS∆x

)
ϕC + ∆x∆y g ζC = 0, (7.7b)

∆y

∆x
hE D0E ϕE +

∆x

∆y
hN D0N ϕN +

∆y

∆x
hW D0W ϕW +

∆x

∆y
hS D0S ϕS

−
(

∆y

∆x
hE D0E +

∆x

∆y
hN D0N +

∆y

∆x
hW D0W +

∆x

∆y
hS D0S

)
ϕC

−∆y

∆x
N0E ψE − ∆x

∆y
N0N ψN − ∆y

∆x
N0W ψW − ∆x

∆y
N0S ψS

+

(
∆y

∆x
N0E +

∆x

∆y
N0N +

∆y

∆x
N0W +

∆x

∆y
N0S

)
ψC + ∆x∆yM0C ψC = 0, (7.7c)

the stencil for the discretized Hamiltonian system.

7.2.1 Discretization of the boundaries

In Chapter 6, the boundary condition have been derived. For both the closed and open
boundaries, the boundary condition (6.4) is given as a flux on the boundary. The discretization
of the model equations has been done with the finite volume method, in which the volume
integral was rewritten to a boundary integral. The specified fluxes on the boundary can
straightforwardly be applied in this way.

Note that the closed boundaries follow from the bottom profile. When h < 0 at a grid point,
it is on dry land. So the contour line h = 0 gives the closed boundary.

7.3 Time integration

In Section 7.2, the spatial discretization of the model equations (5.1) has been performed with
the finite volume method. On node (i, j), the discretized versions of the variables ζ, ϕ and ψ
are given by ζij , ϕij and ψij. A one dimensional ordering gives vectors ~ζ, ~ϕ and ~ψ containing
the values of the variables on all nodes. For the following derivations, it is not necessary to
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specify the ordering of nodes. The spatial discretization can be written as

d

dt



~ζ
~ϕ
0


+



Sζζ Sζϕ Sζψ
Sϕζ Sϕϕ Sϕψ
Sψζ Sψϕ Sψψ





~ζ
~ϕ
~ψ


 = 0 (7.8)

This system can be rewritten as

q̇ = Lq + f , (7.9a)

S ~ψ = b (7.9b)

with q =

[
~ζ
~ϕ

]
and q̇ its time derivative. The matrix L = −

[
Sζζ Sζϕ
Sϕζ Sϕϕ

]
is the spatial

discretization matrix and f = −
[
Sζψ ~ψ

Sϕψ ~ψ

]
. In Equation (7.9b), we have S = Sψψ and

b = −Sψϕ~ϕ, because Sψζ equals zero.

The state at time tn is denoted by qn := q(tn). For given states qn, ~ψn and qn−1, ~ψn−1, the
state qn+1 is calculated by applying the leapfrog method to Equation (7.9a). Subsequently,
the linear system S ~ψn+1 = bn+1 is solved. The leapfrog method (see [16]) will be derived in
this section. Solving the linear system (7.9b) is the main topic of the research for this thesis.
Methods to solve this linear system will be discussed in Chapter 8.
The variable time step ∆t is given by ∆t+ := tn+1− tn and ∆t− := tn− tn−1. A Taylor-series
expansion gives

qn+1 = qn + ∆t+q̇n +
1

2
∆t2+q̈n +

1

6
∆t3+

...
qn + O(∆t4+), (7.10a)

qn−1 = qn − ∆t−q̇n +
1

2
∆t2−q̈n − 1

6
∆t3−

...
qn + O(∆t4−). (7.10b)

To get rid of the second order derivative, we multiply the second equation by
(
− ∆t2+

∆t2−

)
and

add the equations:

qn+1 − ∆t2+
∆t2−

qn−1 = qn + ∆t+q̇n +
1

2
∆t2+q̈n +

1

6
∆t3+

...
qn + O(∆t4+)

−∆t2+
∆t2−

qn +
∆t2+
∆t−

q̇n − 1

2
∆t2+q̈n +

1

6
∆t2+∆t−

...
qn + O(∆t2+∆t2−). (7.11)

We introduce a new variable β := ∆t+
∆t−

, denoting the change in time step. Let’s assume that

the time steps have the same order of magnitude, so O(∆t+) = O(∆t−) and β = O(1). Then,
the above equation reads

qn+1 = β2qn−1 + (1 − β2)qn + ∆t+(1 + β)q̇n + O(∆t3±), (7.12)

giving an expression of qn+1 in terms of qn−1, qn and q̇n. Equation (7.12) is used as the
numerical time scheme for solving Equation (7.9a) [16]. Note that it is an explicit scheme
and depends on the two previous time steps (a so-called multistep method).
For equidistant time steps, i.e., β = 1, Equation (7.12) reduces to

q̇n =
qn+1 − qn−1

2∆t
+ O(∆t2), (7.13)
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the so-called leapfrog method. For the test equation ẏ = λy, the leapfrog method is stable
only for λ∆t ∈ [−i, i] (see [35, 9]). The stability on the imaginary axis is important, because
many wave models have purely imaginary eigenvalues [45].

7.3.1 Initial conditions

The variational Boussinesq model is written in the time domain. Initial conditions for the
basic variables have to be specified. The discretized system of the model equations (7.9)
shows that the variable ψ is decoupled from the system with the time derivative. Therefore,
only initial conditions for ζ and ϕ are needed. The initial state of ψ can then be calculated
with Equation (7.9b).
Equation (7.9a), which contains a time derivative of ζ and φ, is discretized with the leapfrog
scheme (7.12), which is a two-step method. This requires an extra initial condition at time t−1.
To prevent this extra condition, one can also choose to use Euler Forward or another one-step
method for calculating the variables at t1.
An easy choice for the initial conditions is a zero initial state, that is,

ζ0
(m,n) = 0, ζ−1

(m,n)
= 0, (7.14a)

ϕ0
(m,n) = 0, ϕ−1

(m,n) = 0, (7.14b)

ψ0
(m,n) = 0, ψ−1

(m,n) = 0, (7.14c)

for all nodes (m,n). These initial conditions will be used in wave model.
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8 Numerical linear algebra

Numerical discretization of the model equations results in a system of linear equations for the
discrete model variables. One of the discrete mode equations is of the form S ~ψ = b, with S
the discretization matrix. The vector ~ψ has to be solved, it contains the value of ψ(x, y) in
every grid point and has therefore a length of Nx ·Ny, with Nx and Ny denoting the number
of nodes in the x- and y-direction. Because the dimensions can become large, solving this
linear system will be computational expensive. To reduce the computational effort, numerous
numerical methods for solving linear systems efficiently are available in the literature, see [32]
and [42].

The method used in the model for solving S ~ψ = b is the conjugate gradients method [12].
This is an often used method for symmetric positive definite matrices, which can be targeted
to specific systems by applying a preconditioner. The conjugate gradient method will be
derived in Section 8.3. In Section 8.4 the concept of preconditioning will be explained.

8.1 Properties of the matrix

The linear system which has to be solved is

S ~ψ = b (8.1)

as defined in Equation (7.9b), with ~ψ a vector containing the values of ψ on all grid points.
The matrix S and vector b are filled according to the numerical discretization as presented in
Chapter 7. More precisely, the linear system is equivalent to Equation (7.7c). In this section
some properties of the matrix S are presented. These properties will determine the method
for solving this linear system.

The size of the matrix S is determined by the computational domain (see Section 7.1). The
rectangular grid consists of Nx and Ny nodes in the x- and y-direction, respectively. Therefore
the matrix S has dimension NxNy ×NxNy. Due to the requirement of real-time calculation
and the limitations of current technology, typical values for a grid of 5× 5 m and a timestep
of ∆t = 0.05 s are Nx = 200 and Ny = 100, so the matrix is of the order 20 000 × 20 000. In
the future, the dimensions of the domain have to be much larger.

To assess the properties of the matrix, we consider Equation (7.7c), which determines




0 −∆x
∆y N0N 0

−∆y
∆x N0W

∆y
∆x N0E + ∆x

∆y N0N + ∆y
∆x N0W + ∆x

∆y N0S + ∆x∆yM0C −∆y
∆x N0E

0 −∆x
∆y N0S 0


 , (8.2)

a five-point stencil. When using a lexicographical ordering7 of the grid points, this leads to
a pentadiagonal8 matrix. For a horizontal numbering, half the bandwidth9 will be Nx, for
vertical numbering Ny.

7A lexicographical ordering is a horizontal or a vertical numbering
8A pentadiagonal matrix is a matrix with non-zero elements on five diagonals and zero elements on all other

diagonals.
9For b half of the bandwith of a matrix A, we have that all elements outside the bth diagonal are zero, i.e.,

(aij)|i−j|>b = 0.
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With the overbar as defined in Equation (7.2) and the fact that the parameters are positive
(see Chapter 5), one can see that the center term in the stencil (8.2) is positive and the outer
elements are negative. Observe that the sum of all elements is positive. Therefore, the matrix
is diagonally dominant, i.e., the center element is at least the sum of the absolute values of the
outer elements. Because we have h > 0, it holds that M0C > 0 and therefore the matrix S is
strictly diagonally dominant.

With stencil (8.2), we see that the center element has a value of O(1 + h2), while the sum of
the absolute values of the outer elements is O(1); it is assumed that O(∆x) = O(∆y) = O(h).
So for small mesh sizes h, the diagonally dominance of the matrix is not very strongly.

Because the matrix is strictly diagonally dominant with positive elements on the main di-
agonal, Gershgorin’s circle theorem (see [46]) states that the real part of all eigenvalues are
strictly positive. So S has no eigenvalue zero and is therefore nonsingular, i.e., the inverse S−1

exists.

The diagonal elements are strictly positive (Sii > 0), while the outer elements are negative
(Sij ≤ 0). Because of the strictly diagonally dominance, the matrix is an M -matrix 10.

To verify the symmetry of the matrix, one has to compare the outer diagonals with each other.
For example, the contribution of the west neighbour on node (i, j) has to be the same as the

contribution of the east neigbour on node (i−1, j). So for symmetry, we need
(
−∆y

∆xN0W

)
i,j

=
(
−∆y

∆xN0E

)
i−1,j

. Because of the central differencing of the fluxes in the finite volume method,

the mesh sizes are the same. With the overbar notation (7.2), the requirement is rewritten
as (N0W + N0C)i,j = (N0C + N0E)i−1,j ⇔ (N0,i−1,j + N0,i,j) = (N0,i−1,j + N0,i,j), which is
clearly satisfied. Applying the same reasoning to the other neighbours shows that the matrix
is symmetric, i.e., ST = S. Because the boundary conditions (6.4) are given in the form
of fluxes, the discretization (see Section 7.2.1) of this will not destroy the symmetry of the
matrix.

Note that the matrix is real-valued and the Euclidean inner product can therefore be used.
Because of symmetry, we have 〈Sx,x〉2 = xTSTx = xTSx = 〈x, Sx〉2. This shows that the
matrix S is self adjoint in the Euclidean inner product space. The self adjointness of the
matrix implies that all eigenvalues are real valued [23].

From Gershgorin’s circle theorem we already know that the real part of the eigenvalues are
all strictly positive. From symmetry, the eigenvalues are real. So all eigenvalues λi of S
satisfy λi > 0. This yields that S is positive definite, i.e., xTSx > 0 ∀x 6= 0.

Summarizing, the matrix S is real valued, pentadiagonal, strictly diagonally dominant, sym-
metric and positive definite.

Dry nodes On dry land (for example coasts, islands and piers), the model equations do
not have to be solved. However, there are grid points on this part of the domain. These
nodes occur in the linear system Sψ = b. The variable ψ is taken zero on dry land. In the
matrix S, on the row corresponding to a dry node, the elements on the outer diagonals are
taken zero and on the main diagonal the elements are one. A zero right hand side will give

10A matrix A is an M -matrix if aii > 0 and aij ≤ 0 for i 6= j and A−1 ≥ 0 [32]. The last requirement is
equivalent with ρ(I − D−1A) < 1, with ρ(·) the spectral radius (maximum absolute eigenvalue) and D the
diagonal of A. When A is strictly diagonally dominant, the diagonal of I − D−1A is zero and the sum of
the absolute values of the outer elements is smaller than one. With Gershgorin’s circle theorem, the spectral
radius is smaller than one.
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ψmn = 0 for dry nodes (m,n). The properties of the matrix as presented before still apply
for the matrix adapted to dry nodes.

8.2 Krylov subspace methods

A class of linear solvers are the Krylov subspace methods. These are iterative methods, i.e.,
for a starting vector ψ0, the method generates a series of vectors ψ1, ψ2, . . . converging to
ψ = S−1b. Let’s consider Richardson’s iteration [31], given by

ψi+1 = ψi + τ(b− Sψi)

= (I − τS)ψi + τb, (8.3)

for i = 0, 1, 2, . . . and a parameter τ 6= 0. For an invertible matrix M , the linear system Sψ =
b is equivalent with

M−1Sψ = M−1b, (8.4)

with M−1 called the left preconditioner of S. Matrix M has to be chosen such that sys-
tem (8.4) is easier to solve than the original one. Now apply Richardson’s iteration for this
preconditioned system with τ = 1, so

ψi+1 = ψi +M−1(b− Sψi)

= (I −M−1S)ψi +M−1b. (8.5)

This recursion is the basis for a class of methods called the basic iterative methods. For a
converging ψi, the term ri := b−Sψi will go to zero and is therefore called the residual. For
the initial vector ψ0, the first iterates are

ψ1 = ψ0 +M−1r0,

ψ2 = ψ1 +M−1r1 = ψ0 +M−1r0 +M−1(b − S(ψ0 +M−1r0)),

= ψ0 + 2M−1r0 − (M−1S)M−1r0

ψ3 = ψ2 +M−1(b − Sψ2)

= ψ0 + 2M−1r0 − (M−1S)M−1r0 +M−1(b− S(ψ0 + 2M−1r0 − (M−1S)M−1r0))

= ψ0 + 3M−1r0 − 3(M−1S)M−1r0 + (M−1S)2M−1r0,

...

From this, we can see that

ψi ∈ ψ0 + span
{
M−1r0, (M−1S)(M−1r0), . . . , (M−1S)i−1(M−1r0)

}
. (8.6)

The subspace

Ki(S, r0) := span
{
r0, Sr0, . . . , Si−1r0

}
(8.7)

is called the Krylov space of dimension i for matrix S and residual r0. For basic iterative
methods we have ψi ∈ ψ0 +Ki(M−1S,M−1r0) for the preconditioned system (8.4). Linear
solvers using this property are called Krylov subspace methods [32].
With a similar derivation, we have ψi = (I −M−1S)iψ0 +

∑i−1
j=0(I −M−1S)jM−1b. One can

recognize the geometric series and for i→ ∞ the Neumann series. When the series converges,
we have ψ∞ = (M−1S)−1M−1b = S−1b, which is the solution of the linear system.
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8.3 Conjugate gradients method

For the linear system Sψ = b, we search for estimates ψk ∈ Kk{S, b} such that ||ψ − ψk||
is minimal. To get only one minimization problem at each iteration step, we search in the
direction of pk ∈ Kk{S, b}. The next estimate will then be ψk+1 = ψk+αkp

k. The constant αk
has to be calculated such that the error ||ψ − ψk+1|| is minimal in some norm. We have
||ψ − ψk − αkp

k|| = ||ψ − ψk|| − 2αk〈ψ − ψk, pk〉 + α2
k||pk||. Equating the derivative w.r.t. αk

to zero gives

αk =
〈pk, ψ − ψk〉

〈pk, pk〉 . (8.8)

Let’s consider the Euclidean inner product space, i.e., 〈x, y〉2 = xT y. The parameter αk
contains the term (pk)Tψ, which cannot be calculated because ψ is unknown. Therefore, the
Euclidean norm cannot be used. Note that Sψ is known: Sψ = b. Hence, consider

〈x, y〉S = xTSy, (8.9)

the matrix inner product. Observe that this is equivalent with 〈x, Sy〉2. If S is spd11, this
inner product is well defined. Because S(ψ − ψk) = Sψ − Sψk = b− Sψk = rk, we have

αk =
〈pk, rk〉2
〈pk, Spk〉2

, (8.10)

which can be calculated readily, because the residual rk depends on the previous estimate ψk.
The method is now defined, with exception of the choice of the search vector pk. In fact,
there are many options, all leading to different schemes. The choice of CG is

pk+1 = rk+1 +
〈rk+1, rk+1〉2

〈rk, rk〉2
pk. (8.11)

This choice of pk satisfies the property

〈pk, pj〉S = 0 for j = 0, 1, 2, . . . , k − 1, (8.12)

which says that the search directions are orthogonal to each other in the matrix inner product.
Summarizing, the CG-method is given by the following iteration scheme:

r0 = b− Sψ0, (8.13a)

p0 = r0, (8.13b)

αi =
〈ri, ri〉
〈pi, Spi〉 , (8.13c)

ψi+1 = ψi + αip
i, (8.13d)

ri+1 = ri − αiSp
i, (8.13e)

βi =
〈ri+1, ri+1〉
〈ri, ri〉 , (8.13f)

pi+1 = ri+1 + βip
i, (8.13g)

with 〈·, ·〉 the Euclidean inner product.

11A spd matrix is an abbreviation for a symmetric positive definite matrix.
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Convergence The convergence of the CG-method depends on the spectrum12. An upper-
bound of the error is given by (see [42])

||ψi − ψ||S ≤ 2




√
λmax
λmin

− 1
√

λmax
λmin

+ 1



i

||ψ0 − ψ||S , (8.14)

with λmax and λmin the maximal and minimal eigenvalue of S, respectively. So the convergence
mainly depends on λmax

λmin
, the spectral condition number. From the upperbound (8.14), one

can see that the smaller the condition number, the smaller the upperbound and therefore
probably a faster convergence. A small condition number is equivalent to a narrow spectrum,
i.e., the smallest and largest eigenvalue are close to each other.

With the upperbound (8.14) and the stencil (8.2), we can make an estimate of the convergence
of CG for the system Sψ = b. Because S is spd, Gershgorin’s circle theorem gives 0 <
∆x∆yM0C ≤ λmin ≤ λmax ≤ ∆x∆yM0C +2∆y

∆x(N0E +N0W )+2∆x
∆y (N0N +N0S ). From this,

one has λmax
λmin

≤ 1 +
2∆y

∆x
(N0E+N0W )+2∆x

∆y
(N0N+N0S )

∆x∆yM0C
. When assuming O(∆x) = O(∆y) = O(h),

with h a characteristic mesh size (not the water depth as has been used earlier), we have

λmax

λmin
= O

(
h−2

)
. (8.15)

From this expression for the condition number, the convergence of the CG-method can be
derived13. When writing the upper bound of the error (8.14) as ||ψi − ψ||S ≤ 2Ci||ψ0 − ψ||S ,
we get C = 1−O(h). We can thus conclude that for a constant error, the number of iterations
is inversely proportional to the mesh size14.

8.4 Preconditioners

Equation (8.14) shows that the convergence behavior of the CG-method depends on the
spectrum of S. Applying the CG-method to the preconditioned system (8.4), the convergence
depends on the eigenvalues of M−1S. Because the matrix M can be chosen arbitrarly, the
convergence can be adjusted by choosingM such that the spectrum ofM−1S is more favorable
than the spectrum of S. From Equation (8.14) one can see that the spectral condition number
should be close to one, so the smallest and largest eigenvalue should be close to each other.

Loosely speaking, the preconditioner M has to be chosen such that it looks like S and the
system Mx = b is relatively easy to solve [26].

Given a preconditioner M , the left preconditioned system is given by

M−1Sψ = M−1b. (8.16)

12The spectrum of a matrix is the set of all eigenvalues.

13We have
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, where

the geometric series is used.
14Let’s look at the error after k iterations: ||ψk−ψ||S < ǫ, then 2Ck < δ, with 0 < δ < 1. Solving 2Ck = δ for

a given δ yields k = ln( 1
2
δ)/ ln(C) = ln( 1

2
δ)/(−2h−2h2+O(h3)) = − ln( 1

2
δ) 1

h
1

1+h+O(h2)
= O( 1

h
), for C = 1−2h.

So for a constant error, we need O( 1
h
) iterations.
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In order to preserve the symmetry, one can also consider

P−1SP−T (P Tψ) = P−1b, (8.17)

called the centrally preconditioned system. Note that for an spd S, the preconditioned matrix
P−1SP−T also spd15.
In the first case, the CG-method is applied to the matrix M−1S, while in the second case it
is P−1SP−T . For a preconditioner

M = PP T , (8.18)

these two matrices are in general not the same. However, they have the same spectrum16

and the preconditioned CG-algorithm is equivalent and therefore these two preconditioned
systems will be used interchangeable.
In the wave model, several choices of preconditioner are implemented. These preconditioners
are explained in subsequent chapters: diagonal scaling in Chapter 9, relaxed incomplete
Cholesky in Chapter 10, and repeated red-black in Chapter 11.

8.5 Preconditioned conjugate gradient method

The conjugate gradient method is used for solving the system Sψ = b and is given by the
recursive algorithm (8.13). Applying the CG-method to a preconditioned system (8.17) will
give a slightly different algorithm, called the preconditioned conjugate gradient method. Writ-
ing out the PCG-algorithm will give the pseudo code as given in Table 1. By rearranging
some terms, two different implementation can be obtained. The methods are equivalent, but
the differences may lead to easier implementations of the preconditioners.
The two PCG-implementations shown in Table 1 have more variables than in the original
recursion (8.13), such as σ and ρ. These are dummy variables to simplify the implementation.
The main difference between the two implementations of PCG are the expressions with the
preconditioner P . The first choice considers the statement q = P−1SP−T p and the second
the statements z = (PP T )−1r and q = Sp. It depends on the type of preconditioner which
choice is best. For some preconditioners it is advantageous to calculate the preconditioned
matrix P−1SP−T once and use it every iteration. For other preconditioners it is better to
decouple the preconditioner and the original matrix and use the statements z = (PP T )−1r
and q = Sp separately. In the second version both the residual 〈ri, ri〉 = ||ri||22 as well
as the preconditioned residual 〈ri, zi〉 = ||ri||2M−1 is available, whereas in the first version,
only 〈P−1ri, P

−1ri〉 == ||ri||2M−1 is available. The availability of both residual norms gives
more freedom in the choice of termination criterium, as will be seen in Section 14.9.2.

15Because S symmetric, S̃T = (P−1SP−T )T = P−TTSTP−T = P−1SP−T = S̃, so S̃ also symmetric. The
matrix S is positive definite, i.e., 〈y, Sy〉 > 0 for all y. Then 〈x, S̃x〉 = 〈x, P−1SP−Tx〉 = 〈P−Tx,SP−Tx〉 =
〈y, Sy〉 > 0, so S̃ also positive definite.

