# Improving the linear solver used in the interactive wave model of a real-time simulator

MSc graduation presentation

Elwin van 't Wout

August 20, 2009





1

Delft University of Technology

### Introduction

- MSc Applied Mathematics graduation project at TU Delft
- Maritime Research Institute Netherlands







## Outline

- Wave model of a ship simulator
- Computational model
- Linear solvers
- Conclusions





## **Ship simulator**

Realistic ship motions in a wave field

- Current wave model
  - Predefined wave spectrum





# **Ship simulator**

Realistic ship motions in a wave field

- Current wave model
  - Predefined wave spectrum
- New wave model
  - 'Variational Boussinesq model'
  - Realistic wave patterns at changing water depth
  - Interacts with objects, like ships and breakwaters



August 20, 2009



### **IJssel**



August 20, 2009





# Variational Boussinesq model

Variational:

• Minimizing the total pressure in the fluid







# Variational Boussinesq model

Variational:

Minimizing the total pressure in the fluid

Boussinesq:

 The 3D-model is reduced to a 2D-model with vertical shape functions





# Variational Boussinesq model

Variational:

- Minimizing the total pressure in the fluid Boussinesq:
  - The 3D-model is reduced to a 2D-model with vertical shape functions

Linearization around the current

August 20, 2009



### **Model equations**

$$\begin{aligned} \frac{\partial \zeta}{\partial t} + \nabla \cdot \left( \zeta \, \mathbf{U} + h \, \nabla \varphi - h \, \mathcal{D} \, \nabla \psi \right) &= 0 \\ \frac{\partial \varphi}{\partial t} + \mathbf{U} \cdot \nabla \varphi + g \zeta &= P_s \\ \mathcal{M} \, \psi + \nabla \cdot \left( h \, \mathcal{D} \, \nabla \varphi - \mathcal{N} \, \nabla \psi \right) &= 0 \end{aligned}$$

 $\zeta$ water height water depth hsurface velocity potential  $\mathbf{U}$ current  $\varphi$ vertical shape variable pressure pulse ship  $P_s$  $\psi$ gravitation  $\mathcal{D}, \mathcal{M}, \mathcal{N}$ model parameters g



August 20, 2009



## **Numerical discretization**

- Finite volume method
  - Rectangular grid
  - Central differences
  - Five-point stencil
- Leapfrog method





## **Elliptic equation**

Third model equation:

$$-\nabla \cdot (\mathcal{N} \nabla \psi) + \mathcal{M} \psi = \nabla \cdot (h \mathcal{D} \nabla \varphi)$$

The positive parameters  $\mathcal{N},\,\mathcal{M}$  and  $\mathcal{D}$  depend on water depth h

After discretization

$$S\vec{\psi} = \mathbf{b}$$





### **Goal of project**

#### Solve

 $S\vec{\psi} = \mathbf{b}$ 









## **Goal of project**

#### Solve

 $S\vec{\psi} = \mathbf{b}$ 

- Currently, domain of  $1 \times 1 km$  with cells of  $5 \times 5 m$ , so  $40\,000$  linear equations
- In 0.05 s time
- Larger domains in the future:  $10\times 10\,km$



# **Matrix properties**

- Pentadiagonal
- Strictly diagonally dominant
- Symmetric
- Positive definite
- $\lambda_{\min} = \mathcal{O}(h^2)$

- 
$$\lambda_{\max} = \mathcal{O}(1+h^2)$$





August 20, 2009



## **Iterative linear solver**

- Solve  $S\psi = \mathbf{b}$
- Choose start vector  $\psi^0$
- Perform iteration

$$\psi^0 \to \psi^1 \to \psi^2 \to \cdots \to \psi^k$$

• Stop when  $||\mathbf{b} - S\psi^k||$  small



### **Preconditioned Conjugate Gradient**

- The CG-method is applied to  $S\psi = \mathbf{b}$ , since S is spd
- Convergence of CG depends on the eigenvalues of  ${\cal S}$





## **Preconditioned Conjugate Gradient**

- The CG-method is applied to  $S\psi = \mathbf{b}$ , since S is spd
- Convergence of CG depends on the eigenvalues of  ${\cal S}$

Preconditioned system

$$M^{-1}S\psi = M^{-1}\mathbf{b}$$

- $M^{-1}S$  more favorable eigenvalues
- $M\mathbf{x} = \mathbf{b}$  easy to solve





## **Implemented linear solvers**

Preconditioned Conjugate Gradient

- Diagonal scaling
- Modified Incomplete Cholesky
- Repeated Red-Black



August 20, 2009

## **Implemented linear solvers**

Preconditioned Conjugate Gradient

- Diagonal scaling
- Relaxed Incomplete Cholesky
- Repeated Red-Black k

### Deflation



5-point stencils

August 20, 2009





- Gaussian elimination of black points
- 9-point stencils on red points
- lump the four outer elements towards center element  $\Rightarrow$  5-point stencil

