Predicting the Optimal Solver Settings with Machine Learning in the COMSOL CFD Module

25-05-2022

Solver: Automatic Newton Inflow velocity: 0.03 m/s Initial velocity: 0 m/s How can you find the optimal CFL number for pseudo time-stepping with the use of machine learning?

Content

- Literature
- CFL and pseudo time-step
- Neural networks
 - Predict target optimal CFL number
 - Minimize the residuals
- Further research

CFL and pseudo time-step

- Neural networks
- Further research

Literature

- Neural network multigrid solver [1]
 - Network corrects interpolated solutions on fine grids
 - Uses patches and local data \rightarrow generalizable
 - Reduces computational time with same or higher accuracy

CFL and pseudo time-step

Neural networks

Further research

Literature

- Detecting troubled-cells [2]
 Troubled-cells → Gibbs oscillations
 - Existing TVB methods require problemdependent parameters
 - Neural network does not
 - Input contains local information
 - Output flags troubled cells
 - Outperforms traditional methods in term of solution accuracy

CFL and pseudo time-step

Neural networks

Further research

CFL and Pseudo time-step

- Pseudo time-step
 - Initial guess not so important

$$\frac{\partial \mathbf{u}}{\partial t} = F(\mathbf{u}) \qquad \Delta \tilde{t}_n = \mathrm{CFL}_{\mathrm{loc}}(n) \frac{h}{\|\mathbf{u}\|}$$

- Two different CFL numbers in COMSOL
 - One uses iteration count of Newton step
 - Other uses nonlinear error estimate
 - Both are global values

8

CFL and pseudo time-step

Neural networks

Further research

Neural networks

- Local data for generalization
 - Data from one element only
 - Data from a patch of four elements
- Two networks
 - With optimized CFL target
 - With objective to minimize residuals

CFL and pseudo time-step

Neural networks

Further research

Local data: single element

- Vertices
 - u, v, p, residuals
- Centroid
 - Reynolds number
- Edge lengths
- Iteration count
- 32 inputs

CFL and pseudo time-step

Neural networks

Further research

Local data: patch

- Vertices
 - u, v, p, residuals
- Centroids
 - Reynolds number
- Edge lengths
- Iteration count
- 125 inputs

CFL and pseudo time-step

Neural networks

Further research

Network: optimized CFL target

- Optimized CFL number in COMSOL
- Loss is MSE
- 6 hidden layers; 256 neurons

CFL and pseudo time-step

Neural networks

Further research

CFL and pseudo time-step

Neural networks

Further research

Network: minimize the residuals

Loss computed in COMSOL:

$$loss = \left(\int_{\Omega} (u - u_{ex})^2 + (v - v_{ex})^2 \, \mathrm{d}\Omega \right)^{\frac{1}{2}} + 1\text{E-6} \cdot \sum \frac{1}{\text{CFL} + 1\text{E-8}}$$

- Gradient computed in COMSOL:
 - Sensitivity analysis
- Custom output layer

CFL and pseudo time-step

Neural networks

Further research

Network: minimize the residuals

CFL and pseudo time-step

Neural networks

Further research

Network: minimize the residuals

- Results
 - Output is always the same for every element/input
 - During training a lot of oscillation
 - And it is very slow due to the constant interface with COMSOL

CFL and pseudo time-step

Neural networks

Further research

CFL and pseudo time-step

Neural networks

Further research

Further Research

- Neural Network with optimized CFL target
 - Grid search
 - Have one Newton step that is not included to plot the prediction and compute the accuracy
 - Compare with default CFL and Newton Constant
- Neural network with objective to minimize the residuals
 - Grid search
 - Still investigate how to obtain good results
 - Larger data set? Larger patch? Grid search?

Predicting the Optimal Solver Settings with Machine Learning in COMSOL CFD Module

25-05-2022

References

[1] Nils Margenberg et al. "A neural network multigrid solver for the Navier-Stokes equations". In: *Journal of Computational Physics* (Jan. 2022), p. 110983

[2] Deep Ray and Jan S. Hesthaven. "Detecting troubled-cells on two-dimensional unstructured grids using a neural network". In: *Journal of Computational Physics* 397 (2019), p. 108845.