16For nonsingular matrices A,B the following identity holds: det(AB) = det(A) det(B). Then we have
det(λI − P−1SP−T ) = 0 ⇔ det(λPP T − S) = 0 ⇔ det(λI −M−1S) = 0, so the same eigenvalues λ for the
centrally and left preconditioned matrix.
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CHOICE 1
Input

x Start vector
r Right hand side
S Matrix
P Preconditioner
ǫ Tolerance

PCG-algorithm

r = r − Sx Residual

solve r = P−1r Map residual
ρnew = r · r
x = P Tx Map solution
i = 0 Iteration number

while ρnew > ǫ2 Termination criterium
i = i+ 1
if i = 1
p = r Search vector

else

β =
ρnew

ρold
p = r + βp Search vector

end

solve q = P−1SP−T p Mapped search vector
σ = p · q
α =

ρnew

σ
x = x+ αp Update iterate
r = r − αq Update residual
ρold = ρnew

ρnew = r · r
end

solve x = P−Tx Map solution
Output

x

CHOICE 2
Input

x Start vector
r Right hand side
S Matrix
P Preconditioner
ǫ Tolerance

PCG-algorithm

r = r − Sx Residual

solve z = (PP T )−1r Map residual
ρold = ρnew

ρnew = r · z
i = 0 Iteration number

while ρnew > ǫ2 Termination criterium
i = i+ 1
if i = 1
p = z Search vector

else

β =
ρnew

ρold
p = z + βp Search vector

end

q = Sp Mapped search vector
σ = p · q
α =

ρnew

σ
x = x+ αp Update iterate
r = r − αq Update residual

solve z = (PP T )−1r Map residual
ρold = ρnew

ρnew = r · z
end

Output

x

Table 1: Two different implementations of the preconditioned conjugate gradient method.
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9 Diagonally scaled conjugate gradient method

In Section 8.3 it has been explained that the conjugate gradient method will be used for solving
the system of linear equations (8.1). To improve the convergence of the CG-method, it can
be applied to the preconditioned system (8.17). The PCG-method will only have a better
performance than the CG-method if the preconditioner is chosen correctly. In this section,
one choice of preconditioner is explained, namely diagonal scaling, which is also known as the
Jacobi preconditioner.

9.1 Structure of the preconditioner

As explained in Section 8.4, the preconditioner has to be chosen such it looks like the original
matrix and the preconditioning step is relatively easy to solve. A straightforward choice is
taking as preconditioner M the diagonal elements of the original matrix S. The precondi-
tioner M is therefore a diagonal matrix and its inverse is easily calculated: m−1

ii = 1/mii.
This satisfies the requirement of an easy to solve preconditioned residual. The other require-
ment, stating that the preconditioner should look like the original matrix, is also satisfied,
especially for when S is a sparse and diagonally dominant matrix.
The preconditioned matrix S̃ = P−1SP−T is easilly calculated, because P a diagonal matrix.
Moreover, the diagonal of S̃ will equal one. The matrix-vector multiplication y = S̃x is
therefore quite easily done. This makes choice 1 of the two PCG-implementations in Table 1
the best choice.

9.2 Spectrum of the diagonally scaled system

The main purpose of applying a preconditioner is to improve the convergence of the CG-
method. As can be seen in Equation (8.14), the convergence depends on the spectrum of the
matrix, i.e., the smaller the spectral condition number λmax/λmin, the faster the convergence
will be. This is achieved by choosing the preconditioner M = PP T such that P−1SP−T has a
more favorable spectrum than S. Whether this is the case for diagonal scaling is investigated
in this section for some test problems.
Looking at the test problem of an open sea with a constant depth of 30m (see Section 13.1), the
spectra of the matrix S and the diagonally scaled matrix P−1SP−T are calculated explicitly
with Matlab and are shown in Figure 1.
Because the preconditioner equals the diagonal of the matrix S, the diagonal of the precondi-
tioned matrix is equal to one. Then, Gershgorin’s circle theorem states that the eigenvalues
are centered around one, which can be seen in figure 1. The spectral condition number is for
both matrices 1.2537 and therefore, the preconditioned CG-method is not likely to converge
faster than the unpreconditioned CG-method.
The reason that the condition number does not change is that a flat bottom is considered.
When the water depth and the shape parameter κ are equal for all nodes, the center element of
the stencil (8.2) is also equal. This implies a constant diagonal of S and therefore M = cI, for

some constant c, yielding λS
max

λS
min

= cλM−1S
max

cλM−1S
min

= λM−1S
max

λM−1S
min

, which shows that the spectral condition

numbers of S and M−1S are equal.
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Figure 1: Spectrum of the original matrix S and the diagonally scaled matrix P−1SP−T at
an open sea with constant depth of 30m and a grid of 10 × 10 nodes.

A flat bathymetry does not show a difference in condition number. Therefore, we will consider
an open sea with a deep trench in the bottom, as shown in Figure 2.

Figure 2: Bathymetry of an open sea with depth of 50m outside a trench of 100m depth and
a grid of 32 × 32 nodes.

Because the depth varies per node, the diagonal elements of S are not constant anymore. The
spectrum of the preconditioned matrix is therefore not only shifted to one, but it has really a
different shape than the unpreconditioned spectrum, as seen in Figure 3. The main difference
is in the large eigenvalues. Observe that the spectral condition number drops from 6.35 · 105

to 394.3, which is a large reduction.

46



0 100 200 300 400 500 600 700 800 900 1000
10

−4

10
−2

10
0

10
2

10
4

10
6

10
8

i

λ  i

 

 
original matrix
diagonally scaled matrix

Figure 3: Spectrum of the original matrix S and the diagonally scaled matrix P−1SP−T at
the bathymetry of Figure 2.

In this section we have seen that choosing the preconditioner as the diagonal of the original
matrix may lead to better convergence of the CG-method. For bathymetries with a constant
depth, the condition number is not reduced. However, for varying depth profiles, diagonal
scaling can reduce the condition number considerably.
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10 Relaxed incomplete Cholesky decomposition

A well-known direct method for solving a linear system of equations is the LU -decomposition.
Most square matrices A can be factorized in the form A = LU , with L a lower triangular
and U an upper triangular matrix17. Solving a linear system Ax = b can be done relatively
easy by first solving Ly = b and then Ux = y. If the matrix A is symmetric, one can find an
upper triangular matrix U such that U = LT . The decomposition then becomes A = LLT ,
called the complete Cholesky decomposition. Because a symmetric matrix is used in the wave
model, we will look at Cholesky decompositions in this section, but most results also apply
for the nonsymmetric LU -decompositions.

As preconditioner, these decompositions are not usefull, because (LLT )−1S = I. However,
one can find lower triangular matrices K ≈ L which are easier to solve, but still KKT ≈ A,
and are therefore usefull as preconditioners. Calculating these matrices K can be done with
an incomplete Cholesky decomposition, as explained in this section.

10.1 Sparsity pattern

The system to solve in the wave model is Equation (8.1): Sψ = b. With a lexicographical
numbering of nodes, the matrix S is pentadiagonal with values on the main, first and p-th
outer diagonal. This sparsity pattern18 of S is shown in the left picture of Figure 4. The
results of Figure 4 are made with Matlab on a grid with 10 nodes in both directions.

Figure 4: Sparsity pattern of S (left), L (center) and K (right).

The Cholesky factor L of S is the lower triangular matrix as shown in the center picture of
Figure 4. The lower bandwith of L is the same as for S, but where S has zeros inside the
band, L has nonzero elements inside the band; this is called fill-in.

Solving a system Lx = b can be done relatively easy with forward substitution [10]. The more
nonzero elements L has, the more computational effort is needed. To reduce the computation
time, a predefined sparsity pattern is imposed on the Cholesky matrix. A common choice
is to take the sparsity pattern of S itself. So, the decomposition of S has to result in a
lower triangular matrices K which approximates S, i.e., KKT ≈ S and K +KT has to have
the same sparsity pattern as S. This is called incomplete Cholesky decomposition and the
resulting lower triangular matrix K is shown in the right picture of Figure 4.

17A matrix L is lower triangular when Lij = 0 ∀ i < j, and U upper triangular when Uij = 0 ∀ i > j.
18The sparsity pattern of a matrix A is the pattern of all nonzero elements of A.
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A similar choice is to take the sparsity pattern of S with m extra fill-in diagonals, called the
IC(m) decomposition [26]. This results in an incomplete decomposition which approximates
the matrix more accurate, but needs more computation time to solve. This method will not
be used in the following, so m = 0 is taken.
Because LLT = S, the sparsity patterns are the same. When using the incomplete Cholesky
decomposition, we have KKT ≈ S, which has a different sparsity pattern. In the right picture
of Figure 5, we see that there are nonzero elements on the (p− 1)–st left and right diagonal,
called the fill-in elements.

Figure 5: Sparsity pattern of LLT (left) and KKT (right).

Because of the sparse structure of K and KKT ≈ S, it is a good choice for use as a precon-
ditioner in the CG-method.

10.2 Calculating the incomplete Cholesky decomposition

In the previous section it has been stated that the Cholesky decomposition is of the form LLT ,
but one may also consider the decomposition

M = (D + L)D−1(D + LT ), (10.1)

with D a diagonal matrix and L a strictly lower triangular matrix, so Dij = 0 ∀ i 6= j
and Lij = 0 ∀ i ≤ j. For the incomplete Cholesky decomposition, we have an additional
requirement of the sparsity pattern, namely Lij = 0 for i 6= j + 1 and i 6= j + p.
Similar to KKT in Figure 5, the matrix M has a sparsity pattern with seven nonzero diago-
nals: the five nonzero diagonals of S and the fill-in elements next to the outer band. To get
an algorithm for calculating the incomplete Cholesky decomposition, the matrix M will be
written out for these seven diagonals. Detailed derivations are shown in Appendix H.
For the outer diagonals of M , we have Mi,i−p = Li,i−p, Mi,i−1 = Li,i−1, Mi,i+1 = LTi,i+1

and Mi,i+p = LTi,i+p. To apply M as preconditioner for S, we want M ≈ S. Therefore, the
matrix L of the incomplete Cholesky decomposition (10.1) is chosen equal to the strictly lower
triangular part of S. This implies, amongst others, that the matrix L does not have to be
calculated, because it is directly given by the known matrix S.
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The main diagonal is now given by

Mii = S2
i,i−pD

−1
i−p,i−p + S2

i,i−1D
−1
i−1,i−1 +Dii, (10.2)

and the fill-in elements are given by

Mi,i−p+1 = Si,i−pD
−1
i−p,i−pSi−p,i−p+1, (10.3a)

Mi,i+p−1 = Si,i−1D
−1
i−1,i−1Si−1,i+p−1. (10.3b)

The diagonal matrix D of the decomposition has to be specified by a condition on these three
diagonals. One choice is to ignore the fill-in elements and use Mii = Sii, which yields the
recursive formula19

Dii = Sii −
S2
i,i−p

Di−p,i−p
−

S2
i,i−1

Di−1,i−1
. (10.4)

This model for choosing L and D in Equation (10.1) is called the incomplete Cholesky decom-
position (IC)20 [26].

Another choice is to require equal row sums for S and M :
∑n

j=1 Sij =
∑n

j=1Mij . Because of
the choice of L to be equal to the lower part of S, we get Sii = Mii +Mi,i−p+1 +Mi,i+p−1,
yielding the recursive formula

Dii = Sii −
Si,i−p(Si,i−p + Si−p,i−p+1)

Di−p,i−p
− Si,i−1(Si,i−1 + Si−1,i+p−1)

Di−1,i−1
, (10.5)

called the modified incomplete Cholesky decomposition (MIC) [11].

These two models for D can be combined by requiring

Sii = Mii + ω (Mi,i−p+1 +Mi,i+p−1) , (10.6)

with 0 ≤ ω ≤ 1 a constant, called the relaxation parameter. This gives

Dii = Sii −
Si,i−p(Si,i−p + ωSi−p,i−p+1)

Di−p,i−p
− Si,i−1(Si,i−1 + ωSi−1,i+p−1)

Di−1,i−1
, (10.7)

the relaxed incomplete Cholesky decomposition (RIC) [4].

Note that for ω = 0, the RIC-decomposition (10.7) reduces to the IC-decomposition (10.4)
and for ω = 1, it reduces to the MIC-decomposition (10.5).

10.3 Eisenstat’s implementation

The incomplete Cholesky decomposition (10.1) results in a matrix M for which M ≈ S holds
and will therefore be used as a preconditioner for the conjugate gradient method. During the
CG-algorithm, one has to solve th system y = M−1Sx, or a similar one. In this section, it
will be explained that for incomplete Cholesky decompositions this equation can be solved
efficiently with Eisenstat’s implementation [8].

19For i = 1, use Dii = Sii, and for 1 < i < p use Dii = Sii −
S2

i,i−1

Di−1,i−1

.
20Confusingly, this is the same term as the general incomplete Cholesky decomposition as used before.
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In order to enable Eisenstat’s implementation, the matrix M will be scaled:

M̃ = D− 1
2MD− 1

2

= D− 1
2 (D + L)D−1(D + LT )D− 1

2

= (I +D− 1
2LD− 1

2 )(I +D− 1
2LTD− 1

2 )

= (I + L̃)(I + L̃T ), (10.8)

with the matricesD and L according to Equation (10.1) and the scaled matrix L̃ := D− 1
2LD− 1

2 .
By the definition of the incomplete Cholesky decomposition in Section 10.2, the matrix L
equals the stritly lower triangular part of S. Then, with DS the diagonal of S, we have S =
L+DS + LT and also S̃ = L̃+DeS

+ L̃T with DeS
= D− 1

2DSD
− 1

2 the diagonal of S̃.
Let’s observe the following derivation:

(I + L̃)−1S̃(I + L̃T )−1 = (I + L̃)−1(L̃+DeS
+ L̃T )(I + L̃T )−1

= (I + L̃)−1
(
(I + L̃) + (DeS

− 2I) + (I + L̃T )
)

(I + L̃T )−1

= (I + L̃T )−1 + (I + L̃)−1(DeS
− 2I)(I + L̃T )−1 + (I + L̃)−1.

The implementation of the matrix-vector product y = (I + L̃)−1S̃(I + L̃T )−1x for a given x

can therefore be written as

z := (I + L̃T )−1x, (10.9a)

y = (I + L̃)−1
(
x + (DeS

− 2I)z
)

+ z, (10.9b)

called Eisenstat’s implementation.
Compared to the straightforward way of solving y = (I + L̃)−1S̃(I + L̃T )−1x, i.e.,

v := (I + L̃T )−1x,

w := S̃x,

y = (I + L̃)−1w,

this saves one matrix-vector multiplication y = S̃x at the expense of three vector updates.
These three vector updates are the calculation of a := (D̃eS

− 2I)z, b := x + a and y = c + z,
where it is assumed that the matrix DeS

− 2I is already calculated. In general, matrix-
vector multiplications are expensive and therefore Eisenstat’s implementation saves some
computation time.
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10.4 The RICCG-method

In previous sections, we have seen that for symmetric matrices S, an incomplete Cholesky
decomposition is given by Equation (10.1): M = (D + L)D−1(D + LT ), with L the strictly
lower triangular part of the matrix S and the diagonal matrix D is calculated according to
Equation (10.7).
In the derivation of the preconditioned CG-method, it is assumed that the preconditioner has
the symmetric form of M = PP T . In order to get this form, the matrix D is scaled to I.
This is done by scaling S with D:

S̃ := D− 1
2SD− 1

2 . (10.10)

The incomplete Cholesky decomposition of S̃ is then given by M̃ = (I+L̃)(I+L̃T ), as derived
in Equation (10.8). With

P := (I + L̃) (10.11)

the preconditioner M̃ = PP T has the symmetric form as wanted for the PCG-algorithm.
The statement q = P−1S̃P−T p from choice 1 in Table 1 can now be solved efficiently with
Eisenstat’s implementation (10.9).

Summarizing, the whole linear problem is first scaled with D, as in Equation (10.10). Then,
the PCG-method is applied with the relaxed incomplete Cholesky decomposition (10.11) as
preconditioner.

10.5 Spectral condition number of the RIC-decomposition

In Section 8.3 it has been shown that the convergence of the CG-method depends mainly
on the spectral condition number of S, which is the ratio of largest and smalles eigenvalue.
For the PCG-method, the convergence depends on the spectral condition number of the
preconditioned matrix P−1SP−T . As preconditioner, we will consider the relaxed incomplete
Cholesky decomposition (10.7).
For a characteristic mesh size h, it can be shown that the condition number of the IC-
preconditioner is O(h−1) and for the MIC-preconditioner O(h−2) [41]. Therefore, it is ex-
pected that MICCG will converge faster, especially for larger problems.
In Figure 6, we see that the spectra of IC and MIC differ considerably. For small values of the
relaxation parameter ω, the large eigenvalues are clustered at one, but the small eigenvalues
are widely spread out. For large ω, the small eigenvalues are approximately one, but the large
eigenvalues are not clustered. This is similar to what one might expect from the theoretical
results of λIC

min = O(h2) and λIC
max = O(1) for the IC-preconditioner; and λMIC

min = O(1)
and λMIC

max = O(h−1) for the MIC-preconditioner [41].

The spectral condition number of the original matrix S is 160.7, which is reduced a lot with
the RIC-preconditioner, as shown in Figure 7. We also see that the larger ω, the smaller the
spectral condition number
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Figure 6: Spectrum of the scaled matrix S̃ and preconditioned matrix P−1S̃P−T of RIC-
preconditioner with ω = 0 (upper left), ω = 0.25 (upper right), ω = 0.75 (lower left) and
ω = 1 (lower right) at a grid of 32 × 32 nodes.
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Figure 7: Spectral condition number of RIC at an open sea with 32 × 32 nodes.
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In Section 8.3 it has been derived that a spectral condition number of O(h−2) yields O(h−1)
CG-iterations. Similar, the condition number of O(h−1) for the MICCG-method will give

O(h−
1
2 ) CG-iterations. In order to verify these theoretical results, the methods are applied

to the test problem of an open sea (see Section 13.1) with a constant depth of 50m. The
number of CG-iterations is averaged over 1000 timesteps, as given in Table 2 (see Section 14
for more results).

Grid ω = 0 ω = 0.5 ω = 1

100 × 100 7.822 7.637 7.399
200 × 200 16.357 14.387 11.450
400 × 400 32.895 28.184 17.144
800 × 800 67.233 57.611 25.758

Table 2: Mean number of RICCG-iterations at open sea.

The order of the number of iterations can be estimated with Richardson’s extrapolation21.
Because the method used three different grids and four grids are given in Table 2, we can
apply Richardson’s extrapolation two times. For ω = 0, we get the values -0.954 and -1.054;
for ω = 0.5 we get -1.031 and -1.093; and for ω = 1 we get -0.491 and -0.597. These values
are estimates of the order, and are in accordance with the theoretical orders, i.e., O(h−1)

for ICCG and O(h−
1
2 ) for MICCG. In between those extreme choices, we have an estimate

of O(h−1) for RIC-0.5, which is the same as for IC.
As shown in Section 8.3, these orders of the number of CG-iterations are linked with the order
of the spectral condition number. To be precise, with the results of Richardson’s extrapolation,
the spectral condition number of ICCG is estimated by O(h−2) and for MICCG O(h−1), which
equal the theoretical orders.

21The number of CG-iterations is given by NCG
h = O(hα) = βhα, with h the characteristic mesh size and β

some constant. With results from three different grids, one can estimate the exponent α. For a given number
of iterations at grids with mesh size h, 2h and 4h, one has β(4h)α−β(2h)α

β(2h)α−βhα = (4α−2α)hα

(2α−1α)hα = 2α(2α−1)
2α−1

= 2α.
Then α is estimated with the 2-log of the given fraction.
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11 Repeated red-black preconditioner

In previous sections two preconditioners for the CG-method have been described. Diagonal
scaling in Section 9 and relaxed incomplete Cholesky in Section 10. In this section another
preconditioner will be derived, it uses a renumbering of the grid points according to a red-
black ordering. With an elimination process, an equivalent stencil is obtained on a coarser
grid, which is simplified by lumping some outer elements. This procedure is repeated several
times, until the grid is coarse enough to use a direct solver on it. The resulting preconditioning
method is called the repeated red-black preconditioner, or RRB [6, 3, 28, 39].

11.1 Repeated elimination on red-black grids

As explained in Section 7.1, the variational Boussinesq model is discretized on a rectangular
grid. In previous preconditioners, a lexicographical numbering of the computational grid
points is used. For the RRB-method, a red-black ordering will be taken, i.e., the red nodes
are given by the points (xij , yij) with i + j = 0 (mod 2), and the black nodes by xij with
i+ j = 1 (mod 2). First the black points are numbered in lexicographical ordering and then
the red points. With this checkerboard-like ordering and the 5-point stencil (8.2), black points
only depend on red points and vice-versa.
The red nodes give a shifted grid, on which again a subdivision is performed. A second
level grid is obtained by taking only the red nodes is odd rows and columns. It results in a
rectangular grid with a mesh width two times larger than the first level grid. On the second
level grid, a similar red-black subdivision can be made.

♠ ♠ ♠ ♠ ♠ ♠ ♠

♠ ♠ ♠ ♠ ♠ ♠ ♠

♠ ♠ ♠ ♠ ♠ ♠ ♠

♠ ♠ ♠ ♠ ♠ ♠ ♠

♠ ♠ ♠ ♠ ♠ ♠ ♠

♥ ♥ ♥ ♥ ♥ ♥ ♥

♥ ♥ ♥ ♥ ♥ ♥ ♥

♥ ♥ ♥ ♥ ♥ ♥ ♥

♥ ♥ ♥ ♥ ♥ ♥ ♥

♦ ♦ ♦ ♦ ♦ ♦ ♦
♦ ♦ ♦ ♦ ♦ ♦ ♦

♦ ♦ ♦ ♦ ♦ ♦ ♦
♦ ♦ ♦ ♦ ♦ ♦ ♦

♦ ♦ ♦ ♦ ♦ ♦ ♦
♦ ♦ ♦ ♦ ♦ ♦ ♦

♦ ♦ ♦ ♦ ♦ ♦ ♦
♦ ♦ ♦ ♦ ♦ ♦ ♦

♦ ♦ ♦ ♦ ♦ ♦ ♦

Figure 8: Domain with first level red-black (hearts and diamonds) and second level of blue
nodes (spades).

With the ordering of nodes as in Figure 8, the linear system Sψ = b (8.1) can be written as




D♦ S♦♥ S♦♠

S♥♦ D♥ 0
S♠♦ 0 D♠





ψ♦

ψ♥

ψ♠


 =



b♦
b♥
b♠


 , (11.1)

with D diagonal matrices. Because of the symmetric stencil (8.2), we have S♥♦ = ST♦♥ and

S♠♦ = ST♦♠. Note that the size of ψ♦ is two times larger than ψ♥ and ψ♠.
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The diagonal matrix D−1
♦ is easily computed. Therefore, the ♦-nodes can be decoupled with

Gaussian elimination. This can be represented by the map S = L1S1L
T
1 , i.e.,




I♦ 0 0

S♥♦D
−1
♦ I♥ 0

S♠♦D
−1
♦ 0 I♠





D♦ 0 0

0 D♥ − S♥♦D
−1
♦ S♦♥ −S♥♦D

−1
♦ S♦♠

0 −S♠♦D
−1
♦ S♦♥ D♠ − S♠♦D

−1
♦ S♦♠





I♦ D−1

♦ S♦♥ D−1
♦ S♦♠

0 I♥ 0
0 0 I♠


 .

