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Introduction

• MSc Applied Mathematics graduation project
at TU Delft

• Maritime Research Institute Netherlands
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Outline

• Wave model of a ship simulator
• Computational model
• Linear solvers
• Conclusions
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Ship simulator

Realistic ship motions in a wave field
• Current wave model

- Predefined wave spectrum
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Ship simulator

Realistic ship motions in a wave field
• Current wave model

- Predefined wave spectrum
• New wave model

- ‘Variational Boussinesq model’
- Realistic wave patterns at changing water

depth
- Interacts with objects, like ships and

breakwaters
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IJssel
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Variational Boussinesq model

Variational:
• Minimizing the total pressure in the fluid
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Variational Boussinesq model

Variational:
• Minimizing the total pressure in the fluid

Boussinesq:
• The 3D-model is reduced to a 2D-model with

vertical shape functions

Linearization around the current
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Model equations

∂ζ

∂t
+ ∇ ·

(

ζ U + h∇ϕ − hD∇ψ
)

= 0

∂ϕ

∂t
+ U · ∇ϕ + gζ = Ps

Mψ + ∇ ·
(

hD∇ϕ −N ∇ψ
)

= 0

ζ water height h water depth

ϕ surface velocity potential U current

ψ vertical shape variable Ps pressure pulse ship

g gravitation D,M,N model parameters
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Numerical discretization

• Finite volume method
- Rectangular grid
- Central differences
- Five-point stencil

• Leapfrog method
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Elliptic equation

Third model equation:

−∇ · (N ∇ψ) + Mψ = ∇ · (hD∇ϕ)

The positive parameters N , M and D depend on
water depth h

After discretization

S ~ψ = b
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Goal of project

Solve
S ~ψ = b
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Goal of project

Solve
S ~ψ = b

• Currently, domain of 1 × 1 km with cells of
5 × 5 m, so 40 000 linear equations

• In 0.05 s time
• Larger domains in the future: 10 × 10 km
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Matrix properties

• Pentadiagonal
• Strictly diagonally dominant
• Symmetric
• Positive definite

- λmin = O(h2)

- λmax = O(1 + h2)
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Iterative linear solver

• Solve Sψ = b

• Choose start vector ψ0

• Perform iteration

ψ0 → ψ1 → ψ2 → · · · → ψk

• Stop when ||b − Sψk|| small
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Preconditioned Conjugate Gradient

• The CG-method is applied to Sψ = b,
since S is spd

• Convergence of CG depends on the
eigenvalues of S
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Preconditioned Conjugate Gradient

• The CG-method is applied to Sψ = b,
since S is spd

• Convergence of CG depends on the
eigenvalues of S

Preconditioned system

M−1Sψ = M−1
b

- M−1S more favorable eigenvalues

- Mx = b easy to solve
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Implemented linear solvers

Preconditioned Conjugate Gradient

- Diagonal scaling

- Modified Incomplete Cholesky

- Repeated Red-Black



August 20, 2009 14

Implemented linear solvers

Preconditioned Conjugate Gradient

- Diagonal scaling

- Relaxed Incomplete Cholesky

- Repeated Red-Black - k

Deflation
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Repeated Red-Black

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

5-point stencils
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Repeated Red-Black

♥ ♥ ♥ ♥ ♥

♥ ♥ ♥ ♥ ♥

♥ ♥ ♥ ♥ ♥

♥ ♥ ♥ ♥ ♥

♥ ♥ ♥ ♥ ♥

♦ ♦ ♦ ♦ ♦

♦ ♦ ♦ ♦ ♦

♦ ♦ ♦ ♦ ♦

♦ ♦ ♦ ♦ ♦

♦ ♦ ♦ ♦ ♦

♦ ♦ ♦ ♦ ♦

♦ ♦ ♦ ♦ ♦

♦ ♦ ♦ ♦ ♦

♦ ♦ ♦ ♦ ♦

♥ ♥ ♥

♥ ♥

♥ ♥ ♥

♥ ♥

♥ ♥

♥ ♥ ♥

♥ ♥

♥ ♥ ♥

- Gaussian elimination of black points

- 9-point stencils on red points

- lump the four outer elements towards center element
⇒ 5-point stencil
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Repeated Red-Black
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Repeated Red-Black
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Repeated Red-Black
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Repeated Red-Black
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• Depending on test problem 5− 25 % reduction
of CPU-time

• Theoretical result of a smaller order of
convergence: less than O(h− 1

2 ) iterations
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Relaxed Incomplete Cholesky

• Incomplete Cholesky decomposition: S ≈ LLT

• Fill-in discarded → IC
• Fill-in lumped towards main diagonal → MIC
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Relaxed Incomplete Cholesky

• Incomplete Cholesky decomposition: S ≈ LLT

• Fill-in discarded → IC
• Fill-in lumped towards main diagonal → MIC
• Combination of IC and MIC → RIC
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Deflation method

• Map some vectors into the null-space
• Less active eigenvalues ⇒ faster

convergence
• More expensive iterations
• Combined with preconditioners



August 20, 2009 17

Deflation method

• Map some vectors into the null-space
• Less active eigenvalues ⇒ faster

convergence
• More expensive iterations
• Combined with preconditioners
• Subdomain deflation, piecewise-constant

deflation vectors
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Deflated Relaxed Incomplete Cholesky

# subd. ω = 0 (IC) ω = 0.5 ω = 1 (MIC)

0 × 0 32.895 28.184 17.144

10 × 10 31.261 27.008 17.141

40 × 40 18.006 16.329 17.072

160 × 160 8.740 8.732 14.225

Number of CG-iterations, at open sea of 400 × 400 nodes
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Deflated Relaxed Incomplete Cholesky

# subd. ω = 0 (IC) ω = 0.5 ω = 1 (MIC)

0 × 0 32.895 28.184 17.144

10 × 10 31.261 27.008 17.141

40 × 40 18.006 16.329 17.072

160 × 160 8.740 8.732 14.225

Number of CG-iterations, at open sea of 400 × 400 nodes

# subd. ω = 0 (IC) ω = 0.5 ω = 1 (MIC)

0 × 0 981.0 845.0 525.3

10 × 10 1243.5 1048.6 701.7

40 × 40 743.3 661.2 704.8

160 × 160 996.1 969.8 1500.6

CPU-time
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Spectrum DRICCG

IC MIC
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Spectrum DRICCG

IC MIC
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Spectrum DRICCG

IC MIC
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Comparison of methods

Order of spectral condition number

Dgs IC MIC RRB RRB-k
O(h−2) O(h−2) O(h−1) O(h−1) ≤ O(h−1)

Deflation can reduce the order
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Comparison of methods

Order of spectral condition number

Dgs IC MIC RRB RRB-k
O(h−2) O(h−2) O(h−1) O(h−1) ≤ O(h−1)

Deflation can reduce the order

CPU-time, at open sea of 200 × 200 nodes

Dgs IC MIC RRB RRB-k
0.0624 0.0535 0.0395 0.0561 0.0496



August 20, 2009 23

Conclusions

• Full description of wave model given
• Improved RRB
• Deflation can improve RICCG
• Block DRICCG: parallelizable
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