August 20, 2009































- Depending on test problem  $5-25\,\%$  reduction of CPU-time
- Theoretical result of a smaller order of convergence: less than  $\mathcal{O}(h^{-\frac{1}{2}})$  iterations



## **Relaxed Incomplete Cholesky**

- Incomplete Cholesky decomposition:  $S \approx L L^T$
- Fill-in discarded  $\rightarrow$  IC
- Fill-in lumped towards main diagonal  $\rightarrow$  MIC





### **Relaxed Incomplete Cholesky**

- Incomplete Cholesky decomposition:  $S \approx L L^T$
- Fill-in discarded  $\rightarrow$  IC
- Fill-in lumped towards main diagonal  $\rightarrow$  MIC
- Combination of IC and MIC  $\rightarrow$  RIC

Spectral condition number of RIC

at open sea of  $32\times32$  nodes







## **Deflation method**

- Map some vectors into the null-space
- Less active eigenvalues ⇒ faster convergence
- More expensive iterations
- Combined with preconditioners





## **Deflation method**

- Map some vectors into the null-space
- Less active eigenvalues ⇒ faster convergence
- More expensive iterations
- Combined with preconditioners
- Subdomain deflation, piecewise-constant deflation vectors

August 20, 2009

### **Deflated Relaxed Incomplete Cholesky**

| # subd.          | $\omega=0$ (IC) | $\omega = 0.5$ | $\omega=1$ (MIC) |
|------------------|-----------------|----------------|------------------|
| 0 	imes 0        | 32.895          | 28.184         | 17.144           |
| $10 \times 10$   | 31.261          | 27.008         | 17.141           |
| $40 \times 40$   | 18.006          | 16.329         | 17.072           |
| $160 \times 160$ | 8.740           | 8.732          | 14.225           |

Number of CG-iterations, at open sea of  $400 \times 400$  nodes





### **Deflated Relaxed Incomplete Cholesky**

| # subd.          | $\omega = 0$ (IC) | $\omega = 0.5$ | $\omega = 1$ (MIC) |
|------------------|-------------------|----------------|--------------------|
| 0 	imes 0        | 32.895            | 28.184         | 17.144             |
| $10 \times 10$   | 31.261            | 27.008         | 17.141             |
| $40 \times 40$   | 18.006            | 16.329         | 17.072             |
| $160 \times 160$ | 8.740             | 8.732          | 14.225             |

Number of CG-iterations, at open sea of  $400 \times 400$  nodes

| # subd.          | $\omega = 0$ (IC) | $\omega = 0.5$ | $\omega=1$ (MIC) |
|------------------|-------------------|----------------|------------------|
| 0 	imes 0        | 981.0             | 845.0          | 525.3            |
| $10 \times 10$   | 1243.5            | 1048.6         | 701.7            |
| $40 \times 40$   | 743.3             | 661.2          | 704.8            |
| $160 \times 160$ | 996.1             | 969.8          | 1500.6           |

**CPU-time** 







### **Spectrum DRICCG**

#### IC

#### MIC





August 20, 2009



### **Spectrum DRICCG**

#### IC

#### MIC







## **Spectrum DRICCG**

#### IC

#### MIC







# **Comparison of methods**

Order of spectral condition number

| Dgs                              | IC                    | MIC                   | RRB                   | RRB-k                      |
|----------------------------------|-----------------------|-----------------------|-----------------------|----------------------------|
| $\overline{\mathcal{O}(h^{-2})}$ | $\mathcal{O}(h^{-2})$ | $\mathcal{O}(h^{-1})$ | $\mathcal{O}(h^{-1})$ | $\leq \mathcal{O}(h^{-1})$ |

Deflation can reduce the order





# **Comparison of methods**

Order of spectral condition number

| Dgs                   | IC                    | MIC                   | RRB                   | RRB-k                      |
|-----------------------|-----------------------|-----------------------|-----------------------|----------------------------|
| $\mathcal{O}(h^{-2})$ | $\mathcal{O}(h^{-2})$ | $\mathcal{O}(h^{-1})$ | $\mathcal{O}(h^{-1})$ | $\leq \mathcal{O}(h^{-1})$ |

Deflation can reduce the order

CPU-time, at open sea of  $200 \times 200$  nodes

| Dgs    | IC     | MIC    | RRB    | RRB-k  |
|--------|--------|--------|--------|--------|
| 0.0624 | 0.0535 | 0.0395 | 0.0561 | 0.0496 |





## Conclusions

- Full description of wave model given
- Improved RRB
- Deflation can improve RICCG
- Block DRICCG: parallelizable