Solving a linear system Sψ = b can now be done with L1S1L
T
1 ψ = b. Because L1 is a lower

triangular matrix, forward substitution is used. The matrix S1 is decoupled and because D♦

diagonal, the ♦-subsystem of S1 is easily solved. The subsystem of S1 for the first level
red nodes ♥ and ♠ is more difficult to solve. This so-called Schur-complement (see [7])
corresponds with a 9-point stencil




0 0 nn1 0 0
0 nw1 0 ne1 0

ww1 0 cc1 0 ee1
0 sw1 0 se1 0
0 0 ss1 0 0




(11.2)

on the first level red nodes.
In order to simplify this stencil on the ♥-nodes, the four most outer elements are lumped
towards the main diagonal: c̃c1 = cc1 +ee1 +nn1 +ww1 +ss1. This is equivalent with stating

(D̃♥)ii =
∑

j

(
D♥ − S♥♦D

−1
♦ S♦♥

)
ij

(11.3)

a diagonal matrix.
For the second level ♠-nodes, the 9-point stencil (11.2) will stay the same. One can also
choose to perform the same lumping procedure on the ♠-nodes too, i.e., use D̃♠ similar to
Equation (11.3). Both methods will result in a 9-point stencil (11.5) after the next elimination
and therefore give the same structure. However, in [14] it is shown that for the Poisson
equation, the first method, so lumping only the ♥-nodes, has a smaller spectral condition
number. Therefore, we will look at the first method only.
With the lumping procedure (11.3), the values ψ♥ can explicitly be given by ψ♠. Gaussian
elimination of the ♥-nodes then gives S̃1 = L2S2L

T
2 as



I♦ 0 0
0 I♥ 0

0 −S♠♦D
−1
♦ S♦♥D̃

−1
♥ I♠





D♦ 0 0

0 D̃♥ 0

0 0 Ŝ♠





I♦ 0 0

0 I♥ −D̃−1
♥ S♥♦D

−1
♦ S♦♠

0 0 I♠


 ,

with

Ŝ♠ := D♠ − S♠♦D
−1
♦ S♦♠ − S♠♦D

−1
♦ S♦♥D̃

−1
♥ S♥♦D

−1
♦ S♦♠. (11.4)

This matrix is given by a 9-point stencil



nw2 0 nn2 0 ne2
0 0 0 0 0

ww2 0 cc2 0 ee2
0 0 0 0 0
sw2 0 ss2 0 se2




(11.5)
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on the second level ♠-nodes.
As before, the 9-point stencil is simplified to a 5-point stencil by lumping the most outer
elements towards the main diagonal, i.e., c̃c2 = cc1 + ne2 + nw2 + sw2 + se2. The resulting
matrix S̃♠ on the coarse grid is pentadiagonal and has the same properties as the original
matrix S, i.e., S̃♠ is a symmetric positive definite M -matrix [6].

The procedure explained in this section is only one RRB iteration. It consists of an elim-
ination S = L1S1L

T
1 , lumping S1 = S̃1 + R1 and again an elimination S̃1 = L2S2L

T
2 and

lumping S2 = S̃2 +R2. Combined, we have

S = L1L2S̃2L
T
2 L

T
1 + L1L2R2L

T
2 L

T
1 + L1R1L

T
1

= LDLT +R, (11.6)

with the lower triangular matrix

L :=




I♦ 0 0

S♥♦D
−1
♦ I♥ 0

S♠♦D
−1
♦ −S♠♦D

−1
♦ S♦♥D̃

−1
♥ I♠


 (11.7)

and the block diagonal matrix

D :=



D♦ 0 0

0 D̃♥ 0

0 0 S̃♠


 . (11.8)

The matrix R := L1L2R2L
T
2 L

T
1 + L1R1L

T
1 contains the lumped elements. The first lumping

procedure (11.3) yields the matrix R1 =




0 0 0
0 R♥ 0
0 0 0


, with R♥ = D♥−S♥♦D

−1
♦ S♦♥−D̃♥.

Because of the ones on the diagonal of L1, we have L1R1L
T
1 = R1. Similar, we have R2 =


0 0 0
0 0 0
0 0 R♠


, with R♠ = Ŝ♠ − S̃♠ and LR2L

T = R2. The matrix R = R1 + R2 is then

given by

R =




0 0 0
0 R♥ 0
0 0 R♠


 . (11.9)

The lower triangularity of L is due to the RRB ordering of the grid points. When using a
lexicographical numbering, it will not have a triangular structure anymore. The same holds
for the structures of D and R.
Because the coarse grid matrix S̃♠ has the same properties as S, but with a four times
smaller size, one can choose to apply the same procedure again. After k − 1 RRB iterations,

we have S = LDLT +R, with D =

[
Dk 0
0 Sk

]
, a diagonal block matrix, with Dk a diagonal

matrix and Sk a pentadiagonal matrix on level k. For a square domain with n2 nodes, Sk has
dimension (n/2k−1)2, which can be much smaller than n2. This decomposition is called the
RRB-k method.
In [6] it has been proven that for a weakly diagonally dominant M -matrix, like S, the RRB-k
method is well defined and the matrix LDLT is also a weakly diagonally dominant M -matrix.
Moreover, LDLT is symmetric positive definite, for an spd S.
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11.2 The RRB method as a preconditioner

The RRB-k method makes a decomposition S = LDLT + R, with L a lower triangular
matrix and D a block diagonal matrix. The matrix R contains the adjustments made during
the lumping procedure. Similar to the scalar Cholesky decompositions in Section 10, the
matrix LDLT is a block incomplete Cholesky decomposition of S.
Because LDLT ≈ S and LDLTψ = b is relatively easy to solve, the matrix

M = LDLT (11.10)

from the RRB-k procedure can be used as a preconditioner.
During the PCG-method, z = M−1r has to be solved. This is done in three steps: a =
L−1r, b = D−1a and z = L−T b. Because L lower triangular, calculating a is done with
forward substitution and z with backward substitution. The block diagonal matrix D is
scalar diagonal on all nodes except the nodes at the maximum level. The vector b is therefore
straightforwardly calculated on most nodes. At the maximum level, a system Skbk = ak has
to be solved. When the maximum level k is chosen such that it consists of only one node, it
is easy to solve the coarse grid system, because it has dimension one. For smaller numbers
of k, the system is given by a pentadiagonal symmetric matrix (similar to matrix (11.4)). A
complete Cholesky decomposition is then used to solve the coarse grid system.

Convergence The purpose of applying a preconditioner is to improve the convergence of
the CG-method. From Equation (8.14), we know that the convergence depends on the spec-
tral condition number. For unpreconditioned CG, the spectral condition number depends
quadratically on the characteristic mesh size h (see Equation (8.15)). In [6] the spectral con-
dition number of the RRB-k preconditioner is analyzed for a Poisson equation with Dirichlet
boundary conditions. Depending on the choice of k, the spectral condition number is be-
tween O(h−1) and O(1). In Section 11.5 we will elaborate more on the convergence properties
of RRB-k.

Choosing the parameter k During the RRB procedure, the linear system reduces to a
similar one on a two times coarser grid. Solving this coarse grid equation can be done by
applying another RRB iteration, or by using a complete Cholesky decomposition. The level
on which a complete Cholesky decomposition is made is denoted by level k. In general, the
Cholesky decomposition is accurate, but slow and the RRB iteration less accurate but easy
to compute. In order to choose the optimal maximum level k, the number of flops is counted
in Appendix I.
For a square grid with n2 nodes, level k consists of n2

k nodes, with nk = n(1
2)k−1. The RRB

part requires 17
2 n

2 − 17n2
k flops and solving the Cholesky decomposition 4n3

k + 2n2
k flops. The

statement of an expensive Cholesky decomposition is supported by the cubic number of flops,
while RRB uses a quadratic number of flops. However, the constants are different, and setting
the derivative of the total number of flops with respect to nk to zero yields 12n2

k − 30nk = 0,
with solutions nk = 0 and nk = 5

2 . The zero solution is a local maximum and nk = 5
2 a global

minimum for positive nk. Because nk should be an integer, nk = 2 is the optimal choice
when minimizing the total number of flops. Taking k such that nk = 2 will give a complete
Cholesky decomposition with a half bandwith of two.
Summarizing, considering the number of flops, choosing k such that nk = 2 is optimal when
the number of CG-iterations is constant.
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11.3 Sparsity pattern of the RRB preconditioner

The RRB-k preconditioner, given by Equation (11.10), is a block incomplete Cholesky decom-
position using a red-black numbering of nodes, repeated on several levels. For a lexicographical
ordering, the matrices have a banded structure, like in Figure 4. But due to the RRB-k num-
bering, the sparsity pattern will be different. The sparsity pattern of the matrix L+D+LT

on a grid with 10 × 10 nodes is shown in Figure 9.

nz = 830

maximum level: 2

nz = 774

maximum level: 3

Figure 9: Sparsity pattern of L+D + LT with a maximum level of 2 (left) and 3 (right).

The maximum level is numbered at the end and therefore occurs in the lower right block of D.
The whole band of this submatrix is filled in because of the complete Cholesky decomposition.
When the maximum level is taken smaller, the Cholesky decomposition is also smaller and
less fill-in elements occur. This is seen by the number of nonzero elements, which is 830
for k = 2 and 774 for k = 3.
The original matrix S has only coupling between the first level black and red nodes. In the
left picture of Figure 10, one can see this by the diagonal lower right block. The sparsity
pattern of S is similar to the structure in Equation (11.1).
When looking at the sparsity patter of the preconditioner M = LDLT in Figure 10, we see a
similar structure as for L+D+LT . But now extra fill-in elements occur in the block diagonal
matrix D.
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nz = 460

maximum level: 3

nz = 920

maximum level: 3

Figure 10: Sparsity pattern of original matrix S (left) and preconditioner LDLT (right).

11.4 Lumping procedure during RRB

In the RRB preconditioner, at several levels 9-point stencils are reduced to 5-point stencils
with a lumping procedure. As given in Equation (11.3), this is done by adding the four most
outer elements to the center element. This is similar to the modified incomplete Cholesky
decomposition from Equation (10.5). One can also use the idea of a relaxation parameter ω,
resulting in the lumped 5-point stencil




0 nn 0
ww cc+ ω(ne+ nw + sw + se) ee
0 ss 0


 , (11.11)

and similar for other stencils. For ω = 1 it reduces to the stencil as considered before. Taking
ω = 0 is similar to an incomplete Cholesky decomposition.
Another option is to lump the most outer elements to the other outer elements, i.e.,




0 nn+ 1
2 (ne+ nw) 0

ww + 1
2(nw + sw) cc ee+ 1

2(se+ ne)
0 ss+ 1

2 (sw + se) 0


 . (11.12)

In [30] another lumping strategy is proposed, for use of a slightly different RRB method
applied to a convection-diffusion equation. The lumped stencil reads




0 nn+ ne+ nw 0
ww + nw + sw cc− (ne+ nw + sw + se) ee+ se+ ne

0 ss+ sw + se 0


 . (11.13)

These three lumping procedures are applied to the RRB preconditioner in the wave model. In
Table 3 some results are shown for two test problems (see Chapter 13). Because the structure
of the preconditioner does not change with the lumping procedure, only its values change, the
computation time for solving a linear system is proportional to the number of CG-iterations.
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ω = 1 ω = 0.5 ω = 0 Eq. (11.12) Eq. (11.13)

Open sea of 200 × 200 nodes 7.755 11.584 13.511 10.731 22.031
Port of 120 × 240 nodes 6.975 10.824 12.754 11.550 25.408

Table 3: Average number of CG-iterations over 1000 time iterations, with RRB-kmax precon-
ditioner and several lumping procedures.

With the results in Table 3, observe that taking ω = 1 in stencil (11.11) gives the lowest
number of CG-iterations of the different lumping procedures. Therefore the lumping strategy
according to the modified incomplete Cholesky decomposition will be used.

11.5 Spectral condition number of the RRB-k preconditioner

Because preconditionersM are approximations of the original matrix S, the spectral condition
number of the preconditioned matrix M−1S is smaller than the one of S. This gives a sharper
upperbound (8.14) of the error during the CG-method and therefore a better convergence.
In [6] and [14], the RRB-k preconditioner is investigated for the two-dimensional Poisson
equation, i.e., ∆u = f , which is similar to the elliptic model equation (5.1c). The Poisson
equation is discretized on a square domain with n nodes in both x- and y-direction and h
denoting the characteristic mesh width. In both references, the levels are numbered different
than is done in this section: k̃ = 2(k − 1).
In [6], Brand has shown that the spectral condition number satisfy.

(
λmax

λmin

)

RRB-k̃

≤ 2k̃/2. (11.14)

Let’s consider the extreme choices k̃min = 0 and k̃max = 2 log2(n). The minimal choice k̃min

yields a spectral condition number of one. This is expected, because the complete Cholesky
decomposition is performed on the whole grid and thus M = S, an exact preconditioner.
For k̃max, the RRB iteration is performed until a maximum level of one node. The upper-
bound (11.14) gives 2k̃max/2 = n, so a spectral condition number of O(h−1). For intermediate
choices of k̃, the condition number will be in between O(1) and O(h−1).
We will look at two special choices of k̃. In [6], Brand takes k̃B = log2(n) as maximum level,
which will then have n nodes. This choice is substituted in the upper bound (11.14) and gives

a spectral condition number of O(h−
1
2 ). With a different reasoning, in [14], Ciarlet determines

the maximum level with k̃C = 2
3 log2(n) + 4

3 , and proves that the spectral condition number

is O(h−
1
3 ).

The difference between these results is in the choice of maximum level. For n > 16, we have
k̃C < k̃B . So, for most grids, the maximum level with k̃C has more nodes than with k̃B .
This gives a larger effect of the complete Cholesky decomposition and thus a more accurate
preconditioner.
Observe that the choice of k according to minimal number of flops from Section 11.2 is given
by k̃flops = k̃max − 4, which gives a spectral condition number of O(h−1).
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In order to verify these results of the spectral condition number, one can look at the number
of CG-iterations. According to the theory in Section 8.3, the spectral condition number
of O(h−1) for RRB-kmax yields O(h−

1
2 ) CG-iterations. The number of CG-iterations, averaged

over 1000 time steps, at an open sea (see Section 13.1) is presented in Table 4.

Grid kmax kflops kB kC
100 × 100 6.732 6.732 6.732 6.732
200 × 200 7.755 7.755 7.755 7.755
400 × 400 8.994 8.994 8.980 8.980
800 × 800 11.503 11.503 11.503 11.494

Table 4: Mean number of CG-iterations with RRB-k preconditioner at open sea.

As is done in Section 10.5, Richardson’s extrapolation can give an estimate of the order of
the number of CG-iterations needed. For kmax and kflops, we expect O(h−

1
2 ) CG-iterations.

However, Richardson’s extrapolation applied to the three coarsest grids give an order of −0.28,
and to the finest grids −1.02. For the other choices kB and kC similar results are obtained.
Because these results differ considerably between the grids, we can conclude that the mesh
width is too large for this analysis. The Richardson extrapolation is not converged yet and
will therefore give an inaccurate estimate.
The result of O(h−

1
2 ) CG-iterations for kmax implies that for small h, the number of CG-

iterations has to increase with a factor
√

2 in case of a two times coarser grid. The results
in Table 4 show that the number of CG-iterations increase with less than a factor

√
2, which

gives even a better convergence.
Note that the CG-method is performed on the first Schur-complement instead of the ma-
trix M−1S for the whole domain. This is because the first level black points are eliminated
exactly.
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12 Deflation

Three different preconditioners for the CG-method have been discussed in previous sections.
The deflation method can be used on top of these preconditioners. Its basic idea is to map
some predefined vectors into the null-space. When the deflation vectors are chosen correctly,
the spectral condition number will decrease, which can improve the performance of these
PCG-methods. In this section the deflation method and its properties will be explained; for
a more detailed description, the reader is referred to [27, 36, 37, 38].

12.1 Derivation of the deflation method

The error during the PCG-iteration is bounded by Equation (8.14). Improving this upper
bound is mainly achieved by decreasing the spectral condition number λmax/λmin, the ratio
of the maximal and minimal eigenvalue. When applying the CG-method to a singular and
positive semi-definite system, there are zero eigenvalues, so λmin = 0 and the condition number
is undetermined. As will be explained in Section 12.3, the spectral condition number will then
be given by λmax/λ̃min, with λ̃min the smallest nonzero eigenvalue.

The deflation method exploits this property by defining a matrix Q, such that QS has some
zero eigenvalues and the other eigenvalues approximately equal to the eigenvalues of S. The
spectral condition number of QS is than given by λQSmax/λ̃

QS
min, which is likely to be smaller

than λSmax/λ
S
min, thus giving a better convergence of the CG-method.

This projection matrix Q is defined by

Q := I − SZ
(
ZTSZ

)−1
ZT (12.1)

and is called the deflation matrix [36]. The deflation subspace matrix Z has to be specified
by the user. The columns of Z are the deflation vectors and span the null-space of QS. For
n grid points, Q ∈ R

n×n and Z ∈ R
n×k, with k the number of deflation vectors, usually much

smaller than n.

12.2 Properties of the deflation matrix

The deflation matrix Q is defined in Equation (12.1) and the discretization matrix S in
Equation (8.1). In this section, the following properties will be explained (for similar theorems
and proofs, see [36]):

(a) Q is a projection: Q2 = Q;

(b) QS is symmetric: (QS)T = QS;

(c) QS is positive semi-definite: 〈x,QSx〉 ≥ 0 ∀ x ∈ R
n;

(d) Z is the null-space of QS: QSx = 0 iff x ∈ span{z1, z2, . . . , zk}.
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Proof (a) The matrix Q is called a projection if it satisfies Q2 = Q. We have

Q2 =
(
I − SZ

(
ZTSZ

)−1
ZT
)2

= I − 2SZ
(
ZTSZ

)−1
ZT + SZ

(
ZTSZ

)−1
ZTSZ

(
ZTSZ

)−1
ZT

= I − 2SZ
(
ZTSZ

)−1
ZT + SZ

(
ZTSZ

)−1
ZT

= I − SZ
(
ZTSZ

)−1
ZT

= Q,

so Q a projection. In general, it will not be an orthogonal projection, because Q is nonsym-
metric22.

Proof (b) The symmetry of QS follows from

(QS)T = SQT

= S
(
I − Z

(
ZTSZ

)−1
ZTS

)

= S − SZ
(
ZTSZ

)−1
ZTS

=
(
I − SZ

(
ZTSZ

)−1
ZT
)
S

= QS,

where the symmetry of S is used.

Proof (c) First observe that with the properties Q = Q2 and QS = SQT , we can write

QS = Q2S = QSQT .

Then we have, for the Euclidean inner product,

〈x,QSx〉 = 〈x,QSQTx〉 = 〈QTx, SQTx〉 = 〈y, Sy〉,

with y = QTx. For all vectors y 6= 0, the positive definiteness of S yields 〈y, Sy〉 > 0, and for
y = 0, we have 〈y, Sy〉 = 0. Because of the identity23 QTZ = 0, the null-space of QT contains
the columns zi of Z. For x = zi, we get y = 0 and therefore 〈x,QSx〉 = 0. Because there is
at least one nontrivial zi, the null-space of QT is also nontrivial and we get

〈x,QSx〉 ≥ 0

for all x ∈ R
n×n, and 〈x,QSx〉 = 0 for at least one nontrivial vector. Concluding, the

matrix QS is positive semi-definite.

Proof (d) The null space of QS contains span{z1, . . . , zk}, because

QSZ = SZ − SZ
(
ZTSZ

)−1
ZTSZ = SZ − SZ = 0.

22A projection matrix Q is an orthogonal projection if Q is self-adjoint. For the Euclidean inner product

space, this reduces to symmetry: QT = Q. With B := Z
`

ZTSZ
´−1

ZT , we have Q = I−SB and QT = I−BS,
which are in general not the same.

23It holds that QTZ = (I − Z(ZTSZ)−1ZTS)Z = Z − Z(ZTSZ)−1ZTSZ = Z − Z = 0.
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Now we need to show that this is the whole null-space of QS. In order to do this correctly,
assume that the deflation vectors zi are linearly independent, so rank(Z) = k. Since QSZ = 0
and S nonsingular, we have dim(N (Q)) ≥ k, with N denoting the null-space:

N (Q) = {y ∈ R
n |Qy = 0}.

In order to investigate the range of Q, denoted by

R(Q) = {y ∈ R
n | y = Qx for a x ∈ R

n},

take an arbitrary vector y perpendicular to Z, i.e, 〈zi, y〉2 = 0 for 1 ≤ i ≤ k. Then ZTy =

zT1 y

...
zTk y


 =




〈z1, y〉2
...

〈zk, y〉2


 = 0, yielding Qy = y−SZ(ZTSZ)−1ZT y = y−SZ(ZTSZ)−10 = y.

Since dim{zi, . . . , zk} = k, the orthocomplement satisfies dim{y ∈ R
n | 〈zi, y〉2 = 0 for i =

1, . . . , k} = n − k. Together with Qy = y we have dim(R(Q)) ≥ n − k. Because the
dimension of the null-space and range have to sum up to n, we get dim(N (Q)) = k, and
N (Q) = span{Sz1, . . . , Szk}. The zero null-space of S finally yields

N (QS) = span{z1, z2, . . . , zk},

the null-space of QS.

12.3 The conjugate gradient method applied to singular systems

During the derivation of the CG-method in Section 8.3, it was stated that the matrix which
the CG-method is applied for should be symmetric positive definite and thus nonsingular. As
will be shown in Section 12.4, in the deflation method the CG-method will be applied to a
singular system. In this section we will explain that this is allowed (see also [40, 15]).
A linear system Ax = b is considered for which A ∈ R

n×n is singular and symmetric positive
semi-definite, so A has only nonnegative eigenvalues. Since A singular, the null-space of A is
nontrivial, i.e., the null-space contains at least one nonzero vector. Also observe that there
is a solution of Ax = b iff b ∈ R(A), the range of A, which will be assumed in the following
analysis.
Because A symmetric and real-valued, thus self-adjoint in the Euclidean space, it has only
real eigenvalues and no generalized eigenvectors; moreover, it has a complete set of orthogo-
nal eigenvectors [23]. Any vector can therefore be written as a linear combination of eigen-
vectors ui with λi its corresponding eigenvalue. For the initial residual r0 = b − Ax0, we
write r0 =

∑n
i=1 αiui, with αi some constants. The assumption b ∈ R(A) implies r0 ∈ R(A).

Since R(A) ∩N (A) = 0, we have r0 /∈ N (A) and thus αi = 0 for all i with λi = 0.
The eigenvalues λi for which αi 6= 0 are called the active ones; in view of the Krylov sub-
space (8.7) the other eigenvalues and eigenvectors do not participate in the CG process [40].
In particular, the zero eigenvalues of A are not active and therefore do not influence the
CG-method.

