Predicting the Optimal Solver

 Settings with Machine Learning in the COMSOL CFD Module25-05-2022

Solver: Automatic Newton

 Inflow velocity: $0.03 \mathrm{~m} / \mathrm{s}$ Initial velocity: $0 \mathrm{~m} / \mathrm{s}$How can you find the optimal CFL number for pseudo time-stepping with the use of machine learning?

Content

- Literature
- CFL and pseudo time-step
- Neural networks
- Predict target optimal CFL number
- Minimize the residuals
- Further research

－Neural network multigrid solver［1］
－\quad Network corrects interpolated solutions on
\quad fine grids
－Uses patches and local data \rightarrow generalizable
－Reduces computational time with same or
\quad higher accuracy
－Neural network multigrid solver［1］
－Network corrects interpolated solutions on
fine grids
－Uses patches and local data \rightarrow generalizable
－Reduces computational time with same or
higher accuracy
Neural network multigrid solver $[1]$
$-\quad$ Network corrects interpolated solutions on
\quad fine grids
- Uses patches and local data \rightarrow generalizable
-

\quad Reduces computational time with same or
Neural network multigrid solver $[1]$
$-\quad$ Network corrects interpolated solutions on
\quad fine grids

- Uses patches and local data \rightarrow generalizable
-

\quad Reduces computational time with same or
$\begin{aligned} & \text { works } \\ & \text { Neural network multigria solver }[7] \\ & \text { fine grids } \\ & \text { network corrects interpolated solutions on } \\ & \text { Uses patches and local data } \rightarrow \text { generalizable } \\ & \text { higher accuracy } \\ &\end{aligned}$

$\begin{aligned} & \text { Neural network multigrid solver }[1] \\ & \text { Network corrects interpolated solutions on } \\ & \text { fine grids } \\ &- \text { Uses patches and local data } \rightarrow \text { generalizable } \\ &- \text { Reduces computational time with same or } \\ & \text { higher accuracy }\end{aligned}$

－Neural network multigrid solver［1］
－Network corrects interpolated solutions on
fine grids
－Uses patches and local data \rightarrow generalizable
－Reduces computational time with same or
higher accuracy
－Neural network multigrid solver［1］
－Network corrects interpolated solutions on
fine grids
－Uses patches and local data \rightarrow generalizable
－Reduces computational time with same or
higher accuracy
－Neural network multigrid solver［1］
－Network corrects interpolated solutions on
fine grids
－Uses patches and local data \rightarrow generalizable
－Reduces computational time with same or
higher accuracy

－Neural network multigrid solver［1］
－Network corrects interpolated solutions on
\quad fine grids
－Uses patches and local data \rightarrow generalizable
－Reduces computational time with same or
higher accuracy
Neural network multigrid solver $[1]$
－Network corrects interpolated solutions on
fine grids
$-\quad$ Uses patches and local data \rightarrow generalizable
$-\quad$ Reduces computational time with same or
higher accuracy
为
■

twork multigrid solver $[1]$
corrects interpolated solutions on
\square

Literature

Literature
CFL and pseudo
time－step

Neural networks
Further research
Neural networks

Further research

Literature
CFL and pseudo
Literature
CFL and pseudo
-
-
elf
-
elforks

-Ne
eft

ーierature

．
都

CFL and pseudo
time-step

Neural networks
Further research

Literature

- Detecting troubled-cells [2]
- Troubled-cells \rightarrow Gibbs oscillations
- Existing TVB methods require problemdependent parameters
- Neural network does not
- Input contains local information
- Output flags troubled cells
- Outperforms traditional methods in term of

mation

\square

 -

solution accuracy

CFL and pseudo time-step

Neural networks
Further research

TUDelft

CFL and Pseudo time-step

- Pseudo time-step
- Initial guess not so important

$$
\frac{\partial \mathbf{u}}{\partial t}=F(\mathbf{u}) \quad \Delta \tilde{t}_{n}=\operatorname{CFL}_{\mathrm{loc}}(n) \frac{h}{\|\mathbf{u}\|}
$$

- Two different CFL numbers in COMSOL
- One uses iteration count of Newton step
- Other uses nonlinear error estimate
- Both are global values

CFL and pseudo time-step

Neural networks
Further research

Neural networks

- Local data for generalization
- Data from one element only
- Data from a patch of four elements
- Two networks
- With optimized CFL target
- With objective to minimize residuals

Neural networks
Further research

FL and pseudo

Furter research

Local data: single element

- Vertices
- 32 inputs

-u, v, p, residuals
- Centroid
- Reynolds number
- Edge lengths
- Iteration count
\qquad

-

\author{

}

Local data: patch

- Vertices
- u, v, p, residuals
- Centroids
- Reynolds number
- Edge lengths
- Iteration count
- 125 inputs

Neural networks
Further research

CFL and pseudo time-step

Fur t

[^0]

Network: optimized CFL target

- Optimized CFL number in COMSOL
- 6 hidden layers; 256 neurons
0.2 0.4
0.0
m

Surface: Control variable cfl2
 . .

.
- Loss is MSE

Literature
CFL and pseudo time-step

Neural networks
Further research

T̛U Delft

都
 ,
0

CFL and pseudo
time－step

Neural networks
 Neural networks

Further research
 T

Literature
都

.

．

CFL and pseudo time-step

Neural networks
Further research

Network: minimize the residuals

- Loss computed in COMSOL:
loss $=\left(\int_{\Omega}\left(u-u_{e x}\right)^{2}+\left(v-v_{e x}\right)^{2} \mathrm{~d} \Omega\right)^{\frac{1}{2}}+1 \mathrm{E}-6 \cdot \sum \frac{1}{\mathrm{CFL}+1 \mathrm{E}-8}$
- Gradient computed in COMSOL:
- Sensitivity analysis
- Custom output layer

TUDelft

Literature
CFL and pseudo time-step

Neural networks

Further research

TUDelft

Network: minimize the residuals

Inputs
 .

Network：minimize the residuals

－Results

CFL and pseudo time－step

Neural networks
Further research （

－Output is always the same for every element／input
－During training a lot of oscillation
－And it is very slow due to the constant interface with COMSOL

game for every

\square
\square
\square

 CFL and pseudo

 Neural networks Neural networks

\square

pseudo

Neural networks
Neural networks

Literature
CFL and pseudo
time－step
Neural networks
Further research
S
 Neural networks Literature
CFL and pseudo
time－step
Neural networks
Further research Further research LIterature
CFL and pseudo
time－step
Feural networks Neural networks

\square
\qquad
\qquad
\square
\square
\square LITERALUR
CFL and pseudo
time－step
Neural networks
Further research

ert

\qquad

．

-

f

.

Literature
CFL and pseudo
time－step
Neural networks
Further research

Abstract

.
-

正

Further Research

- Neural Network with optimized CFL target
- Grid search
- Have one Newton step that is not included to plot the prediction and compute the accuracy
- Compare with default CFL and Newton Constant
- Neural network with objective to minimize the residuals
- Grid search
- Still investigate how to obtain good results
- Larger data set? Larger patch? Grid search?

TUDelft

Predicting the Optimal Solver Settings with Machine Learning in COMSOL CFD Module

References

[1] Nils Margenberg et al. "A neural network multigrid solver for the Navier-Stokes equations". In: Journal of Computational Physics (Jan. 2022), p. 110983
[2] Deep Ray and Jan S. Hesthaven. "Detecting troubled-cells on two-dimensional unstructured grids using a neural network". In: Journal of Computational Physics/ 397 (2019), p. 108845.

[^0]:

