


Surface: spf.U*0.05[m]*spf.rho/spf.mu (1)
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* Neural network multigrid solver [1]

— Network corrects interpolated solutions on
fine grids

— Uses patches and local data - generalizable

— Reduces computational time with same or
higher accuracy
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» Detecting troubled-cells [2]
— Troubled-cells = Gibbs oscillations

— Existing TVB methods require problem-
dependent parameters

— Neural network does not
— Input contains local information
— Output flags troubled cells

— Outperforms traditional methods in term of
solution accuracy
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* Pseudo time-step
— Initial guess not so important
ou - h
— = At,, = CFLjpe(n) —
gr ~ T A= CFLiecmpgy
* Two different CFL numbers in COMSOL

— One uses iteration count of Newton step
— Other uses nonlinear error estimate
— Both are global values
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Neural networks

- Local data for generalization

— Data from one element only
— Data from a patch of four elements

» Two networks
— With optimized CFL target
— With objective to minimize residuals
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Local data: single element

+ \ertices

— u, V, p, residuals

Centroid
— Reynolds number

Edge lengths
Iteration count
32 Inputs
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s | Ocal data: patch

Vertices
— u, V, p, residuals

Centroids
— Reynolds number

Edge lengths
Iteration count
125 inputs
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Network: optimized CFL target

* Optimized CFL number in COMSOL
* Loss is MSE
* 6 hidden layers; 256 neurons

Surface: Control variable cfl2
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Network: minimize the residuals

* Loss computed in COMSOL.:

1

1
loss = — Uey)” — Vey)® dO 1E-6 -
0SS ([g(u Uez ) + (V — Veg) ) + 1E-6 ZCFL

» Gradient computed in COMSOL.:
— Sensitivity analysis
« Custom output layer

+ 1E-8
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el Network: minimize the residuals

time-step
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Hidden layers
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Network: minimize the residuals

* Results
— Output Is always the same for every
element/input
— During training a lot of oscillation

— And it is very slow due to the constant
Interface with COMSOL
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