From Equation (8.14), it can be concluded that the convergence of CG depends mainly on
the spectral condition number λmax/λmin. The results in this section imply that this can be
changed to the ratio of the maximal and minimal active eigenvalue. In general, this will be
the ratio between the maximal and minimal nonzero eigenvalue.
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12.4 Deflated conjugate gradient method

The deflation method uses a projection Q which maps some predefined vectors zi into the
null-space of QS. The zero eigenvalues of the singular QS will probably yield a more favorable
spectrum of QS than S. Therefore, CG-method is not applied to the original system Sψ =
b (8.1), but to the deflated system

QSψ̃ = Qb. (12.2)

Because of the singularity, the solution ψ̃ is not unique and is therefore not necessarily the
solution of the original system. However, one can show that the vector QT ψ̃ is uniquely and
well defined, and satisfies QT ψ̃ = QTψ [36]. Therefore, let’s split ψ as

ψ = (I −QT )ψ +QT ψ̃. (12.3)

The first part on the right hand side of this equation can be rewritten as

(
I −QT

)
ψ =

(
I −

(
I − Z

(
ZTSZ

)−1
ZTS

))
ψ

= Z
(
ZTSZ

)−1
ZTSψ

= Z
(
ZTSZ

)−1
ZT b. (12.4)

This expression depends only on the known right hand side b, not anymore on ψ and can
therefore be computed without the use of a linear solver.
Summarizing, the deflated system (12.2) is solved for ψ̃ with the CG-method. The solution ψ
of the original system is then calculated with

ψ = Z
(
ZTSZ

)−1
ZT b+QT ψ̃

= ψ̃ + Z
(
ZTSZ

)−1
ZT
(
b− Sψ̃

)
. (12.5)

Calculating the solution ψ̃ of Equation (12.2) with CG will consume most computation time.
The deflation subspace matrix Z, which determines Q, should therefore be chosen such that
the deflated CG-method converges faster than the undeflated version, i.e., the spectrum of QS
has to be more favorable than the spectrum of S.

12.4.1 Deflated preconditioned conjugate gradient method

The deflated system (12.2) is solved with the conjugate gradient method. Applying a precon-
ditioner can improve the convergence of CG. So, the linear system of equations

M−1QSψ̃ = M−1Qb (12.6)

is solved with CG for a preconditioner M = PP T , which is still based on S. Another
possibility is to apply the CG-method to the system

Q̃S̃ ˜̃ψ = Q̃b̃, (12.7)

with the preconditioned variables

Q̃ = P−1QP, S̃ = P−1SP−T , ˜̃ψ = P T ψ̃, and b̃ = P−1b.
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x0 = ψ0 Initial solution
r0 = b− Sx0 Initial residual
r0 = Qr0 Deflated residual
i = 0 Number of iterations
while ||ri|| > ǫ

si = M−1ri Preconditioned residual
i = i+ 1
if i = 1
pi = si−1 Search vector

else

βi =
〈ri−1, si−1〉
〈ri−2, si−2〉

pi = si−1 + βipi−1 Update search vector
end

qi = QSpi Map search vector

αi =
〈ri−1, si−1〉
〈pi, qi〉

xi = xi−1 + αipi−1 Update iterate
ri = ri−1 − αiqi−1 Update residual

end

x = xi Solution of DPCG

ψ = x+ Z
(
ZTSZ

)−1
ZT (b− Sx) Solution

Table 5: Algorithm of the deflated preconditioned conjugate gradient method.

Both versions of the deflated PCG-method are equivalent [36]. The algorithm of the deflated
preconditioned conjugate gradient method is given in Table 5.

Note that the preconditioner M occurs in a different equation than Q and S. It can therefore
be implemented separately, thus making it easy to combine different kinds of preconditioners
with deflation.

12.5 Choice of deflation vectors

The goal of the deflation method is to increase the convergence of CG. Similar to precondition-
ing, deflation changes the spectrum of the matrix applied to the CG-method. More precisely,
the spectrum will contain some zero eigenvalues. In Section 12.3 it has been explained that
the zero eigenvalues are not active and will not influence the convergence of CG. The spec-
trum of QS will therefore have less active eigenvalues and the spectral condition number is
likely to be smaller than the one of S. In [36] it has been shown that the deflated spectral
condition number is always smaller than the undeflated one, also in case of preconditioned
matrices.

The deflation matrix Q depends on the matrix Z, which columns are the deflation vectors zi.
These deflation vectors have to be chosen such that the spectral condition number will decrease
as much as possible.

Because the spectral condition number explicitly depends on the smallest nonzero eigenvalue,
it is a good idea to deflate the smallest eigenvalues. This is achieved by defining the k
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deflation vectors zi as the eigenvectors corresponding to the smallest eigenvalues, and is
called eigenvector deflation. Although this is theoretically an excellent choice, in practice the
eigenvectors are not known in advance and are hard to calculate.

An method to choose the deflation vectors easier is subdomain deflation. The domain Ω is
subdivided in k subdomains Ωi, which are disjoint and cover the whole domain, i.e., Ωi∩Ωj = ∅
for all i 6= j and ∪ki=1Ωi = Ω. The subdomain deflation vectors zi are defined as

(zi)j :=

{
1, xj ∈ Ωi ;
0, xj ∈ Ω \ Ωi ,

(12.8)

with xj grid points [38]. The subdomains Ωi are chosen rectangular, as in figure 11.

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •
Ω1 Ω2

Ω3 Ω4

Figure 11: Domain divided in four rectangular subdomains.

12.6 Spectrum of the deflated matrices

In order to verify some properties of the deflation matrix, we will look at the matrix S from the
test problem of an open sea (see Section 13.1). The deflation matrix Q is given by subdomain
deflation, with k rectangular subdomains. Two different bathymetries are used, one with a
constant depth of 30m and one with a trench in it. In Figure 12 the spectra, calculated with
Matlab, are shown.
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Figure 12: Spectrum of the original matrix S and deflated matrix QS.

Both spectra clearly show that QS has k zero eigenvalues, with k the number of deflation
vectors. Because of rounding errors, they are not exactly equal to zero, as can be see in
Figure 12.
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For exact eigenvalue deflation, the nonzero eigenvalues of QS will be the same as the largest
eigenvalues of S. As can be seen in Figure 12, this is only approximately true for subdomain
deflation. So, the largest deflated eigenvalues are almost the same as the undeflated ones, but
the the smallest nonzero eigenvalues of the deflated matrix differ from the smallest eigenvalues
of the undeflated matrix. By applying deflation, the spectral condition number is decreased.
For the first test problem considered, the spectral condition number reduces from 1.2537
to 1.1742 and for the second from 635 153 to 13 639. Because of the smaller spectral condition
number, the deflation method is likely to converge faster. More results of the deflation method
will be presented in Section 14.5.

12.7 Implementation aspects of the deflation method

In every iteration of the deflated CG-method, as given in Table 5, the matrix-vector multipli-
cation y = Qx has to be calculated, with Q the deflation matrix defined in Equation (12.1).
This multiplication is divided in several steps:

- a = ZTx;

- b = (ZTSZ)−1a;

- c = Zb;

- d = Sc;

- y = x− d.

To calculate a, one should observe that ZTx can be written in terms of inner products:
ai = 〈zi,x〉2 for 1 ≤ i ≤ k. With the choice of subdomain deflation as in Equation (12.8), ai
is given by the sum of the elements of x inside subdomain i, i.e., ai =

∑
j∈Ωi

xj.

In a similar way c can be calculated. The vector b ∈ R
k contains values bi for each sub-

domain i. This value is distributed to all grid points inside the corresponding subdomain,
i.e., xj = bi ∀j ∈ Ωi.

On the coarse grid, one has to solve ZTSZb = a, which is a system of k linear equations.
Note that ZTSZ is symmetric and has a banded structure, with

√
k half the bandwith. Since

in general k ≪ n, a complete Cholesky decomposition of ZTSZ is calculated for solving b

efficiently and accurately.
The matrix-vector multiplication Sc is already implemented for use in the CG-iteration and
can therefore readily be calculated.

Often, the matrix SZ ∈ R
n×k is calculated explicitly in order to calculate d = SZb in one

step. However, for the considered model, this does not lead to a larger efficiency.
For node j in the interior of subdomain i, the corresponding row of SZ is given by zeros,
except element (SZ)ji, which is given by the rowsum of S. For some matrices (for example
the discretized Poisson equation), this is again zero, thus further simplifying SZ [36]. This
simplification is not the case for the matrix S in Equation (8.1), because it is strictly diagonally
dominant. For nodes j on the boundary of subdomain i, row i of SZ will have several nonzero
elements. So calculating d = SZb in one step is not that easy.

On the other hand, calculating Zb is easily done for linear subdomain deflation. Because S
is pentadiagonal, the matrix-vector multiplication Sc is calculated with only 9n flops. Con-
cluding, for this case of a sparse matrix S and subdomain deflation matrix Z with only zeros
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and ones, calculating d = SZb in one step and calculating c = Zb and d = Sc separately
are done with a comparable amount of computation time.
In order to check this, both choices are implemented. Implementing SZb is done in two
different ways: one which uses stencils and one which labels the nodes. Two test problems
are considered: an open sea with 200×200 nodes and a port of 120×240 nodes with incoming
waves. At the first problem the deflated diagonally scaled CG-method is used with 40 × 40
subdomains. The deflated MICCG-method with 10× 10 subdomains is applied to the second
test problem.

S and Z separately SZ in one step

Port with DDgsCG 40 × 40 98.7679 115.9915 109.8509
Open Sea with DMICCG 10 × 10 78.1952 89.8005 83.013

Table 6: CPU-time of linear solves of 1000 time iterations.

The CPU-time used for the wave model with the different implementations of SZb is given
in Table 6. It shows that the computational time does not differ a lot. In both cases, the best
choice is implementing Sc and Zb separately.
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13 Test problems

Various models exist to test the implementation of the wave model. The choices of for example
the bottom topography, incoming waves on the open boundaries, moving ships and mesh size
determine the test problem.
These test problems can be used for investigating the performance of the linear solver. We
can easily change the complexity of the test problems by increasing the number of grid points
for each domain.

13.1 Open sea

An easy domain for a test problem is a rectangular domain with constant depth. This is a
model for a part of a sea. The boundaries are all open, on which incoming waves can be
defined.

Figure 13: Two ships with intersection courses.

In Figure 13 an example is shown. Two ships with different headings have been modelled
by a predefined pressure term. No incoming waves and currents are specified. The size of
the domain shown in the figure is a square kilometer, with mesh size of 5 × 5m and a depth
of 30m, so a computational domain of 200 × 200 nodes.
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13.2 Port

A lot of wave phenomena, like shoaling, occur due to changes in water depth. In order to check
the performance of the Boussinesq model with varying water depths, an artificial port has
been developed. Present are a beach, a harbour and a shallow part. The depth in the largest
part of the domain is 30m. The beach has a length of 200m. The harbor has constant depth
and is divided from the sea by a pier of 10m width. The shallow part raises the bottom to 2m
depth, with a radius of 125m. The domain has a size of 600 × 1200m with finite volumes of
5 × 5m.

Figure 14: Bathymetry of the port.
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13.2.1 Wave patterns due to varying water depth

When applying the variational Boussinesq model to a varying bathymetry, some wave phe-
nomena can be observed. In the next results, four phenoma can be seen: shoaling, refraction,
reflection and diffraction. See [13] for more information about wave phenomena.
In Figure 15 a harmonic wave is entering the domain at the north and west boundaries. At
the shallow part of the sea, the water depth decreases. Then, the wave height will increase,
as is seen in the figure. This change in wave height is called shoaling. Near the beach, the
waves are moving with an angle to the shore. Due to the difference in water depth over a
wave crest, the waves are changing direction towards the shore, called refraction.

Figure 15: Shoaling and refraction.

When waves will move onto walls, it will reflect back into the sea. The reflection of the waves
at the pier can be seen in Figure 16. The waves from the southwest corner move past the pier.
Right after the pier, there is a sharp difference in wave amplitude. This causes diffraction of
the waves towards the harbour.

Figure 16: Reflection and refraction.
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13.3 IJssel

A more realistic problem is given by a model based on the river IJssel. The river has a depth
of around 4m. The width of the river is around 60m and we consider a length of 800m. On
this 200 × 800m sized domain, a uniform 2 × 2m grid has been specified.

Figure 17: A ship sailing through the river IJssel.

In Figure 17, the considered part of the IJssel is shown. It consist of a bending river with a
smooth curving boundary at the left bank. The right bank is more irregular, with breakwaters.
In the figure, it can be seen that the boundaries reflect the waves produced by the ship.
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14 Results

In the first part of this thesis, a study about the variational Boussinesq model for waves
has been presented. One of the discretized model equations results in a linear system of
equations, solved with an iterative method. A main part of the research is the development
of a linear solver with improved performance. To make it more clear what is meant with
improved performance, some assessment criteria will be discussed in Section 14.1.

As explained in previous chapters, the conjugate gradient method is used for solving the
linear system. Several preconditioners are applied to improve the convergence, namely diag-
onal scaling, relaxed incomplete Cholesky and repeated red-black. The deflation method is
combined with the preconditioners.

Several test problems have been used to obtain some results, from which some properties
of the method can be derived. In the results as given in this section, a characteristic test
problem is used; other test problems give similar results.

14.1 Criteria for the performance assessment

In order to compare the linear solvers with each other and to assess their performance, some
assessment criteria will be explained in this section.

Efficiency One of the most important properties of a solver is its efficiency. The efficiency is
twofold: computing time and storage. The computing time is measured in terms of CPU-time,
so the time it takes to solve the linear system on a standard computer.

Several variables have to be stored for the methods. A lot of them scale with the number of
grid points, which can become quite large. To save memory, as less variables as possible have
to be stored.

Real-time The goal of the variational Boussinesq model is the use in a real-time ship
simulator. This requires a large efficiency. Moreover, the time to solve the system is fixed to
a few hundreds of a second and will in practice never be constant. During the calculation of
the wave model, other processes run simultaneously, which may cause delays in the calculation
process.

Convergence with mesh-refinement It is likely that in the future the computational
domains will be larger. More unknowns are used in the model, resulting in a larger system
of equations. Because the efficiency requirements still have to be satisfied, the solver should
not scale disproportional with the number of nodes. For the same tolerance, the CG-method
needs O(h−1) iterations. Preconditioners and other methods can reduce this, to O(∞) in
the ideal case, which is called grid-independent convergence. Increasing the number of nodes
then will not lead to slower convergence.

Parallelization To reduce the wall-clock time of the methods, one can choose to parallelize
the solver over several computing units. The parallelization of linear solvers is not always
straightforward and the possibilities for parallelization depends on the method used. The
actual parallelization over a shared memory computer is beyond the scope of this project.
But we will look at some results of parallel methods on one CPU.
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Robustness The wave model have to be applicable to a wide range of bathymetries, in-
cluding beaches, harbours, rivers and trenches. The linear solver have to be robust enough
to solve the different linear systems for these bathymetries.

14.2 Overall behaviour of the CG-method

The conjugate gradient method is an iterative solver for a linear system of equations. So, an
initial estimate of the solution is updated in several steps until the estimate is well enough.
This is achieved by iterating the method until a norm of the residual is smaller than a
predefined value, called the termination criterium.
In the CG-method, every iteration the value ρi = 〈ri, zi〉2 is calculated, with ri denoting the
residual at iteration i and zi = M−1ri. Observe that 〈ri, zi〉2 = 〈ri, ri〉M−1 = ||ri||2M−1 =
||r̃i||22, with r̃i = P−1ri denoting the preconditioned residual and || · ||2 denoting the Euclidean
norm. The value ρi is an estimate of the error at iteration i, and is readily available. The
termination criterium is therefore based on ρi = ||ri||M−1 . As will be discussed in Section 14.9,
an absolute termination criterium is used:

||ri||M−1 ≤ ǫ,

with ǫ = 2 · 10−6 taken in all results which will be presented.

To analyze the behaviour of ρi for different CG-iterations i, it is shown in Figure 18. The
test problem used is an open sea with 200 × 200 nodes and the MICCG-method.
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Figure 18: Euclidean norm of preconditioned and unpreconditioned residual in the MICCG-
method, at open sea of 200 × 200 nodes.

The residual is decreasing monotonically with each CG-iteration, until the termination value
is reached, as is seen in Figure 18. The unpreconditioned residual is shifted one order of
magnitude, but has almost the same structure as the preconditioned residual.
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The linear solver is a part of the wave model and will be used in every timestep. To analyze
how the performance of the linear solver changes with simulation time, a simulation of the
variational Boussinesq model with 1000 timesteps of 0.05 s is performed on the same test
problem as before. The number of CG-iterations used for each timestep as well as the CPU-
time used for solving Equation (8.1) with MICCG is shown in Figure 19.
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Figure 19: Results at open sea of 200 × 200 nodes and MIC preconditioner.

The number of CG-iterations needed for a separate time step is increasing in time. At the
start of the simulation only 6 CG-iterations are needed, while at the end it is 12. This is
because a zero initial state is taken, hence an almost undisturbed water surfuce. At the first
few time steps, the two ships sailing into the domain cause a wave pattern which is limited to
a small part of the domain. Later on, the waves are propagated into the whole domain. The
water height becomes more irregular and the linear system will be harder to solve, resulting
in more CG-iterations. After 400 timesteps the wave pattern is developed and the number of
CG-iterations per timestep remains constant.

Two timers have been implemented in the code of the wave model. One gives the CPU-time
used for calculating the preconditioner, the other gives the time for solving the linear system
with the CG-method. The CPU-time needed for solving the linear system clearly depends on
the number of CG iterations and is, on average, 0.0388 s per time step. Note that in order to
calculate real-time, the CPU-time should be less than the timestep of 0.05 s, which is the case
for this test problem. Calculating the preconditioner is relatively cheap, it takes only 4.4ms.

14.3 Varying the maximum level in RRB

The repeated red-black preconditioner uses recursively a red-black ordering of nodes until a
maximum level has been reached. On this coarse grid a complete Cholesky decomposition
is performed. The maximum level is denoted by k and should be at least 2, because k = 1
results in a complete Cholesky decomposition on the whole domain. The maximal value kmax
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is such that the maximum level contains only one node. All integer values between those two
are allowed. In this section we will look at the influence of this parameter on the performance
of RRB-k.
In Section 11.5 some theoretical results about the influence of the parameter k in the RRB-
preconditioner have been derived. For kmax the spectral condition number is O(h−1), while
smaller values of k yield a lower order of the spectral condition number. Therefore, we expect
that decreasing k will also give a decrease in the number of CG-iterations. In order to examine
this, the RRB-k method is applied to the IJssel problem, given in Section 13.3, for different
values of k. In Table 7 the results are shown.
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RRB-10 1 × 1 6.205 53.46
RRB-9 1 × 2 6.205 45.41
RRB-8 1 × 4 6.205 42.66
RRB-7 2 × 7 6.205 40.59
RRB-6 4 × 13 6.205 40.33
RRB-5 7 × 26 6.205 39.64
RRB-4 13 × 51 6.205 40.96
RRB-3 26 × 101 6.186 48.64
RRB-2 52 × 202 6.174 103.03

Table 7: Results for RRB-k at the IJssel of 104 × 404 nodes with varying k.

The number of CG-iterations is exactly the same for 4 ≤ k ≤ 10, so the choice of k has less
effect on the convergence of CG than expected. Suprisingly, the CPU-time decreases for a
constant number of CG-iterations. A reason is that the number of flops is minimal for k = 7,
as explained in Section 11.2, however, the CPU-time is still not minimal.
The drop in CPU-time with constant number of CG-iterations can also be explained with
caching effects and implementational issues. The RRB-preconditioner uses several grids with
different mesh sizes. The implemented loops will therefore jump with different distances
through an array, which can be slow. For the complete Cholesky decomposition, the elements
on the coarsest grid are reordered, thus simplifying the loops through the arrays.
The influence of implementation aspects will not be investigated thoroughly, however, to
show that it is notable, the following experiment is done. To solve a system LLTx = b from
the Cholesky decomposition, forward and backward substitution is used. The algorithms are
equivalent, except of the directions of the loops. So the same number of flops, but a slightly
different implementation. A timer is implemented for these two similar methods, for which
the same CPU-time is expected.
The results in Table 8 show a considerable difference in CPU-time between forward and
backward substitution. While forward substitution performs better with large systems, the
backward substitution is faster on small systems.
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number of elements 1002 502 252 132 72 42 22 12

forward substitution 52.06 7.42 1.02 0.116 0.0242 0.0091 0.0048 0.0039
backward substitution 93.43 9.45 1.26 0.168 0.0296 0.0078 0.0029 0.0018

Table 8: The CPU-time for the forward and backward subsitution of the Cholesky decompo-
sition, on an open sea of 200 × 200 nodes.

Although this does not clarify the change in CPU-time for constant number of CG-iterations
fully, it shows that the number of flops is not always a good estimate of the computation time
and that implementation and caching may have influence on the performance.

We will now return to the results in Table 7. The choice of k = 5 gives the lowest amount
of CPU-time although the number of CG-iterations is the same. Compared to kmax, the
CPU-time dropped 25%.

For a minimal number of flops, the maximum level is given by k = 7 (see Section 11.2), which
is too large to be optimal. On the other hand, the choices kB and kC from [6] and [14] (see
Section 11.5) give k = 4, which is somewhat too low. When considering the results of other
test problems, the same is observed: kflops too large and kB and kC too small. So an average
of these choices would be a good estimate of the optimal k.

Summarizing, the results of RRB-k show that the number of CG-iterations is almost constant
for varying k. Only for very small k, there is a small decrease in CG-iterations, but at the
expense of a sharp increase in CPU-time. Although the number of CG-iterations changes
hardly, the CPU-time changes due to a decrease in flops and probably implementational
effects. The difference in CPU-time between the maximal and optimal value of k is between 5
and 25% depending on the test problem.

14.3.1 Use of Lapack routines

The complete Cholesky decomposition on the maximum level is implemented both with an
own implemented C++ routine and a Lapack routine24. The advantage of the C++ routine is
the usage of the same data structures as in the wave model. The Lapack routine is optimized,
but has some overhead since the data has to be converted to the structure of Lapack.

When comparing the CPU-time results, we see that for small decompositions, k > 3, the C++

routine is slightly faster. For small k, so a complete Cholesky decomposition with relatively
many elements, the Lapack routine is much faster. However, the total CPU-time for these
cases is already large.

14.3.2 Cholesky decomposition

The Cholesky decomposition used in the RRB-k method can also be used for solving the
whole linear system. The CPU-time needed for calculating the preconditioner and solving
the linear system is given in Table 9.

Calculating the Cholesky decomposition is much more expensive than the RRB-preconditioner.
The CPU-time for solving a linear system is somewhat larger for the complete Cholesky de-
composition than for RRB-kmax, but smaller than for RRB-2.

24
Lapack is a standard package with several routines of direct solvers, among others the Cholesky decompo-

sition. The routines are optimized by several authors [2].
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RRB-kmax RRB-2 Cholesky Lapack Cholesky

preconditioner 0.0036 0.014 0.083 0.11
solve 0.0064 0.019 0.014 0.0085

Table 9: The average CPU-time of one timestep, at open sea of 100 × 100 nodes.

With mesh-refinement, the differences between the RRB-method and the complete Cholesky
decomposition becomes larger. Because on a coarse grid of 100 × 100 the RRB-method is
already faster, the complete Cholesky decomposition is not useful for the considered problems.

14.4 Influence of the relaxation parameter on RICCG

The relaxed incomplete Cholesky preconditioned CG-method contains a relaxation parame-
ter ω, as explained in Chapter 10. For ω = 0, the RIC decomposition reduces to the incom-
plete Cholesky decomposition and for ω = 1 it reduces to the modified incomplete Cholesky
decomposition. The relaxation parameter determines the lumping procedure during the in-
complete decomposition and changes only the value of the preconditioner, not the structure.
Therefore, each iteration of RICCG requires the same computation effort for every value of
the parameter. The CPU-time is thus proportial to the number of CG-iterations.

In Figure 6 of Section 10.5, the spectral condition number has been given for several relaxation
parameters. It shows that the spectral number decreases for increasing relaxation parameter.
However, near ω = 1, the spectral condition number is not monotone.

ω 100 × 100 200 × 200 400 × 400 800 × 800

0 7.822 16.357 32.895 67.233
0.95 6.826 10.910 18.522 35.600
1 7.399 11.450 17.144 25.758

Table 10: The average number of CG-iterations at an open sea.

The number of CG-iterations, listed in Table 10, show that ω = 1 gives the smallest number
at the fine grids. For the coarse grids, ω = 0.95 is a better choice. Because the small
improvements of ω = 0.95 over ω = 1 in the coarse test problems, and because we are mainly
interested in fine grids, ω = 1 is the default choice.

As will be explained in Section 14.6, combining the RICCG-method with deflation changes
the influence of the relaxation parameter.

14.5 Varying the number of deflation vectors

The deflation method projects some vectors into the null-space, resulting in a smaller spectral
condition number, as explained in Chapter 12. Subdomain deflation is implemented with
rectangular subdomains. The number of subdomains can be chosen by the user. In this
section, results are discussed for varying number of deflation vectors. As preconditioner,
diagonal scaling is used. Results for the combination of deflation and the RIC-preconditioner
will be given in Section 14.6.

For increasing number of deflation vectors, the spectral condition number decreases, often
yielding a reduction in CG-iteration. As seen in Table 11, this is true. However, each iteration
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0 × 0 51.204 113.5
1 × 1 51.205 209.8
5 × 5 51.075 208.3

10 × 10 48.817 200.6
20 × 20 40.224 171.2
40 × 40 26.820 140.6
80 × 80 17.014 210.8

Table 11: Results at open sea of 200 × 200 nodes, with deflated diagonally scaled CG.

is more expensive for larger numbers of deflation vectors. The result of these two effects is a
larger amount of CPU-time for the considered test problem.

Between zero and one deflation vector, there is a jump in CPU-time. With zero deflation vec-
tors, the undeflated CG-method is obtained. For one deflation vector, the deflated CG-method
has to calculate y = Qx every iteration, with Q the deflation matrix given by Equation (12.1).
Since the coarse grid matrix ZTSZ is only one element large, no Cholesky decomposition is
needed, but one still has to calculate this coarse grid matrix. Also an extra matrix-vector
multiplication y = Sx is required inside the deflation matrix. As explained in Section 12.7,
calculating y = SZx in one step takes a similar amount of computation time. So, although
only one deflation vector is used, the extra work which has to be done for deflation is consid-
erably large.

Summarizing, increasing the number of deflation vectors on one hand reduces the number of
CG-iterations, but on the other hand, results in CG-iterations that are computationally more
expensive.

For the considered test problem, the deflation method does not give a reduction in CPU-time.
At finer grids, the deflation method can be faster than the undeflated version. For example,
at an open sea of 400 × 400 nodes, the undeflated diagonally scaled CG-method uses 1703 s
CPU-time, while for 1002 subdomains, this is 1018 s.

14.6 The deflated RICCG-method

In previous sections, results are discussed about the relaxation parameter in the RICCG-
method and the number of deflation vectors in the deflation method with diagonally scaling.
It was concluded that ω = 1 is the optimal choice as relaxation parameter. However, when
RICCG is combined with deflation, this will not be the case anymore.

The spectral condition number of RIC-preconditioned matrices depends on the choice of
relaxation parameter ω (see Section 10.5). For ω = 0, the condition number is O(h−2),
while for ω = 1, we have O(h−1). This partially explaines the good performance of RICCG
at ω = 1. Figure 6 show that also the structure of the spectra of these extreme choices are
quite different. For ω = 0 there are some isolated low eigenvalues and larger eigenvalues
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clustered around one. For ω = 1 it is the other way around: small eigenvalues near one and
large eigenvalues spreaded out.

The deflation method maps some vectors in the null-space, which leads to some zero eigenval-
ues of the deflated matrix. The remaining nonzero eigenvalues are approximately the same as
the largest eigenvalues of the undeflated method, as is shown in Figure 12. Loosely speaking,
the smallest eigenvalues are deflated to zero.

Applying the deflation method to MIC, so ω = 1, will hardly reduce the spectral condition
number. Since the smaller eigenvalues are clustered around one, the smallest active eigenvalue
of the deflated matrix is also approximately one. The largest eigenvalue hardly changes with
subdomain deflation and therefore the deflation method does not reduce the condition number
of the MIC-preconditioner.

In the case of ω = 0, the deflation method is effective. The smallest few eigenvalues with values
of O(h2) are deflated to zero, while the largest eigenvalue remains O(1). This reduction of
the spectral condition number of the IC-preconditioner will probably give better convergence.
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ω = 0 ω = 1

0 × 0 16.357 71.02 11.450 50.35
1 × 1 16.356 104.18 11.450 74.48
5 × 5 16.332 103.89 11.450 74.85

10 × 10 15.500 99.98 11.449 75.47
20 × 20 13.128 87.27 11.443 76.51
40 × 40 9.662 76.11 11.398 87.98
80 × 80 7.540 120.83 9.975 153.10

Table 12: Results at open sea of 200 × 200 nodes, with DRICCG and varying number of
deflation vectors.

In Table 12 results of the deflated IC and MIC preconditioned CG-method is given. There is
a clear difference between the two preconditioners. As expected, the number of CG-iterations
decreases sharply for ω = 0, while it is almost constant for ω = 1.

The advantage of ω = 1 is the small number of CG-iterations in the undeflated method.
While ω = 0 has a large reduction in CG-iterations in the deflated version. By choosing the
relaxation parameter in between those extreme choices, the advantages of these methods can
be combined. However, also the disadvantages are combined and therefore the optimal choice
is not clear in advance.

In Table 13 some results are given for several choices of the relaxation parameter. Without
deflation, the number of CG-iterations and also CPU-time is monotonically decreasing for
increasing relaxation parameter. When deflation is applied, the number of CG-iterations is
decreasing faster for small values of ω. In the case of 702 deflation vectors, ω = 0.75 is
the optimal choice. Unfortunately, there is no clear pattern in the combined influence of
relaxation parameter and number of deflation vectors on the performance of DRICCG.

84



#
C

G
-i
t.

C
P

U
-t

im
e

#
C

G
-i
t.

C
P

U
-t

im
e

# subd. 0 × 0 70 × 70

ω = 0 32.9 981.0 13.8 657.3
ω = 0.25 30.9 924.7 13.5 598.8
ω = 0.5 28.2 845.0 13.2 589.5
ω = 0.75 24.3 738.1 12.6 566.8
ω = 1 17.1 525.3 16.6 744.1

Table 13: Results at open sea of 400 × 400 nodes, with DRICCG and varying relaxation
parameter ω.

Considering only the number of CG-iterations, the main observation is that for small numbers
of deflation vectors, ω = 1 gives the lowest number of CG-iterations. However, the convergence
is improving very slow for larger numbers of deflation vectors. On the contrary, ω = 0
converges slow for undeflated CG, but the number of CG-iterations decreases sharp when
deflation is applied. For small subdomains, so many deflation vectors, the convergence of
RICCG at ω = 0 becomes better than for ω = 1. And values of ω in between zero and one
are in many cases better than both extreme choices.
For the CPU-time, we can conclude that given a value of ω, deflation may reduce the CPU-
time needed, and given the number of deflation vectors, relaxation may improve the CG-
method. However, the undeflated MICCG-method uses in most cases the least CPU-time.

14.6.1 Using Lapack inside the deflation method

In the deflation method, a linear system has to be solved on the coarse grid. This is done with
a complete Cholesky decomposition. Both an own implemented C++ routine and a Lapack

routine have been used.
For small numbers of deflation vectors the Cholesky decomposition is also small and will use
only a small part of the total computation time. However, the C++ implementation is slightly
faster. When using small subdomains, the Cholesky decomposition will be more important
and will consume the largest part of the CPU-time. For these large decompositions, the
Lapack routines can reduce the total CPU-time a lot. At intermediate choices, the differences
are small.

14.6.2 Estimating the spectral condition number

In Section 10.5 it has been shown that Richardson’s extrapolation estimates the order of the
number of CG-iterations quite well. Thus also a good estimate of the order of the spectral
condition number. For the undeflated RIC preconditioner, the condition number of O(h−2)
for ω = 0 and O(h−1) for ω = 1 have been estimated. With the results from the deflation
method, the same can be done for the deflated RICCG-method.
As test problem an open sea is considered for different mesh sizes. To compare the results,
the same number of subdomains are used. Results for the deflated ICCG method are given
in Table 14.
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0 subd. 202 subd. 502 subd.

100 × 100 7.822 6.773 4.879
200 × 200 16.357 13.128 8.732
400 × 400 32.895 25.867 16.087
800 × 800 67.233 52.541 30.211

Table 14: Mean number of DICCG-iterations at open sea for constant number of subdomains.

For zero subdomains, the results of Table 2 for ω = 0 are obtained. Considering more subdo-
mains, gives a reduction in the number of CG-iterations. Applying Richardson’s extrapolation
to 202 and 402 subdomains gives values of approximately one. So the number of iterations
is O(h−1), which implies a spectral condition number of O(h−2). From the results it is there-
fore concluded that taking a constant number of subdomain deflation vectors does reduce the
number of CG-iterations, but does not reduce the order of convergence.

Another way of comparing the results is by taking the number of nodes per subdomain
constant with mesh-refinement. For example, a 100 × 100 grid is divided in 52 subdomains
of 20× 20 nodes, than the 200× 200 grid is divided in 102 subdomains of 20× 20 nodes. The
size of the subdomains remains constant, but the number of deflation vectors increases for
smaller mesh sizes.

202 nodes 102 nodes 52 nodes

100 × 100 7.932 7.768 6.773
200 × 200 15.500 13.128 9.662
400 × 400 25.867 18.006 12.571
800 × 800 35.170 22.755 15.299

Table 15: Mean number of DICCG-iterations at open sea for constant number of nodes per
subdomain.

In Table 15 results are shown for ω = 0. Applying Richardson’s extrapolation does not give
useful results. But one can see that for two times smaller mesh size, the number of CG-
iterations is less than two times more, which implies an spectral condition number smaller
than O(h−2).

14.7 The deflated RRB method

In previous sections, results have been given for the deflation method combined with diagonal
scaling and the relaxed incomplete Cholesky preconditioner. The RRB preconditioner can
also be combined with deflation, however, this is not implemented because of the reasons
presented below.
The deflated RRB method is quite difficult to implement, because of the relatively diffi-
cult RRB-ordering of nodes and because the CG-iteration is performed on the first Schur-
complement only. This implies that the implementation of the deflation method for diagonal
scaling and the RIC-preconditioner can not be directly used to the RRB-method.
Besides implementational issues, an improvement of the performance is not expected. Defla-
tion reduces the spectral condition number. However, the RRB-method has already a small
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spectral condition number and needs only a very few CG-iterations. A smaller condition
number will therefore hardly give a reduction in CG-iterations for the RRB-preconditioner.

In Section 14.6 it is explained that the deflation method hardly improves the MIC-preconditioner,
because the lowest eigenvalues of a MIC preconditioned matrix are clustered around one (see
Figure 6). In [6] it has been proven that for the discrete Poisson equation, all eigenvalues of
a RRB-k preconditioned matrix are larger than one, i.e.,

λM−1S ≥ 1.

The discrete model equation (8.1) is similar to the discrete Poisson equation. Because of
the lower bound of the spectrum, it is likely that the smallest eigenvalues are clustered.
Therefore, the spectrum of the RRB-k preconditioner will probably have the same structure
as the spectrum of MIC.

Summarizing, the deflated RRB method is not implemented because implementation is quite
difficult. Moreover, it is likely that deflation will not improve the convergence of RRB enough
to reduce the computation time considerable.

14.8 Parallel RIC-preconditioner

To speed up the solvers, one can choose to parallelize the method over several computers.
Expressions like inner products can be parallelized without any changes to the algorithm. But
most computing time of the PCG-method is solving the preconditioned system. In general,
this is not easily parallelized. However, one can change the preconditioner such that it is
easier to parallelize, at the expense of some extra CG-iterations.

Let’s consider the RIC-preconditioner M = LLT , with L an lower triangular matrix. Solving
the preconditioner is done with forward and backward substitution, which are recursively and
thus not parallelizable. A similar preconditioner is the block-RIC preconditioner, for which L

is a block matrix. For the case of two blocks we have L =

[
L1 0
0 L2

]
, with L1 and L2 lower

triangular matrices. Solving a system Lx = b reduces to L1x1 = b1 and L2x2 = b2 which
are independent of each other and can therefore be simultaneously solved on two different
computers.

The RIC-preconditioner uses a decomposition LLT on the whole grid. To parallelize this,
the decomposition will be done on subdomains. The same rectangular subdomains as in the
deflation method will be used. On each subdomain, an incomplete Cholesky decomposition is
performed, thus ignoring the coupling between subdomains in the preconditioner. Solving the
preconditioner can than be done for each subdomain separately, thus paralellizable. For the
correct numbering of nodes, this reduces to the block incomplete Cholesky decomposition.

Because this preconditioner ignores the coupling between subdomains, it will be less accurate
and the number of CG-iterations will increase. One can try to restore this coupling with
the deflation method. The deflation method will require extra computation time per CG-
iteration, but will reduce the number of CG-iterations. Most components of the deflation
method can be parallelized, except of solving the coarse grid matrix.

The RIC-preconditioner per subdomain is implemented and in Table 16 some results are
shown. In the undeflated version, it is clearly seen that the number of CG-iterations increases
for an increasing number of subdomains. Note that in the limit, so 4002 subdomains, the
block-RIC preconditioner reduces to diagonal scaling, which requires 105.5 CG-iterations.

87



#
su

b
d
.

#
C

G
-i
te

r.

C
P

U
-t

im
e

#
C

G
-i
te

r.

C
P

U
-t

im
e

ω = 0 ω = 1

0 × 0 32.90 975.6 17.14 501.3
10 × 10 42.00 1280.5 46.00 1147.6

100 × 100 56.67 1717.5 55.20 1371.3
200 × 200 74.33 2435.7 75.01 2021.7

#
C

G
-i
te

r.

C
P

U
-t

im
e

#
C

G
-i
te

r.

C
P

U
-t

im
e

ω = 0 ω = 1

32.90 945.8 17.14 520.7
39.97 1569.2 46.35 1828.7
16.23 902.9 16.32 916.4
10.64 1848.5 10.79 1870.2

Table 16: Results of RIC per subdomain, at open sea of 400×400 nodes; left without deflation,
right with deflation.

In combination with deflation, the number of CG-iterations increases initially, but at large
numbers of subdomains, less iterations are needed. Although every iteration becomes more
expensive with deflation, the CPU-time is in some cases less than in the undeflated method.
However, at large numbers of subdomains, solving the coarse grid matrix in the deflation
method becomes more important and will reduce the ability of parallelization.
In practice, parallelization is done over a few computers. Numbers like 1002 are too large,
and therefore it is not needed to make a block preconditioner on such large numbers of
subdomains. Deflation has only a positive effect on large numbers of subdomains. The
number of subdomains used in the preconditioner should thus be smaller than in the deflation
method. This can be done by making a block preconditioner on, for example, 22 subdomains,
and applying the deflation method to 502 subdomains.
The presented results show that the parallel preconditioner may lead to faster calculations.
Whether this is really the case and how to choose the parameters will be future research.

14.9 Termination criterium

To solve the discrete model equation (8.1), the CG-method is used with several precondition-
ers. Because it is an iterative method, a termination criterium has to be specified. This can
be done in several ways, some of them will be discussed in this section.
Solving a system Sx = b with an iterative method results in a sequence x0, x1, . . . , xn of
consecutive approximations of the solution x. A good estimate of the error at iteration i is
the residual ||b− Sxi||, with || · || some norm. In the CG-method, the residual ri is updated
every iteration and approximately the same as the exact residual, i.e., ri ≈ b−Sxi. Because ri
is readily available at every iteration, termination criteriums are based on this residual.

14.9.1 Absolute and relative criteria

A common choice for the termination criterium is

||ri|| ≤ ǫ,

which is an absolute termination criterium and ǫ > 0 denoting the termination value or
tolerance. A drawback of this choice is that it is not scaling invariant. To explain this,
consider a wave field at a grid with mesh size h and the same wave field at a grid with 2h
mesh size. The norm of the wave height vector is approximately four times larger for h than
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for 2h, altough the same wave field is used. The same holds for residuals, and therefore, mesh
refinement will give an unwanted change in termination criterium.
This can be solved by considering relative termination criteria, for instance

||ri|| ≤ ǫ

h2
,

with h denoting the characteristic mesh size. Other common choices are

||ri|| ≤ ǫ ||r0||,
relative to the inital residual r0 = b− Sx0, and

||ri|| ≤ ǫ ||b||,
relative to the right hand side b. Note that b may depend on the mesh size h.
These relative termination criteria are scaling invariant, so mesh-refinement does not lead to
more stringent criteria. However, the right hand side and also initial residual depends on the
model variables in the wave model. As can be concluded from Equation (7.9b), the right hand
side b explicitly depends on the velocity potential. A wave pattern with only a few waves
therefore gives a small b, while a fully developed wave pattern results in a large norm of b. In
order to make this more precise, the norms of the right hand side b and initial residual b−Sx0

are calculated at the test problem of an open sea.
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Figure 20: Euclidean norm of the right hand side and the initial residual at an open sea of
200 × 200 nodes.

The norms shown in Figure 20 are increasing in time. The zero initial state gives a small
norm at the start of the simulation. Later on, the waves are propagated into the whole
domain, resulting in a larger norm of the right hand side and initial residual. Observe that
the differnce in the norms at the start and at the end is some orders of magnitude. A relative
termination criterium will therefore be very stringent at the start of the simulation, which
may lead to problems with rounding errors.
The initial solution needed for the CG-method is in the wave model given by the value
on the previous time step, thus depending on the timestep used. Because of the real-time
simulation, the timestep is quite small and will give a good initial estimate. An absolute
criterium is independent on the initial solution, but the termination criterium relative to the
initial residual may become unnecessary stringent.
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14.9.2 Termination criterium based on the preconditioned residual

The vector ri in iteration i of the PCG-method is related to the residual r̄i = b − Sxi.
Depending on the implementation (the two choices of PCG in Table 1), it represents the
residual r̄i or the preconditioned residual P−1r̄i. In the first case, both ri and zi = M−1ri are
calculated in every CG-iteration, whereas in the second case only P−1ri is available. For both
cases, the value ρi = 〈ri,M−1ri〉2 = 〈P−1ri, P

−1ri〉2 = 〈ri, ri〉M−1 = ||ri||2M−1 is calculated
(remember that PP T = M ≃ S). Although ||ri||2 can also be calculated, it is not directly
available in the CG-method. It is therefore logical to consider termination criteria based on
the preconditioned residual.
The absolute termination criterium becomes

||ri||M−1 ≤ ǫ.

The termination criterium clearly depends on the preconditioner M . This implies that for
some preconditioners the termination criterium becomes more stringent than for other choices
of preconditioner. In order to quantify this, in next section some residuals are calculated.

14.9.3 Different residual norms

In order to compare the residual for different preconditioners, some simulations have been
performed on an open sea of 200 × 200 nodes.

The residual ri in an CG-iteration should be the same as the residual b− Sxi. For different
preconditioners, it is checked whether rn = b − Sxn, with xn the final estimate of PCG. In
the simulations the difference between the two is very small, so ri estimates the residual well.

Because the termination criterium can be based on the preconditioned residual, the norm of
it may not change a lot for different preconditioners.

Dgs IC MIC RRB

||rn||M−1 1.8456e-06 1.2516e-06 7.823e-07 1.1571e-06
||rn||2 1.4369e-05 7.0015e-06 3.9281e-06 6.9868e-06

Table 17: Residual in two different norms at open sea of 200 × 200 nodes.

Let’s consider an open sea of 200 × 200 nodes with different preconditioners. At time t500
the residual rn is given, which is the first residual satisfying the termination criterium. The
norm of both the preconditioned and the unpreconditioned residual is calculated and shown
in Table 17. There is a clear difference between the two norms, however, the difference in
value is not very large. Between the different preconditioners, the differences are also small.

14.10 Conluding remarks on the results

In Section 14.1, the results have been introduced with some assessment criteria. In the next
sections 14.2 to 14.9, results have been discussed for several test problems and linear solvers.
In this sections, some conclussions are briefly given.

Efficiency The CPU-time used by the linear solvers have been presented for several values
of the different parameters. Because of the good initial solution and the fast convergence of
the iterative methods, the solution of the linear system of equation is obtained in a small
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amount of CPU-time. For the coarser grids, it is smaller than the time step of the wave
model, giving a real-time method. At the open sea a grid of up to 200 × 200 nodes could be
solved within this time limit.
In most cases the RRB-method gives the lowest amount of computation time, while the
MICCG method is almost as fast. The deflation method is able to speed up the RICCG
method at finer grids.
The storage of the preconditioner is quite small. Because of the sparse preconditioners, only
a few vectors have to be stored. The deflation method requires more storage. The deflation
vectors are cheaply stored as subdomains, but the coarse grid matrix is stored as a complete
Cholesky decomposition, which may be relatively large for small subdomains.

Convergence with mesh-refinement The diagonally scaled CG-method has a spectral
condition number of O(h−2). When considering a grid with a two times smaller mesh size,
the number of CG-iterations will increase with a factor two. This method is therefore not well
suitable for finer grids. The RICCG method has a spectral condition number between O(h−2)
and O(h−1), depending on the relaxation parameter. This can be reduced with deflation. For
the RRB method, the spectral condition number is O(h−1). With the complete Cholesky

decomposition on the maximum level, it can be further decreased to approximately O(h−
1
2 ),

depending on the choice of maximum level. Although this order of convergence is not reached
for the test problems, the results show that the convergence is better than O(h−1) and there-
fore the extra computational effort with mesh refinement is small.

Parallelization The diagonally scaled preconditioner can straightforwardly be parallelized.
The RRB preconditioner uses several levels of red-black orderings. At each level, the algorithm
can be parallelized. Due to recursion, parallelization is limited to one level each time. The
RICCG method can be changed to a parallel equivalent, which uses the RIC decomposition
on several subdomains. There is no coupling between the subdomains, giving good parallel
properties. Results show that the increase in computation time is relatively small. In a parallel
environment, the wall-clock time can therefore be reduced considerably. The deflation method
also uses subdomains, which gives a straightforward parallel implementation. Only the coarse
grid system is not parallelized easily, especially for a large number of deflation vectors. In
practice, the number of deflation vectors is much smaller than the total number of nodes.
The implemented deflated RICCG method is inherently parallel. Only the communication has
to be added to have a full parallel implementation. The performance results on a sequential
computer are quite promising.

Robustness The linear solvers are applied to different test problems. In all cases, con-
vergence is achieved without major problems. Also the domain decomposition methods, like
deflation and the block IC preconditioner, were able to solve the test problems with changing
bathymetries. It can therefore be concluded that the solvers are robust.
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15 Conclusions

This master’s thesis started with a literature study about the variational Boussinesq model,
which has recently been developed at MARIN. The derivation of this wave model starts with
basic equations in fluid mechanics. Minimizing the pressure results in a variational formulation
of the fluid motions. By applying a vertical shape function, the three-dimensional model
reduces to a two-dimensional problem. To reduce the computational effort further, the model
equations have been linearized. By presenting the derivation of the variational Boussinesq
model, this thesis gives a full description of the wave model.

The finite volume and leapfrog method have been used to discretize the variational Boussinesq
model. Results of the model show realistic wave patterns for varying water depth and near
coastal structures. Applying a simple model of the motions of the ship to the variational
Boussinesq model results in realistic waves patterns around the ship.

After the review of the physical properties and assumptions of the wave model, the litera-
ture study has concentrated on the solution method of the model equations. The discrete
equivalent of one of the model equations is a linear system of equations, which has to be
solved in every time step of the variational Boussinesq model. The wave model will be used
in a real-time ship simulator and therefore needs a very efficient linear solver. Because of the
properties of the matrix, the conjugate gradient method has been used as linear solver. This
iterative method has been combined with three different preconditioners, namely diagonal
scaling, modified incomplete Cholesky and repeated red-black.

In order to improve the efficiency of the model, research has been carried out for improving
the linear solver. Two of the preconditioners have been improved and a new method, namely
deflation, is applied.

The existing modified incomplete Cholesky preconditioner has been extended to the relaxed
incomplete Cholesky preconditioner. Analysis of this method shows that taking the relaxation
parameter equal to one is the best choice.

The original implementation of the repeated red-black preconditioner uses recursively a red-
black ordering on as many as possible levels. This method has been changed to a repeated
red-black preconditioner for a predefined number of levels, combined with a complete Cholesky
decomposition on the maximum level. Results for test problems with larger numbers of nodes
show a good performance, only a small increase in the number of iterations occurs. With
the extension of a variable maximum level in the red-black orderings, the computation time
is reduced with 5 to 25% depending on the test problem. Also the increase in number of
iterations for mesh-refinement is smaller.

The preconditioners for the conjugate gradient method are combined with the deflation
method. The deflation method uses a projection of several vectors into the null-space. This
gives a smaller number of iterations, but each iteration becomes more expensive. Subdomain
deflation has been implemented in the code of the wave model, with rectangular subdomains
and piecewise-constant deflation vectors. The combination of deflation and diagonal scaling
reduces the computation time only for large linear systems.

Combining the deflation method with the relaxed incomplete Cholesky preconditioner has
led to a remarkable relation between deflation and the relaxation parameter. Due to differ-
ent structures of the spectra, at low values of the relaxation parameter, deflation reduces
the number of iterations considerably, while for large values of the relaxation parameter de-
flation hardly improves the convergence. Because the undeflated method performs better
at large relaxation parameters, intermediate choices of the relaxation parameter give optimal
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convergence when combined with deflation. The subdomain deflation method uses domain de-
composition, which makes the use of shared memory natural. The implemented combination
of subdomain deflation and block incomplete Cholesky is suitable for a parallel environment.
The conjugate gradient method with the three different preconditioners and the deflation
method has been tested on different bathymetries. When the different methods are compared
with each other, the repeated red-black preconditioner is in most cases the method with
the lowest amount of computation time. The deflated relaxed incomplete Cholesky performs
almost as well, but has better properties for parallelizing the linear solver.
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16 Future research

The research of the thesis has been concentrated mainly on the improvement of the linear
solvers in the variational Boussinesq model. Three preconditioners have been investigated:
diagonal scaling, relaxed incomplete Cholesky and repeated red-black. They have been com-
bined with the deflation method. Although these methods are performing quite well, there
are some possibilities for further improving the performance. In this section some topics for
future research are briefly discussed.
The main topic of future research is likely to be the parallelization of the methods, thus using
several computing units during one iteration of the model. The matrix-vector multiplications
and inner products can be parallelized within the current algorithm. However, most com-
putation time is used in the preconditioning step. As is briefly explained for the incomplete
Cholesky preconditioner, the preconditioner itself can be changed to make it better paral-
lelizable. The considered domain decomposition makes the algorithm particularly suited for
distributed memory parallel computers. Some results of this parallel preconditioner are given
in the thesis, but the actual distribution over several systems still has to be done. Combined
with deflation, the parallel preconditioner may lead to smaller wall-clock times.
The methods have been implemented in the programming language C++ and calculated on
the CPU (central processing unit) of a usual desktop system. In recent years, computational
methods have been implemented on the GPU (graphics processing unit) with promising re-
sults. Using the GPU for computing the wave model requires a different implementation, but
can improve the computation time.
The deflation method, as considered in this thesis, uses deflation vectors according to rectan-
gular subdomains. One can use different kinds of subdomains, for example based on physical
parameters like depth, which could take all dry nodes as one subdomain. The deflation vec-
tors are chosen constant in each subdomain; using piecewise-linear vectors can be used too.
Especially for the case of the modified incomplete Cholesky preconditioner, other deflation
vectors should be chosen.
Another numerical method which can be applied for solving a linear system of equation is
the multigrid method. The main advantage of the multigrid method is its good performance
with mesh-refinement. The RRB-preconditioner already has a small order of convergence and
performs therefore almost as well with mesh-refinement as multigrid methods. Although its
good convergence properties, multigrid methods can be quite expensive and are more difficult
to parallelize than the incomplete Cholesky preconditioners. Deflation methods are able to
improve the convergence of preconditioners and can be parallelized relatively easy. For this
reasons, the research in this thesis has concentrated on the deflation method combined with
the given preconditioners. But multigrid methods are still promising and especially on much
finer grids can possibly perform better than the given methods.
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A List of symbols used in the variational Boussinesq model

Following a list containing the unit and name of most of the symbols used in the variational
Boussinesq model.

symbol unit name

ζ m water level

h m water depth

φ m2

s velocity potential

ϕ m2

s surface velocity potential

ρ kg
m3 mass density

t s time

x, y m horizontal coordinates

z m vertical coordinate

u = (u, v,w) m
s velocity

g m
s2

gravity

p Pa = kg
ms2

pressure

P m5

s2
total pressure

H m5

s2
Hamiltonian

L m5

s Lagrangian

f
(p)
m m vertical shape function for the parabolic model

f
(c)
m – vertical shape function for the cosine-hyperbolic model

ψ
(p)
m

m
s horizontal shape function for the parabolic model

ψ
(c)
m

m2

s horizontal shape function for the cosine-hyperbolic model

κm
1
m shape parameter

Nx, Ny – number of grid points in x- resp. y-direction

Lx, Ly m length of computational domain in x- resp. y-direction

∆x,∆y m mesh size in x- resp. y-direction

h m characteristic mesh size
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B Basic assumptions of the variational Boussinesq model

The basic assumptions of the nonlinear variational Boussinesq model are briefly summarized
in this section.

• All functions are sufficiently smooth.

• Inviscid flow.

• Irrotational flow: ∇× u = 0.

• Constant mass density of fluid in whole spatial and time domain, so incompressible flow.

• No other external forces than gravity, e.g. no wind stress and no Coriolis.

• The mild slope assumption gives ∇h = 0.

Besides this, it is assumed that the vertical flow of the fluid can be realistically modelled with
an expansion in shape parameters, in particular the parabolic or cosine-hyperbolic vertical
shape model.
To obtain the model equation, it is assumed that the linearization may be performed, so
relatively small water heights.
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C Variational calculus

A basic concept in variational calculus is the first variation of a functional L and a function u ∈
U , defined by

δL(u; δu) := lim
ǫ→0

L(u+ ǫδu) − L(u)

ǫ
, (C.1)

with δu a variation, satisfying (u + ǫδu) ∈ U [44]. The variation δu thus satisfies at least
the properties of u. Often one can write the first variation as an inner product δL(u; δu) =
(δL(u), δu). In our case of water waves, the inner product (u, v) =

∫
A uv da is used. A zero

first variation is a necessary condition for a stationary point: δL(u; δu) = 0, or (δL(u), δu) = 0.
For continuous variation this is equivalent to

δL(u) = 0, (C.2)

the Euler-Lagrange equation.
As an example, the first variation of P (φ) = 1

2 (∇φ)2 will be calculated:

δP (φ, δφ) = lim
ǫ→0

P (φ+ ǫ δφ) − P (φ)

ǫ

= lim
ǫ→0

1
2 (∇(φ+ ǫ δφ))2 − 1

2 (∇φ)2

ǫ

= lim
ǫ→0

1
2 (∇φ+ ǫ∇δφ)2 − 1

2(∇φ)2

ǫ

= lim
ǫ→0

1
2(∇φ)2 + ǫ∇φ · ∇δφ+ 1

2ǫ
2(∇δφ)2 − 1

2(∇φ)2

ǫ

= lim
ǫ→0

(
∇φ · ∇δφ+

1

2
ǫ(∇δφ)2

)

= ∇φ · ∇δφ. (C.3)

For functionals depending on more functions, we write δφP (φ, ζ) = δP (φ, ζ; δφ) the first
variation w.r.t. φ and δζP (φ, ζ) = δP (φ, ζ; δζ) the first variation w.r.t. ζ. A stationary point
now have to satisfy both δφP (φ, ζ) = 0 and δζP (φ, ζ) = 0 [33].
An important property in variational calculus is that the variation operator commutes with
both the operations of differentiation and integration [33]. This property comes down to an
interchange of two limit processes and therefore the functional should be smooth. Because the
pressure functional is assumed to be smooth, we may interchange variations and differentiation
or integration:

δφ
∂P (φ(x))

∂x
=

∂

∂x
δφP (φ(x)), (C.4a)

δφ

∫
P (φ(x)) dx =

∫
δφP (φ(x)) dx. (C.4b)

When the bounds of integration depend on the function of variation, the variation and inte-
gration cannot be interchanged anymore in this way. Then Leibniz’s rule have to be applied.
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D Depth averaged velocity

The depth averaged velocity is defined by

U :=
1

h+ ζ

∫ ζ

−h
u dz, (D.1)

for the velocity u = ∇φ. The velocity potential φ is given by the series expansion (3.1). Both
the parabolic and the cosine-hyperbolic model consider only one shape function, so φ = ϕ+fψ.
Only the horizontal components of U will be considered in the following derivations.
In the x-direction, the depth averaged velocity is given by

U =
1

h+ ζ

∫ ζ

−h
u dz

=
1

h+ ζ

∫ ζ

−h

(
∂ϕ

∂x
+ f

∂ψ

∂x
+
∂f

∂ζ

∂ζ

∂x
ψ

)
dz

=
∂ϕ

∂x
+

1

h+ ζ

∂ψ

∂x

∫ ζ

−h
f dz +

1

h+ ζ
ψ
∂ζ

∂x

∫ ζ

−h

∂f

∂ζ
dz. (D.2)

The integrals are defined and calculated in Appendix E for two different shape models. With
Equation (E.14), one has

U (p) =
∂ϕ

∂x
− 1

h+ ζ

∂ψ

∂x

1

3
(h+ ζ)2 − 1

h+ ζ
ψ
∂ζ

∂x

2

3
(h+ ζ)

=
∂ϕ

∂x
− 1

3
(h+ ζ)

∂ψ

∂x
− 2

3
ψ
∂ζ

∂x
, (D.3)

the depth averaged velocity in the x-direction for a parabolic vertical shape. Because of
symmetry in the x- and y-direction, the horizontal depth averaged velocity for the parabolic
model is given by

U(p) = ∇ϕ− 1

3
(h+ ζ)∇ψ − 2

3
ψ∇ζ (D.4)

and will be used in Section 3.2.
For the cosine-hyperbolic case (3.17), the integrals (E.28) give

U (c) =
∂ϕ

∂x
−D ∂ψ

∂x
− κS ψ ∂ζ

∂x
, (D.5)

with D and S as in (E.27). Because of symmetry,

U(c) = ∇ϕ−D∇ψ − κS ψ∇ζ. (D.6)

the horizontal depth averaged velocity for the cosine-hyperbolic model, used in Section 3.3.
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E Detailed calculations for the Hamiltonian

The velocity potential is written as a series in vertical shape functions. To derive the Hamil-
tonian system for this potential, the series has to be substituted in the Hamiltonian. The zero
variations will lead to three equations in the variables ϕ, ζ and ψm, which will be presented
in this chapter.

E.1 Calculations for the general series model

The Hamiltonian for the general series model is given by (3.4):

H(ϕ, ζ, ψm) =

∫ ζ

−h

1

2

(
∇(ϕ+

M∑

m=1

fmψm)
)2
dz +

1

2
g(ζ2 − h2)

=
1

2

∫ ζ

−h
(∇ϕ)2 dz +

∫ ζ

−h
∇ϕ · ∇

( M∑

m=1

fmψm
)
dz

+
1

2

∫ ζ

−h

(
∇
( M∑

m=1

fmψm
))2

dz +
1

2
g(ζ2 − h2). (E.1)

The three integrals will be discussed separately.

Because ϕ is independent of z, we have

1

2

∫ ζ

−h
(∇ϕ)2 dz =

1

2
(h+ ζ)(∇ϕ)2. (E.2)

For the second integral, the derivative to z inside the gradient vanishes, because ϕ independent
of z. So ∇ϕ = (∂ϕ∂x ,

∂ϕ
∂y ,

∂ϕ
∂z ) = (∂ϕ∂x ,

∂ϕ
∂y , 0) = (∇ϕ, 0). For the horizontal gradient, we get

∫ ζ

−h
∇ϕ · ∇

( M∑

m=1

fmψm

)
dz =

∫ ζ

−h
∇ϕ ·

M∑

m=1

∇(fmψm) dz

=

∫ ζ

−h
∇ϕ ·

M∑

m=1

(∂fm
∂ζ

(∇ζ)ψm + fm∇ψm
)
dz

= ∇ϕ · ∇ζ
∫ ζ

−h

M∑

m=1

∂fm
∂ζ

ψm dz + ∇ϕ ·
∫ ζ

−h

M∑

m=1

fm∇ψm dz

= ∇ϕ · ∇ζ
M∑

m=1

ψm

∫ ζ

−h

∂fm
∂ζ

dz + ∇ϕ ·
M∑

m=1

∇ψm
∫ ζ

−h
fm dz

=: ∇ϕ · ∇ζ
M∑

m=1

ψmQm + ∇ϕ ·
M∑

m=1

(∇ψm)Pm. (E.3)

The third integral of (E.1) contains a gradient, which will be split into a horizontal and a
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vertical part. The part with the horizontal gradient becomes

1

2

∫ ζ

−h

(
∇
( M∑

m=1

fmψm
))2

dz =
1

2

∫ ζ

−h

( M∑

m=1

∇(fmψm)
)2
dz

=
1

2

∫ ζ

−h

(
M∑

m=1

(fm∇ψm) +
M∑

n=1

(∂fn
∂ζ

(∇ζ)ψn
))2

dz

=
1

2

∫ ζ

−h

( M∑

m=1

fm∇ψm
)2
dz

+

∫ ζ

−h

( M∑

m=1

fm∇ψm
)
·
(
∇ζ

M∑

n=1

∂fn
∂ζ

ψn

)
dz

+
1

2

∫ ζ

−h

(
∇ζ

M∑

n=1

∂fn
∂ζ

ψn

)2
dz

=
1

2

∫ ζ

−h

( M∑

m,n=1

fmfn∇ψm∇ψn
)
dz

+∇ζ ·
∫ ζ

−h

( M∑

m,n=1

fm∇ψm
∂fn
∂ζ

ψn

)
dz

+
1

2
(∇ζ)2

∫ ζ

−h

( M∑

m,n=1

∂fm
∂ζ

∂fn
∂ζ

ψmψn

)
dz

=
1

2

M∑

m,n=1

(
∇ψm∇ψn

∫ ζ

−h
fmfn dz

)

+∇ζ ·
M∑

m,n=1

(
(∇ψm)ψn

∫ ζ

−h
fm

∂fn
∂ζ

dz
)

+
1

2
(∇ζ)2

M∑

m,n=1

(
ψmψn

∫ ζ

−h

∂fm
∂ζ

∂fn
∂ζ

dz
)

=:
1

2
(∇ζ)2

M∑

m,n=1

ψmψnGmn

+∇ζ ·
M∑

m,n=1

(∇ψm)ψnRmn

+
1

2

M∑

m,n=1

∇ψm∇ψnFmn. (E.4)
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For the z-direction the integral reads25

1

2

∫ ζ

−h

(
∂

∂z

( M∑

m=1

fmψm

))2

dz =
1

2

∫ ζ

−h

( M∑

m=1

∂

∂z

(
fmψm

))2

dz

=
1

2

∫ ζ

−h

( M∑

m=1

ψm
∂fm
∂z

)2

dz

=
1

2

∫ ζ

−h

M∑

m=1

M∑

n=1

ψmψn
∂fm
∂z

∂fn
∂z

dz

=
1

2

M∑

m,n=1

(
ψmψn

∫ ζ

−h

∂fm
∂z

∂fn
∂z

dz

)

=:
1

2

M∑

m,n=1

ψmψnKmn. (E.5)

The Hamiltonian density now equals

H(ϕ, ζ, ψm) =
1

2
(h+ ζ)(∇ϕ)2 +

1

2

M∑

m,n=1

Fmn∇ψm · ∇ψn +
1

2
(∇ζ)2

M∑

m,n=1

Gmnψmψn

+
1

2

M∑

m,n=1

Kmnψmψn + ∇ϕ ·
M∑

m=1

Pm∇ψm + ∇ϕ · ∇ζ
M∑

m=1

Qmψm

+∇ζ ·
M∑

m,n=1

Rmnψn∇ψm +
1

2
g(ζ2 − h2). (E.6)

This Hamiltonian density can be substituted into the Hamiltonian system (2.35),(3.3c).

The continuity equations becomes

∫ ∫∫
∂ζ

∂t
δϕ dx dy dt =

∫ ∫∫
δϕH(ϕ, ζ, ψm) dx dy dt

=

∫ ∫∫
(h+ ζ)∇ϕ · ∇δϕ dx dy dt +

∫ ∫∫
∇δϕ ·

M∑

m=1

Pm∇ψm dx dy dt

+

∫ ∫∫
∇δϕ · ∇ζ

M∑

m=1

Qmψm dx dy dt

= −
∫ ∫∫

∇ · ((h+ ζ)∇ϕ)δϕ dx dy dt−
∫ ∫∫

δϕ ∇ · (
M∑

m=1

Pm∇ψm) dx dy dt

−
∫ ∫∫

δϕ ∇ · (∇ζ
M∑

m=1

Qmψm) dx dy dt. (E.7)

The last equality holds by applying Green’s theorem, and using the fact that the variation

25 (
PM

m=1 fm)2 =
PM

m=1

PM

n=1 fmfn
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vanishes at the boundaries. This equation is equivalent with

∂ζ

∂t
+ ∇ ·

(
(h+ ζ)∇ϕ+

M∑

m=1

Pm∇ψm + ∇ζ
M∑

m=1

Qmψm

)
= 0 (E.8)

In a similar way the Bernoulli equation becomes

∂ϕ

∂t
+

1

2
(∇ϕ)2 + gζ + R = 0, (E.9)

with the non-hydrostatic term

R :=
1

2

M∑

m,n=1

F ′
mn∇ψm · ∇ψn +

1

2

M∑

m,n=1

(
(∇ζ)2G′

mn +K ′
mn

)
ψmψn

+∇ϕ ·
M∑

m=1

(
P ′
m∇ψm +Q′

mψm∇ζ
)

+ ∇ζ ·
M∑

m,n=1

R′
mnψn∇ψm

−∇ ·
( M∑

m=1

Qmψm∇ϕ+

M∑

m,n=1

(
Rmnψn∇ψm +Gmnψmψn∇ζ

))
. (E.10)

The prime means a variation to ζ, so F ′
mn =

δζFmn

δζ . Note that with Leibniz’s rule and

using f |z=ζ = 0, we get P ′
m = Qm and F ′

mn = Rmn +Rnm.

The zero first variation of the Hamiltonian to ψℓ can be written as

−∇ ·
M∑

m=1

Fℓm∇ψm + (∇ζ)2
M∑

m=1

Gℓmψm +

M∑

n=1

Kℓmψm −∇ · (Pℓ∇ϕ)

+Qℓ ∇ϕ · ∇ζ + ∇ζ ·
M∑

m=1

Rmℓ∇ψm −∇ ·
M∑

n=1

Rℓnψn∇ζ = 0, (E.11)

or equivalently

Qℓ ∇ϕ · ∇ζ +

M∑

m=1

(
Kℓm + (∇ζ)2Gℓm

)
ψm + ∇ζ ·

M∑

m=1

Rmℓ∇ψm

−∇ ·
( M∑

m=1

Fℓm∇ψm + Pℓ∇ϕ+
M∑

m=1

Rℓnψn∇ζ
)

= 0, (E.12)

for ℓ = 1, 2, . . . ,M .

E.2 Calculations for the parabolic shape function

The parabolic shape function (3.12) is given by

f (p) =
1

2
(z − ζ)

(
1 +

h+ z

h+ ζ

)
. (E.13)
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The integrals are given by (see [21] or use Maple)

F (p) =
2

15
(h+ ζ)3, (E.14a)

G(p) =
7

15
(h+ ζ), (E.14b)

K(p) =
1

3
(h+ ζ), (E.14c)

P (p) = −1

3
(h+ ζ)2, (E.14d)

Q(p) = −2

3
(h+ ζ), (E.14e)

R(p) =
1

5
(h+ ζ)2. (E.14f)

The variations to ζ are

F ′(p) =
2

5
(h+ ζ)2, (E.15a)

G′(p) =
7

15
, (E.15b)

K ′(p) =
1

3
, (E.15c)

P ′(p) = −2

3
(h+ ζ), (E.15d)

Q′(p) = −2

3
, (E.15e)

R′(p) =
2

5
(h+ ζ). (E.15f)

To get the parabolic Hamiltonian, these functionals can be substituted in the general se-
ries Hamiltonian (E.6). With some rearranging, the parabolic Hamiltonian density H(p)

becomes26

H(p) =
1

2
(h+ ζ)(∇ϕ)2 +

1

2
F (p)(∇ψ)2 +

1

2
(∇ζ)2G(p)ψ2 +

1

2
K(p)ψ2

+P (p)∇ϕ · ∇ψ +Q(p)ψ∇ϕ · ∇ζ + ∇ζ ·R(p)ψ∇ψ +
1

2
g(ζ2 − h2)

=
1

2
(h+ ζ)(∇ϕ)2 +

1

2
F (p)(∇ψ)2 +

1

2
(∇ζ)2G(p)ψ2 +

1

2
K(p)ψ2

+P (p)∇ϕ · ∇ψ +Q(p)ψ∇ϕ · ∇ζ + ∇ζ ·R(p)ψ∇ψ +
1

2
g(ζ2 − h2)

=
1

2
(h+ ζ)

(
(∇ϕ)2 +

2

15
(h+ ζ)2(∇ψ)2 + (∇ζ)2 7

15
ψ2

)
+

1

6
(h+ ζ)ψ2

−1

3
(h+ ζ)2∇ϕ · ∇ψ − 2

3
(h+ ζ)ψ∇ϕ · ∇ζ +

1

5
(h+ ζ)2ψ∇ζ · ∇ψ +

1

2
g(ζ2 − h2)

26(a− b− c)2 = a2 + b2 + c2 − 2ab− 2ac+ 2bc⇒ 1
2
(a2 + b2 + c2) = 1

2
(a− b− c)2 + ab+ ac− bc
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=
1

2
(h+ ζ)

(
(∇ϕ)2 +

(
2

3
ψ∇ζ

)2

+

(
1

3
(h+ ζ)∇ψ

)2
)

+
1

6
(h+ ζ)ψ2

+
1

2
(h+ ζ)

((
7

15
− (

2

3
)2
)

(ψ∇ζ)2 +

(
2

15
− (

1

3
)2
)

((h+ ζ)∇ψ)2
)

−1

3
(h+ ζ)2∇ϕ · ∇ψ − 2

3
(h+ ζ)ψ∇ϕ · ∇ζ +

1

5
(h+ ζ)2ψ∇ζ · ∇ψ +

1

2
g(ζ2 − h2)

=
1

2
(h+ ζ)

(
∇ϕ− 2

3
ψ∇ζ − 1

3
(h+ ζ)∇ψ

)2

+
1

6
(h+ ζ)ψ2

+(h+ ζ)

(
2

3
ψ∇ϕ · ∇ζ +

1

3
(h+ ζ)∇ϕ · ∇ψ − 2

9
(h+ ζ)ψ∇ζ · ∇ψ

)

+
1

2
(h+ ζ)

(
1

45
(ψ∇ζ)2 +

1

45
((h+ ζ)∇ψ)2

)

−1

3
(h+ ζ)2∇ϕ · ∇ψ − 2

3
(h+ ζ)ψ∇ϕ · ∇ζ +

1

5
(h+ ζ)2ψ∇ζ · ∇ψ +

1

2
g(ζ2 − h2)

=
1

2
(h+ ζ)

(
∇ϕ− 2

3
ψ∇ζ − 1

3
(h+ ζ)∇ψ

)2

+
1

6
(h+ ζ)ψ2

+
1

90
(h+ ζ)

(
(ψ∇ζ)2 + ((h+ ζ)∇ψ)2

)
+

(
1

5
− 2

9

)
(h+ ζ)2ψ∇ζ · ∇ψ +

1

2
g(ζ2 − h2)

=
1

2
(h+ ζ)

(
∇ϕ− 2

3
ψ∇ζ − 1

3
(h+ ζ)∇ψ

)2

+
1

90
(h+ ζ)

(
(ψ∇ζ)2 − 2(h + ζ)ψ∇ζ · ∇ψ + ((h+ ζ)∇ψ)2

)

+
1

6
(h+ ζ)ψ2 +

1

2
g(ζ2 − h2)

=
1

2
(h+ ζ)

(
∇ϕ− 2

3
ψ∇ζ − 1

3
(h+ ζ)∇ψ

)2
+

1

6
(h+ ζ)ψ2

+
1

90
(h+ ζ)

(
ψ∇ζ − (h+ ζ)∇ψ

)2
+

1

2
g(ζ2 − h2)

(E.16)

For the Hamiltonian system, the continuity equation (E.8) becomes

∂ζ

∂t
+ ∇ ·

(
(h+ ζ)∇ϕ+ P (p)∇ψ +Q(p)ψ∇ζ

)
= 0,

∂ζ

∂t
+ ∇ ·

(
(h+ ζ)∇ϕ− 1

3
(h+ ζ)2∇ψ − 2

3
(h+ ζ)ψ∇ζ

)
= 0,

∂ζ

∂t
+ ∇ ·

(
(h+ ζ)

(
∇ϕ− 2

3
ψ∇ζ − 1

3
(h+ ζ)∇ψ

))
= 0. (E.17)
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The Bernoulli-like equation (E.9) becomes

∂ϕ

∂t
+

1

2
(∇ϕ)2 + gζ +

1

2
F ′(p)(∇ψ)2 +

1

2

(
(∇ζ)2G′(p) +K ′(p)

)
ψ2

+∇ϕ ·
(
P ′(p)∇ψ +Q′(p)ψ∇ζ

)
+ ∇ζ · R′(p)ψ∇ψ

−∇ ·
(
Q(p)ψ∇ϕ+R(p)ψ∇ψ +G(p)ψ2∇ζ

)
= 0,

∂ϕ

∂t
+

1

2
(∇ϕ)2 + gζ +

1

2

2

5
(h+ ζ)2(∇ψ)2 +

1

2

(
(∇ζ)2 7

15
+

1

3

)
ψ2

+∇ϕ ·
(
−2

3
(h+ ζ)∇ψ − 2

3
ψ∇ζ

)
+ ∇ζ · 2

5
(h+ ζ)ψ∇ψ

−∇ ·
(
−2

3
(h+ ζ)ψ∇ϕ+

(1

5
(h+ ζ)2ψ∇ψ +

7

15
(h+ ζ)ψ2∇ζ

))
= 0,

∂ϕ

∂t
+

1

2

(
(∇ϕ)2 +

2

5
(h+ ζ)2(∇ψ)2 +

7

15
ψ2(∇ζ)2

)

+
1

6
ψ2 − 2

3
(h+ ζ)∇ϕ · ∇ψ − 2

3
ψ∇ϕ · ∇ζ +

2

5
(h+ ζ)ψ∇ζ · ∇ψ

+∇ ·
(

(h+ ζ)
(2

3
∇ϕ− 7

15
ψ∇ζ − 1

5
(h+ ζ)∇ψ

)
ψ

)
+ gζ = 0,

∂ϕ

∂t
+

1

2

(
(∇ϕ)2 +

(2

3
(h+ ζ)∇ψ

)2
+
(2

3
ψ∇ζ

)2
)

+

(
1

2

2

5
− 1

2

(2

3

)2
)

(h+ ζ)2(∇ψ)2 +

(
1

2

7

15
− 1

2

(2

3

)2
)
ψ2(∇ζ)2

+
1

6
ψ2 − 2

3
(h+ ζ)∇ϕ · ∇ψ − 2

3
ψ∇ϕ · ∇ζ +

2

5
(h+ ζ)ψ∇ζ · ∇ψ

+∇ ·
(

(h+ ζ)
(2

3
∇ϕ− 7

15
ψ∇ζ − 1

5
(h+ ζ)∇ψ

)
ψ

)
+ gζ = 0,

∂ϕ

∂t
+

1

2

(
∇ϕ− 2

3
(h+ ζ)∇ψ − 2

3
ψ∇ζ

)2

+
2

3
(h+ ζ)∇ϕ · ∇ψ +

2

3
ψ∇ϕ · ∇ζ − 2

3

2

3
(h+ ζ)ψ∇ψ · ∇ζ

− 1

45
(h+ ζ)2(∇ψ)2 +

1

90
ψ2(∇ζ)2

+
1

6
ψ2 − 2

3
(h+ ζ)∇ϕ · ∇ψ − 2

3
ψ∇ϕ · ∇ζ +

2

5
(h+ ζ)ψ∇ζ · ∇ψ

+∇ ·
(

(h+ ζ)
(2

3
∇ϕ− 7

15
ψ∇ζ − 1

5
(h+ ζ)∇ψ

)
ψ

)
+ gζ = 0,

∂ϕ

∂t
+

1

2

(
∇ϕ− 2

3
(h+ ζ)∇ψ − 2

3
ψ∇ζ

)2

− 1

45
(h+ ζ)2(∇ψ)2 +

1

90
ψ2(∇ζ)2

+
1

6
ψ2 +

(2

5
− 2

3

2

3

)
(h+ ζ)ψ∇ζ · ∇ψ

+∇ ·
(

(h+ ζ)
(2

3
∇ϕ− 7

15
ψ∇ζ − 1

5
(h+ ζ)∇ψ

)
ψ

)
+ gζ = 0,
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∂ϕ

∂t
+

1

2

(
∇ϕ− 2

3
(h+ ζ)∇ψ − 2

3
ψ∇ζ

)2

+
1

6
ψ2 − 1

45
(h+ ζ)2(∇ψ)2 − 2

45
(h+ ζ)ψ∇ζ · ∇ψ +

1

90
ψ2(∇ζ)2

+∇ ·
(

(h+ ζ)
(2

3
∇ϕ− 7

15
ψ∇ζ − 1

5
(h+ ζ)∇ψ

)
ψ

)
+ gζ = 0,

∂ϕ

∂t
+

1

2

(
∇ϕ− 2

3
(h+ ζ)∇ψ − 2

3
ψ∇ζ

)2

+
1

6
ψ2 +

( 1

90
+

1

45

)
ψ2(∇ζ)2

− 1

45

(
(h+ ζ)2(∇ψ)2 + 2(h+ ζ)ψ∇ζ · ∇ψ + ψ2(∇ζ)2

)

+∇ ·
(

(h+ ζ)
(2

3
∇ϕ− 7

15
ψ∇ζ − 1

5
(h+ ζ)∇ψ

)
ψ

)
+ gζ = 0,

∂ϕ

∂t
+

1

2

(
∇ϕ− 2

3
(h+ ζ)∇ψ − 2

3
ψ∇ζ

)2

+
1

6

(
1 +

1

5
(∇ζ)2

)
ψ2 − 1

45

(
(h+ ζ)∇ψ + ψ∇ζ

)2

+∇ ·
(

(h+ ζ)
(2

3
∇ϕ− 7

15
ψ∇ζ − 1

5
(h+ ζ)∇ψ

)
ψ

)
+ gζ = 0. (E.18)

The elliptic equation (E.12) becomes

Q(p)∇ϕ · ∇ζ +
(
K(p) + (∇ζ)2G(p)

)
ψ + ∇ζ ·R(p)∇ψ

−∇ ·
(
F (p)∇ψ + P (p)∇ϕ+R(p)ψ∇ζ

)
= 0,

−2

3
(h+ ζ)∇ϕ · ∇ζ +

1

3
(h+ ζ)ψ +

7

15
(h+ ζ)ψ(∇ζ)2 +

1

5
(h+ ζ)2∇ζ · ∇ψ

−∇ ·
(

2

15
(h+ ζ)3∇ψ − 1

3
(h+ ζ)2∇ϕ+

1

5
(h+ ζ)2ψ∇ζ

)
= 0,

(h+ ζ)ψ +

(
1

3
+

7

15
(∇ζ)2

)
−
(

2

3
(h+ ζ)∇ϕ+

1

5
(h+ ζ)2∇ζ

)
· ∇ψ

+∇ ·
(

1

3
(h+ ζ)2∇ϕ− 1

5
(h+ ζ)2ψ∇ζ − 2

15
(h+ ζ)3∇ψ

)
= 0. (E.19)

E.3 Calculations for the cosine-hyperbolic shape function

The cosine-hyperbolic vertical shape function (3.17) is given by

f (c) := cosh(κ(h+ z)) − cosh(κ(h + ζ)), (E.20)

with κ(x, y) denoting a shape parameter.
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The integrals (3.6) can be calculated27 by substituting the shape function:

F (c)
mn =

∫ ζ

−h
f (c)
m f (c)

n dz

=

∫ ζ

−h
(cosh(κ(h+ z)) − cosh(κ(h + ζ)))2 dz

=

∫ ζ

−h
(cosh(κ(h + z)))2 dz − 2

∫ ζ

−h
cosh(κ(h + z)) cosh(κ(h + ζ)) dz +

∫ ζ

−h
(cosh(κ(h + ζ)))2 dz

=

[
1

2κ
sinh(κ(h+ z)) cosh(κ(h+ z)) +

h+ z

2

]ζ

z=−h

− 2 cosh(κ(h + ζ))

[
1

κ
sinh(κ(h+ z))

]ζ

z=−h

+(h+ ζ)(cosh(κ(h+ ζ)))2

=
1

2κ
sinh(κ(h+ ζ)) cosh(κ(h+ ζ)) +

1

2
(h+ z) − 2

κ
cosh(κ(h + ζ)) sinh(κ(h + ζ))

+(h+ ζ)(cosh(κ(h+ ζ)))2

= − 3

2κ
sinh(κ(h + ζ)) cosh(κ(h + ζ)) +

1

2
(h+ z) + (h+ ζ)(cosh(κ(h+ ζ)))2; (E.21)

G(c)
mn =

∫ ζ

−h

f
(c)
m

∂ζ

f
(c)
n

∂ζ
dz

=

∫ ζ

−h
(−κ sinh(κ(h + ζ)))2 dz

= κ2(h+ ζ)(sinh(κ(h + ζ)))2; (E.22)

K(c)
mn =

∫ ζ

−h

f
(c)
m

∂z

f
(c)
n

∂z
dz

=

∫ ζ

−h
(κ sinh(κ(h + z)))2 dz

= κ2

[
1

2κ
sinh(κ(h + z)) cosh(κ(h+ z)) − h+ z

2

]ζ

z=−h

=
1

2
κ sinh(κ(h + ζ)) cosh(κ(h + ζ)) − 1

2
κ2(h+ ζ); (E.23)

27The following holds:
R

sinh(x)dx = cosh(x) + c,
R

sinh(x)dx = cosh(x) + c,
R

(sinh(ax))2dx =
1
2a

sinh(ax) cosh(ax) − x
2

+ c and
R

(cosh(ax))2dx = 1
2a

sinh(ax) cosh(ax) + x
2

+ c.
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P (c)
m =

∫ ζ

−h
f (c)
m dz

=

∫ ζ

−h
(cosh(κ(h + z)) − cosh(κ(h + ζ))) dz

=

[
1

κ
sinh(κ(h+ z))

]ζ

z=−h

− (h+ ζ) cosh(κ(h+ ζ))

=
1

κ
sinh(κ(h+ ζ)) − (h+ ζ) cosh(κ(h+ ζ))

= −(h+ ζ)

(
cosh(κ(h+ ζ)) − sinh(κ(h+ ζ))

κ(h+ ζ)

)
; (E.24)

Q(c)
m =

∫ ζ

−h

f
(c)
m

∂ζ
dz

=

∫ ζ

−h
−κ sinh(κ(h + ζ)) dz

= −κ(h+ ζ) sinh(κ(h+ ζ)); (E.25)

R(c)
mn =

∫ ζ

−h

f
(c)
m

∂ζ
f (c)
n dz

=

∫ ζ

−h
−κ sinh(κ(h + ζ)) (cosh(κ(h+ z)) − cosh(κ(h + ζ))) dz

= [− sinh(κ(h+ ζ)) sinh(κ(h+ z))]ζz=−h + κ(h+ ζ) sinh(κ(h + ζ)) cosh(κ(h + z))

= κ(h + ζ) sinh(κ(h+ ζ))

(
cosh(κ(h+ ζ)) − sinh(κ(h+ ζ))

κ(h+ ζ)

)
. (E.26)

The following abbreviations were introduced during the calculations:

D := cosh(κ(h + ζ)) − sinh(κ(h + ζ))

κ(h + ζ
, (E.27a)

S := sinh(κ(h + ζ)), (E.27b)

C := cosh(κ(h + ζ)). (E.27c)

The results can now be summarized as

F (c) = −3

2

1

κ
S C +

1

2
(h+ ζ) + (h+ ζ) C2, (E.28a)

G(c) = κ2 (h+ ζ)S2, (E.28b)

K(c) =
1

2
κS C − 1

2
κ2 (h+ ζ), (E.28c)

P (c) = −(h+ ζ)D, (E.28d)

Q(c) = −κ (h+ ζ)S, (E.28e)

R(c) = κ (h + ζ)S D. (E.28f)
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The variations to ζ of these six functionals have to be calculated also. We have ((h+ ζ)D)′ =
C + (h+ ζ)κS − C = κ (h+ ζ)S, S ′ = κ C and C′ = κS. Then we get

F ′(c) = 2κ (h + ζ)S D, (E.29a)

G′(c) = κ2 S2 + 2κ3 (h+ ζ) C S, (E.29b)

K ′(c) = κ2 S2, (E.29c)

P ′(c) = −κ (h + ζ)S, (E.29d)

Q′(c) = −κ2 (h+ ζ) C − κS, (E.29e)

R′(c) = κ2 (h+ ζ)
(
C2 + S2

)
− κ C S. (E.29f)

Equation (3.7) for mass-conservation is derived using the parameters (E.28) as

∂ζ

∂t
+ ∇ ·

(
(h+ ζ)∇ϕ+ P (c)∇ψ +Q(c)ψ∇ζ

)
= 0,

∂ζ

∂t
+ ∇ ·

(
(h+ ζ)∇ϕ− (h+ ζ)D∇ψ − κ (h+ ζ)S ψ∇ζ

)
= 0,

∂ζ

∂t
+ ∇ ·

(
(h+ ζ)

(
∇ϕ−D∇ψ − κS ψ∇ζ

))
= 0,

∂ζ

∂t
+ ∇ ·

(
(h+ ζ)U

)
= 0, (E.30)

with U the depth averaged velocity (D.6).
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The Bernoulli-like equation (3.8) becomes

∂ϕ

∂t
+

1

2
(∇ϕ)2 + gζ +

1

2
F ′(c)(∇ψ)2 +

1

2
G′(c)ψ2(∇ζ)2 +

1

2
K ′(c)ψ2

+P ′(c)∇ϕ · ∇ψ +Q′(c)ψ∇ϕ · ∇ζ +R′(c)ψ∇ζ · ∇ψ

−∇ ·
(
Q(c)ψ∇ϕ+R(c)ψ∇ψ +G(c)ψ2∇ζ

)
= 0,

∂ϕ

∂t
+

1

2
(∇ϕ)2 + gζ + κ (h+ ζ)S D(∇ψ)2 +

1

2

(
κ2 S2 + 2κ3 (h+ ζ) C S

)
ψ2(∇ζ)2

+
1

2
κ2 S2ψ2 − κ (h+ ζ)S∇ϕ · ∇ψ −

(
κ2 (h+ ζ) C + κS

)
ψ∇ϕ · ∇ζ

+
(
κ2 (h+ ζ)

(
C2 + S2

)
− κ C S

)
ψ∇ζ · ∇ψ

−∇ ·
(
− κ (h+ ζ)Sψ∇ϕ+ κ (h+ ζ)S Dψ∇ψ + κ2 (h+ ζ)S2ψ2∇ζ

)
= 0,

∂ϕ

∂t
+

1

2
(∇ϕ)2 +

1

2
D2(∇ψ)2 +

1

2
κ2 S2ψ2(∇ζ)2 + gζ − 1

2
D2(∇ψ)2

+κ (h+ ζ)S D(∇ψ)2 + κ3 (h+ ζ) C Sψ2(∇ζ)2

+
1

2
κ2 S2ψ2 − κ (h+ ζ)S∇ϕ · ∇ψ − κ2 (h+ ζ) Cψ∇ϕ · ∇ζ − κSψ∇ϕ · ∇ζ

+κ2 (h+ ζ)
(
C2 + S2

)
ψ∇ζ · ∇ψ − κ C Sψ∇ζ · ∇ψ

+∇ ·
(
κ (h + ζ)Sψ

(
∇ϕ−D∇ψ − κSψ∇ζ

))
= 0,

∂ϕ

∂t
+

1

2
(∇ϕ−D∇ψ − κSψ∇ζ)2 + D∇ϕ · ∇ψ + κSψ∇ϕ · ∇ζ − κSDψ∇ψ · ∇ζ + gζ

−1

2
D2(∇ψ)2 + κ (h+ ζ)S D(∇ψ)2 + κ3 (h+ ζ) C Sψ2(∇ζ)2

+
1

2
κ2 S2ψ2 − κ (h+ ζ)S∇ϕ · ∇ψ − κ2 (h+ ζ) Cψ∇ϕ · ∇ζ − κSψ∇ϕ · ∇ζ

+κ2 (h+ ζ)C2ψ∇ζ · ∇ψ + κ2 (h+ ζ)S2ψ∇ζ · ∇ψ − κ C Sψ∇ζ · ∇ψ

+∇ ·
(
κ (h + ζ)Sψ

(
∇ϕ−D∇ψ − κSψ∇ζ

))
= 0,

∂ϕ

∂t
+

1

2
(∇ϕ−D∇ψ − κSψ∇ζ)2 + gζ +

1

2
κ2 S2ψ2 +

1

2
D2(∇ψ)2

−κ (h+ ζ)S∇ϕ · ∇ψ + D∇ϕ · ∇ψ + κ (h+ ζ)S D(∇ψ)2 −D2(∇ψ)2

+κ2 (h+ ζ)S2ψ∇ζ · ∇ψ − κSDψ∇ψ · ∇ζ

−κ2 (h+ ζ) Cψ∇ϕ · ∇ζ + κ2 (h+ ζ)C
(
C − S

κ (h+ ζ)

)
ψ∇ζ · ∇ψ + κ3 (h+ ζ) C Sψ2(∇ζ)2

+∇ ·
(
κ (h + ζ)Sψ

(
∇ϕ−D∇ψ − κSψ∇ζ

))
= 0,
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∂ϕ

∂t
+

1

2
(∇ϕ−D∇ψ − κSψ∇ζ)2 + gζ +

1

2
κ2 S2ψ2 +

1

2
D2(∇ψ)2

−κ (h+ ζ)S
(
∇ϕ− D∇ϕ

κ (h + ζ)S − D∇ψ +
D2∇ψ

κ (h+ ζ)S − κSψ∇ζ +
κDSψ∇ψ
κ (h+ ζ)S − κSψ2∇ζ

)
· ∇ψ

−κ2 (h+ ζ) Cψ (∇ϕ−D∇ψ − κSψ∇ζ) · ∇ζ

+∇ ·
(
κ (h+ ζ)Sψ

(
∇ϕ−D∇ψ − κSψ∇ζ

))
= 0,

∂ϕ

∂t
+

1

2
U2 + gζ +

1

2
κ2S2ψ2 +

1

2
D2(∇ψ)2

−κ(h+ ζ)U ·
((

S − D
κ(h+ ζ)

)
∇ψ + κ Cψ∇ζ

)
+ ∇ ·

(
κ(h+ ζ)SUψ

)
= 0.

(E.31)

The elliptic equation (3.10) becomes

Q(c) ∇ϕ · ∇ζ +K(c)ψ +G(c)ψ(∇ζ)2 +R(c)∇ζ · ∇ψ

−∇ ·
(
F (c)∇ψ + P (c)∇ϕ+R(c)ψ∇ζ

)
= 0,

−κ (h+ ζ)S ∇ϕ · ∇ζ +

(
1

2
κS C − 1

2
κ2 (h+ ζ)

)
ψ

+κ2 (h+ ζ)S2ψ(∇ζ)2 + κ (h + ζ)S D∇ζ · ∇ψ

−∇ ·
((

−3

2

1

κ
S C +

1

2
(h+ ζ) + (h+ ζ) C2

)
∇ψ − (h+ ζ)D∇ϕ+ κ (h+ ζ)S Dψ∇ζ

)
= 0,

−κ (h+ ζ)S∇ϕ · ∇ζ + κ (h + ζ)S D∇ζ · ∇ψ + κ2 (h+ ζ)S2ψ(∇ζ)2

+
1

2
κ (S C − κ (h + ζ))ψ + ∇ · ((h+ ζ)D∇ϕ− κ (h + ζ)S Dψ∇ζ)

+∇ ·
((

−(h+ ζ) C2 + 2
1

κ
S C − 1

2

1

κ
S C − 1

2
(h+ ζ)

)
∇ψ
)

= 0,

−κ (h + ζ)S (∇ϕ−D∇ψ − κSψ∇ζ) · ∇ζ
+

1

2
κ (S C − κ (h + ζ))ψ + ∇ · ((h+ ζ)D (∇ϕ− κSψ∇ζ))

+∇ ·
((

−(h+ ζ)

(
C − S

κ(h+ ζ)

)2

+
S2

κ2(h+ ζ)
− 1

2

1

κ
S C − 1

2
(h+ ζ)

)
∇ψ
)

= 0,

−κ (h+ ζ)S
(
∇ϕ−D∇ψ − κSψ∇ζ

)
· ∇ζ

+
1

2
κ
(
S C − κ(h+ ζ)

)
ψ + ∇ ·

(
(h+ ζ)D (∇ϕ− κSψ∇ζ)

)

+∇ ·
(

1

κ

( S2

κ(h+ ζ)
−D2κ(h+ ζ) − 1

2
κ(h + ζ) − 1

2
SC
)
∇ψ
)

= 0.

(E.32)

113



E.4 Calculations for the linearized Hamiltonian

In (4.13) the linearized Hamiltonian is given for the general series model (4.2) with M = 1.
The integral over the vertical domain is evaluated as

H0 =

∫∫ (
ζU · ∇ϕ+

1

2
g(ζ2 − h2)

)
dx dy

+

∫∫ ∫ 0

−h

(
1

2
(∇ϕ)2 + ∇ϕ · f∇ψ +

1

2
(f∇ψ)2 +

1

2
(f ′ψ)2

)
dz dx dy

=

∫∫ (
ζU · ∇ϕ+

1

2
g(ζ2 − h2)

)
dx dy

+

∫∫ (
1

2
h(∇ϕ)2 +

(∫ 0

−h
f dz

)
∇ϕ · ∇ψ +

1

2

(∫ 0

−h
f2 dz

)
(∇ψ)2 +

1

2

( ∫ 0

−h
f ′2 dz

)
ψ2

)
dx dy

=:

∫∫ (
ζU · ∇ϕ+

1

2
g(ζ2 − h2)

)
dx dy

+

∫∫ (
1

2
h(∇ϕ)2 − hD0∇ϕ · ∇ψ +

1

2
N0 (∇ψ)2 +

1

2
M0ψ

2

)
dx dy

=

∫∫ (
ζU · ∇ϕ+

1

2
g(ζ2 − h2)

)
dx dy

+

∫∫ (
1

2
h (∇ϕ−D0∇ψ)2 − 1

2
hD2

0(∇ψ)2 +
1

2
N0 (∇ψ)2 +

1

2
M0ψ

2

)
dx dy

=

∫∫ (
ζU · ∇ϕ+

1

2
h (∇ϕ−D0∇ψ)2 +

1

2

(
N0 − hD2

0

)
(∇ψ)2 +

1

2
M0ψ

2 +
1

2
g(ζ2 − h2)

)
dx dy.

(E.33)

Use has been made of the following functionals:

D0 := −1

h

∫ 0

−h
f dz, (E.34a)

M0 :=

∫ 0

−h
f ′2 dz, (E.34b)

N0 :=

∫ 0

−h
f2 dz. (E.34c)

To write the linearized Hamiltonian system (4.14) in the basic variables, the variations of the
linearized Hamiltonian (4.15) have to be calculated. The variation w.r.t. ϕ is given by

δϕH0 =

∫∫
(ζU · ∇δϕ+ h (∇ϕ−D0∇ψ) · ∇δϕ) dx dy

= −
∫∫

(∇ · ζUδϕ + ∇ · h (∇ϕ−D0∇ψ) δϕ) dx dy. (E.35)

The last equality is obtained by applying Green’s theorem. Because there are no boundaries
specified yet in the horizontal plane, the variations at the horizontal boundaries are taken
zero and therefore there are no boundary integrals. The variation w.r.t. ζ is given by

δζH0 =

∫∫
(U · ∇ϕ δζ + gζ δζ) dx dy. (E.36)
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And the variation w.r.t ψ will be

δψH0 =

∫∫ (
h (∇ϕ−D0∇ψ) · (−D0∇δψ) +

(
N0 − hD2

0

)
∇ψ · ∇δψ + M0ψδψ

)
dx dy

=

∫∫ (
∇ · hD0 (∇ϕ−D0∇ψ) δψ −∇ ·

((
N0 − hD2

0

)
∇ψ
)
δψ + M0ψδψ

)
dx dy. (E.37)

Substituting these variations in the linearized Hamiltonian system (4.14) gives

∂ζ

∂t
+ ∇ ·

(
ζU + h∇ϕ− hD0 ∇ψ

)
= 0, (E.38a)

∂ϕ

∂t
+ U · ∇ϕ+ gζ = 0, (E.38b)

M0 ψ + ∇ ·
(
hD0 ∇ϕ−N0 ∇ψ

)
= 0, (E.38c)

the three basic equations for the linearized general variational Boussinesq model.
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F Positive model parameters

In the model equations, some parameters of the vertical shape models are used. In this
chapter the sign of these parameters will be investigated.

For the cosine-hyperbolic model, the parameters (4.21) read

D(c)
0 = cosh(κh) − sinh(κh)

κh
, (F.1a)

M(c)
0 =

1

2
κ sinh(κh) cosh(κh) − 1

2
κ2h, (F.1b)

N (c)
0 = −3

2

1

κ
sinh(κh) cosh(κh) +

1

2
h+ h (cosh(κh))2. (F.1c)

The Taylor series of the hyperbolic functions are given by

sinh(x) =
∞∑

n=0

x2n+1

(2n + 1)!
, (F.2a)

cosh(x) =

∞∑

n=0

x2n

(2n)!
. (F.2b)

With the double angle formulas28, we get

N (c)
0 = −3

4

1

κ
sinh(2κh) + h+

1

2
h cosh(2κh)

= h− 3

4

1

κ

∞∑

n=0

(2κh)2n+1

(2n + 1)!
+

1

2
h

∞∑

n=0

(2κh)2n

(2n)!

= h+

∞∑

n=0

−3 · 22n+1

4(2n + 1)!
κ2nh2n+1 +

∞∑

n=0

22n

2(2n)!
κ2nh2n+1

= h− 3

2
h+

1

2
h+

∞∑

n=1

(
22n−1

(2n)!
− 3

22n−1

(2n + 1)!

)
κ2nh2n+1

=
∞∑

n=1

(
1 − 3

2n+ 1

)
22n−1

(2n)!
κ2nh2n+1. (F.3a)

Note that we have h ≥ 0, so h2n+1 ≥ 0. Because n ∈ N we have κ2n ≥ 0 and 22n−1

(2n)! ≥ 0. For

the first term it holds that29 1 − 3
(2n+1)! ≥ 0 for n = 1, 2, 3, . . . . Therefore, we have N (c)

0 ≥ 0

with N (c)
0 = 0 iff κh = 0.

28The double angle identities are sinh(2x) = 2 sinh(x) cosh(x) and cosh(2x) = 2 cosh2(x) − 1.
29For n ≥ 0 we have 1 − 3

2n+1
≥ 0 ⇔ 1 ≥ 3

2n+1
⇔ 2n+ 1 ≥ 3 ⇔ 2n ≥ 2 ⇔ n ≥ 1.
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Similarly,

M(c)
0 =

1

4
κ sinh(2κh) − 1

2
κ2h

=
1

4
κ

∞∑

n=0

(2κh)2n+1

(2n + 1)!
− 1

2
κ2h

=
∞∑

n=1

1

4
κ

(2κh)2n+1

(2n + 1)!
+

1

4
κ

1

2
κh− 1

2
κ2h

=

∞∑

n=1

22n−1

(2n + 1)!
κ2(n+1)h2n+1. (F.4)

We see that M(c)
0 ≥ 0 with M(c)

0 = 0 iff κh = 0.

Similarly the parameter D(c)
0 can be written as

D(c)
0 =

∞∑

n=0

(κh)2n

(2n)!
+

1

κh

∞∑

n=0

(κh)2n+1

(2n + 1)!

=

∞∑

n=0

(
1 − 1

2n+ 1

)
(κh)2n

(2n)!
. (F.5)

So we also have D(c)
0 ≥ 0 and D(c)

0 = 0 iff κh = 0.
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G Pressure terms

The model starts with the Euler equations (2.1), which results in the model equations (5.1),
which are related to the shallow water equations (3.11). In this chapter, the relation between
the Euler equations and a part of the shallow water equations is presented. This will also
give rise to the pressure pulse used for modelling ships (see Section 4.6).
Let’s consider the third Euler equation:

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+w

∂w

∂z
= −1

ρ

∂p

∂z
− g. (G.1)

Assuming slowly varying vertical velocity w , so zero derivatives of w, we have

∂p

∂z
= −ρg, (G.2)

the hydrostatic equation. Integration from a depth d (so −h < d < ζ) to the surface ζ gives

p(ζ) − p(d) = −ρg(ζ − d). (G.3)

Because one can take the atmospheric pressure zero (see Section 2.2), we have p(ζ) = 0 and
therefore

p(d) = ρg(ζ − d), (G.4)

the hydrostatic pressure at depth d. Note that we have ∇p = ρg∇ζ.
The Euler equations in the horizontal plane can now be rewritten to the shallow water equa-
tions. Assume w ∂u

∂z = w ∂v
∂z = 0 and substitute the hydrostatic pressure. This results in

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ g

∂ζ

∂x
= 0, (G.5)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ g

∂ζ

∂y
= 0, (G.6)

which are (together with the continuity equation) the shallow water equations.
Let’s consider the pressure as the sum of a hydrostatic pressure and a pressure pulse: p =
ph + ps. Substituting this in the 2D-Euler equations gives

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −g ∂ζ

∂x
− 1

ρ

∂ps
∂x

, (G.7)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −g∂ζ

∂y
− 1

ρ

∂ps
∂y

. (G.8)

Similar to the derivations in Chapter 4, applying the velocity potential (2.9) and the lin-
earization results in

∂

∂x

(
∂ϕ

∂t
+ U

∂ϕ

∂x
+ V

∂ϕ

∂y

)
= − ∂

∂x

(
gζ +

ps
ρ

)
, (G.9)

∂

∂y

(
∂ϕ

∂t
+ U

∂ϕ

∂x
+ V

∂ϕ

∂y

)
= − ∂

∂y

(
gζ +

ps
ρ

)
. (G.10)

This can be written as

∂ϕ

∂t
+ U · ∇ϕ+ gζ = −ps

ρ
. (G.11)

This equation is the Bernoulli equation (4.17b), but now with a source term consisting of the
pressure pulse of the ship.
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H Derivation of the incomplete Cholesky decomposition

In Section 10.2, a derivation of the incomplete Cholesky decomposition is presented. Detailed
calculations used in the derivation will be shown in this chapter.
For convenience, we will look at an incomplete LU -decomposition instead of an incomplete
Cholesky decomposition. The Cholesky decomposition is obtained by substituting U = LT .
The incomplete decomposition M of the matrix S is given by

M = (D + L)D−1(D + U), (H.1)

withD a diagonal matrix, L a strictly lower triangular matrix and U a strictly upper triangular
matrix. The sparsity pattern of L +D + U equals the pentadiagonal sparsity pattern of S.
So Dij = 0 ∀ i 6= j, Lij = 0 ∀ i /∈ {j + 1, j + p} and Uij = 0 ∀ i /∈ {j − 1, j − p}, with p
denoting half the bandwith of S.
Writing out the matrix multiplications and using the diagonal pattern of D−1 yields

Mij =

n∑

k=1

(
(Dik + Lik)D

−1
kk (Dkj + Ukj)

)
.

The banded structure of D + L and D + U , i.e., (D + L)ij = 0 for i − j ∈ {0, 1, p} and
(D + U)ij = 0 for j − i ∈ {0, 1, p}, yields

Mij =
∑

k∈{i−p,i−1,i,j,j−1,j−p}

(
(Dik + Lik)D

−1
kk (Dkj + Ukj)

)
.

The sparsity pattern of M is shown in Figure 5 and reads Mij = 0 for all nodes (i, j)
with i − j /∈ {−p,−p + 1,−1, 0, 1, p − 1, p}. Therefore, Mij will be writed out for j ∈
{i− p, i− p+ 1, i − 1, i, i + 1, i+ p− 1, i+ p} in the following calculations.

Mi,i−p =
∑

k∈{i−p,i−1,i,i−p,i−p−1,i−2p}

(
(Dik + Lik)D

−1
kk (Dk,i−p + Uk,i−p)

)

=
∑

k∈{i−p}

(
(Dik + Lik)D

−1
kk (Dk,i−p + Uk,i−p)

)

= Li,i−pD
−1
i−p,i−pDi−p,i−p

= Li,i−p

Mi,i−p+1 =
∑

k∈{i−p,i−1,i,i−p+1,i−p,i−2p+1}

(
(Dik + Lik)D

−1
kk (Dk,i−p+1 + Uk,i−p+1)

)

=
∑

k∈{i−p}

(
(Dik + Lik)D

−1
kk (Dk,i−p+1 + Uk,i−p+1)

)

= Li,i−pD
−1
i−p,i−pUi−p,i−p+1

Mi,i−1 =
∑

k∈{i−p,i−1,i,i−1,i−2,i−1−p}

(
(Dik + Lik)D

−1
kk (Dk,i−1 + Uk,i−1)

)

=
∑

k∈{i−1}

(
(Dik + Lik)D

−1
kk (Dk,i−1 + Uk,i−1)

)

= Li,i−1D
−1
i−1,i−1Di−1,i−1

= Li,i−1
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Mii =
∑

k∈{i−p,i−1,i,i,i−1,i−p}

(
(Dik + Lik)D

−1
kk (Dki + Uki)

)

=
∑

k∈{i−p,i−1,i}

(
(Dik + Lik)D

−1
kk (Dki + Uki)

)

= Li,i−pD
−1
i−p,i−pUi−p,i + Li,i−1D

−1
i−1,i−1Ui−1,i +DiiD

−1
ii Dii

= Li,i−pD
−1
i−p,i−pUi−p,i + Li,i−1D

−1
i−1,i−1Ui−1,i +Dii

Mi,i+1 =
∑

k∈{i−p,i−1,i,i+1,i,i+1−p}

(
(Dik + Lik)D

−1
kk (Dk,i+1 + Uk,i+1)

)

=
∑

k∈{i}

(
(Dik + Lik)D

−1
kk (Dk,i+1 + Uk,i+1)

)

= DiiD
−1
ii Ui,i+1

= Ui,i+1

Mi,i+p−1 =
∑

k∈{i−p,i−1,i,i+p−1,i+p−2,i−1}

(
(Dik + Lik)D

−1
kk (Dk,i+p−1 + Uk,i+p−1)

)

=
∑

k∈{i−1}

(
(Dik + Lik)D

−1
kk (Dk,i+p−1 + Uk,i+p−1)

)

= Li,i−1D
−1
i−1,i−1Ui−1,i−1+p

Mi,i+p =
∑

k∈{i−p,i−1,i,i+p,i+p−1,i}

(
(Dik + Lik)D

−1
kk (Dk,i+p + Uk,i+p)

)

=
∑

k∈{i}

(
(Dik + Lik)D

−1
kk (Dk,i+p + Uk,i+p)

)

= DiiD
−1
ii Ui,i+p

= Ui,i+p

As explained in Section 10.2, Mij = Sij for j ∈ {i − p, i − 1, i + 1, i + p} is used. Than, the
main diagonal is given by

Mii = Si,i−pD
−1
i−p,i−pSi−p,i + Si,i−1D

−1
i−1,i−1Si−1,i +Dii

= S2
i,i−pD

−1
i−p,i−p + S2

i,i−1D
−1
i−1,i−1 +Dii, (H.2)

where S is assumed to be symmetric, so reducing to a Cholesky decomposition.
The fill-in elements are given by

Mi,i−p+1 = Si,i−pD
−1
i−p,i−pSi−p,i−p+1, (H.3a)

Mi,i+p−1 = Si,i−1D
−1
i−1,i−1Si−1,i+p−1. (H.3b)

Now we have all elements of M as a function of S and D. How to choose the diagonal D has
been explained in Section 10.2, resulting in the relaxed incomplete Cholesky preconditioner.
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I Flop count for the RRB-k preconditioner

In Section 11.2 the parameter k has been chosen such that the number of flops is minimal.
The derivation of the number of flops needed for the RRB-k method will be presented in this
chapter.

At each iteration of the PCG-method, the preconditioned residual z = M−1r has to be solved.
For the RRB-k preconditioner, we have M = LDLT , with the last block of D according to a
complete Cholesky decomposition on the maximum level k.

A domain of Nx × Ny nodes is considered, with a maximum level of Nk
x × Nk

y nodes. The
operations +, -, *, / all count for one flop.

First, the equation Lx = y is solved with forward substitution. Because the first level black
nodes are eliminated in all RRB-k methods, they don’t have to be considered. The remaining
red first level red nodes not in second level are solved with 4 ·2 flops for each node, so in total
4 · 2 · 1

2 · 1
2 ·N1

x ·N1
y . For the levels p with 1 < p < k, we need 4 · 2 flops for all black points

and 4 · 2 flops for all red nodes not in the next level. In total, we get

#flops = 2 ·N1
x ·N1

y +

k−1∑

p=2

(
8 · 1

2
+ 8 · 1

4

)
Np
x ·Np

y

= 2 ·Nx ·Ny + 6

k−1∑

p=2

(1

4

)p−1
·Nx ·Ny

= 2 ·Nx ·Ny + 6

(
1 − (1

4 )k−1

1 − 1
4

− 1

)
·Nx ·Ny

=

(
4 − 8

(1

4

)k−1
)
·Nx ·Ny.

The second part is to solve Dx = y with D a diagonal matrix. This yields one flop for all
nodes not in the maximum level. So (1

2N
1
x − Nk

x ) · (1
2N

1
y − Nk

y ) = (1
2 − (1

2 )k−1)2 · Nx · Ny

flops. For the nodes of the maximum level, the solution from the Cholesky decomposition is
substituted.

The third part is to solve LTx = y with backward substitution. This is similar to the first
part. It also takes (4 − 8(1

4 )k−1) ·Nx ·Ny flops.

At the maximum level, a system GGT y = x has to be solved, with G lower triangular matrices
from the complete Cholesky decomposition. The algorithm for solving Gx = b with forward
substitution is given by (neglecting the sharper bounds in the loops):

for i = 0, 1, 2, . . . , N − 1
for k = i− b, . . . , i− 1
xi = xi − si,i−kxk

end

xi = xi/si0
end

(I.1)

With N = Nk
x ×Nk

y denoting the number nodes in the maximum level and b = min(Nk
x , N

k
y )

denoting the bandwith of the last Schur complement, the number of flops is given by (2b+1)N .
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Solving GTx = b with backward substitution uses the same number of flops. So together, it
is 2N(b+ 1) flops for solving the Cholesky decomposition on the maximum level.
One can writeNx = n and Nx = an with a ≥ 1, thanNp

x = (1
2 )p−1n, Np

y = (1
2)p−1an, N = an2

and b = n. The number of flops used for the several parts of solving the preconditioned system
can than be summarized as follows.

equation #flops

Lx = y 4an2 − 8an2
k

Dx = y
1

2
an2 − an2

k

LTx = y 4an2 − 8an2
k

Gx = y an2
k(2nk + 1)

GTx = y an2
k(2nk + 1)

Solving the RRB-part uses 81
2an

2 − 17an2
k and the Cholesky part 4an3

k +2an2
k flops. In total,

the solve function uses 81
2an

2 − 15an2
k + 4an3

k flops.

To minimize to total amount of flops, we set the derivative w.r.t nk to zero: 12an2
k−30ank = 0,

which has solutions nk = 0 and nk = 30
12 = 21

2 .
So, for minimal flops one has to choose nk = 2, i.e. the maximum level must have size 2×m,
with m ≥ 2 according to the domain.
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J Influence of rounding errors on the deflation method

In Section 14.2, it has been shown that the residual is decreasing monotone in the PCG-
method. For the deflation method, the same monotone decrease of residual is observed.
However, in some tests of the deflation method an instability occured. The deflated ICCG
method was applied to an open sea with a trench in it. The DICCG-method of the in C++

implemented wave model resulted in a nonconverging residual. While a similar implementa-
tion in Matlab resulted in a converging method. When zero deflation vectors were chosen, no
instability occured. So the instability is due to the use of deflation. In Figure 21 the norm of
the residual is given, showing a clear difference between the two experiments.
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Figure 21: The residual in the DICCG-method with 42 subdomains, on an open sea with a
trench and 128 × 128 nodes.

In most test problems, the bathymetry is given by an input file. The matrix is than calculated
inside the wave model, as well as the right hand side and the initial solution. For this case, the
calculated matrix and right hand side are stored in a file. In the simulation, the matrix and
right hand side are loaded from this file. However, due to a small implementation error, the
deflation method used the matrix calculated from the depth profile, while the preconditioner
and CG-iteration used the loaded matrix. The values in the files are single precision, while the
wave model calculates with double precision floating numbers. This implies a small rounding
error in the calculated stencils and the loaded stencils of the matrix.
Aplying the stored stencil to both deflation and CG gives a monotone decreasing residual.
The same is the case for applying the calculated stencil to the whole deflated CG-method. So
the small difference in the matrix used by the deflation method and the matrix used in the
PCG-method resulted in the instability.
The observed instability of the deflated ICCG-method is due to a small implementation error.
But it shows that one should be carefull with rounding errors, which will always occur in the
finite-precision calculations of a computer.
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